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Preface

You are studying the joint proceedings of the scientific workshops that were held
just before and after the 10th International Conference on Extending Database
Technology (EDBT 2006) in the historic Munich Künstlerhaus, Germany, in late
March 2006. The workshops contributing to this volume are:

– The 4th EDBT Ph.D. Workshop
– DataX 2006 (DB Technologies for Handling XML Information on the

Web)
– IIDB (Inconsistency and Incompleteness in Databases)
– IIHA (Information Integration in Healthcare Applications)
– ICSNW 2006 (Semantics of a Networked World)
– QLQP 2006 (Query Languages and Query Processing)
– PIM 2006 (Pervasive Information Management)
– PaRMa 2006 (Pattern Representation and Management)
– Reactivity on the Web

If we let the raw numbers speak, then, compared with EDBT 2004, the number
of collocated workshops almost doubled (from five in 2004 to nine in 2006). The
nine events attracted circa 170 attendees from all over the globe. Approximately
one third of the participants exclusively registered for workshops. These numbers
indicate that the satellite workshop idea continues to play a significant role and
that the orbited core conference clearly benefits as well. As the EDBT 2006
Workshop Chair, I enjoyed the privilege of being able to sneak into almost all
workshops, and throughout I found the direct, to-the-point, and thus effective
style of presentation and discourse that you may hope for when “birds of a
feather” flock together.

In this post-workshop proceedings volume you will find a selection of 70 con-
tributions, grouped by workshop, whose authors were asked to prepare revised
and enhanced versions of their original workshop submissions. The present pa-
pers reflect program committee comments as well as feedback collected when the
work was presented and discussed in Munich.

I am confident that you will appreciate the diligence with which the authors
prepared the papers of this volume. My sincere thanks go to all workshop pro-
gram committees—more than 150 colleagues in total—and, last but not least,
the workshop organizers who stepped up and devoted significant effort and time
to shape and run the workshops. You can find their individual forewords on the
pages that follow.

August 2006 Torsten Grust



EDBT Ph.D. Workshop

Continuing in its tradition, the Ph.D. Workshop brings together Ph.D. students
in the field of database technology outside of the EDBT conference series. It
offers Ph.D. students the opportunity to present, discuss, and receive feedback
on their research in a constructive and international atmosphere.

The Program Committee, comprised of 30 members from 14 countries, evalu-
ated 70 submissions (received from 20 countries). After a careful review process
(each paper was evaluated by three committee members followed by an online
discussion), 12 papers were selected for presentation at the workshop. After
several intensive and fruitful discussions led by the session chairs, all authors
were invited to submit a revised and extended version of their paper for these
proceedings.

The EDBT 2006 Ph.D. Workshop was made possible through the coopera-
tion of many different organizations and individuals. In particular, we would like
to thank the members of the Program Committee, as well as the Local Orga-
nization Committee, for their professional work and time commitment. We are
very thankful to the three session chairs at the workshop: Klaus R. Dittrich from
the University of Zürich (Switzerland), Klaus Meyer-Wegener from the Univer-
sity of Erlangen-Nuremberg (Germany) and Theo Härder from the Technische
Universität Kaiserslautern (Germany).

Special thanks goes to the members of the Database Research Group at the
University of Erlangen-Nuremberg (Germany) for providing a submission and
review system that worked flawlessly and to Torsten Grust, from the Technische
Universität München (Germany), for his outstanding support in the preparation
and execution of the workshop.

For their gracious help and kind advice during the workshop preparation,
we are particularly indebted to the EDBT 2006 General Chair, Marc H. Scholl,
from the University of Konstanz (Germany); the Program Committee Chair,
Yannis Ioannidis, from the University of Athens (Greece); and the Executive
Chair, Florian Matthes, from the Technische Universität München (Germany).

News and updates can be found at the workshop’s website:
http://www6.informatik.uni-erlangen.de/edbt06phd.

Workshop Chairs

Wolfgang Lindner Massachusetts Institute of Technology, USA
Sascha Müller University of Erlangen-Nuremberg, Germany

Program Committee

Walid Aref Purdue University, USA
Michela Bertolotto University College Dublin, Ireland
Stefano Ceri University of Milan, Italy
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Second International Workshop on Database Technologies
for Handling XML Information on the Web (DataX 2006)

The second EDBT 2006 Workshop on Database Technologies for Handling XML
Information on the Web (DataX 2006) was held in Munich, Germany, on Sun-
day, March 26, 2006, and attracted approximately 30 participants from different
countries. The first DataX workshop was held in conjunction with EDBT 2004.

XML seems to be one of the main means towards the next generation of
database technology. The workshop goal was to give the participants the oppor-
tunity to debate new issues and directions for the XML and database community
with specific interest in innovative environments.

In response to the call for papers, 35 high quality submissions were received.
Each paper was carefully reviewed by at least three members of the program
committee and external reviewers. As result of this process, 10 papers were
selected for the workshop, covering a large variety of topics. In addition, H.V.
Jagadish accepted our invitation to discuss new and interesting topics in XML
and database research.

The workshop opened with a session on Querying XML Documents, devoted
to efficient query processing and to queries on non-valid documents. A section
on Updating XML Documents followed, discussing update languages, updates
through views, and efficient integrity checking. The following section, XML Bio-
logy, discussed the use of XML for representing and analyzing molecular inter-
actions. The invited talk, advocating the need for an algebra in practical XML
query processing, followed. The workshop was concluded by a section devoted to
XML Security, referring to both confidentiality of outsourced data and security
views, and XML Schema Mapping for XML data interchange.

This volume contains improved versions of the workshop papers, revised by
authors according to the program committee’s and workshop participants’ com-
ments.

We would like to thank the invited speaker, the program committee members,
and the external reviewers for their efforts in the realization of this workshop and
in helping authors to revise their papers. All the workshop participants deserve to
be thanked for making the workshop very fruitful. Finally, we wish to express our
gratitude to the EDBT Organization and the EDBT Workshop Chair, Torsten
Grust, for their support in all the phases of the workshop preparation as well as
for the preparation of the post-workshop proceedings.

Workshop Chairs

Barbara Catania DISI - University of Genova (Italy)
Akmal B. Chaudhri IBM developerWorks (UK)
Giovanna Guerrini DISI - University of Genova (Italy)
Marco Mesiti DICO - University of Milan (Italy)



X Organization

Program Committee

Sihem Amer-Yahia Yahoo! Research (USA)
Ricardo Baeza-Yates University of Chile (Chile)
Zohra Bellahsene LIRMM (France)
Angela Bonifati Icar-CNR (Italy)
Stéphane Bressan NUS (Singapore)
Klaus R. Dittrich University of Zurich (Switzerland)
Elena Ferrari University of Insubria (Italy)
Minos Garofalakis Intel Research, Berkeley (USA)
Sven Helmer Universität Mannheim (Germany)
Ela Hunt Glasgow University (UK)
Zoé Lacroix Arizona State University (USA)
Mounia Lalmas Queen Mary University of London (UK)
Anna Maddalena University of Genova (Italy)
Maarten Marx University of Amsterdam (The Netherlands)
Beng Chin Ooi NUS (Singapore)
M. Tamer Özsu University of Waterloo (Canada)
Elisa Quintarelli Politecnico di Milano (Italy)
Ismael Sanz Universitat Jaume I (Spain)
Ralf Schenkel MPI für Informatik, Saarbrücken (Germany)
Michael Schrefl Johannes Kepler Universität (Austria)
Oded Shmueli Technion - Israel Institute of Technology (Israel)
Jérôme Siméon IBM Almaden Research Center (USA)
Divesh Srivastava AT&T Research (USA)
Athena I. Vakali Aristotle University of Thessaloniki (Greece)
Vasilis Vassalos Athens University of Economics and Business

(Greece)

External Reviewers

Michelle Cart Christian Grün Christoph Sturm
Yi Chen Jaudoin Hélène Maria Esther Vidal
Suo Cong Wouter Kuijper Jurate Vysniauskaite
Anca Dobre Stefania Leone Wenqiang Wang
Christian Eichinger Xu Linhao Rui Yang
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Haris Georgiadis Mark Roantree



Inconsistency and Incompleteness in Databases (IIDB)

IIDB 2006, the International Workshop on Inconsistency and Incompleteness in
Databases, was held on March 26, 2006, in Munich, Germany, as a collocated
event of EDBT 2006, the 10th International Conference on Extending Database
Technology. The motivation for this workshop was to bring together database
researchers working on inconsistency, incompleteness, and uncertainty to review
recent progress and outline future research directions.

In response to the call for papers, ten papers were submitted. Each submis-
sion was reviewed by at least three program committee members. Five papers
were accepted for regular and three for short, position paper presentation. Ad-
ditionally, program committee members contributed position papers describing
their ongoing research. IIDB 2006 also featured an invited talk by Maurizio
Lenzerini on “Inconsistency Tolerance in P2P Data Integration” in addition to
the technical program.

During the workshop only informal proceedings were distributed. The articles
in this volume are revised versions of the five papers accepted for regular presen-
tation at the workshop. The authors were able to make improvements to their
papers based on the comments of the reviewers and the discussions during the
workshop. The revised articles were subjected to a final check by the program
committee.

Workshop Chairs

Jan Chomicki University at Buffalo, USA
Jef Wijsen University of Mons-Hainaut, Belgium

Program Committee

Marcelo Arenas PUC Chile, Chile
Ofer Arieli Academic College of Tel-Aviv, Israel
Leopoldo Bertossi Carleton University, Canada
Patrick Bosc IRISA/ENSSAT, France
Andrea Cal̀ı Free University of Bozen-Bolzano, Italy
Nilesh Dalvi University of Washington, USA
Thomas Eiter Vienna University of Technology, Austria
Wenfei Fan University of Edinburgh, UK & Bell Labs, USA
Enrico Franconi Free University of Bozen-Bolzano, Italy
Ariel Fuxman University of Toronto, Canada
Gösta Grahne Concordia University, Canada
Sergio Greco University of Calabria, Italy
Maurizio Lenzerini University of Rome “La Sapienza”, Italy
Jerzy Marcinkowski Wroclaw University, Poland
V.S. Subrahmanian University of Maryland, USA
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Workshop on Information Integration in Healthcare
Applications (IIHA)

In the line with the banner theme of the EDBT 2006 conference “From Database
Systems to Universal Data Management” this workshop focused on topics con-
cerning information integration in healthcare applications.

Healthcare information systems continuously have to be adapted to meet
new requirements, standards, laws, etc. Cost pressure is increasing massively,
and at the same time, system complexity is growing. This constantly changing
environment is also characterized by highly interdisciplinary processes which
depend on the timely provision of patient-related information at the point of
care in order to prevent medical errors. In addition, medical knowledge should
be provided in a way that enables effective decision support for clinicians. The
core challenge is to establish flexible and responsive IT infrastructures that are
capable of effectively adapting to changing requirements. Information integration
is thus a key factor for healthcare applications, as most medical applications are
determined by a huge variety of heterogeneous and independent health care
institutions that have to share data. The continuity of medical processes has to
be improved, and medical pathways will play an important integrational role
within institutions and across institutional borders.

The Program Committee, comprising 10 members from 6 countries, evaluated
18 submissions. After a careful review process (each paper was evaluated by 3
committee members followed by an online discussion), 8 papers were selected for
presentation at the workshop, of which one was withdrawn by the authors. After
the workshop the authors of 6 papers were finally invited to submit a revised
version for these proceedings.

The workshop was a very lively one. There was lot of discussion, and the idea
of a continuation workshop arose. One of the highlights of the workshop was
Klaus Kuhn’s keynote address about the current state of healthcare information
systems.

We would like to thank the members of the Program Committee, as well as
the local Organization Committee, for their professional work and time commit-
ment. Special thanks goes to the EDBT 2006 workshop chair, Torsten Grust,
from the Technische Universität München (Germany) who perfectly supported us
during the whole workshop preparation and post processing. Last but not least,
we would like to thank Klaus Kuhn from the Technische Universität München
(Germany), for giving a superb keynote address at the workshop.

News and updates can be found via the workshop website:
http://www6.informatik.uni-erlangen.de/edbt06-WSIIHA.

Workshop Chair

Stefan Jablonski Chair for Databases and Information Systems,
University of Bayreuth, Germany
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Program Committee

Wolfgang Deiters Fraunhofer Institute for Software and
Systems Engineering, Dortmund, Germany

Evelyn Hovenga School of Information Systems,
Central Queensland University, Australia

Stan Huff Intermountain Health Care,
Salt Lake City, USA

Stefan Jablonski Chair for Databases and Information Systems,
University of Bayreuth, Germany (Chair)

Klaus Kuhn Chair for Medical Informatics,
Technische Universität München, Germany

Richard Lenz Institute of Medical Informatics,
University of Marburg, Germany

Christian Lovis Service of Medical Informatics,
University Hospitals of Geneva, Switzerland

John Mantas Health Informatics Lab,
University of Athens, Greece

Sascha Müller Chair for Database Systems,
University of Erlangen-Nuremberg, Germany

(Organization)
Manfred Reichert Information Systems Group,

University of Twente, The Netherlands

Sponsors

University of Erlangen-Nuremberg
Technische Universität München
10th International Conference on Extending Database Technology (EDBT 2006)



International Conference on Semantics of a Networked
World: Semantics of Sequence and Time Dependent Data

(ICSNW 2006)

The explosion in information exchange fostered by the success of the Web has
led to the identification of semantics as a critical issue in the development of
services providing data and information to users and applications worldwide. A
newly designated conference series on “Semantics of a Networked World” pro-
moted by the IFIP WG 2.6 intends to continue the exploration of novel emerging
trends that raise challenging research issues related to the understanding and
management of semantics. Each conference, in addition to soliciting contribu-
tions of generic relevance in the semantics domain, plans to focus on a specific
theme that conveys exciting promises of innovation.

The theme for ICSNW 2006 was “Semantics of Sequence and Time Dependent
Data”. Sequence and time dependent data are distinguished by the important
role played by order, in modeling and querying the data. For example, moni-
toring dynamic phenomena produces data that arrive as a stream of temporal
observations, whose querying and analysis make essential use of its temporal or
sequential nature. Data warehouses give considerable prominence to the tempo-
ral dimension for decision support. Applications in the biological and financial
domains naturally model their data using sequences, and the mining of such
data makes critical use of this property. The purpose of ICSNW 2006, like its
predecessors, was to provide an active forum for researchers and practitioners for
the presentation and exchange of research results and the discussion of practical
issues in the management of data, in particular applied to sequence and time
dependent data.

The conference was held on March 30, 2006 in Munich, Germany. The tech-
nical program featured two invited keynote talks, one given by Tamer Ozsu
(Sliding Window Query Processing over Data Streams), and another one given
by John Mylopoulos (Data Semantics Revisited). Eight papers were accepted
for the research track, with an acceptance rate of 1 in 3, and were presented in
three sessions: Streams, Ontology Applications and Ontology Semantics.

Finally, the conference chairs would like to thank all the people who worked
hard to make this conference a success. This includes the members of the steering
committee, the members of the program committee, the invited speakers, the
authors of the papers presented at the conference and the people who attended
the conference.

Conference Chairs
A. Illarramendi (PC Co-chair) University of the Basque Country, Spain
M.H. Scholl (General Chair) University of Konstanz, Germany
D. Srivastava (PC Co-chair) AT&T Labs-Research, USA
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Query Languages and Query Processing (QLQP 2006)

QLQP 2006 was the 11th workshop in the international workshop series on
Foundations of Models and Languages for Data and Objects (FoMLaDO), a
series initiated and run by the Working Group on Foundations of Information
Systems of the German Computer Society (Gesellschaft für Informatik e.V.).
QLQP 2006 addressed topics like

– semantics of query languages,
– query languages for XML, RDF, etc,
– query optimization for semistructured data,
– query languages for sensors and data streams,
– query processing in large scale distributed and autonomous systems,
– processing continuous queries,
– adaptive and robust query processors.

Workshop Chairs

Stefan Conrad University of Düsseldorf, Germany
Cristian Pérez de Laborda University of Düsseldorf, Germany
Kai-Uwe Sattler TU Ilmenau, Germany

Program Committee

Wolf-Tilo Balke L3S Research Center, University of Hanover
Stefan Conrad University of Düsseldorf
Jens Dittrich ETH Zurich
Johann-Christoph Freytag HU Berlin
Torsten Grust TU München
Ihab F. Ilyas University of Waterloo
Wolfgang Lehner TU Dresden
Stefan Manegold CWI Amsterdam
Volker Markl IBM Almaden
Holger Meyer University of Rostock
Norman Paton University of Manchester
Torben Bach Pedersen Aalborg Univ.
Norbert Ritter University of Hamburg
Kai-Uwe Sattler TU Ilmenau
Ralf Schenkel MPI Saarbrücken
Bernhard Seeger University of Marburg

External Reviewers

Martin Husemann
Iryna Kozlova

Asem Omari
Christopher Popfinger

Jens Teubner



Second International Workshop on Pervasive Information
Management (PIM 2006)

The number of mobile devices in use is growing at a tremendous rate. On the
one hand, this is true for rather powerful devices like PDAs and smartphones, on
the other hand, very lightweight devices like sensors and RFID tags are starting
to be deployed in considerable numbers. This development opens the doors for
new application areas where information stemming from a multitude of different
sources is used to satisfy user demands. However, data management for these
applications is a complex task since it has to deal with the mobility of users,
devices and data as well as the specifics of wireless connectivity and the resource
restrictions many of these devices exhibit. Therefore, new solutions that consider
all these dimensions are needed for pervasive data management.

Information is becoming ubiquitous, highly distributed and at the same time
accessible from everywhere at any time. However, accessing it takes place in
highly dynamic and instable networks often using devices with limited I/O-
capabilities and restricted power resources. Information obtained from different
sources, among them sensors, needs to be integrated. From the user’s point of
view, all these difficulties should be invisible. Information access should be as
similar to access from the desktop environment as possible.

These post-proceedings contain a selection of the accepted papers of the 2nd
International Workshop on Pervasive Information Management, held in conjunc-
tion with the 10th International Conference on Extending Database Technology
(EDBT 2006) on March 30th, 2006 in Munich, Germany. These papers address
a broad range of issues in pervasive information systems. New and existing con-
cepts and techniques are developed in the light of the rapidly increasing mobility
of users and the great advances in system infrastructures, mobile devices, and
sensor technologies.

Workshop Chairs

Hagen Höpfner International University in Germany, Bruchsal,
Germany

Can Türker FGCZ Zurich, Switzerland
Birgitta König-Ries University of Jena, Germany

Program Committee

Michel E. Adiba Université de Grenoble, France
Susanne Boll University of Oldenburg, Germany
Thomas Fanghänel IBM San Jose, USA
Le Gruenwald University of Oklahoma, USA
Manfred Hauswirth Ecole Polytechnique Federale de Lausanne,

Switzerland
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External Reviewers
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Christophe Bobineau LSR-IMAG, Grenoble, France
Wojciech Galuba Ecole Polytechnique Federale de Lausanne,

Switzerland
Sarunas Girdzijauskas Ecole Polytechnique Federale de Lausanne,

Switzerland
Sergio Ilarri University of Zaragoza, Spain
Thorsten Möller University of Basel, Switzerland
Thorsten Steenweg OFFIS, Oldenburg, Germany



Second International Workshop on Pattern Representation
and Management (PaRMa 2006)

PaRMa 2006 was the second international workshop on pattern representation
and management, again taking place in conjunction with the International Con-
ference on Extending Database Technology. PaRMa workshops accommodate
advances on the management of patterns as database objects with conventional
and extended/dedicated database operations.

The vast volumes of data in conventional form, in documents and in multi-
media files demand for methods for the discovery of useful patterns from them.
Such methods from the domain of knowledge discovery deliver patterns in the
form of association rules, classifiers, clusters or time series. Similarly to the need
for maintaining, retrieving and updating data, there is the same paramount need
to administer patterns: To store them in databases in an efficient way and to
provide appropriate query languages for retrieving them; to update them as new
data reveal population drifts and to identify such drifts; to design methods for
the querying, presentation, evaluation and comparison of patterns.

This year, the PaRMa workshop focussed on systems and query languages.
The four papers of the post-workshop proceedings present four systems and
underlying conceptual models for pattern management and querying. The sys-
tem PSYCHO by Catania and Maddalena manages arbitrary types of patterns,
working on top of a conventional DBMS architecture. The pattern management
model XDM by Meo and Psaila focusses on the integration of data and patterns
in an inductive database and builds upon XML as basis for a unifying framework.
The system NaviMoz by Christodoulou, Dalamagas and Sellis manages naviga-
tion patterns in the Web and shows how portal owners and administrators can
gain insights on users’ habitual behaviour through pattern querying and inspec-
tion. The Précis query framework by Simitsis and Koutrika deals with free-form
query answering over databases and delivers query results as multi-relational
tables. The PaRMa 2006 workshop also featured an invited talk on PMML by
Michael Thess (prudsys). PMML is an obvious candidate for the modeling of
data mining patterns, since its emphasis is on pattern specification for exchange
among data mining suites. However, PMML evolved independently of database
advances. The potential of interplays between database pattern management
methods and PMML has been the subject of a vivid panel that followed the
invited talk.

The organizers of PaRMa 2006 would like to thank the authors, the reviewers
and the invited speaker for their contribution to a successful workshop. More-
over, we would like to express our gratitude to the members of the Organizing
Committee of EDBT 2006 for their support.

Workshop Chairs

Myra Spiliopoulou University of Magdeburg, Germany
Yannis Theodoridis University of Piraeus, Greece
Panos Vassiliadis University of Ioannina, Greece
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Minos Garofalakis Intel Research Berkeley, USA
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Reactivity on the Web

Reactivity on the Web, the ability to detect simple and composite events that
occur on the Web and respond to them in a timely manner, has recently emerged
as an issue of concern in Web and Semantic Web circles such as the W3C
(http://www.w3.org) and several international Semantic Web research initia-
tives such as REWERSE (http://rewerse.net). Although a common percep-
tion of the Web is that of a distributed information system giving rise to access
data in a read only manner, many Web-based systems need to have the capability
to update data found at (local or remote) Web resources, to exchange informa-
tion about events (such as executed updates), and to detect and react not only
to simple events but also to complex, real-life situations. The issue of updating
data plays an important role, for example, in e-commerce systems receiving and
processing buying or reservation orders, and e-learning systems selecting and
delivering teaching materials depending on the students’ performances on tests.
The issues of notifying, detecting, and reacting upon events of interest are now
beginning to play an increasingly important role within business strategies on
the Web, and event-driven applications are being more widely deployed: Terms
such as zero latency enterprise, the real-time enterprise and on-demand com-
puting are being used to describe a vision in which events recognised anywhere
within a business, can immediately activate appropriate actions across the entire
enterprise and beyond. Businesses that are able to react to events quickly and
take appropriate decisions are likely to have a competitive advantage.

The issue of automatic reaction in response to events of interest has its roots
in the field of active databases; in particular, the issue of detecting composite
events has received considerable attention. However, differences between (gen-
erally centralised) active databases and the Web, where a central clock and
a central management are missing, give reasons for developing new approaches.
Moreover, approaches that cope with existing and upcoming Semantic Web tech-
nologies (by gradually evolving together with these technologies) are more likely
to leverage the Semantic Web endeavour. Along this line, of crucial importance
for the Web and the Semantic Web is the ease of technologies’ usage (in particu-
lar the languages’ usage) that should be approachable also by non-programmers.

The workshop Reactivity on the Web was co-located with the 10th Interna-
tional Conference on Extending Database Technology (EDBT 2006) and rep-
resents an attempt to establish a more connected research community on Web
reactivity. These proceedings contain the research articles accepted for presen-
tation at the workshop. A total of 12 submissions were received and, based
on three reviews per paper provided by the Programme Committee members,
a 50 percent acceptance rate was decided. For the accepted papers a second
round of reviewing was organized so as to provide high-quality workshop post-
proceedings. These proceedings contain also two invited articles that were the
base of the workshop’s invited talks given by François Bry (University of Mu-
nich) and Alexandra Poulovassilis (University of London): one article on theses
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Phenomenon-Aware Sensor Database Systems

M.H. Ali

Department of Computer Science, Purdue University
mhali@cs.purdue.edu

Abstract. Recent advances in large-scale sensor-network technologies
enable the deployment of a huge number of sensors in the surround-
ing environment. Sensors do not live in isolation. Instead, close-by sen-
sors experience similar environmental conditions. Hence, close-by sensors
may indulge in a correlated behavior and generate a “phenomenon”. A
phenomenon is characterized by a group of sensors that show “simi-
lar” behavior over a period of time. Examples of detectable phenomena
include the propagation over time of a pollution cloud or an oil spill
region. In this research, we propose a framework to detect and track
various forms of phenomena in a sensor field. This framework empow-
ers sensor database systems with phenomenon-awareness capabilities.
Phenomenon-aware sensor database systems use high-level knowledge
about phenomena in the sensor field to control the acquisition of sen-
sor data and to optimize subsequent user queries. As a vehicle for our
research, we build the Nile-PDT system, a framework for Phenomenon
Detection and Tracking inside Nile, a prototype data stream manage-
ment system developed at Purdue University.

1 Introduction

A large body of research in the database systems area focuses on han-
dling massive amounts of data that is streamed from sensor networks, e.g.,
see [7,9,10,12,19,20,29]. The main goal is to provide efficient query processing
techniques for sensor data. However, emerging sensor-network applications call
for new capabilities that are beyond traditional online query processing tech-
niques. Examples of these applications include surveillance [24], object track-
ing [12], and environmental monitoring [25]. Mainly, these applications go past
simple data retrieval to show their evolving interest in data analysis and field
understanding.

In this research, we focus on extending sensor database systems with
phenomenon-awareness capabilities as a step towards the understanding of sen-
sor data. A phenomenon appears in a sensor field if a group of sensors show
“similar” behavior over a period of time. In particular, phenomenon-aware sen-
sor databases (or PhenomenaBases, for short) have two major tasks: First, it
detects and tracks various forms of phenomena in space. Second, it utilizes the
knowledge about phenomena in the space to optimize subsequent user queries.
Although individual sensor readings can be useful by themselves, phenomenon

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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detection exploits various notions of correlation among sensor data and pro-
vides a global view of the underlying environment. Then, phenomenon tracking
monitors the propagation of detected phenomena to reflect the changes in the
surrounding environmental conditions. Given the knowledge about phenomena
in the surrounding space, phenomenon-aware optimizers bridge the gap between
the low-level sensor readings and the high-level understanding of phenomena to
answer user queries efficiently.

1.1 Motivation

In this section, we identify five major points through which sensor-network ap-
plications benefit from Phenomenon Detection and Tracking (PDT, for short)
techniques. These points can be summarized as follows:

1. High-level description of the sensor field. With the aid of PDT tech-
niques, an application may ask for “What is going on in a sensor field?”
instead of asking “What are the sensor readings?” PDT techniques describe
the underlying sensor field using a higher level of knowledge (e.g., report a
fire alarm instead of a bunch of high temperature readings).

2. Phenomenon-guided data acquisition. Data acquisition can be guided
by detected phenomena in the sense that we reduce the sampling rate of
non-interesting sensors (i.e., sensors that do not contribute to any phenom-
ena). Also, we reduce the sampling rate of sensors that are (and will remain)
involved in a phenomenon. Such sensors with persistent phenomena are tem-
porarily turned off with the assumption that their phenomena will not disap-
pear instantaneously. Sensors on the boundaries of a phenomenon tend to be
more interesting and are likely to change their values quickly. We increase
the sampling rate of boundary sensors such that we capture the possible
change in their state as quickly as possible. Reducing the sampling rate of a
sensor will result in a general reduction in the sensor’s energy consumed in
sampling, processing, and communication. Also, the processing load over the
centralized DSMS (or the sink node of the sensor network) will be reduced.

3. Data compression. Voluminous sensor data can be compressed using PDT
techniques. Instead of maintaining the readings of each individual sensor, we
maintain phenomenon pairs (R, B), where R is the region that bounds a
phenomenon with behavior B.

4. Prediction. Tracking a phenomenon movement and predicting its future
trajectory foresees the next state of the sensor field. Based on the bound-
aries of a phenomenon and their trajectories, we can predict the movement
of various phenomena in the space. Prediction of phenomenon-movement
enables us to decide which sensors to turn on and off in order to conserve
energy without losing useful information.

5. Phenomenon-guided query processing. Given a query and given a set
of phenomena, query processing can be guided to regions with phenomena
that satisfy the query predicates. Hence, the query space is reduced. All
phenomena in the space are maintained and their contributing sensors are
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indexed. Then, a user query is mapped to a set of system-detected phenom-
ena. Regions that are covered by this set of phenomena are processed to
answer the query.

1.2 Applications

Several applications benefit from the detection and tracking of various phenom-
ena in the sensor field. Examples of these applications include:

1. Tracing pollutants in the environment, e.g., oil spills, or gas leakage.
2. Reporting the excessive purchase of an item at different branches of a retail

store.
3. Detecting computer worms that strike various computer sub-networks.

Notice that a phenomenon may or may not have spatial properties. The phe-
nomenon in the first example has spatial properties, where an oil spill is a con-
tiguous portion of the ocean surface. If a phenomenon has spatial properties, it is
referred to by the term cloud. Retail store applications may not have the notion
of spatial attributes, where retail stores can be spread arbitrary over the region.
In the third application, the notion of spatial distance is relative to the network
connectivity. Also, to generalize the concept of phenomena, a sensor may be a
physical device that acquires readings from the environment, (e.g., temperature,
light, humidity, or substance identifiers as in the first example) or a virtual sen-
sor like the cashier machine that reads item identifiers as in the second example.
A sensor may even be a piece of software that detects computer worms as in the
third example.
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This Ph.D. research is done in the context of Nile [14], a prototype data
stream management system developed at Purdue University. We extend Nile
with a Sensor Network Support Layer (SNSL) where a Phenomenon Detection
and Tracking (PDT) module is placed. PDT monitors phenomena as they prop-
agate in the sensor field and returns feedback to a phenomenon-aware query
optimizer which, in turn, controls the generation and execution of query plans.
Figure 1 illustrates the architecture of Nile-PDT.

2 Research Plan

In this section, we identify the major challenges in the design and the imple-
mentation of phenomenon-aware systems. In particular, we address the following
challenges:

1. The phenomenon-extraction challenge, where we separate sensors that
participate in a phenomenon from sensors that participate in no phenomena.

2. The sensor-network processing requirements challenge, where we
develop algorithms that comply with the requirements of large-scale
dynamically-configured sensor-networks with distributed processing capa-
bilities.

3. The similarity-notion challenge, where we define various notions of sim-
ilarity among sensors’ behavior and develop techniques that comply with
these notions.

4. The phenomenon-interpretation challenge, where we develop a query
optimizer that makes use of knowledge about detected phenomena to answer
user queries.

In the remainder of this section, we devote a subsection to explore each challenge,
emphasize its associated research tasks, and propose preliminary ideas.

2.1 The Phenomenon-Extraction Challenge

As a first step towards phenomenon detection, we propose a concrete definition of
a phenomenon. Two parameters control the phenomenon definition, the strength
(α) and the time span (w). The strength of a phenomenon indicates that a
certain phenomenon should occur at least α times to qualify as a phenomenon.
(This measure is similar to the notion of support in mining association rules, e.g.,
see [1].) Reading a value less than α times is considered noise, e.g., impurities that
affect the sensor readings. The time span w limits how far a sensor can be lagging
in reporting a phenomenon. w can be viewed as a time-tolerant parameter, given
the common delays in a sensor network. (This measure is similar to the notion
of gaps in mining generalized sequential patterns [23].) In the light of these two
parameters, a phenomenon can be defined as follows:

Definition 1. In a sensor network SN , a phenomenon P takes place only when
a set of sensors S ⊂ SN report similar reading values more than α times within
a time window w.
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In [5], we simplify the definition by considering the discrete case of the phe-
nomenon where the notion of similarity reduces to equality. (In Section 2.3, we
consider other notions of similarity.) The process of phenomenon detection and
tracking (PDT) is divided into three phases (Figure 2):

1. The joining that applies an in-memory multi-way join over the entire sensor
network to detect sensors with the same value within a time frame of length
w from each other.

2. The candidate selection phase that enforces the (α) and (w) constraints on
join pairs to report phenomenon candidate members.

3. The grouping/output phase that groups phenomenon candidate members and
investigates the application semantics to form and report phenomena to the
user.

2.2 The Sensor-Network Processing Requirements Challenge

To implement a phenomenon-aware sensor database system, we need to shift
the phenomenon detection phases to the sensor-network level. Distributed algo-
rithms need to replace the centralized ones. We address five major challenges in
sensor network processing:

1. Scalability, to face the excessive deployment of sensors in the space.
2. Adaptivity, to handle the gradual/abrupt appearance/disappearance of

phenomena.
3. Distributed processing, to relieve the centralized system from possible

congestions and to reduce the communication cost by filtering irrelevant
data as early as possible.

4. Dynamic configuration, where sensors may be added or removed from
the network based on the network conditions, the sensor’s lifetime, and the
availability of additional sensors.

5. Limited energy, to reduce the frequency of battery replacement in envi-
ronments where the existence of a human being is either tough or dangerous,
e.g., habitat monitoring [25].

To address the above challenges, we place a new operator (the SNJoin oper-
ator [3]) at the core of the PDT module. SNJoin is a distributed multi-way join
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operator that is specially designed for large-scale dynamically-configured sensor
networks. We model the sensor network as an ad-hoc network of sensor nodes
that are grouped into clusters based on their energy level and their spatial lo-
cations. One node per cluster is dedicated to serve as the cluster head. SNJoin
decomposes the join operation into multiple smaller join operations that are per-
formed separately over each cluster at the cluster head. Then, each cluster head
chooses a cluster-head probing sequence to probe other cluster heads looking for
matches. Ideally, the cluster-head probing sequence spans all cluster heads in
the network to produce as much output results as possible. However, due to the
large size of the network and its associated communication cost, it is practical
to probe only clusters where it is more likely to find matches. Notice that only a
small number of sensors (compared to the thousands of sensors in the network)
join with each other. In SNJoin, we introduce the concept of query processing
with relevance feedback. As illustrated in Figure 2, a relevance feedback is given
from the candidate selection phase to the joining phase. The objective of query
processing with relevance feedback is to guide the join operation to process only
relevant cluster heads, i.e., clusters that generate the same values. This selective
probing reduces both the processing cost and the communication cost at the
price of losing some streams that could have participated in the join if they were
included in the probing sequence.

2.3 The Similarity-Notion Challenge

In this section, we generalize our work to include continuous phenomena. Con-
tinuous phenomena are generated by sensors whose values are drawn from con-
tinuous ranges. The major challenge in continuous phenomena comes from the
fact that similarity among sensors’ behavior does not necessarily mean equality.
Instead, various notions of similarity need to be explored. We plan to examine
the following notions of similarity:

1. Similar values, where similarity is assessed based on a distance function
“dist”. Two values v1 and v2 are considered similar if dist(v1, v2) < D.

2. Similar behavior, where we extract summaries from the sensor data (e.g.,
histograms, count sketches, or user-defined summaries) that capture the sen-
sors’ behavior over a window of time. Similarity is assessed based on the
distance between the summaries.

3. Similar trend, where the increase/decrease in one sensor readings implies
the increase/decrease of another sensor’s readings. Generally, the change in
the readings of one sensor is related to the change in the other sensor’s
readings by a function f (i.e., �v1 = f(�v2)). For example, the increase in
the readings of smoke detectors is usually accompanied by an increase in the
readings of temperature sensors.

We investigate two approaches to handle continuous phenomena: First, as
a preprocessing phase, we group sensor readings into clusters, represent each
reading by its cluster identifier, and apply discrete PDT techniques over cluster
identifiers. Second, we replace the equality join by a similarity join, where the
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similarity function is a user-defined function that is provided as part of the query
syntax. Initial implementation of PDT using similarity join is conducted in [2].

2.4 The Phenomenon-Interpretation Challenge

A phenomenon-aware system implies that the phenomenon detection and track-
ing process is always running in the background to detect new phenomena and to
track the propagation of already-detected phenomena. Based on the understand-
ing of surrounding phenomena, phenomenon-aware systems answer user queries.
The ultimate goal of our research is to build a sensor database system that op-
timizes user queries on a “phenomenon detection guides query processing” basis.
We view phenomenon-aware query optimization as a rich area of research where
phenomenon understanding alters the construction/execution of query plans. We
explore phenomenon-aware query optimization along two directions:

1. Increasing the sampling rate of sensors that contribute to phenomena asso-
ciated with active queries.

2. Controlling the join probing sequence such that a reading coming from one
sensor probes only sensors where a match is likely to be found. The join
probing sequence is tuned to favor the joins that affect the appearance or
the disappearance of a phenomenon.

3 Experiments

As a proof of concept, we conduct an experimental study to show the perfor-
mance gains a phenomenon-aware optimizer may achieve. We generate a set of
2000 sensors using the Nile-PDT simulator [2]. Each sensor generates a stream of
readings at a rate of 1 reading per second. We detect and track discrete phenom-
ena as discussed in [5]. Detected phenomena are fed into a naive phenomenon-
aware query optimizer. The naive optimizer searches the list of detected
phenomena, determines interesting phenomenon regions (i.e., phenomenon re-
gions that satisfy the query predicates), and deploys the query only over regions
of its interesting phenomena. We process a set of 100 selection query with pred-
icate selectivities that range from 1% to 20% of the whole space.

Two experiments are conducted. First, we measure the energy saved (in terms
of the number of transmitted messages) using a phenomenon-guided data acqui-
sition. Sensors that contribute to phenomena are sampled more frequently than
sensors that contribute to no phenomena. The number of transmitted sensor
readings is reduced by up to 65%. Second, we measure the accuracy of the query
result in terms of the average number of output tuples. Figure 3 illustrates the
performance of the query processor in the following cases:

1. No-PDT, where no PDT-capabilities are used.
2. Exact, where infinite resources are given to calculate the answer.
3. Naive-PDT, where a naive PDT phenomenon-aware optimizer is used.
4. Target-PDT, which is an imaginary curve that reflects where we expect

the performance of a non-naive optimizer will fall.
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Fig. 3. Performance of Nile-PDT

The Target-PDT curve is somewhere between the naive-PDT and the Exact
curves (i.e., the target zone in the figure).

4 Related Work

Sensors are devices that are capable of sampling, processing, and transmit-
ting readings from the surrounding environment. Various techniques have been
proposed to handle the sampling [4,6,10,20], processing [9,29], and transmis-
sion [8,16,18] tasks. In this section, we overview other techniques that analyze
sensor data to track objects and/or regions as they move in the space. We also
highlight the join operation over data streams due to its important role in the
process of phenomenon detection and tracking.

To reduce the overall power consumption of the sensor network while object
tracking, [28] proposes a prediction-based strategy that focuses on regions where
the moving object is likely to appear. In [30], the tree-like communication struc-
ture of the sensor network is reconfigured dynamically to reduce the number
of hops between a sensor and the sink node as the sensor comes closer to the
moving object. Instead of tracking a single object, [2,5] provide a framework to
detect and track phenomena in a sensor field once a region of sensors exhibit a
common behavior. The work in [22] investigates how to detect boundaries that
separate homogeneous regions. In [15], continuous regions with similar values
are grouped into homogeneous regions called isobars.
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The join operation detects similarities in value among sensors along the tra-
jectory of a moving object or among sensors in the same phenomenon region. For
example, [12] tracks moving objects in a sensor field through a window join algo-
rithm (w-join). The join operation has been studied thoroughly in the literature,
e.g., [11,12,13]. Symmetric Hash Join [27] is the first algorithm that takes care
of the infiniteness of the data source. XJoin [26] provides disk management to
store overflowing tuples on disk for later processing. An asymmetric window join
over two data streams with different arrival rates is discussed in [17]. The Hash-
Merge Join (HMJ) [21] is a recent non-blocking join algorithm that produces
early join results. In our work, we propose the SNJoin operator [3], a multi-way
join operator that is specially designed for large-scale dynamically-configured
sensor networks.

5 Conclusions

In this paper, we proposed a framework for phenomenon-aware sensor database
systems. We provided a concrete definition for the phenomenon and explored var-
ious notions of similarity among sensors’ behavior. In a phenomenon-aware sen-
sor database system, the knowledge gained through detected phenomena guides
query processing to regions of interest in the sensor field. The proposed research
plan has four phases. The first phase is concerned with detecting and track-
ing discrete phenomena (i.e., the notion of similarity reduces to equality) in a
centralized data stream management system. The second phase pushes the de-
tection and tracking of phenomena to the sensor-network level in a distributed-
processing fashion. The third phase addresses various notions of similarity among
sensors’ behavior and generalizes the phenomenon concept to include continuous
phenomena. The fourth phase achieves, through a phenomenon-aware optimizer,
the ultimate goal of answering user queries efficiently based on the knowledge
about phenomena in the space.
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Abstract. Spatio-temporal database systems aim to answer continuous
spatio-temporal queries issued over moving objects. In many scenarios
such as in a wide area, the number of outstanding queries and the num-
ber of moving objects are so large that a server fails to process queries
promptly. In our work, we aim to develop scalable techniques for spatio-
temporal database systems. We focus on two aspects of spatio-temporal
database systems: 1) the query processing algorithms for a large set of
concurrent queries, and 2) the underlying indexing structures for con-
stantly moving objects. For continuous query processing, we explore the
techniques of Incremental Evaluation and Shared Execution, especially to
k-nearest-neighbor queries. For moving object indexing, we utilize Update
Memos to support frequent updates efficiently in spatial indexes such as
R-trees. In this paper, we first identify the challenges towards scalable
spatio-temporal databases, then review the current contributions we have
achieved so far and discuss future research directions.

1 Challenges and Motivations

The integration of position locators and mobile devices enables new perva-
sive location-aware computing environments [3,32] where all objects of inter-
est can determine their locations. In such environments, moving objects move
continuously and send location updates periodically to spatio-temporal data-
bases. Spatio-temporal database servers index the locations of moving objects
and process outstanding continuous queries. Characterized by a large number
of moving objects and a large number of continuous spatio-temporal queries,
spatio-temporal databases are required to exhibit high scalability in terms of
the number of moving objects and the number of continuous queries.

To increase the scalability of spatio-temporal databases, there exist two main
challenges. The first challenge is to support a large set of continuous queries
concurrently. With the ubiquity and pervasiveness of location-aware devices and
services, a set of continuous queries execute simultaneously in a spatio-temporal
database server. In the case that the number of queries is too large, the perfor-
mance of the database degrades and queries suffer long response time. Because
of the real-timeliness of the location-aware applications, long delay makes the
query answers obsolete. Therefore, new query processing algorithms addressing
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both efficiency and scalability are required for answering a set of concurrent
spatio-temporal queries.

The second challenge for building scalable spatio-temporal databases is to in-
dex moving objects efficiently. Building indexes on moving objects can facilitate
significantly query processing in spatio-temporal databases. However, due to the
dynamic property of moving objects, the underlying indexing structures will
receive numerous updates during a short period of time. Given the fact that up-
date processing is costly, traditional spatial indexes may not be applied directly
to spatio-temporal databases. This situation calls for new indexing techniques
supporting frequent updates.

The above two challenges motivate us to develop scalable techniques for both
continuous query processing and moving object indexing in spatio-temporal
databases. Specifically, we propose the SEA-CNN algorithm for evaluating a
large set of continuous k-Nearest-Neighbor queries. While SEA-CNN addresses
continuous k-nearest-neighbor queries, it has potential to extend to other types
of queries. Meanwhile, we propose the RUM-tree for indexing moving objects by
enhancing the standard R-trees with Update Memos. The update scheme uti-
lized in the RUM-tree can be applied to other indexes to improve their update
performance.

In the rest of the paper, we review our research works conducted so far and
discuss future Ph.D. research directions.

2 Current PhD Contributions

In this section, we review the contributions we have achieved to build highly
scalable spatio-temporal database management systems. The efforts focus on two
aspects: (1) Continuous query processing, especially, k-Nearest-Neighbor query
processing and (2) Moving object indexing. For each aspect, we first summarize
the related works and then generalize our current work. In the following discus-
sion, we assume a two-dimensional environment where objects move continuously
and their locations are sampled to the server from time to time. However, the
proposed techniques can be applied to higher dimensional environments as well.

2.1 SEA-CNN: Shared Execution Algorithm for Continuous
k-Nearest Neighbor Queries

Related Work. The scalability in spatio-temporal queries has been addressed
recently in [9,19,23,34,39,54]. The main idea is to provide the ability to evalu-
ate concurrently a set of continuous spatio-temporal queries. Specifically, these
algorithms work for stationary range queries [9,39], distributed systems [19],
or continuous range queries [34,54]. Utilizing a shared-execution paradigm as a
means to achieve scalability has been used successfully in many applications,
e.g., in NiagaraCQ [14] for web queries, in PSoup [12,13] for streaming queries,
and in SINA [34] for continuous spatio-temporal range query. However, to our
best knowledge, there has no former work that addresses the scalability issue of
k-Nearest-Neighbor queries.
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K-nearest-neighbor queries are well-studied in traditional databases (e.g.,
see [21,26,36,41]). The main idea is to traverse a static R-tree-like structure [20]
using ”branch and bound” algorithms. For spatio-temporal databases, a direct
extension of traditional techniques is to use branch and bound techniques for
TPR-tree-like structures [7,29]. The TPR-tree family (e.g., [42,43,49]) indexes
moving objects given their future trajectory movements. Continuous k-nearest-
neighbor queries (CkNN) are first addressed in [44] from the modeling and query
language perspectives. Recently, three approaches have been proposed to ad-
dress CkNN queries [22,46,48]. Mainly, these approaches are based on: (1) Sam-
pling [46]. Snapshot queries are reevaluated with each location change of the
moving query. At each evaluation time, the query may get benefit from the pre-
vious result of the last evaluation. (2) Trajectory [22,48]. Snapshot queries are
evaluated based on the knowledge of the future trajectory. Once the trajectory
information is changed, the query needs to be reevaluated. However, the scal-
ability issue of k-Nearest-Neighbor query has not been addressed by the above
works yet.

Orthogonal but related to our work, are the recently proposed k-NN join
algorithms [8,51]. The k-nearest-neighbor join operation combines each point of
one data set with its k-nearest-neighbors in another data set. The main idea is to
use either an R-tree [8] or the so-called G-ordering [51] for indexing static objects
from both data sets. Then, both R-trees or G-ordered sorted data from the two
data sets are joined either with an R-tree join or a nested-loops join algorithm,
respectively. The CkNN problem is similar in spirit to that of [8,51]. However, we
focus on spatio-temporal applications where both objects and queries are highly
dynamic and continuously change their locations.

Our Contributions. In [53], we propose, SEA-CNN, a Shared Execution Al-
gorithm for evaluating a large set of CkNN queries continuously. SEA-CNN
introduces a general framework for processing large numbers of simultaneous
CkNN queries. SEA-CNN is applicable to all mutability combinations of objects
and queries, namely, SEA-CNN can deal with: (1) Stationary queries issued on
moving objects (e.g., ”Continuously find the three nearest taxis to my hotel”).
(2) Moving queries issued on stationary objects (e.g., ”Continuously report the
5 nearest gas stations while I am driving”). (3) Moving queries issued on mov-
ing objects (e.g., ”Continuously find the nearest tank in the battlefield until I
reach my destination”). In contrast to former work, SEA-CNN does not make
any assumptions about the movement of objects, e.g., the objects’ velocities and
shapes of trajectories.

Unlike traditional snapshot queries, the most important issue in processing
continuous queries is to maintain the query answer continuously rather than
to obtain the initial answer. The cost of evaluating an initial query answer is
amortized by the long running time of continuous queries. Thus, our objective
in SEA-CNN is not to propose another kNN algorithm. In fact, any existing
algorithm for kNN queries can be utilized by SEA-CNN to initialize the answer of
a CkNN query. In contrast, SEA-CNN focuses on maintaining the query answer
continuously during the motion of objects/queries.
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SEA-CNN is designed with two distinguishing features: (1) Incremental evalu-
ation based on former query answers, and (2) Scalability in terms of the number
of moving objects and the number of CkNN queries. Incremental evaluation en-
tails that only queries whose answers are affected by the motion of objects or
queries are reevaluated. SEA-CNN associates a searching region with each CkNN
query. The searching region narrows the scope of a CkNN’s reevaluation. The
scalability of SEA-CNN is achieved by employing a shared execution paradigm
on concurrently running queries. Shared execution entails that all the concurrent
CkNNs along with their associated searching regions are grouped into a common
query table. Thus, the problem of evaluating numerous CkNN queries reduces
to performing a spatial join operation between the query table and the set of
moving objects (the object table).

During the course of execution, SEA-CNN groups CkNN queries in a query
table. Each entry stores the information of the corresponding query along with
its searching region. Instead of processing the incoming update information as
soon as they arrive, SEA-CNN buffers the updates and periodically flushes them
into a disk-based structure. During the flushing of updates, SEA-CNN associates
a searching region with each query entry. Then, SEA-CNN performs a spatial
join between the moving objects table and the moving queries table.

By combining incremental evaluation and shared execution, SEA-CNN
achieves both efficiency and scalability. In [53], we provide theoretical analy-
sis of SEA-CNN in terms of its execution cost and memory requirements, and
the effects of other tunable parameters. We also provide a comprehensive set
of experiments demonstrating that, in comparison to other R-tree-based CkNN
techniques, SEA-CNN is highly scalable and is more efficient in terms of I/O
and CPU costs.

2.2 RUM-Tree: R-Trees with Update Memos

Related Work. As one of the dominant choices for indexing spatial objects,
the R-tree [20] and the R*-tree [6] exhibit superior search performance in spa-
tial databases. However, R-trees were originally designed for static data where
updates rarely happen. The R-tree is not directly applicable to dynamic location-
aware environments due to their costly update operation. To facilitate the
processing of continuous spatio-temporal queries, for the past decade, many
research efforts focus on developing indexes on spatio-temporal objects (e.g.,
see [33] for a survey). There are two main categories for indexing spatio-temporal
objects: (1) trajectory-based, and (2) sampling-based. For the object trajec-
tory based indexing, four approaches have been investigated: (1) Duality trans-
formation (e.g., see [1,16,27,37]), (2) Quad-tree-based methods (e.g., see [50]),
(3) R-tree-based index structures (e.g., see [38,39,42,43,49]), and (4) B-tree-based
structures [24]. For the sampling-based indexing, the Lazy-update R-tree (LUR-
tree) [28] modifies the original R-tree structure to support frequent updates. A
hash-based structure is used in [45,47] where the space is partitioned into a set
of overlapped zones. SETI [10] is a logical index structure that divides the space
into non-overlapped zones. Grid-based structures have been used to maintain
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only the current locations of moving objects (e.g., see [19,34,53]). One common
limitation of the above techniques is that the corresponding old entry has to be
removed from the index when an update happens. On the contrary, one unique
feature of our work is to allow old entries of an object co-exist with the latest
entry.

Our Contributions. In [52], we propose the RUM-tree (stands for R-tree with
Update Memo) that aims to minimize the update cost in R-trees. The main idea
behind the RUM-tree is as follows. When an update happens, the old entry of
the data item is not required to be removed. Instead, the old entry is allowed to
co-exist with newer entries before it is removed later. In the RUM-tree, specially
designed Garbage Cleaners are employed to periodically remove obsolete entries
in bulks.

In the RUM-tree, each leaf entry is assigned a stamp when the entry is inserted
into the tree. The stamp places a temporal relationship among leaf entries, i.e.,
an entry with a smaller stamp was inserted before an entry with a larger stamp.
Accordingly, the leaf entry of the RUM-tree is extended to enclose the identifier
of the stored object and the assigned stamp number.

The RUM-tree maintains an auxiliary structure, termed the Update Memo
(UM, for short). The main purpose of UM is to distinguish the obsolete entries
from the latest entries. UM contains entries of the form: (oid, Slatest, Nold), where
oid is an object identifier, Slatest is the stamp of the latest entry of the object
oid, and Nold is the maximum number of obsolete entries for the object oid in
the RUM-tree. As an example, a UM entry (O99, 1000, 2) entails that in the
RUM-tree there exist at most two obsolete entries for the object O99, and that
the latest entry of O99 bears the stamp of 1000. To accelerate searching, the
update memo is hashed on the oid attribute.

The RUM-tree employs Garbage Cleaners to limit the number of obsolete
entries in the tree and to limit the size of UM. The garbage cleaner deletes the
obsolete entries lazily and in batches. Deleting lazily means that obsolete entries
are not removed immediately; Deleting in batches means that multiple obsolete
entries in the same leaf node are removed at the same time.

We explore two mechanisms of garbage cleaning in the RUM-tree. The first
mechanism of garbage cleaning makes use of the notion of cleaning tokens. A
cleaning token is a logical token that traverses all leaf nodes of the RUM-tree
horizontally. The token is passed from one leaf node to the next every time
when the RUM-tree receives a certain number of updates. The node holding a
cleaning token inspects all entries in the node and cleans its obsolete entries,
and then passes the token to the next leaf node after I updates. To locate the
next leaf node quickly, the leaf nodes of the RUM-tree are doubly-linked in
cycle. To speed up the cleaning process, multiple cleaning tokens may work in
parallel in the garbage cleaner. In this case, each token serves a subset of the
leaf nodes. Besides the cleaning tokens, another clean-upon-touch mechanism
of garbage cleaning is performed whenever a leaf node is accessed during an
insert/update. As a side effect of insert/update, such clean-upon-touch process
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does not incur extra disk accesses. When working with the cleaning tokens, the
clean-upon-touch reduces the garbage ratio and the size of UM dramatically.

With garbage cleaners, the size of UM is kept rather small and can practically
fit in main memory of nowadays machines. To check whether an RUM-tree entry
is an obsolete entry or not, we just need to compare the stamp number of entry
with the Slatest of the corresponding UM entry. If the two values are equivalent,
the RUM-tree entry is the latest entry for the object. Otherwise, the entry is an
obsolete entry.

The Update Memo eliminates the need to delete the old data item from the
index during an update. Therefore, the total cost for update processing is reduced
dramatically. The RUM-tree has the following distinguishing advantages: (1) The
RUM-tree achieves significantly lower update cost than other R-tree variants
while offering similar search performance; (2) The update memo is much smaller
than the secondary index used in other approaches, e.g., in [28,30]. The garbage
cleaner guarantees an upper-bound on the size of the Update Memo making it
practically suitable for main memory; (3) The update performance of the RUM-
tree is stable with respect to the changes between consecutive updates, to the
extents of moving objects, and to the number of moving objects.

In [52], we present the RUM-tree along with the associated update, insert,
delete and range search algorithms inside the RUM-tree. We design a garbage
cleaner based on the concept of cleaning tokens to remove obsolete entries effi-
ciently. Further, we theoretically analyze the update costs for the RUM-tree and
for other R-tree variants employing top-down or bottom-up update approaches.
We also derive an upper-bound on the size of the Update Memo. Furthermore,
we conduct a comprehensive set of experiments. The experimental results indi-
cate that the RUM-tree outperforms other R-tree variants, e.g., R*-tree [6] and
FUR-tree [30], by up to a factor of eight in the presence of frequent updates.

3 Future Research Directions

There are still many research issues that can be extended from our current work.
The future work can be generalized in the following two aspects.

3.1 Continuous Query Processing

Alternative Underlying Indexing Structure. In our current work, the SEA-
CNN framework utilizes a grid-based structure to index the current locations of
moving objects. In this case, auxiliary indexing structures are required to index
the identifiers of both objects and queries. In this research direction, we aim to
utilize a more efficient underlying index structure in the SEA-CNN to further
boost the query processing. Specifically, we plan to incorporate the memo-based
techniques as employed in the RUM-tree into the grid-based structure to avoid
the overhead of auxiliary indexes. In this way, we expect the performance of
SEA-CNN can be further improved.

Historical and Predicative Queries. Currently, the SEA-CNN framework
mainly supports NOW queries, namely, queries only ask for the current status
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of moving objects. In this research direction, we plan to extend the SEA-CNN
framework to support queries that require historical information and future move-
ment predication. To support historical query, SEA-CNN should be coped with
efficient indexing structures applicable for historical search. To support future
query, SEA-CNN needs to be extended from the sample-based model to the
trajectory-based model, thus future movement can be predicted based on the tra-
jectory information.

3.2 Moving Object Indexing

Crash Recovery. In this direction, we address the issue of recovering the RUM-
tree in the case of system failure. When the system crashes, the information in
the update memo is lost. Therefore, our goal is to rebuild the update memo
based on the tree on disk. Since the recovery problem is closely related to the
logging problem, we aim to design different recovery algorithms based on various
logging policies.

Concurrency Control. Concurrency control in standard R-trees is provided
by Dynamic Granular Locking (DGL) [11]. In this direction, we aim to extend
the DGL to support concurrency accesses in the RUM-tree. We investigate the
throughput of the RUM-tree under concurrency accesses and compare the per-
formance with other R-tree variants.

Bulk Updates. Bulk loading [18,25,31,40] and bulk insertions [2,5,15,17] in R-
trees have been explored during the last decade. However, none of the previous
works addresses the issue of updating indexed R-tree entries in bulk manners.
The main reason is that for a set of updates that will go to the same R-tree node,
the corresponding old entries are most likely to reside in different R-tree nodes.
Identifying these R-tree nodes containing old entries causes high overhead. On
the contrary, reducing an update operation to an insert operation enables the
RUM-tree to support bulk updates efficiently. Since there are no deletions of
old entries, bulk updates in the RUM-tree can be performed in a way similar to
bulk insertions in ordinary R-trees. In this research direction, we aim to propose
efficient and scalable bulk update approaches based on the RUM-tree structure.

Extensions to Other Indexing Structures. The proposed update memo
inside the RUM-tree is general in the sense that it is not limited to the R-trees,
or limited to spatial indexes. The update scheme employed by the RUM-tree
can potentially be applied to many other spatial and non-spatial indexes to
enhance their update performance. Currently, we are investigating the update
performance of the enhanced Grid File [35] by applying an update memo to the
original structure. In the near future, we plan to apply our techniques to more
index structures, e.g., SP-GiST [4] and B-trees.
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Abstract. Nowadays everybody uses a variety of different systems man-
aging similar information, for example in the home entertainment sector.
Unfortunately, these systems are largely heterogeneous, mostly with re-
spect to the data model but at least with respect to the schema, making
synchronization and propagation of data a daunting task. Our goal is to
cope with this situation in a best-effort manner. To meet this claim, we
introduce a symmetric instance-level matching approach that allows to
establish mappings without any user interaction, schema information or
dictionaries and ontologies. In awareness of dealing with inexact and in-
complete mappings, the quality of the propagation has to be quantified.
For this purpose, different quality dimensions like accuracy or complete-
ness are introduced. Additionally, visualizing the quality allows users to
evaluate the performance of the data propagation process.

1 Introduction

With the flood of gadgets managing personal information, data propagation
becomes ever more important. Take the home entertainment sector, for example:
a variety of products like MP3 players, hand-helds, mobile phones, car radios,
hi-fi systems or PCs store your music files. Since users want to listen to their
favorite songs wherever they are, there is a strong need for ubiquitous access
to personal data, e.g. to favorite playlists. This process should be as simple as
possible to allow for the smooth integration of new systems. However, aside from
the propagation of data between users’ gadgets, where once established mappings
could be re-used for every data propagation process, there are also application
scenarios where ad hoc data propagation is required. Imagine a rental car comes
with a collection of music files. Here, users want to select songs according to their
favorite playlists easily and quickly. Consequently, performing this task without
the requirement of user interaction or expertise would be a great benefit. This
scenario also applies to planes, trains or hotel rooms. Moreover, other types of
personal data can be considered, like preferences and highscores of games or
settings of programs.

Unfortunately, the huge variety of products and the many different manufac-
turers complicate this need. Different data models, like hierarchical, relational
or flat models, as well as different schemas within the data models create a
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large heterogeneity among the data. Together with the inconsistent availability
of schema information, a perfect synchronization or propagation of the data will
be impossible. Neither will the manufacturers provide mappings from their data
models and schemas to all the other models nor does a standard format seem to
evolve. Being in this unpromising situation, our goal has to be to propagate the
data as efficiently as possible.

All in all, consider the application area: There are small datasets with no
schema information available; the propagation of the data may not be perfect;
and the user would not or even cannot manually establish these mappings. There-
fore, we introduce an instance-level matching approach, where the key is to detect
matchings between the current data in the documents. The pleasant consequence
is that concentrating on the content allows mapping between documents with
arbitrary namings and structure. The only prerequisites are 1) an intersection of
the content, which is usually given in scenarios concerned with synchronization
and data propagation, 2) the absence of complex data types, which is common
if there is no schema, and 3) a hierarchical structure of the data.

Subsuming all demands above, we detect a strong need for

• a fully automated matching approach that does not rely on provided schema
information, references like dictionaries or thesauri, and user interaction,

• a mapping and propagation technique which considers similarity matches
and strongly varying sizes of the documents, and

• the quantification of the error which possibly occurred to give the user feed-
back on the quality of the results of the data propagation process.

The remainder of the paper is structured as follows: Section 2 gives a brief
overview of related work. In Section 3, we introduce the symmetric instance-level
matching, which avoids problems of schema matching approaches by efficiently
comparing the content of the documents. In Section 4, we present a normaliza-
tion approach of the matching results and show how to compute the mapping
probabilities in order to establish meaningful mappings. The quantification of
possible errors of the data propagation process is discussed in Section 5. Finally,
a summary and open topics for future work are given in Section 6.

2 Related Work

In the area of data integration, the idea of best-effort data propagation is sur-
prisingly disregarded. Here current solutions like [1,2,3,4] among others consider
schema matching. These approaches require the existence of schema information
as well as similar or semantically meaningful names of elements and attributes.
Even if missing schema information may be created from the data, as shown
in [5,6], there often are generated schemas with cryptic namings. Additionally,
even in the case of semantically meaningful names, application-specific dictionar-
ies and synonym tables must be available. Furthermore, some approaches require
user interaction [1,7,8] and can lead to incorrect interpretations of ambiguous
names. Moreover, since these solutions claim to deliver perfect results and are
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intended for large datasets containing hundreds of relations or documents with
known schemas, they are oversized and inapplicable in this context.

Dealing with error quantification touches another research topic: quality. Un-
fortunately, there is no common definition in the literature for the ambigu-
ous concept of quality. A variety of publications [9,10,11,12,13,14] show as-
pects of quality within different application scenarios and define more or less
varying quality parameters. An overview can be found in [15,16]. [9,10,17] care
about the definition of an overall measure for the quality by combining differ-
ent quality parameters. However, those approaches are mostly subjective and
application-dependent. Quality-driven query optimization in integrated environ-
ments is given in [18]. Here, queries are optimized with respect to the quality
of the result. Ideas from all of these different approaches can be adopted; how-
ever, they have to be adapted to create an objective quality measure of the data
propagation process.

3 Preprocessing: Symmetric Instance-Level Matching

Visualizing the problem, Fig. 1 shows fragments of a sample source and target
document containing information about music albums. Despite being small, even
this example already points out problems of schema matching techniques; e.g.
consider the element <title> that represents the name of a music album in the
first data source, whereas it contains the name of a track in the second data
source. Similarly the element <track> would probably be erroneously identified
as a match. Besides avoiding invalid mappings due to equal or similar element
names, we also have to find valid mappings of elements with different names
but equal content, such as information on the release date, the artist, and the
position of the track in the current example.

<favorites> <playlist>
<disc> <entry>

<published>2002</published> <album>Hits</album>
<title>Hits</title> <year>2002</year>
<artist>The Singer</artist> <genre>Pop</genre>
<rating>2</rating> <tracks>
<song> <track>

<name>firstTrack</name> <singer>The Singer</singer>
<track>1</track> <trackno>1</trackno>
<duration>2:35</duration> <title>firstTrack</title>

</song> </track>
<song>...</song> <track>...</track>

</disc> </tracks>
... </entry>

</favorites> ...
</playlist>

Fig. 1. XML-fragments of a source and a target document
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published
integer

1980-2005

title
string

--

rating
integer

1-3

disc
song

name
string

--

track
integer
1-20

duration
time

0:01-8:00

album
string

--

year
integer

1960-2000

genre
string

--

singer
string

--

trackno
integer
1-25

title
string

--

trackentry tracks

artist
string

--

favo-
rites

play-
list

Fig. 2. Clusters (shaded) and cluster groups (linked by arrows)

While this small example identifies problems of finding matches solely with
schema information, naive instance-level matching also comes with some chal-
lenges we have to face. Although the data sources in the application scenario of
this project are moderate in size, it would be very expensive to compare each
element of one data source with each element of the other data source. So, to
avoid unnecessary comparisons between incompatible types and domains, a fin-
gerprint is created on the fly for each element1 by generating the most specific
data type and the domain. Elements with ’compatible’ fingerprints, i.e. with the
same data types and overlapping domains, are put into a cluster. Figure 2 shows
the clusters of the source document (top) and the target document (bottom).
The first shaded box of the source document shows the cluster of integers ranging
from 1980 to 2005 and the second cluster contains the elements of type string.
In the third cluster, elements of type integer ranging from 1 to 20 are collected
and the last cluster manages elements with time information.

Now, cluster groups can be established by combining each cluster of the source
document with all clusters of the target document with compatible fingerprints.
Clusters with no compatible target cluster remain unlinked. In Fig. 2, these
cluster groups are denoted by arrows between the clusters. In the current simple
example, each source cluster is only connected with at most one target cluster,
but this is no limitation.

For each cluster group a three-dimensional matrix can be constructed. The
three dimensions are 1) the elements of the source document, 2) the elements
of the target document, and 3) the direction of comparison. The reason for
considering both directions of comparison is given in Sect. 4 while explaining
the mapping. Figure 3 shows the matrix for elements of type integer ranging
from 1 to 25.

Within the cluster groups, each element of the source document is compared
with each element of the target document and vice versa. While integer and

1 Attributes are treated like elements.
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ds→dt/dt→ds

ds.rating (7) 7/15
ds.track (84) 84/60

dt.trackno (60)

Fig. 3. Matrix for elements of type integer and with domain from 1 to 25

floating-point numbers are compared for equality, strings additionally allow sim-
ilarity matching, like edit distance or soundex. In general, specific comparison
operations can be chosen for each data type. The number of matches for each el-
ement is annotated in the corresponding matrix. In Fig. 3, for example, the given
numbers can be explained with the following sample: The source document ds

contains information about seven albums with a total of 84 tracks, while the
target document dt manages five albums with a total of 60 tracks. The number
of occurrences of each element is given in brackets. The rating ranges from 1 to 3,
so each of the seven rating entries matches with some track numbers. Moreover,
consider that each possible rating occurs. Consequently, each of the first three
<trackno>-elements matches with a <rating>-element resulting in a count of
15; that is, 7 of the 7 <rating>-elements of ds match with some <trackno>-
elements of dt while only 15 of the 60 <trackno>-elements match with some
<rating>-elements. For the track numbers, consider a simplified scenario where
each album has 12 tracks resulting in 84 and 60 matches respectively.

4 Element Mapping

The generation of a mapping raises another challenge: How can documents of
strongly varying sizes or with small intersections be compared? For example,
consider the case that both the source and the target document manage 100
albums each and that the intersection consists of just one album. Most of the
matches would provide values close to one, making conclusions about the map-
ping quality difficult. To overcome this problem, we propose a normalization of
the matching results. This normalization requires the number of common objects
managed in both documents, that is, the intersection size s∩. Unfortunately, s∩ is
not known in advance; however it can be estimated. If there is a pair of elements
with unique values2 having the same number of matches in both directions, this
number can be regarded as intersection size. Together with the number of oc-
currences of these elements, the scaling factors can be calculated. For the source
document the scaling factor is given by

SFds =
occx

s∩
(1)

with occx as the number of occurrences of the source element. The scaling factor
for the target document SFdt can be calculated in the same way.

2 The uniqueness of an element can be determined from its fingerprint.
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For the string-valued elements of the current example we have the unnormal-
ized matching values given in Fig. 4.

ds→dt/dt→ds ds→dt/dt→ds ds→dt/dt→ds ds→dt/dt→ds

ds.title (7) 4/4 0/0 0/0 2/2
ds.artist (7) 0/0 0/0 6/60 0/0
ds.name (84) 2/2 0/0 0/0 48/48

dt.album(5) dt.genre(5) dt.singer(60) dt.title(60)

Fig. 4. Matrix for elements of type string

Assuming that album names are unique, the pair (ds.title, dt.album) indicates
an intersection size of s∩ = 4. Using this intersection size and the number of
occurrences of these two elements together with (1), we get the scaling factors
of SFds = 7

4 for the source document and SFdt = 5
4 for the target document.

Once the scaling factors have been determined, they are applied to all values in
all clusters where the normalized number of matches are calculated by

m̄x,y = SFdp ∗mx,y (2)

with mx,y as the number of matches of element x with respect to element y and
p ∈ s, t. Obviously, an element cannot have more matches than occurrences, thus
(2) has to be extended to

m̄x,y = max(SFdp ∗mx,y, occx) . (3)

Figure 5 shows the normalized values of the string-typed elements.

ds→dt/dt→ds ds→dt/dt→ds ds→dt/dt→ds ds→dt/dt→ds

ds.title (7) 7/5 0/0 0/0 3.5/2.5
ds.artist (7) 0/0 0/0 7/60 0/0
ds.name (84) 3.5/2.5 0/0 0/0 84/60

dt.album(5) dt.genre(5) dt.singer(60) dt.title(60)

Fig. 5. Normalized elements of type string

Now, the mappings from elements of the source document to elements of the
target document can be established. Therefore, the ratio of the (normalized)
matches and the occurrences of an element are regarded, resulting in a mapping
probability of

Px,y =
m̄x,y

occx
. (4)

However, this may lead to bad results. Consider the matching result of ds.rating
and dt.trackno, which is m̄rating,trackno = 7. This would erroneously generate a
perfect mapping Prating,trackno = 7/7 = 1. Otherwise, if the mapping would be



28 P. Rösch

the other way around, the considered matching result would be m̄trackno,rating =
18.75, leading to a reasonable result of Ptrackno,rating = 18.75/60 ≈ 0.3. Ac-
tually, this is the reason for the symmetric instance-level matching. Now, the
computation of the mapping probability is extended to

Px,y = Py,x = min
(m̄x,y

occx
,
m̄y,x

occy

)
(5)

taking both directions of comparison into account.
Figure 6 shows the mapping probabilities of the integer-valued elements with

domain 1 to 25 (left) and the string-valued elements (right) of the current ex-
ample. The possible mappings between elements which are not used for the final
mapping generation are illustrated with dashed lines.

ds.title
dt.title

dt.album

2.5/60 = 0.04

7/7 = 1.0

ds.name
dt.title

dt.album

84/84 = 1.0

3.5/84 = 0.04

ds.rating dt.trackno15/60 = 0.25

ds.track dt.trackno84/84 = 1.0

Fig. 6. Mapping probabilities

Now, we have mappings based on the content of the leaves of the hierarchical
structure of the documents. However, this hierarchical structure gives further
information about semantically meaningful mappings. The relationship between
the elements represents context information. Consequently, the structure of the
content has to be taken into account to further improve the results.

To utilize this additional information, we infer higher-level mappings. Begin-
ning at the bottom of the hierarchy, for each node we check if all the mapping
partners of its child nodes themselves are children of one common parent node.
In this case, the corresponding parents can be seen as mapping candidates. Child
nodes without mapping partners are dismissed and considered as not transfer-
able. Now, this information can be used to adapt the mapping probabilities in a
way that mappings between child nodes of higher-level mapping candidates are
regarded as more likely, since they appear in a similar context, while possible
mappings between elements within different contexts are accounted as rather
unlikely.

Take the <song>-node of the current example. Without a matching part-
ner, <duration> is dismissed. The other child nodes (<name> and <track>)
both have matching partners (<title> and <trackno>), which are child nodes
of <track>, thus leading to a higher-level mapping between ds.song and dt.track
(cf. Fig. 7).

Obviously, a somewhat weaker proceeding is reasonable since the structure
of the given documents would rather be equal. Consider the direction from the
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<song> <track>
<name>firstTrack</name> <singer>who knows</singer>
<track>1</track> <trackno>1</trackno>
<duration>2:35</duration> <title>firstTrack</title>

</song> </track>

Fig. 7. Section of the XML-fragments illustrating higher-level mappings

target to the source document. Here, the element <singer> would prevent the
meaningful higher-level mapping between ds.song and dt.track since the map-
ping partner <artist> sits on an upper level. Consequently, the results of both
directions have to be regarded in this stage as well in order to identify some
higher-level mappings. Finally, the partner with the highest mapping probabil-
ity is chosen for each element to establish the mapping.

5 Error Quantification

Since the data propagation process is fully automated and thus not supervised,
some errors may occur. In order to give the user feedback on the quality of the
data propagation process, possible errors have to be quantified. One aspect of
the result’s quality is its completeness. This aspect is generally independent of
the matching and mapping procedure and is caused by the differences within
the schemas of the source and the target document. There are two facets of
completeness. On the one hand, we have elements of the source document having
no counterpart in the target document and thus cannot be transferred. Those
information is lost. On the other hand, we have elements of the target document
without any counterpart in the source document, which can thus not be filled.
The information is unknown.

Another aspect of the result’s quality depends on the matching procedure.
Here, the algorithms for defining similarity of values affect the overall result. If
they are too ’tight’ some meaningful mappings may be missed; otherwise, if they
are too ’lax’ some senseless mappings may occur. This aspect is referenced to as
matching accuracy.

Closely related to the matching accuracy is the mapping accuracy. Again,
two facets can be considered. The two factors which contribute to the mapping
probability and thus to the mapping accuracy are the number of similar or equal
values as well as the respective similarity value itself.

Now, to quantify these quality parameters, information of the matching and
mapping procedure have to be evaluated. The number of lost and unknown
elements can be determined from the clustering process, where unlinked clusters
lead to incompleteness. Also the elements which are part of cluster groups but
are not part of the final mapping cause incomplete results. Accuracy information
can be computed with the number and the similarity of the matchings managed
in the matrices of the cluster groups.
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6 Conclusion and Future Work

In this paper, we presented an approach for propagating data, like personal in-
formation, in a fast and easy way. By concentrating on the content, we avoid—
contrary to existing techniques—the requirement of schema information, user
interaction and references like dictionaries or thesauri. Furthermore, we pre-
sented a mapping technique that copes with strongly varying sizes of documents
and defined some quality parameters to give the user feedback on the quality of
the results of the data propagation process.

Our prototype TRANSMITTER (ToleRANt ScheMa-Independent daTa prop-
agaTion with ERror quantification), a JAVA implementation of the functionality
described above, shows already promising results. Nevertheless, some tasks re-
main open. To reduce the complexity of the matching, the fingerprints have to
be refined. Here, domain information for strings, like patterns of regular expres-
sions, have to be regarded. Also, it has to be examined if histograms can be
used in a meaningful way. The resolution of conflicts within the establishment
of mappings has to be considered. Moreover, the adaptation of the mapping
probabilities based on the higher-level mappings has to be advanced.

In addition, the quality feedback can be extended by taking further quality
parameters into account, and even more important, a convenient representation
of the current quality for an intuitive interpretation has to be developed.
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Abstract. Geospatial image data obtained by satellites and aircraft are
increasingly important to a wide range of applications, such as disaster
management, climatology, and environmental monitoring. Because of the
size of the data and the speed at which it is generated, computing spatio-
temporal aggregates over geospatial image data is extremely demanding.
Due to the special characteristics of the data, existing spatio-temporal
aggregation model and evaluation approaches are not suitable for com-
puting aggregates over such data.

In this paper, we outline the key challenges of computing spatio-
temporal aggregates over streaming geospatial image data, and present
three goals of our research work. We also discuss several preliminary
results and future research directions.

1 Introduction and Motivation

Driven by major advances in remote sensing technology, geospatial image data
from satellites and aircraft have become one of the fastest-growing sources of
spatio-temporal data sets. The remotely-sensed imagery collected by NASA
alone are expected to exceed dozens of terabytes per day within the next few
years. Such data have become increasingly important to a wide range of applica-
tions, such as disaster management, climatology, and environmental monitoring.

In a typical data processing setting for streaming geospatial image data, the
data are transmitted continuously in the form of raster images. Each image can
be regarded as a rectangular grid in which each cell (point) consists of a point
location and point value. Figure 1 gives an example of a sequence of raster im-
ages transmitted from the National Oceanic and Atmospheric Administration’s
(NOAA) Geostationary Environmental Operational Satellite (GOES) West [4]
over a period of about one hour. Since GOES West scans different regions of
Earth’s surface over time, each image in Figure 1 has a different spatial extent.

In general, such image data continuously arrive at a very high rate and volume.
For example, GOES West satellite images are transmitted at 2.1Mbits/second –
about 22GBytes/day. As a result, it is very important to have operations that
summarize the data. One such operation, known as spatio-temporal aggregation,
summarizes the data in both spatial and time dimension. For example, a typical
spatio-temporal aggregate query is: “Calculate the average soil temperature in
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Fig. 1. Sequence of GOES West images. Different regions of Earth’s surface are scanned
over time, resulting in images with different spatial extents.

Davis, California, from July to September every year for the last ten years.”
Spatio-temporal aggregates are not only one of the most fundamental opera-
tions for various applications, such as detecting changes in the environmental
landscape, but also the most demanding in terms of space and time complexity.

The efficient processing of spatio-temporal aggregate queries, which spec-
ify a region of interest and some time interval, have been studied in several
works [7,10,15,16,17,18,20]. However, there are several limitations in these ap-
proaches.

First of all, existing aggregation models do not provide a meaningful answer
to a query over streaming geospatial image data. All existing approaches use
traditional aggregation models, in which data that satisfy the given query region
is aggregated, and a single aggregate value is returned as the answer. This is
not always meaningful in the context of streaming geospatial image data, since
they falsely imply that high-quality data is always available for the entire query
region.

Secondly, existing evaluation approaches are not suitable for streaming
geospatial image data. Some of these approaches are optimized for static data in
such ways that they are not suitable for streaming data. Some approaches have
such high construction or maintenance costs that they can not catch up with
the arrival rate of streaming geospatial image data. Moreover, some approaches
primarily focus on spatial objects, each of which contains its own spatial compo-
nent. To apply these approaches to geospatial images, they consider each point
in an image as an individual spatial object, and store its spatial component by
itself. As a result, these approaches do not take advantages of the gridded point
set structure inherent to raster image data. In particular, they do not exploit
cases where neighboring points have similar or identical point values – but such
cases occur frequently for some regions in raster images. Therefore, these ap-
proaches tend to have extremely high storage costs, which in turn lead to poor
construction and query performance.

In this PhD research work, we aim to design effective spatio-temporal ag-
gregate computations for streaming geospatial image data. Here, “effectiveness”
represents both spatio-temporal aggregation models and evaluation approaches.
The objectives for this goal include:
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1. Develop a new spatio-temporal aggregation model that provides more fine-
grained (intuitive) results for the spatio-temporal aggregate computation
over streaming geospatial image data.

2. Develop a query processing framework to evaluate spatio-temporal aggregate
queries using the new aggregation model.

3. Design efficient supporting index structures to evaluate spatio-temporal ag-
gregate queries over streaming geospatial image data, in terms of construc-
tion time, space requirements, and query performance.

2 Related Work

Most of the existing approaches for computing spatial and spatio-temporal ag-
gregates [6,7,9,10,16,18,20] focus on spatial objects and not field-based data,
such as gridded point data or raster images. The aR-tree [6,9] is an R-tree in
which each MBR (minimum bounding rectangle) of an internal node has a pre-
computed aggregate value that summarizes the values for all objects that are
contained by the MBR. As a result, the partial aggregate result can be obtained
in the intermediate nodes of the tree without accessing all the contained objects.

Papadias et al. [10] presented another structure –the aRB-tree– that extends
the aR-tree and considers the spatial and temporal information separately. The
aRB-tree consists of an R-tree to index the regions of spatial objects, and a
B-tree structure associated with each region in the R-tree to store the temporal
information. Similar to the aR-tree, partial aggregate results can be obtained
from intermediate nodes. The disadvantage of the aR-tree and the aRB-tree is
that multiple paths from the root node may be needed to answer an aggregate
query. Zhang et al. [21] proposed an indexing scheme –the BA-tree– to overcome
this limitation. The BA-tree is based on a k-d-B tree. Similar to the aR-tree and
aRB-tree, with each region of an internal nodes in a BA-tree a pre-computed
aggregate value is associated. In addition to this, the BA-tree maintains some
extra data for each region of the internal nodes, which guarantees that only one
path is searched during an aggregate computation. Furthermore, based on the
BA-tree, Zhang et al. [20] proposed an indexing scheme to maintain aggregate
information at multiple temporal granularities for streaming data. Tao et al. [16]
pointed out that the aRB-tree has a problem with distinct counts and presented
an approximate approach to evaluate distinct count/sum aggregate queries.

However, none of these approaches is suitable for streaming geospatial im-
age data. The reasons are as follows. First, all the above approaches provide
a single value as the final answer to an aggregate query, which is not always
meaningful in the context of streaming raster image data, especially when the
image data contribute only partially to the query region. Secondly, since these
approaches are designed for spatial objects and not for large amounts of points
in streaming image data, the location for each point needs to be stored. This
results in extremely high space consumption. Finally, the relationship of values
among neighboring points is not considered in these approaches, something that
one should take advantage of.
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3 Preliminary Results

In this section, we describe several preliminary results for this PhD research
work. First, we present a new aggregation model – Segment-based Spatio-
temporal Aggregation (SST-Aggregation) – for answering spatio-temporal aggre-
gate queries over streaming geospatial image data, in particular, raster image
data. Secondly, we give a brief description of a query processing architecture for
this new model. Thirdly, we present data structures that support such compu-
tations. Finally, we present some experimental results.

3.1 Segment-Based Spatio-temporal Aggregation
(SST-Aggregation) Model

Consider the scenario in Figure 2, which gives an abstract view of a raster image
stream (RIS ). There are four images I1, · · · , I4 with different sizes and spatial
locations. A typical spatio-temporal aggregate query is, for example, “Calcu-
late the average soil temperature in a given query region R=[lp, hp] (shown as
the bold rectangle box in Figure 2) during the time interval [t1, t2].” Here, we
primarily focus on regions with shapes of a multi-dimensional box.

t2t1 I1 I2

I

I4

 y

x

t

3

Query Region R=[lp,hp]

high point(hp)

low point(lp)

Fig. 2. Example scenario of a spatio-temporal aggregate query over a RIS

Applying existing approaches and index structures to compute spatio-
temporal aggregates will provide us with a single value for the query box. An
interesting observation for this query is that image I3 only contributes partially
to the query box. That is, at different points in time during [t1, t2], not all
images contribute all their points (and thus point values) to the query result.
Thus, a single aggregate value does not necessarily represent an accurate result
since such a result might be skewed, depending on what stream data is available
during [t1, t2].

Motivated by this observation, we propose a new aggregation model –
Segment-based Spatio-Temporal Aggregation (SST-Aggregation). This model
overcomes the limitation of the traditional aggregation model in the context of
streaming raster image data, and provides more meaningful answers to queries.
The definition for SST-Aggregation is given in Definition 2. First, we define a
Segmented Query Region.
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Definition 1. [Segmented Query Region] Given a query region R = [lp, hp],
and a RIS I = {I1, I2, · · · , In}. The segmented query region Rseg consists of
disjoint sub-regions R1 = [lp1, hp1], R2 = [lp2, hp2], · · · , Rk = [lpk, hpk] such that

1. R = R1 ∪R2 ∪ · · · ∪Rk;
2. Each sub-region Ri = [lpi, hpi], i = 1, · · · , k, has the same timestamp for the

low and high point as R;
3. For each image Ij ∈ I(j ∈ [1, n]) such that R ∧ Ij �= 0, each sub-region

Ri = [lpi, hpi], i = 1, · · · , k, satisfies exactly one of the following segment
properties:

– Ij ≥S Ri. That is, the image Ij fully covers the spatial extent of Ri. The
set of all images that cover Ri is denoted Ii, termed the contribution
image set for Ri.

– Ij ∧Ri = 0. That is, the image Ij does not intersect with Ri.

4. Given any two sub-regions R1 and R2 whose contribution image sets are I1
and I2, respectively. If R1 ∪R2 is a region, then I1 �= I2.

Definition 2. [SST-Aggregation] A Segment-based Spatio-temporal Ag-
gregation (SST-Aggregation) over a RIS I is an aggregate operation that
computes summarized information (specified by an aggregate function f) for a
query region R. The SST-Aggregation constructs the segmented query region Rseg

for R, and computes an aggregate value for each sub-region in Rseg with the ag-
gregation function f . The SST-Aggregation is defined as follows.

SST-Aggregation (I, f, R) = {< ri, f(I|ri) > |ri ∈ Rseg for all i}

The SST-Aggregation model supports those aggregate functions that are defined
in the SQL:2003 standard [8]. This model can be easily extended to support
continuous queries, including moving window queries.

3.2 Query Processing Architecture

Based on this new SST-Aggregation model, we propose a two-component query
processing architecture to evaluate a spatio-temporal aggregate query, as illus-
trated in Figure 3. When a query is entered into the stream management systems,
it is first passed to the segmentation component, which segments the query region
into a segmented query region, as defined in Definition 1.

Next, the segmented query regions generated by the segmentation are passed
to the aggregate-computation component, which computes and constructs the
final result to the query.

Both segmentation and aggregate-computation rely on the images (as spatio-
temporal objects) from the stream that have entered the system so far. The
aggregate-computation component relies on the image point data, while the seg-
mentation component relies on the image metadata, such as the spatial extent
and the timestamp of each image.
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Fig. 3. Conceptual approach for computing SST-Aggregate queries

3.3 Index Structures

To evaluate the effectiveness of our SST-Aggregation model and the proposed
query processing architecture, we consider two different index structures for im-
age metadata and point data. Since image metadata is typically much smaller
than image point data, we maintain a main-memory data structure –the Meta-
data index – to store the metadata, while disk-based structures are used for
image point data.

Metadata Index. The metadata index that we proposed in [22] consists of two
Red-Black trees [2], one for each spatial dimension. We call these trees the x-
tree and the y-tree. Consider an image I created at time t, which has the spatial
region represented by two points (xlow , ylow) and (xhigh, yhigh). The x-tree stores
the values of xlow and xhigh along with the timestamp t, where each of xlow and
xhigh is a key and t is the value. The y-tree has the same structure as the x-tree
except that it stores y values. In both trees, we do not store duplicate key values.
To achieve this, we maintain a circular buffer inside each node in the trees. This
circular buffer stores the list of timestamp values.

Point Data Index. Our focus has been on summation-related spatio-temporal
aggregate queries (range-sum queries), such as Sum, Count and Avg, over user-
defined query regions. Dominance-sum (dom-sum) is a technique to support the
efficient computation of box aggregate queries over objects with non-zero extent
in some d-dimensional space [21]. It has been widely used for computations on the
data cube [3,5] and for spatial and spatio-temporal aggregates in the context of
spatial objects [20,21]. In general, for a point set P in some d-dimensional space, a
range-sum query can be computed using the values of 2d dom-sums. For example,
consider the 2-dimensional raster image shown in Figure 4. We want to compute
the sum of all values of points located in the region [(1, 1), (2, 2)]. Four dom-sum
values are required to compute the sum, as illustrated in Figure 4. It is easy to
verify that this value is 8, computed from the dom-sum values of four points shown
in bold rectangles, that is, ds((2, 2))− ds((2, 0))− ds((0, 2)) + ds((0, 0)) = 8.
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Fig. 4. Computing the range-sum for region [(1, 1), (2, 2)] by using 4 dom-sum values

Our design and implementation of point data indexes are based on the
dominance-sum technique. We first implemented and improved the BA-Tree [21]
proposed by Zhang et al., which is a k-d-B tree [11] with some additional
aggregate-related information stored at internal nodes. The BA-Tree supports
fast dom-sum computations. One improvement we have added to the BA-Tree
is as follows. As images stream in, we insert the data for each image spatio-
temporal point one by one into the BA-Tree. For a single raster image, all its
spatio-temporal points share the same timestamp value. For any two raster im-
ages, their spatio-temporal points are likely to share one or both values for the
spatial dimensions. In our BA-Tree implementation, we take advantage of this
property and introduce an optimized insert operation for point data into the
BA-Tree. Every time when a point is inserted into the tree, if this point already
exists in the tree, we simply add the value of the new point to the value of the
existing point. This way, we can significantly reduce the size of the BA-Tree and
also improve the performance of querying (refer to [22] for more information).

The major disadvantages of the BA-Tree are that it stores each point in a
raster image separately, and does not take advantage of the gridded point set
structure inherent to raster images, in particular of the cases where neighboring
points have similar or same point values. This causes significantly high storage
cost and consequently bad insertion and query performance. To address these
shortcomings, we proposed a novel data structure, called the compressed raster
cube (CRC). The CRC integrates the linear region quadtree [1,12,19] and the
dominance-sum computation technique, thus allowing efficient management of
streaming image point data in a scalable fashion.

The CRC can be thought of as a cube containing a constantly growing se-
quence of compressed raster images, each of which is essentially a linear region
quadtree with some auxiliary information with each node, namely dom-sum val-
ues for the points contained by the node. These dom-sum values are stored in a
novel dominance-sum compression scheme, which significantly reduces the num-
ber of dom-sum values that need to be stored with nodes in a region quadtree.
This compression scheme can be illustrated as follows. In general, given a node
k in a quadtree such that k contains m×m points that all have the same point
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value. Only 2m− 1 dom-sum values need to be stored for k in order to compute
the dom-sum value for any point contained by k, as shown in Figure 5. The
dom-sum value for any point (x1, y1) contained by k can be computed in the
following formula:

ds((x1, y1)) = ds((x1, y)) + ds((x, y1))− ds((x, y)) +
(x1 − x)× (y1 − y)× v

1 m
1

m

....

....

(x, y)

(x1, y1)

Fig. 5. All required dom-sum values (marked with ‘X’) for a m×m-size node in which
all points have the same point value

To construct such a CRC, we extended the OPTIMAL BUILD algorithm
[12,13,14] to convert a raster image into a quadtree and at the same time employ
our dominance-sum compression scheme. Our experiments on NOAA’s GOES
West Satellite image data show that the CRC can efficiently evaluate both fix-
box aggregate queries and moving window queries.

3.4 Experimental Results

Our experimental data is extracted from NOAA’s GOES West satellite data. The
GOES satellite carries two types of instruments: the Imager and the Sounder.
The Imager scans various regions of the Earth’s surface, West-to-East and North-
to-South. The data are continually transmitted as frames at a rate of 2.1M
bits/sec. In our experiments, we are interested in the image data of the visible
band from the Imager. We extract this data from GOES data format into a
sequence of lines, each of which has the following format:

frameId rowId startColId numOfPoints <point-values>

The “frameId” is assigned by the satellite to identify a frame. We use it as
a logical timestamp in our experiments. “rowId” represents the absolute id of
a row in a scan of an image. “startColId” represents the absolute start column
id of a scan. “numOfPoints” gives the number of points in this row. Finally,
“<point-values>” represents a list of point values where the list has the size of
“numOfPoints”.
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The first objective of our experiments is to determine how query segmentation
affects the overall running time for answering SST-Aggregate queries. We imple-
ment our metadata index and the BA-Tree in the Java programming language,
and run the programs on a Redhat Enterprise machine with a 2GHz CPU and
512M RAM. The size of each node in the BA-Tree is 4096 bytes.

Figure 6 compares the running time of inserting the image metadata into
the metadata index with the running time of inserting the image point data
into the BA-Tree. Intuitively, since the amount of the image metadata is much
smaller than the amount of point data, the time to insert the metadata should
be significantly smaller than the time to insert the point data. Figure 6 verifies
this intuition. Figure 7 compares the running time of segmenting a query region
with the running time of computing aggregate results for that query region. As
one expects, the running time of segmentation is significantly smaller than the
running time of computing aggregate results.

Fig. 6. Time comparison for maintain-
ing two different data structures: Meta-
data index (bottom line), BA-Tree
(upper curve)
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aggregate query: query segmentation
(bottom) and computing aggregate for
a single region (top)

The second objective of our experiments is to evaluate the effectiveness of our
CRC structure, in terms of space consumption, construction time, and query
performance. Our algorithms are implemented using GNU C++. The programs
run on a Linux Redhat Enterprise 3 machine with an Intel Pentium 4 3G CPU,
1024K cache and 1G RAM. For the B+-tree implementation realizing the linear
region quadtree, we choose a node size of 4096 bytes and buffer size of 80M
bytes.

In this set of experiments, we quantize point values of incoming images by
ignoring the 0, 2, 4, 6 least significant bits, respectively, and collect the results
for each of the quantized data. In Figures 8-10, we label these quantized point
data sets with CRC-0 (=̂ original point data), CRC-2, CRC-4, and CRC-6. For
the different quantized data, Figure 8 shows the changes in the number of nodes
in the B+-tree for each image as image point data is inserted into the CRC.
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As expected, the more least significant bits are ignored for the point values,
the more the size of the CRC decreases. Figure 9 shows the number of IOs to
construct the CRC for the different quantized data. Figure 10 shows the query
performance of the CRCs and a direct computation from the raw image data.
This direct computation is done as follows. The raw image point data are stored
point by point in a file. This direct computation extracts the points that satisfy
the query and aggregates their values. As one can see, the CRC significantly
outperforms this direct computation on the raw data.

4 Conclusions and Future Work

In this paper, we have outlined the key challenges of computing spatio-temporal
aggregate queries over streaming geospatial image data. Several preliminary
results have been presented. Our focus has been on summation-related aggrega-
tions – range-sum aggregations. Range-min/max aggregations are another im-
portant fundamental operations that support complex data analysis. We are
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looking into some evaluation approaches that are able to efficiently support both
range-sum and range-min/max aggregate queries.

Since we are dealing with streaming data, the management of large volumes
of history data is a very important and challenging task. We are investigating
data vacuuming schemes to compress or eliminate history data in the stream,
and then integrating such schemes into our SST-Aggregation model and query
processing framework.
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Abstract. In my thesis I will address the problem of interoperation
between information spaces on the web. We explain how this problem is
different to traditional database integration scenarios. In particular, we
focus on one issue of the information integration problem peculiar to the
web environment, namely linking information across sources. We use a
graph-based data model and representation format, and define a query
and rule language where queries can span multiple sources. We show how
such a language can be used to relate information among sources.

1 Introduction

In recent years, there has been a transition from a traditional view in data inte-
gration systems with a hierarchical architecture towards a completely distributed
model associated with peer-to-peer (p2p) systems [6], [1], [13], [3], [10]. Rather
than integrating a set of disparate information sources into a single global schema
residing at one server, the p2p view assumes a complex system comprising a large
number of autonomous sources that relate information among themselves.

The p2p scenario shares many of the characteristics of the web. Web servers
are autonomous sources providing documents that are related to each other
using hyperlinks. Similarly, the web is a self-organizing system in a sense that
its global structure emerges from and evolves by collective creation and linkage
of HTML pages, without the need for a central server or coordination authority.1

In addition, the web community has recently developed a number of languages
that aim at representing semistructured data or ontologies and thus facilitate
the exchange of information.

Although there are many similarities, the web environment differs from the
typical p2p data integration scenario in the following ways:

– the network structure on the web is relatively stable; servers are up most of
the time, in contrast to peers joining and leaving frequently

– relating information on the web is done manually; the network structure
is not emerging randomly as assumed by the p2p model, but users put in
hyperlinks to connect related pages

1 Except maybe W3C which standardizes languages, formats and protocols to provide
interoperability.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 44–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– on the web, identifiers and their meaning may be shared across sources;
databases identifiers are local and may mean different things in different
databases

We assume it is neither desirable nor possible to completely mechanize all
integration activities for data on the web. In fact, the manually created hyperlink
structure of the HTML web provides a rich source of information which is useful
e.g., for ranking purposes.

We believe that a typical system for information integration and sharing on
the web can comprise at least the following components:

1. Query and reasoning. Infrastructure that allows to execute queries which
take into account the link structure between sources; in particular recursive
query processing facilities are needed because the network structure can
contain cycles.

2. Link creation and exchange. Agents (users or software) may create asso-
ciations between data in the form of coordination rules, and store, publish,
and exchange these coordination rules with other agents.

3. Information browsing. User interfaces are needed to browse and explore
the integrated information set.

4. Caching and replication. Caching and replication mechanisms are re-
quired at some stage to make the system fast, scalable, and reliable.

In the thesis, we focus on the problem discussed in point 1, since we believe
that problem has to be solved before the other components become useful or
are required. We assume that all data is available in RDF (Resource Description
Framework); data in other formats can be aligned using wrappers.

Example. To motivate the problem, consider three autonomous data sources
with connections and dependencies among them as illustrated in Figure 1: one
data source contains information about people expressed in FOAF2 vocabulary
collected from the web, another data source holds publication metadata from
DBLP3, and the third data source contains Citeseer4 publication data. Since
the data sources contain overlapping or complementary information, we can use
the following links to relate data in one source to data in another source:

– information about people from FOAF files should be also made available in
the DBLP data source, e.g., the DBLP admin wants to show a picture of the
authors of a publication

– publications in the DBLP source should also include abstracts which are
available in the Citeseer data set

– the administrator of the FOAF source wants to show information about the
publications of a person

2 http://www.foaf-project.org/
3 http://www.informatik.uni-trier.de/~ley/db/
4 http://citeseer.ist.psu.edu/
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Fig. 1. Three data sources connected via coordination links

The research question this thesis aims to answer is two-fold:

– How to link RDF data sources on the web to arrive at a distributed, self-
organized system comprising a large number of autonomous interoperable
information sources?

– How to utilize these links to interoperate (share, exchange, and integrate
information) among the connected sources?

The remainder of the paper is organized as follows. In Section 2 we introduce
the data model for our framework. Section 3 introduces syntax and semantics
of the query and rule language. In Section 4 we describe how to encode and
integrate the formal semantics of vocabulary descriptions into the framework.
Section 5 discusses the current state of the system and presents some ideas for
future work, and Section 6 concludes.

2 Data Model

In this section we first review traditional data models, then describe RDF, the
data model we use, and finally introduce our notion of context, which is manda-
tory in a distributed environment.

2.1 Related Approaches

The relational data model is by far the most popular, but has some drawbacks
when it comes to data exchange and integration. In particular, data cannot be
exchanged before an agreement is reached on how different relational schemas
relate to each other.

Semistructured data formats such as OEM [19] or XML try to alleviate some
of the problems because data in these formats can be merged without the need
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for integrating the schema first. However, one drawback of XML is the lack of
the notion of objects and object identity.

We employ the notion of context which we believe is mandatory in the dis-
tributed web environment. Context frameworks such as [9], [12], [23] track the
processing steps performed (e.g. data exchange, joining information from multi-
ple sources) to derive the associated piece of information. TRIPLE [21] has the
notion of parameterized contexts, where parameters can be passed to a set of
facts and rules. Our notion of context is relatively basic in a sense that we just
capture the physical location of a given piece of information.

2.2 RDF Data Model

Before we describe our notion of context, we define the standard RDF data
model. RDF is a schema-less, self-describing graph-based data model, which
facilitates merging information from different sources without performing schema
integration at the merging stage. The data model consists of RDF triples.

Definition 1 (RDF Triple). Given a set of URI references U , a set of blank
nodes B, and a set of literals L, a triple (s, p, o) ∈ (U ∪B)×U × (U ∪B ∪L) is
called an RDF triple.

In such a triple, s is called the subject, p the predicate, and o the object. We
refer the interested reader to [17] which describes the RDF model in more detail,
including blank nodes, containers, and reification.

We use N3 (Notation3) as a syntax for RDF. To make this paper self-
contained, we introduce the basic syntactic N3 primitives. Brackets (<>) de-
note URIs, quotes (””) denote RDF literals, and blank node identifiers start
with “ :”. There exists a number of syntactic shortcuts, for example “;” to
introduce another predicate and object for the same subject. Namespaces are
introduced with the @prefix keyword. For a full description see [5]. Figure 2
shows a small example in N3 syntax describing a paper and a person.

In RDF, the concept of URI acts as a global identifier for entities, which
represents a form of agreement among multiple sources about how to name
things. RDF has a notion of object identity via URIs and object nesting via
predicates which refer to other URIs. More advanced object-oriented features
such as classes and inheritance can be layered on top of the simple graph-based
data model of RDF, which is discussed in Section 4.

2.3 Context

Although the RDF specification itself does not define the notion of context,
usually applications require context to store various kinds of metadata for a
given set of RDF triples. In typical integration scenarios where data is gathered
from a large number of sources, it is mandatory to track the provenance of
information, that is, the physical location of the RDF file addressable via a URI.
Capturing provenance is one of the fundamental necessities in open distributed
environments like the web, where the quality of data has to be judged by its
origin.
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@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ley: <http://www.informatik.uni-trier.de/~ley/> .

ley:db/journals/computer/computer25.html#Wiederhold92
dc:title "Mediators in the Architecture of Future Information Systems.";
dc:creator <http://www.example.org/dblp/GioWiederhold> ;
rdf:type foaf:Document .

<http://www.example.org/dblp/GioWiederhold> foaf:name "Gio Wiederhold" ;
foaf:homepage <http://www-db.stanford.edu/people/gio.html> ;
rdf:type foaf:Person .

Fig. 2. Small N3 example describing a document and a person

In the following we define our basic notion of context.

Definition 2 (Triple in Context). A pair (t, c) with t be a triple and c ∈
(U ∪ B) is called a triple in context c.

Please note that a pair ((s, p, o), c) is equivalent to a quadruple (s, p, o, c). In
our model, we assume a finite set of spaces which are accessible via HTTP. Each
information space can host multiple contexts. A context c can be a relative URI
or an absolute URI. A relative URI denotes a context relative to the current
context, which allows to move the location of entire data sets while keeping the
internal link structure intact.

Example. For our running example, the context for information from DBLP
is http://example.org/dblp, for FOAF http://example.com/foaf, and for
Citeseer http://example.org/citeseer. For brevity we will use exo:dblp,
exc:foaf, and exo:citeseer to denote the data sources in the rest of the paper.

N3 extends the RDF data model with means to quote graphs. Within N3, RDF
subgraphs can become the subject or object of a statement, using “{}”. To be
able to express our notion of context within the RDF data model we introduce
the namespace yars5. The yars:context predicate denotes that the subgraph
grouped in the subject occurs in the context provided as the object.

3 Query and Rule Language

Rules are used to pose queries, or to specify how pieces of information, possibly
in different contexts, are related to each other. We first review some related
approaches, and then define syntax and semantics of our rule language.
5 http://sw.deri.org/2004/06/yars#
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3.1 Related Approaches

Unlike traditional data integration approaches, we can postpone the schema
integration to a later stage, since RDF is semistructured and schema-less. We
only need to relate identifiers to each other, similar to what is done in [16]. We
believe that rule unfolding is a sufficient evaluation method that is somewhat
between full schema mapping and merely relating identifiers to each other.

Many query and rule languages for RDF have been proposed [4]. We discuss
here only SPARQL6 due to space limitations. SPARQL is a query language
for RDF that shares many of the features of our framework. The most notable
distinctions between our approach based on N3 and SPARQL are that we use
N3 syntax to encode both facts and rules, which can be used to write rules that
return other rules, and we allow recursion in our language.

3.2 Notation3 Rule Syntax

To be able to express rules, N3 extends the RDF data model with variables.
Variables in N3 are prefixed with a question mark (“?”). With variables, we can
define the notion of quad patterns, which allow us to specify patterns where
constants may be replaced by variables.

Definition 3 (Quad Pattern). Given a set of variables V, a quad (s, p, o, c)
∈ (U ∪ B ∪ V) × (U ∪ V) × (U ∪ B ∪ L ∪ V) × (U ∪ B) is called an RDF quad
pattern.

To be able to formulate rules within the RDF data model we use the graph
quoting feature of N3 and introduce the log:implies predicate in namespace
log7.

Definition 4 (Rule). A rule is in the form {b1 . . . bn} log:implies {h} .
where b1 . . . bn and h are quad patterns.

The quad patterns b1 . . . bn are called the body, and h the head of a rule. A rule
is safe if all variables occurring in the head also occur in the body.

Definition 5 (Program). A program P at context CP is a finite set of facts
and rules accessible on the web by dereferencing CP .

If the context CP is a query-able endpoint it is possible to push selections during
query processing and retrieve only the necessary information to answer a query,
thus reducing the amount of data transferred.

Example. Recall the running example given in the introduction. We are now
able to give an example of a rule that expresses a link between repositories. Figure
3 shows a rule which is stored at exo:dblp and relates photos in exc:foaf to
people in exo:dblp, given identical homepage URIs.
6 Currently a W3C Working Draft.
7 http://www.w3.org/2000/10/swap/log#



50 A. Harth

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix yars: <http://sw.deri.org/2004/06/yars#> .
@prefix log: <http://www.w3.org/2000/10/swap/log#> .

{{ ?x foaf:homepage ?hp .
?x foaf:depiction ?img . } yars:context exc:foaf .
?y foaf:homepage ?hp .

} log:implies {
?y foaf:depiction ?img .

} .

Fig. 3. Rule to relate photos in the FOAF data source to people in DBLP

3.3 Operational Semantics

We have defined the syntax of rules, but not yet their meaning. In the following,
we define an operator that can be used to calculate a fixpoint taking into account
recursive rules.

Definition 6 (Immediate Consequence). Let P be a program at context CP .
A fact h is an immediate consequence of P if (i) h ∈ CP or (ii) {b1 . . . bn}
log:implies {h} . is an instantiation of a rule in P and each bi ∈ Ci. TP

denotes all facts that are immediate consequences of P.

In our framework we anticipate a large number of rules, possibly recursively
referencing each other. There is no way to escape the need for recursion, since
there is no central control over the network, and each actor can put in rules
without coordinating with others, which makes it possible (and very likely) that
one actor references triples inferred by a rule of another actor. In addition, we
need recursion to be able to define the semantics of transitivity.

Given that our rules language has no function symbols that can be used to
generate new symbols, the set of rules are guaranteed to reach the fixpoint (i.e.
no new facts are generated by the TP operator) after a finite number of steps
[2]. The expressivity of our language is equivalent to (recursive) datalog under
the least-model semantics.

We employ the open world assumption; results to queries are not guaranteed
to be complete, since complete knowledge of a huge distributed system such as
the web is somewhat illusory. Thus, our framework returns sound answers but is
an incomplete procedure (i.e. all answers returned are sound but we might miss
some answers due to the distributed nature of the web).

4 Vocabulary Descriptions and Ontologies

So far we have operated on a sub-schema level without taking into account formal
descriptions about the data. Object-oriented features such as classes, instances,
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properties, and inheritance can be layered on top of RDF. Vocabulary descrip-
tions, such as RDF Schema (RDFS) [8], or ontologies, such as OWL, the Web
Ontology Language [18], are commonly used to formally describe information on
the web.

4.1 Related Approaches

[11] discusses the intersection of logic programming rules and OWL called de-
scription logic programs (DLP) which is the fragment common to both para-
digms. The paper also argues that language layering is a desirable feature from
an architectural viewpoint.

TRIPLE’s notion of parameterized context in combination with a set of rules
that (partially) axiomatize the semantics of RDFS can be used to derive addi-
tional information from an RDFS specification [21].

C-OWL [7] is a proposed extension to OWL with the notion of context and
bridge rules. An interesting feature of this language is that its semantics makes
use of the so-called local model semantics where for each context there exists a
local model and a local domain of interpretation.

4.2 Axiomatic Semantics

To be able to interpret a set of triples under the semantics of e.g. RDFS or
OWL DLP we need a formalization of that semantics. For RDFS, we use a
set of rules that axiomatize the RDFS semantics. The main feature of RDFS
is the transitivity of rdfs:subClassOf and rdfs:subPropertyOf properties,
which can be encoded using our rule language. We also use rules to encode the
semantics of rdfs:domain and rdfs:range for properties.

The OWL variant that is expressible in our rule language is OWL DLP. We
plan to axiomatize the OWL DLP subset using N3 rules, similar to what has
been done in [15]. Once the RDFS or OWL DLP rules are added to a context,
queries against the RDF graph there take into account the semantics of the
respective vocabulary description or ontology.

5 Discussion and Ongoing Work

We have implemented a prototype that allows to answer conjunctive queries that
span multiple contexts. We are experimenting with an RDF version of DBLP
(around 1.5 GB in size) and a web crawl of RDF data (around 1 GB in size). [14]
has more information on the index organization and query processing techniques
used in our prototype. One immediate next step is to implement the operational
semantics described in Section 3.3. We plan to investigate the use of (hybrid)
top-down methods such as QRGT [22] or QSQ [2].

Ongoing work includes extending the rule language with scoped negation [20].
The idea here is that we close off the world for data sources that contain com-
plete information about a subject; then we are able to employ a form of default
negation.
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An interesting theoretical question which requires some more in-depth inves-
tigation is what extensions (possibly within second-order logic) are needed to be
able to query rule bases.

6 Conclusion

The aim of the thesis is to investigate methods for interoperation among au-
tonomous RDF information spaces on the web. Our framework allows to operate
with only local information, that is, creating links between sources or evaluating
queries can be done without any global knowledge about the network.

We have shown how to use coordination links expressed in the query and
rule language N3 with context to interlink data sources. We have defined both
syntax and operational fixpoint semantics of the query and rule language, and
have sketched a number of questions we intend to tackle as part of the Ph.D.
thesis.
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Abstract. This paper describes an ongoing Ph.D. project whose goal
is to improve both the user interaction and the efficiency of XML data-
bases. Based on structural summaries for indexing and visualizing the
structure of XML data, we describe a highly interactive, intuitive GUI
targeted at non-experts, and present sophisticated algorithms and data
structures for efficient query evaluation which enable a smooth user in-
teraction. Preliminary results illustrate how XML exploration, indexing,
querying, caching, ranking and user feedback in XML databases can ben-
efit significantly from the structural summaries.

1 Introduction

XML has by now become a de-facto standard for modelling, querying, exchang-
ing and storing a broad range of data with different characteristics. At the one
end of the spectrum, there are text-centric documents with little structure to
be queried, e.g., web pages, Wikis, Blogs, news feeds, e-mail and FAQ archives.
At the other end, there is XML content with a much more rigid and meaningful
structure and little text, e.g., product catalogues, tax payer’s data submitted
via electronic forms and bibliography servers. While traditional Information Re-
trieval (IR) techniques have been established for the former class of data, XPath
and XQuery [1] are the languages of choice for the latter.

However, XML is most commonly used for a wide variety of truly semistruc-
tured data in between those two extremes, with complex and irregular structure
adding significant information to the rich textual content. Examples are docu-
ments in digital libraries or publishing houses, electronic encyclopedias, on-line
manuals, linguistic databases and scientific taxonomies. For querying such data
neither database nor IR-style methods are well suited. On the one hand, we can-
not expect unskilled users of these applications to express their information need
in XPath or XQuery, languages which are also inapt for ranked retrieval in XML
data with an irregular or (partly) unknown schema. On the other hand, flat-text
IR disregards valuable structural hints which can help not only to formulate
more precise queries, but also to rank and present query results in a meaningful
form. Although there is much recent work on ranking structured documents, the
user interaction in such systems mostly follows the database paradigm1.
1 See, e.g., the IR extensions to XPath (in the INEX benchmark [2]) or XQuery [3].
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We argue that to make the full spectrum of XML applications accessible to
non-experts, a new way of user interaction with XML databases is needed which
helps them understand and use the schema of the data in an intuitive way.
It is known from earlier experience with relational databases (RDBSs) and IR
engines that sophisticated query languages alone are not enough for serving the
information needs of unexperienced users. Making users benefit from the XML
structure poses challenges to both the user interface and the query kernel:

Schema exploration. Exploiting the inherent document structure allows for
more precise and useful queries and answers. However, sometimes users find
the markup just meaningless, either because they ignore the underlying
schema or because they are faced with instructions for layout, document
processing, namespaces, etc.2 Rather than to present the structure of the
data one-to-one, interfaces to XML databases should therefore allow users
to explore the schema and selected sample data, as well as to create views
customized to their information need and degree of expertise.

Structured query results. When presenting query results to users, the XML
structure relates distinct parts of the result and defines boundaries for high-
lighting matches in a meaningful context. Yet users also need to recognize
how results relate to the query and schema. When exploring results, users
often wish to change part of the query and reevaluate it. Ideally this could
be done in a seamless iterative feedback without leaving the result view.

Efficient query evaluation. Encouraging vivid user interaction via integrated
schema exploration, querying and result browsing makes sense only with a
fast query kernel ensuring prompt system reaction. A major challenge is
the incremental query evaluation based on previously retrieved results in an
XML query cache, which is needed for smooth user interaction and feedback.

Structured ranking. Structural query hints can be used to present retrieved
elements in order of relevance. However, computing relevance scores for struc-
tured documents is non-trivial. Open problems are, e.g., how to find elements
which cover exactly a relevant portion of text, how to handle structural near-
misses and how to avoid overlapping elements in the query result efficiently.

We believe that the key to easy, intuitive user interaction with XML databases
is the tight integration of graphical views on the document schema, sample data,
user queries and retrieval results on top of an efficient and scalable query kernel.
The goal of the Ph. D. project is to address the above challenges with (1) a novel
graphical user interface (GUI) providing integrated schema, query and result
views, (2) index structures and algorithms for efficient, scalable and incremental
query evaluation, (3) efficient and effective techniques for XML ranking. In a first
phase, we have investigated how structural summaries visualizing the document
schema also improve the efficiency of the query kernel. Most of this work, though
targeting enhanced user interaction, applies to XML databases in general. Hence
2 For instance, with its 30,000 distinct label paths, the schema of the INEX collection

of scientific articles [2] is much more complex than the actual logical structure of the
documents, and therefore hard to understand for non-expert users.
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we present our contributions in the context of more recent approaches which
have appeared since the beginning of the project in late 2003. To the best of our
knowledge our approach to intuitive and efficient user interaction is unique in
that we employ the same structural summary for (a) exploring the schema and
samples of the data, (b) formulating, planning, evaluating and caching queries,
(c) ranking query results and (d) enabling iterative user feedback.

The next section sketches the state of the art in XML retrieval, highlighting
techniques we build upon. Section 3 explains in detail our solutions to the afore-
mentioned challenges, presenting the main contributions of the project. These
are summarized and briefly contrasted with existing approaches in Section 4,
which also gives a snapshot of the accomplished work and remaining issues.

2 XML Retrieval: State of the Art and Open Problems

User interaction with XML databases. As mentioned in the introduction, XML
retrieval is typically addressed either from an IR or a database viewpoint, which
is also reflected in the main features of the systems. While the focus of XML data-
bases is efficient XQuery processing, IR engines optimize ranking effectiveness
(precision/recall). By contrast, user interaction has been somewhat neglected
so far3. Most systems from both camps offer only a text interface to queries
and results, rendering query results as XML fragments [4]. More sophisticated
GUIs focus on visual query creation [5,6,7,8,9,10] while disregarding the explo-
ration of query results. In particular, it is hard to figure out how results relate
to the query and schema. [11] introduces a compact result view which reflects
the query structure, but is not linked to the query view. All these tools assume
prior knowledge of the document schema for creating meaningful queries. [8,10]
support DTD-driven query assistance and restructuring, but lack schema and re-
sult browsing. In [6,12] structural summaries are used to visualize the document
schema, provide sample content and facilitate manual query formulation to some
extent. However, there is little work on adapting IR-style relevance feedback for
smooth iterative XML retrieval. In particular, we are not aware of any solution
to efficient incremental query evaluation based on user feedback.

Index and Storage Structures. As more and more multi-gigabyte data sets need to
be stored and queried, efficiency and scalability of XML databases have received
much attention. IR systems often use inverted lists built over tag names or
keywords as index structures. This hinders scalability, joins of large node lists
being expensive. Many database approaches are based on the DataGuide [6], a
compact representation of the document structure where each distinct label path
appears exactly once. Query paths are matched on this structural summary in
main memory rather than the entire data set on disk, which avoids some joins
and disk I/O. The DataGuide has been combined with different IR techniques
for text matching, such as signature files, tries and inverted lists.

3 No new approaches to user interaction were presented at the Interactive and Rele-
vance Feedback tracks of INEX 2004 [2].
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A complementary indexing technique are labelling schemes, which assign ele-
ments specific IDs from which part of the document structure is inferred without
accessing the entire data set. Recently many new schemes addressing different
query problems on XML trees have been proposed. For instance, interval schemes
[13] encode the descendant axis by representing an element v as a numeric inter-
val Iv such that v is a descendant of v ′ iff Iv ⊂ Iv ′ . They are space-efficient but
sensitive to node insertions and join-intensive. Prefix schemes [14] represent an
element as the sequence of sibling positions on its root path, similar to the sec-
tion numbers in this paper. Simple label manipulations allow to infer ancestors
and siblings. Binary encodings have been applied to reduce the space overhead
of prefix schemes. Node insertions can be handled gracefully [15], whereas the
problem of labelling graph-shaped XML remains open.

While earlier semistructured [16] and most IR engines are native systems,
recent approaches treat XML retrieval as an application for RDBSs. Different
methods of storing and querying XML in tables have been proposed [17,15,13].
Supporters of the native approach [18,4,19] argue that the best performance is
achieved by tailoring the system to the XML data model. However, the question
whether native or relational systems are more efficient, which largely affects
indexing, joining as well as query planning and optimization, is still unresolved.

Caching of XML Query Results. Reusing cached query results is an instance of
the more general problem of query processing in the presence of views on the
database, which has been studied extensively for RDBSs. Major problems are
query containment/overlap (compare the definitions of queries/views to decide
whether their extension overlap or contain one another) and query answering
(based on the view definitions and extensions, decide whether a given piece
of data is part of the result of a specific query). Many papers have studied
the theoretical complexity of these problems with different query languages for
semistructured data. For instance, [20] shows that both are PSPACE-complete
for tree-shaped and EXPSPACE-complete for arbitrary conjunctive queries of
regular path expressions. Despite the high theoretical complexity, a number of
different approaches strive to push the practical efficiency to its limits, build-
ing on native XQuery engines [21,22], two-way finite state automata [20], tree
automata [23], incomplete trees [24,25], or LDAP servers [26].

Ranked XML Retrieval. Unlike flat-text IR, XML ranking must cope with (1) re-
laxing query structure in order to capture near misses, (2) balancing structural
and textual query conditions when computing relevance scores, (3) defining an
inverted element frequency, (4) choosing suitable elements to return (rather than
entire documents), and (5) avoiding result overlap. Since the first INEX bench-
mark [2] in 2002, many performance metrics and new ranking models have been
proposed, most of which adopt flat-text methods such as tf·idf [27,28,29]. A
web-inspired technique is to exploit the link structure in document collections
[30,31]. Recently the use of ontologies for query expansion has been studied more
thoroughly [32,31]. However, little work is concerned with the efficient implemen-
tation of XML ranking techniques.
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3 Contributions of the Project

3.1 Indexing and Exploring XML Data with the CADG Index

At the core of our efficiency enhancements is the Content-Aware DataGuide
(CADG), a path summary inspired by the DataGuide [6] which tightly integrates
IR techniques for efficient keyword search. Those parts of the schema which do
not lead to occurrences of query terms are pruned early during path matching.
Experiments show that this considerably reduces disk I/O, improving the perfor-
mance of the original DataGuide by up to a factor 200 [33]. As a first step toward
enhanced user interaction (Sect. 3.6), we created a graphical CADG [34] which

Fig. 1. CADG visualization

extends the DataGuide visualization
in [6] (Fig. 1). The schema is ren-
dered as a tree with highlightable
nodes. The user can view sample
keywords occurring under specific
label paths and statistical informa-
tion about their distribution in the
data. For complex schemata (e.g.,
INEX benchmark), the user may
simplify the CADG by hiding sub-
trees based on tag names or tex-
tual content. Unlike [6], we also use
the CADG for creating complex tree
queries in a semiautomated manner.

3.2 Ranked XML Retrieval with the CADG Index

Fig. 2. Ranking visualization

As mentioned above, the question
how to rank structured documents
both efficiently and effectively is
still open. Rather than to com-
mit ourselves to a particular model,
we therefore classified existing ap-
proaches w.r.t. the path and term
frequencies they use for computing
relevance scores. In [35] we show how to adapt the CADG to indexing precom-
puted frequencies for different classes of ranking model, which speeds up the
retrieval process. To evaluate our approach experimentally, we implemented the
S-Term ranking model [36] and tested it with the INEX 2004 benchmark [2]. The
system scaled up well to over 500 MB in terms of retrieval speed, but we discov-
ered that even with precomputed frequencies the scoring of certain queries takes
quite long [37]. Clearly this is due to deficiencies inherent to the S-Term model.
Although not central to the Ph. D. project, we might therefore develop a sim-
plified model which avoids too complex scoring and at the same time addresses
some of the challenges mentioned in Sect. 2.
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We also use ranking in our preliminary GUI for rendering result lists, which
may become large for unselective queries. With a new threshold histogram (Fig. 2)
the user specifies a minimum relevance score (or alternatively, a maximum rank)
for items to be displayed, dynamically adapting the number of items in the result
list below the widget.

3.3 The BIRD Labelling Scheme

In a third step we developed the BIRD labelling scheme [38] for avoiding joins
of large node sets, a common bottleneck in XML query evaluation. Although
the CADG matches leaves of query paths without such joins, BIRD achieves
huge benefits when retrieving nodes higher on the path, or common ancestors in
tree queries. The key to reducing the join effort is that BIRD not only decides
all XPath axes for two given elements, but also infers ancestors, siblings and
children of a single element from its label alone, for which we coined the term
reconstruction. Combined with the CADG, reconstruction avoids additional disk
I/O for looking up matches to the branching nodes of a tree query. As shown
in Fig. 3, BIRD labels (small numbers) are multiples of integer weights (large
numbers), which are stored in the CADG. For instance, to reconstruct the parent
of element 43, we look up the parent weight (5) in the CADG and simply compute
the parent label as 43− (43 mod 5) = 40, and likewise for other ancestors.

Fig. 3. BIRD ancestor reconstruction.
Small numbers denote BIRD node la-
bels, whereas large numbers indicate BIRD
weights. Here all children of the same node
have the same weight regardless of their la-
bel paths.

In [38] we study (1) the benefit
of reconstruction over decision and
(2) how BIRD compares to other
labelling schemes in terms of expres-
sivity (reconstruction/decision of dif-
ferent axes), processing time, space
consumption and robustness against
updates. In our experiments with five
labelling schemes BIRD outperforms
all competitors with equal expressiv-
ity in terms of space and time. The
only comparable approach, µPID [39],
generates smaller labels but is less ex-
pressive than BIRD. Although BIRD
is not as robust against updates as

other schemes such as ORDPATH [15], further experiments illustrate that a
simple strategy minimizes the impact of node insertions at least for a certain
class of data set. Still we would like to investigate advanced updating techniques
for BIRD sketched in [38]. Finally, a comparison of different query algorithms in
the paper confirms that (1) reconstruction is indeed most effective for speeding
up query evaluation, (2) schemes with excessive label size may incur a perfor-
mance overhead due to inefficient node comparison, and (3) labelling schemes
respecting document order (such as BIRD, e.g.) benefit from extra optimization
techniques. These encouraging results motivated the combination of BIRD and
the CADG in a relational setting (see the next section).
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Currently we are surveying a multitude of new
approaches with distinct features which have ap-
peared meanwhile, including an extensive com-
parative analysis and evaluation of more than
twenty labelling schemes in terms of time and
space efficiency, robustness against node inser-
tions and expressivity. While a previous survey
[40] classifies a small number of approaches into
bit-vector, interval and prefix schemes, we sub-
sume BIRD and a few other encodings under a
fourth class, multiplicative schemes.

3.4 Relational XML Retrieval with the RCADG Index
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The following work contributes to the
discussion of native vs. relational XML
retrieval systems (see Section 1). Given
that both approaches have been es-
tablished and pursued without much
cross-fertilization taking place so far, we
examined how our native XML indexing
techniques can boost the retrieval of XML stored in an RDBS. The goals in the
context of the Ph.D. project were (1) to improve the scalability of our native
prototype system whose performance degraded for unselective queries, (2) to
benefit from RDBS features such as concurrency or recovery and (3) to store
intermediate results temporarily during query evaluation, in anticipation of a
future incremental query kernel (see the next section). In [41] we show how to
migrate the CADG and BIRD to the relational data model, applying interval
labelling [42] to CADG nodes and BIRD labelling to document nodes. The re-
sulting Relational CADG (RCADG) replaces the structural summary in main
memory with a single table containing one row for each CADG node (see Fig-
ure 5), including its interval-scheme labels (columns pid ,max ), BIRD weight
(weight), CADG-specific keyword signatures (csig , gsig) and statistical path in-
formation for query planning and ranking (keys , elts).

Fig. 6. RCADG query

XML queries against the RCADG are evaluated en-
tirely within an RDBS as a sequence of SQL state-
ments. The translation algorithm makes heavy use
of BIRD’s reconstruction capabilities to minimize the
number and the size of intermediate result node sets
to be joined. For instance, to evaluate the query
in Figure 6 only q3 and q5 are matched by joining
the RCADG table with the element table, whereas
matches to q1, q4 and q6 are obtained via reconstruc-
tion. Thus the number of joins is reduced by 50% compared to other relational
approaches. Subsequent evaluation steps each produce a more complete inter-
mediate result table from prior results, which also enables relational index sup-
port for elements reconstructed on the fly. This technique is rewarded in the



Fast and Intuitive Access to XML Databases 61

experiments where we compare the RCADG to the native CADG/BIRD sys-
tem, a relational version of the interval scheme and another relational DataGuide
variant that uses string matching on paths [17]. Unlike the two relational com-
petitors, the RCADG fully preserves the underlying document schema in the
RDBS. This avoids false hits for certain queries on recursive data sets (which we
observed for the string-matching approach) and also enables query optimization
techniques that take into account XML path statistics ignored by the relational
optimizer.

From the study on relational XML retrieval with the RCADG, we learned
that (1) exploiting native indexing techniques such as BIRD and the CADG
in an RDBS boosts the query performance by up to three orders of magnitude
compared to both native and relational approaches, (2) the proposed techniques
significantly improve the scalability both in terms of the query complexity and
selectivity, (3) these benefits are achieved with only a negligible space overhead,
but (4) the performance gains may be deteriorated by inappropriate query plan-
ning and rewriting. Our preliminary planning algorithm needs to be refined to
cope with more involved cases where the selectivity of a particular query node
on the one hand and the analysis of applicable reconstruction steps on the other
hand favour conflicting query plans.

3.5 Incremental Query Evaluation with an XML Query Cache

The user interaction described below encourages the continuous modification
of prior queries in an iterative relevance feedback process. To this end, queries
need to be evaluated incrementally, i.e., common subsets of results to different
queries should not be retrieved repeatedly from scratch but reused with the least
possible computational effort. This means that (1) final or intermediate results
to previous queries must be materialized at least temporarily and (2) subsequent
queries must be analyzed to find out which parts of the results they share with
previous ones. The first requirement is satisfied in a natural way by the RCADG
(see above). To meet the second requirement, we have developed a novel XML
query cache [43] from which reusable result subsets can be retrieved efficiently
with the help of schema information. A new query is first matched on the schema
level (which can be done very fast in the RCADG’s path table). The resulting
schema hits are decomposed into pairs of label paths which are then looked up in
the query cache to find prior queries with overlapping schema hits. The results of
these queries are available in their RCADG result tables for further processing.

This approach has three benefits, which distinguish it from the earlier work we
know of. First, comparing query extensions (i.e., results) rather than intensions
(i.e., tree patterns or XQuery expressions) works around the high complexity
of query containment (Sect. 2). Second, comparing schema hits before accessing
the full query results helps to discard useless cached queries efficiently. Third,
by caching intermediate and final matches to all parts of a query we can reuse
partial query results and create new query plans to compute the complete result
incrementally. Note also that only schema hits are kept in the main-memory part
of the cache, whereas the full query extensions reside in the RDBS backend.
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3.6 Integrated Schema Exploration, Querying and Result Browsing

Fig. 7. Preliminary GUI

The current GUI described in [34]
provides separate views on the
schema, queries and results. Once
a query has been formulated and
evaluated, the retrieved hits are
explored in a graphical represen-
tation reflecting the query struc-
ture. While browsing the result
view, users often wish to mod-
ify the query, realizing mismatches
with their information need. Cur-
rently this requires re-editing and
re-running the query outside the
result view (perhaps after consult-
ing the schema again). This not
only causes needless computations
to find data that is already known,
but also makes it hard for the user to keep track of updates to the query result.

The most salient feature of the new GUI to be developed is the tight integra-
tion of the schema, query and result views. Ideally the user would silently issue
new queries or modify previous ones while browsing the document schema or
query result, as follows. First the user activates interesting label paths, possibly
with keyword constraints as before. The occurrences of these label paths span a
substructure in the documents which in turn induces a partial schema specific
to the current activation. In the schema view, the CADG is immediately up-
dated, e.g., by hiding paths outside the reduced schema. Note that finding the
current substructure requires efficient tree matching in the documents, just like
for processing explicit user queries.

a. Tree view. b. Hotspot view.

c. Bird’s eye overview.

Fig. 8. Alternative schema views

At any point in time the user can
either narrow down or expand the
CADG by changing the path acti-
vation. Moreover, distinct paths can
be merged, i.e., treated as equiva-
lent both in query evaluation and
in the GUI. Conversely, occurrences
of the same label path can be dis-
tinguished, based on their textual
content or statistics such as subtree
size, by splitting the correspond-
ing node in the schema view. To
some extent this blurs the distinc-
tion between the schema and the ac-
tual data. However, query results for
user-specified parts of the schema
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are still displayed in a dedicated view (see Figure 7, right-hand side), using dif-
ferent profiles determining the desired level of detailedness as well as backlinks
into the schema view for locating the corresponding label paths.

a. Concise schema node profile.

b. Full schema node profile.

Fig. 9. Alternative schema node profiles

Inspired by the capabilities of
common file system browsers, we in-
tend to provide alternative views on
the schema. Fig. 8 sketches two pos-
sible schema presentations, the tree
view (a.) introduced before and the
hotspot view (b.) which displays the
root path and children of a single
schema node. The level widget to
the right in Fig. 8 b. indicates how
deep the node is buried in the doc-
ument hierarchy. Multiple hotspot
views may be opened in separate
frames or integrated with the tree
view. A bird’s eye overview locates the hotspots in the document hierarchy
(Fig. 8 c.). Individual schema nodes may be rendered at distinct levels of de-
tailedness. Two alternatives to the simplistic rendering in Fig. 8 a. are illus-
trated in Fig. 9. In a concise read-only profile (Fig. 9 a.), sample keywords and
user-specified query keywords are shown. By contrast, the full profile (Fig. 9 b.)
provides widgets to edit these properties and also displays some path statistics.

Meanwhile we have specified the intended user interaction with the new GUI
in terms of a clean formal algebra. More specifically, we compiled a set of A-
operations for activating label paths in the schema view, and E-operations for
exploring the query results. A preliminary implementation covers some A- and
E-operations in the GUI, but does not yet trigger the appropriate evaluation
steps. Further remaining tasks include the merging and splitting of label paths
and an analysis of the expressiveness of the interaction algebra.

4 Summary and Discussion

The Ph.D. project presented here aims to improve both the user interaction and
the efficiency of XML databases. Major contributions are (1) a highly interactive,
intuitive GUI for non-expert users, (2) index and storage structures for efficient
exact or ranked XML retrieval and (3) algorithms for the incremental evaluation
of XML queries. The work on index and storage structures is finished. We have
thoroughly analyzed our techniques in comparison with existing methods and
demonstrated their practical use in extensive experiments, including scalability
tests for various data sets up to 9 GB in size. The use of structural summaries
such as the CADG has been shown to be particularly apt for the envisaged user
interaction, because it provides an intuitive graphical access to the document
schema and at the same time accelerates query evaluation. This twofold benefit
was already discussed in the context of the Lore system [6]. We significantly
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extend that work by (1) combining the DataGuide with IR techniques for key-
word search and ranking (CADG), (2) boosting its performance by means of a
novel labelling scheme (BIRD), (3) migrating the resulting index to an RDBS
(RCADG), (4) using it for similarity search in an XML query cache, (5) inte-
grating it with query and result views for iterative feedback-driven search.

The studies and experiments with XML ranking have shown that our indexing
techniques support the efficient query evaluation with different models, and have
given us a clear picture of what needs to be improved. As far as the quality of
the S-Term ranking is concerned, the performance at INEX 2004 is encouraging
but leaves room for optimizing the specificity of the results. For better response
times, the computation of relevance scores needs to be simplified.
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Abstract. This paper describes an approach to establish access control
mechanisms in a peer data management system (PDMS). Based on the
research on security in Peer-to-Peer networks, we develop a decentral-
ized access control component for PDMS. For this purpose, information
resident in local access control components in the peers is used, and map-
pings between the peer access control policies are established. A client
side access control mechanism enforces access rights in the whole PDMS.

1 Introduction

The use of Peer-to-Peer (P2P) networks introduced new challenges for database
management systems. These new databases, called Peer Data Management Sys-
tems (PDMS), are defined as follows: A PDMS is a Peer-to-Peer network where
every peer has its own database management system and intends to share parts
of its database with other peers. To share data, the peers need to establish
data mappings between their schemas [10,13,9,16]. Query processing is done by
traversing these mappings, rewriting the queries, executing them on the peers
and gathering the results at the peer that requested data. Because every peer
can leave and join the network at its will, there is no permanent global schema.
In fact, a kind of global schema is only established during query execution. Many
security problems arise in such an environment, and, therefore, many projects
deal with security in P2P networks (a good overview is given in [18]). But to our
knowledge there is no approach which considers the creation of an access control
mechanism in the special case of PDMS.

To illustrate the need for such an access control component, let us consider
the following scenario. Several databases store health information about a person
A. Database dbx holds data on the doctor, database dby has details of health
insurance, and database dbz is at a hospital which provided medical treatment
for A. In an emergency, this information should be combined to give A the
best possible medical care. A PDMS might provide such a service, because the
mappings between those databases can be established fast and remain flexible.
Let us assume that we have established all mappings between relevant data
sources. Without access control in the newly established PDMS, every user can
see all data. This is definitely not appropriate. We need a fine grained PDMS
access control, similar to what is common in relational databases.
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2 The Research Question

The following questions are being addressed in my research:

– How can a fine grained access control for PDMSs be established?
– How can the PDMS access control component be distributed in the network?
– How can the information inside local access control components be used for

the PDMS?
– What is the relationship between local and global access control rules?
– How can one prevent PDMS access control bypassing?

The intention is to build on existing research work in P2P security mecha-
nisms. With these mechanisms we can guarantee a secure authentication and
communication inside PDMSs.

The next step is to establish the PDMS access control component. Here, the
solution can be based on the security mechanisms of loosely coupled federated
databases. But the mechanism proposed by Heimbigner and McLeod [11] seems
to be insufficient for a PDMS. It is only based on peers and not on users, and
it depends on access lists. Each database item which needs to be protected has
its own access list where all authorized peers are recorded. This approach will
also work in a PDMS; however, it is very costly and scales poorly. Therefore, we
need a new approach that matches the requirements of a PDMS.

3 Significant Issues in the Field of Research

The basic problem in the research field is the missing central authority. Access
control in data integration systems is a well studied research topic, see for ex-
ample [2,20]. But up till now, every control mechanism relies on such a central
authority. Furthermore, the high dynamics of PDMSs is a major problem. Peers
leave and join the system at arbitrary times. Moreover, peers normally belong
to different organizations and establish cooperations for a short period of time.
Therefore, trust between peers is very important. Finally, if obstacles to join the
PDMS are too high, the flexibility that P2P systems are famous for is going to
disappear.

4 State of the Art

Before we can think of access control in PDMSs, some basic requirements need
to be fulfilled. These are secure authentication and communication, and client
based access control. A lot of research has been done to enable these services in
a PDMS, as detailed below.

4.1 Secure Authentication and Communication

The basis of every security consideration is secure authentication of users and
peers. Every user must own a single, specific and distinct ID. But without a



68 C. Sturm

central authority there is no instance that gives the guarantee that a newly
generated ID is distinct. As shown by Berket et al. [3], this problem can be
solved via a public key infrastructure (PKI) and certificates. A central certifica-
tion authority guarantees distinct user IDs. Nevertheless, one problem remains.
Normally, every peer should be able to have only one identity. Otherwise, the
P2P network is vulnerable to “Sybil” attacks [8]. This can be prevented through
the assignment of peer certificates from a certification authority, guaranteeing
PDMS-wide distinct peer IDs. Peer hardware information, for example the MAC
address of the network card in a certificate, can preclude multiple peer identi-
ties. Such a solution gives us the possibility, besides secure authentication, to
establish secure communication between the peers and between users.

4.2 Trust Management

There are several proposals for trust management systems in P2P networks, e.g.
[1] and [19]. Without trust between the participants, there will be no collabora-
tion, and, without this, no working network. Besides, trust management systems
that are based on peer reputation are able to detect malicious peers and exclude
them from the network, if the authentication problem described in Sect. 4.1 is
solved. Trust information can further be used to optimize the selection of peers
and therefore network performance. These trust management systems must be
immune to attacks of malicious peers.

4.3 Client Based Access Control

In a P2P network, one needs a new access control approach. As stated by Miklau
and Suciu [14], trust domains in PDMSs differ from domains in traditional client
server databases. The data owner trusts and controls only the data, whereas the
execution of the query, and the query itself, may be beyond the control of the
data provider. Hence, a PDMS peer is forced to give away its raw data to enable
other peers to execute their queries and establish their mappings. When a peer
gives away its data it also gives away the control over this data. It cannot restrict
access to the data given away or protect it from changes. Even worse, one cannot
prove where the data originates from.

One solution to solve this problem is to perform access control on the client
and not on the data provider side. This can be done via trusted software on
the client. The software enforces access and distribution restrictions of the data
provider, and the client can only operate on the data through this trusted soft-
ware. The data provider therefore encrypts the content and gives the encrypted
data, together with the information needed to decrypt the data, to the data
requester. Only the trustful software from the requestor is able to decrypt and
display the data.

Another approach to enforce client based access control can be a solution
based on the encryption and distribution of keys [14,4,5]. In the current solution,
we opt for the trusted software approach, because we need this technology to
enable the distribution of access control anyway (see Sect. 5.2). Besides, trusted
software can make it much harder for a malicious peer to gain raw unencrypted
data from the system.
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4.4 Access Control in Peer-to-Peer Networks

Recent papers consider access control in P2P networks. Sandhu and Zhang [17]
present a general framework for the use of trusted computing technology for
access control in P2P networks. The work of Berket et al. [3] presents an access
control mechanism for a P2P network. Secure communication and authentication
of peers is provided via PKI. In addition, every peer establishes its own rights
management policy for its own data and enforces this policy through a special
authorization manager. A related approach from Crispo and others [6] uses more
flexible policies. These two approaches do not address the problem of client based
access control that causes problems as stated before (see Sect. 4.3). None of
these approaches considers existing access control components and information
residing on the peers, which is essential for a PDMS.

5 Problem Solution

As a basis, every peer and every PDMS user requires a certificate from a central
certification authority. This enables secure authentication and communication
between peers and PDMS users. Furthermore, we postulate that every peer has
a fully fledged DBMS with an access control component that offers fine grained
access control including roles, users, access rights and grant rights. Access control
information contained in these components can be considered as a kind of meta
data that can be connected through mappings to other peers. Of course, access
control data is special and so are the mappings. What we need is a general data
exchange format for access control information. Afterwards, we need to design a
mapping language and appropriate transformation rules that can map/transform
this information between different peers. This situation is illustrated in Fig. 1.

Fig. 1. PDMS with authorization mappings
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The creation of authorization mappings is a collaborative task, because two
peers, between whom an access control mapping should be established, need to
coordinate their access control mechanisms. That might cause changes to the
local access control rules of both peers.

To make a valid and secure authorization mapping (AM) contract, the map-
ping should be encrypted and signed by both peers. The encryption ensures that
only the two contractual partners can see the mapping rules and the signatures
guarantee that changes to the mappings are done collaboratively. It is clear that
the AMs and the certificates increase the effort to join a PDMS, but we believe
it is worth doing, due to the additional security control achieved in this way.

5.1 Two Level Access Control

A basic principle of our approach is that there are two levels of access control
inside a PDMS. On the one hand, we have access control inside the individual
peer. On the other hand, we have authorization mappings between single peers.
These mappings are established in such a way that users have appropriate rights
on the relevant databases. To make things easier, especially to avoid the need
to map each individual user, it may be useful to map roles or groups of users.
It is important to note that the individual peer has full control over its local
user management component. So it can always change local access rights, which
ensures peer autonomy. In contrast, mappings between the peers can only be
composed or changed in cooperation. An exception is the dissolution of an AM
contract, which can be done without the other partner.

5.2 Indirect Mappings

This problem results from the underlying assumption of data distribution and
data processing in a PDMS. When we look at mappings from the point of view
of authorization, we deserve an “indirect mapping” problem, shown in Fig. 2.
A peer which has access to data can grant this access privilege to other peers
without asking the originating peer. This is the fundamental “share your data”
principle of a PDMS. However, we think that this is not a good solution for
access rights. There might be situations where the sharing of access rights is
exactly what we want. But for the majority of cases, we need a mechanism
which restricts these indirect mappings.

A solution to this problem is the trusted PDMS software mentioned in Sect.
4.3. This must be installed on every contributing peer and is distributed by the
central certification authority. The software guarantees several things:

– The data provided by a particular peer cannot be rewrapped as someone
else’s data. That means, the origin of the data is clearly announced.

– Only data exactly addressed to the user is shown to the user.
– Data addressed to a user cannot be redirected to another user.
– In case of indirect AMs, the peer and user ID has to be added to the request

to show the authorization path.
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Fig. 2. The indirect mapping problem

That means that the middle peer, Peer2 from Fig. 2, is not able to redirect
queries from Peer1 with other user rights than the user rights of the originating
requestor. Peer2 can execute queries over data provided by Peer3 but it is not
able to republish the data as its own. This is the default mode for AMs between
peers. However, a peer can explicitly assign so called “indirect authorization
mapping rights” to another peer. If Peer3 has granted such a right to Peer2,
Peer2 is allowed to give Peer1 access to data of Peer3.

In addition, the trusted PDMS connection software guarantees that the data
owner has always full control over his data.

5.3 Diversity of Access Control Methods

Another problem to be considered is the high diversity of access control meth-
ods (positive or negative access rights, open or closed world assumption, etc.)
residing on different peers. This is a well known problem in federated databases
[12,7]. To solve these inequalities, one can think about conversion peers that
convert one access control method into another. This is only possible if indirect
AMs are allowed. Without indirect mappings, the conversion between the differ-
ent methods must be done inside/through the mapping. This approach is more
flexible but requires a more powerful mapping language.

5.4 Authorization Mapping Content

The AM consists of both peer IDs and a mapping of the users and roles (in our
scenario from the introduction: user f of databasedbx ⇔ user g of databasedby, or
role w of databasedbx ⇔ role v of databasedby). In addition, it needs to be speci-
fied whether indirect mappings to a particular user or role are allowed. Note that
only mappings between local users or roles of the partners are allowed. There-
fore, an indirect (inherited) AM always needs to be resolved through the grant-
ing middle peers. Only a direct AM, which can be derived semi-automatically
from the indirect ones, can shorten the detour. To make the mapping secure,
the signature of the two peers has to be added. The content of the mappings
should be minimal to reduce the complexity and performance impact of access
control.
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5.5 Decentralized User Management Component

Up till now we only have a mechanism to connect local access control compo-
nents of peer databases. The missing link is an authority that manages these
connections for a number of peers. Here the idea of islands of trust comes into
play. Due to the high trust barrier in a PDMS, the best starting point is to
establish a small group of peers that highly trust each other. Such a group is
called an island of trust. Referring to our scenario, a health insurance company
can establish a trust island for hospitals. In the next step, this island can be
connected to the other islands established by other health insurers, etc. If every
participant in an island trusts the others, they might grant each other further
rights, especially indirect AMs.

Highly reliable and trustful peers (e.g., the health insurance company) in the
island of trust will hold many indirect AM rights. This makes them responsible
for connecting access rights of the island of trust to the rest of the PDMS. In
fact, every peer with the right to grant access to data of other peers (indirect
AM right) is a kind of substitute for all peers connected through indirect map-
pings. The most reliable and trustful peers establish therefore something like a
decentralized user management component. The more trust there is inside the
PDMS, the more centralized access control will be. The drawback is that as
access control becomes more and more centralized, it will become increasingly
vulnerable to attacks. Therefore, it is a good idea for each peer to grant more
than one peer indirect AM rights. Because we treat access rights as data and
establish mappings between them, we can use similar methods as we use for data
mappings to make them more reliable or scalable.

With our approach we dynamically connect already available access control
components to establish a PDMS wide access control system. Due to these map-
pings, that are as flexible as the data mappings, we are now able to support a
range of solutions, from centralized to completely decentralized PDMS access
control, exactly arranged to the requirements of each individual peer.

5.6 Correlation Between Data and Rights Mappings

There is a strong correlation between data and authorization mappings. Data
mappings are established at peer level. That is, mappings are shared by all users
on a peer. Of course, it makes sense to hide the mappings from the user who has
no access; nevertheless, every peer user can see all mappings in principle. It is
clear that such data mappings should coincide with the corresponding rights to
access the mapped data. Therefore, an AM always accompanies a data mapping.
As a result, the authorization path can easily be found.

6 How PDMS Access Control Works

When an access request from a connected peer arrives, several things need to
be checked. First of all, the sender of the request has to be proven through
PKI decryption. Additional IP address and challenge response tests can increase
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security. Then the rights mappings have to be considered. If there is a direct
rights mapping between the two peers, the user sending the request has to be
tested via challenge response. Otherwise, we need to check all peers and users of
the current authorization path. If everything is all right so far, we can start with
real access control. First, the corresponding local user rights are derived from
AMs. Afterwards, the request has to be executed using the permissions of the
according local user. During the execution, the rights of the local user have to
be considered as usual. Afterwards, the result is encrypted with the public key
of the requestor and sent to the requestor. If the peer is not the endpoint of the
request, we rewrite the query using the data mapping, add the local user/role
the rights mapping corresponds to and forward it to connected peers.

7 Future Work

First, we are going to specify the export schema of the access control information.
The international standard XACML [15] can be such an export schema. In that
case mappings will be established between XACML documents. Next, the design
of the mapping and transformation language of the AMs will be developed. Here
we may benefit from former research in federated databases [12]. In addition,
tools to assist the creation of AMs are essential.

As a proof of concept, we are going to implement our security framework on
top of a P2P enhanced version of SIRUP [21]. The implementation will focus
on performance and scalability of access control mechanisms, because these are
central issues in a PDMS.
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Abstract. Moving objects databases have become an intensive field of
research in recent years with many applications such as location-based
services, traffic monitoring, fleet management, etc. Most of the works in
the literature assume free movement in the 2-dimensional space, although
in some cases, the objects move within spatially embedded networks, e.g.
vehicles in highways and trains in railways. Moreover, these works are
focused on isolated aspects such as efficient query processing with spe-
cialized index structures. The aim of this PhD. project is to present
a prototype of a complete database management system for efficiently
storing and querying moving objects in networks, providing a compre-
hensive data model supporting the description of complete histories of
movement, index structures for efficient query processing, an extended
model handling uncertainty, and a complete integrated implementation
as an algebra inside the Secondo extensible database system.

1 Introduction

With the development of wireless network communications (e.g. the IEEE 802.11
protocol) and positioning technologies such as the Global Positioning System
(GPS) and the European Satellite Navigation System (GALILEO), devices e-
quipped with such technologies like handheld devices, on-board units in vehicles,
or even mobile phones have become relatively cheap and are predicted to be in
widespread use in the near future. This trend will lead to many new kinds of
applications, e.g. location-based services and spatio-temporal data mining. The
challenge to the database community is how to handle such complex spatio-
temporal data in database management systems assuming the presence of huge
amounts of historical data.

There are two main approaches in the literature that try to model this prob-
lem. These can be characterized as the location management and the spatio-
temporal database perspectives. First, Wolfson et al. in [25,28] developed a model
called Moving Object Spatio-Temporal (MOST) and the Future Temporal Logic

� This work was partially supported by grants Gu 293/8-1 and Gu 293/8-2 from
the Deutsche Forschungsgemeinschaft (DFG), project “Datenbanken für bewegte
Objekte” (Databases for Moving Objects).
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(FTL) language for querying current and anticipated future locations of mov-
ing objects. Motion vectors are stored into dynamic attributes for the moving
objects. Only moving point objects are considered.

Second, the spatio-temporal database perspective was explored, which means
that the complete trajectories of the moving objects are stored such that querying
past states is possible. Güting et al. in [9, 6] provide a complete framework
for the representation and querying of spatio-temporal data, namely moving
point and moving region. Such data types can be embedded as attribute types
into extensible database management systems. Our work follows this approach
and therefore throughout this paper when we mention moving objects we are
interested in the spatio-temporal database perspective.

Since then, the field has flourished and a lot of work has been done especially
on efficient query processing providing index structures mainly focused on the
range and nearest neighbor queries, e.g. [21,18,8,13] just to mention some of the
most recent ones.

An important observation that has not been addressed in the research men-
tioned above is that in many cases objects do not move freely in the 2-dimensional
space but rather within spatially embedded networks, e.g. roads or highways. One
could then describe movement relative to the network rather than 2-dimensional
space which would enable easier formulation of queries and, even more impor-
tant, more efficient representations and indexing of moving objects.

There exist some works in the literature focusing on modeling issues for mov-
ing objects in networks and some presenting specialized index structures and
query processing algorithms for the range query, which are discussed on Section
2. However, there is a big gap between data modeling and query processing. A
comprehensive data model and query language for objects moving in networks
does not yet exist. As long as this is so, it is not clear how the proposals for
efficient indexing and query processing can be integrated and used in a database
system.

The purpose of this PhD. project is then to build a complete prototype of a
vertical database system for moving objects in networks, i.e. to provide a model
containing data types for the network as well as for static and moving objects to-
gether with a comprehensive set of operations among them, efficient algorithms
for the operations, index structures to improve query processing, optimization
rules that enable the usage of such indexes, and a complete integrated imple-
mentation inside the Secondo extensible database system [12,10, 5].

This paper is organized as follows: Section 2 presents the most closely related
work. Section 3 details the PhD. project proposal, the results achieved so far,
and the future work that needs to be done. Finally, Section 4 concludes the
paper.

2 Related Work

Network query processing, in particular shortest path computation, has been
considered by Shekhar et al. in [23, 24] and Rundensteiner et al. in [15, 16].



Moving Objects in Networks Databases 77

In [24] an adjacency list data structure clustered into pages is based on the z-
order of node positions. A similar one using the Hilbert ordering is presented
in [19]. These works are considered inside the internal structures of our proposed
network representation.

Considering models, Vazirgiannis and Wolfson in [27] present a first model
for querying moving objects in road networks. The network model basically
corresponds to an undirected graph, where nodes are street crossings and edges
are city road blocks. Moving objects are described by geometric polylines, as in
the earlier work for unconstrained movement mentioned in Section 1. Besides,
the network model and the query language are limited compared to our proposal.

Two papers by Jensen et al. [17,14] have also looked at data modeling issues
for spatial networks with respect to possible uses for location-based services.
They describe as a case study the data model used by the Danish road directory
and a Danish company. The emphasis is to explain that real road networks are
quite complex, and that just simple directed graph models are not sufficient. The
case study suggests a model that uses several interrelated representations which
are expressed in terms of relational tables. This is an interesting application
study, and we have drawn some of our motivation to use a route-oriented model
from the first of these papers. However, moving objects are not considered.

The same group has described a more formalized model incorporating some
of these ideas into [26]. They propose to use two complementary models of a
network together, namely the 2-dimensional representation and the graph rep-
resentation. The first is geared to describing a network at very high detail, while
the second should support efficient computations. Data and query points are
available in both models to represent static objects (e.g. facilities) and moving
query objects (e.g. vehicles). The paper further describes how the graph repre-
sentation can be derived from the 2-dimensional representation.

This model is the closest to our network model, but both representations
are graph-oriented, i.e. they do not offer a route-oriented model as we do (see
Section 3.2, and they do not offer a model for moving objects in networks, in the
sense that trajectories of moving points relative to the network are not available.
Furthermore, only point objects are considered.

The route-oriented model is closely related to the kilometer-post representa-
tion in [17] and to the concept of linear referencing widely used in the GIS-T
(Geographic Information Systems in Transportation) literature, e.g. the work
from Scarponcini in [22], where positions are described relative to the length
of a road. Linear referencing is also already available in commercial database
products such as Oracle Spatial.

Finally, index structures for the trajectories of moving objects in networks
are presented by Frentzos in [7] and by Pfoser and Jensen in [20]. Both use
the same idea of converting a 3-dimensional problem into two sub-problems
with lower dimensions, where the first one is to index the network data and the
second is to index the moving objects. It is shown that the problem then becomes
simpler using this approach and their index structures outperform 3-dimensional
structures.
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3 The PhD. Project

3.1 The Proposal

The PhD. work started in September 2002 as part of a Deutsche Forschungsge-
meinschaft (DFG) project named “Datenbanken für bewegte Objekte” (Data-
bases for Moving Objects) under supervision of Prof. Dr. Güting. The project
is divided into two parts having two years duration each. The main goals of
the first part, related to the PhD. work presented in this paper, were to build
the main model for moving objects in networks, and extensions to this model
supporting dynamic networks and to cope with uncertainty, all integrated; to
define an implementation strategy; and to start building a prototype given the
implementation strategy.

The second part of the project is still in progress and is more focused on imple-
menting a prototype running inside Secondo, on proposing efficient algorithms
for the operations, on studying efficient execution of query processing using in-
dexes, and finally on extending the optimizer to cope with complex objects such
as moving objects (constrained to networks or not).

Inserted into this project, the main goal of this PhD. work is to build a
complete database system for moving objects in networks providing a vertical
solution from a model with data types and operations, efficient algorithms for the
operations, indexing structures for efficient query processing, and optimization
rules enabling the usage of such indexes.

3.2 Results Achieved so Far

A model for moving objects in networks is presented in [11]. The core of this
model are the data types network1, gpoint , and gline to represent the underly-
ing network (highway network), network positions (motels or gas stations), and
network regions (speed limit or construction areas), respectively. Obviously, the
corresponding moving data types for network positions (vehicles or trains) and
regions (traffic jam area or part of the network affected by a snow storm) are
defined, namely moving(gpoint) and moving(gline).

One should note that the model is consistent with (and can be seen as an
extension of) the one in [9] allowing us to re-use many concepts and facilities
provided there and to completely integrate them in order to be able to handle
interactions between both network constrained and unconstrained spatial and
spatio-temporal data. An example is the second inside operation in the list of
operations below which uses a 2-dimensional region (region data type defined
in [9]) as argument.

The main novelty on the network data type is that it is modeled in terms of
routes and junctions and not in terms of nodes and edges of a graph, and we
name it the route-oriented model. A route corresponds to a path over a graph
possibly containing several edges, and junctions store intersections between pairs
of routes. This representation has several advantages, which are detailed in [11],

1 We write data types in italics underlined, and operations in bold face.
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but the perhaps most practical one is that the representation of a moving object
becomes much more compact in this way. If positions are given relative to edges,
then for example a vehicle going along a highway at constant speed needs a
change of description at every node (exit/junction) because the edge identifier
changes. If positions are given relative to routes, then the description needs to
change only when the vehicle leaves the highway.

Another important point is that the description of the network is not too
simplistic. Routes can be bi-directional, i.e., admit movement in two directions,
and positions on the two sides of a route, e.g. on a highway, can be distinguished,
so that the distance between positions on each side of a route can be quite big in
some cases. On the other hand, there are also cases where one does not want to
distinguish between positions on two sides of a road, e.g. people moving around
in a pedestrian zone. Therefore, two kinds of routes called simple and dual routes
are provided. Furthermore, we do not assume that all transitions are possible
in a junction, which is not realistic. The possible transitions between routes at
junctions are stored into 4x4 matrices encoded into integer numbers, namely the
connectivity code.

Object data types are then described relative to the network rather than the
embedding 2-dimensional space, leading to a more compact representation of
moving objects, since no geometric information needs to be stored. Geometry is
stored once and for all with the network. Besides, discovering relationships be-
tween objects and parts of the network becomes much simpler and more efficient
in this way.

The point data type (gpoint) is represented by a route location containing
a route id, a relative position on that route, and its side, for dual routes. The
network region data type (gline) is represented by a set of intervals of route
locations. To the best of our knowledge, this is the first work that handles net-
work regions. For the moving counterparts of these data types, we provide linear
functions for the time-dependent location (moving(gpoint)) and for the route
interval boundaries (moving(gline)).

Operations are then provided for these data types. Some examples are

mgpoint × gline → mbool inside
mgpoint × region → mbool inside
mgline → mreal length
mgpoint × gpoint → mreal distance

Their semantics are straightforward and can be found in [11] together with the
complete set of operations. Three applications containing some sample queries
are presented in [11] as well as some implementation issues.

An index structure to store the trajectories of moving objects supporting the
route-oriented model is presented in [2, 3], namely the MON-Tree. It supports
the range query employing a similar approach of dividing the problem into two
sub-problems presented in [7, 20], where a top R-Tree indexes the routes in the
network and bottom R-Trees index objects’ movements inside each route (Fig-
ure 1. Given the advantages of using the route-oriented model, the MON-Tree
outperforms the competing index structures.
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Fig. 1. The index structure of the MON-Tree

An extension to the model in [11] to cope with uncertainty is presented in [4].
Most of the data types were extended to their uncertain counterparts, e.g. the 2-
dimensional point is now expressed as a region with uniform distribution function
and the boolean data type has a new maybe value. The geometry of the uncertain
trajectories of point objects with movement constrained to networks is presented
(Figure 2), as well as the data type representation and the operations from [9,11]
are extended. Finally, it is explained how we could modify the MON-Tree to
index the trajectories of such moving objects with uncertainty.

Before starting the implementation of moving objects in networks, several
implementation tasks have been done in the Secondo system. A persistent ver-
sion of the Relational Algebra containing almost all operations such as selection,
projection, sorting, hash join, sort-merge join, loop join, etc. supporting large
objects in tuples was implemented, which was demonstrated at ICDE’05 ( [10]).
The data types and the most important operations from the model in [9] were
also implemented as an algebra in Secondo, namely the Spatial Algebra. A
demonstration of all these features together is accepted to the demo session at
MDM’06 ( [5]). Finally, several other improvements in the Secondo system have
been done during this PhD. project, which are not here discussed given space
limitations.

3.3 Further Work

The Secondo extensible database system is composed by three major compo-
nents written in different languages:

– the kernel, written in C++, implements specific data models, is extensible
by algebra modules, and provides query processing at executable level over
the implemented algebras;
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Fig. 2. The uncertain geometry of a moving object between two measurement points
p1 and p2

– the optimizer, written in Prolog, provides as its core capability conjunctive
query optimization, currently for a relational environment and also imple-
ments the essential part of SQL-like queries;

– and the graphical user interface (GUI), written in Java, which is an extensible
interface for such an extensible system like Secondo, where new data types
or models can provide their own way to be displayed.

The implementation of the data types and operations presented in the models
in [11,4] as an algebra in the Secondo kernel is still in progress and we plan to
finish it in the near future.

In the optimizer, we are currently investigating how to convert from SQL
queries to the best executable plan, or at least to an efficient one, in the presence
of such complex data types. In this case, it is important to note that the choice
of Secondo as a database system was a good one, because we do not need to
provide complex selectivity estimation functions. Secondo uses the sampling
approach to estimate selectivities.

For cost estimation, since we use abstract data types, and in this case instances
of these data types can be very big, the execution time of some operations in
one object (inside a tuple) is not negligible in the query processing time and
must be taken into account by the optimizer. We plan to estimate the time for
complex operations also using the sampling approach.

In order to provide efficient query processing, we need to identify the oper-
ations where an index can be helpful, provide such an index (if needed), and
provide some optimization rules in order to use such indexes. In some cases, we
discovered that we can re-write the query adding some predicates in the where
clause to enforce the usage of such indexes.

As an example, let us take the parcel delivery application presented in [11].
The application models a company offering express delivery of packages in the
city network of Hagen, Germany. We assume that we have the road network of
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the city of Hagen as a data object, a relation road mapping road names to route
identifiers in the network, and a relation called postman describing post workers’
trips.

road( name: string, route: int )
postman( name: string, trip: mgpoint )

We focus our discussion on query P4, which returns all post workers who
stayed in the street “Hagener Strasse” for more than one hour yesterday. This
query should be written as

SELECT p.name
FROM postman AS p, road AS r
WHERE r.name = ’Hagener Strasse’ AND

duration(deftime(at(atperiods(trip, yesterday), route)))
< one_hour

assuming that yesterday and one hour are pre-defined objects storing the period
of yesterday and the duration of one hour, respectively. This query first reduces
the trips to the period of yesterday (atperiods) then to the times where they
were at the route named ”Hagener Strasse” (at), computes their temporal di-
mension (deftime) and compares their duration (duration) to the one hour
duration. The most expensive part of this query is

at(atperiods(trip, yesterday), route)

which is a selection in time and integer spaces. A temporal index could be avail-
able in the system with entries in the format 〈time interval, route id〉. An ex-
ample of such an index is [1]. Moreover, the query optimizer should be smart
enough to recognize this pattern and to add further conditions to the query so
that this index is used. The query that would be then evaluated is

SELECT p.name
FROM postman AS p, road AS r
WHERE r.name = ’Hagener Strasse’ AND

duration(deftime(at(atperiods(trip, yesterday), route)))
< one_hour

present(trip, yesterday)
passes(trip, route)

where present and passes are the counterpart predicates for atperiods and
at, respectively.

Finally, we will also provide specific methods for displaying the data types
in the Secondo GUI. We think that a visualization tool is very helpful for
doing research in moving object databases. An example of the GUI with spatio-
temporal data of some trains of the city of Berlin is shown in Figure 3.
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Fig. 3. The Secondo graphical user interface

4 Conclusions

The proposed PhD. work investigates the problem of building a prototype of a
complete database system for moving objects in networks. We showed the im-
portance of this field of research and the lack of such solution in the literature.
We believe that this is the first attempt to build such a prototype of a com-
plete database system for both unconstrained and network constrained moving
objects.
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Abstract. The information infrastructure in today’s businesses consists of many
interoperating autonomous systems. Changes to a single system can therefore
have an unexpected impact on other, dependent systems. In our Caro approach
we try to cope with this problem by observing each system participating in the
infrastructure and analyzing the impact of any change that occurs. The analysis
process is driven by declaratively defined rules and works with a generic and ex-
tensible graph model to represent the relevant metadata that is subject to changes.
This makes Caro applicable to heterogeneous scenarios and customizable to spe-
cial needs.

1 Introduction

In today’s businesses, information infrastructures are getting more and more complex.
There are many heterogeneous systems with a manifold of mutual dependencies leading
to unmanageability of the overall infrastructure. New dependencies between existing
systems evolve and new systems are added. Generally, there is no central management
of all systems.

Small, local changes can have a major impact at company-wide scale due to the de-
pendencies between systems. To keep everything running, it is therefore necessary to
preventively analyze the impact of a change, to be able to make adjustments in case of
conflicts without compromising the infrastructure. While the heterogeneity of systems
and the problem of incomplete metadata make change impact analysis already a hard
task, the situation becomes even more difficult as changes are not always planned glob-
ally and in advance. Thus, unexpected problems may occur after a change is carried
out, making a reactive change impact analysis necessary. We present Caro, an approach
for change impact analysis (CIA) that is able to operate even under these adverse con-
ditions.

When speaking of changes, we refer to metadata changes. In our context, metadata
includes not only data schemas, but also APIs, configuration files, assertions about data
quality and performance, etc., in short, everything that other systems could rely on.

Problem Statement. The problems that we face in change management and which we
address with our approach can be divided into three categories:

– Heterogeneity. The connected systems often have different data models (e.g. XML
or SQL), different interfaces (e.g. query or function calls), etc.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 86–96, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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– Incomplete metadata. In general, it is not possible or feasible to get all metadata
for an exact CIA. There may be no easy way to query the metadata of a system,
documentation is often outdated or non-existent, and dependencies between sys-
tems can be hidden in procedural code, which in the worst case would have to be
decompiled to get the required information. While it is theoretically possible to get
exact metadata, in practice, the costs may be too high.

– System autonomy and missing global management. In practice, many systems are
black boxes that cannot be controlled from outside. This especially holds true if
an integration environment spans over several departments or even several compa-
nies, and complicates access to such systems. Changes are applied without global
analysis, and without notification to the affected systems. Thus, problems emerge
unexpectedly, and it is hard to find the cause.

Contribution. Caro is a concept which includes three main components responsible for
addressing the discussed problems:

– We propose an architecture which allows a central or distributed approach to
change impact analysis. We have software components called metadata agents,
which, amongst other things, monitor the systems participating in the integration
infrastructure for changes. The change manager allows for preventive CIA as well
as reactive CIA.

– We present a metamodel which allows us to handle and homogenize the heteroge-
neous metadata encountered. It is designed to be extensible to describe arbitrary
metadata at arbitrary granularities.

– We use a robust and generic analysis algorithm which can handle incomplete meta-
data. It works on a best-effort basis based on the input metadata, and the quality of
the analysis results will gracefully degradate as input metadata gets less complete
or more coarse-grained.

With these concepts, Caro is applicable to a wide range of different systems, and thus a
wide range of different changes can be detected and analyzed.

Related Work. In the context of information integration, much research has been done.
Some approaches are complementary to ours, and others are similar to Caro in some
aspects. The most important distinguishing facts of Caro are its genericity, robustness
and scope. It makes no assumptions about the environment it operates in, and can be
used for any scenario where change impact analysis is necessary.

Dorda et al. [8] present an approach which is quite similar to Caro with respect to the
problems addressed. However, the solution they propose is different in two fundamen-
tal points: They require a central documentation (or metadata) repository and a strict
process policy. This constrains their approach to scenarios where it is feasible to have
a central repository and to enforce adherence to defined processes. While they want to
avoid integration clusters1, we think that such a clustering (and thus decentralization)
in large EIS cannot be avoided.

1 Integration clusters are called “integration islands” in [8].
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Deruelle et al. [7] present another approach to change impact analysis. They use a
multigraph and change propagation rules for analysis, which is very similar to Caro.
Their approach has several limitations. The focus lies on preventive change impact
analysis, thus they lack a framework to support reactive CIA. Apparently, they do not
consider the problem of incomplete metadata. Also, their meta-model and rules are
rather specialized, which makes the extension to support other data models and change
types more difficult than with Caro.

Various other approaches to CIA in information systems exist that are limited with
respect to the supported data models [10] or scope and support of exact analysis [12].
The concepts of change impact analysis in software systems [6,3,16] are similar to the
ones we use. However, the models and analysis procedures focus on the elements that are
found in software: methods, signatures, classes, attributes and so on. In addition, CIA
for software systems is usually done preventively. Aspects of heterogeneity, metadata
incompleteness and distribution are not that relevant as they are in information systems.

Research done in the field of schema evolution [15,4,17], schema matching
[14,13,11] or model management [5] are complementary to our approach. Especially
the latter approaches are used to plan and realize integration, generally between only
two or a small group of systems, as well as adapt systems to changing requirements.
Caro is not designed for use in the initial stages of an integration project. It will take the
results of such a project, namely the dependencies between the systems that were cre-
ated based on schema matches or mapping definitions, and monitor them for changes.
When a change occurs, Caro will analyze the impact of it and notify the responsible
person. If problems are encountered, the output of Caro can be the input for the in-
formation integration tools that are used to repair the impacted systems. Caro focuses
on the monitoring of systems participating in the overall information infrastructure and
the detection of the global impact of changes. As such, it “fills the gap” to an overall
management of a heterogeneous integrated environment.

Structure of the Paper. In the following sections, we will first give an overview over
the architecture of our CIA approach (Sect. 2). We discuss the conceptual meta-model
on which our approach is based on in Sect. 3. In Sect. 4 our approach to conduct the
analysis is presented. In Sect. 5 we will discuss some of the issues that arise during the
preceeding sections. Finally we finish with conlusions and outlook in Sect. 6.

2 Overview

Central architectural components of Caro are the metadata repository (MDR) and the
change manager (CM) (see Fig. 1). The MDR is a passive component that holds the
metadata of the different information systems in a common representation. It provides
an interface to query and update the stored metadata. All metadata is versioned, to
be able to keep track of any changes that happened in the past. The CM is a reactive
component responsible for the analysis of changes. It can analyze change proposals
issued via the user interface, or react to changes that have happened in an observed sys-
tem. The third component in our architecture is constituted by metadata agents (MDA).
Every system participating in CIA is monitored by an MDA responsible for mediating
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Fig. 1. Caro architecture

between the CM, the observed information system and the human responsible for it.
An MDA consists of various subcomponents. The metadata extractor is needed to ini-
tially extract all metadata from the underlying system and to later pick up changes. A
transformer component maps the extracted metadata to the Caro format. The observer
component serves as a guard and watches for changes in the information system. For
caching purposes there is a storage component. The MDA communicates with the CM
via asynchronously to not block either component. The MDA parts written in bold face
are those that need to be customized for each information system. Caro provides generic
functionality, and specific functionality can be added via a plugin mechanism. To con-
figure the components, GUIs for the CM and the MDAs will be provided. Furthermore,
the GUIs give a global (CM GUI) or local (MDA GUI) view of metadata and depen-
dencies and are used as interface for preventive CIA. The MDA GUI is constrained to
a local analysis, which is also useful (e.g., to analyze how views are affected if a base
table changes). In the following sections, the main focus lies on the metadata model
and the analysis approach. The issues that arise in the functionality of the MDAs, such
as detecting changes in system metadata, conversion from a source’s native metadata
representation or modeling dependencies, are discussed in Sect. 5.

Caro can also be used in a distributed way. Several change managers, each responsi-
ble for a part of the overall system, can communicate with each other and pass on their
analysis results. This enables the use of Caro in cases where a centralized solution is
not feasible. An example scenario for this is shown in Fig. 2. This way it is possible
to restrict the data passed on to the other servers, which can be important for security
reasons.

Our base assumption is that every single system in an integrated information in-
frastructure provides various kinds of services to other systems. We refer to this set of
services as the system’s provision. For each accessing client system, there may exist a
different provision set, depending on the authorizations of it. Complementary to this,
the part of the provision that is used by the client system is called usage. A client sys-
tem as a usage for each system it depends on. Note that the usage of the client needs
not to be identical to the provision of the server system. In general, the usage will be
a subset of the provision, or may even contain elements not present in the provision. If
that happens, there exists a problem which will be recognized by our approach.

We do not use the more common terms import or export schema, since provisions
and usages can contain more than only schema data, and may, for example, include con-
figuration data, technical metadata, quality assertions (“The data provided is less than
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Fig. 3. Provision and usage specifications, internal and external dependencies

a day old.”) or activity information (“The ETL process runs every Saturday at 0:00.”).
Figure 3 illustrates provisions P, usages U and the dependencies D between them. Ex-
ternal dependencies (De) exist between a provision and a usage of different systems.
The usage depends on the corresponding provision to be made. Internal dependencies
(Di) exist between the provision and usages within a system. Services provided (in the
provision) may be dependent on the use (in the usage) of other system’s services. A
simple example is a federated DBMS, whose provision is basically a view on the pro-
visions of the base systems. In this case, the internal dependencies are represented by
the view definitions in the federated DBMS.

Change impact analysis is an integral part of a larger system evolution process, which
is happening in every information infrastructure. System evolution includes all changes
that occur to systems that are part of the infrastructure. In ideal scenarios, before any
change is applied, its impact will be analyzed. We call this preventive CIA. Depending
on the analysis result, some adjustments may be made to minimize the impact or to
adapt the impacted systems. Caro supports this process by providing tools and inter-
faces to do preventive CIA before changes are made. In practice, such ideal scenarios
do not exist, mostly due to the autonomy of systems involved. The larger the number of
integrated systems, the more probable it is that changes are made without prior analy-
sis or coordination. Caro monitors every system and detects changes shortly after they
occur. Reactive CIA is then initiated automatically, and administrators of impacted sys-
tems are notified. The analysis process itself is identical for both cases. The difference
lies only in the type of input data (proposed changes vs. already applied changes) and
in the actions taken after analysis. With preventive CIA, results will have no effect on
running systems, whereas with reactive CIA, affected systems may be disabled, or other
measures may be taken, to prevent data corruption or incorrect query results.
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3 Conceptual Model

An important consideration was the choice of the meta-model to use in our approach.
It must be possible to represent arbitrary metadata and dependencies, without assuming
any data model (like SQL or XML) or types of dependencies. There has to be support
for a declarative specification of change impact, and the possibility to describe metadata
at different granularities. These requirements are met by our conceptual model.

The base assumption we build our model on is the following: A metadata description
consists of elements and the relationships between them. Elements are atomic informa-
tion units. In the relational world, a table definition consists of many elements, namely
the element representing the table itself, the name of the table, elements for every col-
umn, column name and column type, and so on. A metadata description can then be
expressed as a bipartite digraph with node types E and R representing elements and
relationships, similar to the ER-model. Relationship nodes represent a binary relation
between element nodes and thus always have one incoming and one outgoing edge.
Expressing relationships as nodes and not as edges has its reason in that there can be
dependencies between relationships.

The elements in the metadata graph are instances of elements defined in the Caro
meta-model. This meta-model has two parts, the change-impact system description
model (CISDM) and the change-impact analysis meta-model (CIAM). Both of them
are depicted in Fig. 4. We aim to provide more complex class-building constructs,
like it is possible in OWL [1], but for readability we used an UML-like syntax in the
figure.

The CISDM defines classes that capture the semantics that are relevant to CIA. The
figure shows a selection of these. The top level classes are Element, which all element
nodes are instances of, and ModelRelationship for the relationship nodes. ModelRela-
tionships connect two Elements, as we have stated before. Literals have no outgoing
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edges, since they only function as containers for values of other Nodes. For each CIA-
relevant “role” that a node may have, the top level classes are subclassed. In the figure,
two roles for element nodes (Compound and Part), and several roles for relationship
nodes are shown. The CISDM itself is not intended to model metadata graphs directly.
It is an abstract meta-model from which concrete meta-models can inherit, assigning
CIA semantics to their elements. In the lower part of the figure, this is shown for some
elements of the relational and XML data model. The change impact analysis is done
only with the information that the generic part of the CISDM provides, whereas the
metadata is described in terms of the corresponding data model. Change impact proper-
ties are assigned to meta-model elements by inheritance, which makes it easy to adapt
existing meta-models for use in Caro by simply adding the CISDM classes as super-
classes to the model.

While the CISDM is used to model the change impact properties of metadata de-
scriptions, the CIAM provides means to connect different graphs via dependencies and
enables setting the status of nodes (e.g., to added or deleted). The upper part of Fig. 4
shows the CIAM. Main classes are Dependency and CIAMElement. Each dependency
connects two CIAMElements, which are either ModelElements or ModelRelationships.
The connected elements have one of two roles: provision or usage. CIAMElement has
two other properties. The status property holds the current analysis result for this ele-
ment. For simplicity, only the three status values added, deleted and changed are shown
in the figure. The issuedBy property denotes the observed system which the graph be-
longs to. With this model, not only dependencies between elements, but also between
relationships can be expressed.

There is no requirement for metadata graphs to be complete, or every dependency to
be modeled. If there is a dependency between a table in a source system and a feder-
ated DBMS, the individual column elements need not be connected via dependencies.
The most coarse-grained metadata graph would consist only in one element node per
system, and dependency nodes showing how systems are related to each other. This
does not allow a very precise analysis, but in this way no system will be “forgotten”
if a change occurs somewhere. Since fine-grained metadata can be very expensive to
get, it can be decided on a case-by-case basis if an exact analysis is required or if more
false alarms are acceptable. There are no constraints on the types of metadata changes
that can be captured. If the corresponding elements and their dependencies are mod-
eled, changes will be detected. Although in our prototype we focus on schema changes,
Caro is not limited to that. Some examples that come to mind are function signatures,
classes, methods, directory layouts, application configuration files, installed software.
Even more dynamic metadata such as network capacity, free disk space, or CPU perfor-
mance can be modeled and analyzed. Of course, the CISDM will probably have to be
extended, and some more analysis rules may be required. We will discuss this in Sect. 5.

4 Analysis

The analysis of a change is done by applying impact rules to the metadata graph until
no more rules can fire. Conceptually the rules and the graphs they operate on have the
following characteristics:
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– Each rule has a premise, which is a graph pattern specifying nodes and their prop-
erties. If the premise matches a subgraph, the conclusion of the rule is applied. The
conclusion is always a list of property values that will be added to a specific node.

– Each node has a finite set of properties that are identified by property names.
– If a part of a conclusion already exists in the graph, only the missing part is added.

These characteristics make the appliance of rules monotonic. Besides that, order of
rule appliance does not matter. This ensures that analysis will always produce the same
output if given the same input and that the calculation will always terminate.

Figure 5 shows a simple rule in a graphical notation on the left. Text written in nor-
mal font constitutes the premise. The conclusion is written in boldface. The analysis
rule shown in the figure adds the changed-status to a compound if a part was added.
Although the rule is quite simple, we argue that in the majority of cases, such sim-
ple rules suffice, making the analysis procedure similar transitive closure algorithm. In
some cases, more complex rules which contain more nodes and edges may be needed,
therefore the reasoner used must not rely on having only simple rules. Our current im-
plementation uses RDF [2] and the Jena framework [9] with its generic rule reasoner for
analysis. We mapped our conceptual model to RDF triples. The implementation details
cannot be discussed here due to space restrictions. Rules always specify the most gen-
eral class to which they apply, but also match subclasses. For the example analysis rule
this means that a hasColumn relationship, which is a specialization of hasPart, between
a table and its columns will also be matched. If a meta-model needs to be analyzed in a
way not covered by the standard ruleset, special rules can easily be added by using the
corresponding subclasses in the rule definitions.

5 Deploying Caro

In the previous two sections we introduced the conceptual meta-model and the analysis
rules that work on it. We showed that we can handle arbitrary metadata models, and
even cope with incomplete data. For this to work, we make several basic assumptions:
for all metadata there is a specific meta-model extending the CISDM, and all meta-
data to analyze will be transformed automatically into our common format. Further, the
metadata agents detect all changes and notify the change manager component. In this
section we will discuss the manual effort that is needed to fulfill these assumptions.

Extending the CISDM. All metadata needs to be described by a meta-model which is
an extension of the CISDM. Although we aim to provide meta-models for SQL and
XML directly, there will in general be the need to define custom meta-models. We
believe that for most cases the effort will be rather small, and depending on the resources
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available, one can decide to have a not-so-detailed model at the cost of a more coarse-
grained analysis. Tightly coupled with the extension of the CISDM is the addition of
new analysis rules. As we mentioned, rules will generally have a very simple structure,
so this is also an unproblematic task.

Transforming the Metadata. Since Caro needs all metadata in form of a graph, the sys-
tem metadata will need to be transformed to the graph format. This basically amounts
to writing custom transformer components for the corresponding MDA. This is not a
scientific effort, only a technical one, since there is already a meta-model for the system.
While this is a manual task, it can be accomplished in a straightforward way.

Monitoring and Extracting the Metadata. Perhaps the biggest problems that Caro and
all similar approaches are facing is how to monitor systems for changes, and how to
extract the metadata in an automated way. All relational DBMS have an information
schema2, which makes it very easy create a custom MDA-component to extract the
schema and other metadata. Listening for changes gets more difficult, since triggers on
system tables are usually not allowed. A solution here can be a periodic poll and use of
a “diff” tool to find out what changed, or inspecting logfiles. In this and similar cases,
monitoring and metadata extraction poses no problems. But there are other scenarios,
e.g., systems only allowing function calls with no simple query mechanism to inspect
metadata, or where access rights prevent the MDA from inspection. There is no general
solution for these scenarios. An implementation of a custom MDA-component might,
e.g., analyze the source code, do probing or check the timestamps of files. Even if the
information that is gathered this way is incomplete, Caro is still able to do analysis on
a more coarse-grained level.

While the manual effort to make the assumptions work may seem high, it is far less
than the manual effort needed when integrating information systems. In information
integration, specific data schemas (models) have to be integrated, matched and mapped
to each other. In Caro, we work with meta-models. Most of the work has to be done
only once for all instances of a proprietary system type, or could be provided by third
parties.

6 Conclusions and Outlook

We presented a generic approach to change impact analysis which uses inference rules
for processing. The approach can be applied to a wide range of scenarios. There are
no constraints on which systems can be monitored and analyzed for changes. If a sys-
tem with a proprietary metadata format is to be analyzed, only some custom MDA-
components need to be developed. Since Caro can also function with incomplete and
coarse-grained metadata, the initial development time and cost of these components can
be kept low, at the cost of a less precise analysis leading to more false alarms.

An important question that arises is how Caro handles metadata other than SQL and
XML schemas. It is neither possible nor desirable to include elements for all possible

2 Not all DBMS may have a information schema conforming to the newer SQL standards, but
all have a proprietary variant of it.
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metadata descriptions in the CISDM or CIAM. Instead, these meta-models themselves
can be extended by adding more possible values to the status property or subclassing
ModelRelationshipand ModelElement. In addition to the model extensions, new analysis
rules need to be defined, too. This imposes no problem, since the rules are generally very
simple. The main goal of our work is to analyze the impact of changes in an integrated
environment of heterogeneous information systems. It would be interesting to know to
which extent our approach could be used in other areas where the analysis of change
impact is important, like CIA in software development.

One of the next steps is to extend Caro to not only be able to automatically analyze
changes but also to handle problems that are detected, and help the developers by cor-
relating the “old” and the “new” elements (i.e., to better recognize renaming or moving
of elements). Furthermore, it is necessary to provide possibilities to give behavioral
advice to systems affected by a change, to enable automatic reaction to problems. By
using additional properties for element and relationship nodes, this can happen without
interference with the current system. While the existing system was developed with this
in mind, the details are subject to future work.

References

1. OWL Web Ontology Language Guide, 2004. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/.

2. RDF/XML Syntax Specification (Revised), 2004. http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

3. S. Ajila. Software Maintenance: An Approach to Impact Analysis of Objects Change. Soft-
ware – Practice and Experience, 25(10):1155–1181, October 1995.

4. P. Andritsos, A. Fuxman, A. Kementsietsidis, R. J. Miller, and Y. Velegrakis. Kanata: Adap-
tation and Evolution in Data Sharing Systems. SIGMOD Record, 33(4):32–37, December
2004.

5. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In Proc. of
the 1st Conference on Innovative Data Systems Research (CIDR), 2003.

6. S. A. Bohner and R. S. Arnold, editors. Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1996.

7. L. Deruelle, M. Bouneffa, G. Goncalves, and J.-C. Nicolas. Local and Federated Database
Schemas Evolution: An Impact Propagation Model. In Proc. of the 10th International Con-
ference on Database and Expert Systems Applications (DEXA), pages 902–911, 1999.

8. C. Dorda, H.-P. Steiert, and J. Sellentin. Modellbasierter Ansatz zur Anwendungsintegration.
it – Information Technology, 46(4):200–210, 2004.

9. Hewlett-Packard. Jena – A Semantic Web Framework for Java, 2005. http://jena.
sourceforge.net/.

10. A. Keller and C. Ensel. An Approach for Managing Service Dependencies with XML and
the Resource Description Framework. Technical report, IBM, 2002.

11. P. McBrien and A. Poulovassilis. Automatic migration and wrapping of database applica-
tions – a schema transformation approach. In Int. Conf. on Conceptual Modeling/the Entity
Relationship Approach, 1999.

12. R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping Maintenance for
Data Integration Systems. In Proceedings of the 31st VLDB Conference, 2005.

13. S. Melnik, E. Rahm, and P. A. Bernstein. Developing Metadata-Intensive Applications with
Rondo. Journal of Web Semantics, 1(1), 2004.



96 B. Stumm

14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10:334–350, 2001.

15. J. F. Roddick. Schema Evolution in Database Systems – An Annotated Bibliography. SIG-
MOD Record, 21(4):35–40, 1992.

16. B. G. Ryder and F. Tip. Change Impact Analysis for Object-Oriented Programs. In Proceed-
ings of PASTE, 2001.

17. X. Zhang and E. A. Rundensteiner. Data Warehouse Maintenance Under Concurrent Schema
and Data Updates. Technical report, Worcester Polytechnic Institute, 1998.



Constructing Optimal Wavelet Synopses

Dimitris Sacharidis

Knowledge and Database Systems Lab
School of Electrical and Computer Engineering

National Technical University of Athens
Zographou 157 73, Athens, Greece

dsachar@dblab.ntua.gr

Abstract. The wavelet decomposition is a proven tool for constructing
concise synopses of massive data sets and rapid changing data streams,
which can be used to obtain fast approximate, with accuracy guarantees,
answers. In this work we present a generic formulation for the problem of
constructing optimal wavelet synopses under space constraints for vari-
ous error metrics, both for static and streaming data sets. We explicitly
associate existing work and categorize it according to the previous prob-
lem formulation and, further, we present our current work and identify
its contributions in this context. Various interesting open problems are
described and our future work directions are clearly stated.

1 Introduction

Approximate query processing over compact precomputed data synopses has
attracted a lot of attention recently as an effective approach for dealing with
massive data sets in interactive decision support and data exploration envi-
ronments. In such settings, users typically pose complex queries, which require
considerable amounts of time to produce exact answers, over large parts of the
stored data. However, due to exploratory behavior, users can often tolerate small
imprecisions in query results, as long as these results are quickly generated and
accompanied with accuracy guarantees.

Several studies have demonstrated the applicability of wavelets as a data re-
duction tool for a variety of database problems. Briefly, the key idea is to first
apply the decomposition process over an input data set, thus producing a set of
wavelet coefficients. One, then, retains only a subset, composing the wavelet syn-
opsis, of the coefficients by performing a thresholding procedure. Clearly, such
a lossy compression procedure introduces some error when reconstructing the
original data. The bulk of recent work focuses on defining useful metrics that
capture this reconstruction error and, further, provide algorithms for construct-
ing optimal synopses given a space constraint.

In a data streaming setting, usually one needs to resort to approximation in
order to deal with the high volume and rate of incoming data. Wavelet synopses
seem to be an effective summarization technique that can be applied in such
a setting as well. Unfortunately, algorithms for constructing wavelet synopses
designed to operate on static disk-resident data cannot be easily extended to

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 97–104, 2006.
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process data streams. For example, most of the static algorithms require many
passes over the data, whereas, in a streaming context only one-pass algorithms
can be applied. In other words, once a data stream item has been processed
it cannot be examined again in the future, unless explicitly stored; of course,
explicitly storing the entire data stream is not an option.

In this work, we briefly introduce the wavelet decomposition in Section 2.
We present our problem formulation for constructing wavelet synopses, discuss
the challenges that arise within a data streaming environment and describe our
contributions in Section 3. Finally, we conclude our discussion and propose future
research directions in Section 4.

2 Background on Wavelet Decomposition

The wavelet decomposition is a mathematical tool for the hierarchical decom-
position of functions with a long history of successful applications in signal and
image processing [15]. Let us briefly introduce the wavelet decomposition process
through a simple example. Consider the data vector a = [2, 2, 0, 2, 3, 5, 4, 4], of
domain size N = 8. The Haar wavelet decomposition, the simplest of all wavelet
decompositions, of a is computed as follows. We first average the values together
pairwise to get a new “lower-resolution” representation of the data with the
pairwise averages [ 2+2

2 , 0+2
2 , 3+5

2 , 4+4
2 ] = [2, 1, 4, 4]. This averaging loses some of

the information in a. To restore the original a values, we need detail coefficients,
that capture the missing information. In the Haar decomposition, these detail
coefficients are the differences of the (second of the) averaged values from the
computed pairwise average. Thus, in our simple example, for the first pair of
averaged values, the detail coefficient is 0 since 2− 2 = 0, for the second it is −1
since 1 − 2 = −1. No information is lost in this process – one can reconstruct
the eight values of the original data array from the lower-resolution array con-
taining the four averages and the four detail coefficients. We recursively apply
this pairwise averaging and differencing process on the lower-resolution array of
averages until we reach the overall average, to get the full Haar decomposition,
depicted in Figure 1(a). The transform of a is given by wa = [11/4, −5/4, 1/2,
0, 0, −1, −1, 0], that is, the overall average followed by the detail coefficients
in order of increasing resolution. Each entry in wa, be it a detail or average, is
called a wavelet coefficient.

A B-term wavelet synopsis is simply defined as any subset Λ ⊂ wa of wavelet
coefficients, where usually B = |Λ|  N . Implicitly, all non-stored coefficients
are set to 0. Thus, a wavelet synopsis is typically stored by B 〈coeff-index, coeff-
value〉 pairs.

A useful conceptual tool for visualizing and understanding the hierarchical
nature of the Haar decomposition process is the error tree structure [12] (shown
in Fig. 1(b) for the example array a). Each internal tree node ci corresponds to
a wavelet coefficient (with the root node c0 being the overall average), and leaf
nodes a[i] correspond to the original data-array entries. This view allows us to
see that the reconstruction of any a[i] depends only on the logN + 1 coefficients
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Fig. 1. Example error-tree structure for the example array a

in the path between the root and a[i]. Without going into detail, observe that
a[5] can be reconstructed by adding or subtracting coefficients in the path from
the root down to a[5], depending on whether we descend to a left or right child
respectively; i.e., a[5] = c0− c1 + c3− c6 ⇔ 5 = 11

4 −
(
− 5

4

)
+ 0− (−1). Similarly,

notice that the value of a wavelet coefficient only depends on a subset of the
original values, depending on the height of the tree they belong to; e.g., the
value of coefficient c5 depends only on the values a[2] and a[3].

Intuitively, wavelet coefficients towards the root of the error tree carry a higher
weight in the reconstruction of the original data values. To equalize the impor-
tance of all coefficients, a common normalization scheme is to scale the coefficient
values at level l by a factor of

√
N/2l. Letting c∗i denote the normalized coeffi-

cient values, this fact has two important consequences: (1) The energy (a.k.a.,
the L2 norm) of the a vector is preserved in the wavelet domain, that is, ||a||22 =∑

i a[i]
2 =

∑
i(c

∗
i )

2 (by Parseval’s theorem); and, (2) Retaining the B largest
coefficients in terms of absolute normalized value gives the (provably) optimal
B-term wavelet synopsis in terms of Sum-Squared-Error (SSE) in the data re-
construction (for a given budget of coefficients B) [15]. More formally, assuming
a synopsis Λ and denoting by ã the vector of reconstructed data values, the
SSE is defined as

∑
i(a[i] − ã[i])2 =

∑
∀cj �∈Λ(c∗j )

2, where the latter equation is
due to Parseval’s theorem. In other words, SSE is equal to the sum of squared
normalized values of the non-stored coefficients, hence the previous observation.

3 Constructing Optimal Wavelet Synopses

In this section we present a generic problem formulation for constructing optimal
wavelet synopses. To this end we distinguish among various error metrics and also
differentiate on static (disk-resident) and streaming data. Further, we explicitly
relate the contributions of our current work with respect to the aforementioned
problem formulation.

A B-term optimal wavelet synopsis is a wavelet synopsis that minimizes some
aggregate reconstruction error metric under a space constraint of B coefficients
— therefore, its construction depends on the definition of such an error metric.



100 D. Sacharidis

Minimizing Weighted Lp Norm of Point Errors. Given a wavelet synopsis
Λ of some data vector a, let err(i) denote the point error, that is, the recon-
struction error for the i-th data value a[i]. In Section 2 we considered the point
to be the absolute error errabs(i) = |a[i]− ã[i]| and further applied the L2 norm
to aggregate across all data values, leading to the SSE error metric. Finding
the optimal wavelet synopsis for SSE is quite trivial, as discussed. However, the
extension to other point errors, such as, for example, the relative error (with
sanity bound s) errrel(i) = |a[i]−�a[i]|

max{s,a[i]} and using other norms, such as the max-
imum L∞ norm, to aggregate individual data reconstruction errors, is not as
straightforward.

Let err(i) denote the i-th point error and wi denote a weight (or, importance)
assigned to this error. Using a weighted Lp norm for aggregation we obtain the
following generic error metric:

∑
i wi · (err(i))p. Unfortunately, since Parseval’s

theorem can only be applied in the unweighted L2 norm of absolute errors, no
easy to process rewriting of arbitrary aggregate error metrics exists.

There are two approaches to constructing an optimal wavelet synopsis for
general weighted aggregated point errors. The first approach, used in [16] for
the weighted L2 error, tries to incorporate the error metric in the decomposition
process. The decomposition step for obtaining the average coefficient changes
to a weighted average, that is, for two values a, b we obtain waa+wbb

2 , where
weights wa, wb can be constructed from the given reconstruction error weights.
This approach leads to a different, Haar-like, decomposition in which the SSE
metric is exactly the weighted L2 error metric measured in the conventional
Haar decomposition. Therefore, the construction of the optimal, under weighted
L2 norm, synopsis problem translates to the conventional SSE minimization
problem.

The second approach, such as the one taken in [3,4,14,6], is the design of
algorithms that incorporate the error metric in their operation by exploiting the
error tree structure. In short, due to the distributive nature of error metrics, the
algorithms solve a dynamic programming recurrence, where the optimal error
incurred at a node i in the error tree (for a specified space budget and for a
specified set of ancestor nodes retained in the synopsis) depends on the optimal
errors incurred at the two children nodes 2i, 2i+1. The choice to be made involves
distributing available space to children nodes and deciding whether to include
node i in the set of retained nodes, or not.

Recently [7], it has been observed that restricting the retained synopsis val-
ues to the actual decomposition values is suboptimal for other than SSE error
metrics. Indeed, consider the case where just one coefficient, the average, is to
be maintained in the synopsis. In the case of an SSE-optimal synopsis the opti-
mal value would be the value in the original decomposition, that is, the average.
However, in the case of the maximum absolute error metric the optimal value
would rather be (min + max)/2, where min and max are the minimum and max-
imum values, respectively, in the original data. In light of this observation, one
has to construct a synopsis by searching not only for the best coefficients to
choose, but also for their optimal values. The term used for this more generic
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and computationally harder optimization problem is the construction of optimal
unrestricted wavelet synopses.

Extending results to multi-dimensional data sets is not straightforward, as
it usually requires the design of external memory algorithms. Our work in [9]
presents I/O efficient algorithms for constructing SSE optimal wavelet synopses
for massive multi-dimensional data sets. In brief, the main idea is to put into
memory a part of the data set such that when the wavelet decomposition is per-
formed on this data, we obtain an as large as possible set of finalized coefficient
values. The wavelet decomposition of the in-memory data values is performed
efficiently by the SHIFT and SPLIT operations, that intuitively: (i) shift the
indices of the detail coefficients to their corresponding indices in the final de-
composed data set; and (ii) split the energy of the average coefficients to properly
update some already calculated coefficients.

Minimizing Weighted Lp Norm of Range-Sum Errors. For this case we
define the range-sum error, denoted by err(i : j), as the summation of recon-
struction errors for data values a[i] through a[j]: err(i:j) =

∑j
k=i err(k). Similar

to the case of point errors, one can use weighted Lp norms to aggregate across
all N(N + 1)/2 range-sum errors. Further, the first approach for finding a point
error optimal synopsis, described previously, apply to the case of range-sum er-
ror optimal synopses as well. The work in [11] operates on the prefix-sum array
of a and show that one has to follow a similar to the SSE-optimal synopses
thresholding procedure for the case of unweighted L2 aggregation of range-sum
absolute errors. Unfortunately, the second approach of incorporating the er-
ror metric in the synopsis construction algorithm cannot be directly applied,
since no nice distributive property for aggregating range-sum errors can be
exploited.

3.1 Streaming Wavelet Synopses

A data streaming environment introduces resource restrictions to conventional
static data processing algorithms, due to the high volumes and rates associated
with incoming data. Namely: (i) there is not enough space to store the entire
stream, as it can be of potentially unbounded size, and thus, data stream items
can only be seen once; (ii) data stream items must be processed quickly in real
time; and (iii) queries over data streams are of persistent nature and must be
continuously and, most importantly, quickly evaluated. Under these restrictions,
data stream processing algorithms must have small space requirements and ex-
hibit fast per-item processing and querying time — here, small and quickly
should be read as poly-logarithmic to data stream size.

In our context, we are to construct and maintain the optimal wavelet synopsis
of a data vector a whose values are continuously updated by the data stream.
There are two conceptually different ways to model [5,13] how the data stream
updates the values of a: (i) the time series model, where data stream items are
appended to the data vector a, that is, the i-th data stream item is the value
a[i]; and (ii) the turnstile model, where data stream items update the data vector
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a, that is, each data stream item (i, u) is an update for one of the data values,
implying that anew [i] ← aold[i] + u.

Time Series Model. In this data stream model, since the data stream items
are appended at the end of the data vector a, only those coefficients, termed the
wavelet fringe, in the path from the root down to the most recently appended
data value change. This means that the bulk of wavelet coefficients (except for
the logarithmically small subset that lies in the fringe) have a data value that it
is not going to be affected by subsequent data stream items. For a B-term SSE
optimal synopsis, this observation leads to a very simple algorithm [5]: maintain
the B highest in absolute normalized value coefficients among those whose value
is finalized and additionally keep all the coefficients in the fringe. Once a fringe
coefficient is finalized the algorithm simply needs to compare its value with the
B stored values and construct the new set of stored values by either dropping
the coefficient at hand or the smallest one in the stored set. However, in the
case of arbitrary error metrics no algorithm that produces an optimal synopsis
exists, to the best of our knowledge. The work in [10] provides with a heuristic
as to which coefficients to maintain for a maximum (relative or absolute) error
optimal synopsis in the time series model: each time a coefficient needs to be
dropped, the one which leads to the smallest increase in error is greedily picked.

For the problem of maintaining SSE optimal wavelet synopses, our work in [9]
introduces some interesting results. In data streaming applications, as also ar-
gued in [2], it is often more appropriate to keep update times small to accommo-
date for multiple bursty streams, rather that try to save on memory footprint.
To this end, the SHIFT/SPLIT operations defined in [9] allow for a trade-off
between per-item processing time and available space for maintaining streaming
wavelet synopses. Further, in [9] we present the first time and space require-
ments results for maintaining wavelet synopses over a multi-dimensional time
series data stream. All results are provided for both forms of multi-dimensional
wavelet decomposition, standard and non-standard [15].

Turnstile Model. The turnstile model is more general in that it allows arbitrary
updates to the data vector, and thus, potentially any wavelet coefficient can be
affected by a data stream item. This makes keeping track of wavelet coefficients a
very hard task, let alone constructing an optimal synopsis. The work in [5] uses a
sketch [1] as a means of (probabilistically) maintaining the energy/magnitude of
the data vector a. Then, one can estimate any wavelet coefficient by multiplying
the energy of the data vector with that of the corresponding wavelet basis vector,
as long as the angle among the two vectors is sufficiently large. Constructing an
optimal in terms of SSE synopsis, however, requires super-linear in N time. To
make matters worse, no results exist for other error metrics.

Our work in [2] deals with maintaining SSE optimal synopses under this more
general model (where sketching techniques are the only option) and offers signif-
icant time improvements over previous approaches. The crux of our work lies in
two novel technical ideas. First, our algorithms work entirely in the wavelet do-
main: instead of maintaining a sketch over a data vector we choose to sketch its
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wavelet decomposition. This is possible as a single data stream update item can
be translated to only poly-logarithmically more update items in the wavelet do-
main. Second and most importantly, our algorithms employ a novel hierarchical
group organization of wavelet coefficients to accommodate for efficient binary-
search-like identification of high in absolute normalized value coefficients. In ad-
dition, a trade-off between query time and update time is established, by varying
the hierarchical structure of groups, allowing the right balance to be found for
specific data stream scenarios. The algorithms presented in [2] can easily scale
to large domain sizes and, further, can be applied to multi-dimensional data
streams for both decomposition forms.

4 Conclusions and Future Work Directions

In this work we have presented a problem formulation for constructing wavelet
synopses, general enough to embody the majority of existing work in this area.
Further, we have explicitly illustrated the contributions of our current work
and described, in context, how it relates to the general formulation. From our
discussion one can easily deduce that many interesting and challenging issues
remain open for constructing optimal wavelet synopses, especially in a data
streaming environment. Our future work will try to address some of these.

In particular, when aggregating point errors, the approach of incorporating
the desired minimization metric into the wavelet decomposition seems to be the
most promising one, as choosing the coefficients can be done in a similar to the
SSE minimization process. Further, such an approach can then be easily adapted
to operate over data streams for both models. However, similar results for other
Lp norms, including minimizing for the maximum error (L∞), do not exist. It
would be interesting to see whether modified Haar wavelet bases, or even other
wavelet bases, are suitable for this task.

Optimizing for arbitrary workloads, such as those that include range-sum
queries, seem more useful than simply optimizing for point query workloads.
However, as also discussed in [11], optimizing for arbitrary workloads seems to be
a difficult task. Perhaps, optimizing for a simpler case, such as that of a workload
containing just dyadic range-sum queries, can provide some nice heuristics for
arbitrary workloads.

Finally, another interesting issue to consider would be devising techniques
for space-efficient compression of wavelet synopses. As recently suggested in [8],
adaptive quantization can be applied to the coefficient values, and even some
clever indexing can be employed to reduce the overhead of identifying retained
wavelet coefficients.
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Abstract. This paper presents an approach for building secure service-
based coordinated systems. Secure coordination is considered at two lev-
els: abstraction (i.e., specification) and execution (i.e., run level). At the
abstraction level, we define a general model enabling to specify coordi-
nation and its related non functional properties (such as security). The
idea is to use constraints for expressing the application logic of a coordi-
nated system and its required security strategies. Coordination activities
are the key concepts used for controlling the execution of participating
services. Constraints are specified as pre and post conditions of these co-
ordination activities. At the execution level, we propose an architecture
which implements strategies to verify constraints and manage the secure
execution of coordination. We propose also an instantiating vade-mecum
to configure execution level components according to a specific set of
constraints.

1 Context and Motivations

The democratization of Internet along with recent advances in information tech-
nologies has made the global networked marketplace vision a reality. In such an
environment, companies form alliances for building information systems that ag-
gregate their respective services, and thereby enabling them to stay competitive.
Effective service sharing and integration is a critical step towards developing next
generation of information systems for supporting the new online economy. Given
the time-to-market, rapid development and deployment requirements, informa-
tion systems are made up of the services of different service providers, accessible
through networks, e.g., Internet. Such information systems are called coordinated
systems. A service performs functionalities associated with a goal desired by its
provider. Services are heterogeneous, and use different data formats and trans-
port protocols. A service provider is an autonomous organism that keeps control
on the service execution with respect to some non-functional aspects such as
security. A service can evolve independently of its users (applications) by both
aggregating new functionalities or, conversely, removing existing ones. A service
provider predefines also instructions and descriptions for using its services (e.g.,
where and when functionalities of these services can be accessed). Using a service
implies invoking a provided method and (possibly) waiting for execution results.

Numerous systems, models and languages have been proposed for supporting
service coordination, i.e., the way services invocations are orchestrated according
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to the application logic of a given coordinated system. Existing solutions such as
workflow models [16,7] or Petri nets [13] tackle the specification and enactment
of service coordination. Using a workflow model, the execution of a coordinated
system is controlled by a data flow and a control flow. The data flow specifies
data exchange among participating services. The control flow describes their
dependencies and it is expressed by ordering operators such as sequence, selec-
tion (OR-split, OR-joint) and synchronization (AND-split, AND-joint). Using a
Petri net, the execution of a coordinated system is expressed in form of rules
applied on data delivered to or consumed by participating services (i.e., places).
It implies (i) rules for abstracting the structure of exchanged data (i.e., tokens)
between services and (ii) rules for scheduling and firing input and output data of
service execution (i.e., transitions). The execution of interaction among services
has been facilitated by current technologies, such as technologies driven by the
interoperation approach [5,15] and the intercommunication approach [4].

While particular attention has been devoted to service coordination, non-
functional aspects such as security have been poorly addressed by existing coor-
dination models, languages and execution engines. It is hard to accurately spec-
ify what a coordinated system has to do under specific security requirements
such as authentication, reliability, non repudiation and messages integrity. It is
also often difficult to consider in advance the coordination of participating ser-
vices under a large set of interactions and interdependencies among them. A
loose specification of application logic can lead to a wrong order of interactions
among services. We can also mistreat real situations during the coordination
execution, e.g., invoked service is undesirably replaced by another. Furthermore,
at execution time managing secure coordination implies:

– Authentication of the services that participate in a coordination process
(i.e., identify the invoked service and the service that provides results after
an invocation).

– Verifying messages integrity (i.e., those exchanged among services) in order
to avoid their unauthorised alteration.

– Ensuring non repudiation of coordination: post-check the validity of coor-
dinated system execution and prevent a participating service from denying
previous actions.

The challenges are to avoid security vulnerabilities that can reach the ser-
vice coordination and to provide strategies and measures for ensuring security
at run-time. Moreover, the proposed strategies and measures should not con-
tradict the facility of the coordinated system construction and the flexibility
of services. It should be possible to adapt coordination and security aspects of
coordinated systems on different topologies, usage scenarios, delegation require-
ments and security configurations. It should imply also the way to customize
security levels for different types of participating services when they take part in
different coordinated systems. Therefore, we aim at adding security properties
service coordination.

Our approach enables secure service coordination by combining security prop-
erties of services. It also defines the general architecture of components for
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managing secure coordination at run-time. We assume that services and network
security is ensured by the communication and the execution environments. Par-
ticularly, we suppose that there is no backdoor for accessing public instructions
and descriptions exported by services; and that exchanged information confiden-
tiality is ensured by underlying network services (e.g., by cipher mechanisms).
We also assume that security properties are exported by services and that they
are implemented by heterogeneous tools (e.g., different encryption algorithms).

The remainder of this paper is organized as follows. Section 2 introduces the
model for secure service coordination. Section 3 presents the run-time architec-
ture for verifying constraints and managing the secure execution of coordination.
Section 4 describes the instantiating vade-mecum for programming security tools
supported by the execution and communication environments. Section 5 com-
pares our work with existing ones. Finally, section 6 concludes the paper and
discusses further research directions.

2 Model for Secure Service Coordination

We propose a model (see Fig. 1) that offers concepts to describe service coordi-
nation as coordination activities and their associated constraints.

Fig. 1. Secure service coordination model

A coordination activity specifies an interaction between two services, where
one invokes a function provided by the other and (possibly) waits for execution
results.

A coordination scenario is the history containing information about the execu-
tion of a coordinated system. It is built by tracing the execution of coordination
activities.

A constraint specifies the behaviour, the data, the characteristic or the in-
terface associated to a coordination activity or to a coordination scenario. A
constraint can be enabled, enforced, observed and verified.

In our model, the application logic of a service-based coordinated system is
specified as a set of constraints. These constraints are added to coordination
activities (in form of their preconditions, post-conditions and invariants) and
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refer to a given coordination scenario. In this way, an application logic can
address different types of requirements imposed to the execution of coordination
activities: ordering (e.g., their temporal relationships), firing (e.g., the moment
in which a participating service must be invoked) and data interdependencies
(e.g., input/output data relationships).

Security strategies required by a coordinated system are specified in a sim-
ilar way. Constraints expressed on security properties provided by services are
coupled with constraints used to control the execution of coordination activities.
These constraints are also added to coordination activities and refer to a given
coordination scenario. A security strategy addresses integrity, authentication,
authorisation and non repudiation for coordination. The coordination can be
then controlled and managed to be performed with respect to specific functional
safety requirements such as in the correct time, in the correct communication
cross-links, by the correct actors, etc.

Let us consider a flight booking application built out of three existing services:

– Adventurer service manages clients that are interested in booking flights.
– Payment service executes online payment transactions on given client ac-

counts.
– Seeking service looks for available seats and performs flight pre-booking op-

erations on a flight database.

The application logic of such a coordinated system is explained as follows. The
flight booking application first interacts with Adventurer service to get informa-
tion about client and her/his needs by invoking the method get Requirements.
This information is used by the method seek Flights of the Seeking service for
looking for available flights. This service returns a list of possible flights that are
displayed by the method display Results of the Adventurer service.

Constraints (ordering, firing and data interdependencies) express this appli-
cation logic as pre and post conditions associated to the three following coordi-
nation activities:

– A 1: getFlightInformation(AdventurerService) where reservation requirements
are retrieved.

– A 2: seekFlights(SeekingService) for looking for available flights according to
the information received as input (from A 1).

– A 3: showResults(AdventurerService) for displaying the booking result.

Required security properties such as authentication and authorisation are also
expressed in form of pre and post conditions of these coordination activities. Cor-
responding security strategies specify that these identified coordination activities
are permitted for invoking their relating methods and that received results really
stem from the invoked services.

For example, examine the coordination activity A 2 and its related coordina-
tion activities A 1 and A 3. The following constraints specify coordination and
security aspects associated to A 2:
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– Obligate(S1 = COMMIT): once the execution status of A 1 (i.e., S1) is suc-
cesful, the method seekFlights of the Seeking service can be invoked.

– Match(O1): information about customer’s needs (i.e., O1) produced by the
method getFlightInformation of the Adventurer service is used as input data
of the method seekFlights provided by the Seeking service.

– After(getFlightInformation): the end of the execution of the method getFlight-
Information must precede the beginning of the execution of the method seek-
Flights.

– Approved(seekFlights): the identity of the service providing the invoked
method seekFlights must belong to the approved list of the coordinated
system.

Similarly, the following post conditions of A 2 must hold:

– Permit(S3 = READY): A3 can fire the invocation to a method of the Adven-
turer service. This constraint plays also the role of an authorisation constraint
for A 3.

– Invariant(O2): the flight search result cannot be altered until it is redelivered
to the Adventurer service.

– Received(seekFlights, invocation) ∧ Sent(seekFlights, result): it ensures that
the invocation and the transmission of results are done within the same
execution scope. In the example, the invocation of the method seekFlights is
received and its results are sent within the scope of the coordination activity
A 2. This constraint is used for avoiding non-repudiation.

3 Execution Manager General Architecture

We propose an architecture for realising strategies to execute secure service coor-
dination. This execution architecture provides components that can be adapted
to manage security strategies to specific application requirements. It provides
components for managing functional aspects and non functional aspects, in par-
ticular security. For example, at the participating services side, functional aspects
are the methods they provide. In our example a security aspect of the Adventurer
service is client authentication. The functional aspect of a coordinated system
is its application logic and its non-functional aspects concern functional safety.

We define execution managers, which consist of control components that are
associated to services and coordination activities. It is extended with other
trusted third-party components. For a given coordination activity, each par-
ticipating service is associated to a connector and a partner controller. A co-
ordination activity is executed by a builder and it has an associated security
controller that supervises its execution and the execution of the related partici-
pating services. There are three types of security controllers: constraint builders,
strategy controllers and aspect controllers. Security properties of services are ho-
mogenised by wrappers which are also responsible of managing secure interaction
between services.
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3.1 Coordination Activity Builder

Fig. 2 shows the components that execute coordination activities.

Fig. 2. Components for implementing coordination activities

A coordinator controls the execution of a coordination activity with the sup-
port of an invocation maker and condition verifiers. It builds a schedule that
specifies the moment in which one or several constraints must be verified with
respect to the invocation of a method.

An invocation maker performs the invocation of a method specified within a
coordination activity.

A partner controller manages the interaction with the service related to a
specific invocation.

A connector is used as a specific communication channel for the interaction
between the partners of an invocation.

A monitor traces the execution of these components and notifies the execution
status to build the coordination scenario.

3.2 Constraint Builder

Fig. 3 shows the components used for managing constraints: constraint solvers,
exception handlers and condition verifiers.

A constraint solver verifies a set of constraints. It returns a Boolean result.
The false value is considered as an exception and it is managed by another
component.

Fig. 3. Constraint builder components
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An exception handler manages exceptions raised within the execution of a
coordinated application. It collects the execution results of other components an
generates information associated to the coordination scenario.

A condition verifier combines the results of constraint solvers to evaluate pre
and post conditions of a specific coordination activity. It translates invariants to
equivalent pre and post conditions. All preconditions are checked before launch-
ing an invocation. All post conditions are checked after receiving the result from
the corresponding invocation.

3.3 Strategy Controller

Fig. 4 shows the components that implement strategies associated to a coordi-
nation.

Fig. 4. Strategy controller components

A rule adaptor schedules coordination activities according to pre-defined
strategies. It controls the execution of a set of coordination activities.

A strategy organizer implements a strategy specified by constraints using
properties of the participating services.

A policy controller controls and manages the execution of the strategies for
a given coordinated application.

A logger collects information about the execution state of strategies and the
notifications from monitors, exception handlers and stores them in a log.

3.4 Aspect Controller

Fig. 5 shows the components for managing security policies of participating
services.

Aspect form generator describes security properties of a participating service
and exports it.

Aspect manager manages security properties of a service.
Monitor traces modifications on security properties and matches properties

with application requirements.
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Fig. 5. Aspect controllers - wrappers for participating services

4 Instantiating Vade-Mecum

We describe an instantiating vade-mecum for programming security tools sup-
ported by the execution and communication environments (e.g., secure data
exchange among services). Our instantiating vade-mecum assists programmers
to configure the components of a service-based coordinated system according
to a specific set of constraints. The vade-mecum helps to avoid conflicts and
redundancy of coordination and security strategies supported by the compo-
nents of the proposed architecture and those supported by real environment.
The vade-mecum provides a technical catalogue of security strategies that can
be associated to given coordination contexts, and a guide for combining security
strategies with given coordination constructors.

Reinforce Coordination Rule. Security constraints associated to a coordination
activity are explicitly specified in our model. Those associated to participating
services are implicit to the description of such services. For giving supplementary
effects of protection at run-time (e.g., for supervising exchanged information and
for notifying the potentially dangerous scripts), security strategies which are not
(or implicitly) specified by constraints can be implemented and instantiated as
an instance of a Strategy Organizer.

Establish Privileges for Actors Related to a Coordination Activity. Authorisation
constraints associated to a coordination activity specify in which conditions such
an activity can be executed. The role of an actor plays and his/her associated
privileges are important elements for verifying constraints. We describe how
to grant and manage invoking privileges, and how to associate them to the
corresponding connectors.

Supervise Coordination Activity Orchestration. We describe how to construct an
activity state-transition automaton for pre-checking the causality of coordination
activities for a given set of participating services.
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5 Related Works

Existing works can be classified into two categories according to their service
interaction mechanisms. In the first category, services interact through a shared
space [6,8,1]. Security policies are associated to the shared space: access control
(authorisation, control privilege, etc.) and services authentication. Target co-
ordinated system configuration is specified by suitable coordination languages,
e.g., the Linda family [11,12,14].

In the second category, coordination is based on data exchange among par-
ticipating services. Services are considered black box processes that produce
and consume data via well defined interfaces. Services communicate directly
for establishing connections, exchanging data, diffusing control events among
processes [10,8,2].

In [1] security strategies are applied to tools and the environments that sup-
port interconnection and communication among participating services (i.e., only
at coordination execution level). WS-Policy and WS-Secure-Conversation com-
bined with WS-Security and WS-Trust are going in this direction. [6] presents an
approach for building a secure mobile agent environment. [3] specifies secure ex-
changed messages among Web services based on SOAP protocols. [9] proposes a
formal security model to identify and quantify security properties of component
functionalities to protect user data by evaluating and certifying the components
and their composition.

6 Conclusion and Future Work

This paper presented our approach towards secure service coordination. We de-
scribed our coordination model and an associated architecture for addressing
services authentication.

In conclusion, the main contribution of our work is to provide secure service
coordination by specifying security strategies and an associated architecture for
executing them. Security properties provided by services are homogenized un-
der a pivot view that can be used for specifying well suited security strategies
according to specific requirements.

We are currently specifying and implementing a secure coordination frame-
work called MEOBI. Future work includes evaluating MEOBI for component-
based and Web services based systems. Further research focuses on the extension
of secure coordination strategies by including performance requirements.
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Abstract. We present an architecture for structuring and querying the
contents of a set of documents which belong to an organization. The
structure is a database which is semi-automatically populated using in-
formation extraction techniques. We provide an ontology-based language
to interrogate the contents of the documents. The processing of queries
in this language can give approximate answers and triggers a mechanism
for improving the answers by doing additional information extraction of
the textual sources. Individual database items have associated quality
metadata which can be used when evaluating the quality of answers.
The interaction between information extraction and query processing is
a pivotal aspect of this research.

1 Introduction

Many organizations produce large amounts of documents and their contents
never reach the operational databases or the data warehouses of the organization.
With the world-wide accessibility to the web these documents are made available
to a wide audience, but browsing through them manually is cumbersome, at
best. The definition of the semantic web [1], has led to fascinating possibilities
of research in making explicit the semantics of terabytes of unstructured data
available today. Our research seeks to improve the use of these unstructured
sources, in particular, textual sources.

Florescu et al. in [2] have clearly defined three tasks in databases related
to information management on the www. One of these tasks is information
extraction and data integration. The data integration task deals with processing
queries that require access to heterogeneous data. The queries are posed against
data sources after information extraction has taken place. The extraction task
is performed by a set of wrapper programs and the integration is addressed by
mediator systems (see [3]).

In this research, each document is a data source from which data are extracted.
Each document type has a schema of its contents and all document type schemas
that belong to the same organization are integrated into a global schema. The
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individual document schemas are used in the task of information extraction from
the documents to populate a single relational database.

As a motivating example let us think of a university where each year there is a
period when faculty apply for a sabbatical leave for the following academic year.
Each sabbatical application is a document which includes the dates, a plan and
the institution where this plan will be carried out. The sabbatical application is
a type of document which has an associated conceptual schema; each particular
application instantiates this schema.

There is not a schema for each instance of a document, but for each type of
document. The document type and global schemas are expressed in an extension
of the ER model as defined in [4].

The broad information extraction phase of the architecture proposed in this
work (see figure 1) uses some annotated documents of a particular type to gener-
ate extraction rules. The rules are used to extract data slots from the documents.
The data extracted can then be used to populate the portion of the integrated
database schema which corresponds to the document type schema. When an-
other type of document is processed, new extraction rules are generated; all the
documents of this new type are subject to the information extraction process
and another portion of the global schema in the relational database is populated
with extracted data.

The main idea in this ongoing work is to develop a mechanism that takes
advantage of the contents of the documents of an organization. The approach
proposed is to structure these contents in a database that is semi-automatically
populated using information extraction techniques. The global and individual
schemas of documents are produced manually. The broad information extraction
phase allows a massive population of the database. Later, with the user queries
and the answers provided to these queries, more information might be extracted
from the documents in an attempt to improve previous answers. It is therefore
the interaction between information extraction and query processing a crucial
aspect of this research.

In the next section the architecture for document interrogation is briefly de-
scribed with an emphasis on its ontology. Section 3 contains a description of the
information extraction results of this work. In section 4 we introduce the need
for a mechanism to provide approximate answers and present a discussion about
data quality in this architecture. In section 5 we present a case study which
illustrates the components of the arquitecture and their use. Finally, section 6
contains the conclusions and a plan for future work.

2 The Architecture

The Document Interrogation Architecture (DIA) presented in [4] and shown
in figure 1, addresses the problem of providing mechanisms for structuring the
data contained in textual documents and providing an ontology-based language
to interrogate the documents through the database built with extracted data.
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Fig. 1. Document Interrogation Architecture

Our proposed architecture deals with data integration from different data sources
but within an organization.

The architecture has three phases. The preparation phase is where training
and test documents are annotated and the information extractor is built, by
generating extraction rules which are learned from the training examples. The
second phase extracts data items from the documents and populates a relational
database. Once the database is populated with data, the user may ask questions;
the answers are provided by the third phase, the document interrogation phase
of the architecture. When computing an answer, the available data is analyzed
in order to determine missing data or differences in their quality with respect to
the query being posed.

The database of DIA is represented at three levels of abstraction: the rela-
tional representation, the ER representation in which the schema integration
is done, and a higher level, ontology-based representation (see [5]). This latter
representation is the basis for the interrogation language. The concepts in the
ontology are extended with concepts defined by the user and all these concepts
are mapped to the global ER schema of documents and then to the relational
database in order to answer queries.

The ontology of DIA is initially built with all the concepts contained in the
global ER schema of the documents and their relationships. Mostly concepts and
not instances are included in the ontology; the relational database contains all
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the instances. Suppose for example, that we have in the ER schema an entity
COUNTRY with instances stored in the relational database. The initial ontology
contains the concept COUNTRY, defined as an aggregation of the attributes of
the entity, but without instances.

The ontology-based document interrogation language, ODIL, is defined to
interrogate and extend the concepts contained in the database. We presented
the specification of the language and the mappings between the three models of
the database in [6].

Following the example above, the user may extend the ontology by defining a
new concept,REGION, as an aggregationof countries; this definition will be stored
in the ontologywith the mappings between the new concept and the corresponding
concepts in the ER schema. If the user defines a particular region, for example, the
“Andean Region”, with the five countries that comprise it, that instance is stored
in the ontology as an instance of REGION, with references to the five instances of
COUNTRY that are contained in it. The user may now ask queries aboutREGION
and the mappings between this new concept and the ER schema will let the system
compose an answer using the data for the countries that compose a region. This is
why we say that the ontology grows with the user queries.

3 Information Extraction in DIA

Information Extraction is a fairly recent research field which has received the at-
tention of researchers from different areas such as: Natural Language Processing
(NLP), (see [7] for empirical methods in NLP and [8] for a summary of specific
information extraction methods), Machine Learning (ML) (see [9] and [10] for a
description of some techniques) and Databases (DB) ([2], [11] and [12]).

Information Extraction is the process by which several pieces of relevant data
are extracted from natural language documents. This process includes: locating
the relevant data, extracting the phrases which contain the data, separating the
facts contained in these phrases and structuring the data in a database for future
use.

The approaches to IE taken by the researchers in the areas mentioned above
are varied. The natural language processing and machine learning approaches to
IE expect mainly natural language text as input and apply empirical methods
to it. The research in IE from the database perspective has concentrated on
extracting data from web sources of semi-structured data; these include two
main approaches, conceptual model-based extraction as developed in the Data
Extraction Group of BYU ([11]) and the “Wrapper-Mediator” Approach ([2]).
The field of IE has experienced great acceleration recently in response to the
increasing amount of textual documents available on the web.

The architecture proposed in [8] defines a generic architecture for an Informa-
tion Extraction System, which has five phases: tokenization and tagging, sentence
analysis, extraction, merging, and template generation. A very effective mecha-
nism for implementing the extraction phase is the definition of extraction rules
using patterns. The different alternatives for generating these rules are commonly
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called corpus-based methods for learning IE patterns. The methods to produce
the extraction patterns do it in three steps, sentence analysis and preprocessing,
training/test case generation, and learning algorithm. Several successful tools
have used this technique (see [9]), some representative examples of which are:
RAPIER ([13]), WHISK ([14]), and (LP )2 ([15]).

Both “wrappers” and the corpus-based methods for learning IE patterns work
very well on structured text, a precision near 100% is not unusual. But the
former assume a strict regularity in the format of the document; therefore if the
format changes, the “wrapper” needs to be modified.

The database approach to IE exploits the problem domain knowledge in con-
trast with most of the ML approaches to IE, which focus on the natural language
semantics of text. In particular, the work of Embley et al. in [11], even though
motivated by web page exploration, is an attempt to build an IE system which
strongly relies on a conceptual data model of the domain of the source docu-
ments. The challenge of this approach is how to represent the domain knowledge
in a compact and simple form and how to find ways of acquiring such knowledge
automatically.

We have developed an extractor for DIA as a combination of the preprocessing
activities of the NLP extractors (as classified in [16]), a variation of the learning
algorithm of(LP )2 ([15]), and the use of the document schema to build the
database tuples. The method for generating extraction rules is fully implemented.
Our learning algorithm was tested in several well-known corpora and we obtained
similar results to the best reported algorithms (see results of the Pascal Challenge
in [17] and our results in [18]).

4 Data Quality and Approximate Answers

The canonical approach for using a database to provide answers to queries is to
assume that the database has the whole truth and nothing but the truth ([19]).
The data which populates the database of DIA is obtained through information
extraction procedures from a set of documents. The extracted data might not be
complete due to possible mistakes in the extraction process (mostly omissions)
and due to the data items in the documents having varying degrees of accuracy
or recency (see [20] for a good summary of data quality definitions).

Most of the approaches to data quality within the data integration literature
consider the overall quality of a data source. We are interested in a lower granu-
larity measure of quality. Each data item must have a description which includes:
the source of the item, the date, the units if it is a measure, the object being
described by it, among other metadata. The work of Rakov in [21] considers the
quality of database components rather than the whole database. This is a useful
measure, but we also want to produce qualitative measures that we can express
in text, so that we can go back to the documents to extract more data, based
on the text that describes which data are missing.

The problem is that we want to give an answer to a query but in order to
build the answer we might use several data items which have different quality
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metadata associated with them. For example, if we want to answer what the
total population of the Andean Region is, we need the current population of the
five countries which constitute this region, Bolivia, Colombia, Ecuador, Peru
and Venezuela. But we might not have data for the population of Bolivia, we
might have census data for Venezuela from 2000 and data for the three other
countries from 2004. If we consider these differences a canonical approach would
give no answer. If we add up all the population values that we have, Bolivia is not
represented in that sum and the other values do not correspond to the same year.
Our system should provide the sum of these values as an answer, with a measure
of the quality of the answer. Additionally, it will provide a textual phrase that
describes the missing data, which triggers further information extraction from
the documents.

Approximate query processing in DIA distinguishes two cases. The first case
occurs when some of the components of the answer are missing. The other case
is when there is data for all the components, but their individual quality mea-
sures differ greatly from each other. We discuss the first case in the following
paragraphs.

When data are missing we have two options, one is to compute an answer
without the missing components, but present it as a bound for the real answer.
In the case of the total population of the Andean Region, if we add up the
existing data for four countries, that sum would be a lower bound for the total
population, because the population of Bolivia is greater than zero.

Another option is to try to estimate the missing components. In the statistical
literature there are several ways of estimating missing data; for an application of
one of these methods to query processing in statistical databases see [22]. Some
of the ways of computing missing data consider total uncertainty, but if there
is additional information which can be used, the query processor could compute
an informed guess. In particular, in the context of an answer which needs several
components, it is very relevant to know the relative order of the components and
the percentage of the total which can be attributed to the missing components.

The web is a good source of general facts and we can use it to bootstrap our
estimating method. On a quick look at the web, we did a search of Bolivia and
the other four andean countries. Since the query requires the population of the
five countries and we only have these data for four countries, we searched all five
countries and got the number of pages about those countries. Then we added
one word to the name of each country and performed more searches.

We tried 5 searches with only the name of the country and 95 searches of
one word together with the names of the countries. With the results of these
trials we computed the global ranking of the countries in terms of the number of
pages found by the search engine for each country. The computed order of the
five countries was: Colombia, Venezuela, Peru, Ecuador and Bolivia, almost the
real order of population size which is: Colombia, Peru, Venezuela, Ecuador and
Bolivia.

The computed value of the population of Bolivia, used in the calculation of
the total population of the region is an estimate and we include it as such in
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the database; it is a statistical measure of the missing value. Together with the
estimated value we store metadata which describe how it was computed.

These first experiments were performed using words selected manually, but we
can use words from the ontology which are close to the concept of the “population
of Bolivia” and their synonyms. Additionally, we can also select words from the
conceptual schemas or we can generate words by other means.

In this case we used the web as a source of additional information, in general
we can use other sources of information that are available.

Regarding the quality of the answer, at first we can say that one out of five
components of the answer to the query about the population of the Andean
Region is missing, that is, 20 % is missing, or equivalently, four out of five
components are correct. This relation could be taken as a measurement of quality,
which we could call the uniform metric, analogous to the freshness-rate metric
used for data freshness in [23]. However the 20 % figure is improved to 16.12
% when we perform the procedure of searching words on the web and compute
the average proportion of the number of pages about Bolivia with respect to
the number of pages for the whole Andean Region. We call this estimate the
bootstrap metric. The real data reveals that the Bolivian population is 7.43 %
of the total of the region. Therefore the distance between the bootstrap metric
and the real proportion is smaller than that between the real proportion and the
uniform metric.

There is a qualitative difference between these two metrics. Whereas the uni-
form metric provides no information with regard to the ranking of the missing
components, the computations involved when calculating the bootstrap metric
provide additional information on the ranking of the missing components. For
instance, in the case under consideration, Bolivia ranked fourth in nine out of
20 words and ranked fifth in eleven out of those 20 words. We think that this
ranking observation deserves further research.

5 A Case Study: CENDA

CENDA is the Center for Document Archives of Universidad Simón Boĺıvar
(USB). This office receives boxes of paper documents from all the organizational
units of the university. The documents contained in these boxes are official and
are archived for preservation and query answering purposes.

The personnel of CENDA have to manually inspect the boxes, classify the
documents contained in them, verify for document duplicity and place each doc-
ument physically on a drawer or a shelf. A big effort to digitize the documents
is underway, but the documents are saved in an image format, which is not the
best way to exploit the contents of them or to find answers to queries, because
it still needs a great deal of human intervention. A typical query takes 3 days in
average to be attended, if the documents needed are already in place.

The DIA architecture provides a solution for CENDA’s needs. Instead of work-
ing with an image of the document, each document is scanned and converted
into text with an OCR software. The most requested documents processed by
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CENDA can be categorized into 17 major classes. Examples of these document
classes are: resolutions of the councils of the university, appointments, admis-
sions, student records, among others. In order to use DIA in this problem, each
document class needs a document schema. All the document schemas are then
integrated into the global schema for the database to be used as the primary
means of query answering.

The initial ontology for CENDA is defined using the results of the database
construction. The ODIL language is then used to pose queries and to extend the
ontology.

When a user comes to CENDA with a query, the database of DIA is the
first resource to be accessed, and the answer could be facts contained in the
database or a reference to a document. In many cases, the user needs a copy of
the document which contains the answer. The documents would still be classified
and stored, but the answers can be processed in the database and the document
could be directly accessed and retrieved using the reference to it that resides
in the database. This way a huge amount of manual work can be saved for
validation of the data stored which was automatically processed.

The answer to a user query in CENDA can often be found in several doc-
uments. This is due to the nature of these official documents where several
instances have to approve the same fact. For example, an application for sab-
batical leave is presented in several documents, one from the faculty member,
one from her department and yet another one being the official communication
which informs the faculty of the decision regarding the approval or the rejection
of the sabbatical. For efficiency reasons and since these documents are somewhat
redundant, only one of them is scanned and “loaded” into the database.

The ability of DIA to reason about the quality of its answers is particularly
useful in the CENDA environment. When an approximate answer is produced it
could be due to a missing component. In order to overcome the absence of this
missing component in cases like the one just described, where several documents
contain redundant information, the documents which were not scanned can be
processed to try to extract additional information which might provide a more
accurate answer.

Currently there is a teamwork that will select a few classes of documents to
be scanned and an integrated schema is being designed to perform a test of the
use of the DIA architecture in CENDA.

6 Conclusions and Future Work

The DIA architecture was defined to take advantage of the contents of textual
documents, restricting human intervention to a minimum to make it feasible. One
of the aspects in which we try to reduce interaction with a user is in the use of
information extraction methods, which learn from a set of annotated examples.
We have designed a broad information extractor for DIA, the generation of
extraction rules has been implemented and tested and it provides good results; we
are working on reducing the number of training examples. The implementation
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of the module of the extractor that inserts the tuples in the database, using the
document schemas, is under construction.

The motivating goal of this research is to provide a tool for humans to query
the contents of a set of related documents, without having to manually inspect
all the documents. The definition of a high-level language, based on the main
concepts abstracted from the documents is a response to this goal. The language
has an SQL-like syntax and its main value is in the way it is processed, with the
ability to provide approximate answers, to evaluate the quality of the data used
in providing an answer and with a mechanism for searching for more data in the
documents, if the answer is not good enough.

We have a prototype implementation of the query processor of ODIL. The
prototype includes the primitives for defining new concepts and their mapping to
the ER schema. It also includes some of the procedures to compute answers. Our
immediate plan is to complete the prototype with the generation of approximate
answers and also with the evaluation of the metrics described. For the answers
which had a missing component, a phrase describing the missing data should be
produced, so that a procedure could extract more data from the documents. After
concluding the implementation we will run tests to evaluate the improvement in
the answers and the ability of the system to extract more data guided by the
descriptive phrase.

DIA provides data integration when determining the combination of data
required to provide an answer to a document query. Query processing is done
over a database of facts obtained from the documents, but since the facts that
populate the database do not have a homogeneous quality, a metric for the
quality of the combined answer must be searched. In particular, there might
be differing qualities of the stored data which are used in the computation of
an answer. These qualities are relative to the query being processed. We need
to find a metric that will take into account the metadata associated with each
component of the answer and that will give a quality value to it. In this aspect
the work of Motro et al. in [24] is relevant.

Our system also provides a description of the incomplete or inaccurate data,
to perform further extraction from the documents guided by the description of
the missing data. This is what we call focused information extraction and to the
best of our knowledge this is a novel approach which has not been explored.
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Abstract. Relational algebra has been a crucial foundation for relational data-
base systems, and has played a large role in enabling their success. A correspond-
ing XML algebra for XML query processing has been more elusive, due to the
comparative complexity of XML, and its history. We argue that having a sound
algebraic basis remains important nonetheless. In this paper, we show how the
complexity of XML can be modeled effectively in a simple algebra, and how the
conceptual clarity attained thereby can lead to significant benefits.

1 Introduction

XML is in wide use today, in large part on account of its flexibility in allowing repeated
and missing sub-elements. However, this flexibility makes it challenging to develop an
XML data management system.

The first XML enabled systems used a native navigational model to query docu-
ments. They showed a lot of promise and the interest shifted into them. In such model,
an XML document is first loaded into memory as one big tree and then path expres-
sions are matched via traversals in this tree. Examples of systems using this model
include [2,7,15]. A big limitation of such systems is that the biggest XML document
they can process is limited by the amount of physical memory in the system. Since they
are essentially instance-at-a-time systems, they have little room for optimization and
indices. In general they are known to provide full support of XQuery but poor perfor-
mance – a traversal for a descendant node can force a search of the entire database.

Another popular approach (perhaps, due to existing system support) was to use re-
lational databases and map XML documents into relations. Such solutions were pre-
sented in [1,3,14,16,18]. But these mappings may come at the expense of efficiency
and performance since relational databases were not designed for XML data. The data
transformation process and the query time can be lengthy. Many expensive operations
(e.g. joins) needed to determine structural relationships between elements. Due to the
variations possible in parallel elements within XML, and the possibility of repeated and
missing sub-elements, the mapping becomes non-trivial, and frequently requires liberal
use of null values or of un-normalized relations. Overall, with relational support for
XML expressiveness is not the issue - with sufficient effort, many mappings are possi-
ble. The issue is how natural the mapping is, how well it preserves the original structure
and how expensive the resulting relational expressions can be to evaluate.

The solution to this problem would be to use a native XML system while taking
advantage of the knowledge of many years of research in the relational world. For ex-
ample, one of the lessons we learned is that for efficiency purposes, it is essential to use
� Supported in part by NSF, under grant IIS-0208852.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 126–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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$1

$2 $3

pc pc

$1.tag = article &
$2.tag = title &
$2.content = “*Transaction*” &
$3.tag = author

Selection pattern tree for a simple query

Fig. 1. A pattern tree corresponding to the query ‘Select articles with some author and with title
that contains Transaction’

‘set-at-a-time’ processing instead of ‘instance-at-a-time’. We also know that the care-
ful choice of evaluation plan can make orders of magnitude difference in query cost.
And finally, the relational algebra is long recognized as a useful intermediate form in
query processing. From all of the above we conclude that a set-oriented bulk algebra is
essential in XML query processing.

Yet, although native algebraic solutions appear to be the better system approach
(with significant existing efforts like those in [6,17]), there is no universally accepted
XML algebra. In this paper we present our algebraic XML solution and demonstrate its
strengths. We start by introducing our basis, the pattern trees and show a Tree Algebra
for XML in Section 2. We continue with a discussion in XML and XQuery order re-
lated issues in Section 3. Then we show some practical advances in XML algebras in
Section 4 and some optimization opportunities that arise in Section 5. We conclude the
paper with a few final words in Section 6.

2 Ideal Algebra - Tree Algebra for XML

In the relational model, a tuple is the basic unit of operation and a relation is a set of
tuples. In XML, a database is often described as a forest of rooted node-labeled trees.
Hence, for the basic unit and central construct of our algebra, we choose an XML query
pattern (or twig), which is represented as a rooted node-labeled tree. An example of
such tree, we call it pattern tree, is shown in Figure 1. An edge in such tree represents
a structural inclusion relationship, between the elements represented by the respective
pattern tree nodes. The inclusion relationship can be specified to be either immedi-
ate (parent-child relationship) or of arbitrary depth (ancestor-descendant relationship).
Nodes in the pattern tree usually have associated conditions on tag names or content
values.

Given an XML database and a query pattern, the witness trees (pattern tree match-
ings) of the query pattern against the database are a forest such that each witness tree
consists of a vector of data nodes from the database, each matches to one pattern tree
node in the query pattern, and the relationships between the nodes in the database satisfy
the desired structural relationship specified by the edges in the query pattern. The set
of witness trees obtained from a pattern tree match are all structurally identical. Thus,
a pattern tree match against a variegated input can be used to generate a structurally
homogeneous input to an algebraic operator. Sample of witness trees can be found in
Figure 2.
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Sample matching sub-trees for the DBLP dataset

article

title:
Transaction

Mng ...

author:
Silberschatz

article

title:
Overview of
Transaction

Mng

author:
Silberschatz

author:
Garcia-
Molina

author:
Thompson

article

title:
Overview of
Transaction

Mng

article

title:
Transaction

Mng ...

Fig. 2. A sample of the resulting witness trees produced from the matching of the tree in Figure 1
to the DBLP dataset

1. ORDER BY clause,
explicit, depends on value.

2. Re-establish original document order,
implicit, required by XML .

3. Binding order of variables,
implicit, depends on variable binding predicates.

Fig. 3. Ordering Requirements for XML and XQuery

Using this basic primitives, we developed an algebra, called Tree Algebra for XML
(TAX), for manipulating XML data modeled as forests of labeled ordered trees. Moti-
vated both by aesthetic considerations of intuitiveness, and by efficient computability
and amenability to optimization, we developed TAX as a natural extension of relational
algebra, with a small set of operators. TAX is complete for relational algebra extended
with aggregation, and can express most queries expressible in popular XML query lan-
guages. Details about the algebra, with illustrative examples can be found in [5].

3 Ordering and Duplicates

XML itself incorporates semantics in the order data is specified. XML queries have to
respect that and produce results based on the order of the original document. XQuery
takes this concept even further and adds an extra implicit ordering requirement. The
order of the generated output is sensitive to the order the variable binding occurred
in the query, we call this notion ‘binding order’. Additionally, a FLWOR statement
in XQuery may include an explicit ORDERBY clause, specifying the ordering of the
output based on the value of some expression – this is similar in concept with ordering
in the relational world and SQL. To facilitate our discussion we summarize the XML
and XQuery order properties in Figure 3.

Although XML and XQuery require ordering, many “database-style” applications
could not care less about order. This leaves the query processing engine designer in
a quandary: should order be maintained, as required by the semantics, irrespective of
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O-Spec{(B, asc, l), (E, asc, l), (A, asc, l)}(1)

B 1

E1 A 1 A2 E2 E2 A2

B1 B1 B1

E1 A1

(2.a)

B 1

E2 A 1
A1 E1 E2 A2

B1 B1 B1

E1 A2

O-Spec{(B, asc, l), (A, asc, l)}

B 1

E2 A 1 A1 E2 E1 A2

B1 B1 B1

E1 A2

O-Spec{}(3)

B 1

E2 A 1
A2 E2 E1 A1

B1 B1 B1

E1 A
2

(2.b)

O-Spec{(B, asc, l), (A, asc, l)}

E2 A2

B1

E2 A2

B1

E
2

A
2

B1

E2 A2

B1

Fig. 4. Collections with Ordering Specification O-Spec. A “fully-ordered” collection in (1), two
variations of a “partially-ordered” collection in (2.a) and (2.b) and an unordered collection in (3).
Duplicates are allowed in these examples, so (3) is not a set.

the additional cost; or can order be ignored for performance reasons. What we would
like is an engine where we pay the cost to maintain order when we need it, and do not
incur this overhead when it is not necessary. In algebraic terms, the question we ask is
whether we are manipulating sets, which do not establish order among their elements,
or manipulating sequences, which do.

The solution we propose is to define a new generic Hybrid Collection type, which
could be a set or a sequence or even something else. We associate with each collection
an Ordering Specification O-Spec that indicates precisely what type of order, if any, is
to be maintained in this collection.

As an example, in Figure 4, we can see a few ordered collections using the Ordering
Specification. A simple sorting procedure using all B nodes (identifiers), sorting them
in ascending order and placing all empty entries in the beginning is described by (B,
asc, l). In part (1) of the Figure we see a “fully-ordered” collection; all the nodes in
every tree were used to perform the sort. A “fully-ordered” collection has one and only
one way that the trees can be ordered (absolute order). In parts (2.a) and (2.b) we see
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D-Spec(empty)(1)

B1

E2 A1 A 2 E1 E 2 A 2

B1 B 1 B1

E 1 A 1 E2 A2

B1

D-Spec(tree)(2)

B1

E2 A1
A 2 E1 E2 A 2

B1 B 1 B1

E 1 A1

D-Spec({B, E})(3)

B1

E2 A1
E 1

B1

A2

Fig. 5. Collections of trees coupled with their Duplicate Specification D-Spec. All types of dupli-
cates are allowed in (1), deep-tree comparison is used to eliminate duplicates in (2) and duplicates
are eliminated in (3) using a partial comparison on B and E nodes. Both (2) and (3) can be thought
as sets since no duplicates exist.

the same “partially-ordered” collection; only nodes in parts of every tree were used to
perform the sort. A “partially-ordered” collection can potentially have multiple ways it
can be ordered. Parts (2.a) and (2.b) show the same collection ordered by the same key
with clearly more than one representations of the absolute tree order. In part (3) we see
a collection with unspecified order (any order).

Duplicates in collections are also a topic of interest, not just for XML, but for rela-
tional data as well. In relational query processing, duplicate removal is generally con-
sidered expensive, and avoided where possible even though relational algebra formally
manipulates sets that do not admit duplicates.The more complex structure of XML data
raises more questions of what is equality and what is a duplicate. Therefore there is
room for more options than just sets and multi-sets. Our solution is to extend the Hy-
brid Collection type with an explicit Duplicate Specification D-Spec as well.

An example of collections with D-Spec describing how duplicates were previously
removed from them can be found in Figure 5. Notice the duplicates that exist in part (1),
how the last tree from (1) is removed in part (2) and how multiple trees are removed in
part (3).

Using our Hybrid Collections we extended our algebra. Thus, we were able to de-
velop query plans that maintain as little order as possible during query execution, while
producing the correct query results and managing to optimize duplicate elimination
steps. Formal definitions of our collections, extensions to algebraic operations along
with the algorithm for correct order can be found in [12]. We believe our approach can
be adopted in any XML algebra, providing correctness and flexibility.

4 Tree Logical Classes (TLC) for XML

XQuery semantics frequently requires that nodes be clustered based on the presence
of specified structural relationships. For example the RETURN clause requires the
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D 2

A3

B2

C 3E3E 2

-

Fig. 6. A sample match for an Annotated Pattern Tree

complete subtree rooted at each qualifying node. A traditional pattern tree match returns
a set of ‘flat’ witness trees satisfying the pattern, thus requiring a succeeding grouping
step on the parent (or root) node. Additionally, in tree algebras, each algebraic operator
typically performs its own pattern tree match, redoing the same selection time and time
again. Intermediate results may lose track of previous pattern matching information and
can no longer identify data nodes that match to a specific pattern tree node in an earlier
operator. This redundant work is unavoidable for operators that require a homogeneous
set as their input without the means for that procedure to persist.

The loss of Structural Clustering, the Redundant Accesses and the Redundant Tree
Matching procedures are problems caused due to the witness trees having to be sim-
ilar to the input pattern tree, i.e. have the same size and structure. This requirement
resulted in homogeneous witness trees in an inherently heterogeneous XML world with
missing and repeated sub-elements, thus requiring extra work to reconstruct the appro-
priate structure when needed in a query plan. Our solution uses Annotated Pattern Trees
(APTs) and Logical Classes (LCs) to overcome that limitation.

Annotated Pattern Trees accept edge matching specifications that can lift the restric-
tion of the traditional one-to-one relationship between pattern tree node and witness
tree node. These specifications can be “-” (exactly one), “?” (zero or one),“+” (one or
more) and “*” (zero or more). Figure 6 shows the example match for an annotated pat-
tern tree. The figure illustrates how annotated pattern trees address heterogeneity on
both dimensions (height and width) using variations of annotated edges. So A1, A2 and
E2, E3 are matched into clustered siblings due to the “+” and “*” edges in the APT.
On the flip side D1, D2 matchings will produce two witness trees for the first input tree
(the second tree is let through, although there is no D matching) due to the “?” edge in
the APT.

Once the pattern tree match has occurred we must have a logical method to access
the matched nodes without having to reapply a pattern tree matching or navigate to
them. For example, if we would like to evaluate a predicate on (some attribute of) the
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FOR $a IN distinct-values(document(“bib.xml”)//author)
RETURN

<authorpubs>
{ $a }
{FOR $b IN document(“bib.xml”)//article

WHERE $a = $b/author
RETURN $b/title}

</authorpubs>

Fig. 7. Query 1: Group by author query (After XQuery use case 1.1.9.4 Q4)

“A” node in Figure 6, how can we say precisely which node we mean? The solution to
his problem is provided by our Logical Classes. Basically, each node in an annotated
pattern tree is mapped to a set of matching nodes in each resulting witness tree – such
set of nodes is called a Logical Class. For example in Figure 6, the red(gray) circle
indicates how the A nodes form a logical class for each witness tree. Every node in
every tree in any intermediate result is marked as member of at least one logical class1.
We also permit predicates on logical class membership as part of an annotated pattern
tree specification, thus allowing operators late in the plan to reuse pattern tree matches
computed earlier.

Using this techniques we extended TAX into our Tree Logical Class (TLC) algebra.
We discuss our operators and our translation algorithm for XQuery to TLC along with
other details in [13]. We base our discussion on our physical algebra seen in [11].

5 Algebraic Optimizations

In this section we demonstrate some of the advantages we get by using algebraic prim-
itives to produce more efficient solutions. We discuss how we address grouping in
XQuery and also show some algebraic rewrites that focus on smart placement of or-
dering and duplicate operations.

Grouping: While SQL allows for grouping operations to be specified explicitly,
XQuery provides only implicit methods to write such queries. For example consider
a query that seeks to output, for each author, titles of articles he or she is an
author of (in a bibliography database). A possible XQuery statement for this query
is shown in Figure 7. A direct implementation of this query as written would involve
two distinct retrievals from the bibliography database, one for authors and one for
articles, followed by a join. Yet, one of our basic primitives of our algebra is a
GROUPBY operator, thus enabling us to produce a ‘smarter’ plan than the one dictated
by XQuery.

The procedure uses a rewrite that operates in the following way. In the beginning,
the parser will ‘naı̈vely’ try to interpret the query from Figure 7 as a join following the
logic specified in XQuery. Then a rewrite will transform the plan into a more efficient

1 Base data, read directly from the database, has no such association.
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Fig. 8. GROUPBY rewrite for Query 1
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(2)Construct 3

ord= ID(2), ID(3), ID(5), ID(6), ID(4)

Fig. 9. On the right the rewritten plan having pushed the Sort into the Select

one using the GROUPBY operator. First, a selection will be applied on the database
using the pattern tree of Figure 8.a followed by a projection. This will produce a collec-
tion of trees containing all article elements and their author and title children.
Next the input pattern tree to be used by the GROUPBY operator will be generated. For
Query 1 this is shown at Figure 8.b. The GROUPBY operator (grouping basis : author)
will be applied on the generated collection of trees and the intermediate tree structures in
Figure 8.c are produced. Finally a projection is done keeping only the necessary nodes.

The power of the algebra allows for the transformation of the ‘naı̈ve’ join plan into a
more efficient query plan using grouping – overcoming the XQuery nuances and mak-
ing it similar to a relational query asking for the same information. Details of the rewrite
algorithm along with more complex scenarios can be found in [10].

Duplicates and Ordering: As we discussed in Section 3, smart operation placement of
ordering and duplicate elimination procedures can cause orders of magnitude difference
in evaluation performance. We show two examples of such rewrites. Details for both
techniques along with other examples are found in [12].

We start by showing an example on how we optimize ordering in Figure 9. The
rewrite takes advantage of our extended operations that use Ordering Specification
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Fig. 10. Minimizing Duplicate Elimination procedures

annotations to push the Sort procedure into the original Select. Thus, the rewrite
provides the cost based optimizer with the means to efficiently plan the pattern tree
match using the appropriate physical access methods, without having to satisfy a block-
ing Sort operation at the final step of the query plan.

Additionally, we show an example on how duplicate elimination procedures can be
minimized in Figure 10. First, we ‘naı̈vely’ force a duplicate elimination after every
operation to produce the correct behavior. Then our technique detects and removes all
redundant procedures by checking which operations will potentially produce duplicates.
With the last step, we take advantage of our ‘partial’ duplicate collections and manage
to remove the duplicate elimination procedure completely.

6 Final Words

The flexibility of XML poses a significant challenge to query processing: it is hard to
perform set-oriented bulk operations on heterogeneous sets. In this paper, we proposed
our algebraic framework as an effective means to address this problem. We introduced
the Pattern Tree as the basic unit of operations and developed an algebra that consumes
and produces collections of trees in TAX. We discussed how we address efficiently the
very complex ordering requirements of XML and XQuery using our Hybrid Collec-
tions. We showed some practical extensions to tree algebras with the Annotated Pattern
Trees and Logical Classes of TLC. Finally, we hinted on some optimization opportuni-
ties that arise with the use of algebra.
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It is our belief that a good algebra is central to a good database system, whether
relational or XML. The algebraic infrastructure we described in this paper is the basis
for the TIMBER [4,8,9] native XML database system developed at the University of
Michigan. The experience we gained from implementing our system strengthens our
belief in an algebraic approach. We hope in the near future the XML community can
converge on an algebra that combines the best characteristics of the various proposed
solutions and provides an alternative formal representation of XQuery.
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Abstract. Algorithms for processing Structural Joins embody essential build-
ing blocks for XML query evaluation. Their design is a difficult task, because
they have to satisfy many requirements, e. g., guarantee linear worst-case run-
time; generate sorted, duplicate-free output; adapt to fiercely varying input sizes
and element distributions; enable pipelining; and (probably) more. Therefore, it
is not possible to design the structural join algorithm. Rather, the provision of
different specialized operators, from which the query optimizer can choose, is
beneficial for query efficiency. We propose new hash-based structural joins that
can process unordered input sequences possibly containing duplicates. We also
show that these algorithms can substantially reduce the number of sort operations
on intermediate results for (complex) tree structured queries (twigs).

1 Introduction

Because XML data is based on a tree-structured data model, it is natural to use path
and tree patterns for the search of structurally related XML elements. Therefore, ex-
pressions specifying those patterns are a common and frequently used idiom in many
XML query languages and their effective evaluation is of utmost importance for every
XML query processor. A particular path pattern—the twig—has gained much attention
in recent publications, because it represents a small but frequently used class of queries,
for which effective evaluation algorithms have been found [1,3,7,11,14,16].

Basically, a twig, as depicted in Fig. 1, is
a) Queries

b) Twig for Q1 and Q2

1 2

3 4

5

6

for $b in //book, $a in
where $b//title="XML" and
return

Q2) $b//author

($a, $a/name)
$a//city="Rome"

Q1) //book[title="XML"]//author[.//city="Rome"]/name

title

book

author

city name"XML"

"Rome"

Fig. 1. Sample Query and Twig

a small tree, whose nodes n represent sim-
ple predicates pn on the content (text) or the
structure (elements) of an XML document,
whereas its edges define the relationship
between the items to match. In the graphical
notation, we use the double line for the de-
scendant and the single line for the child rela-
tionship. For twig query matching, the query
processor has to find all possible embeddings
of the given twig in the queried document,
such that each node corresponds to an XML
item and the defined relationship among the matched items is fulfilled. The result of
a twig is represented as an ordered1 sequence of tuples, where the fields of each tuple

1 Here, “ordered” means: sorted in document order from the root to the leaf items.
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correspond to matched items. Usually, not all nodes of a twig generate output, but are
mere (path) predicates. Therefore, we use the term extraction point [7] to denote twig
nodes that do generate output (the boxed nodes in Fig. 1).

1.1 Related Work

For twig query matching, a large class of effective methods builds on two basic ideas:
the structural join [1] and the holistic twig join [3]. The first approach decomposes the
twig into a set of binary join operations, each applied to neighbor nodes of the twig (for
an example, see Fig. 2). The result of a single join operation is a sequence of tuples Sout

whose degree (number of fields) is equal to the sum of the degrees of its input tuples
from sequences SinA and SinB . Sout may serve as an input sequence for further join
operations. In the following, we denote the tuple fields that correspond to the twig nodes
to join as the join fields. The underlying structural join algorithms are interchangeable
and subject to current research (see the discussion below).

In [3], the authors argue that, intrinsic for the structural join approach, intermediate
result sizes may get very large, even if the final result is small, because the intermediate
result has to be unnested. In the worst case, the size of an intermediate result sequence is
in the order of the product of the sizes of the input sequences. To remedy this drawback,
twig join algorithms [3,7] evaluate the twig as a whole, avoiding intermediate result
unnesting by encoding the qualifying elements on a set of stacks.

Of course, holistic twig join algorithms are good candidates for physical operators
supporting query evaluation in XDBMSs. However, they only provide for a small frac-
tion of the functionality required by complete XPath and XQuery processors (e. g.,
no processing of axes other than child and descendant; no processing of order-based
queries). Therefore, the development of new structural join algorithms is still valuable,
because they can act as complemental operators in case the restricted functionality of
twig joins is too small, or as alternatives if they promise faster query evaluation.

Existing structural join approaches can roughly be divided into four classes by the
requirements they pose on their input sequences: A) no requirements [8,11,14]; B) in-
dexed input [16], C) sorted input [1,10,16]; D) indexed and sorted input [4]. Especially
for classes C and D, efficient algorithms have been found that generate results in lin-
ear time depending on the size of their input lists. In contrast, for class A, there is—to
the best of our knowledge—no such algorithm. All proposed approaches either sort at
least one input sequence [11], or create an in-memory data structure (a heap) requiring
O(nlog2n) processing steps [14]. By utilizing hash tables that can be built and probed in
(nearly) linear time, the algorithms we introduce in this paper can remedy this problem.
Note, the strategies in [11,14] elaborate on partition-based processing schemes, i. e.,
they assume a small amount of main memory and large input sequences, requiring their
partition-wise processing. Their core join algorithm, however, is main-memory–based,
as ours is. Therefore, our new join operators can be—at least theoretically2—combined
with the partitioning schemes proposed in these earlier works.

2 [14] uses a perfect binary tree (PBiTree) to generate XML identifiers. In real-world scenarios,
we assume document modifications that can hardly be handled with PBiTrees. Therefore, we
used SPLIDs (Sect. 2.1) instead. As a consequence, this “gap” had to be bridged to support the
proposed partition schemes with our ideas.
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Answering twig (and more complex queries) using binary structural join algorithms
imposes three non-trivial problems: selecting the best (cheapest) join order (P1) to
produce a sorted (P2) and duplicate-free (P3) output. P1 is tackled in [15], where a
dynamic programming framework is presented that produces query executions plans
(QEPs) based on cost estimations. The authors assume class C (and D) algorithms,
which means that even intermediate results are required to be in document order on the
two join fields. As a consequence, sort operators have to be embedded into a plan to
fulfill this requirement. Consider for example the twig in Fig. 1. Let the circled num-
bers denote the join order selected by an algorithm from [15]. Then, three sort operators
have to be embedded into the QEP (see3 Fig. 2). Sort operators are expensive and should
be avoided whenever possible. With structural join algorithms not relying on a special
input order—like those presented in this paper—we can simply omit the sort operators
in this plan. However, a final sort may still be necessary in some cases.

Problem P3 was studied in [8]. The authors

b:book t:title

x:“XML”

a:author

r:“Rome”
c:city

n:name

sorttitle

sortauthor

sortauthor

b/t
b//a

t/x

a/c
c/r

a/n

Fig. 2. Sample Plan

show that duplicate removal is also important for
intermediate results, because otherwise, the com-
plexity of query evaluation depending on the
number of joins for a query Q can lead to an expo-
nential worst-case runtime behavior. Therefore,
for query evaluation using binary structural joins,
tuplewise duplicate-free intermediate result
sequences have to be assured after each join exe-
cution. Note, due to result unnesting, even a (sin-
gle) field in the tuple may contain duplicates. This
circumstance is unavoidable and, thus, we have to cope with it. Because duplicate
removal—like the sort operator—is an expensive operation, it should be minimized.
For example in [6], the authors present an automaton that rewrites a QEP for Q, thereby
removing unnecessary sort and duplicate removal operations. Their strategy is based on
plans generated by normalization of XPath expressions, resulting in the XPath core lan-
guage expressions. However, this approach does not take join reordering into account,
as we do. Our solution to P3 is a class of algorithms that do not produce any duplicates
if their input is duplicate free.

1.2 Contribution

We explore the use of hash-based joins for path processing steps of XML queries and
identify the selectivity ranges when they are beneficial. In particular, we propose a
class of hash-based binary structural join operators for the axes parent, child, ances-
tor, descendant, preceding-sibling, and following-sibling that process unordered input
sequences and produce (unordered) duplicate-free output sequences. Furthermore, we
show by extensive tests using the XTC (XML Transaction Coordinator)—our proto-
type of a native XDBMS—that our approach leads to a better runtime performance
than sort-based schemes.

The remainder of this paper is organized as follows: Sect. 2 briefly describes some
important internals of XTC, namely our node labeling scheme and an access method for

3 An arrow declares the input node of a join by which the output is ordered, where important.
Possible are root to leaf, e. g., between “book” and “title”, and leaf to root, e. g., the final join.
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element sequences. Sect. 3 introduces new hash-based algorithms. In Sect. 4 we present
our quantitative results before we conclude in Sect. 5.

2 System Testbed

XTC adheres to the well-known layered hierarchical architecture: The concepts of
the storage system and buffer management could be adopted from existing relational
DBMSs. The access system, however, required new concepts for document storage, in-
dexing, and modification including locking. The data system available only in a slim
version is of minor importance for our considerations.

2.1 Path Labels

Our comparison and evaluation of node labeling schemes in [9] recommends node la-
beling schemes which are based on the Dewey Decimal Classification [5]. The abstract
properties of Dewey order encoding—each label represents the path from the docu-
ments root to the node and the local order w. r. t. the parent node; in addition, sparse
numbering facilitates node insertions and deletions—are described in [13]. Refining
this idea, similar labeling schemes were proposed which differ in some aspects such as
overflow technique for dynamically inserted nodes, attribute node labeling, or encoding
mechanism. Examples of these schemes are ORDPATH [12], DeweyID [9], or DLN
[2]. Because all of them are adequate and equivalent for our processing tasks, we prefer
to use the substitutional name stable path labeling identifiers (SPLIDs) for them.

Here we only summarize the benefits of the SPLID concept which provides holistic
system support. Existing SPLIDs are immutable, that is, they allow the assignment
of new IDs without the need to reorganize the IDs of nodes present. Comparison of
two SPLIDs allows ordering of the respective nodes in document order, as well as the
decision of all XPath axis relations. As opposed to competing schemes, SPLIDs easily
provide the IDs of all ancestors to enable direct parent/ancestor identification or access.
This property is very helpful for navigation and for fine-grained lock management in
the XML documents. Finally, the representation of SPLIDs, e. g., label 1.3.7 for a node
at level 3 and also used as an index reference to this node, facilitates the application of
hashing in our join algorithms.

2.2 Accessing Ordered Element Sequences

A B*-tree is used as a document store

1.31.3.5 1.3.7

node−reference
indices
(B*−trees)

book
author title

name directory
(B−tree)

each sorted in document order

Fig. 3. Element Index

where the SPLIDs in inner B*-tree nodes
serve as fingerposts to the leaf pages. The
set of doubly chained leaf pages forms
the so-called document container where
the XML tree nodes are stored using
the format (SPLID, data) in document
order. Important for our discussion, the
XDBMS creates an element index for each XML document. This index consists of a
name directory with (potentially) all element names occurring in the XML document
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(Fig. 3). For each specific element name, in turn, a node-reference index is maintained
which addresses the corresponding elements using their SPLIDs. Note, for the docu-
ment store and the element index, prefix compression of SPLID keys is very effective
because both are organized in document order directly reflected by the SPLIDs [9].

The leaf nodes in our QEPs are either element names or values. By accessing the
corresponding node reference indexes, we obtain for them ordered lists of SPLIDs and,
if required lists of nodes in document order by accessing the document store.

3 Hash-Based Structural Join Algorithms

To be able to compete with existing structural join al-

x:“XML”t:title
b:book

a:author
c:city

r:“Rome”
n:name

t/x

b/t
b/a

a//c
c/r

a/n

Fig. 4. Plan for Query 1

gorithms, we had to design our new algorithms with
special care. In particular, the use of semi-joins has
several important benefits. The processing algorithms
become simpler and the intermediate result size is re-
duced (because the absolute byte size is smaller and
we avoid unnesting). Several important design objec-
tives can be pointed out:

• Design single-pass algorithms. As in almost all other structural join proposals, we
have to avoid multiple scans over input sequences.

• Exploit extraction points. With knowledge about extraction points, the query op-
timizer can pick semi-join algorithms instead of full joins for the generation of a
QEP. For example, consider the plan in Fig. 4 which embodies one way to evaluate
the twig for the XPath expression in Fig. 1. After having joined the title elements
with the content elements “XML”, the latter ones are not needed anymore for the
evaluation of the rest of the query; a semi-join suffices.

• Enable join reordering. Join reordering is crucial for the query optimizer which
should be able to plan the query evaluation with any join order to exploit given data
distributions. As a consequence, we need operators for the reverse axes ancestor
and parent, too (e. g., the semi-join operator between title and “XML” in Fig. 4
actually calculates the parent axis).

• Avoid duplicate removal and sort operations whenever possible. By using only al-
gorithms that do not generate duplicates and operate on unordered input sequences,
the query optimizer can ignore these problems. However, the optimizer has to en-
sure the correct output order, requiring a final sort operator. In some cases, this
operator can be skipped: If we assume that the element scans at the leaf nodes of
the operator tree in Fig. 4 return the queried element sequences in document order
(as, for example, our element index assures), then, because the last semi-join oper-
ator is simply a filter for name elements (see Sect. 3.1), the correct output order is
automatically established.

• Design dual algorithms that can hash the smaller input sequence. The construction
of an in-memory hash table is still an expensive operation. Therefore, our set of
algorithms should enable the query optimizer to pick an operator that hashes the
smaller of both input sequences and probes the other one, yielding the same result.
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Table 1. Classification of Hash-Join Operators

Output
Hashed ancestor/parent descendant/child full join

Class 1: UpStep Class 2: TopFilter Class 3: FullTopJoin
parent //a[b] //a/b //a/b, //a[b]

ParHashA ChildHashA ChildFullHashA
ancestor //a[.//b] //a//b //a//b, //a[.//b]

AncHashA DescHashA DescFullHashA
Class 4: BottomFilter Class 5: DownStep Class 6: FullBottomJoin

child //a[b] //a/b //a/b, //a[b]
ParHashB ChildHashB ChildFullHashB

descendant //a[.//b] //a//b //a//b, //a[.//b]
AncHashB DescHashB DescFullHashB

3.1 Classification of Algorithms

We can infer three orthogonal degrees of freedom for structural hash-join algorithms:
the axis that has to be evaluated (parent/child/ancestor/descendant); the mode of the
join (semi/full); and the choice of which input sequence to hash (A or B)4. The fol-
lowing naming scheme is used for our operators: <axis> + <mode> + <hash>:
{Par|Child|Anc|Desc} {Semi|Full} Hash{A|B} (“Semi” is omitted for
brevity). For example, the join operator between title and “XML” in Fig. 4 is a
ParHashB operator, because it calculates the parent axis, is a semi-join operator, and
hashes the sequence of possible children.

For an overview of all possible operators refer to Table 1: The column header defines
the input to be hashed, whereas the row header defines the output. For clarification of
the semantics, each operator is additionally described by an XPath expression where
the input sequence to hash is marked in bold face. The names of the operator classes
describe the evaluation strategy of the join. They will be discussed in the following.
Note, class 1–3 algorithms are dual to class 4–6 algorithms, i. e., they calculate the
same result as their corresponding algorithms, but hash a different input sequence.

3.2 Implementation

To abstract from operator scheduling and dataflow control, we let all operators act in the
same operating system thread and use the well-known iterator-based open-next-close
protocol as a basis for the evaluation. Each algorithm receives two input sequences of
tuples, where, due to intermediate result unnesting, duplicates on the join fields have to
be expected.

All proposed algorithms in this paper consist of two phases. In phase one, a hash
table ht is constructed using the join field of the tuples of one input sequence (either
sequence A or B). In phase 2, the join field of the other input sequence is probed against
ht. Depending on how a result tuple is constructed, the operators can be assigned to
one of the six classes: Full*Join operators return a sequence of joined result tuples just
as earlier proposals for structural join algorithms (e. g., [1]). Note, the qualifiers “Top”
and “Bottom” denote which input sequence is hashed. The remaining classes contain

4 Note, in the following, A denotes the sequence of possible ancestors or parents (depending on
the context), whereas B denotes descendants or children.
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Input: TupSeq A,B, Axis aixs, bool hashA
Output: TupSeq results,Local:HashTable ht

1 // phase 1: build hash table
2 if (hashA)
3 foreach (Tuple a in A)
4 hash a.jField() in ht;
5 else if (axis is ‘Par’ or ‘Child’)
6 foreach (Tuple b in B)
7 hash b.jField().parent() in ht;
8 else if (axis is ‘Anc’)
9 List levelOcc = getLevels(A);
10 foreach (Tuple b in B)
11 foreach (level in levelOcc)
12 hash b.jField().anc(level) in ht;
13

14 // phase 2: probe
15 foreach (Tuple t in ((hashA) ? B : A)
16 if (! hashA and
17 t.jField() in ht) results.add(t);
18 else if (axis == ‘Child’ or ‘Par’)
19 if (t.jField().parent() in ht)
20 results.add(t);
21

22 else if (axis == ‘Desc’ or ‘Anc’)
23 List levelOcc = getLevelsByProb(A);
24 foreach (level in levelOcc)
25 if (t.jField().anc(level) in ht)
26 results.add(t);
27 break inner loop;
28

29 function hashEnqueue
30 (SPLID s, Tuple t, HT ht)
31 Queue q = ht.get(s);
32 q.enqueue(t);
33 hash (s, q) in ht;
34

35 function hashDelete (SPLID s, HT ht)
36 Queue q = ht.get(s);
37 foreach (Tuple t in q)
38 results.add(t);
39 ht.delete(s);
40

41 function hashFull
42 (SPLID s, Tuple current, HT ht)
43 Queue q = ht.get(s);
44 foreach (Tuple t in q)
45 results.add(new Tuple(t, current));

Fig. 5. *Filter Operator and Auxiliary Functions for *Step and Full*Join

semi-join algorithms. *Filter operators use the hash table, constructed for one input
sequence to filter the other one, i. e., tuples are only returned from the probed sequence.
*Step operators work the other way around, i. e., they construct the result tuples from
the hashed input sequence.

*Filter Operators (see Fig. 5): In phase one, for ChildHashA and DescHashA,
the algorithm simply hashes the SPLID of the elements of the join fields (accessed
via method jField()) into ht (line 4). Then, in phase two, the algorithm checks for
each tuple t in B, whether the parent SPLID (line 19 for ChildHashA) or any ancestor
SPLID (line 25 for DescHashA) of the join field is contained in ht. If so, t is a match
and is appended to the result. Actually, for the descendant operator, we had to check all
possible ancestor SPLIDs which could be very costly. To narrow down the search, we
use the meta-information, at which levels and by which probability an element of the
join field of A occurs (line 23). This information can be derived dynamically, e. g., when
the corresponding elements are accessed via an element index scan, or kept statically in
the document catalog.

The strategy for ParHashB and AncHashB is similar, with the difference, that in
the hash phase the algorithm uses the join fields of input B to precalculate SPLIDs that
might occur in A (lines 7 and 12). Again for the descendant operator, we use the level
information (line 9), but this time the probability distribution does not matter. In the
probing phase it only has to be checked, whether the current join field value is in ht.

Obviously, the output order of the result tuples is equal to the order of the probed
input sequence. Furthermore, if the probed input sequence is tuplewise duplicate free,
the algorithm does not produce any duplicates. The hashed input sequence may contain
duplicates. However, these are automatically skipped, whereas collisions are internally
resolved by the hash table implementation.
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*Step Operators conceptually work in the same way as their corresponding *Filter
operators. However, they do not return tuples from the probed, but from the hashed in-
put sequence. Accordingly, tuples that have duplicates on the key they use for hashing
(e. g., TupSeq A of Fig. 7a) may not be skipped (as above) but have to be memorized
for later output. The new algorithms work as follows: In the hash phase, the function
hashEnqueue() (Fig. 5 line 29) is called instead of the simple hash statements in
lines 4, 7, and 12). The first argument is the SPLID s of the join field (or its par-
ent/ancestor SPLID). Function hashEnqueue() checks for s whether or not an entry is
found in hash table ht (line 31). If so, the corresponding value, a queue q, is returned
to which the current tuple is appended (line 32). Finally, q is written back into the hash
table (line 33).

In the probing phase, we substitute the hash table lookup and result generation (lines
17, 19–20, 25–26) with the hashDelete() method (Fig. 5 line 35). For the given
SPLID s to probe, this method looks up the corresponding tuple queue in the hash table
and adds each contained tuple t to the result. Finally, the entry for s and its queue are
removed from the hash table, because the result tuples have to be returned exactly once
to avoid duplicates. The sort order of these algorithms is dictated by the sort order of
the input sequence used for probing. If the hashed input sequence did not contain any
duplicates, the result is also duplicate free.

The technique to memorize tuples with the same hash key works fine for the step
operators ParHashA, ParHashB, and AncHashA. For DescHashB, however, the
following problem occurs: In phase 1, the algorithm has to anticipate for each node
b in tuple sequence B, on which level the ancestor nodes in the tuple sequence A can
possibly reside. Then—following the technique above—it had to insert b into all queues
of possible ancestors. As an example, consider the document shown in Fig. 6a and the
element with the SPLID 1.3.3.5. In phase 1, the algorithm inserts 1.3.3.5 in the queue
for the possible ancestor elements 1.3.3 and 1 (1.3 does not belong to any input). This
is not only unfavorable because of the redundant storage of element 1.3.3.5 and the
implied higher memory consumption, but it may also lead to duplicates in the final
result: in the probing phase, the algorithm 1) checks for each a in input sequence A, if
there is a corresponding tuple queue in the hash table, 2) appends all elements in the
queue to the result sequence, and 3) removes the matched entry from the hash table.
In the example, if the algorithm processes the possible ancestor 1.3.3, it would return
the result tuple containing 1.3.3.5 and remove this entry for 1.3.3 from the hash table.
If later on, possible ancestor 1 is probed, 1.3.3.5 is again returned. Thus, a duplicate
would be generated.

To remedy these problems, a distinguished algorithm for the DescHashB operator
is designed (see Fig. 6c). In the first phase, the operator builds two hash tables, named
htB and htA, instead of only one. Hash table htB has the same function as in the
other step operators: it keeps track of mappings from possible ancestor elements to
queues of possible descendants. To avoid redundant storage, the possible descendant
element b is only stored in the queue for the anticipated lowest ancestor element (line 4
to 6), which corresponds to the SPLID with the highest level that can still be an ances-
tor of b. For example, the tuple corresponding to 1.3.3.5 is only stored in the queue for
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htA

[1] [1.3.3]

[1.3.3.3][1.3.3]

htB

[1.3.3.3]

[1.3.3]

[1]

Key Value (Queue)

[1.3.3.3.3]

[1.5]

[1.3.3.5]

[1.3.3.3.5]

Hash Tables

1

1.3

1.3.3

1.3.3.3

1.5

1.3.5

1.3.3.5

1.3.3.3.3 1.3.3.3.5

Sample Document

Poss. Anc.

Poss. Desc.

Key Value (Queue)

[1.3.3.3] null

Input: TupSeq A,B
Output: TupSeq results
Local: HashTable htB,htA

1 // phase 1: build hash table
2 List levelOcc = getLevels(A);
3 foreach (Tuple b in B)
4 SPLID lowestAnc =
5 b.jField().lowestAnc(levelOcc);
6 hashEnqueue(lowestAnc, b, htB);
7 SPLID highestAnc =
8 b.jField().highestAnc
9 (levelOcc,htA);

10

11 foreach (level in levelOcc between
12 highestAnc.level() and
13 lowestAnc.level() descending)
14 SPLID ancAnc =
15 b.jField().anc(level);
16 SPLID anc =
17 b.jField().anc(level+1);
18 Queue ancQ = htA.get(ancAnc);
19 ancQ.enqueue(anc);
20 ancQ = htA.get(anc);
21 ancQ.enqueue(null);
22

23 // phase 2: probe
24 foreach (Tuple a in A)
25 hashDelete(a, htB);
26 Queue q = new Queue();
27 q.addAll(htA.get(a.jField());
28 htA.remove(a.jField());
29 while (!q.isEmpty())
30 SPLID id = q.removeFirst();
31 hashDelete(id, htB);
32 q.addAll(htA.get(id));
33 htB.remove(id);

Fig. 6. a) Sample Document, b) Hash Tables, c) DescHashB Operator

1.3.3, because 1.3.3 is the anticipated lowest ancestor (the storage of 1.3.3.5 in the
queue of element 1 is thus omitted). Then, another hash table (htA) is built which
keeps track of ancestor/descendant relationships among the possible ancestor elements.
In essence, htA stores a forest of trees. In the example, when element b=1.3.3.5 is
processed, the key-value pairs (1, 1.3.3) and (1.3.3, null) are inserted into htA. Later
on, when for example b=1.3.3.3.3 is processed, only the pair (1.3.3, 1.3.3.3) has to
be inserted into htA, because the relationship of their ancestors is already contained
in htA. This functionality is implemented in lines 7 to 21. First the highest possible
ancestor SPLID, whose relationship is not yet contained in htA is computed. This can
easily be done by comparing the keys already contained in htA. In the above example,
when (1, 1.3.3) and (1.3.3, null) are present in htA, the highest possible ancestor for
b=1.3.3.3.3 is 1.3.3. Afterwards the structural relationships down to the lowest possible
ancestor are inserted into htA (lines 11 to 21).

In the probing phase, the algorithm calls hashDelete() (line 25). I. e., it probes
each element a of the ancestor sequence A against htB. If there is a queue for the key a,
the found tuples are written to the result and the matched key-value pair is removed from
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htB. For example, the lookup of a=1.3.3 immediately returns the tuple corresponding
to 1.3.3.5 and the pair (1.3.3, 1.3.3.5) is removed from htB. Because the algorithm
has to return all descendants, it follows the tree stored in htA rooted at a and calls
hashDelete() for all possible ancestors found (lines 26 to 33). In the example, the
algorithm looks up a=1.3.3 in htA, finds x=1.3.3.3, and calls hashDelete for x, which
returns the descendants 1.3.3.3.3 and 1.3.3.3.5. All touched entries are removed from
htA. Note, the operator fulfills our requirements: it does not produce any duplicates
and can operate on unsorted input sequences.

Full*Join Operators resemble the *Step operators. The only difference is the re-
sult generation. While *Step algorithms are semi-join operators that do not produce
a joined result tuple, Full*Join operators append the current result tuple with all tu-
ples matched (as depicted in method hashFull(), Fig. 5 line 41). Note, opposed to
hashDelete(), in hashFull() no matched entries from ht/htA/htB are deleted.
For a brief full join example see Fig.7a: input sequence A for the ChildFullHashA
operator is hashed on join field 1, thereby memorizing tuples with duplicates in the
related queues. Then, the tuples from sequence B are probed against the hash table.
For each match, each tuple in the queue is joined with the current tuple from B and
appended to the result.

Space and Time Complexity. The space complexity (number of tuples stored) and
time complexity (number of hashes computed) of the operators depend on the axis to
be evaluated. Let n = |A| and m = |B| be the sizes of the input sequences. For the par-
ent/child axis, the space and time complexity is O(n+m). For the ancestor/descendant
axis, the height h of the document also plays a role. Here the space complexity for
classes 1–3 is also O(n + m), whereas the time complexity is O(n + h ∗m) (for each
tuple in sequence B up to h hashes have to be computed). For classes 4–6, both space
and time complexity are O(n+h∗m), except for the DescHashB operator, where the
time complexity is O(h ∗ (n+m)).

Beyond Twig Functionality: Calculation of Sibling Axes. With hash-based schemes
and a labeling mechanism enabling the parent identification, the preceding-sibling and
the following-sibling axes are—in contrast to holistic twig join algorithms—computable,
too. Due to space restrictions, we can only show filtering algorithms, corresponding to
the *Filter classes above: In phase 1 operators PreSiblHashA and FollSibl-
HashA (see Fig. 7b) create a hash table ht to store key-value pairs of parent/child
SPLIDs. For each element in A, parent p is calculated. Then the following-sibling
(preceding-sibling) axis is evaluated as follows: For each parent SPLID p, the small-
est (largest) child SPLID c in A is stored in ht. This hash table instance is calculated
by successive calls to the checkAndHash() method (lines 14 to 21). While probing
a tuple b of input B, the algorithm checks whether the SPLID on the join field of b is a
following-sibling (preceding-sibling) of c, that has the same parent (lines 6 to 12). If so,
the current b tuple is added to the result. Clearly, these algorithms reveal the same char-
acteristics as their corresponding *Filter algorithms: They do not produce any tuplewise
duplicates and preserve the order of input sequence B.
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[1.3, 1.3.5]
[1.3, 1.3.7]
[1.5, 1.5.5]
[1.5, 1.5.7]
[1.7, 1.7.3]
...

[1.5]
[1.3]

[1.7]

[1.3.3]
[1.7.5]
...

TupSeq A TupSeq B

JoinFields

HashKeys HashValues

phase 1: hash

phase 2: probe

Results

[1.3, 1.3.5, 1.3.3]
[1.3, 1.3.7, 1.3.3]

...
[1.7, 1.7.3, 1.7.5]

[1.5, 1.5.5], [1.5, 1.5.7]
[1.3, 1.3.5], [1.3, 1.3.7]

[1.7, 1.7.3]

Input: TupSeq A, B, Axis aixs
Output: TupSeq results, Local:HashTable ht

1 // phase 1: build hash table
2 foreach (Tuple a in A)
3 checkAndHash(a.jField(), axis)
4

5 // phase 2: probe
6 foreach (Tuple b in B)
7 SPLID s = ht.get(b.parent());
8 if( (axis == ‘PreSibl’ and
9 b.jField().isPreSibl(s)) or

10 (axis == ‘FollSibl’ and
11 b.jField().isFollSibl(s)) )
12 results.add(b);
13

14 function checkAndHash(SPLID a, Axis axis)
15 SPLID s = ht.get(a.parent());
16 if( (s is NULL) or
17 (axis == ‘PreSibl’ and
18 not s.isPreSibl(a)) or
19 (axis == ‘FollSibl’ and
20 not s.isFollSibl(a)) )
21 ht.put(a.parent(), a);

Fig. 7. a) Full*Join Example and b) Sibling Operator

4 Quantitative Results

To substantiate our findings, we compared the different algorithms by one-to-one opera-
tor comparison on a single-user system. All tests were run on an Intel XEON computer
(four 1.5 GHz CPUs, 2 GB main memory, 300 GB external memory, Java Sun JDK
1.5.0) as the XDBMS server machine and a PC (1.4 GHz Pentium IV CPU, 512 MB
main memory, JDK 1.5.0) as the client, connected via 100 MBit ethernet to the server.

To test the dependency between runtime performance and query selectivity, we gen-
erated a collection of synthetic XML documents, whose structure is sketched in Fig. 8.
Each document has a size of 200 MB and contains bibliographic information. Because
we were mainly interested in structural join operators for element sequences, the gen-
erated documents do not contain much text content. The schema graph is a directed
acyclic graph (and not a tree), because an author element may be the child of either
a book or an article element. We generated the documents in such a way, that we ob-
tained the following selectivity values for the execution of structural joins between input
nodes: 1%, 5%, 10%, 50%, and 100%. For example, for the query //book[title],
selectivity 1% means that 1% of all title elements have a book element as their parent
(all others have the article element as parent). Additionally, we created 10% noise on
each input node, e. g., 10% of all book elements have the child booktitle instead of title.

4.1 Join Selectivity Dependency of Hash-Based Operators

In a first experiment, we want to explore the influence of the join selectivities of the
input sequences and, in case of varying input sequence sizes, their sensitivity on the
hash operator performance. All operators presented in Table 1 revealed the same per-
formance characteristics as a function of the join selectivity. Hence, it is sufficient to
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bib

book+ journal+

author+

{booktitle|title} journalnamearticle+

{arttitle|title}

name organization

address

city

{london|seattle|ordino|funafuti|...}

{usa|france|andorra|tuvalu|...}

*Filter Queries:
a)   //book[title] or //book/title
b)   //journal[.//title] or 

 //journal//title

*Step and Full*Join Queries:
a)    //author[tuvalu] or
   //author/tuvalu
b)  //organization[.//andorra] or 
  //organization//andorra

Fig. 8. Document Schema and Sample Queries

present an indicative example for which we have chosen the DescFullHash* oper-
ators. For the query //journal//title, the size of the input sequence containing
journal elements varies from around 2,000 to 200,000 elements, whereas the size of the
title sequence remains stable (roughly 200,000 elements). Fig. 9a illustrates the runtime
performance of the DescFullHashA operator and the DescFullHashB operator for the
same query. For selectivities smaller than 10%, the runtime of each operator remains
quite the same, because in these cases external memory access costs for the node ref-
erence indexes (column sockets) dominate the execution time, whereas the time for the
hash table creation and probing remains roughly the same. However for selectivities >
10%, the runtime increases due to higher CPU costs for hashing and probing of larger
input sequences. The gap between the DescFullHashA and the DescFullHashB
operator results from hashing the wrong—i. e., the larger—input sequence (title) instead
of the smaller one (in operator DescFullHashB). Therefore, it is important that the
query optimizer chooses the right operator for an anticipated data distribution.

4.2 Hash-Based vs. Sort-Based Schemes

In the next test, we want to identify the performance differences of our hash-based
schemes as compared to sort-based schemes. For this purpose, we implemented the

Fig. 9. a) DescFullHash* Characteristics, b) Operator Comparison
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StackTree algorithm [1] and the structural join strategy from [14] called AxisSort* in the
following. Both operators work in two phases: In phase 1, input sequences are sorted
using the QuickSort algorithm. While StackTree needs to sort both input sequences,
AxisSort* only needs to sort the smaller one. In phase 2, StackTree accomplishes its
ordinary join strategy, while AxisSort* performs a binary search on the sorted input for
each element of the other input sequence. To compare our operators with minimal-cost
sort-based schemes, we introduce hypothetical operators which also sort the smaller
input sequence, but omit the probing phase. Thus, so-called *Fake operators do not
produce any output tuples. The result comparison is presented in Fig. 9b. Having the
same join selectivity dependency, our hash-based operators are approximately twice as
fast as the sort-based operators (with result construction). The figures for the StackTree
algorithm impressively demonstrate that sort operations on intermediate results in query
plans should really be avoided if possible. Finally, the hash-based operators—with their
“handicap” to produce a result—match the sort-based fake operators.

4.3 Memory Consumption

Finally, we measured the memory consumption of hash-based and sort-based oper-
ators. On the generated document collection, we issued the query //organiza-
tion[.//andorra], where the number of andorra elements varied from 2000 to
200.000, whereas organization elements remained stable (at roughly 200.000). For com-
parison, we used the DescFullHashB5 and the DescFullSortB operator. In all
selectivity ranges, the internal hash table of the hash-based operator consumed three to
four times more memory than the plain array of the sort-based one. To reduce this gap,
a space optimization for hash-based operators is possible: Each key contained in the
hash-table (as depicted in Fig. 7a) is repeated (as a prefix) in the join field value of the
tuples contained in the key’s queue. This redundant information can safely be disposed
for a more compact hash table.

In a last experiment, we compare DescFullHashB with AncHashB. Here, the
semi-join alternative required around three times fewer memory than the full join vari-
ant on all selectivities. This circumstance is also a strong argument for our proposal,
that the query optimizer should pick semi-join operators whenever possible.

5 Conclusions

In this paper, we have considered the improvement of twig pattern queries—a key re-
quirement for XML query evaluation. For this purpose, we have substantially extended
the work on structural join algorithms thereby focussing on hashing support. While
processing twig patterns, our algorithms, supported by appropriate document store and
index structures, primarily rely on SPLIDs which flexibly enable and improve path
processing steps by introducing several new degrees of freedom when designing physi-
cal operators for path processing steps.

Performance measurements approved our expectations about hash-based operators.
They are, in the selectivity range 1%–100%, twice as fast as sort-based schemes and

5 Note, regarding the space complexity, DescFullHashB is one of the more expensive repre-
sentative among the hash-based operators (see 3.2).
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not slower than the *Fake operators. As another beneficial aspect, intermediate sorts
in QEPs can be drastically reduced. Such hash-based operators should be provided—
possibly with other kinds of index-based join operators—in a tool box for the cost-based
query optimizer to provide for the best QEP generation in all situations.
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Abstract. The data volume of XML repositories and the response time of query
processing have become critical issues for many applications, especially for those
in the Web. An interesting alternative to improve query processing performance
consists in reducing the size of XML databases through fragmentation techniques.
However, traditional fragmentation definitions do not directly apply to collections
of XML documents. This work formalizes the fragmentation definition for collec-
tions of XML documents, and shows the performance of query processing over
fragmented XML data. Our prototype, PartiX, exploits intra-query parallelism on
top of XQuery-enabled sequential DBMS modules. We have analyzed several ex-
perimental settings, and our results showed a performance improvement of up to
a 72 scale up factor against centralized databases.

1 Introduction

In the relational [15] and object-oriented data models [4], data fragmentation has been
used successfully to efficiently process queries. One of the key factors to this success
is the formal definition of fragments and their correctness rules for transparent query
decomposition. Recently, several fragmentation techniques for XML data have been
proposed in literature [1,2,6,7,8,12]. Each of these techniques aims at a specific sce-
nario: data streams [7], peer-to-peer [1,6], Web-Service based systems [2], etc.

In our work, we focus on high performance of XML data servers. In this scenario,
we may have a single large document (SD), or large collections of documents (MD)
over which XML queries are posed. For this scenario, however, existent fragmentation
techniques [1,2,6,7,8,12] do not apply. This is due to several reasons. First of all, they
do not clearly distinguish between horizontal, vertical and hybrid fragmentation, which
makes it difficult to automatically decompose queries to run over the fragments. Sec-
ond, none of them present the fragmentation correctness rules, which are essential for
the XML data server to verify the correctness of the XML fragments and then apply the
reconstruction rule to properly decompose queries. Also, for large XML repositories, it
is important to have a fragmentation model close to the traditional fragmentation tech-
niques, so it can profit as much as possible from well-known results. Third, the query
processing techniques are specific for the scenarios where they were proposed, and thus
do not apply to our scenario. For instance, the model proposed in [7] for stream data
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does not support horizontal fragmentation. The same happens in [2], where fragmenta-
tion is used for efficient XML data exchange through Web services. Finally, the lack of
distinction between SD and MD prevents the distributed query processing of the MD
collection [6,12].

Thus, to efficiently answer queries over large XML repositories using an XML data
server, we need a precise definition of XML fragmentation and a high performance
environment, such as a cluster of PCs. This way, queries can be decomposed in sub-
queries which may run in parallel at each cluster node, depending on how the database
is fragmented. In this paper, we are interested in the empirical assessment of data frag-
mentation techniques for XML repositories. We formalize the main fragmentation al-
ternatives for collections of XML documents. We also contribute by defining the rules
that verify the correctness of a fragment definition. Our fragmentation model is formal
and yet simple when compared to related work. We consider both SD and MD reposito-
ries. To address the lack of information on the potential gains that can be achieved with
partitioned XML repositories, we present experimental results for horizontal, vertical
and hybrid fragmentation of collections of XML documents. The experiments were run
with our prototype named PartiX. Sketches of algorithms for query decomposition and
result composition are available at [3]. Our results show substantial performance im-
provements, of up to a 72 scale up factor compared to the centralized setting, in some
relevant scenarios.

This paper is organized as follows. In Section 2, we discuss related work. Section 3
presents some basic concepts on XML data model and query language, and formalizes
our fragmentation model. Section 4 shows the architecture of PartiX. Our experimental
results and corresponding analysis are presented in Section 5. Section 6 closes this work
with some final remarks and research perspectives.

2 Related Work

In this section, we briefly present related work. A more detailed discussion can be found
in [3]. Foundations of distributed database design for XML were first addressed in [8]
and [12]. Ma and Schewe [12] propose three types of XML fragmentation: horizontal,
which groups elements of a single XML document according to some selection crite-
ria; vertical, to restructure a document by unnesting some elements; and a special type
named split, to break an XML document into a set of new documents. However, these
fragmentation types are not clearly distinguished. For example, horizontal fragmenta-
tion involves data restructuring and elements projection, thus yielding fragments with
different schema definitions.

Our definition of vertical XML fragmentation is inspired in the work of Bremer and
Gertz [8]. They propose an approach for distributed XML design, covering both data
fragmentation and allocation. Nevertheless, their approach only addresses SD reposi-
tories. Moreover, their formalism does not distinguish between horizontal and vertical
fragmentation, which are combined in a hybrid type of fragment definition. They max-
imize local query evaluation by replicating global information, and distributing some
indexes. They present performance improvements, but their evaluation focuses on the
benefits of such indexes.
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Different definitions of XML fragments have been used in query processing over
streamed data [7], peer-to-peer environments [1,6], and Web-Service based scenarios
[2]. However, they either do not present fragmentation alternatives to SD and MD [6],
or do not distinguish between the different fragmentation types [1,2,6,7]. In PartiX, we
support horizontal, vertical and hybrid fragmentation of XML data for SD and MD
repositories. Furthermore, we have implemented a PartiX prototype, and performed
several tests to evaluate the performance of these fragmentation alternatives. No work
in the literature presents experimental analysis of the query processing response time
on fragmented XML repositories.

3 XML Data Fragmentation

3.1 Basic Concepts

XML documents consist of trees with nodes labeled by element names, attribute names
or constant values. Let L be the set of distinct element names, A the set of distinct
attribute names, and D the set of distinct data values. An XML data tree is denoted by
the expression ∆ := 〈t, �, Ψ〉, where: t is a finite ordered tree, � is a function that labels
nodes in t with symbols in L ∪ A; and Ψ maps leaf nodes in t to values in D. The root
node of ∆ is denoted by root∆. We assume nodes in ∆ do not have mixed content; if
a given node v is mapped into D, then v does not have siblings in ∆. Notice, however,
that this is not a limitation, but rather a presentation simplification. Furthermore, nodes
with labels in A have a single child whose label must be in D. An XML document is a
data tree.

Basically, names of XML elements correspond to names of data types, described in
a DTD or XML Schema. Let S be a schema. We say that document ∆ := 〈t, �, Ψ〉
satisfies a type τ , where τ ∈ S, iff 〈t, �〉 is a tree derived from the grammar defined by
S such that �(root∆) → τ . A collection C of XML documents is a set of data trees. We
say it is homogeneous if all the documents in C satisfy the same XML type. If not, we
say the collection is heterogeneous. Given a schema S, a homogeneous collection C is
denoted by the expression C := 〈S, τroot〉, where τroot is a type in S and all instances
∆ of C satisfy τroot.

Figure 1(a) shows the Svirtual_store schema tree, which we use in the examples
throughout the paper. In this Figure, we indicate the minimum and maximum cardi-
nalities (assuming cardinality 1..1 when omitted). The main types in Svirtual_store are
Store and Item, which describe a virtual store and the items it sells. Items are associ-
ated with sections and may have descriptive characteristics. Items may also have a list
of pictures to be used in the virtual store, and a history of prices. Figure 1(b) shows the
definition of the homogeneous collections Cstore and Citems, based on Svirtual_store.

We consider two types of XML repositories, as mentioned in [17]. An XML reposi-
tory may be composed of several documents (Multiple Documents, MD) or by a single
large document which contains all the information needed (Single Document, SD). The
collection Citems of Figure 1(b) corresponds to an MD repository, whereas the collec-
tion Cstore is an SD repository.

A path expression P is a sequence /e1/. . ./{ek | @ak}, where ex∈ L, 1 ≤ x ≤ k, and
ak∈ A. P may optionally contain the symbols “∗” to indicate any element, and “//”
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Item

Code

Name

Description

Section

Release

Characteristics

PictureList Picture

Name

Description

ModificationDate

OriginalPath

ThumbPath

Description

PricesHistory PriceHistory Price

ModificationDate
1..n

1..n

0..n

0..1

0..1

Store Sections Section Code

Name
Items Item

1..n

1..n

Employees Employee 1..n

Item

Code

Name

Description

Section

Release

Characteristics

PictureList Picture

Name

Description

ModificationDate

OriginalPath

ThumbPath

Description

PricesHistory PriceHistory Price

ModificationDate
1..n

1..n

0..n

0..1

0..1

Store Sections Section Code

Name
Items Item

1..n

1..n

Employees Employee 1..n

(a) (b)

Citems := 〈Svirtual_store, 
/Store/Items/Item〉,

Citems is MD

Cstore := 〈Svirtual_store, /Store〉,
Cstore is SD

Citems := 〈Svirtual_store, 
/Store/Items/Item〉,

Citems is MD

Cstore := 〈Svirtual_store, /Store〉,
Cstore is SD

Fig. 1. (a) Svirtual_store schema (b) Specification of collections CStore and CItems

to indicate any sequence of descendant elements. Besides, the term e[i] may be used
to denote the i-th occurrence of element e. The evaluation of a path expression P in a
document∆ represents the selection of all nodes with label ek (or ak) whose steps from
root∆ satisfy P . P is said to be terminal if the content of the selected nodes is simple
(that is, if they have domain in D). On the other hand, a simple predicate p is a logical
expression: p := P θ value | φv(P ) θ value | φb(P ) | Q, where P is a terminal
path expression, θ ∈ {=, <,>, �=,≤,≥}, value ∈ D, φv is a function that returns
values in D, φb is a boolean function and Q denotes an arbitrary path expression. In the
latter case, p is true if there are nodes selected by Q (existential test).

3.2 XML Fragmentation Techniques

The subject of data fragmentation is well known in relational [15] and object databases
[4]. Traditionally, we can have three types of fragments: horizontal, where instances
are grouped by selection predicates; vertical, which “cuts” the data structure through
projections; and/or hybrid, which combines selection and projection operations in its
definition. Our XML fragmentation definition follows the semantics of the operators
from the TLC algebra [16], since it is one of the few XML algebras [9,10,18] that
uses collections of documents, and thus is adequate to the XML data model defined in
Section 3.1. In [3], we show how fragment definitions in PartiX can be expressed with
TLC operators. In XML repositories, we consider that the fragmentation is defined over
the schema of an XML collection. In the case of an MD XML database, we assume that
the fragmentation can only be applied to homogeneous collections.

Definition 1. A fragment F of a homogeneous collection C is a collection represented
by F := 〈C, γ〉, where γ denotes an operation defined over C. F is horizontal if γ
denotes a selection; vertical, if operator γ is a projection; or hybrid, when there is a
composition of select and project operators.
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(b) 
F1good := 〈Citems, σcontains(//Desciption, “good”)〉 
F2good := 〈Citems, σnot(contains(//Desciption, “good”))〉 (a) 

F1CD := 〈Citems, σ/Item/Section=”CD”〉 
F2CD := 〈Citems, σ/Item/Section≠”CD”〉 

(c) 
F1with_pictures := 〈Citems, σ/Item/PictureList〉 
F2with_pictures := 〈Citems, σempty(/Item/PictureList)〉 

 
Fig. 2. Examples of three alternative fragments definitions over the collection Citems

Instances of a fragmentF are obtained by applying γ to each document in C. The set of
the resulting documents form the fragment F , which is valid if all documents generated
by γ are well-formed (i.e., they must have a single root).

We now detail and analyze the main types of fragmentation in XML. However, we
first want to make clear our goal in this paper. Our goal is to show the advantages of
fragmenting XML repositories in query processing. Therefore, we formally define the
three typical types of XML fragmentation, present correctness criteria for each of them,
and compare the performance of queries stated over fragmented databases with queries
over centralized databases.

Horizontal Fragmentation. This technique aims to group data that is frequently ac-
cessed in isolation by queries with a given selection predicate. A horizontal fragment F
of a collectionC is defined by the selection operator (σ) [10] applied over documents in
C, where the predicate of σ is a boolean expression with one or more simple predicates.
Thus, F has the same schema of C.

Definition 2. Let µ be a conjunction of simple predicates over a collection C. The
horizontal fragment of C defined by µ is given by the expression F := 〈C, σµ〉, where
σµ denotes the selection of documents in C that satisfy µ, that is, F contains documents
of C for which σµ is true.

Figure 2 shows the specification of some alternative horizontal fragments for the col-
lection Citems of Figure 1(b). For instance, fragment F1good (Figure 2(b)) groups doc-
uments from Citems which have Description nodes that satisfy the path expression
//Description (that is, Description may be at any level in Citems) and that con-
tain the word “good”. Alternatively, one can be interested in separating, in different
fragments, documents that have/have not a given structure. This can be done by us-
ing an existential test, and it is shown in Figure 2(c). Although F1with_pictures and
Citems have the same schema, in practice they can have different structures, since
the element used in the existential test is mandatory in F1with_pictures. Observe that
F1with_pictures cannot be classified as a vertical nor hybrid fragment.

Notice that, by definition, SD repositories may not be horizontally fragmented, since
horizontal fragmentation is defined over documents (instead of nodes). However, the
elements in an SD repository may be distributed over fragments using a hybrid frag-
mentation, as described later in this paper.

Vertical Fragmentation. It is obtained by applying the projection operator (π) [16] to
“split” a data structure into smaller parts that are frequently accessed in queries. Observe
that, in XML repositories, the projection operator has a quite sophisticated semantics:
it is possible to specify projections that exclude subtrees whose root is located in any
level of an XML tree. A projection over a collection C retrieves, in each document of
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(a) 
F1items := 〈Citems, π/Item, {/Item/PictureList}〉 
F2items := 〈Citems, π/Item/PictureList, {}〉 

(b) 
F1sections := 〈Cstore, π/Store/Sections, {}〉 
F2section := 〈Cstore, π/Store, {/Store/Sections}〉 

 
Fig. 3. Examples of vertical fragments definitions over collections Citems and Cstore

F1items := 〈Cstore, π/Store/Items, {} • σ/Item/Section=”CD”〉 
F2items := 〈Cstore, π/Store/Items, {} • σ/Item/Section=”DVD”〉 
F3items:=〈Cstore, π/Store/Items,{}•σ/Item/Section≠”CD”^ /Item/Section≠”DVD”〉  
F4items:=〈Cstore, π/Store,{/Store/Items}〉 

 
Fig. 4. Examples of hybrid fragments over collection Cstore

C (notice that C may have a single document, in case it is of type SD), a set of subtrees
represented by a path expression, which are possibly pruned in some descendant nodes.

Definition 3. Let P be a path expression over collection C. Let Γ := {E1, . . . , Ex} be
a (possibly empty) set of path expressions contained in P (that is, path expressions in
which P is a prefix). A vertical fragment of C defined by P is denoted F := 〈C, πP,Γ 〉,
where πP,Γ denotes the projection of the subtrees rooted by nodes selected by P , ex-
cluding from the result the nodes selected by the expressions in Γ . The set Γ is called
the prune criterion of F .

It is worth mentioning that the path expression P cannot retrieve nodes that may have
cardinality greater than one (as it is the case of /Item/PictureList/Picture, in
Figure 1(a)), except when the element order is indicated (e.g. /Item/PictureList/
Picture[1]). This restriction assures that the fragmentation results in well-formed
documents, without the need of generating artificial elements to reorganize the subtrees
projected in a fragment.

Figure 3 shows examples of vertical fragments of the collections Citems and
Cstore, defined on Figure 1(b). Fragment F2items represents the documents that con-
tain all PictureList nodes that satisfy the path /Item/PictureList in the col-
lection Citems (no prune criterion is used). On the other hand, nodes that satisfy
/Item/PictureList are exactly the ones pruned out the subtrees rooted in /Item

in the fragment F1items, thus preserving disjointness with respect to F2items.

Hybrid Fragmentation. The idea here is to apply a vertical fragmentation followed by
a horizontal fragmentation, or vice-versa. An interesting use of this technique is to nor-
malize the schema of XML collections in SD repositories, thereby allowing horizontal
fragmentation.

Definition 4. Let σµ and πP,Γ be selection and projection operators, respectively,
defined over a collection C. A hybrid fragment of C is represented by F :=
〈C, πP,Γ • σµ〉, where πP,Γ •σµ denotes the selection of the subtrees projected by πP,Γ

that satisfy σµ.

The order of the application of the operations in πP,Γ •σµ depends on the fragmentation
design. Examples of hybrid fragmentation are shown in Figure 4.
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3.3 Correctness Rules of the Fragmentation

An XML distribution design consists of fragmenting collections of documents (SD or
MD) and allocating the resulting fragments in sites of a distributed system, where each
collection is associated to a set of fragments. Consider that a collection C is decom-
posed into a set of fragments Φ := {F1, ..., Fn}. The following rules must be verified
to guarantee the fragmentation of C is correct:

– Completeness: each data item in C must appear in at least one fragment Fi ∈ Φ. In
the horizontal fragmentation, the data item consists of an XML document, while in
the vertical fragmentation, it is a node.

– Disjointness: for each data item d in C, if d ∈ Fi, Fi ∈ Φ, then d cannot be in any
other fragment Fj ∈ Φ, j �= i.

– Reconstruction: it must be possible to define an operator ∇ such that C := ∇Fi,
∀Fi ∈ Φ, where ∇ depends on the type of fragmentation. For horizontal fragmen-
tation, the union (∪) operator [10] is used (TLC is an extension of TAX [10]), and
for vertical fragmentation, the join (��) operator [16] is used. We keep an ID in each
vertical fragment for reconstruction purposes.

These rules are important to guarantee that queries are correctly translated from the
centralized environment to the fragmented one, and that results are correctly recon-
structed. Procedures to verify correctness depend on the algorithms adopted in the frag-
mentation design. As an example, some fragmentation algorithms for relations guaran-
tee the correctness of the resulting fragmentation design [15]. Still others [14] require
use of additional techniques to check for correctness. Such automatic verification is out
of the scope of this paper.

Query Processing. By using our fragmentation definition, we can adopt a query
processing methodology similar to the relational model [15]. The query expressed on
the global XML documents can be mapped to its corresponding fragmented XML doc-
uments by using the fragmentation schema definition and reconstruction program. Then
an analysis on query specification versus schema definition can proceed with data lo-
calization. Finally global query optimization techniques can be adopted [10,16].

Figure 5 sketches the query processing in PartiX. The overall idea is that PartiX
works as a middleware between the user application and a set of DBMS servers, which
actually store the distributed XML data. Information on data distribution is kept by Par-
tiX: when a query arrives, PartiX analyzes the fragmentation schema to properly split it

Fig. 5. Query Processing in PartiX
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into sub-queries, and then sends each sub-query to its respective fragment. Also, PartiX
gathers the results of the sub-queries and reconstructs the query answer. Notice some
queries may involve a single fragment, and that in this case, no result reconstruction is
needed. In general, defining query rewriting and data localization is a complex research
issue, which can benefit from our formal fragmentation model. Yet, we leave such a
definition as future work. In the next section, we detail the PartiX architecture.

4 The PartiX Architecture

We propose an architecture to process XQuery queries in distributed XML data sets.
Our architecture uses DBMS with no distribution support, and applies our XML frag-
mentation model, shown in Section 3. The goal of this architecture, named PartiX, is to
offer a system which coordinates the distributed processing of XQuery queries. In our
distributed environment, a sequencial XML-enabled DBMS is installed at all nodes,
which are coordinated by PartiX. In this way, there is no need of buying a specific
distributed DBMS.

Generally speaking, PartiX intercepts an XQuery query before it reaches the XML
DBMS. PartiX analyzes the definition of the fragments and rewrites the query as sub-
queries accordingly (see details for horizontal fragmentation in [3]). Then, it sends these
sub-queries to the PartiX components installed in the corresponding DBMS nodes, and
collects the partial results. Our architecture is illustrated in the PartiX system, shown
in Figure 6. It is composed of three main parts: (i) catalog services, which are used to
publish schema and distribution metadata; (ii) publishing service for distributed XML
data; and (iii) distributed query service.

The XML Schema Catalog Service registers the data types used by the distributed
collections, while the XML Distribution Catalog Service stores the fragment definitions.
The Distributed XML Data Publisher receives XML documents from users, applies the
fragmentation that was previously defined to the collections, and sends the resulting
fragments to be stored in the remote DBMS nodes. XQuery queries are submitted to the
Distributed XML Query Service, which analyzes their path expressions and identifies
the fragments referenced in each query. It writes the sub-queries that are sent to the
corresponding DBMS nodes, constructs the result, and sends it to the user.

Fig. 6. PartiX Architecture
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Our architecture considers that there is a PartiX Driver, which allows accessing re-
mote DBMSs to store and retrieve XML documents. This driver provides a uniform
communication interface between the PartiX modules and the XML DBMS nodes that
host the distributed collections. The PartiX driver allows different XML DBMSs to
participate in the system. The only requirement is that they are able to process XQuery.

The proposed architecture is implemented in a prototype of the PartiX system. We
have developed a PartiX driver to the eXist DBMS [13]. The Data Publisher inter-
prets loading scripts and stores the documents of a collection in the XML DBMSs. In
the PartiX prototype, we did not implement automatic query decomposition, and we
consider that data location is provided along with sub-queries. However, given a de-
composed query, the query service is capable of coordinating the distributed execution
of the sub-queries annotated with the location of the required data fragments.

In the next section we show a performance evaluation of queries over fragmented
repositories using PartiX.

5 Experimental Evaluation

This section presents experimental results obtained with the PartiX implementation for
horizontal, vertical and hybrid fragmentation. We evaluate the benefits of data fragmen-
tation for the performance of query processing in XML databases. We used a 2.4Ghz
Athlon XP with 512Mb RAM memory in our tests. We describe the experimental sce-
nario we have used for each of the fragmentation types: horizontal, vertical and hybrid,
and show that applying them in XML data collections have reduced the query process-
ing times.

We applied the ToXgene [5] XML database generator to create the Cstore and Citems

collections, as defined in Figures 1(a) and (b), and also a collection for the schema de-
fined in the XBench benchmark [17]. All of them were stored in the eXist DBMS [13].
Four databases were generated for the tests: database ItemsSHor, with document sizes
of 2K in average, and elements PriceHistory and ImagesList with zero occur-
rences (Figure 1(a)); database ItemsLHor, with document sizes of 80Kb in average
(Figure 1(a)); database XBenchVer, with the XBench collections, with document sizes
varying from 5Mb to 15Mb each; and database StoreHyb (Figure 1(a)), with docu-
ment sizes from 5Mb to 500Mb. Experiments were conducted varying the number of
documents in each database to evaluate the performance of fragmentation for differ-
ent database sizes (5Mb, 20Mb, 100Mb and 250Mb for all databases, and 500Mb for
databases ItemsLHor and StoreHyb). (Due to space restrictions, in this paper we show
only the results for the 250Mb database. The remaining results are available at [3].)
Some indexes were automatically created by the eXist DBMS to speed up text search
operations and path expressions evaluation. No other indexes were created.

Each query was decomposed in sub-queries (according to [3]) to be processed with
specific data fragments. When the query predicates match the fragmentation predicates,
the sub-queries are issued only to the corresponding fragments. After each sub-query
is executed, we compose the result to compute the final query answer [3]. The parallel
execution of a query was simulated assuming that all fragments are placed at different
sites and that the sub-queries are executed in parallel in each site. For instance, in Figure
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7(a) with 8 fragments, we can have at most 8 sub-queries running in parallel. We have
used the time spent by the slowest site to produce the result. We measured the commu-
nication time for sending the sub-queries to the sites and for transmitting their partial
results, since there is no inter-node communication. This was done by calculating the
average size of the result and dividing it by the Gigabit Ethernet transmission speed. For
all queries we have measured the time between the moment PartiX receives the query
until final result composition.

In our experiments, each query was submitted 10 times, and the execution time was
calculated by discarding the first execution time and calculating the average of the re-
maining results. We have measured the execution times of each sub-query. More details
on our experiments are available in [3].

Horizontal Fragmentation. For horizontal fragmentation, the tests were run using a set
of 8 queries [3], which illustrates diverse access patterns to XML collections, including
the usage of predicates, text searches and aggregation operations. The XML database
was fragmented as follows. The CItems collection was horizontally fragmented by the
“Section” element, following the correctness rules of Section 3.3. We varied the number
of fragments (2, 4 and 8) with a non-uniform document distribution. The fragments
definitions are shown in [3].

Figure 7(a) contains the performance results of the PartiX execution on top of data-
base ItemsSHor, and Figure 7(b) on database ItemsLHor, in the scenarios previously
described. The results show that the fragmentation reduces the response time for most
of the queries. When comparing the results of databases ItemsSHor and ItemsLHor
with a large number of documents, we observe that the eXist DBMS presents better
results when dealing with large documents. This is due to some pre-processing opera-
tions (e.g., parsing) that are carried out for each XML tree. For example, when using
a 250Mb database size and centralized databases, query Q8 is executed in 1200s in
ItemsSHor, and in 31s in ItemsLHor. When using 2 fragments, these times are reduced
to 300s and 14s, respectively. Notice this is a superlinear speedup. This is very common
also in relational databases, and is due to reduction of I/O operations and better use of
machine resources such as cache and memory, since a smaller portion of data is being
processed at each site.

An important conclusion obtained from the experiments relates to the benefit of hor-
izontal fragmentation. The execution time of queries with text searches and aggregation
operations (Q5, Q6, Q7 and Q8) is significantly reduced when the database is hor-
izontally fragmented. It is worth mentioning that text searches are very common in
XML applications, and typically present poor performance in centralized environments,
sometimes prohibiting their execution. This problem also occurs with aggregation op-
erations. It is important to notice that our tests included an aggregation function (count)
that may be entirely evaluated in parallel, not requiring additional time for reconstruct-
ing the global result.

Another interesting result can be seen in the execution of Q6. As the number of
fragments increases, the execution time of Q6 increases in some cases. This happens
because eXist generates different execution plans for each sub-query, thus favoring the
query performance in case of few fragments. Yet, all the distributed configurations per-
formed better than the centralized database.
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(a) (b)

(c) (d)

Fig. 7. Experimental results for databases (a) ItemsSHor and (b) ItemsLHor - horizontal frag-
mentation; (c) XBenchVer - vertical fragmentation; (d) StoreHyb with and without transmission
times - hybrid fragmentation

As expected, in small databases (i.e., 5Mb) the performance gain obtained is not
enough to justify the use of fragmentation [3]. Moreover, we concluded that the doc-
ument size is very important for defining the fragmentation schema. Database ItemsL-
Hor (Figure 7(b)) presents better results with few fragments, while database ItemsSHor
presents better results with many fragments.

Vertical Fragmentation. For the experiments with vertical fragmentation, we have
used the XBenchVer database and some of the queries specified in XBench [17], which
are shown in [3]. We have named them Q1 to Q10, although these names do not corre-
spond to the names used in the XBench document.

Database XBenchVer was vertically fragmented in three fragments:

– F1papers :=
〈
Cpapers, π/article/prolog

〉
,

– F2papers :=
〈
Catigos, π/article/body

〉
, and

– F3papers :=
〈
Cartigos, π/article/epilog

〉
.
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Figure 7(c) shows the performance results of PartiX in this scenario. In the 5Mb
database, we had gains in all queries, except for Q4 and Q10 [3]. With vertical frag-
mentation, the main benefits occur for queries that use a single fragment. Since queries
Q4, Q7, Q8 and Q9 need more than one fragment, they can be slowed down by frag-
mentation. Query Q4 does not present performance gains in any case, except for a minor
improvement in the 100Mb database [3]. We believe once more that some statistics or
query execution plan has favored the execution of Q4 in this database. In the 20Mb data-
base, all queries presented performance gains (except for Q4), including Q10, which
had presented poor performance in the 5Mb database.

As the database size grows, the performance gains decreases. In the 250Mb data-
base, queries Q6, Q9 and Q3 perform equivalently to the centralized approach. With
these results, we can see that vertical fragmentation is useful when the queries use few
fragments. The queries with bad performance were those involving text search, since in
general, they must be applied to all fragments. In such case, the performance is worse
than for horizontal fragmentation, since the result reconstruction requires a join (much
more expensive than a union).

Hybrid Fragmentation. In the experiments with hybrid fragmentation, we have used
the CStore collection fragmented into 5 different fragments. Fragment F1 prunes /Store/
Items, while the remaining 4 fragments are all about Items, each of them horizontally
fragmented over /Store/Items/Item/Section. We call this database StoreHyb, and the set
of queries defined over it is shown in [3].

As we will see later on, the experimental results with hybrid fragmentation were
heavily influenced by the size of the returning documents. Because of this, we show the
performance results with and without the transmission times.

We consider the same queries and selection criteria adopted for databases ItemsSHor
e ItemsLHor, with some modifications. With this, most of the queries returned all the
content of the “Item” element. This was the main performance problem we have en-
countered, and it affected all queries. This serves to demonstrate that, besides a good
fragmentation design, queries must be carefully specified, so that they do not return un-
necessary data. Because XML is a verbose format, an unnecessary element may carry
a subtree of significant size, and this will certainly impact in the query execution time.

Another general feature we have noticed while making our tests was that the imple-
mentation of the horizontal fragment affects the performance results of the hybrid frag-
mentation. To us, it was natural to take the single document representing the collection,
use the prune operation, and, for each “Item” node selected, to generate an independent
document and store it. This approach, which we call FragMode1, has proved to be very
inefficient. The main reason for this is that, in these cases, the query processor has to
parse hundreds of small documents (the ones corresponding to the “Item” fragments),
which is slower than parsing a huge document a single time. To solve this problem, we
have implemented the horizontal fragmentation with a single document (SD), exactly
like the original document, but with only the item elements obtained by the selection
operator. We have called this approach FragMode2. As we will see, this fragmentation
mode beats the centralized approach in most of the cases.

When we consider the transmission times (FragModeX-T in Figure 7(e)), Frag-
Mode1 performs worse for all database sizes, for all queries, except for queries Q9, Q10
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and Q11. Queries Q9 and Q10 are those that prune the “Items” element, which makes
the parsing of the document more efficient. Query Q11 uses an aggregation function
that presented a good performance in the 100Mb database and in larger ones. In the
remaining databases, it presented poor performance (5Mb database) or an anomalous
behavior (20Mb database) [3].

Notice the FragMode2 performs better, although it does not beat the centralized ap-
proach in all cases. In the 5Mb database, it wins in queries Q3, Q4, Q5 and Q6, which
benefit from the parallelism of the fragments and from the use of a specific fragment.
As in the FragMode1, queries Q9 and Q10 always performs better than the centralized
case; query Q11 only looses in the 5Mb database.

As the database size grows, the query results also increase, thus increasing the total
query processing time. In the 20Mb database, query Q6 performs equivalently to the
centralized approach. In the 100Mb database, this also happens to Q3 and Q6. In the
250Mb database, these two queries perform worse than in the centralized approach.
Finally, in the 500Mb database, query Q4 also performs equivalently to the centralized
case, and the remaining ones loose.

As we could see, the transmission times were decisive in the obtained results. With-
out considering this time, FragMode2 wins in all databases, in all queries, except for
query Q11 in the 5Mb database. However, FragMode1 has shown to be effective in
some cases. Figure 7(e) shows the experimental results without the transmission times
(FragModeX-NT). It shows that hybrid fragmentation reduces the query processing
times significantly.

6 Conclusions

This work presents a solution to improve the performance in the execution of XQuery
queries over XML repositories. This is achieved through the fragmentation of XML
databases. We present a formal definition for the different types of XML fragments,
and define correctness criteria for the proposed fragmentation model. By specifying the
concept of collections of XML documents, we create an abstraction where fragment
definitions apply to both single and multiple document repositories (SD and MD). These
concepts are not found in related work, and they are fundamental to perform query
decomposition and result composition.

Our experiments highlight the potential for significant gains of performance through
XML fragmentation. The reduction in the time of query execution is obtained by intra-
query parallelism, and also by the local execution, avoiding scanning unnecessary frag-
ments. The queries executed by PartiX with the eXist DBMS present an estimated ex-
ecution time up to 72 times smaller (for horizontal fragmentation) when compared to
centralized executions. The PartiX architecture [3] is generic, and can be plugged to
any XML DBMS that process XQuery queries. This architecture follows the approach
of database clusters that have been presenting excellent performance results over rela-
tional DBMSs [11].

As future work, we intend to use the proposed fragmentation model to define a
methodology for fragmenting XML databases. This methodology could be used define
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algorithms for the fragmentation design [18], and to implement tools to automate this
fragmentation process. We are also working on detailing algorithms to automatically
rewrite queries to run over the fragmented database.
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Abstract. We consider the problem of querying XML documents which are
not valid with respect to given DTDs. We propose a framework for measuring
the invalidity of XML documents and compactly representing minimal repair-
ing scenarios. Furthermore, we present a validity-sensitive method of querying
XML documents, which extracts more information from invalid XML documents
than does the standard query evaluation. Finally, we provide experimental results
which validate our approach.

1 Introduction

XML is rapidly becoming the standard format for the representation and exchange of
semi-structured data (documents) over the Internet. In most contexts, documents are
processed in the presence of a schema, typically a Document Type Definition (DTD)
or an XML Schema. Although currently there exist various methods for maintaining
the validity of semi-structured databases, many XML-based applications operate on
data which is invalid with respect to a given schema. A document may be the result
of integrating several documents of which some are not valid. Parts of an XML docu-
ment could be imported from a document that is valid with respect to a schema slightly
different than the given one. For example, the schemas may differ with respect to the
constraints on the cardinalities of elements. The presence of legacy data sources may
even result in situations where schema constraints cannot be enforced at all. Also, tem-
porary violations of the schema may arise during the updating of an XML database in
an incremental fashion or during data entry.

At the same time, DTDs and XML Schemas capture important information about
the expected structure of an XML document. The way a user formulates queries in an
XML query language is directly influenced by her knowledge of the schema. However,
if the document is not valid, then the result of query evaluation may be insufficiently
informative or may fail to conform to the expectations of the user.

Example 1. Consider the DTD D0 in Figure 1 specifying a collection of project de-
scriptions: Each project description consists of a name, a manager, a collection of sub-
projects, and a collection of employees involved in the project. The following query Q0

computes the salaries of all employees that are not managers:

/pro js//pro j/name/emp/ f ollowing sibling::emp/salary
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<!ELEMENT projs (proj*)>
<!ELEMENT proj (name,emp,proj*,emp*)>
<!ELEMENT emp (name,salary)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

Fig. 1. DTD D0

<projs><proj>
<name> Cooking Pierogies </name>
<proj>

<name> Preparing Stuffing </name>
<emp><name> John </name>

<salary> 80K </salary></emp>
<emp><name> Mary </name>

<salary> 40K </salary></emp>
</proj>
<emp><name> Peter </name>

<salary> 30K </salary></emp>
<emp><name> Steve </name>

<salary> 50K </salary></emp>
</proj></projs>

Fig. 2. An invalid document T0

Now consider the document T0 in Figure 2 which lacks the information about the man-
ager of the main project. Such a document can be the result of the main project not
having the manager assigned yet or the manager being changed.

The standard evaluation of the query Q0 will yield the salaries of Mary and Steve.
However, knowing the DTD D0, we can determine that an emp element following the
name element‘‘Cooking Pierogies’’ is likely to be missing, and conclude that
the salary of Peter should also be returned.

Our research addresses the impact of invalidity of XML documents on the result of
query evaluation. The problem of querying invalid XML documents has been addressed
in the literature in two different ways: through query modification or through document
repair. Query modification involves various techniques of distorting, relaxing, or ap-
proximating queries [14,21,3]. Document repair involves techniques of cleaning and
correcting databases [9,17]. Our approach follows the second direction, document re-
pair, by adapting the framework of repairs and consistent query answers developed in
the context of inconsistent relational databases [4]. A repair is a consistent database in-
stance which is minimally different from the original database. Various different notions
of minimality have been studied, e.g., set- or cardinality-based minimality. A consistent
query answer is an answer obtained in every repair. The framework of [4] is used as
a foundation for most of the work in the area of querying inconsistent databases (for
recent developments see [8,12]).

In our approach, differences between XML documents are captured using sequences
of atomic operations on documents: inserting/deleting a leaf. Such operations are used
in the context of incremental integrity maintenance of XML documents [1,5,6] (modi-
fication of a node’s label is also handled but we omit it because of space limitations).
We define repairs to be valid documents obtained from a given invalid document using
sequences of atomic operations of minimum cost, where the cost is measured simply as
the number of operations. Valid answers are defined analogously to consistent answers.
We consider schemas of XML documents defined using DTDs.

Example 2. The validity of the document T1 from Example 1 can be restored in two
alternative ways:
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1. by inserting in the main project a missing emp element (together with its subele-
ments name and salary, and two text elements). The cost is 5.

2. by deleting the main project node and all its subelements. The cost is 19.

Because of the minimum-cost requirement, only the first way leads to a repair. There-
fore, the valid answers to Q0 consist of the salaries of Mary, Steve, and Peter.

In our opinion, the set of atomic document operations proposed here is sufficient for the
correction of local violations of validity created by missing or superfluous nodes. The
notion of valid query answer provides a way to query possibly invalid XML documents
in a validity-sensitive way. It is an open question if other sets of operations can be used
to effectively query XML documents in a similar fashion.

The contributions of this paper include:

– A framework for validity-sensitive querying of such documents based on measuring
the invalidity of XML documents;

– The notion of a trace graph which is a compact representation of all repairs of a
possibly invalid XML document;

– Efficient algorithms, based on the trace graph, for the computation of valid query
answers to a broad class of queries;

– Experimental evaluation of the proposed algorithms.

Because of space limitations we omitted the proofs of most of the theorems. These
will be included in a forthcoming technical report.

2 Basic Definitions

In our paper we use a model of XML documents and DTDs similar to those commonly
used in the literature [5,6,16,19].

Ordered Labeled Trees. We view XML documents as labeled ordered trees with text
values. For simplicity we ignore attributes: they can be easily simulated using text val-
ues. By Σ we denote a fixed (and finite) set of tree node labels and we distinguish a
label PCDATA∈ Σ to identify text nodes. A text node has no children and is additionally
labeled with an element from an infinite domain Γ of text constants. For clarity of pre-
sentation, we use capital letters A,B,C,D,E, . . . for elements from Σ and capital letters
X ,Y,Z . . . for variables ranging over Σ .

We assume that the data structure used to store a document allows for any given node
to get its label, its parent, its first child, and its following sibling in time O(1). For the
purpose of presentation, we represent trees as terms over the signature Σ \ {PCDATA}
with constants from Γ .

Example 3. The tree T1 from Figure 3 can be represented with the term C(A(a),
B(b),B()).

DTDs. For simplicity our view of DTDs omits the specification of the root label.
A DTD is a function D that maps labels from Σ \ {PCDATA} to regular expressions
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C
n0

A
n1 B

n2 B
n3

”a”
n4 ”b”

n5

Fig. 3. A running example

over Σ . The size of D, denoted |D|, is the sum of the lengths of the regular expressions
occurring in D.

A tree T = X(T1, . . . ,Tn) is valid w.r.t. a DTD D if: (1) Ti is valid w.r.t. D for every
i and, (2) if X1, . . . ,Xn are labels of root nodes of T1, . . . ,Tn respectively and E = D(X),
then X1 · · ·Xn ∈ L(E).

Example 4. Consider the DTD D1(A) = PCDATA+ ε , D1(B) = ε , D1(C) = (A ·B)∗. The
tree C(A(a),B(b),B()) is not valid w.r.t. D1 but the tree C(A(a),B()) is.

To recognize strings satisfying regular expressions we use the standard notion of non-
deterministic finite automaton (NDFA) [15] M = 〈Σ ,S,q0,∆ ,F〉, where S is a finite set
of states, q0 ∈ S is a distinguished starting state, F ⊆ S is the set of final states, and
∆ ⊆ S×Σ ×S is the transition relation.

2.1 Tree Edit Distance and Repairs

Tree Operations. A location is a sequence of natural numbers defined as follows: ε is
the location of the root node, and v · i is the location of i-th child of the node at location
v. This notion allows us to identify nodes without fixing a tree.

We consider two atomic tree operations (or operations for short) commonly used in
the context of managing XML document integrity [1,5,6]:

1. Deleting a leaf at a specified location.
2. Inserting a leaf at a specified location. If the tree has already a node at this location,

we shift the existing node to the right together with any following siblings.

We note that our approach can be easily extended to handle the operation of Modifying
the label of a node (omitted here because of space limitations). We use sequences of
editing operations to transform the documents. The cost of a sequence of operations
is defined to be its length, i.e., the number of operations performed when applying the
sequence. Two sequences of operations are equivalent on a tree T if their application
to T yields the same tree. We observe that some sequences may perform redundant
operations, for instance inserting a leaf and then removing it. Because we focus on
finding cheapest sequences of operations, we restrict our considerations to redundancy-
free sequences (those for which there is no equivalent but cheaper sequence).

Note that a deletion (an insertion) of a whole subtree can be performed with a se-
quence of deletions (resp. insertions) of length equal to the size of the tree.

Definition 1 (Edit distance). Given two trees T and S, the edit distance dist(T,S) be-
tween T and S is the minimum cost of transforming T into S.
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Note that the distance between two documents is a metric, i.e. it is positively defined,
symmetric, and satisfies the triangle inequality.

For a DTD D and a (possibly invalid) tree T , a sequence of operations is a sequence
repairing T w.r.t. D if the document resulting from applying the sequence to T is valid
w.r.t. D. We are interested in the cheapest repairing sequences of T .

Definition 2 (Distance to a DTD). Given a document T and a DTD D, the distance
dist(T,D) of T to D is the minimum cost of repairing T , i.e.

dist(T,D) = min{dist(T,S)|S is valid w.r.t D}.

Repairs. The notions of distance introduced above allow us to capture the minimality
of change required to repair a document.

Definition 3 (Repair). Given a document T and a DTD D, a document T ′ is a repair
of T w.r.t. D if T ′ is valid w.r.t. D and dist(T,T ′) = dist(T,D).

Note that, if repairing a document involves inserting a text node, the corresponding
text label can have infinitely many values, and thus in general there can be infinitely
many repairs. However, as shown in the following example, even if the operations are
restricted to deletions there can be an exponential number of non-isomorphic repairs of
a given document.

Example 5. Suppose we work with documents labeled only with Σ = {A,B,T,F} and
consider the following DTD: D(A) = T ·A+A ·F+B ·B, (B) = ε , D(T) = ε , D(F) = ε .
The tree A(T(),A(. . .A(T(),A(B(),B()),F()) . . . ),F()) consisting of 3n + 2 elements has
2n−1 repairs w.r.t. D.

3 Computing the Edit Distance

In this section we present an efficient algorithm for computing the distance dist(T,D)
between a document T and a DTD D. The algorithm works in a bottom-up fashion: we
compute the distance between a node and the DTD after finding the distance between
the DTD and every child of the node.

3.1 Macro Operations

Now, we fix a DTD D and a tree T = X(T1, . . . ,Tn). The base case, when T is a leaf,
is handled by taking n = 0. We assume that the values dist(Ti,D) have been computed
earlier. We recall that the value dist(Ti,D) is the minimum cost of a sequence of atomic
tree operations that transforms Ti into a valid tree. Similarly, the value dist(T,D) corre-
sponds to the cheapest sequence repairing T . We model the process of repairing T with
3 macro operations applied to the root of T :

1. Deleting a subtree rooted at a child.
2. Repairing recursively the subtree rooted at a child.
3. Inserting as a child a minimum-size valid tree whose root’s label is Y for some

Y ∈ Σ .
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Each of these macro operations can be translated to a sequence of atomic tree opera-
tions. In the case of a repairing operation there can be an exponential number of possible
translations (see Example 5), however, for the purpose of computing dist(T,D) we only
need to know their cost. Obviously, the cost of deleting Ti is equal to |Ti| and the cost of
repairing Ti is equal to dist(Ti,D) (computed earlier). The cost of inserting a minimal
subtree can be found using a simple algorithm (omitted here). A sequence of macro
operations is a sequence repairing T if the resulting document is valid. The cost of a se-
quence of macro operations is the sum of the costs of its elements. A sequence of macro
operations is equivalent on T to a sequence of atomic operations if their applications to
T yield the same tree. Using the macro operations to repair trees is equivalent to atomic
operations.

3.2 Restoration Graph

Now, let X1, . . . ,Xn be the sequence of the labels of roots of T1, . . . ,Tn respectively.
Suppose E = D(X) defines the labels of children of the root and let ME = 〈Σ ,S,q0,∆ ,F〉
be the NDFA recognizing L(E) such that |S|= O(|E|) [15].

To find an optimal sequence of macro operations repairing T , we construct a directed
restoration graph UT . The vertices of UT are of the form qi for q ∈ S and i ∈ {0, . . . ,n}.
The vertex qi is referred as the state q in the i-th column of UT and corresponds to the
state q being reached by ME after reading X1, . . . ,Xi processed earlier with some macro
operations. The edges of the restoration graph correspond to the macro operations ap-
plied to the children of T :

– qi−1 Del−−−−→ qi corresponds to deleting Ti and such an edge exists for any state q∈ S
and any i ∈ {1, . . . ,n},

– qi−1 Rep−−−−→ pi corresponds to repairing Ti recursively and such an edge exists only
if ∆(q,Xi, p),

– qi InsY−−−−→ pi corresponds to inserting before Ti a minimal subtree labeled with Y
and such an edge exists only if ∆(q,Y, p).

A repairing path in UT is a path from q0
0 to any accepting state in the last column of UT .

Lemma 1. For any sequence of macro operations v, v is a sequence repairing T w.r.t.
D iff there exists a repairing path (possibly cyclic) in UT labeled with the consecutive
elements of v.

If we assign to each edge the cost of the corresponding macro operation, the problem
of finding a cheapest repairing sequence of macro operations is reduced to the problem
finding a shortest path in UT .

Theorem 1. dist(T,D) is equal to the minimum cost of a repairing path in UT .

Example 6. Figure 4 illustrates the construction of the restoration graph for the doc-
ument C(A(a),B(b),B()) and the DTD from Example 4. The automaton M(A·B)∗ con-
sists of two states q0 and q1; q0 is both the starting and the only accepting state;
∆ = {(q0,A,q1),(q1,B,q0)}. The cheapest repairing paths are indicated with bold lines.
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Fig. 4. Construction of the restoration graph

In each vertex we additionally put the minimum cost of reaching that vertex from q0
0.

Note that the restoration graph represents 3 different repairs: (1) C(A(a),B(),A(),B()),
obtained by inserting A(); (2) C(A(a),B()) obtained by deleting the second child; (3)
C(A(a),B()) obtained by repairing the second child (removing the text node b) and re-
moving the third child. We note that although isomorphic, the repairs (2) and (3) are
not the same because the nodes labeled with B are obtained from different nodes in the
original tree.

3.3 Trace Graph

The trace graph U∗
T is the subgraph of UT consisting of only the cheapest repairing

paths. Note that if UT has cycles, only arcs labeled with inserting macro operations can
be involved in them. Since the costs of inserting operations are positive, U∗

T is a directed
acyclic graph.

Repairs and Paths in the Trace Graph. Suppose now that we have constructed a
trace graph in every node of T . Every repair can be characterized by selecting a path on
each of the trace graphs. Similarly a choice of paths in each of the trace graphs yields a
repair. We note that a choice of a path on the top-level trace graph of T may correspond
to more than one repair (this happens when some subtree has more than one repair).

Complexity Analysis. First, note that for any vertex from the restoration graph UT

the incoming edges come from the same or the preceding column. Therefore, when
computing the minimum cost of a path to a given vertex we need to consider at most
(|Σ |+ 1)×|S|+ 1 values.

Moreover, we don’t need to store the whole restoration graph in memory, but only
its two consecutive columns. Also, note that we need the values dist(Ti,D) and |Ti| only
when we compute the minimum cost for the i-th column of UT , so there is no need for
extra space to store these values. We assume that Σ is fixed and |S| is bounded by |D|.
Theorem 2. The distance between a document T and a DTD D can be computed in
O(|D|2×|T |) time using O(|D|2×height(T)) space.

4 Valid Query Answers

In our paper we use the negation-free fragment of XPath 1.0 [26] restricted to its log-
ical core (only element and text nodes, and only functions selecting the string value
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of nodes). Our approach, however, is applicable to a wider class of negation-free Reg-
ular XPath Queries [18]. We assume the standard semantics of XPath queries and by
QAQ(T ) we denote the answers to the query Q in the tree T .

We use an evaluation method that is geared towards the computation of valid an-
swers. The basic notion is this of a tree fact (n, p,x) which states that an object x (a
node, a label, or a string constant) is reachable from the node n with an XPath expres-
sion p.

We distinguish basic tree facts which use only parent::∗, f ollowing-sibling::∗,
name(.), and text(.) path expressions. We note that basic tree facts capture all structural
and textual information contained in XML documents. For the treeT1=C(A(a),B(b),B())
from Figure 3 examples of basic facts are: (n0, parent::∗,n3), (n3, parent::∗,n4), and
(n4,text(),a). Other tree facts can be derived from the basic facts using simple Horn
rules that follow the standard semantics of XPath. For example:

(x,descendant::∗,y)← (x, parent::∗,y)
(x,descendant::∗,y)← (x,descendant::∗,z)∧ (z, parent::∗,y)

(x, p1/p2,y)← (x, p1,z)∧ (z, p2,y)

For instance, for the document T1 we can derive (n0,descendant::∗ /text(.),a). Since
we consider only positive queries, the used rules don’t contain negation. Therefore,
the derivation process, similarly to negation-free Datalog programs, is monotonic i.e.,
adding new (basic) facts does not invalidate facts derived previously.

Given a document T and a query Q we construct the set of all relevant tree facts B by
adding to B all the basic facts of T . If adding a fact allows to derive new facts involving
subexpressions of Q, these facts are also added to B. To find the answers to Q we simply
select the facts that originate in the root of T and involve Q.

4.1 Validity-Sensitive Query Evaluation

Definition 4 (Valid query answers). Given a tree T , a query Q, and a DTD D, an
object x is a valid answer to Q in T w.r.t D if x is an answer to Q in every repair of T
w.r.t. D.

Computing Valid Query Answers. We construct a bottom-up algorithm that for every
node constructs the set of certain tree facts that hold in every repair of the subtree rooted
in this node. The set of certain tree facts computed for the root node is used to obtain
the valid answers to the query (similarly to standard answers).

We now fix the tree T , the DTD D, and the query Q, and assume that we have
constructed the trace graph U∗

T for T as described in Section 3. We also assume that the
sets of certain tree facts for the children of the root of T have been computed earlier.

Recall that the macro operation InsY corresponds to inserting a minimum-size tree
valid w.r.t. the DTD, whose root label is Y . Thus for every label Y our algorithm needs
the set CY of (certain) tree facts present in every minimal valid tree with the root’s label
Y . This set can be constructed with a simple algorithm (omitted here).

4.2 Naive Computation of Valid Answers

We start with a naive solution, which may need an exponential time for computation.
Later on we present a modification which guarantees a polynomial execution time.
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For each repairing path in U∗
T the algorithm constructs the set of certain tree facts

present in every repair corresponding to this path. Assume now that T = X(T1, . . . ,Tn),
and the root nodes of T,T1, . . . ,Tn are respectively r,r1, . . . ,rn.

For a path q0
0 = v0,v1, . . . ,vm in U∗

T we compute the corresponding set C of certain
facts in an incremental fashion (in every step we keep adding any facts that can be
derived for subexpressions of the query Q):

1. for q0
0 the set of certain facts consists of all the basic fact for the root node;

2. if C is the set corresponding to v0, . . . ,vk−1, then the set C′ corresponding to v0, . . . ,
vk is obtained by one of the 3 following cases depending on the type of edge from
vk−1 to vk:

– for qi−1 Del−−−−→ qi no additional facts are added, i.e., C′ = C;

– for qi−1 Rep−−−−→ pi we append the tree facts of Ti to C, i.e., we add to C certain
facts of the tree Ti with the basic fact (r,/∗,ri); if on the path v0, . . . ,vk−1 other
trees have been appended (with either Rep or InsY instruction), then we also
add the fact (r′, f ollowing-sibling :: ∗,ri) where r′ is the root node of the last
appended tree;

– qi InsY−−−−→ pi is treated similarly to the previous case, but we append (a copy of)
CY .

Naturally, the set of certain facts for T is the intersection of all sets corresponding
to repairing paths in U∗

T . We implement this algorithm by computing for every v the
collection C(v) of sets of tree facts corresponding to every path from q0

0 to v.

Example 7. Recall the document T1 = C(A(a),B(b),B()) and the trace graph from
Figure 4 constructed for T1 and DTD D1 (Example 6). We consider the query Q1 =
descendant::∗/text(.) and we denote the operation of deriving tree facts involving sub-
queries of Q1 with the superscript (·)Q1 . The collections for the trace graph U∗

T are
constructed as follows:

C(q0
0) = {B0}, where

B0 = ({(n0,name(.),C,n0)})Q1 .

C(q1
1) = {B1}, where

B1 = (B0∪C1∪{(n0, parent::∗,n1)})Q1 ,

and C1 is the set of certain facts for A(d)

C1 = ({(n1,name(.),A),(n1, parent::∗,n2),(n2,name(.),PCDATA),(n2, text(.),d)})Q1 .

C(q0
2) = {B2}, where

B2 = (B1∪C2∪{(n0, parent::∗,n3),(n1, f ollowing-sibling::∗,n3)})Q1 ,

and C2 is the set of certain facts for the second child

C2 = ({,(n3,name(.),B)})Q1 .

C(q2
1) = {B1,B3}, where

B3 = (B1∪CA∪{(n0, parent::∗, i1),(n3, f ollowing-sibling::∗, i1)})Q1 ,
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where CA is the set of certain facts for every valid tree with the root label A (i1 is a new
node)

CA = ({(i1,name(.),A)})Q1 .

C(q3
0) = {B2,B4,B5}, where

B4 = (B3∪C3∪{(n0, parent::∗,n5),(i1, f ollowing-sibling::∗,n5)})Q1 ,

B5 = (B1∪C3∪{(n0, parent::∗,n5),(n1, f ollowing-sibling::∗,n5)})Q1 ,

where C3 is the set of certain facts for the third child

C3 = ({(n5,name(.),B)})Q1 .

In order to prevent an exponential explosion of the sizes of the consecutive collections,
we use the following optimization of eager intersection:

Let B1 and B2 be two sets from C(v) for some vertex v. Suppose that v−→ v′ and
the edge is labeled with an operation that appends a tree (either Rep or Ins).
Let B′1 and B′2 be the sets for v′ obtained from B1 and B2 respectively. Instead
of storing in C(v′) both sets B′1 and B′2 we only store their intersection B′1∩B′2.

In Example 7 this optimization give us: C(q3
0) = {B2,B′4,5}, where B′4,5 = B4∩B5.

With a simple induction over the column number we show that the number of sets of
tree facts stored in a vertex in the i-th column is O(i×|S|× |Σ |). We use the notion of
data complexity [24] which allows to express the complexity of the algorithm in terms
of the size of the document only (by assuming other input components to be fixed).

Theorem 3. The data-complexity of computation of valid answers to negation-free core
XPath queries is PTIME.

We note that if we include the query into the input, the problem becomes co-NP-
complete (we omit the proof). This shows that computing valid query answers is con-
siderably more complex than computation of standard answers (whose combined com-
plexity is known to be in PTIME [13]).

5 Experimental Evaluation

In our experiments, we tested 2 algorithms: DIST computing dist(D,T ) and VQA com-
puting valid answers. We compared these algorithms with an algorithm VALIDATE

for validation of a document and an algorithm QA computing standard answers. All
compared algorithms have been implemented using a common set of programming
tools including: the parser, the representation of regular expressions and correspond-
ing NDFA’s, the representation for tree facts, and algorithms maintaining closure of the
set of tree facts. For ease of implementation, we considered only a restricted class of
non-ascending path queries which use only simple filter conditions (testing tag and text
elements), do not use union, and involve only child, descendant, and f ollowing-sibling
axises. We note that those queries are most commonly used in practice and the re-
strictions allow to construct algorithms that compute standard answers to such queries
in time linear in the size of the document. This is also the complexity of the QA
algorithm.
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Data Generation. To observe the impact of the document size on the performance of
algorithms, we randomly generated a valid document and we introduced the violations
of validity to a document by randomly removing and inserting nodes. To measure the
invalidity of a document T we use the invalidity ratio dist(T,D)/|T |. All the documents
used for tests had a small height, 8-10.

For most of the experiments we used the DTD D0 and the query Q0 from Example 1.
To measure the impact of the DTD size on the performance, we generated a family of
DTDs Dn, n≥ 0: Dn(A) = (. . . ((PCDATA+A1) ·A2 +A3) ·A4 + . . .An)∗,Dn(Ai) = A∗. For
those documents we used a simple query // ∗ /text(.).

Environment. The system was implemented in Java 5.0 and tested on an Intel Pentium
M 1000MHz machine running Windows XP with 512 MB RAM and 40 GB hard drive.

5.1 Experimental Results

Results in Figure 5(a) and in Figure 5(b) confirm our analysis: edit distance between a
document and a DTD can be computed in time linear in the document size and quadratic
in the size of the DTD. If we take as the base line the time needed to parse the whole
file (PARSE), then we observe that the overhead needed to perform computations is
small. Because our approach to computing edit distance doesn’t assume any particular
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properties of the automata used to construct the trace graph, Figure 5(b) allows us to
make the following conjecture: Any techniques that optimize the automata to efficiently
validate XML documents should also be applicable to the algorithm for computing the
distance of XML documents to DTDs.

Figure 6(a) shows that for the DTD D0 computing valid query answers is about
6 times longer than computing query answers with QA. Similarly to computing edit
distance, computing valid answers involves constructing the restoration graph. This ex-
plains the quadratic dependency between the performance time and the size of DTD
observed for VQA in Figure 6(b).

6 Related Work

Tree Edit Distance. Tree edit distance is a generalization of the classical string edit
distance. There are several different versions of the former notion varying with the se-
mantics of tree operations [7]. In the most studied approach [23], the deleting operation
also can be performed on a internal node, in which case the children are promoted up.
Conversely, the inserting operation can push down a contiguous sequence of nodes. The
implied notion of edit distance is not equivalent to ours (our notion is sometimes called
1-degree edit distance [22]). In the area of data integration, insertions and deletions of
internal document nodes could be used for the resolution of major structural discrep-
ancies between documents. However, such operations require shifting nodes between
levels and thus it is not clear if our approach can be adapted to that context. The notion
of edit distance identical to ours has been used in papers dealing with the maintenance
of XML integrity [1,5,6] and to measure structural similarity between XML documents
[20]. [9] studies an extension of the basic tree edit framework with moves: a subtree
can be shifted to a new location. In the context of validity-sensitive querying, extending
our approach with move operations would allow to properly handle situations where
invalidity of the document is caused by transposition of elements.

Almost every formulation of edit distance, including ours, allows to assign a non-unit
cost to each operation.

Structural Restoration. A problem of correcting a slightly invalid document is consid-
ered in [9]. Under certain conditions, the proposed algorithm returns a valid document
whose distance from the original one is guaranteed to be within a multiplicative con-
stant of the minimum distance. The setting is different from ours: XML documents are
encoded as binary trees, so performing editing operations on a encoded XML document
may shift nodes between levels in terms of the original tree.

A notion equivalent to the distance of a document to a DTD (Definition 2) was used
to construct error-correcting parsers for context-free languages [2].

Consistent Query Answers for XML. [10] investigates querying XML documents
that are valid but violate functional dependencies. Two repairing actions are consid-
ered: updating element values with a null value and marking nodes as unreliable. This
choice of actions prevents from introducing invalidity in the document upon repairing
it. Nodes with null values or marked as unreliable do not cause violations of functional
dependencies but also are not returned in the answers to queries. Repairs are consistent
instances with a minimal set of nodes affected by the repairing actions.
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A set of operations similar to ours is considered for consistent querying of XML doc-
uments that violate functional dependencies in [11]. Depending on the operations used
different notions of repairs are considered: cleaning repairs obtained only by deleting
elements, completing repairs obtained by inserting nodes, and general repairs obtained
by both operations.

[25] is another adaptation of consistent query answers to XML databases closely
based on the framework of [4].

7 Conclusions and Future Work

In this paper we investigated the problem of querying XML documents containing vi-
olations of validity of a local nature caused by missing or superfluous nodes. We pro-
posed a framework which considers possible repairs of a given document obtained by
applying a minimum number of operations that insert or delete nodes. We demonstrated
algorithms for (a) measuring invalidity in terms of document-to-DTD distance, and (b)
validity-sensitive querying based on the notion of valid query answer.

We envision several possible directions for future work. First, one can investigate if
valid answers can be obtained using query rewriting [14]. Second, it is an open ques-
tion if negation could be introduced into our framework. Third, it would be of signifi-
cant interest to establish a complete picture of how the complexity of the computational
problems considered in this paper (computing document-to-DTD distance, computing
valid query answers) depends on the query language and the repertoire of the avail-
able tree operations (other operations include subtree swap, restricted subtree move).
Finally, it would be interesting to find out to what extent our framework can be adapted
to handle semantic inconsistencies in XML documents, for example violations of key
dependencies.
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Abstract. As XML applications become more complex, there is a growing inter-
est in extending XQuery with side-effect operations, notably XML updates. How-
ever, the presence of side-effects is at odds with XQuery’s declarative semantics
in which evaluation order is unspecified. In this paper, we define “XQuery!”, an
extension of XQuery 1.0 that supports first-class XML updates and user-level
control over update application, preserving the benefits of XQuery’s declarative
semantics when possible. Our extensions can be easily implemented within an
existing XQuery processor and we show how to recover basic database optimiza-
tions for such a language.

1 Introduction

As XML applications grow in complexity, developers are calling for advanced fea-
tures in XML query languages. Many of the most requested extensions, such as XML
updates, support for references, and variable assignment, involve side-effects. So far,
proposed update extensions for XQuery [16,21,23,1,4] have been based on restricted
compositionality and a “snapshot semantics”, where updates are only applied at the end
of query execution. This approach preserves as much of XQuery’s declarative seman-
tics as possible, but the query cannot use the result of an update for further processing,
limiting expressiveness in a way which is not always acceptable for applications.

In this paper, we develop the semantic foundations for extending XQuery 1.0 with
side-effect operations in a fully compositional way. We use that framework to define
XQuery! (read: “XQuery Bang”), an extension of XQuery 1.0 [2] that supports compo-
sitional XML updates and user-level control over update application. We show such a
language can be obtained with limited impact on XQuery’s declarative semantics and
classical optimization techniques. To the best of our knowledge, this is the first com-
plete treatment and implementation of a compositional side-effect extension of XQuery.
The semantic framework is characterized by the presence of an operator (snap) that
allows users to identify declarative fragments within their side-effecting programs, and
which enables the recovery of traditional database optimizations.

XQuery! supports the same basic update operations as previous proposals
[16,21,23,4]. However, the ability to use updates in any context (e.g., in function calls)
and to control update application makes it more expressive than previous proposals. For
instance, it allows to write programs which both return a value and have a side effect,
or it allows part of the query to exploit the result of an update. Compositionality is one
of the main design principles in XQuery 1.0, resulting in a language simpler to explain

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 178–191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



XQuery!: An XML Query Language with Side Effects 179

to users and specify. Our experience with a more restricted update language [23] shows
that applications often require the additional expressiveness. We illustrate how compo-
sitionality between queries and updates in XQuery! can be used to develop a simple
Web service that includes logging of service calls.

The contributions of this paper are:

– A formal description of a semantic framework for extending XML query languages
with side-effect operations which can appear anywhere in the query.

– The description of a new construct (snap) that can be used to control update appli-
cation. The semantics of snap enables unlimited nesting and allows the optimizer
to recover standard database optimizations, even in the presence of side-effects.

– The definition of XQuery!, an extension to XQuery 1.0 with first-class updates, and
an example of its use in a Web service usecase.

– The description of a complete implementation of XQuery!. We show that such an
implementation can easily be obtained from an existing XQuery engine.

The main novelty in our framework lies in the ability to control update application
through the snap construct. The notion of delaying update application to the end of
query evaluation (so called snapshot semantics) was first proposed in [21,16], and has
been studied further in [9,8,1]. Previous proposals apply that approach to the whole
query, while XQuery! provides programmer control of the snapshot scope through the
snap operator. Languages with explicit control of the snapshot semantics are men-
tioned explicitly in the XQuery update requirements document [5], and have been ex-
plored by the W3C XML update task force [11,3]. Work on the XL programming lan-
guage [12] indicates support for fully compositional updates, but not for control of
update application. To the best of our knowledge, our work is the first to propose a
complete treatment of such an operator, and to explicit its relationship with optimiza-
tion properties of the language.

Due to space limitations, we restrict the presentation to the main aspects of the lan-
guage and its semantics. We first introduce XQuery! through a Web service usecase,
before giving a formal definition of the language semantics. We then give an overview
of our implementation, and discuss optimization issues. More details of the language,
its complete formal semantics and more details about the implementation can be found
in the complete paper [13].

2 XQuery! Use Case: Adding Logging to an XQuery Web Service

2.1 Snapshot Semantics

Before we illustrate the use of XQuery!, we introduce the notion of snapshot seman-
tics. All the update extensions to XQuery we are aware of [21,16,9,8,1] delay update
applications up to the end of query execution, in order to retain the declarative seman-
tics of XQuery. For instance, consider the following query which inserts a new buyer
element for each person who buys an item.

for $p in $auction//person
for $t in $auction//closed_auction
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where $t/buyer/@person = $p/@id
return insert { <buyer name="{$p/name}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }

This is a typical join query, and the snapshot semantics ensures that traditional op-
timization techniques, such as algebraic rewritings and lazy evaluation, can be applied.
In XQuery!, where the snapshot semantics is controlled explicitly, the absence of any
internal snap allows similar optimizations. We come back to this point in more details
in Section 4.

In addition, in order to facilitate rewritings, previous proposals limit the use of up-
dates to specific sub-expressions, typically in the return clause of a FLWOR, as in the
above example. In the rest of this section, we give a more advanced Web service use-
case which requires complex composition of side-effects and queries, and control over
update application.

2.2 The Web Service Scenario: Updates Inside Functions

We assume a simple Web service application in which service calls are implemented
as XQuery functions organized in a module. Because of space limitations, we focus on
the single function get item, which, given an itemid and the userid of the requester,
returns the item with the given itemid; the userid is ignored for now. The server stores
the auction document from XMark [22] in a variable $auction. The following is a
possible implementation for that function using standard XQuery.

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return $item

};

Now, let’s assume that the Web service wants to log each item access. This can be
easily done in XQuery! by adding an insert operation in the body of the function.

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return (

( let $name := $auction//person[@id = $userid]/name return
insert { <logentry user="{$name}" itemid="{$itemid}"/> }
into { $log }),

$item
)

};

This simple example illustrates the need for expressions that have a side-effect (the
log entry insertion) and also return a value (the item itself).

Note that in the above example we use XQuery’s sequence construction (,) to com-
pose the conditional insert operation with the result $item. This is a convenience made
possible by the fact that the value returned by atomic update operations is always the
empty sequence.
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2.3 Controlling Update Application

The other central feature of our approach is the ability to control the “snapshot scope”.
A single global scope is often too restrictive, since many applications, at some stage
of their computation, need to see the result of previous side-effects. For this reason,
XQuery! supports a snap { Expr } operator which evaluates Expr, collects its up-
date requests, and makes the effects of these updates visible to the rest of the query.
A snap is always implicitly present around the top-level query in the main XQuery!
module, so that the usual “delay until the end” semantics is obtained by default. How-
ever, when needed, the code can decide to see its own effects. For example, con-
sider the following simple variant for the logging code, where the log is summarized
into an archive once every $maxlog insertions. (snapinsert{}into{} abbreviates
snap {insert{}into{}}, and similarly for the other update primitives).

( let $name := $auction//person[@id = $userid]/name
return
(snap insert { <logentry user="{$name}"

itemid="{$item/@id}"/> }
into { $log },

if (count($log/logentry) >= $maxlog)
then (archivelog($log,$archive),

snap delete $log/logentry )
else ())),

Here, the snap around insertmakes the insertion happen. The insertion is visible
to the code inside the subsequent if-then-else because XQuery! semantics imposes that
in the sequence constructor (e1,e2), e1 be evaluated before e2. Hence, XQuery!’s
ability to support the above example relies on the combination of the snap operator
and of an explicit evaluation order. This is an important departure from XQuery 1.0
semantics, and is discussed in the next subsection.

In many situations, different scopes for the snap would lead to the same result. In
such cases, the programmer can adopt a simple criterion: make snap scope as broad
as possible, since a broader snap favors optimization. A snap should only be closed
when the rest of the program relies on the effect of the updates.

2.4 Sequence Order, Evaluation Order, and Update Order

In XQuery 1.0, queries return sequences of items. Although sequences of items are
ordered, the evaluation order for most operators is left to the implementation. For in-
stance, in the expression (e1, e2), if e1 and e2 evaluate respectively to v1 and v2, then
the value of e1, e2 must be v1, v2, in this order. However, the engine can evaluate e2
before e1, provided the result is presented in the correct sequence order. This freedom
is visible for instance, if both expressions e1 and e2 were to raise an error, as which of
those errors is reported may vary from implementation to implementation.

Although that approach is reasonable in an almost-purely functional language as
XQuery 1.0, it is widely believed that programs with side-effects are impossible to rea-
son about unless the evaluation order is easy to grasp.1 For this reason, in XQuery!

1 Simon Peyton-Jones: “lazy evaluation and side effects are, from a practical point of view,
incompatible” [15].
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we adopt the standard semantics used in popular functional languages with side-effects
[18,17], based on the definition of a precise evaluation order. This semantics is easy to
understand for a programmer and easy to formalize using the XQuery 1.0 formal se-
mantic style, but is quite constraining for the compiler. However, as we discuss in Sec-
tion 3, inside an innermost snap no side-effect takes place, hence we recover XQuery
1.0 freedom of evaluation order in those cases. In other words, inside an innermost
snap, both the pure subexpressions and the update operations can be evaluated in any
order, provided that, at the end of the snap scope, both the item sequence and the list
of update requests are presented in the correct order.

The order of update requests is a bit harder to maintain than sequence order, since
a FLWOR expression may generate updates in the for, where, and return clause, while
result items are only generated in the return clause. For this reason, XQuery! supports
alternative semantics for update application, discussed in Section 3.2, which do not
depend on order.

2.5 Nested Snap

Support for nested snap is central to our proposal, and is essential for compositionality.
Assume, for example, that a counter is implemented using the following function.

declare variable $d := element counter { 0 };
declare function nextid() as xs:integer {

snap { replace { $d/text() } with { $d + 1 },
$d }

};

The snap around the function body ensures that the counter function performs as ex-
pected, returning an increasing value after each call. Obviously, the nextid() func-
tion may be used in the scope of another snap. For instance, the following variant of the
logging code computes a new id for every log entry.

(::: Logging code :::)
( let $name := $auction//person[@id = $userid]/name
return
(snap insert { <logentry id="{nextid()}"

user="{$name}"
itemid="{$item/@id}"/> }

into { $log },
if (count($log/logentry) >= $maxlog) ...

(::: End logging code :::)

The example shows that the snap operator must not freeze the state when its scope
is opened, but just delay the updates that are in its immediate scope until it is closed.
Any nested snap opens a nested scope, and makes its updates visible as soon as it is
closed. The details of this semantics are explained in Section 3.

3 XQuery! Semantics

The original semantics of XQuery is defined in [7] as follows. First, each expression is
normalized to a core expression. Then, the meaning of core expressions is defined by a
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semantic judgment dynEnv � Expr ⇒ value. This judgment states that, in the dynamic
context dynEnv, the expression Expr yields the value value, where value is an instance
of the XQuery data model [6] (XDM).

To support side-effect operations, we extend the data model with a notion of store
that maintains the state of the instances that are being processed. It should be clear from
the discussion in Section 2 that only snap expressions actually modify the store. We
extend the semantic judgment so that expressions may modify the store, and produce
both a value and a list of pending updates. In the rest of this section, we introduce
the update primitives supported by the XQuery! language, followed by the data model
extensions. We then shortly describe normalization, and finally define the new semantic
judgment.

3.1 Update Primitives

At the language level, XQuery! supports a set of standard updates primitives: insertion,
deletion, replacement, and renaming of XML nodes [16,21,23,1,9,8]. The language also
includes an explicit deep-copy operator, written copy { ... }. The full grammar
for the XQuery! extension to XQuery 1.0 is given in [13].

The detailed semantics of these primitives is also standard: insertion allows a se-
quence of nodes to be inserted below a parent at a specified position. Replacement
allows a node to be replaced by another, and renaming allows the node name to be up-
dated. Finally, to better deal with aliasing issues in the context of a compositional lan-
guage, the semantics of the delete operation does not actually delete nodes, but merely
detaches nodes from their parents. If a “deleted” (actually, detached) node is still acces-
sible from a variable, it can still be queried, or inserted somewhere.

3.2 XDM Stores and Update Requests

Store. To represent the state of XQuery! computation, we need a notion of store, which
specifies the valid node ids and, for each node id, its kind (element, attribute, text...),
parent, name, and content. A formal definition can be found in [13,14,10]. On this store,
we define accessors and constructors corresponding to those of the XDM. Note that this
presentation focuses on well-formed documents, and does not consider the impact of
types on the data model representation and language semantics.

Update Requests. We then define, for each XQuery! update primitive, the correspond-
ing update request, which is a tuple that contains the operation name and its parameters,
written as “opname(par1,...,parn)”. For each update request, its application is a partial
function from stores to stores. The application of “insert (nodeseq,nodepar,nodepos)”
inserts all nodes of nodeseq as children of nodepar, after nodepos. For each update
request we also define some preconditions for its parameters. In the insert case, they
include the fact that nodes in nodeseq must have no parent, and that nodepos must
be a child of nodepar. When the preconditions are not met, the update application is
undefined.

Update Lists. An update list, denoted ∆, is a list of update requests. Update lists are
collected during the execution of the code inside a snap, and are applied when the
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snap scope is closed. An update list is an ordered list, whose order is fully specified
by the language semantics.

Applying an Update List to the Store. For optimization reasons, XQuery! supports
three semantics for update list application: ordered, non-deterministic, and conflict-
detection. The programmer chooses the semantics through an optional keyword after
each snap.

In the ordered semantics, the update requests are applied in the order specified by
∆. In the non-deterministic semantics, the update requests are applied in an arbitrary
order. In the conflict-detection semantics, update application is divided into conflict ver-
ification followed by store modification. The first phase tries to prove, by some simple
rules, that the update sequence is actually conflict-free, meaning that the ordered appli-
cation of every permutation of ∆ would produce the same result. If verification fails,
update application fails. If verification succeeds, the store is modified, and the order of
application is immaterial.

The ordered approach is simple and deterministic, but imposes more restrictions
on the optimizer. The non-deterministic approach is simpler to implement and op-
timize, but makes code development harder, especially in the testing phase. Finally,
the conflict-detection approach gives the optimizer the same re-ordering freedom as
the non-deterministic approach while avoiding non-determinism. However, it rules out
many reasonable pieces of code, as exemplified in the full paper. Moreover, it can raise
run-time failures which may be difficult to understand and to prevent.

3.3 Normalization

Normalization simplifies the semantics specification by first transforming each XQuery!
expression into a core expression, so that the semantics only needs to be defined on the
core language. The syntax of XQuery! core for update operations is almost identical
to that of the surface language. The only non-trivial normalization effect is the inser-
tion of a deep copy operator around the first argument of insert, as specified by the
following normalization rule; the same happens to the second argument of replace.
As with element construction in XQuery 1.0, this copy prevents the inserted tree from
having two parents.

[insert {Expr1} into {Expr2} ]
insert {copy {[ Expr1 ]}} as last into {[ Expr2 ]}

3.4 Formal Semantics

Dynamic Evaluation Judgment. We extend the semantic judgment “dynEnv � Expr ⇒
value”, in order to deal with delayed updates and side-effects, as follows:

store0; dynEnv � Expr ⇒ value; ∆; store1

Here, store0 is the initial store, dynEnv is the dynamic context, Expr is the expression
being evaluated, value and ∆ are the value and the list of update requests returned by
the expression, and store1 is the new store after the expression has been evaluated. The
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updates in ∆ have not been applied to store1 yet, but Expr may have modified store1
thanks to a nested snap, or by allocating new elements.

Observe that, while the store is modified, the update list ∆ is just returned by the
expression, exactly as the value. This property hints at the fact that an expression which
just produces update requests, without applying them, is actually side-effects free, hence
can be evaluated with the same approaches used to evaluate pure functional expressions.
This is the main reason to use a snapshot semantics: inside the innermost snap, where
updates are collected but not applied, lazy evaluation techniques can be applied.

Dynamic Semantics of XQuery Expressions. The presence of stores and∆means that
every judgment in XQuery 1.0 must be extended in order to properly deal with them.
Specifically, every semantic judgment which contains at least two subexpressions has to
be extended in order to specify which subexpression has to be evaluated first. Consider
for example the XQuery! rule for the sequence constructor.

store0; dynEnv � Expr1 ⇒ value1; ∆1; store1
store1; dynEnv � Expr2 ⇒ value2; ∆2; store2

store0; dynEnv � Expr1,Expr2 ⇒ value1, value2; (∆1, ∆2); store2

As written, Expr1 must be evaluated first in order for store1 to be computed and
passed for the evaluation of Expr2.

If a sub-expression is guaranteed not to invoke a snap, the compiler can again
choose evaluation order as in the original XQuery 1.0 semantics for that sub-expression.
Of course, ∆1 must precede ∆2 in the result, when the ordered approach is followed,
but this is not harder than preserving the order of (value1, value2); preserving update
order is more complex in the case of FLWOR expressions and function calls (see [13]).

Dynamic Semantics of XQuery! Operations. We have to define the semantics of
copy, of the update operators, and of snap. copy just invokes the corresponding
operation at the data model level, adding the corresponding nodes to the store. The
evaluation of an update operation produces an update request, which is added to the list
of the pending update requests produced by the subexpressions, while replace pro-
duces two update requests, insertion and deletion. Here is the semantics of replace.
The metavariables express constraints on rule applicability: node and nodepar can only
be matched to node ids, and nodeseq only to a sequence of node ids.

store0; dynEnv � Expr1 ⇒ node; ∆1; store1
store1; dynEnv � Expr2 ⇒ nodeseq; ∆2; store2

store2; dynEnv � parent(node) ⇒ nodepar; (); store2
∆3 = (∆1, ∆2, insert(nodeseq, nodepar, node), delete(node))

store0; dynEnv � replace {Expr1} with {Expr2} ⇒ (); ∆3; store2

The evaluation produces an empty sequence and an update list ∆3. It may also mod-
ify the store, but only if either Expr1 or Expr2 modify it. If they only perform alloca-
tions or copies, their evaluation can still be commuted or interleaved. If either executes
a snap, the processor must follow the order specified by the rule, since, for example,
Expr2 may depend on the part of the store which has been modified by a snap in Expr1.
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The two update requests produced by the operation are just inserted into the pending
update list ∆3 after every update requested by the two subexpressions. The actual order
is only relevant if the ordered semantics has been requested for the smallest enclosing
snap.

The rule for snap {Expr} looks very simple: Expr is evaluated, it produces its own
update list ∆, ∆ is applied to the store, and the value of Expr is returned.

store0; dynEnv � Expr ⇒ value; ∆; store1
store2 = apply ∆ to store1

store0; dynEnv � snap {Expr} ⇒ value; (); store2

The evaluation of Expr may itself modify the store, and snap updates this modified
store. For example, the following piece of code inserts <b/><a/><c/> into $x, in
this order, since the internal snap is closed first, and it only applies the updates in its
own scope.

snap ordered { insert {<a/>} into $x,
snap { insert {<b/>} into $x },
insert {<c/>} into $x }

Hence, the formal semantics implicitly specifies a stack-like behavior, reflected by
the actual stack-based implementation that we adopted (see [13]).

In the appendix we list the semantic rules for the other update operations, and for the
most important core XQuery 1.0 expressions.

4 Implementation and Optimization

XQuery! has been implemented as an extension to the Galax XQuery engine [20,19],
and a preliminary version is available for download2. In this section, we review the
modifications that were required to the original Galax compiler to support side-effects,
notably changes to the optimizer.

4.1 Data Model and Run-Time

Changes to the data model implementation to support atomic updates were not terribly
invasive. The only two significant challenges relate to dealing with document order
maintenance, and garbage collection of persistent but unreachable nodes, which is made
necessary by the use of the detach semantics for the delete expression (See Section 3.1).
Both of these aspects are beyond the scope of this paper.

The run-time must be modified to support update lists, which are computed in ad-
dition to the value for each expression. The way the update lists are represented inter-
nally depends on whether the snap operator uses the ordered semantics or not (See
Section 3.2). Because the nondeterministic and conflict-detection semantics are both
independent of the actual order of the atomic updates collected in a snap scope, they

2 http://xquerybang.cs.washington.edu/
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can be easily implemented using a stack of update lists, where each update list on the
stack corresponds to a given snap scope, and where the order inside a list is irrelevant.
The invocation of an update operation adds an update to the update list on the top of
the stack. When exiting a snap, the top-most update list is popped from the stack and
applied. In the case of conflict-detection semantics, it is also checked for conflicts, in
linear time, using a pair of hash-tables over node ids.

This implementation strategy has the virtue that it does not require substantial modi-
fications to an existing compiler. The implementation of the ordered semantics is more
involved, as we must rely on a specialized tree structure to represent the update lists in
a way that allows the compiler to lazily evaluate FLWOR expressions and still retain
the order in which each update must be applied. We refer to the full paper [13] for more
details.

4.2 Compilation Architecture

Implementing XQuery! does not require modifications to the XQuery processing model.
The XQuery! compiler in Galax proceeds by first parsing the query into an AST and
normalization, followed by a phase of syntactic rewriting, compilation into the XML
algebra of [20] with some simple update extensions, optimization and finally evaluation.

Changes to parsing and normalization are trivial (See Section 3). To preserve the
XQuery! semantics, some of the syntactic rewritings must be guarded by a judgment
checking whether side effects may occur in a given sub-expression. Of course, this is
not necessary when the query is guarded by an innermost snap, i.e., a snap whose
scope contains no other snap, nor any call to any function which may cause a snap
to be evaluated. Inside such innermost snap, all the rewritings immediately apply.

4.3 XQuery! Optimizer

Galax uses a rule-based approach in several phases of the logical optimization. Most
rewrite rules require some modifications. To illustrate the way the optimizer works,
let us consider the following variant of XMark query 8 which, for each person, stores
information about the purchased items.

for $p in $auction//person
let $a :=

for $t in $auction//closed_auction
where $t/buyer/@person = $p/@id
return (insert { <buyer person="{$t/buyer/@person}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }, $t)

return <item person="{ $p/name }">{ count($a) }</item>

Ignoring the insert operation for a moment, the query is essentially the same as
XMark 8, and can be evaluated efficiently with an outer join followed by a group by.
Such a query plan can be produced using query unnesting techniques such as those
proposed in e.g., [20]. A naive nested-loop evaluation has complexity O(|person| ∗
|closed auction|). Using an outer join/group by with a typed hash join, we can recover
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the join complexity of O(|person| + |closed auction| + |matches|), resulting in a
substantial improvement.

In XQuery!, recall that the query is always wrapped into a top-level snap. Because
that top-level snap does not contain any nested snap, the state of the database will not
change during the evaluation of the query, and a outer-join/group-by plan can be used.
The optimized plan generated by our XQuery! compiler is shown below. The syntax
used for that query plan is that of [20], where algebraic operators are written as follows:

Op[p1,...,pi]{DOp1,...,DOph}(Op1,...,Opk)

with Op being the operator name; pi’s being the static parameters of the operator;
DOpi’s being dependent sub-operators; and Opi’s are input (or independent) opera-
tors. [...] stands for tuple construction, # for tuple field access, and IN is the input
of dependent sub-operators (as passed by the operator from the result of its indepen-
dents sub-operators). Path expressions, constructors, and update operators are written
in XQuery! syntax for conciseness.

Snap (
MapFromItem{
<person name="{ IN#p/name }">{ count(IN#a) }</person>

}
(GroupBy [a,index,null]

{ IN }
{ (insert { <buyer person="{IN#t/buyer/@person}"

itemid="{IN#t/itemref/@item}" /> }
as last into { $purchasers }, IN#t) }

(LOuterJoin[null]{ IN#t/buyer/@person = IN#p/@id }
(MapIndexStep[index]

(MapFromItem{[p:IN]}($auction//person)),
MapFromItem{[t:IN]}($auction//closed_auction)))))

In general, the optimization rules must be guarded by appropriate preconditions to
ensure that not only the resulting value is correct, but also that the order (when ap-
plicable) and the values of side-effects are preserved. Those preconditions check for
properties related to cardinality and a notion of independence between expressions. The
former ensures that expressions are evaluated with the correct cardinality, as changing
the number of invocation may change the number of effects applied to the store. The
latter is used to check that a part of the query cannot observe the effects resulting from
another part of the query, hence allowing certain rewritings to occur.

More specifically, consider the compilation of a join from nested for loops (maps):
we must check that the inner branch of a join does not have updates. If the inner branch
of the join does have update operations, they would be applied once for each element
of the outer loop. Merge join and hash joins are efficient because they only evaluate
their inputs once, however doing so may change the cardinality for the side-effect por-
tion of the query. Additionally, we must ensure that applying these new updates does
not change the values returned in the outer branch, thus changing the value returned
by the join. The first problem requires some analysis of the query plan, while the latter
is difficult to ensure without the use of snap. In our example, if we had used a snap
insert at line 5 of the source code, the group-by optimization would be more difficult
to detect as one would have to know that the effect of the inserts are not observed in the
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rest of the query. This property has some similarity with the notion binding indepen-
dance proposed in [1], although it needs to be applied here on a much more expressive
language.

5 Related Work

Nested Transactions. The snap operator groups update requests to apply them all
at once, which is reminiscent of transactions. However, their purpose and semantics
are essentially orthogonal. Flat transactions are meant to protect a piece of code from
concurrently running transactions, while nested transactions allow the programmer to
isolate different concurrent threads within its own code.

On the other side, without concurrency and failures, transactions have no effect. In
particular, within a given transaction, access to a variable x that has been modified will
return the new value for that variable. On the contrary, an update to x requested inside a
snap scope will not affect the result of queries to x inside the same scope. In a nutshell,
transactions isolate against external actions, while snap delays internal actions.

Monads in Pure Functional Languages. Our approach allows the programmer to write
essentially imperative code containing code fragments which are purely functional, and
hence can be optimized more easily. The motivation is similar to that of monadic ap-
proaches in languages such as Haskell [15]. In those approaches, the type system dis-
tinguishes between purely functional code, which can be lazily evaluated, from impure
“monadic” code, for which evaluation order is constrained. The type system will not
allow pure code to call monadic code, while monadic code may invoke pure code at
will.

An XQuery! processor must also distinguish the case where the query has some
pending updates but no effect, going beyond the pure-impure distinction. Those pieces
of code in XQuery! do not block every optimizations, provided that some “indepen-
dence” constraints are verified. It seems that these constraints are too complex to be
represented through types. Hence, we let the optimizer collect the relevant information,
and in particular flag the scope of each innermost snap as pure. To be fair, we believe
that a bit of typing would be useful: the signature of functions coming from other mod-
ules should contain an updating flag, with the “monadic” rule that a function that calls
an updating function is updating as well. We are currently investigating the system-
atic translation of XQuery! to a core monadic language, which should give us a more
complete understanding of the relationship between the two approaches.

Snapshot Semantics and Optimization. The optimization opportunities enabled by
the snapshot semantics are explored in [1]. An important difference is that we consider
similar optimization in the context of a fully compositional language.

6 Conclusion

We presented a semantic framework, and an extension of XQuery 1.0 that supports
fully compositional updates. The main contribution of our work is the definition of a
snap operator which enables control over update application and supports arbitrary
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nesting. We described a prototype implementation which is available for download.
Many important issues are still open for research, such as static typing, optimization,
and transactional mechanisms. We are currently working on those issues.
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with side effects, full paper, 2005. http://xquerybang.cs.washington.edu/
papers/XQueryBangTR.pdf.

14. Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A light but formal intro-
duction to XQuery. In Database and XML Technologies (XSym), pages 5–20, May 2004.

15. Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, ex-
ceptions, and foreign-language calls in Haskell. In ”Engineering theories of software con-
struction”, ed Tony Hoare, Manfred Broy, Ralf Steinbruggen, IOS Press, 2001.



XQuery!: An XML Query Language with Side Effects 191

16. Patrick Lehti. Design and implementation of a data manipulation processor for an XML
query processor, Technical University of Darmstadt, Germany, Diplomarbeit, 2001.

17. Xavier Leroy. The Objective Caml system, release 3.08, Documentation and user’s manual.
Institut National de Recherche en Informatique et en Automatique, july 2004.

18. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of Standard
ML (revised). MIT Press, 1997.
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Abstract. In this paper, we focus on B2B scenarios where XML views are ex-
tracted from relational databases and sent over the Web to another application
that edits them and sends them back after a certain (usually long) period of time.
In such transactions, it is unrealistic to lock the base tuples that are in the view to
achieve concurrency control. Thus, there are some issues that need to be solved:
first, to identify what changes were made in the view and second, to identify and
solve conflicts that may arise due to changes in the database state during the trans-
action. We address both of these issues in this paper by proposing an approach
that uses our XML view update system PATAXÓ.

1 Introduction

XML is increasingly being used as an exchange format between business to business
(B2B) applications. In this context, a very common scenario is one in which data is
stored in relational databases (mainly due to the maturity of the technology) and ex-
ported in XML format [14,9] before being sent over the Web. The proposes in [14,9],
however, address only part of the problem, that is, they know how to generate and query
XML views over relational databases, but they do not know how to update those views.
In B2B environments, enterprises need not only to obtain XML views, but also to update
them. An example is a company B (buyer) that buys products from another company
S (supplier). One could think on B asking S for an order form. B would them receive
this form (an empty XML view) in a PDA of one of its employees who would fill it
in and send it back to S. S would them have to process it and place the new order in
its relational database. This scenario is not so complicated, since the initial XML view
was empty. There are, however, more complicated cases. Consider the case where B
changes its mind and asks S its order back, because it wants to change the quantities
of some of the products it had ordered before. In this case, the initial XML view is not
empty, and S needs to know what changes B made to it, so it can reflect the changes
back to the database.

In previous work [2], we have proposed PATAXÓ, an approach to update relational
databases through XML views. In this approach, XML views are constructed using
UXQuery [3], an extension of XQuery, and updates are issued through a very simple
update language. The scenario we address in this paper is different in the following
senses: (i) In PATAXÓ [2], updates are issued through an update language that allows
insertions, deletions and modifications. In this paper, we deal with updates done directly
over the XML view, that is, users directly edit the XML view. Thus, we need to know
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exactly what changes were made to the view. We address this by calculating the delta
between the original and the updated view. Algorithms in literature [6,4,17,7] may be
used in this case, but need to be adapted for the special features of the updatable XML
views produced by PATAXÓ; (ii) In PATAXÓ [2], we rely on the transaction manager of
the underlying DBMS. As most DBMS apply the ACID transaction model, this means
that we simple lock the database tuples involved in a view until all the updates have
been translated to the database. In B2B environments, this is impractical because the
transactions may take a long time to complete [5]. Returning to our example, company
B could take days to submit the changes to its order back to S. The problem in this
case is what to do when the database state changes during the transaction (because of
external updates). In such cases, the original XML view may not be valid anymore, and
conflicts may occur.

In this paper, we propose an approach to solve the open problems listed above. We
use PATAXÓ [2] to both generate the XML view and to translate the updates over the
XML view back to the underlying relational database. For this to be possible, the update
operations that were executed over the XML view need to be detected and specified us-
ing the PATAXÓ update language. It is important to notice that not all update operations
are valid in this context. For example, PATAXÓ does not allow changing the tags of the
XML elements, since this modifies the view schema – this kind of modification can not
be mapped back to the underlying relational database.

We assume the XML view is updatable. This means that all updates applied to it can
be successfully mapped to the underlying relational database. In [2], we present a set
of rules the view definition query must obey in order for the resulting XML view to be
updatable. Basically, this means that primary keys are preserved in the view, joins are
made by key-foreign keys, and nesting is done from the owner relation to the owned
relation. An example of non-updatable view would be a view that repeats the customer
name for each item of a given order. This redundancy causes problems in updates, thus
the view is not updatable.

Application Scenario. Consider companies B and S, introduced above. Company S
has a relational DB that stores orders, products and customers. The DB schema is shown
in Figure 1(a). Now, let’s exemplify the scenario previously described. Company B
requests its order to company S so it can alter it. The result of this request is the XML
view shown in Figure 2 (the numbers near the nodes, shown in red in the Figure, are used
so we can refer to a specific node in our examples). While company B is analyzing the
view and deciding what changes it will make over it, the relational database of company
S is updated as shown in Figure 1(b). These updates may have been made directly over
the database, or through some other XML view. The main point is that the update over
LineOrder affects the XML view that is being analyzed by company B. Specifically, it
changes the price of one of the products that B has ordered (blue pen).

Meanwhile, B is still analyzing its order (XML view) and deciding what to change.
It does not have any idea that product "BLUEPEN" had its price doubled. After 5 hours,
it decides to make the changes shown in Figure 3 (the changes are shown in boldface
in the figure). The changes are: increase the quantity of blue pens to 200, increase the
quantity of red pens to 300, and order a new item (100 notebooks (NTBK)). Notice
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(a)
Customer (custId, name, address),

primary key (custId)
Product (prodId, description, curPrice),

primary key (prodId)
Order (numOrder, date, custId, status),

primary key (numOrder),
foreign key (custId) references Customer

LineOrder (numOrder, prodId, quantity, price),
primary key (numOrder, prodId),
foreign key (prodId) references Product,
foreign key (numOrder) references Order

(b)
//increases price of "blue pen"
UPDATE Product
SET curPrice = 0.10
WHERE prodId = "BLUEPEN";

UPDATE LineOrder
SET price = 0.10
WHERE prodId = "BLUEPEN" AND
numOrder IN (SELECT numOrder

FROM Order WHERE status="open");

Fig. 1. (a) Sample database of company S (b) Updates made over the database
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Fig. 2. Original XML view

there that, in order to add a new product in its order, B has to query S for a catalog of
products. We assume this has already been done.

When S receives the updated view, it will have to: (i) Detect what were the changes
made by B in the XML view; (ii) Detect that the updates shown in Figure 1(b) affect
the view returned by B, and detect exactly what are the conflicts; (iii) Decide how to
solve the conflicts, and update the database using PATAXÓ.

Contributions and Organization of the Text. The main contributions of this paper are:
(i) A delta detection technique tailored to the PATAXÓ XML views; (ii) An approach to
verify the status of the database during the transaction. This is done by comparing the
status of the database in the beginning of the transaction with the status of the database in
the time the updated view is returned to the system; (iii) A conflict resolution technique,
based on the structure of the XML view; (iv) A merge algorithm to XML views that
emphasizes the conflicts caused by changes in the database state during the transaction.

The remaining of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents an overview of the PATAXÓ approach. Section 4.1 presents our
technique to detect deltas in XML views, and Section 4.2 presents a solution to the
problems caused by conflicts. Finally, we conclude in Section 5.

2 Related Work

Extended Transactions. As we mentioned in the introduction, in this paper we do not
rely only on the ACID transaction model implemented by most of the DBMS. Instead,
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Fig. 3. XML view updated by company B and returned to company S

we propose a mechanism to detect changes that were done offline. This mechanism is
responsible for detecting the cases where the offline changes done through the view
may conflict to changes done directly through the database. [5] discusses the effects
of transaction on objects and the interactions between transactions on several extended
transaction models. In our paper, we use the terminology presented in [5], but do not
use any of the extended transaction models proposed there. We discuss the reason for
that below.

In our paper, although we externally detect conflicts between update operations, we
still depend on the ACID transaction model, since the updates are actually executed by
the underlying DBMS (we do not want to change the DBMS in anyway). Because of
this, even if we have several views being updated at the same time, it is enough to detect
conflicts between the database and the view that has just been returned to the system. To
exemplify, assume we have a database D and a set of views V1, ..., Vn specified over D
using the exact same view definition query (i.e., the views are identical). Assume also
that all of these views are being updated offline. When the updated views are returned
to PATAXÓ, we have an order in which they will be analyzed. Assume this order is
V1, ..., Vn (the order in which the views were returned to the system). We then compare
V1 with the current state of D to detect conflicts, and translate non conflicting updates
to D. Then, we proceed with the next view in the queue. Notice that the updates done
through V1 are already reflected in D, so we do not need to compare V1 with V2 to
detect conflicts. Thus, we have isolated transactions.

On a similar line of thought, [1] criticizes the ANSI SQL-92 Isolation Levels, and
discusses the problems that may occur when several transactions interact over the same
data. Since we are not proposing a new transaction manager in our approach, we claim
we do not need to worry about such things in our approach.

Harmony. Work related to our approach is the Harmony Project [13], in which the au-
thors propose the use of lenses to synchronize data in different formats. In [10], the
authors propose to use the semantic foundation of lenses to support updates through
views. Their formal framework treats the database as a concrete format, and views over
the database as an abstract format. Then, lenses are used to map concrete data to ab-
stract views (get component), and the inverse mapping (the one required to update the
database - putback component) derives automatically from the get component. After
defined, two abstract views v1 and v2 can be synchronized. Comparing to our scenario,
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we may assume v1 is the original view and v2 is the updated view. The concrete for-
mat of v1 is the database D, while the concrete format of v2 is v2 itself (in this case
we use the identity lens to perform the mapping from v2 to v2). When the database is
updated, v1 reflects the changes. The problem here is that when we synchronize v1 and
v2, we may erroneously reinsert old things in the database. As an example, suppose
we have tuples t1 and t2 in D. Suppose also that t1 and t2 are both in v1. View v2, at
the beginning, is equal to v1, so it also has t1 and t2. Suppose that, while v2 is being
updated,D is updated to delete t2. Thus, v1 will reflect this change, and now it has only
t1. Meanwhile, v2 is updated to insert t3, and so it now has t1, t2 and t3. When v1 is
synchronized with v2, the system finds out that t2 and t3 needs to be inserted into v1
(and consequently into D). It is thus erroneously reinserting t2. Our approach, in this
case, would insert only t3.

Consistency control of disconnected replicas. A problem closely related to our work
is the problem of consistency control of disconnected database replicas [11,15,12]. To
solve such problem, Phatak and Badrinath [12] propose a reconciliation phase that syn-
chronizes operations. [11] uses conflict detection and dependencies between operations.
However, these approaches do not deal with the XML views problem or require the se-
mantics of the data to be known. In our paper, we use some of the ideas of [11] in the
XML context.

3 The PATAXÓ Approach

As mentioned before, PATAXÓ [2] is a system that is capable of constructing XML
views over relational databases and mapping updates specified over this view back into
the underlying relational database. To do so, it uses an existing approach on updates
through relational views [8]. Basically, a view query definition expressed in UXQuery
[3] is internally mapped to a query tree [2]. Query trees are a formalism that captures the
structure and the source of each XML element/attribute of the XML view, together with
the restrictions applied to build the view. As an example, the query tree that corresponds
to the view query that generates the XML view of Figure 2 is shown if Figure 4. The
interested reader can refer to [2] for a full specification of query trees.

In this paper, it will be important to recognize certain types of nodes in the query tree
and in the corresponding view instance. In the query tree of Figure 4, node order is a
starred-node (*-node) 1. Each starred node generates a collection of (possibly complex)
elements. Each such element carries data from a database tuple, or from a join between
two or more tuples (tables Customer and Order, in the example). We call each element
of this collection a starred subtree. The element itself (the root of the subtree), is called

1 Notice that, despite the fact that the condition numOrder=123 restricts this view to a single
order, node order is defined as a starred node. This is because the formal definition of query
trees requires that nodes with source annotations be starred [2]. In [2], this decision was made
to simplify the mapping to relational views – this way, the algorithm does not need to check
the where annotations to find out whether a given node will have single or multiple instances.
More details about the formal definition of query trees can be found in [2]. Notice further that
this view would not be updatable if it had multiple orders, since the name of the customer
could be redundant. To solve this problem, orders would have to be nested within customer.
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name = ‘orders’

name = ‘order’
[$c := table(“Customer”)]

[$o := table(“Order”)]
[where $c.custId = $o/custId

and $c/custId = “995 and $o/numOrder = “123”]

name = ‘custId’
value = $c/custId

name = ‘item’
[$l := table(“LineOrder”)]

[where $o/numOrder = $l/numOrder]

name = ‘prodId’
value = $l/prodId

name = ‘name’
value = $c/name

*

*

name = ‘line-items’

name = ‘quantity’
value = $l/quantity

name = ‘price’
value = $l/price

name = ‘@numOrder’
value = $o/numOrder

name = ‘orders’

name = ‘order’
[$c := table(“Customer”)]

[$o := table(“Order”)]
[where $c.custId = $o/custId

and $c/custId = “995 and $o/numOrder = “123”]

name = ‘custId’
value = $c/custId

name = ‘item’
[$l := table(“LineOrder”)]

[where $o/numOrder = $l/numOrder]

name = ‘prodId’
value = $l/prodId

name = ‘name’
value = $c/name

*

*

name = ‘line-items’

name = ‘quantity’
value = $l/quantity

name = ‘price’
value = $l/price

name = ‘@numOrder’
value = $o/numOrder

Fig. 4. Query tree that generated the XML view of Figure 2

starred element. In the example of Figure 2 (which is generated from the query tree of
Figure 4), nodes 2, 7 and 11 are starred elements (since they are produced by starred
nodes of the corresponding query tree).

Updates in PATAXÓ. As mentioned before, PATAXÓ uses a very simple update lan-
guage. Basically, it is expressed by a triple 〈t,∆, ref〉, where t is the type of the opera-
tion (insert, delete or update), ∆ is the subtree to be inserted or an atomic value to be
modified, and ref is a path expression that points to the update point in the XML view.
The update point ref is expressed by a simple XPath expression that only contains child
access (/) and conjunctive filters.

Not all update specifications are valid, since they need to be mapped back to the
underlying relational database. Mainly, the updates applied to the view need to follow
the view DTD. PATAXÓ generates the view together with its DTD, and both the view
and the DTD are sent to the client application. The DTD of the XML view of Figure
2 is available in [16]. The remaining restrictions regarding updates are as follows: (i)
subtrees inserted must represent a (possibly complex/nested) database tuple. This re-
striction corresponds to adding only subtrees rooted at starred nodes in the query trees
of [2]. Such elements correspond to elements with cardinality "*" in the DTD. Thus,
in this paper, it is enough to know that only subtrees rooted at elements with cardinality
"*" in the DTD can be inserted. In Figure 3 the inserted subtree item (node 15) satis-
fies this condition. (ii) The above restriction is the same for deletions. Subtrees deleted
must be rooted at a starred node in the query tree. This means that in the example view,
we could delete order and item subtrees.

All of these restrictions can be verified by checking the updated XML view against
the DTD of the original view. As an example, it would not be possible to delete node
name (which is not a starred element, and so contradicts rule (ii) above), since this is
a required element in the DTD. Also, it is necessary to check that updates, insertions
and deletions satisfy the view definition query. As an example, it would not be possible
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to insert another order element in the view, since the view definition requires that this
view has only an order with numOrder equals "123" (see the restrictions on node order
of Figure 4).

Notice that we do not support "?" cardinality in our model. This is because we map
updates over the view to updates of the same type in the relational database (insertions
map to insertions, deletions map to deletions, and so on). Supporting optional elements
would make us to break this rule. Inserting an optional leaf element would map to
modifying a database tuple. In the same way, deleting an optional element would map
to modifying the corresponding tuple to NULL. We discuss this in more details in [3].

4 Supporting Disconnected Transactions

In this section, we describe our approach and illustrate it using the order example of
Section 1. Our architecture [16] has three main modules: the Transaction Manager, Diff
Finder and Update Manager. The Transaction Manager is responsible for controlling
the currently opened transactions of the system. It receives a view definition query,
passes it to PATAXÓ, receives PATAXÓ’s answer (the resulting XML view and its
DTD), and before sending it to the client, it: (i) adds an viewId to the root of the XML
view (this attribute is set to 786 in the example view of Figure 2; the value that will be
assigned to attribute viewId is controlled by a sequential counter in the Transaction
Manager); (ii) adds this same attribute, with the same value, to the root of the view
definition query; (iii) adds an attribute declaration in the view DTD for the viewId;
(iv) stores the XML view, the view definition query and the view DTD in a Temporary
Storage facility, since they will have to be used later when the updated view is returned
to the system.

When the updated view is returned by the user to the system, the Transaction Man-
ager checks its viewId (it is a requirement of our approach that the viewID is not
modified during the transaction) and uses it to find the view DTD and the definition
query, which are stored in the Temporary Storage facility. Then it uses the DTD to val-
idate the updated view. If the view is not valid, then the transaction is aborted and the
user is notified. In the case it is valid, then the Transaction Manager sends the view de-
finition query to PATAXÓ, and receives a new XML view reflecting the database state
at this moment as a response (we will call it view’). This new XML view will be used
to check the database state. If it is exactly the same as the original XML view (which
is also stored in the temporary storage facility), then the updates made to the database
during this transaction do not affect the XML view. In this case all view updates made
in the updated XML view may be translated back to the database. Notice that, at this
stage, we have three copies of the XML view in the system:

– The original XML view (O): the view that was sent to the client at the first place.
In our example, the original view is shown in Figure 2.

– The updated XML view (U ): the view that was updated by the client and returned
to the system. The updated XML view is shown in Figure 3.

– The view’: a new XML view which is the result of running the view definition
query again, right after the updated view arrives in the system. View’ is used to
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(b)
E1(O → U) = Update(9, 200),
Update(13, 300), Insert(t1 , 6))

t1 = <item>
<prodId>NTBK</prodId>
<quantity>100</quatity>
<price>3.50</price>

</item>

E2(O → view’) = Update(10, 0.10)

Fig. 5. (a) View’ (b) Edit scripts for our example

capture possible conflicts caused by external updates in the base tuples that are
in the original view. As an example, view’ is shown in Figure 5(a). Notice that it
reflects the base updates shown in Figure 1(b).

These views are sent to the Diff Finder module. In this module, two comparisons
take place. First, the original view is compared to the updated view, to find what were
the updates made over the view. Next, the original view is compared to view’ to find
out if the database state has changed during the transaction (Section 4.1). The deltas
found by Diff Finder are sent to the Update Manager, which analyzes them and detects
conflicts. In case there are no conflicts, the Update Manager transforms the updates into
updates using the PATAXÓ update language and sends them to PATAXÓ. PATAXÓ
then translates them to the relational database. If there are conflicts we try to solve them
(Section 4.2), and then notify the user of the result of the updates (Section 4.3).

4.1 Detecting Deltas in XML Views

As mentioned before, the Diff Finder is responsible for detecting the changes made
in the XML view, and also in the database (through the comparison of view’ with the
original view). To accomplish this, it makes use of an existing diff algorithm that finds
deltas between two XML views. A delta is a set of operations that denotes the difference
between two data structuresD1 and D2 in a way that if we apply delta to D1, we obtain
D2. Using the notation of [17], this delta can be expressed by E(D1 → D2).

We adopt X-Diff [17] as our diff algorithm, mainly because it is capable of detecting
the operations supported by PATAXÓ (insertion of subtrees, deletion of subtrees and
modification of text values), and considers an unordered model. MH-DIFF [4] does not
support insertion and deletion of subtrees, (it supports only insertion and deletion of
single nodes), thus it is not appropriate in our context. Xy-Diff [6] and XMLTreeDiff
[7] consider ordered models, which does not match the unordered model of our source
data (relations).

X-DIFF. According to [17], the operations detected by X-Diff are as follows:

Insertion of leaf node. The operation Insert(x(name, value), y) inserts a leaf node x
with name name and value value. Node x is inserted as a child of y.

Deletion of leaf node. Operation Delete(x) deletes a leaf node x.
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Modification of leaf value. A modification of a leaf value is expressed as Update(x,
new-value), and it changes the value of node x to new-value.

Insertion of subtree. Operation Insert(Tx, y) inserts a subtree Tx (rooted at node x)
as a child of node y.

Deletion of subtree. The operation Delete(Tx) deletes a subtree Tx (rooted at node
x). When there is no doubts about which is x, this operation can be expressed as
Delete(x).

An important characteristic of X-Diff is that it uses parent-child relationships to cal-
culate the minimum-cost matching between two trees T1 and T2. This parent-child re-
lationship is captured by the use of a node signature and also by a hash function. The
hash function applied to node y considers its entire subtree. Thus, two equal subtrees
in T1 and T2 have the same hash value. The node signature of a node x is expressed by
Name(x1)/.../Name(xn)/Name(x)/Type(x), where (x1/.../xn/x) is the path from the root
to x, and Type(x) is the type of node x. In case x is not an atomic element, its signature
does not include Type(x) [17]. Matches are made in a way that only nodes with the same
signature are matched. Also, nodes with the same hash value are identical subtrees, and
thus they are matched by X-Diff.

To exemplify, Figure 5(b) shows the edit script generated by X-Diff for the original
(O) and updated (U ) views. This Figure also shows the edit script for the original (O)
view and view’, which is also calculated by Diff Finder.

Update Manager. The Update Manager takes the edit script generated by X-Diff and
produces a set of update operations in the PATAXÓ update language. Here, there are
some issues that need to be taken care of. The main one regards the update path ex-
pressions (they are referred to as ref in the update specification). In PATAXÓ, update
operations need to specify an update path, and those are not provided by the edit script
generated by X-Diff.

To generate the update path ref, we use the DB primary keys as filters in the path
expression. Notice that keys must be kept in the view for it to be updatable [2]. Specif-
ically, for an operation on node x, we take the path p from x to the view root, and find
all the keys that are descendants of nodes in p.

In our example, the keys are custId, numOrder and prodId. The rules for translating
an X-Diff operation into a PATAXÓ operation are as follows. The function generateRef
uses the primary keys to construct filters, as mentioned above. The general form of a
PATAXÓ update operation is 〈t,∆, ref〉.

– Insert (x (name, value), y) is mapped to 〈insert, x, generateRef (y)〉.
– Delete (x) is mapped to 〈delete, {}, generateRef (x)〉.
– Update (x, new-value) is mapped to 〈modify, {new-value}, generateRef (x)〉.
– Insert (Tx, y) is mapped to 〈insert, Tx, generateRef (y)〉.
– Delete (Tx) is mapped to 〈delete, {}, generateRef (x)〉.
Function generateRef (x) works as follows. First, it gets the parent xn of x, then

the parent xn−1 of xn, and continues to get their parents until the root is reached. The
obtained elements form a path p = x1/.../xn−1/xn/x. Then, for each node y in p, it
searches for leaf children that are primary keys in the relational database. Use this set
of nodes to specify a conjunctive filter that uses the node name and its value in the view.
As an example, we show the translation of an operation of E1 (Figure 5(b)):
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– Update(9, 200) ≡ <modify, {200}, orders/order[@numOrder="123" and custId=
"995"]/line-item/item[prodId="BLUEPEN"]/quantity>

PATAXÓ uses the values in the filters in the translation of modifications and dele-
tions, and the values of leaf nodes in the path from the update point to the root in the
translation of insertions. This approach, however, causes a problem when some of these
values were modified by the user in the view. To solve this, we need to establish an or-
der for the updates. This order must make sure that if an update operation u references
a node value x that was modified in the view, then the update operation that modifies
x must be issued before u. Given this scenario, we establish the following order for the
updates: (1) Modifications; (2) Insertions; (3) Deletions.

There is no possibility of deleting a subtree that was previously inserted, since this
kind of operation would not be generated by X-Diff. When there is more than one
update in each category, then the updates that have the shortest update path (ref ) are
issued first. To illustrate, consider a case where the numOrder is changed (u1), and the
quantity of an item is changed by u2. Since the numOrder is referenced in the filter of
the update path of u2, then u1 has to be issued first, so that when u2 is executed, the
database already has the correct value of the numOrder. Notice that this example is not
very common in practice, since normally primary key values are not changed.

4.2 Guaranteeing Database Consistency

The detection of conflicts is difficult, because a conflict can have different impacts de-
pending on the application. To illustrate, in our example of orders, the removal of a prod-
uct from the database means that the customer can not order it anymore. As a counter
example, if a user increases the quantity of an item in its order, she may not want to
proceed with this increase when she knows that the price of the item has increased.

The issues above are semantic issues. Unfortunately, a generic system does not know
about these issues, and so we take the following approach: The Diff Finder uses X-Diff
to calculate the edit script for the original XML view O and the view that has the current
database state (view’). If the edit script is empty the updates over the updated view can
be translated to the database with no conflict. In this case, the Update Manager translates
the updates to updates in the PATAXÓ update language (Section 4.1) and sends them to
PATAXÓ so it can map them to the underlying relational database.

However, most of the times the views (O and view’) will not be equal, which implies
in conflicts. A conflict is any update operation that has been issued in the database
during the transaction lifetime, and that affects the updates made by the user through
the view. We will provide more details on this later on.

In our approach, there are three operational modes to deal with conflicts: restrictive,
relaxed and super-relaxed modes. The first one, the restrictive mode, no updates are
translated when there are differences between the views original and view’. This is a
very restrictive approach, where all modifications made over the view are treated as a
single atomic transaction.

The second, relaxed mode, is a bit less restrictive. In this mode, updates that do
not cause conflicts are translated to the underlying database. The remaining ones are
aborted. To keep database consistency, we assume that some updates may coexist with
others done externally, without causing inconsistencies in the database. To recognize
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such cases, we define a set of rules that are based on the view structure only. Notice
that we do not know the semantics of the data in the view nor in the database. Thus,
sometimes we may detect an operation to cause conflict even tough semantically it does
not cause conflicts. This is the price we pay for not requiring the user to inform the
semantics of the data in the view.

Conflict Detection Rules for Relaxed Mode. We now present rules for the resolution
of conflicts in modifications for the relaxed mode. We leave insertions and deletions for
future work.

RULE 1 (Leaf node within the same starred-element). Let L = {l1, ..., ln} (n ≥ 1))
be the set of leaf nodes descending from a starred node s in a given XML view v.
Additionally, ensure that s is the first starred ancestor of the nodes in L. If any li ∈ L
is modified in the updated view, and some lj is modified in view’ (i = j or i �= j), then
the updates in nodes of L are rejected.

An example of such case can be seen in the modification of node 9 (quantity of blue
pens) in Figure 3 from 100 to 200. This operation can not proceed because it conflicts
with the update of node 10 (price of blue pens) in view’.

RULE 2 (Dependant starred-subtrees). Let s1 and s2 be two starred subtrees in a given
XML view v. Let L1 = {l11 , ..., l1n} (n ≥ 1)) be the set of leaf nodes descending from
s1, but not from its starred subtrees, and L2 = {l21 , ..., l2k

} (k ≥ 1)) be the set of
leaf nodes descending from s2, but not from its starred subtrees. Further, let s1 be an
ancestor of s2. If any l2i ∈ L2 is modified in the updated view, and some l1j ∈ L1 is
modified in view’, then the updates conflict, and the modification of l2i is aborted.

This rule captures the dependency between starred subtrees. In the XML view of Figure
3, it is easy to see that each item subtree is semantically connected to its parent order
tree. Thus, rule 2 defines that modifications done in the database that affect the order
subtree conflicts with modifications to the item subtree done through the view.

Notice that in all the above rules, we need to know the correspondence of nodes in
views U and view’. For example, we need to know that node 12 in the updated view
(Figure 3) correspond to node 12 in view’ (Figure 5(a)). This can be easily done by
using a variation of our merge algorithm presented later on.

To check for conflicts, each modify operation detected in E1(O → U) is checked
against each modify operation in E2(O → view’) using the rules above. In [16], we
present the algorithm. The checking is very simple, and once we detect a conflict due
to one rule, we do not need to check the other one.

Conflict Detection Rules for Super-Relaxed Mode. Finally, the third, less restrictive
operational mode is the super-relaxed mode. In this mode, we consider a conflict hap-
pens only when the update occurs over the same leaf node, or the tuple key has been
changed in the database. Formally, we have:

RULE 3 (Same leaf node). Let l be a leaf node in a given XML view v. If l is modified
in the updated view to a value v1, and l is modified in view’ to a value v2, v1 �= v2, then
the update on node l is rejected.
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RULE 4 (Key node). Let l and k be two leaf nodes in a given XML view v. Let k rep-
resent the primary key of the tuple from which l was extracted in the database. If l is
modified in the updated view, and k is modified in view’, then the update on node l is
rejected.

We consider this a conflict because we use the key value to translate the update. If the
key has changed, we can not reach the tuple to update it anymore.

4.3 Notifying the User

In all operational modes of our system, we need to inform the user of which update
operations were actually translated to the base tables, and which were aborted. To do
so, the system generates a merge of the updated data and the current database state.
The algorithm starts with the original XML view. Consider E1 = E(O → U ) and E2 =
E(O → view’).

1. Take each delete operation u=Delete(x) in E2 and mark x in the original XML
view. The markup is made by adding a new parent pataxo:DB-DELETE to x, where
pataxo is a namespace prefix (we omit it in the remaining definitions). This new
element is connected to the parent of x.

2. Take each insert operation u=Insert(Tx, y) in E2, insert Tx under y and add a new
parent DB-INSERT to Tx. Connect the new element as a child of y.

3. Take each modify operation u=Update(x, new-value) in E2, add a DB-MODIFY
element with value new-value. Connect it as a child of x.

After this, it is necessary to apply the update operations that are in the updated view
to the original view, and mark them too. In this step, the markup elements receive a
STATUS attribute to describe if the update operation was accepted or aborted. Since we
are currently detecting conflicts only between modify operations, we are assuming the
remaining ones are always accepted.

1. Take each delete operation u=Delete(x) in E1, add a new parent CLIENT-DELETE
STATUS="ACCEPT" to x and connect it to the parent of x.

2. Take each insert operation u=Insert(Tx, y) in E1, insert Tx under y and add a new
parent CLIENT-INSERT STATUS="ACCEPT" to Tx. Connect the new created element
as a child of y.

3. Take each modify operation u=Update(x, new-value) in E1, add a new element
CLIENT-MODIFY with value new-value. Connect the CLIENT-MODIFY element as a
child of x. If u is marked in E1, then add a STATUS attribute to the CLIENT-MODIFY
with value ABORT . If not, then add the STATUS attribute with value ACCEPT .

The result of this merge in our example is shown in Figure 6. There may be elements
with more than one conflict markup. For example, suppose the client had altered the
price of blue pens to 0.02 (the issue of whether this is allowed by the application or
not, is out of the scope of this paper). In this case, the element price would have two
markups.

After the execution of the merge algorithm, the Transaction Manager receives the
new merged view (notice that the merged view is an XML document not valid according
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<orders viewId="786">
<order numOrder="123">

<custId>995</custId>
<name>Company B</name>
<line-items>

<item>
<prodId>BLUEPEN</prodId>
<quantity>100

<pataxo:CLIENT-MODIFY STATUS="ABORT">200</pataxo:CLIENT-MODIFY>
</quantity>
<price>0.05

<pataxo:DB-MODIFY>0.10</pataxo:DB-MODIFY>
</price>

</item>
<item>

<prodId>REDPEN</prodId>
<quantity>200

<pataxo:CLIENT-MODIFY STATUS="ACCEPT">300<pataxo:CLIENT-MODIFY>
</quatity>
<price>0.05</price>

</item>
<pataxo:CLIENT-INSERT STATUS="ACCEPT">

<item>
<prodId>NTBK</prodId>
<quantity>100</quantity>
<price>3.50</price>

</item>
</pataxo:CLIENT-INSERT>

</line-items>
</order>

</orders>

Fig. 6. Result of the merge algorithm

to the view DTD, since new markup elements were added). It re-generates the view
(which is now the original view O), and stores it in the temporary storage facility, since
now this is the new original view. Then, it sends the merged view and view O back to
the client application. The client may want to analyze the merged view and to resubmit
updates through view O. This second "round" will follow the same execution flow as
before. The system will proceed as if it was the first time that updated view arrives in
the system.

5 Discussion and Future Work

We have presented an approach to support disconnected transactions in updates over
relational databases through XML views. Our approach uses PATAXÓ [2] to both gen-
erate the views and to translate the updates to the underlying relational database. In this
paper, we allow views to be edited, and we automatically detect the changes using X-
Diff [17]. We present an algorithm to transform the changes detected by X-Diff into the
update language accepted by PATAXÓ. Also, we present a technique to detect conflicts
that may be caused by updates over the base relations during the transaction execution.
Currently, we only detect conflicts for modifications.

One of the benefits of our approach is that it does not require that updates are
done online. In our previous approach [2], the client application must be connected
to PATAXÓ in order to issue updates. In this paper, however, we support offline update
operations that can be done in offline devices, like PDAs.
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This scenario is very common in practice, and we believe that industry will greatly
benefit from our work. In the future, we plan to evaluate our approach in real enterprises.
Also, we are working on rules to detect conflicts on insertions and deletions. We plan
to work on algorithms to solve such conflicts.
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Abstract. The need for incremental constraint maintenance within collections of
semi-structured documents has been ever increasing in the last years due to the
widespread diffusion of XML. This problem is addressed here by adapting to the
XML data model some constraint verification techniques known in the context
of deductive databases. Our approach allows the declarative specification of con-
straints as well as their optimization w.r.t. given update patterns. Such optimized
constraints are automatically translated into equivalent XQuery expressions in
order to avoid illegal updates. This automatic process guarantees an efficient in-
tegrity checking that combines the advantages of declarativity with incremental-
ity and early detection of inconsistencies.

1 Introduction

It is well-known that expressing, verifying and automatically enforcing data correctness
is a difficult task as well as a pressing need in any data management context. In this re-
spect, XML is no exception; moreover, there is no standard means of specifying generic
constraints over large XML document collections. XML Schema offers a rich set of pre-
defined constraints, such as structural, domain and cardinality constraints. However, it
lacks full extensibility, as it is not possible to express general integrity requirements in
the same way as SQL assertions, typically used to specify business rules at the applica-
tion level in a declarative way. A large body of research, starting from [21], gave rise
to a number of methods for incremental integrity checking within the framework of de-
ductive databases and w.r.t. the relational data model. Indeed, a brute force approach to
integrity checking, i.e., verifying the whole database each time data are updated, is un-
feasible. This paper addresses this problem in the context of semi-structured data, and
namely XML, in order to tackle the difficulties inherent in its hierarchical data model.
A suitable formalism for the declarative specification of integrity constraints over XML
data is therefore required in order to apply optimization techniques similar to those
developed for the relational world. More specifically, we adopt for this purpose a for-
malism called XPathLog, a logical language inspired by Datalog and defined in [18].
In our approach, the tree structure of XPathLog constraints is mapped to a relational
representation (in Datalog) which lends itself well to the above mentioned optimization
techniques. The optimization only needs to take place once, at schema design time: it
takes as input a set of constraints and an update pattern and, using the hypothesis that
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the database is always consistent prior to the update, it produces as output a set of opti-
mized constraints, which are as instantiated as possible. These optimized constraints are
finally translated into XQuery expressions that can be matched against the XML docu-
ment so as to check that the update does not introduce any violation of the constraints.
At runtime, the optimized checks are performed instead of the full ones, whenever the
updates are recognized as matching the patterns used in the simplification.

In particular, the constraint simplification method we adopt generates optimized con-
straints that can be tested before the execution of an update (and without simulating the
updated state), so that inconsistent database states are completely avoided.

2 Constraint Verification

Semantic information in databases is typically represented in the form of integrity con-
straints, which are properties that must always be satisfied for the data to be considered
consistent. In this respect, database management systems should provide means to auto-
matically verify, in an efficient way, that database updates do not introduce any violation
of integrity. A complete check of generic constraints is too costly in any nontrivial case;
in view of this, verification of integrity constraints can be rendered more efficient by
deriving specialized checks that are easier to execute at each update. Even better per-
formance is achieved if these checks can be tested before illegal updates. Nevertheless,
the common practice is still based on ad hoc techniques: domain experts hand-code
tests in the application program producing the update requests or design triggers within
the database management system that respond to certain update actions. However, both
methods are prone to errors and little flexibility w.r.t. changes in the schema or design
of the database, which motivates the need for automated integrity verification methods.

In order to formalize the notion of consistency, and thus the constraint verification
problem, we refer to deductive databases, in which a database state is the set of data-
base facts and rules (tuples and views). As semantics of a database state D we take its
standard model: the truth value of a closed formula F , relative to D, is defined as its
valuation in the standard model and denoted D(F).

Definition 1 (Consistency). A database state D is consistent with a set of integrity
constraints Γ iff D(Γ ) = true.

An update U is a mapping U : D �→ D , where D is the space of database states. For
convenience, for any database state D, we indicate the state arising after update U as
DU . The constraint verification problem may be formulated as follows. Given a database
state D, a set of integrity constraints Γ , such that D(Γ ) = true, and an update U , does
DU(Γ ) = true hold too? As mentioned, evaluating DU(Γ ) may be too expensive, so a
suitable reformulation of the problem can be given in the following terms: is there a
set of integrity constraints Γ U such that DU (Γ ) = D(Γ U) and Γ U is easier to evaluate
than Γ ? In other words, the looked for condition Γ U should specialize the original
Γ , as specific information coming from U is available, and avoid redundant checks
by exploiting the fact that D(Γ ) = true. We observe that reasoning about the future
database state DU with a condition (Γ U ) that is tested in the present state D, complies
with the semantics of deferred integrity checking (i.e., integrity constraints do not have
to hold in intermediate transaction states).
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3 General Constraints over Semi-structured Data

Consistency requirements for XML data are not different from those holding for rela-
tional data, and constraint definition and enforcement are expected to become funda-
mental aspects of XML data management. In current XML specifications, fixed-format
structural integrity constraints can already be defined by using XML Schema defini-
tions; they are concerned with type definitions, occurrence cardinalities, unique con-
straints, and referential integrity. However, a generic constraint definition language for
XML, with expressive power comparable to assertions and checks of SQL, is still not
present in the XML Schema specification. We deem this a crucial issue, as this lack of
expressiveness does not allow one to specify business rules to be directly included in
the schema. Moreover, generic mechanisms for constraint enforcement are also lacking.
In this paper we cover both aspects.

Our approach moves from a recently proposed adaptation of the framework of de-
ductive databases to the world of semi-structured data. More precisely, we refer to
XPathLog [18] as the language for specifying generic XML constraints, which are ex-
pressed in terms of queries that must have an empty result.

Even though, in principle, we could write denials in XQuery, a declarative, first-
order logic language is closer to what is usually done for relational data [14]; a logical
approach leads to cleaner constraint definitions, and the direct mapping from XPathLog
to Datalog helps the optimization process.

3.1 XPathLog

XPathLog [18] is an extension of XPath modeled on Datalog. In particular, the XPath
language is extended with variable bindings and is embedded into first-order logic to
form XPath-Logic; XPathLog is then the Horn fragment of XPath-Logic. Thanks to
its logic-based nature, XPathLog is well-suited to querying XML data and providing
declarative specifications of integrity constraints.

It uses an edge-labeled graph model in which subelements are ordered and attributes
are unordered. Path expressions have the form root/axisStep/. . . /axisStep where root
specifies the starting point of the expressions (such as the root of a document or a vari-
able bound to a node) and every axisStep has the form axis::nodetest[qualifier]∗. An
axis defines a navigation direction in the XML tree: child, attribute, parent, ancestor,
descendant, preceding-sibling and following-sibling. All elements satisfying along
the chosen axis nodetest are selected, then the qualifier(s) are applied to the selec-
tion to further filter it. Axes are abbreviated as usual, e.g. path/nodetest stands for
path/child::nodetest and path/@nodetest for path/attribute::nodetest.

XPath-Logic formulas are built as follows. An infinite set of variables is assumed
along with a signature of element names, attribute names, function names, constant
symbols and predicate names. A reference expression is a path expression that may
be extended to bind selected nodes to variables with the construct “→ Var”. Refer-
ence expressions have the form root/refAxisStep/. . . /refAxisStep, where the syntax
of refAxisStep is as follows:
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axis::(nodetest|Var)[qualifier]∗[→Var][qualifier]∗.

XPath-Logic predicates are predicates over reference expressions and atoms and lit-
erals are defined as usual. Formulas are thus obtained by combining atoms with con-
nectives (∧, ∨, ¬) and with quantified (∃, ∀) variables. Clauses are written in the form
Head �Body where the head, if present, is an atom and the body a conjunction of lit-
erals. In particular, a denial is a headless clause; integrity constraints will be written
as denials, which indicates that there must be no variable binding satisfying the condi-
tion in the denial body for the data to be consistent. Unless otherwise indicated, clause
variables (written with capital letters) are implicitly universally quantified.

Aggregates are written with the syntax agg(V [G1, . . . ,Gn]; reference-expression),
where agg is an aggregate (such as Sum, Cnt, etc.), V , if present, is the variable on
which the aggregate operation is performed and G1, . . . ,Gn are the group-by variables.
A D subscript (e.g., CntD) indicates that only distinct values are considered. Note that
V is absent for Cnt and CntD.

3.2 Examples

Consider two documents: pub.xml containing a collection of published articles and
rev.xml containing information on reviewer/paper assignment for all tracks of a given
conference. The DTDs are as follows.

<!-- pub.xml -->
<!ELEMENT dblp (pub)*>
<!ELEMENT pub (title,aut+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT aut (name)>
<!ELEMENT name (#PCDATA)>

<!-- rev.xml -->
<!ELEMENT review (track)+>
<!ELEMENT track (name,rev+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rev (name,sub+)>
<!ELEMENT sub(title,auts+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT auts (name)>

Example 1. Consider the following integrity constraint, which imposes the absence of
conflict of interests in the submission review process (i.e., no one can review papers
written by a coauthor or by him/herself):

�//rev[name/text()→ R]/sub/auts/name/text()→ A
∧(A = R∨//pub[aut/name/text()→ A∧aut/name/text()→ R])

The text() function refers to the text content of the enclosing element. The condition in
the body of this constraint indicates that there is a reviewer named R who is assigned a
submission whose author has name A and, in turn, either A and R are the same or two
authors of a same publication have names A and R, respectively.

Example 2. Consider a conference policy imposing that a reviewer involved in three or
more tracks cannot review more than 10 papers. This is expressed as follows:

�CntD{[R];//track[/rev/name/text()→ R]} ≥ 3∧
CntD{[R];//rev[/name/text()→ R]/sub} ≥ 10
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4 Mapping XML Constraints to the Relational Data Model

In order to apply our simplification framework to XML constraints, as will be described
in Section 5, schemata, update patterns, and constraints need to be mapped from the
XML domain to the relational model. Note that these mappings take place statically
and thus do not affect runtime performance.

4.1 Mapping of the Schema and of Update Statements

The problem of representing XML data in relations was considered, e.g., in [25]. Our
approach is targeted to deductive databases: each node type is mapped to a correspond-
ing predicate. The first three attributes of all predicates respectively represent, for each
XML item: its (unique) node identifier, its position and the node identifier of its parent
node. It is worth noting that the second attribute is crucial, as the XML data model
is ordered. Whenever a parent-child relationship within a DTD is a one-to-one corre-
spondence (or an optional inclusion), a more compact form is possible, because a new
predicate for the child node is not necessary: the attributes of the child may be equiv-
alently represented within the predicate that corresponds to the parent (allowing null
values in case of optional child nodes). The documents of the previous section map to
the relational schema

pub(Id,Pos,IdParent_{dblp},Title) aut(Id,Pos,IdParent_{pub},Name)
track(Id,Pos,IdParent_{review},Name) rev(Id,Pos,IdParent_{track},Name)
sub(Id,Pos,IdParent_{rev},Title) auts(Id,Pos,IdParent_{sub},Name)

where Id, Pos and IdParenttagname preserve the hierarchy of the documents and where
the PCDATA content of the name and title node types is systematically embedded
into the container nodes, so as to reduce the number of predicates.

As already mentioned, mapping a hierarchical ordered structure to a flat unordered
data model forces the exposition of information that is typically hidden within XML
repositories, such as the order of the sub-nodes of a given node and unique node iden-
tifiers. The root nodes of the documents (dblp and review) are not represented as
predicates, as they have no local attributes but only subelements; however, such nodes
are referenced in the database as values for the IdParentdbl p and IdParentreview attributes
respectively, within the representation of their child nodes. Publications map to the pub
predicate, authors in pub.xml map to aut, while authors in rev.xml map to auts,
and so on, with predicates corresponding to tagnames. Last, names and titles map
to attributes within the predicates corresponding to their containers.

Data mapping criteria influence update mapping. We express updates with the XUp-
date language [13], but other formalisms that allows the specification of insertions of
data fragments would also apply. Consider the following statement:

<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:insert-after select="/review/track[2]/rev[5]/sub[6]" >
<xupdate:element name="sub">

<title> Taming Web Services </title> <auts> <name> Jack </name> </auts>
</xupdate:element> </xupdate:insert-after> </xupdate:modifications>

In the corresponding relational model, this update statement corresponds to adding
{ sub(ids, 7, idr, “Taming Web Services”), auts(ida, 2, ids, “Jack”) } where ida and ids
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represent the identifiers that are to be associated to the new nodes and idr is the identifier
associated to the target rev element. Their value is immaterial to the semantics of the
update, provided that a mechanism to impose their uniqueness is available. On the other
hand, the actual value of idr depends on the dataset and needs to be retrieved by inter-
preting the select clause of the XUpdate statement. Namely, idr is the identifier for
the fifth (reviewer) child of the second (track) node, in turn contained into the root
(review) node of the document rev.xml. Positions (7 and 2 in the second argument
of both predicates) are also derived by parsing the update statement: 7 is determined
as the successor of 6, according to the insert-after semantics of the update; 2 is
due to the ordering, since the auts comes after the title element. Finally, note that
the same value ids occurs both as the first argument of sub() and the third argument of
auts(), since the latter represents a subelement of the former.

4.2 Mapping of Integrity Constraints

The last step in the mapping from XML to the framework of deductive databases is
to compile denials into Datalog. We express constraints as Datalog denials: clauses
with an empty head (understood as false), whose body indicates not holding conditions.
Input to this phase are the schemata (XML and relational) and an XPathLog denial in a
normal form without disjunctions 1. All p.e. in XPathLog generate chains of conditions
over the predicates corresponding to the node types traversed by the path expression. to
the traversed node types. Containment in terms of parent-child relationship translates to
correspondences between variables in the first position of the container and in the third
position of the contained item.

Quite straightforwardly, XPathLog denial expressing that the author of the “Duck-
burg tales” cannot be Goofy and its mapping (anonymous variables are indicated with
an underscore):

�//pub[title = “Duckburg tales′′”]/aut/name→ N ∧ N = “Goo f y′′

← pub(Ip, , ,“Duckburg tales′′”)∧aut( , , Ip,N)∧ N = “Goo f y′′.

The fact that the XML data model is ordered impacts the translation. Either the
position() function is used in the original denial or a filter is used that contains an
expression returning an integer. In both cases, the second argument in the relational
predicate is associated to a variable that is matched against a suitable comparison ex-
pression (containing the variable associated to the position() function or directly to
the expression that returns the value).

Example 3. The XPathLog constraint of example 1, is translated into the following
couple of Datalog denials (due to the presence of a disjunction).

Γ = {← rev(Ir, , ,R)∧ sub(Is, , Ir, )∧auts( , , Is,R),
← rev(Ir, , ,R)∧ sub(Is, , Ir, )∧auts( , , Is,A)

∧aut( , , Ip,R)∧aut( , , Ip,A)}
1 A default rewriting allows one to reduce to such normal form any denial expressed with dis-

junctions, so that we can restrict to this case without loss of generality.
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5 Simplification of Integrity Constraints

Several methods for optimized and incremental constraint checking in deductive
databases, known as simplification methods, were produced since the landmark con-
tribution by Nicolas [21]. Simplification in this context means to derive specialized
versions of the integrity constraints w.r.t. given update patterns, employing the hypoth-
esis that the database is initially consistent. In the following, we briefly describe the
approach of [16]. To illustrate the framework, we limit our attention to tuple insertions,
consistently with the fact that XML documents typically grow. An update transaction
is expressed as a set of ground atoms representing the tuples that will be added to the
database. Placeholders for constants, called parameters (written in boldface: a, b, ...),
allow one to indicate update patterns. For example, the notation {p(a),q(a)}, where a
is a parameter, refers to the class of update transactions that add the same tuple to both
unary relation p and unary relation q. The first step in the simplification process is to
introduce a syntactic transformation After that translates a set of denials Γ referring to
the updated database state into another set Σ that holds in the present state if and only
if Γ holds after the update.

Definition 2. Let Γ be a set of denials and U an update. The notation AfterU(Γ ) refers
to a copy of Γ in which all atoms of the form p(�t) have been simultaneously replaced by
(p(�t)∨�t =�a1∨·· · ∨�t =�an), where p(�a1), . . . , p(�an) are all additions on p in U,�t is a
sequence of terms and�a1, . . . ,�an are sequences of constants or parameters (we assume
that the result of this transformation is always given as a set of denials which can be
produced by using, e.g., De Morgan’s laws).

Example 4. Consider a relation p(ISSN,TITLE) and let U = {p(i, t)} be the addition
of a publication with title t and ISSN number i and φ = ← p(X ,Y )∧ p(X ,Z)∧Y �= Z
the denial imposing uniqueness of ISSN. AfterU({φ}) is as follows:

{ ← [p(X ,Y )∨ (X = i∧Y = t)]∧ [p(X ,Z)∨ (X = i∧Z = t)]∧ Y �= Z}
≡ { ← p(X ,Y )∧ p(X ,Z)∧Y �= Z,

← p(X ,Y )∧X = i∧Z = t∧Y �= Z,
← X = i∧Y = t∧ p(X ,Z)∧Y �= Z,
← X = i∧Y = t∧X = i∧Z = t∧Y �= Z}.

Clearly, After’s output is not in any “normalized” form, as it may contain redundant
denials and sub-formulas (such as, e.g., a = a). Moreover, assuming that the original
denials hold in the current database state can be used to achieve further simplification.
For this purpose, a transformation Optimize∆ (Γ ) is defined that exploits a given set of
denials ∆ consisting of trusted hypotheses to simplify the input set Γ . The proposed
implementation [17] is described in [16] in terms of sound rewrite rules, whose appli-
cation reduces denials in size and number and instantiates them as much as possible.
For reasons of space, we refrain from giving a complete list of the rewrite rules in the
Optimize operator and we describe its behavior as follows.

Given a set of denials Γ , a denial φ ∈ Γ is removed if it can be proved redundant
from Γ \ {φ}; φ is replaced by a denial ψ that can be proved from Γ if ψ subsumes
φ ; equalities involving variables are eliminated as needed. The resulting procedure is
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terminating, as it is based on resolution proofs restricted in size. The operators After
and Optimize can be assembled to define a procedure for simplification of integrity
constraints.

Definition 3. For an update U and two sets of denials Γ and ∆ , we define SimpU
∆ (Γ ) =

OptimizeΓ∪∆ (AfterU(Γ )).

Theorem 1 ([16]). Simp terminates on any input and, for any two set of denials Γ ,∆
and update U, SimpU

∆ (Γ ) holds in a database state D consistent with ∆ iff Γ holds in
DU .

We use SimpU(Γ ) as a shorthand for SimpU
Γ (Γ ).

Example 5. [4 cont.] The first denial in AfterU ({φ}) is the same as φ and is thus redun-
dant; the last one is a tautology; both the second and third reduce to the same denial;
therefore the resulting simplification is SimpU({φ}) = {← p(i,Y )∧Y �= t}, which in-
dicates that, upon insertion of a new publication, there must not already exist another
publication with the same ISSN and a different title.

5.1 Examples

We now consider some examples based on the relational schema of documentspub.xml
and rev.xml given in section 4.

Example 6. [1 continued] Let us consider constraint Γ from example 3 imposing the
absence of conflict of interests in the submission review process. An update of interest
is, e.g., the insertion of a new submission to the attention of a reviewer.

For instance, a submission with a single author complies with the pattern
U = {sub(is,ps, ir, t),auts(ia,pa, is,n)},

where the parameter (is) is the same in both added tuples. The fact that is and ia are
new node identifiers can be expressed as a set of extra hypotheses to be exploited in the
constraint simplification process:

∆ = { ← sub(is, , , ),← auts( , , is, ),← auts(ia, , , )}.
The simplified integrity check w.r.t. update U and constraint Γ is given by
SimpU

∆ (Γ ): {← rev(ir, , ,n),← rev(ir, , ,R)∧aut( , , Ip,n)∧aut( , , Ip,R)}.
The first denial requires that the added author of the submission (n) is not the same

person as the assigned reviewer (ir). The second denial imposes that the assigned re-
viewer is not a coauthor of the added author n. These conditions are clearly much
cheaper to evaluate than the original constraints Γ , as they are instantiated to specific
values and involve fewer relations.

Example 7. Consider the denial φ =← rev(Ir, , , )∧CntD(sub( , , Ir, )) > 4 impos-
ing a maximum of 4 reviews per reviewer per track. The simplified integrity check of
φ w.r.t. update U from example 6 is SimpU

∆ ({φ}) = {← rev(ir, , , )∧CntD(sub( , ,
ir, ))> 3}, which checks that the specific reviewer ir is not already assigned 3 different
reviews in that track.
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6 Translation into XQuery

The simplified constraints obtained with the technique described in the previous section
are useful only if they can be checked before the corresponding update, so as to prevent
the execution of statements that would violate integrity. Under the hypothesis that the
dataset is stored into an XML repository capable of executing XQuery statements, the
simplified constraints need to be translated into suitable equivalent XQuery expressions
in order to be checked. This section discusses the translation of Datalog denials into
XQuery. We exemplify the translation process using the (non-simplified) set of con-
straints Γ defined in example 3. For brevity, we only show the translation of the second
denial.

The first step is the expansion of the Datalog denial. It consists in replacing every
constant in a database predicate (or variable already appearing elsewhere in database
predicates) by a new variable and adding the equality between the new variable and
the replaced item. This process is applied to all positions, but the first and the third
one, which refer to element and parent identifiers and thus keeps information on the
parent-child relationship of the XML nodes. In our case, the expansion is:

← rev(Ir,B,C,R)∧ sub(Is,D, Ir,E)∧auts(F,G, Is,A)
∧aut(H, I, Ip,J)∧aut(K,L, Ip,M)∧ J = R∧M = A

The atoms in the denial must be sorted so that, if a variable referring to the parent of
a node also occurs as the id of another node, then the occurrence as an id comes first.
Here, no such rearrangement is needed. Then, for each atom p(Id,Pos,Par,D1, . . . ,Dn)
where D1, . . . , Dn are the values of tags d1, . . . , dn, resp., we do as follows. If the defin-
ition of $Par has not yet been created, then we generate $Id in //p and $Par in $Id/..;
otherwise we just generate $Id in $Par/p. This is followed by $Pos in $Id/position(),
$D1 in $Id/d1/text(), . . . , $Dn in $Id/dn/text().

Then we build an XQuery boolean expression (returning true in case of violation) by
prefixing the definitions with the some keyword and by suffixing them with the satisfies

keyword followed by all the remaining conditions in the denial separated by and. This
is a well-formed XQuery expression. Here we have:

some $Ir in //rev, $C in $Ir/.., $B in $Ir/position(), $R in $Ir/name/text(),
$Is in $Ir/sub, $D in $Is/position(), $E in $Is/title/text(),
$F in $Is/auts, $G in $F/position(), $A in $F/name/text(),
$H in //aut, $Ip in $H/.., $I in $H/position(),
$J in $H/name/text(), $K in $Ip/aut, $L in $K/position(),
$M in $K/name/text()

satisfies $J = $R and $M = $A

Such expression can be optimized by eliminating definitions of variables which are
never used, unless they refer to node identifiers. Such variables are to be retained be-
cause they express an existential condition on the element they are bound to. Variables
referring to the position of an element are to be retained only if used in other parts of
the denial. In the example, we can therefore eliminate the definitions of variables $B,
$C, $D, $E, $G, $I, $L. If a variable is used only once outside its definition, its occurrence
is replaced with its definition. Here, e.g., the definition of $Is is removed and $Is is
replaced by $Ir/sub in the definition of $F, obtaining $F in $Ir/sub/auts.



Efficient Integrity Checking over XML Documents 215

Variables occurring in the satisfies part are replaced by their definition. Here we
obtain the following query.

some $Ir in //rev, $H in //aut
satisfies $H/name/text()=$Ir/name/text()

and $H/../aut/name/text()=$Ir/sub/auts/name/text()

The translation of the simplified version SimpU
∆ (Γ ) is made along the same lines.

Again, we only consider the simplified version of the second constraint (the denial
← rev(ir, , ,R)∧ aut( , , Ip,n)∧ aut( , , Ip,R)). Now, a parameter can occur in the
first or third position of an atom. In such case, the parameter must be replaced by a
suitable representation of the element it refers to. Here we obtain:

some $D in //aut
satisfies $D/name/text()=%n

and $D/../aut/name/text()= /review/track[%i]/rev[%j]/name/text()

where /review/track[%i]/rev[%j] conveniently represents ir. Similarly, \%n
corresponds to n. The placeholders %i, %j and %n will be known at update time and
replaced in the query.

The general strategy described above needs to be modified in the presence of aggre-
gates. Aggregates apply to sequences of nodes; therefore, the most suitable constructs
to define such sequences are let clauses. In particular, there is a let clause for each
aggregate. This does not affect generality, as variables bound in the let clauses corre-
spond to the aggregate’s target path expression possibly defined starting from variables
already bound in the for clauses above. The expression is wrapped inside an exists(...)

construct in order to obtain a boolean result; for this purpose, an empty <idle/> tag is
returned if the condition is verified. Again, integrity is violated if the query returns true.
Constraint ← rev(Ir, , , )∧CntD(sub( , , Ir, )) > 4, shown in example 7, is mapped
to XQuery as shown below.

exists( for $Ir in //rev let $D := $R/sub where count($D) > 4 return <idle/> )

The other constraints in the examples can be translated according to the same strategy.

7 Evaluation

We now present some experiments conducted on a series of XML datasets matching
the DTD presented in section 2, varying in size from 32 to 256 MB, on the examples
described in order to evaluate the performance of our approach. Figures 1(a), 1(b) refer
to the integrity constraints of examples 1, 2, respectively. The data were generated re-
mapping data from the DBLP repository [15] into the schema of our running examples.
Our tests were run on a machine with a 3.4 GHz processor, 1 GB of RAM and 140
GB of hard disk, using eXist [8] as XQuery engine. Execution times are indicated in
milliseconds and represent the average of the measured times of 200 attempts for each
experiment (plus 50 additional operations that were used as a “warm-up” procedure
and thus not measured). The size of the documents is indicated in MB on the x-axis.
Each figure corresponds to one of the running examples and reports three curves repre-
senting respectively the time needed (i) to verify the original constraint (diamonds), (ii)
to verify the optimized constraint (squares), and (iii) to execute an update, verify the
original constraint, and undo the update (triangles). We observe that we do not have to
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take into account the time spent to produce the optimized constraints, nor the cost of
mapping schemata and constraints to the relational model, as in our framework these are
generated at schema design time and thus do not interfere with run time performance2.
The curves with diamonds and squares are used to compare integrity checking in the
non-simplified and, resp., simplified case, when the update is legal. The execution time
needed to perform the update is not included, as this is identical (and unavoidable) in
both the optimized and un-optimized case. The curve with triangles includes both the
update execution time and the time needed to rollback the update, which is necessary
when the update is illegal; when the update is illegal, we then compare the curve with
triangles to the curve with squares. Rollbacks, needed since constraints are checked
after an update, were simulated by performing a compensating action to re-construct
the state prior to the update. The interpretation of these results is twofold, as we must
consider two possible scenarios.

The update is legal: in the un-optimized framework the update is executed first and the
full constraint is then checked against the updated database (showing that the update is
legal); on the other hand, with the optimized strategy of our approach, the simplified
constraint is checked first and the update is performed afterwards, as it is possible to
check properties of the future database state in the present state (see Section 5).

The update is illegal: in the un-optimized framework execution is as in the previous
case, but this time the check shows that there is some inconsistency and, finally, a com-
pensative action is performed. On the contrary, with our optimized strategy, the simpli-
fied constraint is checked first, which reports an integrity violation w.r.t. the proposed
update; therefore the update statement is not executed.

From the experimental results shown in figures 1(a) and 1(b) we observe two fea-
tures. The comparison between the performance of the optimized and un-optimized
checks shows that the optimized version is always more efficient than the original one.
In some cases, as shown in figure 1(a), the difference is remarkable, since the simplified
version contains specific values coming from the concrete update statement which allow
one to filter the values on which complex computations are applied. Further improve-
ment is due to the elimination of a join condition in the optimized query. In other cases
the improvement is not as evident because introduction of filters does not completely
eliminate the complexity of evaluation of subsequent steps, such as the calculation of
aggregate operations (figure 1(b)). The gain of early detection of inconsistency, which

2 The only activity to be performed at runtime is the matching of the actual update with a suitable
known pattern, so as to apply the right optimized constraint. In our framework, we consider
the case in which such recognition is trivially achieved and its cost is negligible, either be-
cause the patterns are very simple or because the user declares which pattern is in use while
performing the update itself, choosing among a set of patterns published at schema design
time. Otherwise, efficient representations of patterns and ad-hoc matching techniques should
be investigated, so as to minimize this cost, which should of course be considered in the run-
time evaluation. Unrecognized updates can either be processed w.r.t. the full integrity check or
undergo a runtime simplification, but this case was not considered in our experiments. Never-
theless, we point out that the cost of the simplification itself is not dramatic: for instance, the
simplified constraints of examples 1 and 6 were generated in less than 50 ms. Further details
on the complexity analysis and the evaluation of the simplification procedure are in [5].
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Fig. 1. Conflict of interests (a) and Conference workload (b)

is a distinctive feature of our approach, is unquestionable in the case of illegal updates.
This is prominently apparent in the cases considered in figures 1(a) and 1(b), since, as
is well-known, the modification of XML documents is an expensive task.

8 Related Work

Integrity checking is often regarded as an instance of materialized view maintenance:
integrity constraints are defined as views that must always remain empty for the data-
base to be consistent. The database literature is rich in methods that deal with relational
view/integrity maintenance; insightful discussions are in [11] and [7].

A large body of research in the field has also been produced by the logic program-
ming and artificial intelligence communities, starting from [21]. Logic-based methods
that produce simplified integrity tests can be classified according to different criteria,
e.g., whether these tests can be checked before or only after the update, whether up-
dates can be compound or only singleton, whether the tests are necessary and sufficient
or only sufficient conditions for consistency, whether the language includes aggregates.
Some of these methods are surveyed in [19]. In this respect, the choice of the simpli-
fication method of [16] seems ideal, as it matches all the above criteria, and is further
motivated by the availability of an implementation.

An attempt to adapt view maintenance techniques to the semi-structured data model
has been made in [26] and in [22]. Incremental approaches have been proposed with
respect to validation of structural constraints in [1], as well as to key and foreign key
constraints in [4], where the validating algorithm parses the document with SAX and
constructs an index of standard XML keys in one pass, with the help of suitable au-
tomata which recognize the context, the target, and the paths of such keys. Later, [24]
addressed incremental validation in the context of streaming data under memory limita-
tion. DTDs are considered as grammars and condition are provided on such grammars
for the recognition of their languages to be performed by finite state automata instead
of pushdown automata. Here the focus is again on validation w.r.t. DTD-like structural
constraints only, and constraints upon values or involving aggregates are not addressed.

An attempt to simplification of general integrity constraints for XML has been made
in [2], where, however, constraints are specified in a procedural fashion with an exten-
sion of XML Schema that includes loops with embedded assertions.
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We are not aware of other works addressing validation w.r.t. general constraints for
XML. However, integrity constraint simplification can be reduced to query containment
if the constraints can be viewed as queries. Relevant works to this end are [23,20].

There are several proposals and studies of constraint specification languages for
XML by now. In [9] a unified constraint model (UCM) is proposed, which captures in a
single framework the main features of o-o schemata and XML DTDs. UCM builds on
the W3C XML query algebra and focuses on trading expressivity of the constraint lan-
guage with simplicity of reasoning about the properties of the constraints. UCM lever-
ages key/foreign key constraints and the XML type system, for expressing a restricted
class of constraints whose consistency is proved decidable. This work addresses core
algorithms for enforcing a particular class of constraints within a query engine, while
our work relies on the availability of a query engine and addresses the simplification of
constraints of arbitrary complexity (as long as they are expressible in XPathLog).

The XUpdate language, which was used for the experimental evaluation, is described
in [13]. A discussion on update languages for XML is in [27].

As for XML-relational mappings, there exist several approaches to the problem of
representing semi-structured data in relations [25,3,6,10]. For a survey, see [12].

9 Conclusion and Future Work

In this paper we presented a technique enabling efficient constraint maintenance for
XML datasets. We described the scenario in which integrity constraints are declaratively
expressed in XPathLog, an intuitive logical language. These constraints are translated
into Datalog denials that apply to an equivalent relational representation of the same
data. Such denials are then simplified w.r.t. given update patterns so as to produce opti-
mized consistency checks that are finally mapped into XQuery expressions that can be
evaluated against the original XML document.

Besides the possibility to declaratively specify constraints, the main benefits of our
approach are as follows. Firstly, the ability to produce optimized constraints typically
allows a much faster integrity checking. Secondly, performance is further improved by
completely avoiding the execution of illegal updates: the optimized check is executed
first and the update is performed only if it does not violate integrity.

In this paper we focused on updates whose contents are specified extensionally, as
in the XUpdate language. More complex updates may be specified with a rule-based
language such as XPathLog, i.e., intensionally in terms of other queries. Yet, introduc-
ing such updates would not increase complexity, as these are already dealt with by the
relational simplification framework of section 5 and can be translated from XPathLog
to Datalog as indicated in section 4.

Several future directions are possible to improve the proposed method. We are study-
ing the feasibility of a trigger-based view/integrity maintenance approach for XML that
would combine active behavior with constraint simplification. Further lines of investi-
gation include integrating visual query specification to allow the intuitive specification
of constraints: domain experts lacking specific competencies in logic would be provided
with the ability to design constraints to be further processed with our approach.
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Linköping University, Sweden

lestr@ida.liu.se

Abstract. Currently, biology researchers rapidly generate new infor-
mation on how genes, proteins and other molecules interact in living
organisms. To completely understand the machinery underlying life it is
necessary to integrate and analyze these large quantities of data. As one
step in this direction, new standards for describing molecular interac-
tions have been defined based on XML. This work evaluates the usage of
the XML Query language XQuery for molecular interactions, as it would
be of great benefit to the user to work directly on data represented in
the new standards. We use and compare a set of available XQuery im-
plementations, eXist, X-Hive, Sedna and QizX/open for querying and
analysis on data exported from available databases. Our conclusion is
that XQuery can easily be used for the most common queries in this
domain but is not feasible for more complex analyses. In particular, for
queries containing path analysis the available XQuery implementations
have poor performance and an extension of the GTL package clearly
outperforms XQuery. The paper ends with a discussion regarding the
usability of XQuery in this domain. In particular we point out the need
for more efficient graph handling and that XQuery also requires the user
to understand the exact XML format of each dataset.

1 Introduction

During the past few years XML has become one of the most used formats for
representation of information in a wide variety of domains and applications. In
this paper we will discuss the current use of XML for molecular interactions,
which is one important sub-area of bioinformatics. In this area the goal is to
understand how proteins, genes, and other substances interact with each other
within living cells. Proteins are the fundamental building blocks of life, and today
biology researchers are gaining small pieces of information on each protein and
how it interacts with other proteins and substances in the cell. To understand
how the proteins and genes work together is the key to understanding the secret
of life, and as such this has been set as a major goal for bioinformatics research
by the Human Proteome Organization [8] and the US National Human Genome
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Research Institute [5], since this would be the key to new medical treatments for
many diseases.

Within the area of molecular interactions the tradition has been to publish re-
sults from experiments on the web, making it possible for researchers to compare
and reuse results from other research groups. This has resulted in a situation
with a large number of available databases on Internet [2,9,12,13,14,15,20,26]
with information about experimental results. However, the information content,
data model and functionality is different between the different databases, which
makes it hard for a researcher to track the specific information he needs.

There is, however, ongoing development within the field with the goal of mak-
ing the datasets from each of the databases available for downloading and further
analysis. Evaluations [1,16] have shown that XML is beneficial for information
representation within bioinformatics. Most of the existing molecular interaction
databases allow export of data in XML. Recently, there have also been proposals
for XML-based exchange formats for protein interactions, e.g. SBML [10], PSI
MI [8], and BioPAX [3]. However, to allow for easy analysis and understanding
of these datasets there is still a need for software for integration, querying and
analysis based on XML.

The aim of this paper is to evaluate the use of available XML tools for direct
usage of molecular interaction data available in XML. The paper starts with
a brief introduction to the chosen data formats. After that we report on two
experiments on analysis of data with XQuery. Finally we conclude the paper
with a discussion on future needs for XML tools for this application.

2 XML Standards for Molecular Interactions

There are currently a number of different XML formats for molecular interaction
data available from different databases. In this work we will focus on the two
formats SBML [10] and PSI MI [8]. We’ve chosen these formats because they
have been proposed as future standards and there are currently large datasets
of data available in these formats. Here, we give a short introduction to these
standards; for a more extensive description and comparison with other formats
see [23,24].

Systems Biology Markup Language (SBML) [10] was created by the Systems
Biology Workbench Development group in cooperation with representatives from
many system and tool developers within the bioinformatics field. A brief example
of an SBML model is given in Figure 1. As we can see, an SBML model contains
a number of compartments, each of which is a description of the container or
environment in which the reaction takes place. The substances or entities that
take part in the reactions are represented as species. The interactions between
molecules are represented as reactions, defined as processes that change one or
more of the species. Reactants, products and modifiers for reactions are specified
by references to the relevant species.

The Proteomics Standards Initiative Molecular Interaction XML format (PSI
MI) [8] was developed by the Proteomics Standards Initiative, one initiative of
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SBML PSI MI

<model name="Example">
<listOfCompartments>
<compartment name="Mithocondrial Matrix"

id="MM">
</listOfCompartments>
<listOfSpecies>
<species name="Succinate"

compartment="MM" id="Succinate">
<species name="Fumarate"

compartment="MM" id="Fumarate">
<species name="Succinate dehydrogenase"

compartment="MM" id="Succdeh">
</listOfSpecies>
<listOfReactions>
<reaction name="Succinate dehydrogenas

catalysis" id="R1">
<listOfReactants>
<speciesReference species="Succinate">

</listOfReactants>
<listOfProducts>
<speciesReference species="Fumarate">

</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference
species="Succdeh">

</listOfModifiers>
</reaction>

</listOfReactions>
</model>

<entry>
<interactorList>
<proteinInteractor id="Succinate>
<names>
<shortLabel>Succinate</shortLabel>
<fullName>Succinate</fullName>

</names>
</proteinInteractor> ...

</interactorList>
<interactionList>
<interaction>
<names>
<shortLabel> Succinate dehydrogenas

catalysis </shortLabel>
<fullName>Interaction between ....
</fullName>

</names>
<participantList>
<proteinParticipant>
<proteinInteractorRef ref="Succinate">
<role>neutral</role>

</proteinParticipant>
<proteinParticipant>
<proteinInteractorRef ref="Fumarate">
<role>neutral</role>

</proteinParticipant>
<proteinParticipant>
<proteinInteractorRef ref="Succdeh">
<role>neutral</role>

</proteinParticipant>
</participantList>

</interaction>
</interactionList>
</entry>

Fig. 1. Examples of data in SBML and PSI MI

the Human Proteome Organization (HUPO). An abbreviated example pathway
represented in PSI MI is shown in Figure 1. In PSI MI the experimentList de-
scribes experiments and links to publications where the interactions are verified.
The pathway itself is described via the interactorList, which is a list of proteins
participating in the interaction, and the interactionList, a list of the actual in-
teractions. For each interaction it is possible to set one or more names. The
participating proteins are described by their names or by references to the in-
teractorList. Note that, where the intention of SBML is to describe an actual
interaction, i.e. that interacting substances produce some product, the purpose
of PSI MI is to describe the result of an experiment, i.e. that there is some
chemical interaction between the substances but roles of the substances in the
interaction are not always known.

As we can see, the two formats are similar. Even so, there are several im-
portant differences between them. As previously discussed PSI MI contains
more detailed information and there are differences in how participants in an
interaction are represented. In addition to this there is also an important
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1.1 Find all information on a given compartment. Compartment id is given.
1.2 Find all information on a given species. Species id is given.
1.3 Find all information on a given reaction. Reaction id is given.
2.1 Find all reactions which a given modifier participates in. The species of the modifier

is given.
3.1 Find all the reactions whose reactants are the products of some reactions which a

given modifier participates in. The species of the modifier is given.
3.2 Find all the reactions whose reactants and products are the same but modifiers are

different.
4.1 Count the number of species in the database.
4.2 Count the number of reactions in the database.

Fig. 2. Queries for the SBML dataset

difference in the fact that SBML makes more use of XML attributes while PSI
MI prefers to represent information as extra children in the tree structure. In the
remainder of this paper we will look at possibilities for the researcher to work
directly on the dataset, i.e. to analyze it by querying directly against the XML
document.

3 Experiment 1: XQuery Querying

For our first experiment we want to test some common queries within the mole-
cular interaction domain. For the experiments we use XQuery [32], the proposed
standard query language for XML. The experiment consists of three parts: first
the selection of queries and datasets for the test, next the formulation of the
XQuery queries, and finally execution on XQuery implementations.

3.1 Definition of Queries and Datasets

Since the two standards SBML and PSI MI contain partly different information
we define one set of interesting queries for each of the standards. The selected
queries are based on an investigation of the query possibilities within available
databases or investigating what are interesting questions from a biological point
of view. The queries are divided into four different groups:

1. Simple selection of one data item.
2. Combination of information on two kinds of data types.
3. Complex queries, combination of several items.
4. Counting information in the datasets.

The selected queries for SBML are presented in Figure 2, the first number
of each query shows which of the query groups it belongs to. Since the PSI MI
data model is richer than the one for SBML we could use more queries compared
to the SBML dataset. Here we also wanted to test some combined queries, i.e.
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1.1 Find information on a given protein. Protein id is given.
1.2 Find information on a given experiment description. Experiment description id is

given.
1.3 Find information on a given interaction. Interaction id is given.
2.1 Find the protein information for the proteins that participate in a given interaction.

Interaction id is given.
2.2 Find the experiment description information for an experiment description that is

part of an interaction. Interaction id is given.
2.3 Find all interactions that a given protein participates in. Protein id is given.
2.4 Find all interactions that a given experiment description is part of. Experiment

description id is given.
2.5 Find any interactions that two given proteins are a part of. Protein ids for the two

proteins are given.
3.1 Find information on the proteins that could interact with a given protein. Protein

id is given.
3.2 Find the description of the experiments which involve some interactions which a

given protein participate in. Protein id is given.
3.3 Find the interactions which some given proteins participate in. The proteins sec-

ondary attribute is given.
4.1 Count the number of proteins in the database.
4.2 Count the number of interactions in the database.

Fig. 3. Queries for the PSI MI dataset

forcing XQuery to join information from different parts of the data file. The
selected queries for the PSI MI dataset are presented in Figure 3.

The database currently providing the largest subsets of SBML data is Reac-
tome [12]. It is a database on biological pathways, mainly human but there are
pathways from other species as well. We selected two datasets from Reactome
of sizes 3 and 6 MB. They are available in SBML level 2, version 1. PSI MI
is the most supported format for protein interaction databases. It is available
as an alternative download format in a number of databases, for instance DIP
[20], MINT [26], and IntAct [9]. Here, the IntAct database is the one currently
providing the largest portions of PSI MI data. It is an open source database and
toolkit for protein interactions. It currently contains nearly 40,000 interactions.
We selected three datafiles from IntAct of sizes 9.5, 29.3 and 37.3 MB.

3.2 Expressing Queries in XQuery

In this section we discuss some issues in formulating queries for the first experi-
ment. An extensive description of the queries is given in [7]. Many of the queries
are written as simple path expressions with arbitrary depth (nesting) using //
and some conditional. This is used in, for instance, the first three queries for both
test cases which are very basic queries consisting of paths. Here we exemplify
this with query 2.1 for PSI MI:

document("rat_small.xml")//proteinInteractor[@id="EBI-77471"]
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For the more complicated queries, join over path expressions or in some cases
the XQuery FLWOR expressions are used, since these make the queries more
readable and easier to express. As an example of this we present query 2.1 for
PSI MI which uses a FLWOR expression. Here we find the interaction with the
appropriate ID and iterate over the proteins participating in this interaction.
For each of these proteins we find the desired information in the list of protein-
interactors.

for $ref in document("rat_small.xml")//interaction
[names/shortLabel="interaction1"]
/participantList/proteinParticipant/proteinInteractorRef/@ref

return document("rat_small.xml")//proteinInteractor[@id=$ref]

The last two queries for each standard use the count aggregate function to
give a measure of the size of the datasets. Here we exemplify this with query 4.1
for PSI MI counting the number of proteins in the database.

count(document("rat_small.xml")//proteinInteractor)

From this discussion we can conclude that for a user that is accustomed
to the concepts and constructions in the molecular interaction standards, and
who has a reasonable knowledge of XQuery, these queries can easily be ex-
pressed.

3.3 Efficiency

Having formulated the queries, we were interested in the performance of the dif-
ferent XML database systems. There are a large number of implementations of
XQuery, ranging from implementations for direct querying on XML files to sys-
tems aiming at more efficient storage and treatment of larger XML files, so-called
native XML databases. We selected three native XML database implementa-
tions: eXist [27], Sedna [30] and X-Hive [31] and the XQuery API QizX/open
[29] which does not support indexing and thus is expected to yield lower perfor-
mance than the other systems.

Since the exact times can depend on external factors such as other processes
running on the system the computer results would differ from time to time
for the same queries. To decrease the influence of sudden spikes in measured
time all queries were run several times and we base our values on the mean
times. We have run several sets of tests on our selected datasets on two different
computers. Here we will present a selection of results that represents our general
findings. Figure 4 shows a general comparison of the systems for queries on the
IntAct 29.3 MB dataset run on a IBM X40, Intel Pentium 1200 MHz processor
with 512 MB RAM. All the Native database systems have similar and good
performance, where X-Hive has slightly higher response time than the other
systems. QizX/open performs worse than the other systems for all queries, as
expected

We also wanted to compare how the response time varied if we varied data
size. Figure 5 show a comparison of response times on eXist and Sedna on the
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Fig. 4. Query times for different systems

9.5 and 37.3 IntAct datasets. This queries were run on an AMD Athlon 1000
MHz computer with 512 MB RAM. From the figure we can conclude that Sedna
is the better performing system, with some exceptions where we have a very high
response time for Sedna. For both systems we can also see an increase in response
time when complexity of queries increase. Here performance of the systems is
highly dependent on the number of intermediate results generated by a query,
and thus by evaluation order on parts of the query. In general, the response
time increases when the data size increases. There are however some exceptions
to this. These exceptions can be explained with the different composition of
datasets. For a particular query the data size for an intermediate step can be
higher even if the total data size is smaller.

Finally we wanted to compare the performance between SBML and PSI MI.
For this we used the Reactome 6MB and IntAct 9.15 MB datasets, which are
reasonably comparable in number of items stored. A comparison on correspond-
ing queries are given in Figure 6, this time run on the AMD computer. The
figure shows that there is no larger difference between the datasets in terms of
performance.

To conclude this section we can see that all the queries run with a reasonable
response time on the selected datasets. Comparing the systems we can see that
all the native databases provide similar performance with Sedna being the fastest
and X-Hive being the most stable implementation.

4 Experiment 2: Pathway Analyses

In addition to queries similar to those currently available through conventional
systems, we also wanted to test advanced analysis on the datasets. In this case,
we want to search for interaction chains between given proteins. As explained, it



An Evaluation of the Use of XML 227

0

200

400

600

800

1000

1200

1400

IA 1.1 IA 1.3 IA 2.3 IA 2.5 IA 3.2 IA 3.3 IA 4.2 IA 1.1 IA 1.3 IA 2.3 IA 2.5 IA 3.2 IA 3.2 IA 4.2

eXist Sedna

T
im

e 
(m

se
k)

9.1 MB

37.3 MB

Fig. 5. Query times for different data sizes

is not possible to make out reactant and products in PSI MI interactions since
there is no order of the reactions defined in this format. Therefore we decided
to concentrate the pathway searching efforts to the SBML dataset and used the
following query: textit

Given two proteins find out if there is a given pathway between them in
maximum n steps. Protein ids are given for the two proteins.

This analysis is very important, since it is often important to identify connec-
tions between interacting proteins in a given dataset. To express this in XQuery,
recursion is required. The query is shown in Figure 7. As we wanted to be able to
test the query for various lengths of the pathways the query contains a recursive
function findMolecule that returns elements for found connected proteins within
a specified maximum length of the path. The function takes the start and goal
reactants together with the cut-off depth as parameters.

The response times for this query run on the IBM 1200 GHz computer on
the 3MB Reactome file are presented in Table 1. eXist, Sedna and QizX/open
ran out of memory at 4 steps. Sedna query times increase more slowly than for
X-Hive, but X-Hive is the only XML tool reaching 4 steps.

These results are disappointing, both in the sense that formulating recursive
XQuery queries gets rather complicated and that the response times are too
high, especially taking into account that a real application would often need to
do queries on larger datasets and longer paths than the ones we used.

For the molecular interaction applications there is a need for more efficient
handling of these kinds of queries. One possibility would be to include an existing
graph package into the XQuery language. For this reason we made an experi-
ment with the graph package GTL (Graph Template Library) [28]. GTL is an
extension of the Standard Template Library for graphs and graph algorithms in
C++. The function we wanted to test, finding all paths between two proteins,
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was not implemented in GTL and we had to extend the package [7]. Before GTL
can be used the protein interaction, data in SBML format is transformed to
GML, a non-XML-based graph representation format provided by GTL. In our
translation nodes are substances and edges are reactions. The transformation is
done using the MSXSL command line transformation utility from Microsoft and
it takes about 2 seconds to transform the 3 MB Reactome file.

The first step of our algorithm would be a search using GTL’s built-in breadth-
first search algorithm to verify that the end node really can be reached from the
start node. The search between the start and end node is done by a recursive
function, which works outwards from the start node and follows outgoing edges.
In addition to this we use a cut-off depth at which to stop searching, as with
the corresponding XQuery. The graph sent as an argument has already-visited
nodes marked as hidden to avoid loops. Table 2 shows the performance of the
pathway searches using our extension of GTL. The numbers given in the relevant

Table 1. Test case 3: Pathway searches with XQuery

Steps eXist X-Hive Sedna QizX/open
Mean time Mean time Mean time Mean time

1 422 ms 334 ms 121 ms 906 ms
2 951 ms 646 ms 245 ms 1125 ms
3 33323 ms 9053 ms 3493 ms 7172 ms
4 - 700443 ms - -
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declare function local:findMolecule($molecule as xs:string,
$goalMol as xs:string, $n as xs:integer) {

for $i in document("sbml.xml")//reaction
[listOfReactants/speciesReference/@species=$molecule]
/listOfProducts/speciesReference/@species

return <item>{$i} {
if($i = $goalMol) then <found/> else
if($i = $molecule) then <loop /> else

if ($n = 1) then <max/> else
local:findMolecule($i, $goalMol, $n - 1)}

</item>};
<path>{local:findMolecule("H2O", "sodium ion",2)}</path>

Fig. 7. Query for path searches

Table 2. Test case 3: Pathway searches using the extended GTL package

Steps 1 2 3 4 5 6 7 8
Time 0.3 ms 3 ms 15 ms 101 ms 823 ms 5,55 s 35,8 s 215 s

table are based on a mean value of ten iterations. Figure 8 shows a comparison
between the GTL implementation and the tested databases.

As shown by this table the C++ program developed for graph searches is
magnitudes faster than using the XQuery searches. This depends on a number of
things with the most important probably being that the C++ program has graph
and loop detection and that the representation is optimal for graph searches.

5 Discussion and Implications for the Future

The development of web databases and new standards within the area of mole-
cular interaction indicates that XML representations will be of high importance
for the area in the future. This means that there will also be a high degree of
interest in existing XML technology as well as a need for development of new
technology for the specific needs of the application. In this section we will put
our results into context by providing a discussion on the generality of the results
and requirements for the molecular interaction application.

For our experiments the most central criteria has been to test whether XQuery
is useful for finding relevant information from a molecular interaction dataset
with reasonable simple query formulations and a reasonable level of efficiency.
To determine this we have based our queries on an investigation of available
queries on existing databases for molecular interactions and cellular pathways
available over the Internet [2,9,12,13,14,15,20,26]. This ensures that our selected
queries capture the most important features of the application.

Another measure of generality is to compare our queries to available test
benches for XML [4,17,21,25]. These test benches define either particular
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XQuery queries or sets of XQuery queries, where the idea is to cover as many
features of XQuery as possible. Such a comparison shows that our selected test
queries cover the query groups relevant to this domain. Certain kinds of queries
that were not relevant to this application or these datasets were naturally ex-
cluded from our tests, for example queries based on order.

For the queries in experiment 1, it was feasible to write queries on the protein-
interaction data using the XQuery language. For a small dataset all three tested
NXD’s gave response times acceptable for interactive use with the exception for
pathway queries. Our previous comparison with relational databases [22] also
shows that these results are comparable with what can be achieved using a
relational approach.

However, an interesting question is whether XQuery is a suitable query lan-
guage for the domain. Even though it is possible to express queries, querying
with XQuery requires a solid knowledge of the specific XML format of a dataset,
which requires the user to have a high degree of knowledge about the specific
XML formats. Since it is very likely that a typical user would need to handle sev-
eral of these formats, there is a need for developing higher-level query languages
for the domain.

In the case of more complex analyses, e.g. pathway analysis, the search times
become large after just a few steps and the tested XQuery implementations
do not cope with pathway queries longer than three steps. A C++ program
for performing this query was developed using a graph package and resulted
in searches that were orders of magnitude faster than for the XML databases,
making it possible to search even larger graphs.

XQuery does not provide any special support for graph processing, while
queries of this kind are doubtless very interesting in many applications. XGMML
(Extensible Graph Markup and Modeling Language) [18] is a general format for
describing graphs using XML based on GML, used in these tests. Other more
specialized formats, such as the already-existing PSI MI and SBML formats for
biological data, may emerge in a number of different subject areas.
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This means there is a need for graph-capable XML in combination with
XQuery. To be able to perform larger graph searches there must be special
support for this. One possibility would be to extend XQuery with a number of
internal functions for path searches and graph analyses. This is possible by us-
ing, for example, a Java binding such as those offered by eXist and QizX/open,
which makes it possible to call functions in Java in the same way as XQuery’s
internal functions.

A final issue is the situation where the user needs to query over several datasets
and integrate the resulting information into one query. Here we see several so-
lutions. One is to provide a higher level query language capable of translating
the query into several specific query languages. This is similar to what has been
proposed for general databases within bioinformatics [11]. Another option would
be to provide tools for fast data integration between the different XML formats
in the line of the work within schema matching [6,19].

6 Summary

XML is more and more commonly used within the area of molecular interactions
and new XML standards are arising within the area. Because of this it would
be very appealing if existing XML technology could be used for querying and
analyses on this data. This work evaluates the use of XQuery and Native XML
databases on datasets in two of the available standards, SBML and PSI MI.

Our experiments show that XQuery is a suitable language for most of the
queries expected for the domain. We also saw a reasonable level of efficiency
in the tested native XML implementations. There are, however, several obvious
points for future research. One is the need for extended query languages and
methods for graph analyses. A second issue is methods for the user to query
over several different standard formats without having an exact knowledge of
the specific XML format for each of the datasets.
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24. Strömbäck, L and Lambrix P: Representations of molecular pathways: An evalu-
ation of SBML, PSI MI and BioPAX. Accepted for publication in Bioinformatics
21(24):4401-4407, 2005.
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Abstract. Data outsourcing is today receiving growing attention due
to its benefits in terms of cost reduction and better services. According
to such paradigm, the data owner is no more responsible for data man-
agement, rather it outsources its data to one or more service providers
(referred to as publishers) that provide management services and query
processing functionalities. Clearly, data outsourcing leads to challenging
security issues in that, by outsourcing its data, the data owner may po-
tentially loose control over them. Therefore, a lot of research is currently
carrying on to ensure secure management of data even in the presence
of an untrusted publisher. One of the key issues is confidentiality en-
forcement, that is, how to ensure that data are not read by unauthorized
users. In this paper, we propose a solution for XML data, which exploits
cryptographic techniques and it is robust to the most common and rel-
evant security threats. In the paper, we present the encryption methods
and query processing strategies.

1 Introduction

Data outsourcing is today emerging as one of the most important trend in the
area of data management. According to such paradigm, the data owner is no
more totally responsible for data management. Rather it outsources its data
(or portions of them) to one or more publishers that provide data management
services and query processing functionalities. Main benefit of data outsourcing
is cost reduction for the owner, in that it pays only for the services it uses
and not for the deployment, installation, maintenance, and upgrades of DBMSs.
By contrast, when data are outsourced such costs are amortized across several
users. Another important benefit is scalability in that data owners could not
become bottlenecks for the system, rather they can outsource their data to as
many publishers as they needs according to the amount of data and the number
of managed users. Clearly, data outsourcing leads to many research challenges.
One of the most significant is related to security. The key problem is that, since
the owner does not anymore manage its data, it may potentially loose control
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over them. The challenge is therefore how to ensure the most important security
properties (e.g., confidentiality, integrity, authenticity) even if data are man-
aged by a third party. A naive solution is to assume the publisher to be trusted,
that is, to assume it always operates according to the owner’s security policies.
However, making this assumption is not realistic, especially for web-based sys-
tems that can be easily attacked and penetrated. Additionally, verifying that
a publisher is trusted is a very costly operation. Therefore, the research is now
focusing on techniques to satisfy main security properties even in the presence of
an untrusted publisher that can not always follow owner’s security policies (for
instance it can maliciously modify/delete the data it manages or it can send data
to non authorized users). In this paper, we make a contribution to this research
by focusing on confidentiality, that is, protection against non authorized read-
ing operations, since it represents one of the most relevant security properties.
Moreover, we cast our techniques in the framework of XML [11], since it is today
the de-facto standard for data modeling and exchange over the web.

When data are outsourced confidentiality has two main aspects. The first,
which we call confidentiality wrt users, refers to protect data against unautho-
rized read operations by users. The second, which we call confidentiality wrt
publishers, deals with protecting owner’s data from read operations by pub-
lishers. Our solution enforces confidentiality by using cryptographic techniques:
publishers manage ciphered data instead of clear-text ones. In that way confi-
dentiality wrt publishers is always ensured. Data encryption is generated by the
owner and it is driven by the specified access control policies: all data portions
to which the same policies apply are encrypted with the same key. Then, each
user receives only the keys corresponding to the policies he/she satisfies. This
ensures confidentiality wrt users. Enforcing confidentiality through the use of
encryption requires dealing with several issues. The first is encryption genera-
tion in that there is the need to devise an encryption scheme which is robust to
the most relevant security attacks. For instance, if you consider keyword-based
searches on textual data, if the same keyword is always encrypted with the same
key, both publishers and users can infer information by analyzing the document
encryption. The same problem arises at the schema level, that is, with encrypted
tags or attributes names. In this work we propose an encryption scheme that
avoids information leakage due to data dictionary attacks. The second main issue
is how publishers can query encrypted data. In the literature, several methods
exist to this purpose.1 Some of them have been designed for relational databases
[6,7], others have been designed to query textual data [10]. Our work is inspired
by both of them, since an XML document contains both text and attributes
with standard domains. In the paper, we present our strategy to query XML
encrypted data and we describe both publisher side and user side query process-
ing. The work described in this paper is part of a wider project whose goal is
to ensure the most relevant security properties (i.e., authenticity/integrity and
completeness in addition to confidentiality) when data are managed by a third
party. Therefore, before going into the details of confidentiality protection we

1 Some of them are surveyed in Section 2.
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describe the overall architecture of the system we propose. Details on techniques
for authenticity/integrity and completeness verification can be found in [1]. The
remainder of this paper is organized as follows. Next section surveys related
work that are the basis of our proposal. Section 3 deals with confidentiality en-
forcement. Section 4 illustrates client-side query processing. Finally, Section 5
concludes the paper.

2 Related Work

In recent years the problem of inquiring encrypted data managed by a third
party has been deeply investigated by several researchers, that proposed dif-
ferent solutions [6,7,10] for different data models and domains. In general, the
most appropriate solution to query encrypted data mainly depends on the na-
ture of the data being queried, that is, the data domain and the underlying data
model. Thus, in order to select the most appropriate technique to inquire XML
encrypted data, we need to take into account the characteristics of XML data.
XML documents often contain data with heterogeneous domains (e.g, textual
data, date, integer). For this reason, we believe that in the scenario considered
in this paper, it is not enough to use a single technique to inquiry encrypted XML
data. Rather, different techniques should be combined into a unified framework
to manage data with different domains. For instance, the work by Hacigumus
et al. [6,7] develops a method to query encrypted data stored in relational data-
bases. From such work we borrow the method to query non textual data. By
contrast [10] deals with keyword-based searches on textual data. We use some
of the methods proposed in [10] to solve a twofold issue, that is, querying tex-
tual data and avoiding information leakage due to data dictionary attacks at the
schema level. However, with difference to our proposal, such approaches only
consider confidentiality wrt publishers, whereas they do not consider confiden-
tiality wrt users. In what follows, we briefly introduce the techniques proposed
in [6,7] and [10], whereas details on how these two techniques are used in our
framework are presented in Section 3. Confidentiality enforcement through the
use of encryption techniques has also been investigated by us in [4]. The current
work extends our previous work along several relevant directions. The first is
that in this paper we provide a comprehensive method to query encrypted XML
documents, which exploits a variety of strategies to query XML documents with
heterogeneous content. In [4] we adapt the strategy proposed in [6,7] to query
both textual and non textual attributes as well as data with textual domain.
The technique proposed in [6,7] has a major shortcoming, i.e., to be prone to
data dictionary attacks by both publishers and users. This kind of attack can
be for instance perpetrated when the same data portion (e.g., attribute value,
tag name) repeatedly appears in an XML document ciphered with the same key.
In this paper, we solve this problem by applying a combination of strategies to
treat XML data, able to trade-off between query expressivity and robustness to
security threats. Another weak point of the solution proposed in [4] is informa-
tion leakage due to inferences at the schema level in that tags/attributes with
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the same names and covered by the same access control policies are encrypted
with the same key. Therefore, by analyzing document encryptions both publish-
ers and users can infer information on the schema of some document portions,
even if they are not allowed to access such portions. This is a relevant security
threat since tags and attributes names can convey semantic relevant information
(for instance, by exploiting such kind of attack a user can infer the existence of
an element named salary even if he/she is not allowed to access it according to
owner’s security policies).

2.1 Hacigums et al.

The approach proposed by Hacigumus et. al [6,7] exploits binning techniques
and privacy homomorphisms to inquiry encrypted relational data. Binning tech-
niques are used to perform selection queries on encrypted relation data, whereas
privacy homomorphisms are used to make a third party able to perform ag-
gregate queries over encrypted tuples. In our framework, we assume that users
submit queries through XPath [11], with the obvious intention to extend the
approach to support XQuery [11]. Thus, since XPath expressions do not contain
aggregate functions, in what follows we review only the approach for selection
queries.

The underlying idea of the approach is the following: given a relation R, the
owner divides the domain of each attribute in R into distinguished partitions, to
which it assigns a different id. Then, the owner sends the publisher the encrypted
tuples, together with the ids of the partitions corresponding to each attribute
value in R. The publisher is able to perform queries directly on the encrypted
tuples, by exploiting the received partition ids. The idea is that a user, before
submitting a query to a publisher, rewrites it in terms of partition ids. As an
example, consider the relation Employee(eid, ename, salary), and, for simplic-
ity, consider only the salary attribute. Suppose that the domain of salary is
in the interval [500k, 5000k], and that an equi-partition with 100k as range is
applied on that domain. Suppose that a user wants to perform the following
query: “SELECT * FROM Employee WHERE salary =1000k”. It translates it
into the query: “SELECT * FROM Employee WHERE salary=id1000k”, where
id1000k is the id of the partition containing the value 1000k. Clearly, users should
receive by the owner information on the techniques used to partition data and
generate ids. The publisher is then able to answer such query by exploiting only
the received ids. The publisher returns an approximate result wrt the original
query. For instance, with reference to the above example, it returns all the tuples
of the Employee relation whose salary attribute belongs to the range [1000K,
1099K). A further query processing has thus to be performed by the user to
refine the received answer.

2.2 Song et al.

Another approach that has greatly inspired the present work is the one proposed
by Song et al. [10] for keyword searching on encrypted textual data. Given a text
consisting of a sequence of words: W1,W2, . . .Wn, the basic scheme proposed in



238 B. Carminati and E. Ferrari

[10] first encrypts each word using a symmetric encryption algorithm Ek(), with
a single secret key k. Then the scheme generates the XOR of each encrypted word
with a pseudorandom number. The resulting ciphered words are then outsourced
to the third party. According to this scheme, when a user needs to search for a
keyword W , it generates the encrypted word Ek(W ) and computes Ek(W )⊕ S,
where S is the corresponding pseudorandom number. This simple scheme allows
the third party to search for keyword W in the encrypted data, by simply look-
ing for E(W )⊕S, thus without gaining any information on the clear text. Since
occurrences of the same word are xored with different pseudorandom numbers,
by analyzing the distribution of the encrypted words, no information could be
inferred regarding the clear text. In particular, in [10] the authors propose a
generation process for pseudorandom numbers, that makes users able to locally
compute pseudorandom numbers, without any interaction with the data owner.
The scheme exploits a symmetric encryption function E(), and two pseudoran-
dom numbers generator functions, namely F and f . In the following, with the
notation Ek(x) (Fk(x), fk(x), respectively), we denote the result of applying E
(F , f , respectively) to input x with key k. The scheme considers as input a set
of clear-text words, W1,W2, . . . ,Wl, with the same length n.2 Given these set of
words, the steps needed to generate the corresponding ciphered words are the
following:

– data owner generates a sequence of pseudorandom values: S1 . . . Sl, of length
n−m;3

– for each word Wj , the outsourced ciphered word Cj is generated according
to the following formula: Cj = Ek(Wj)⊕ < Sj , FKj (Sj) >, where Kj =
fk(FBj), and FBj denotes the first n−m bits of Ek(Wj).

Let us see now how query evaluation and decryption take place. When a user
needs to search for a keyword Wi, he/she sends the third party Ek(Wi) and
key Ki, which can be locally computed by the user. Then, for each outsourced
ciphered word Ci, the third party: 1) calculates Ci ⊕ Ek(Wi); 2) takes the first
n−m bits bts of the resulting value, and computes FKi(bts), where Ki is the key
received by the requiring user; 3) if the result of FKi(bts) is equal to the n−m+1
remaining bits, then the ciphered word Ci is returned. Indeed, if Ci contains
the searched encrypted word, then Ek(Wi)⊕ < Si, FKi(Si) > ⊕Ek(Wi) =<
Si, FKi(Si) >, for the properties of the XOR operator. When a user receives Ci

as answer of a query, he/she is not able to extract the value Ek(Wi) from Ci and
thus to decrypt it, by simply using the decryption key k. Therefore, the scheme
proposed in [10] assumes that users know Si.4 In such a way, user is able to

2 This set of words can be obtained by partitioning the input clear-text into atomic
quantities (on the basis of the application domain), and by padding and splitting the
shortest and longest words.

3 Parameter m can be properly adjusted to minimize the number of erroneous answers
due to collision of pseudorandom numbers generator F () and f().

4 Users are able to generate it using the pseudorandom number generator and knowing
the seed.
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recover FBi, by xoring Si with the first n−m bits of Ci. Having FBi, the user
can generate Ki (i.e., Ki = fk(FBi))), which can be used to compute FKi(Si).
Finally, having < Si, FKi(Si) > the user is able to extract from Ci the encrypted
word Ek(Wi), and to decrypt it.

3 Confidentiality Enforcement

Enforcing confidentiality in an outsourced-based architecture requires to ad-
dress confidentiality wrt both publishers and users. Since publishers could be
untrusted, it is necessary to devise some mechanisms to avoid their malicious
usage of owner’s data. On the other hand, users are usually entitled to access
only selected portions of owner’s data based on their characteristics and profiles.

Confidentiality requirements wrt users are usually modelled through a set
of access control policies stating who can access what portions of the owner’s
data. In traditional client-server architectures confidentiality wrt users is usually
enforced by means of access control mechanisms (i.e., reference monitors), which
mediate each user access request by authorizing only those in accordance with
the owner’s access control policies. A fundamental requirement is therefore the
presence of a trusted environment hosting the reference monitor. In traditional
scenarios, this environment is provided by the entity managing the data, i.e., the
owner’s DBMS server. Enforcing access control in a third party scenario would
imply the delegation of the reference monitor tasks to publishers. However, since
we are considering a scenario where assumptions on publisher trustworthiness
cannot be done, such solution is no longer applicable.

To enforce confidentiality wrt both users and publishers we therefore propose
an alternative solution based on cryptographic techniques. The underlying idea
is that data owners outsource to publishers an encrypted version of the data
they are entitled to manage, without providing them the corresponding decryp-
tion keys. Such encryption is generated in such a way to minimize the risks of
data dictionary attacks. Therefore, the publisher is not able to access and, as a
consequence, to misuse the outsourced data, since they are ciphered. To enforce
confidentiality wrt users we propose a particular document encryption, hereafter
called well-formed encryption, where different portions of the same document are
encrypted with different keys, on the basis of the access control policies spec-
ified by the owner. In order to correctly enforce access control, it is therefore
necessary to selectively distribute secret keys to users. According to the pro-
posed architecture (see [4]), the appropriate keys are distributed by owner in
such a way that each user obtains all and only the keys corresponding to the
policies he/she satisfies. Policies are specified according to a credential-based
access control model for XML data proposed by us in [2]. Appropriate keys for
each user are therefore determined by evaluating user credentials against the
specified policies. The well-formed encryption and the selective distribution of
secret keys ensure confidentiality wrt users. Indeed, each node of the resulting
encrypted document is accessible only to authorized users, that is, those users
who have received the appropriate keys directly by owners. Even in the case that
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an untrusted publisher returns unauthorized nodes to a user, he/she is not able
to access it, since he/she has not been provided with the corresponding keys.

Applying a cryptographic-based solution in a third party scenario implies to
address two main issues. The first is related to the fact that publishers operate
on ciphered data. Therefore, we need some mechanisms to make them able to
perform queries over them. In Section 3.1, we show how Hacigumus et al. and
Song et al. approach can be adopted in the context of XML. The second issue is
the definition of encryption strategies able to reduce as much as possible secu-
rity threats that can be perpetrated against the system. In particular, we have
addressed information inference threat that a publisher (user) can perpetrate by
analyzing the distribution of encrypted nodes. To overcome this drawback, in
Section 3.2, we show how Song et al. scheme can be adopted to encrypt tagnames
and attribute names and values, thus to avoid inference.

3.1 Inquiring Encrypted XML Data

As introduced in Section 2, selecting the most appropriate solution to query en-
crypted data mainly depends on the nature of the data, that is, the data domain
and the underlying data model. Usually, an XML document contains data to be
modeled into elements, which in turn could contain other elements in accordance
to the structure of the modelled data. Whereas attributes are usually exploited to
better describe data contained into the corresponding elements. Let us consider,
for instance, an XML document modelling a book. It is reasonable to suppose
that in such an XML document, Chapter elements contain book’s chapters,
whereas their attributes Title and Number store additional information about
book’s chapters. Therefore, in devising methods to query XML encrypted data,
we need to consider that elements could be searched based on their attributes
values and/or their contents. Thus, we need a method that makes the publisher
able to perform logical comparisons on encrypted attribute values, as well as
keyword-based searches on encrypted element contents and textual attributes.

To cope with this requirement, we have adopted two different strategies to
query XML encrypted data. In particular, we use an approach similar to the
one proposed by Song et al.’s [10] to query elements and attributes with textual
domain. By contrast, for non textual elements and attributes, we exploit the
method proposed by Hacigumus et al. [6]. Thus, we assume that before encrypt-
ing a node n, the encryption process determines n’s data domain. This task can
be performed by means of information contained in the XMLSchema. Let us
see in more details which are the query strategies for textual and non-textual
encrypted data.

Textual data. Song et al.’s approach [10]. In particular makes a publisher able
to search for a specific keyword on encrypted textual data without loss of data
confidentiality. Applying such an approach to our scenario requires two adjust-
ments wrt the original formulation. The first is because the scheme proposed in
[10] works for words of the same length, whereas we need to consider words of
variable length. Therefore, we adapt the scheme proposed in [10] to the man-
agement of variable length words, as follows. Let W be the longest word in the
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owner’s dictionary, and let LW be the length of W. Thus, for each sequence of
clear-text words: W1,W2, . . . ,Wl, with length Lj ≤ LW, the steps for ciphered
words generation are the following:

– for each word Wj , data owner pads it with a sequence pdbts of LW−Lj bits;
– data owner generates a sequence of pseudorandom values S1 . . . Sl, of length
LW −m;

– for each keyword Wj the outsourced ciphered word Cj is generated by the
following formula: Cj = Ek(Wj ||pdbts)⊕ < Sj , FKj (Sj) >, where Kj =
fk(FBj)), and FBj denotes the first n−m bits of Ek(Wj ||pdbts).

According to this scheme, users have to know LW, that is, the length of the
longest word managed by the data owner, to be able to pad the searched keyword
Wi, before submitting the query.

Finally, we need to define a method for keywords selection. In particular, given
a node n, we need to state how to select keywords from n’s content. A naive
solution is to split the content into separate LW blocks, and to treat them as
distinguished keywords. This solution however is useless if we consider that the
resulting ciphered words should be exploited for the search. Thus, it is obvious
that some content analysis should be performed over the node’s content before
keywords selection. In particular, the solution we propose requires a first phase
during which the owner preprocesses the textual data contained into an XML
node and extracts a set of keywords.5 Then, each keyword is ciphered according
to the scheme introduced above.

Non-textual data. To make publishers able to evaluate queries on encrypted
non-textual data, we adapt Hacigums et al.’s approach [6]. First, we have to deal
with partition generation. In general, the choice of the most appropriate parti-
tioning technique mainly depends on the node domain. For instance, for numeric
data (such as integer, real, etc.), a strategy based on an equi-partitioning of the
domain could be appropriate. By contrast, for temporal data a partitioning based
on time intervals could be more appropriate. Therefore, in our system we asso-
ciate a different partitioning function with each possible data domain, with the
exception of textual domain. Thus, given a node n of a document d, by analyzing
the XML schema defining d it is possible to select the appropriate partitioning
function. The partitioning function takes as input the node value and returns
the id of the partition to which the node belong to, generated according to the
data domain.

3.2 Document Encryption

Document encryption requires a first phase during which each node of the input
document is associated with the proper secret key. Therefore, each node of the
input document is first marked with the set of access control policies applied

5 Several techniques developed in the Information Retrieval field can be used to this
purpose [9].
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<Sec-Info>
<Node-Info Name=‘CK1(CD)’>

< Query-Info> ...</Query-Info>
</ Node-Info>
<Attributes>

<Node-Info Name=‘CK2(Price)’ Value=‘CK2(30)’>
<Query-Info> ... </Query-Info>

</ Node-Info>
</Attributes>

</Sec-Info>

Fig. 1. An example of Sec-Info element

to it, and then a different secret key is generated for each different configu-
ration of policies that applies to a document portion. Then, all the nodes are
encrypted with the corresponding secret keys. In particular, we use an encryp-
tion strategy that preserves as much as possible the original structure of the
XML document. In the well-formed encryption, the encryption of an XML ele-
ment e is an XML element e having as tagname the encryption of e.tagname6

and as element content the encryption of e.content. The well-formed encryption
is therefore an XML document that preserves the elements relationships of the
original document. We have decided to preserve as much as possible the struc-
ture of the original document in the well-formed encryption since this simplifies
query formulation. Indeed, users formulate queries through XPath expressions
that exploit the structure of the XML document.

However, preserving the original document structure implies some security
threats. An untrusted publisher (or user) could infer information by analyzing
the distribution of encrypted nodes. This threat could be easily perpetrated
against tagnames, attribute names and values, since an XML document may
often contain repeated elements and several attributes with the same names (or
values). To overcome this drawback, rather than symmetric encryption we apply
the scheme proposed by Song et al. (see Section 2.2) to encrypt tagnames and
attribute names and values. By contrast, for element contents we have decided
to adopt traditional symmetric encryption (e.g., TDES, AES), that requires less
computational resources. This choice is motivated by the fact that probability of
having a number of occurrences of the same encrypted element content sufficient
for data dictionary attacks is small. This probability is further reduced in our
context, where elements with the same content are encrypted with different keys,
if they are protected by different access control policies.

To make publishers able to evaluate queries on encrypted XML documents,
the resulting document encryption is complemented with additional information,
called query processing information. This information consists of partition’s ids
or ciphered keywords associated with attribute values or element contents. Query
processing information are encoded by an XML element, called Sec-Info, which
is inserted into each element of the well-formed encryption (see Figure 1) and
encodes query processing information of both the element itself and all its at-

6 In the paper, given an element e (i.e., an attribute a) we use the dot notation to
identify its tagname (name) e.tagname (i.e., a.name) and content (value) e.content
(i.e., a.value).
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tributes. The Sec-Info element associated with an element e contains a manda-
tory subelement, named Node-Info, whose Query-Info subelement stores the
query processing information corresponding to e. The Query-Info subelement
contains the ciphered words extracted from e.content or the id of the partition to
which e belongs to, if element e has non-textual domain. By contrast, to model
query processing information corresponding to each attribute of element e, the
Sec-Info contains an Attributes subelement, which in turn contains a differ-
ent Node-Info subelement for each attribute of e. The Node-Info subelement
corresponding to attribute a of element e contains a Query-Info subelement
storing the id of the partition to which the value of a belongs to or the ciphered
keywords extracted from it, if attribute a has textual domain.

Algorithm 1. The element encryption algorithm

INPUT:
1. An XML element e
2. The encryption key K corresponding to the policy configuration applied to e

OUTPUT:
An XML element, e, containing the encryption of e and its query processing
information

1. Let e be an empty XML node;
2. Set e.tagname equal to CK(e.tagname);
3. Set e.content equal to EK(e.content);
4. Let se be an empty Sec-Info element;
5. Let ni be an empty Node-Info element subelement of se;
6. Set the Name attribute of ni equal to CK(e.tagname);
7. If the domain of e is textual:

Let WS be the set of keywords extracted from e.content;
For each w ∈ WS: Insert CK(w) into the Query-Info subelement of ni;

Else
Let PF () be the partitioning function associated with e’s domain;
Insert PF (e.content) into the Query-Info subelement of ni;

8. Return e;

Let us now see in more details how given a document d, the generation of
d, that is, the document to be outsourced, is carried on. This process is real-
ized by means of two different phases. During the first phase, each element e
of d is encrypted, according to the strategy previously explained, and inserted
into d. Additionally, the Sec-Info element associated with e is generated. Then,
attribute encryption is performed and the Sec-Info element is updated accord-
ingly. Algorithm 1 deals with element encryption. The algorithm takes as input
an element e and the encryption key corresponding to the policy configuration
applied to e. First, it generates the encryption of the tagname and element con-
tent (steps 2 and 3). This is done by means of CK() function implementing the
Song et al.’s scheme, and EK() function that performs symmetric encryption.
Then, Algorithm 1 generates the query processing information associated with
the input element. In particular, in case of textual domain, the system extracts
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the set of meaningful keywords from e.content and generates the correspond-
ing ciphered keywords, which are then inserted into the Query-Info element.
By contrast, for element with non-textual domain, the query processing infor-
mation consists of the id of the partition to which e belongs to.7 In order to
complete the well-formed encryption we need to consider all attributes of e.
This is done during a second phase, implemented by Algorithm 2. This phase
considers each attribute a and generates the encryption of its name and value,
according to Song et al.’s scheme. Moreover, it generates the query processing
information related to a, in the same way as Algorithm 1. The resulting infor-
mation is then inserted into the Sec-Info element associated with the element
to which a belongs to. This information is stored as a new Node-Info element
inside the Attributes subelement of Sec-Info.

Algorithm 2. The attribute encryption algorithm

INPUT:
1. An XML attribute a
2. The encryption key K corresponding to the policy configuration applied to a

OUTPUT:
The updated Sec-Info containing the encryption of a and its query processing
information

1. Let f be the element containing a;
2. Let se be the Sec-Info element in f ;
3. Let ni be an empty Node-Info element;
4. Set the Name attribute of ni equal to CK(a.name);
5. Set the Value attribute of ni equal to CK(a.value);
6. If a has a textual domain:

Let WS be the set of keywords extracted from a.value;
For each w ∈ WS: Insert CK(w) into the Query-Info subelement of ni;

Else
Let PF () be the partitioning function associated with a’s domain;
Insert PF (a.value) into the Query-Info subelement of ni;

7. Insert ni in the Attributes subelement of se;
8. Return se;

4 Client Side Query Processing

In the proposed system, users submit queries through a client, i.e., a program
that users download from the owner site, and which makes them able to submit
encrypted queries to publishers, and verify security properties on the received
answers. In this section we show how the client is able to submit queries to pub-
lisher and decrypt the resulting nodes. Before going into the details we introduce
the query template.

7 We assume that our system manages a library of partitioning functions, which asso-
ciates with each different data domain a unique partitioning function.
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4.1 Query Template

The query template has a twofold goal. The first is to make a user able to
verify the completeness of a query result,8 the second is to make a user able
to formulate queries and to decrypt the received results. We do not go into the
details of completeness verification, since it is outside the scope of this paper
(interested readers could refer to [4]). Rather, we focus on the information the
query template contains for query processing.

Query templates are generated by the owner for each outsourced document
and make available to all users for downloading. Query template contains the
encrypted structure of the corresponding XML document and it is generated by
using the same encryption strategy employed for XML documents. Moreover,
the query template contains the encrypted pseudorandom numbers associated
with each node, and needed by clients for document decryption. More precisely,
all additional information associated with an element e needed for both query
processing and completeness verification are encoded by an XML element, which
is inserted as direct child of e into the query template. The element is defined
according the syntax of the Sec-Info element (cfr. Section 3.2). All information
is therefore stored into the Node-Info element. Each Node-Info element contains
an additional attribute called N storing the encrypted pseudorandom number
associated with the element tagname or attribute name to which the Node-Info
element refers to.9 Pseudorandom number is encrypted with the encryption key
associated with the element/attribute to which it refers to. By contrast, attribute
values can be often split into several words, where each of them is associated with
a different pseudorandom number. Therefore, the encryption of these numbers
are placed as content of an additional subelement, called Numbers, inside the
Node-Info element.

By having the query template users are able to generate the authorized view
of the structure of the document to be inquired, which can be exploited to
formulate queries.

4.2 Query Generation

In proposed framework, we assume that users submit queries through XPath ex-
pressions. XPath allows one to traverse the graph structure of an XML document
and to select specific portions on the document according to some properties,
such as the type of the elements, or specified content-based conditions. In gen-
eral, an XPath expression consists of a location path, that allows one to select
a set of nodes from target documents, which in turn consists of one or more
location steps, separated among each other by a slash. A location step contains:
an axis, specifying the tree relationships between the nodes selected by the loca-
tion step and the current node (e.g., ancestor, ancestor-or-self, attribute, child,
8 By completeness we mean that a user receives all document portions he/she is au-

thorized to see according to the owner’s access control policies.
9 We assume that tagnames and attribute names are shorten than LW, i.e., the max

length, and thus are treated as a unique word. Therefore, they are associated with a
unique pseudorandom number.
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descendant, descendant-or-self); a node test, used to identify a node within an
axis, by specifying a node type or the node name (e.g., text(), node()); and zero
or more predicates, placed inside square brackets, used to further refine the set of
nodes selected by the location step (e.g., [@Price=‘30’]). By means of predicates
an XPath expression can specify conditions on attributes through comparison
operators (e.g., <,>,=), as well as conditions on textual data, in that it is pos-
sible to retrieve XML nodes containing a specified keyword (supported by the
contains() function).

In order to submit a query to a publisher, the first step that a user has to
perform is to download the query template of the requested document from the
owner site. By decrypting the query template, the client can locally generate
the structure of the authorized view, which can be displayed to the user in or-
der to formulate XPath queries on it. Such queries should then be translated
by the client into one or more XPath expressions that could be evaluated by
publishers on the encrypted XML documents. In order to do that there are two
main transformations to which each location step of a user XPath expression
must undergo before being submitted to a publisher. The first implies to cipher
the tagnames specified in the node test of the location steps with the proper
keys. Note that according to the well-formed encryption, nodes with the same
name could be ciphered with different keys, based on the access control policies
applied to them. Thus, the ciphering of a location step does not always return
a unique value, which implies that for each user’s query the client could gen-
erate more ciphered queries. The second transformation implies the translation
of the query conditions in terms of partition ids and/or encrypted keywords.
This is applied to each predicate composing the input XPath expression. If the
predicate contains comparison operators (e.g., <,>,=), the client substitutes the
values appearing in the predicate with the id of the partition to which it belongs
to. This is done by using the information about the partitioning functions ob-
tained during the subscription phase. By contrast, if the predicate exploits the
contains() function, the client translates the condition by replacing the searched
keyword Wj , with the corresponding encrypted word. We recall that according
to the adopted scheme, for searching a keyword Wj publishers must be pro-
vided with its encryption and with key Kj , which must be sent by the client to
publishers together with the submitted query.

To better understand query processing, let us consider an example. In particu-
lar, consider an XML document modelling a CD catalog, where a different CD ele-
ment is inserted for each different CD in the catalog. The CD element contains an
attribute, i.e., Price, storing the CD’s price and two subelements, i.e., Title and
Author, containing the CD’s title and author, respectively. Let us suppose more-
over that on this document two different access control policies apply, namely
P1 and P2. The first authorizes all users to access all the nodes except for Price
attributes. By contrast, P2 grants store-staff users the access to the whole docu-
ment. The outsourced document is thus encrypted with two different encryption
keys, namely K1 and K2. K1 is associated with policy configuration consisting
of both P1 and P2 and encrypts all the nodes except for Price attributes. K2
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corresponds to policy P2 and encrypts only the Price attributes. A store-staff
member u receives by the owner both K1 and K2. Suppose now that u wants
to submit the following query: /CD[@Price=30K]/Title[contains(.,‘Overture’)],
which returns all the CDs having price equal to 30K and the keyword Overture
in the title. Before submitting this query the client transforms it, by, at first,
ciphering the tagname in each location step obtaining thus the following expres-
sion: /CK1(CD) [@CK2(Price)=‘30K’]/CK1(Title)[contains(.,‘Overture’)]. Note
that clients can easily cipher a tagname by simply extracting from the query tem-
plate the corresponding pseudorandom number. Then, each condition specified
in the predicates is translated. This is done by considering the query processing
information of the node on which the predicate is specified. Let us for instance
consider the predicate “contains(.,‘Overture’)” on element Title. According to
the proposed strategy this can be evaluated by searching a ciphered word among
those contained in the query processing information of the Title element that
matches EK1(‘Overture’). Thus, the predicate that should be evaluated by the
publisher is:

/CK1 (CD)/CK1(Title)/Sec-Info /Node-Info/Query-Info [contains(.,‘EK1(Overture)’)].10

Furthermore, we have to note that in the proposed encoding the ciphered name
of an attribute a is stored into the Name attribute of a Node-Info subelement of
Attributes, which is contained into the Sec-Info element associated with the
element e to which a belongs to. This implies that in our example conditions on
price should be verified against the query processing information contained into
the Node-Info element, whose Name attribute is equal to CK2(Price). Thus,
predicates on the price attributes should be evaluated by the publisher as:

/CK1(CD)//Attributes/ Node-Info[@Name=CK2(Price)/Query-Info [contains(.,‘PF(30’)],

where PF(30) returns the id of the partition to which the value 30 belongs to.
The resulting XPath expression generated by the client is thus:

“/CK1 (CD)/ CK1 (Title)/Sec-Info/Node-Info/Query-Info[contains(.,‘EK1(Overture)’)]

AND

/CK1(CD)//Attributes/Node-Info[@Name=CK2(Price)/Query-Info[contains(.,‘PF(30’)]”.

4.3 Decryption of Query Answers

Once the query has been evaluated, the publisher returns to client the encrypted
nodes identified by the submitted XPath expressions. According to the adopted
document encryption strategy, the client needs to perform two different decryp-
tion processes in order to decrypt the obtained nodes: one for tagnames, attribute
names and values, and the other for decrypting element contents.

Decryption of tagnames, attribute names and values. Tagnames, at-
tribute names and values are ciphered according to Song et al.’s scheme (cfr.

10 Note that publishers implement a different contains() function wrt Xpath parsers,
by, however, preserving the semantics.
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Section 2.2). Given a ciphered word Cj , in order to extract from it the en-
crypted word EK(Wj), and thus to decrypt it, the client must be provided with
the corresponding pseudorandom numbers. Such numbers are retrieved by the
client from the query template (cfr. Section 4.1). By decrypting the pseudoran-
dom numbers, the client is thus able to decrypt the ciphered tagnames, attribute
names, and attribute values.

Decryption of element contents. Element contents are encrypted by means
of a symmetric encryption algorithm. Therefore, the decryption of element con-
tent is simply performed by first retrieving the encryption key associated with
the element, and then by executing the proper symmetric decryption algorithm.

5 Conclusions

In this paper, we have proposed a method based on cryptographic techniques
for confidentiality enforcement on outsourced XML data. Main benefits of the
proposed solution are that it does not make any assumption on the trustworthi-
ness of publishers and it is robust to data dictionary attacks both at the schema
and document content level. In the paper, besides illustrating the cryptographic
schemes, we show by an example how client-side query processing takes place.
Due to space limitations, we have not considered other important issues related
to key management, for instance those related to the number of keys that need to
be managed. To limit the number of keys we use a hierarchical key management
scheme similar to the one proposed by us for temporal access control policies [3],
which requires to permanently store a number of keys linear in the number of
access control policies.

We are currently implementing the proposed strategies to test the performance
of the system in different environments. Moreover, we are currently investigat-
ing techniques to efficiently manage updates to policies and documents, that
would require a partial re-encryption of documents as well as an update of the
related security information. In particular, in order to efficiently manage update
operations, we plan to adopt a strategy similar to the one in [5] that incremen-
tally maintains document encryptions, by changing all and only those portions
which are really affected by the administrative operation, without the need of
re-encrypting the document from scratch.
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Query Translation for XPath-Based Security
Views
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Abstract. Since XML is used as a storage format in an increasing num-
ber of applications, security has become an important issue in XML data-
bases. One aspect of security is restricting access to data by certain users.
This can, for example, be achieved by means of access rules or XML se-
curity views, which define projections over XML documents. The usage
of security views avoids information leakage that may occur when we
use certain access rules. XML views can be implemented by materialized
views, but materialization and maintenance of views may cause consid-
erable overhead. Therefore, we study translations from queries on views
to equivalent queries on the original XML documents, assuming both
the security views and the queries are specified by XPath expressions.
Especially, we investigate which XPath fragments are closed under the
composition of a view and a query.

1 Introduction

Access control mechanisms are essential for database systems used to store and
share sensitive information. XML is used in an increasing number of applications,
including those handling confidential information. As a consequence, some stan-
dards for XML access control have already emerged, such as XACL [11] and
XACML [9]. Furthermore, several approaches for XML access control mecha-
nisms have been proposed in the literature [6,13,4]. In most of these approaches,
the policies are specified at the DTD level. Fundulaki and Marx developed a
framework to compare XML access control mechanisms in terms of XPath [8].
Query answering that incorporates these access control policies can, for example,
be performed by computing some (materialized) security view [14,12] and then
evaluating the query against this security view. This ensures that no informa-
tion is exposed that is not supposed to be seen by the user, since the query is
evaluated against an XML tree that contains exactly the information the user
is allowed to see. However, the materialization of views causes an overhead that
might be avoided if we can translate queries on the view to equivalent queries
on the original data, without leaking information on “hidden” nodes [6,2].

In this paper, we will not introduce a new XML access control mechanism,
but instead we assume that security views are defined by path expressions p such
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that access to a node is never granted, except when it is the root node or in the
result of p. The obtained XML security views are similar to those of [6] and [12],
but we specify them by means of path expressions instead of annotated DTDs.
We investigate how to translate queriesst on views to equivalent queries on the
original data. Since it is known that some XPath fragments can be evaluated
very efficiently [10], we look at a number of XPath fragments to see which of
these fragments are closed under the composition of a view and a query.

The rest of the paper is structured as follows. In Section 2 we introduce
our XPath-based security views and some preliminary notions. In Section 3 we
study the problem of translating queries on XML views to queries on the original
(XML) data. We then use these results in Section 4 to examine which XPath
fragments are closed under the composition of a view and a query. Finally, we
compare our approach to existing query translation mechanisms for queries on
XML views in Section 5 and conclude the paper in Section 6.

2 Preliminaries

In this section we introduce some preliminary notions that are used in the rest of
our paper. First, we define the data model and the query language that we use
in the theoretical exploration of this paper. Next, we introduce our XPath-based
security views. Finally, we define the fragments that we investigate.

2.1 Data Model

Our data model is a simplification and abstraction of the full XML data model [7]
and restricts itself to the element nodes. First of all, we postulate an infinite set
of tag names Σ and an infinite set of nodes N .

Definition 1 (XML Tree). An XML tree is a tuple T = (N,�, r, λ,≺) such
that (N,�, r) is a rooted tree where N ⊂ N is a finite set of nodes, � is the
parent-child relationship, r is the root, λ : N → Σ labels nodes with their tag
name and ≺ is a strict total order1 over N that represents the document order
and defines a pre-order tree-walk, i.e., (1) every child is smaller than its parent,
and (2) if two nodes are siblings then all descendants of the smaller sibling are
smaller than the larger sibling

In the following we let � denote the inverse relation of �, �+ and �+ the
transitive closure of resp. � and �, and �∗ and �∗ the transitive and reflexive
closure of resp. � and �. The set of all XML trees is denoted by T .

2.2 XPath Queries

We now define the set of XPath expressions we consider. We use a syntax in
the style of [1] that abstracts from the official syntax [3] and is more suitable

1 A strict total order is a binary relation that is irreflexive, transitive and total.
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for formal presentations. The largest fragment of XPath that we study in this
paper, called P , is defined by the following abstract grammar:

p ::= ε | ⇑ | l | ↓ | ↑ | ↓∗ | ↓+ | ↑∗ | ↑+ | ←+ | →+ | � | � |
p/p | p[p] | p ∩ p | p ∪ p | p − p

where ε represents the empty path expression or self axis, l ∈ Σ denotes a label
test, ↑ and ↓ represent the parent and child axis, ↑∗, ↑+, ↓∗ and ↓+ represent the
ancestor-or-self, ancestor, descendant-or-self and descendant axis, ←+ and →+

represent the preceding-sibling and following-sibling axis, � and � represent the
following and preceding axis, ⇑ represents the document root, p1/p2 represents
the concatenation of p1 and p2, p1[p2] represents a path p1 with a predicate p2
and finally ∩, ∪ and − represent the set intersection, set union and set difference.
For disambiguation, parentheses are added and the concatenation is assumed to
have the highest precedence. The label tests of the form l ∈ Σ behave as if they
follow the self axis. This means that a/b corresponds to the conventional XPath
expression self::a/self::b and not to the expression child::a/child::b as
is the case for the so-called abbreviated XPath syntax. Based on [5] and similar
to [1] we define the semantics as follows:

Definition 2 (XPath Semantics). Given an XML tree T = (N,�, r, λ,≺) we
define the semantics of a path expression p, [[p]]T ⊆ N ×N as follows:

[[⇑]]T = {(n, n′)|n′ = r}
[[↑]]T = � [[↓]]T = �
[[↑∗]]T = �∗ [[↓∗]]T = �∗

[[↑+]]T = �+ [[↓+]]T = �+

[[�]]T =� −�+ [[�]]T =≺ −�+

[[←+]]T =� ∩(� ◦ �) [[→+]]T =≺ ∩(� ◦ �)
[[ε]]T = {(n, n′)|n = n′} [[l]]T = {(n, n′)|n = n′ ∧ λ(n) = l}
[[p1/p2]]T = [[p1]]T ◦ [[p2]]T [[p1 ∩ p2]]T = [[p1]]T ∩ [[p2]]T
[[p1 ∪ p2]]T = [[p1]]T ∪ [[p2]]T [[p1 − p2]]T = [[p1]]T − [[p2]]T
[[p1[p2]]]T = {(n, n′)|(n, n′) ∈ [[p1]]T ∧ ∃n′′ : (n′, n′′) ∈ [[p2]]T }
Note that “◦” denotes the concatenation of binary relations (and therefore also
functions), i.e., (x, y) ∈ (f ◦ g) ⇔ ∃z : (x, z) ∈ f ∧ (z, y) ∈ g. This is the reverse
of the usual semantics. The length of a path expression p is denoted by |p| and
equals the size of the abstract syntax tree of p. Let p be a path expression. We
define pk as the concatenation of k times p, i.e., p0 = ε and pn+1 = pn/p.

Definition 3 (Query). Let p be a path expression. The query Q[p] is a function
T → 2N , defined as follows: ∀T = (N,�, r, λ,≺) : (n ∈ Q[p](T ) ⇔ (r, n) ∈ [[p]]T )

Note that ∀T ∈ T : [[p1]]T = [[p2]]T implies Q[p1] = Q[p2], but the reverse does
not necessarily hold. For example, we know that Q[↓/↑+] = Q[ε[↓]], but for many
XML trees T , [[↓/↑+]]T �= [[ε[↓]]]T .

2.3 XPath-Based Security Views

The XPath-based security views that we consider are similar to the XML security
views of [6,12]. However, we define security views by means of path expressions
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instead of annotating the DTD. Informally, a view defined by a path expression
p maps an XML tree, called input tree, to an XML tree, called view tree, such
that the view tree is the projection of the input tree on the nodes selected by p
and the root of the input tree. We always include the root of the input tree in
order to ensure that the projection yields a valid XML tree instead of a forest.

Definition 4 (View). Let p be a path expression. The view V [p] is a function
T → T , defined as follows: ∀T1 = (N1,�1, r1, λ1,≺1), T2 = (N2,�2, r2, λ2,≺2) :
V [p](T1) = T2 ⇔

– N2 = {n|(n = r1) ∨ ((r1, n) ∈ [[p]]T1)}
– �2 = {(m,n)|(m,n ∈ N2)∧ (m�+

1 n)∧ (� ∃n′ ∈ N2 : (m�+
1 n′)∧ (n′ �+

1 n))}
– r2 = r1
– λ2 = {(n, s)|(n ∈ N2) ∧ (λ1(n) = s)}
– ≺2= {(m,n)|(m,n ∈ N2) ∧ (m ≺1 n)}2

Example 1. A governmental organization has to check hospitals and the treat-
ments that are performed by their doctors. For privacy reasons, hospitals are
not allowed to transfer any information on their patients to this institute. The
doctors of this hospital, however, have internally organized the information on
treatments by collecting them per patient. Suppose the hospital database is the
left tree in Fig. 1 and the government wants the data in the form of the right
tree in this figure. We can obtain the right tree using an XPath-based security
view, more precisely the view V [↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)] transforms
input trees of the left form to view trees of the right form.

Doctors

Doctor Doctor

Patient Patient Patient

Treatment Treatment Treatment Treatment Treatment Treatment

a b a c a c

Doctors

Doctor Doctor

Treatment Treatment Treatment Treatment Treatment Treatment

a b a c a c

Fig. 1. Input and View Tree of Example 1

Note that the semantics of path expressions on the view tree in terms of the
input tree differs from the semantics of the same path expression on the input
tree. For example, in Fig. 1 a ‘Treatment’ node is a child of a ‘Doctor’ node in the
view, while this is not true in the input tree. However, for some axes a it holds
that they are “robust under view definition”, i.e., [[a]]V[p](T ) ⊆ [[a]]T . The robust
axes are ε, ↑∗, ↑+, ↓∗, ↓+,�, and �. As we show in Section 3, these axes can
easily be translated. Moreover, we can express all other axes in terms of these
axes as follows: [[↓]]T = [[↓+−↓+/↓+]]T , [[↑]]T = [[↑+−↑+/↑+]]T , [[→+]]T = [[(↑+−
↑+/↑+)/(↓+−↓+/↓+)∩�]]T , and [[←+]]T = [[(↑+−↑+/↑+)/(↓+−↓+/↓+)∩�]]T .
2 This defines a pre-order tree-walk, since ≺1 is a strict total order and �+

2 ⊆ �+
1 .
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In some query translations, we first transform path expressions to equivalent
expressions only containing robust axes. Since none of our fragments contain
the following and preceding axes, we afterwards remove them using following
equalities: [[�]]T = [[↑∗/→+/↓∗]]T and [[�]]T = [[↑∗/←+/↓∗]]T .

2.4 XPath Fragments

We now define the XPath fragments that we study in this paper and discuss some
of their properties. These fragments are inspired by the fragments introduced
in [1], but we have added sibling axes, intersection, union and set difference.
Furthermore, their label tests l correspond to ↓/l in our XPath model. Our
fragments are defined by the axes that can occur in path expressions and the
different operations we can use to combine two path expressions to a new path
expression. We consider two groups of fragments. One is defined by a base frag-
ment X and loosely corresponds to the fragments introduced in [1]; the other is
defined by a base fragment A which is based on the abbreviated syntax [3].
The fragment X is defined as

p ::= ε | ⇑ | l | ↓ | p/p.

We can extend this fragment by adding the parent axis (↑), adding the sibling
axes (←+ and →+), and adding the transitive and reflexive closure of axes (i.e.,
adding ↓∗ and if ↑ is in the fragment then also ↑∗). The three possible extensions
can be combined arbitrarily and are respectively denoted by superscripts ↑, ↔,
and r.

The fragment A is defined as

p ::= ε | ⇑ | ↓ | ↓/l | ↓∗ | ↑ | p/p.

All previous fragments can be extended with predicates ([ ]), set intersection
(∩), set union (∪), and set difference (−). The addition of these extensions is
denoted by subscripts.

Some fragments F contain path expressions that are equivalent to path ex-
pressions that are not in F . If the addition of a certain operation o to a fragment
F does not increase the expressive power of path expressions defined in F then
we say that o can be expressed in F . Furthermore, for some fragments F it holds
that we cannot in general express an operation o in F , but we can express o if
we assume that all path expressions are evaluated against the root. We then say
that o can be expressed in queries of F . We now give some expressibility results
for the XPath fragments that we have just defined.

Lemma 1. The following expressibility properties hold for queries, i.e., path
expressions evaluated against the root of a tree:

1. The union of two path expressions can be expressed in all fragments that can
express the set difference and the descendant-or-self axis.

2. The intersection of two path expressions can be expressed in all fragments
that can express the set difference.
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3. Predicates can be expressed in all fragments that can express intersection.
4. Parent, ancestor and ancestor-or-self axes can be expressed in all fragments

that can express intersection and descendant-or-self axes.

The first two properties also hold for path expressions in general.

Proof. (Sketch)

1. This follows from [[p1 ∪ p2]]T = [[(⇑/↓∗)− ((⇑/↓∗)− p1 − p2)]]T .
2. This follows from [[p1 ∩ p2]]T = [[p1 − (p1 − p2)]]T .
3. We can define a function e : P × P → P such that Q[pc/p] = Q[pc/e(p, pc)]

and its result does not contain predicates if the second argument does not
contain predicates. For predicate operations the mapping is defined by
e(p1[p2], pc) = e(p1, pc)/(ε ∩ e(p2, pc/e(p1, pc))/⇑/pc/e(p1, pc)). For all other
operations the definition is straightforward, e.g., e(p1 ∪ p2, pc) = e(p1, pc) ∪
e(p2, pc), and e(p1/p2, pc) = e(p1, pc)/e(p2, pc/e(p1, pc)).

4. Similar to the previous part of this proof, we can define a function e : P×P →
P such that Q[pc/p] = Q[pc/e(p, pc)] and e(p, pc) does not contain ↑, ↑+ or
↑∗ if the second argument does not contain these axes. The mapping for
↑∗ is defined by e(↑∗, pc) = ⇑/↓∗[↓∗ ∩ ⇑/pc] and similar mappings can be
defined for ↑ and ↑+. The mapping of predicate operations differs from part 3:
e(p1[p2], pc) = e(p1, pc)[e(p2, pc/e(p1, pc)]. Since predicates can be expressed
using intersection, we only need ∩ and ↓∗ axes to express ↑, ↑+, and ↑∗. #$

From the previous lemma follows that P has the same expressive power as X r,↔
− .

We conclude this section by showing that for some queries Q[p] we know that
all nodes in Q[p](T ) are on the same depth in T .

Lemma 2. For all path expressions p ∈ X ↑,↔
[ ],∩,− it holds that for all XML trees

T all nodes in the result of Q[p](T ) are on the same level d(p, 0), inductively
defined as follows:

d(⇑, n) = 0 d(ε, n) = n d(l, n) = n
d(↓, n) = n + 1 d(↑, n) = n − 1 d(p1/p2, n) = d(p2, d(p1, n))
d(←+, n) = n d(→+, n) = n d(p1[p2], n) = d(p1, n)
d(p1 ∩ p2, n) = d(p1, n) d(p1 − p2, n) = d(p1, n)

Proof. (Sketch) For all p ∈ X ↑,↔
[ ],∩,− it can be shown by induction on the length

of p that if n1 is a node in T at depth n and (n1, n2) ∈ [[p]]T then n2 is a node
at depth d(p, n) in T . #$

3 Composing Views and Queries

In this section we study the problem of composing a view and a query to a new
query on the input tree that is equivalent to the query on the view tree. We
propose two translations, one that can be used to translate path expressions on
view trees to path expressions on input trees and one that can only be used to
translate queries on view trees to queries on input trees.
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The first translaction assumes that all axes in path expressions are robust,
such that after each step we can restrict the result of the axis step to the nodes
that are in the view tree.

Definition 5. Let p be a path expression. The function τp : P → P is defined
as follows:

τp(⇑) = ⇑ τp(ε) = ε
τp(l) = l τp(q1/q2) = τp(q1)/τp(q2)
τp(q1[q2]) = τp(q1)[τp(q2)] τp(q1 ∩ q2) = τp(q1) ∩ τp(q2)
τp(q1 ∪ q2) = τp(q1) ∪ τp(q2) τp(q1 − q2) = τp(q1) − τp(q2)
τp(↓∗) = ↓∗ ∩ ⇑/(p ∪ ε) τp(↑∗) = ↑∗ ∩ ⇑/(p ∪ ε)
τp(�) = � ∩ ⇑/(p ∪ ε) τp(�) = � ∩ ⇑/(p ∪ ε)

We now show that this definition can be used to translate path expressions on
view trees to path expressions on input trees.

Lemma 3. Let p, q be path expressions. For all XML trees T = (N,�, r, λ,≺)
and T ′ = (N ′,�′, r, λ′,≺′) it holds that if V [p](T ) = T ′ then [[τp(q)]]T∩(N ′×N) =
[[q]]T ′ and therefore V [p] ◦ Q[q] = Q[τp(q)]. Furthermore, |τp(q)| = O(|p| × |q|)

Proof. (Sketch) This lemma can be shown by induction on |q|. Note that since
↑∗, ↓∗,� and � are robust axes, they can be translated by following the same
axis and restricting the result nodes to nodes in T ′, which are the result nodes
of ⇑/(p∪ε). Finally, |τp(q)| = O(|p|× |q|), since each of the |q| steps is translated
into a path expression of size O(|p|). #$

The following example illustrates this translation.

Example 2. Consider the view defined in Example 1. Suppose the government
wants to have a list of doctors who have performed “operation b”. The query on
the view can then be written as Q[↓/Doctor[↓/Treatment/↓/b]]. Intuitively, this
expression can be translated to Q[↓/Doctor[↓+/Treatment/↓/b]], but according
to the translation of Definition 5, we obtain the following query3:
Q[(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

(((↓∗ ∩ ⇑/(((↓+ − (↓+/↓+))/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/
Doctor[(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/Treatment/
(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)−

(((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)/
((↓∗ ∩ ⇑/((↓/Doctor/(ε ∪ ↓+/Treatment/↓∗)) ∪ ε))− ε)

))/b]
]
3 Note that in order to use τp, we have to rewrite the path expression in the query

such that it only contains robust axes.
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Using the previous result, we can translate q to τp(q) such that q evaluated
against a node n in the view tree and τp(q) evaluated against a node n′ in the
input tree always return the same result when n′ = n. This property might be too
strong, since for some fragments it can be impossible to find such a translation,
but we can find a translation for path expressions evaluated against the root.
Therefore, we introduce a second translation, which can only be used if we know
that all nodes are on the same level.

Definition 6. Let p, q be path expressions in X ↑,↔
[ ],∩,−. The function ρp : P×N →

P is defined as follows:

ρp(q, n) = q (if n ∈ {0, 1} and q ∈ {⇑, ε} ∪ Σ)
ρp(↓, 0) = p (if d(p, 0) > 0)
ρp(↑, 1) = ⇑ (if d(p, 0) > 0)
ρp(←+, n) = ⇑/p ∩ (

�d(p,0)
l=0 ↑l/←+/↓l) ρp(→+, n) = ⇑/p ∩ (

�d(p,0)
l=0 ↑l/→+/↓l)

ρp(q1/q2, n) = ρp(q1, n)/ρp(q2, d(q1, n)) ρp(q1[q2], n) = ρp(q1, n)[ρp(q2, d(q1, n))]
ρp(q1 ∩ q2, n) = ρp(q1, n) ∩ ρp(q2, n) ρp(q1 − q2, n) = ρp(q1, n) − ρp(q2, n)

In the cases not covered by the above equations, ρp(q, n) = p∅, where p∅ is a
shorthand for a path expression that is not satisfiable, e.g., a/b with a, b ∈ Σ
and a �= b.

Lemma 4. If p, q ∈ X ↑,↔
[ ],∩,− then Q[ρp(q, 0)] = V [p] ◦ Q[q]. Furthermore,

|ρp(q, 0)| = O(|p|2 × |q|).

Proof. (Sketch) We show by induction on |q| that for all p, q ∈ X ↑,↔
[ ],∩,− it holds

that if n1 is a node at depth n in V [p](T ) then (n1, n2) ∈ [[q]]V[p](T ) iff (n1, n2) ∈
[[ρp(q, n)]]T . Afterwards, it clearly holds that Q[ρp(q, 0)] = V [p] ◦ Q[q], since a
query is always evaluated from the root node. From Lemma 2 we know that
all nodes selected by p are on the same level and hence the view tree does not
contain nodes at depth 2 or more. Consequently, we can sometimes determine
statically whether a certain operation jumps out of the view tree, yielding an
empty result set. If d(p, 0) > 0 then the set of nodes on level 1 in the view tree is
Q[p](T ). Hence following ↓ from level 0 in the view tree corresponds to evaluating
p against the root in the input tree and following ↑ from level 1 corresponds to
⇑. The evaluation of →+ in the view tree corresponds to getting all following
nodes on level d(p, 0) in the input tree and checking whether they are in Q[p](T ).
The translation of ←+ is similar and the translation for the other operations is
straightforward and similar to τp.

Finally, |ρp(q, 0)| = O(|p|2×|q|), since each of the |q| steps is translated into a
path expression of size O(|p|2) (and O(|p|) if q does not contain sibling axes). #$

4 Closure of XPath Fragments Under View Composition

In the previous section, we defined two translations, τp and ρp, but as was
shown in Example 2, the resulting path expressions can be large4. Moreover,
4 The size of the translated path expression is in this case still linear to the product

of the sizes of the path expressions of the view and the query.



258 R. Vercammen, J. Hidders, and J. Paredaens

the translation introduced set difference, which makes query answering more
complex. Therefore, we will investigate in this section for each XPath fragment
F , defined in Subsection 2.4, whether it is closed under view composition, i.e.,
∀p1, p2 ∈ F : ∃p3 ∈ F : V [p1] ◦ Q[p2] = Q[p3]. Note that the purpose of this
paper is to establish whether it is feasible to find translations within the same
fragment. Whether an efficient translation exists, is left for further research.

4.1 View Composition for Positive XPath Fragments

The following table summarizes which positive fragments are closed under view
composition. Each cell in this table denotes one fragment, i.e., the fragment that
can be obtained by adding the operations in the column head to the fragment
that is in the row head. If a “◦” is in a certain cell then this fragment is not closed
under view composition, otherwise there is a “•” to denote that the fragment
is closed under view composition. Next to each “•” and “◦” symbol there is a
number that refers to the theorem that shows the result for this fragment.

[ ] ∩ ∪ [ ],∩ [ ],∪ ∩,∪ [ ],∩,∪
X •1 •1 •1 ◦2 •1 ◦2 ◦2 ◦2
X ↑ •1 •1 •1 ◦2 •1 ◦2 ◦2 ◦2
X↔ ◦4 ◦4 ◦4 ◦2 ◦4 ◦2 ◦2 ◦2
X r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,↔ ◦4 ◦4 ◦4 ◦2 ◦4 ◦2 ◦2 ◦2
X↔,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
X ↑,↔,r ◦3 ◦3 ◦3 ◦2 ◦3 ◦2 ◦2 ◦2
A ◦3 ◦3 ◦3 ◦3 ◦3 ◦3 ◦3 ◦3

Theorem 1. All fragments from X to X ↑
[ ],∩ are closed under view composition.

Proof. (Sketch) From Lemma 4 we know that if p, q in X ↑
[ ],∩ then Q[ρp(q, 0)] =

V [p] ◦ Q[q]. Note that in ρp parent axes, predicates and intersection only occur
in the resulting path expression iff they occur in q or p. #$

The following lemma introduces a monotonicity property of path expressions
that do not contain set difference. As we will see in the two following theorems,
many composed queries do not have this property and hence they cannot be ex-
pressed by a query defined by a positive XPath expression, i.e., a path expression
without set difference.

Lemma 5. Let p ∈ X ↑,↔,r
[ ],∩,∪ and T an XML tree. If T ′ is T where some nodes

are renamed to a new node name that does not occur in p, then [[p]]T ′ ⊆ [[p]]T .

Proof. (Sketch) We prove this lemma by induction on |p|. The semantics of axes
in T and T ′ are the same. The semantics of label tests changes, but for all label
tests l that occur in p it holds that [[l]]T ′ ⊆ [[l]]T . Finally, if [[p1]]T ′ ⊆ [[p1]]T and
[[p2]]T ′ ⊆ [[p2]]T , then for path expressions p of the form p1[p2], p1 ∩ p2 or p1 ∪ p2
it clearly holds that [[p]]T ′ ⊆ [[p]]T . #$
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Fig. 2. Counter examples for proofs of Theorems 2, 3, and 4

Theorem 2. All fragments from X∪ to X ↑,↔,r
[ ],∩,∪ are not closed under view com-

position.

Proof. (Sketch) Suppose p ∈ X ↑,↔,r
[ ],∩,∪and Q[p] = V [(↓/a) ∪ (↓/↓)] ◦ Q[↓]. Let T

be the tree T0 shown in Fig. 2 with λ(n1) = “a” and T ′ be the same XML tree
as T except that n1 has a label which is different from “a” and all labels for
which a test occurs in p. From Lemma 5 it follows that [[p]]T ′ ⊆ [[p]]T . However,
Q[p](T ) = {n1} and Q[p](T ′) = {n2}. #$

Theorem 3. All fragments from X r to X ↑,↔,r
[ ],∩,∪ and from A to A[ ],∩,∪ are not

closed under view composition.

Proof. (Sketch) Suppose p ∈ X ↑,↔,r
[ ],∩,∪ and Q[p] = V [↓∗/↓/a] ◦ Q[↓]. Let T be the

tree T0 shown in Fig. 2 with λ(n1) = λ(n2) = “a” and T ′ be the same XML
tree as T except that n1 has a label which is different from “a” and all labels for
which a test occurs in p. From Lemma 5 it follows that [[p]]T ′ ⊆ [[p]]T . However,
Q[p](T ) = {n1} and Q[p](T ′) = {n2}. #$

Finally, we show that positive XPath fragments with sibling axes and without
set union or recursive axes are also not closed under view composition.

Theorem 4. All fragments from X↔ to X ↑,↔
[ ],∩ are not closed under view com-

position.

Proof. (Sketch) Suppose p ∈ X ↑,↔
∩ and Q[p] = V [↓/↓]◦Q[↓/→+]. Since both the

view and the query do not contain label tests, we may assume that p does not
contain label tests. Let T1 be a tree of the form shown in Fig. 2. The tree T2 in this
figure is obviously V [↓/↓](T1) and henceQ[p](T1) = Q[↓/→+](T2) = {n3, n5, n6}.
From Lemma 2 we know Q[p](T1) only contains nodes at depth d(p, 0) in T1. We
can encode Q[p](T1) as a string of 0′s and 1′s, where a 0 at position i denotes
the absence of, and a 1 the presence of the ith node at level d(p, 0) in Q[p](T ).
For example, Q[p](T1), which is {n3, n5, n6}, is encoded by 0111.

We show by induction on |p| that Q[p](T1) cannot be encoded by 0111. Since
queries start from the root, the result of ε is encoded by 1. The following diagram
shows all possible “state transitions” of ↑, ↓,←+, and →+. Note that we omit
transitions to empty results, since these states are sink states.
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1

1 1

0 11 0

1 1 1 1

0 1 0 11 0 1 0

0 0 1 1

0 0 0 10 0 1 0

1 1 0 0

0 1 0 01 0 0 0

Finally, the intersection combines two of the states in the previous diagram
and, as can easily be verified, goes again to one of the states in this diagram.
Hence, the encodings for all possible results of path expressions on T1 in X ↑,↔

∩
(without node tests) are listed in this diagram, which does not contain 0111, so
p cannot be expressed in X ↑,↔

∩ and by Lemma 1 also not in X ↑,↔
[ ],∩. #$

4.2 View Composition for Fragments with Set Difference

The following table summarizes shows that all fragments with set difference are
closed (•) under view composition and next to each “•” symbol there is a number
that refers to the theorem that shows the result for this fragment.

- [ ],− ∩,− ∪,− [ ],∩,− [ ],∪,− ∩,∪,− [ ],∩,∪,−
X •5 •5 •5 •7 •5 •7 •7 •7
X ↑ •5 •5 •5 •7 •5 •7 •7 •7
X↔ •5 •5 •5 •7 •5 •7 •7 •7
X r •6 •6 •6 •6 •6 •6 •6 •6
X ↑,↔ •5 •5 •5 •7 •5 •7 •7 •7
X ↑,r •6 •6 •6 •6 •6 •6 •6 •6
X↔,r •6 •6 •6 •6 •6 •6 •6 •6
X ↑,↔,r •6 •6 •6 •6 •6 •6 •6 •6
A •6 •6 •6 •6 •6 •6 •6 •6

Theorem 5. All fragments from X− to X ↑,↔
[ ],∩,− are closed under view composi-

tion.

Proof. (Sketch) Let p, q ∈ X ↑,↔
[ ],∩. Using ρp we can create a query Q[ρp(q, 0)] =

V [p] ◦ Q[q]. Note that predicates only occur in ρp(q, 0) iff they occur in q or p.
Since we have set difference, by Lemma 1 we can express intersection and hence
predicates. We also can express a parent axis in X−, which can be shown by
changing e(↑, pc) of part 4 of the proof of Lemma 1 to ⇑/(↓)d(pc,0)−1[↓ ∩ ⇑/pc],
because all “candidate parents” are at depth d(pc, 0)−1. Finally, the translation
of the sibling axes can be expressed in X−. For example, [[ρp(←+, n)]]T = [[⇑/p−
(⇑/p−←+ − ↑/←+/↓ − . . .− (↑)d(p,0)/←+/(↓)d(p,0))]]T as can be verified. #$
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Theorem 6. All fragments from X r
− to X ↑,↔,r

[ ],∩,∪,−, and from A− to A[ ],∩,∪,−
are closed under view composition.

Proof. (Sketch) We use τp, for which we know that τp(q) does not contain sibling
axes if they do not occur in p and q. Moreover, from Lemma 1 we know that ↑∗,
∪, ∩ and predicates can be expressed using set difference and ↓∗. #$

Theorem 7. All fragments from X∪,− to X ↑,↔
[ ],∩,∪,− are closed under view com-

position.

Proof. (Sketch) We use τp to prove this theorem. Since we can express inter-
section and predicates using set difference, we can eliminate these operations in
τp(q). No recursive axes (↓∗, ↑∗) are allowed in p and hence there is a depth k
such that all nodes deeper than k cannot influence the result of q, since they
can simply never be in the view. Hence, we can simulate the ↓∗ axes in τp(q) by⋃k

i=0 ↓
i for some k of which the value depends on p. From part 4 of Lemma 1

then follows that we also can simulate the ↑∗ axes. Finally, τp(q) does not contain
sibling axes if they do not occur in p and q. #$

4.3 Summary of Results

All fragments with recursive axes, sibling axes, or set union and without set
difference are not closed under view composition, while all other fragments are
closed. It can easily be verified that for all fragments that are closed under view
composition the size of translated queries for V [p] ◦ Q[q] is O(|p| × |q|), except
for (1) fragments containing sibling axes and no recursive axes, where the size
of the translated query is O(|p|2 × |q|), due to the translation of sibling axes in
ρp, and (2) fragments containing set union and set difference, and no recursive
axis steps, where the size of the translated query is also O(|p|2 × |q|) (see proof
of Theorem 7).

5 Related Work

We briefly discuss two existing approaches for translating queries on XML views
to queries on the original (XML) data and compare them to our approach.

Fan, Chan, and Garofalakis introduce the notion of XML security views in [6],
where they specify views in terms of normalized DTDs. They present a query
translation mechanism for their XPath fragment, which more or less corresponds
to our fragment X r

[ ],∪, augmented with predicates containing boolean operators
(∧,∨,¬) and comparisons of the contents of a node with constant values. They
also look at the optimization of the obtained path expressions and their work
is mainly geared towards finding efficient translations for path expressions in
general, i.e., the translation can use all XPath features, whereas our work mainly
focuses on the closure properties of XPath fragments under view composition,
to see whether the composed query still has the same characteristics of the view
and query.
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Benedikt and Fundulaki investigate the specification and composition of XML
subtree queries [2]. A subtree query is specified by a path expression and is, just
like our XPath-based security views, a projection of nodes from an input tree.
While in our views intermediate nodes can be hidden, subtree queries show also
all descendants and ancestors. It is for example true that if one node in a view
is a child of another node in the same view then the former is also a child of
the latter in the input tree, which is not necessarily true in our notion of views.
More fragments are closed under the composition of subtree queries than under
the composition of our XPath-based views and queries. Note that our notion
of views can also be used to express subtree queries: if p is a path expression
that specifies a subtree query then this subtree query is equivalent to the view
specified by p/↓∗/↑∗.

6 Conclusion and Future Work

In this paper we introduce XPath-based security views that define a projection of
a tree that only contains the root and the nodes that are selected by an XPath
expression. We investigate how to translate XPath queries on such views to
XPath queries on the original trees. More specifically, we show which fragments
are closed under such a composition of a view and a query. In future work we
plan to investigate the translation of path expressions that start from arbitrary
nodes in the view. We also plan to include extra knowledge that we can obtain
from DTDs. Moreover, we want to see whether a DTD for the view tree can
automatically be derived from the DTD of the input tree and the view definition.
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Abstract. Executable schema mappings between XML schemas are es-
sential to support numerous data management tasks such as data ex-
change, data integration and schema evolution. The novelty of this pa-
per consists in a method for automatic generation of automappings (au-
tomorphisms) from key constraints and value dependencies over XML
schemas, and designing algebraic operations on mappings and schemas
represented by automappings. During execution of mappings some miss-
ing or incomplete data may be inferred. A well-defined executable seman-
tics for mappings and operations on mappings are proposed. A mapping
language XDMap to specify XML schema mappings is discussed. The
language allows to specify executable mappings that can be used to com-
pute target instances from source instances preserving key constraints
and value dependencies. The significance of mappings and operators over
mappings is discussed on a scenario of data exchange in a P2P setting.

1 Introduction

Schema mapping is a basic problem for many applications such as data exchange,
data integration, P2P databases or e-commerce, where data may be available at
many different peers in many different schemas [3,6,10,11,17,20]. A schema map-
ping specifies a constraint that holds between schemas and can be thought of as
a relation on instances. Executable mappings are mappings that are able to com-
pute target instances from source instances preserving a set of given constraints
[11]. The main contributions of this work are as follows:

1. We propose a method for generating automappings over schemas from key
and value dependency constraints defined in schemas. Automappings are
then used to create mappings between schemas (Match operator). Mappings
can be combined (using Compose and Merge operators) to give new map-
pings. We propose a mapping language, called XDMap, to specify mappings.

2. In the process of data transformation some missing or incomplete data, which
are not given explicitly in sources, can be deduced based on value dependency
constraints enforced by the target schema. This is achieved by representing
missing data by terms defining the constraints. In some cases such terms
may be resolved and replaced by the actual data.
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The following section discuss the contribution of the paper against related
work. The next section shows a scenario of data exchange. Section 4 illustrates
the problem of using constraints to mapping specifications and to inferring some
missing data. Section 5 describes basic ideas of our approach and proposes syntax
and semantics for the mapping language XDMap. Operations on mappings are
discussed in Section 6. Section 7 concludes the paper.

2 Related Work

We discuss our contribution from the following three points of view.
1. A language for mapping specification. It is commonly accepted that the

basic relationships between a source and a target relational schemas can be
expressed as a source-to-target dependencies (STD) [2,6,11,13]. In [3] STDs are
adopted to XML data in such a way that if a certain pattern occurs in the source,
another pattern has to occur in the target. In our approach, the main idea of
using STDs consists in specifying how nodes in a target instance depend on
key paths, how these key paths correspond to paths in sources, and how target
values depend on other values. So, our approach is more operational and uses
DOM interpretation of XML documents. To generate the instance of a target
schema from instances of source schemas, we use the idea of chasing [2,19].
In our mapping language XDMap we use Skolem functions with text-valued
arguments from a source instance to create nodes (node identifiers) in a target
instance. A concept of using Skolem functions for creation and manipulation
object identifiers has been previously proposed in ILOG [8] and in [1,7]. Recently,
Skolem functions are also used in some approaches to schema mappings, in Clio
[16] are used for generating missing target values if the target element cannot
be null (e.g. components of keys), in [19] are used in a query rewriting based
on data mapping. Our mapping language can be compared with the mapping
language proposed in [19]. However, XDMap is more powerful because we can use
arbitrary Skolem functions for intermediate (non leaf-level) nodes, while in [19]
these Skolem functions are system generated in a controlled way. Consequently,
in our mappings, node generation is controlled by the mapping itself.

2. Generating mappings from key constraints. To define mappings we assume
that key and some value constraints are specified within schema (using XML
Schema [18] notation). We show how an automapping (a mapping from a schema
onto itself) may be automatically generated from these constraints. It is signif-
icant in our approach that the constraints are specified outside the mapping
by means of constraint-oriented notation. The generated automapping preserves
these constraints. In contrast, in other mapping languages (e.g. in [19]) con-
straints must be explicitly encoded in the mapping language. This can make
difficulties for future management when schemas evolve. To define correspon-
dences between schema elements we use the method proposed in [9,16] where
a correspondence is defined between single elements from a source and a tar-
get schema. Establishing of a correspondence may be supported by automated
techniques [17].
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3. Algebra of mappings. Since a schema is represented by its automapping,
we can operate over schemas and mappings in a uniform way. We discuss three
operators over mappings (schemas): Match – creates a mapping between two
schemas (it is a special case of composition), Compose – combines two suc-
cessive mappings, and Merge – produces a mapping that merges two source
schemas. Operations on mappings, mainly composition, was recently studied in
[6,10,11,12,13].

3 A Scenario of Data Exchange

We illustrate XML data exchange on a scenario of a P2P data exchanging system.
Suppose there are three peers with schemas S1, S2, and S3, respectively (Fig.
1). Only S2 and S3 are associated with data, while S1 is a mediated (or target)
schema that does not store any data. The meaning of labels are: author (A), name
(N) and university (U) of the author; paper (P ) title (T ), year (Y ) of publication
and the conference (C) where the paper has been presented. Elements labeled
with R and K are used to join authors with their papers. I2 and I3 are instances of
S2 and S3, respectively. In such scenario we meet the problem of data exchange,
i.e. computing target instances from source instances [3,5,11,16,19]. Mappings
are needed to perform these functions effectively.

An instance of S1 can be obtained in different ways (Fig. 2): (1) and (2)
by simple transformation of instance I2 or I3 by means of mappings M21 or
M31; (3) as a merge M21 ∪M31 over instances; (4) by means of composition
(M32 ◦M21)(I3) (when the S2’s peer is unavailable); (5) using combination of
merge and composition, ((M22 ∪M32) ◦M21)(I2, I3). This shows that we often
need to create new mappings from existing ones [6,10,11].
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Fig. 1. Schemas: S1,S2,S3, and schema instances I2 and I3

4 Using Constraints for Mapping Specification

In our approach, we use two kinds of constraints to define mappings, namely:

1. Value dependency constraints (on the target) imposing that a value of a
path depends on a tuple of values of other paths. We will declare them in
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Fig. 2. Scenarios of data exchange – an instance of S1 may be computed in many ways

the <xs:valdep> section of XML Schema (Fig. 4) that is a non-standard
element within XML Schema.

2. Key constraints (on a source) stating that a subtree is uniquely identified
by a tuple of values of key paths [4,18]. They are specified within <xs:key>
and <xs:keyref> sections of XML Schema (Fig. 4).

Value dependencies can be used to infer missing data. Suppose we want to
transform the instance I2 under the target schema S1, i.e. an instance I11 =
M21(I2) must be produced (Fig. 3(a)). The original instance provides no data
about publication year. However, we know that the publication year (Y ) uniquely
depends on the title (T ) of the paper that is denoted by the constraint Y = y(T ),
where y is the name of a function mapping titles into publication years. So the
term y(t), where t is the title, is assigned to Y as its text value. This forces some
elements of type Y to have the same values (Fig. 3(a)). Such constraints are
defined within the <xs:valdep> section in XML Schema (Fig. 4). Next, a term
like y(t) may be resolved using other mappings.
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Fig. 3. Instances of schema S1 produced by mappings using constraints

Suppose that under S1 we want to merge the instances I11 (Fig. 3(a)) and I3
(Fig. 1). In this process terms denoting years will be replaced with actual values
(Fig. 3(b)). In this way we are able to infer the publication year of the paper
written by a2. This information is not given explicitly neither in I2 nor in I3. The
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="A1">

<xs:complexType>
<xs:sequence>

<xs:element ref="A"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="A">

<xs:complexType>
<xs:sequence>

<xs:element name="N" type="xs:string"/>
<xs:element name="U" type="xs:string" minOccurs="0"/>
<xs:element ref="P" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="AKey">
<xs:selector xpath="."/>
<xs:field xpath="N"/>

</xs:key>
<xs:valdep>
<xs:dependent xpath="N"/>
<xs:function name="u"/>
<xs:argument xpath="N"/>

</xs:valdep>
</xs:element>
<xs:element name="P">

<xs:complexType>
<xs:sequence>

<xs:element name="T" type="xs:string"/>
<xs:element name="Y" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:key name="PKey">
<xs:selector xpath="."/>
<xs:field xpath="T"/>

</xs:key>
<xs:valdep>
<xs:dependent xpath="Y"/>
<xs:function name="y"/>
<xs:argument xpath="T"/>

</xs:valdep>
</xs:element>

</xs:schema>

Fig. 4. XML Schema of S1, extended with <xs:valdep> declaration
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instances in Fig. 3(a)-(c) illustrate execution of composed mappings. In detail,
we will address this issue in Section 6.

Information provided by key constraints will be used to specify how many
instances (nodes) of an element type must be in the computed target instance.
For example, the element of type /A1/A in S1 is uniquely identified by the
key path N . So, there are as many nodes of type /A1/A as there are different
values of /A1/A/N . In S2, however, elements of type /P2/P/A are identified
by N but only in a context determined by the element type /P2/P that is
identified by T . Thus, to identify /P2/P/A we need a pair of values determined
by paths /P2/P/T and /P2/P/A/N . In XML Schema such keys are defined
using <xs:key>, and a declaration within a subelement denotes that the key
identification is satisfied only in the context of superelement. In Fig. 4 there is
a definition of the schema S1 written in an extended variant of XML Schema.

5 Executable XML Schema Mappings

5.1 Basic Ideas of Mappings

From the definition in Fig. 4 we can generate the automapping M11 over S1
(Fig. 5), i.e. a mapping from S1 onto itself (numbers of lines provided here are
for explanation only). It is formalized in Definition 2.

M11 = foreach G11 where Φ11 when C11 exists ∆11 =
(1) foreach $yA1 in /A1, $yA in $yA1/A, $yN in $yA/N,

$yU in $yA/U, $yP in $yA/P, $yT in $yP /T, $yY in $yP /Y
(2) where true
(3) when $yU = u($yN ), $yY = y($yT )

exists
(4) F/A1() in F()()/A1
(5) F/A1/A($yN ) in F/A1()/A
(6) F/A1/A/N($yN ) in F/A1/A($yN )/N with $yN

(7) F/A1/A/U ($yN , $yU ) in F/A1/A($yN )/U with $yU

(8) F/A1/A/P ($yN , $yT ) in F/A1/A($yN )/P
(9) F/A1/A/P/T ($yN , $yT ) in F/A1/A/P ($yN , $yT )/T with $yT

(10) F/A1/A/P/Y ($yN , $yT , $yY ) in F/A1/A/P ($yN , $yT )/Y with $yY

Fig. 5. Automapping M11 over S1

(1) The clause foreach defines source variables. Every source variable ranges
over a set of nodes. Variables ranging over non-leaf nodes are auxiliary vari-
ables whereas variables ranging over leaves are text variables. Note that aux-
iliary variables appear only in the foreach clause. We assume that any text
variable is partially bound to text values of leaves over which it ranges. By
Ω we will denote a set of all (partial) bindings for source text variables.

(2) The where clause restricts values of variables. The restrictions can be con-
sequences of key references defined in the schema (see M33 in Fig. 6).
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(3) Equalities in (3) reflect value dependency constraints specified in the schema.
They are interpreted as follows. Let y = f($x) be a value dependency, where
$x is a vector of (totally bound) source variables, f is the name of a text
valued Skolem function, and $y is a dependent variable that denotes a text
value in the target (e.g. $yU and $yY ). The value of f($x) is determined by
a binding ω ∈ Ω and is equivalent to the term ”f(ω($x))” being the result of
the concatenation of the name ”f” and the text value ω($x) created from the
current values of variables. We assume that we have a set Ω′

Ω of dependent
bindings such that for any value dependency $y = f($x) and for any ω ∈ Ω
there exists ω′

ω ∈ Ω′
Ω such that ω′

ω($y) := ”f(ω($x))”. If ω($y) is defined,
then there are two bindings for $y: ω($y) and ω′

ω($y), otherwise the only
binding for $y is ω′

ω($y). In some cases, dependent bindings can be used
to infer missing bindings (i.e. values of variables) by applying the following
inference rule:

ω′
ω1

($y1) = ω′
ω2

($y2) ⇒ ω1($y1) = ω2($y2) (1)

In this way we can obtain the value of ω1($y1)(see Example 4).
(4) Two new nodes are created, the root r and the node n of the outermost

element of type /A1, as results of Skolem functions F()() and F/A1(), respec-
tively. The node n is a child of type A1 of r.

(5) A new node n′ for any distinct value of $yN is created. Each such node has
the type /A1/A and is a child of type A of the node n created by F/A1() in
(4).

(6) For any distinct value of $yN a new node n′′ of type /A1/A/N is created.
Each such node is a child of type N of the node created by invocation of
F/A1/A($yN ) in (5) for the same value of $yN . Because n′′ is a leaf, it obtains
the text value equal to the current value of $yN .

(7) Analogously for the rest of the specification (7-10).

5.2 Capturing Key Constraints by Automappings

In a specification of automapping, Skolem functions and their arguments play a
crucial role. We assume that:

– for any (rooted) path P in the schema there is exactly one Skolem function,
FP (...), where FP is the name of the Skolem function,

– arguments of a Skolem function FP (...) are determined by key paths defined
for the element of type P in the schema.

In S1 there is exactly one root and one outermost element, so the correspond-
ing Skolem functions have empty lists of arguments. Element of type /A1/A has
a key path N . Each its subelement inherits this key path and additionally has
its local (relative) key paths. The local key paths for non-leaf elements are de-
fined in the schema. The local key path for a leaf element is, by default, this leaf
element itself. Thus, for S1 we have the following key paths: N for /A1/A and
/A1/A/N ; (N ,T ) for /A1/A/P and /A1/A/P/T ; and (N ,T ,Y ) for /A1/A/P/Y .
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Text values of these key paths are bound to variables and are used as arguments
of Skolem functions.

In definition of S3 (Fig. 6), the schema specifies the key and keyref relation-
ships between the K child element of the P element (the referenced key) and the
R child element of the A element (the foreign key).

In the automapping specification over S3, key references are captured by the
equality $zR = $zK in the where clause (Fig. 6).

...
<xs:element name="A">
<xs:complexType>
...
</xs:complexType>...
<xs:keyref name="AKeyref"

refer="PKey">
<xs:selector xpath="."/>
<xs:field xpath="R"/>

</xs:keyref>
</xs:element>

<xs:element name="P">
<xs:complexType>
...
</xs:complexType>
<xs:key name="PKey">

<xs:selector xpath="."/>
<xs:field xpath="K"/>

</xs:key>
<xs:valdep>

<xs:dependent name="Y"/>
<xs:function name="y"/>
<xs:argument xpath="T"/>

</xs:valdep> ...
</xs:element>
...

M33 = foreach $zD3 in /D3, $zA in $zD3/A, $zN in $zA/N, $zR in $zA/R,
$zP in $zD3/P, $zK in $zP /K, $zT in $zP /T,
$zY in $zP /Y, $zC in $zP /C

where $zR = $zK

when $zK = k($zN , $zT ), $zY = y($zT ), $zC = c($zT )
exists

F/D3() in F()()/D3
F/D3/A($zN ) in F/D3()/A
F/D3/A/N($zN ) in F/D3/A($zN )/N with $zN

F/D3/A/R($zN , $zR) in F/D3/A($zN )/R with $zR

F/D3/P ($zK) in F/D3()/P
F/D3/P/K($zK) in F/D3/P ($zK)/K with $zK

F/D3/P/T ($zK , $zT ) in F/D3/P ($zK)/T with $zT

F/D3/P/Y ($zK , $zY ) in F/D3/P ($zK)/Y with $zY

F/D3/P/C($zK , $zC) in F/D3/P ($zK)/C with $zC

Fig. 6. Fragment of XML Schema defining S3 and the automapping M33 over S3

5.3 Syntax and Semantics for Mappings

In general, there are two vectors of variables $x and $y in a mapping M. Vari-
ables from $x are bound in a source by means of the foreach clause, and
variables from $y are bound to terms in the when clause as a consequence
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of value dependency constraints. The part foreach/where/when of a mapping
M($x; $y) determines a partially ordered set (Ω,≤) of bindings of M’s vari-
ables. For example, in the mapping M21 (Fig. 7) for two bindings ω1, ω2 ∈ Ω
over I2, where ω1 = ($xT → t1, $xN → a1, $xU → u1, $yY → y(t1)) and
ω2 = ($xT → t1, $xN → a2, $xU → u2, $yY → y(t2)), we have ω1 < ω2, be-
cause the tuple of leaf nodes providing values for ω1 precedes the tuple of leaf
nodes providing values for ω2. Bindings from Ω are used in the exists part
to produce the result target instance. The ordering imposed in Ω by a source
instance should be preserved in the target instance.

If the foreach/where clause is defined over S2, while the when/exists con-
cerns S1, then we deal with a mapping M21 from S2 into S1. Then, after the
given replacement of variables (the result of the replacement φ[$y → $x] is the
expression created from φ by replacing all occurrences of $y with $x), we obtain:

M21 = foreach $xP2 in /P2, $xP in $xP2/P, $xT in $xP /T,
$xA in $xP /A, $xN in $xA/N, $xU in $xA/U

where true
when C11($yN , $yU , $yT , $yY )[$yN → $xN , $yU → $xU , $yT → $xT ]
exists ∆11($yN , $yU , $yT , $yY )[$yN → $xN , $yU → $xU , $yT → $xT ]

Fig. 7. Mapping M21 from S2 into S1

Thus, the when clause of M21 is equal to $xU = u($xN ), $yY = y($xT ).
There is no replacement for $yY , so its value must be set as the current value of
the term y($xT ), according to the inference rule (1) proposed in 5.1. We set it
as the term y(t), where t is the current value of $xT (see Fig. 3(a)). It is a form
of Skolemization.

Observe that a mapping specification in XDMap conforms to the general form
of source-to-target generating dependencies [2,6,13]:

∀$x(G($x) ∧ Φ($x) ⇒ ∃$yC($x; $y) ∧∆($x; $y)),

where G($x) and Φ($x) are conjunctions of atomic formulas over a source, and
C($x; $y) and ∆($x; $y) are conjunctions of atomic formulas over a target.

Definition 1. An executable schema mapping in XDMap (or mapping for short)
between a source schema S and a target schema T is a sequenceM ::= (M, ...,M)
of mapping rules between S and T, where:

M = (G,Φ,C,∆)($x; $y) := foreach G($x)
where Φ($x)
when C($x; $y)
exists FP/l($x′; $y′) in FP ($x′′; $y′′)/l[ with $z ]

– G is a list of variable definitions over a source schema;
– Φ is a conjunction of atomic conditions: $x = $x′;
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– C is a list of target value dependency constraints: $x = f($x) or $y = f($x),
$x ∈ $x, $y ∈ $y;

– FP ($x; $y) is a Skolem term, where P is a rooted path in a target schema;
– ($x′; $y′) ⊆ ($x; $y), ($x′′; $y′′) ⊆ ($x′; $y′), $z ∈ ($x′; $y′). �

Semantics for XDMap is defined as follows:

Definition 2. Let M = (G,Φ,C,∆)($x; $y) be a mapping, and (Ω,≤) be a
partially ordered set of bindings of variables ($x; $y) determined by (G,Φ,C). A
target instance J of a target schema T is then obtained as follows:

1. F()() – the root of J .
2. FP ($x′; $y′)(ω) = n – a node of type P .
3. If FP/l($x′; $y′)(ω) = n, FP ($x′′; $y′′)(ω) = n′, then n is a child of type l of

n′.
4. Let FP/l($x′; $y′)(ω1) = n1, FP/l($x′; $y′)(ω2) = n2, and ω1 ≤ ω2. Then

n1 ≤ n2 in the document order.
5. If FP/l($x′; $y′)(ω) = n is a leaf, then the text value of n is ω($z).

6 Operations on Mappings

Mappings can be combined by means of some operators giving a result that in
turn is a mapping. We define the following operations: Match, Compose, and
Merge. First, we have to define a correspondence between paths of different
schemas. Establishing the correspondence is a crucial task in definition of data
mappings [17].

Definition 3. Let P and P ′ be sets of paths from schemas S and S′, respectively.
A correspondence from S into S′ is a partial function σ : P → P ′ which maps a
path P ∈ P on a path P ′ = σ(P ) ∈ P ′. �

Example 1. Correspondence σ12 from S1 to S2, and σ23 from S2 to S3 (Fig. 1)
are:

σ12(/A1/A/N) = /P2/P/A/N
σ12(/A1/A/U) = /P2/P/A/U
σ12(/A1/A/P/T ) = /P2/P/T

σ23(/P2/P/T ) = /D3/P/T
σ23(/P2/P/A/N) = /D3/A/A

6.1 Match Operator

The Match operator was proposed in [11] as an operator to create a mapping
between two schemas (modes). In our approach each schema is represented by au-
tomappings, thus Match is defined on two automappings and returns a mapping
between schemas over which these automappings are defined. Because Match is
in fact a special kind of composition, we will denote it, like the Compose operator
(see p. 6.2), by ◦, i.e. Match(Ms,Mt) will be abbreviated by Ms ◦Mt, where
Ms and Mt are automappings over source and target schemas, respectively.
Then Mst = Ms ◦ Mt is a mapping from the source schema into the target
schema.
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Definition 4. Let Ms = (Gs, Φs, Cs, ∆s)($xs; $ys) be an automapping over S,
Mt = (Gt, Φt, Ct, ∆t)($xt; $yt) be an automapping over Tt, and σ be a corre-
spondence between T and S. Then the Matchσ(Ms,Mt) is the mapping

Ms ◦σ Mt = (Gs, Φs, Ct, ∆t)[$xt → σ($xt)]($x; $y), (2)

where the result of the replacement [$xt → σ($xt)] is defined as follows:

– any occurrence of a variable $xt ∈ $xt of type P in (Gs, Φs, Ct, ∆t) is replaced
by a variable $xs ∈ $xs of type σ(P ), $xs is the replacing variable; and $x
is a tuple of all replacing variables and all variables occurring in Φs;

– $y ⊆ ($xt; $yt) and consists of all variables which have not been replaced;
and all unnecessary variable definitions are removed from Gs. �

Example 2. The mapping M21 (Fig. 7) is the result of matching from M22 to
M11 using the correspondence σ12 from S1 to S2 (see Example 1), i.e.

M21($xN , $xU , $xT ; $yY ) = M22($xT , $xN , $xU ) ◦σ12 M11($yN , $yU , $yT , $yY ).
Similarly,
M32($zT , $zN , $zR, $zK ; $vU ) =

= M33($zN , $zR, $zK , $zT , $zY , $zC) ◦σ23 M22($vT , $vN , $vU ). �

6.2 Compose Operator

The Compose operator combines two successive mappings into one.

Definition 5. Let M12 and M23 be mappings from S1 into S2 and from S2 into
S3, respectively. Let σ21 and σ32 be correspondences from S2 into S1 and from
S3 into S2. Let M11 and M33 be automappings over S1 and S3, respectively,
and σ = σ32 ◦ σ21 be the correspondence from S3 into S2 obtained as the result
of composition of correspondences σ32 and σ21. Then

Composeσ(M12,M23) = M11 ◦σ M33 (3)

is a mapping from S1 to S3, and M11 ◦σ M33 is defined by (2).

Example 3. It is easily to show that:
M321($zT , $zN , $zR, $zK ; $yU , $yY ) = Compose(σ12◦σ23)(M32,M21) =

M33($zN , $zR, $zK , $zT , $zY , $zC) ◦(σ12◦σ23) M11($yN , $yU , $yT , $yY ) =
= foreach G33($zN , $zR, $zK , $zT )

where $zR = $zK

when $yU = u($zN), $yY = y($zT )
exists

F/A1() in F()()/A1
F/A1/A($zN ) in F/A1()/A
F/A1/A/N ($zN) in F/A1/A($zN )/N with $zN

F/A1/A/U ($zN , $yU ) in F/A1/A($zN )/U with $yU

F/A1/A/P ($zN , $zT ) in F/A1/A($zN)/P
F/A1/A/P/T ($zN , $zT ) in F/A1/A/P ($zN , $zT )/T with $zT

F/A1/A/P/Y ($zN , $zT , $yY ) in F/A1/A/P ($zN , $zT )/Y with $yY
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M321 has two variables, $yU and $yY , which are not bound in the source.
Instead, they are bound in the when clause to target terms u($zN) and y($zT ),
respectively. An instance of the mapping is given in Fig. 3(c). In the final result
all term-valued leaves may be either removed, replaced with nulls, or left as they
are (they may be resolved and replaced with actual values in next mappings (e.g.
by Merge) as in Fig. 3(a)-(b)).

6.3 Merge Operator

Definition 6. Let M1 = (G1, Φ1, C1, ∆1)($x1; $y1) and
M2 = (G2, Φ2, C2, ∆2)($x2; $y2), where ($x1; $y1) and ($x2; $y2) are disjoint, be
mappings from S1 and S2, respectively, into S3. Then merging of M1 and M2
is the mapping defined as follows:

M1 ∪M2 = (G1 ∪G2, Φ1 ∪ Φ2, C1 ∪C2, ∆1 ∪∆2)($x1 ∪ $x2; $y1 ∪ $y2).

If mappings M1 and M2 are mappings from S1 and S2, respectively, into S3
then M1 ∪M2 is a mapping that merges S1 and S2 under S3.

Example 4. Let
M21 = (G21($xT , $xN , $xU ), {true},

{xU = u($xN), $yY = y($xT )}, ∆21($xT , $xN , $xU ; $yY ))
be a mapping from S2 into S1 (Example 2), and

M31 = (G31($zN , $zR, $zK , $zT , $zY ), {$zR = $zK},
{$vU = u($zN), $zY = y($zT )}, ∆31($zN , $zT , $zY ; $vU ))

be a mapping from S3 into S1.
The merge M21∪M31 is a mapping consisting of all mapping rules from M21

and all mapping rules from M31. Below, we show only these rules that involve
variables from constraints in the when clause.

M21 ∪M31 =
foreach G21($xT , $xN , $xU ), G31($zN , $zR, $zK , $zT , $zY )
where $zR = $zK

when xU = u($xN ), $yY = y($xT ), $vU = u($zN), $zY = y($zT )
exists ...

F/A1/A/U ($xN , $xU ) in F/A1/A($xN )/U with $xU

F/A1/A/P/Y ($xN , $xT , $yY ) in F/A1/A/P ($xN , $xT )/Y with $yY

F/A1/A/U ($zN , $vU ) in F/A1/A($zN)/U with $vU

F/A1/A/P/Y ($zN , $zT , $zY ) in F/A1/A/P ($zN , $zT )/Y with $zY

...

For variables occurring in G21 and in G31, the foreach clause defines a set Ω
of bindings. Term values of dependent variables, i.e. of $xU , $yY , $zY , and $vU ,
are defined in the when clause and are represented by Ω′. Missing values in Ω
(e.g. for variables $yY and $vU ) are replaced by appropriate term values from
Ω′, i.e. ω($y) := ω′

ω($y).



276 T. Pankowski

Before resolving: Ω := Ω21 ∪Ω31

Ω $xT $xN $xU $yY $zN $zK $zT $zY $vU

ω1 t1 a1 u1 y(t1)
ω2 t1 a2 u2 y(t1)
ω3 t2 a1 u1 y(t2)
ω4 a1 i1 t1 05 u(a1)
ω5 a1 i2 t2 03 u(a1)
ω6 a3 i3 t3 04 u(a3)

Ω′
Ω $xU $yY $zY $vU

ω′
ω1

u(a1) y(t1)
ω′

ω2
u(a2) y(t1)

ω′
ω3

u(a1) y(t2)
ω′

ω4
y(t1) u(a1)

ω′
ω5

y(t2) u(a1)
ω′

ω6
y(t3) u(a3)

Next, in the resolving process we try to resolve term values in Ω. The resolving
process is based on the rule (1) discussed in Subsection 5.1.

After resolving: Ω := Resolve(Ω21 ∪Ω31)

Ω $xT $xN $xU $yY $zN $zK $zT $zY $vU

ω1 t1 a1 u1 05
ω2 t1 a2 u2 05
ω3 t2 a1 u1 03
ω4 a1 i1 t1 05 u1
ω5 a1 i2 t2 03 u1
ω6 a3 i3 t3 04 u(a3)

Execution of the mapping M21 ∪M31 is illustrated in Fig. 3. Fig. 3(a) shows
the result produced by the part corresponding to M21, and Fig. 3(b) is the final
result. Note, that the term u(a3) cannot be resolved. �

7 Conclusion

We have described a novel approach to XML schema mapping specification and
operations over schema mappings. We discussed how automappings may be gen-
erated using key constraints [4,18], keyref constraints [18], and some value depen-
dency constraints defined in XML Schema. Constraints on values can be used to
infer some missing data. Mappings between two schemas can be generated auto-
matically from their automappings and correspondences between paths of these
two schemas. Automappings represent schemas, so operations over schemas and
mappings can be defined and performed in a uniform way. We propose some
algebraic operations over mappings. The syntax and semantics for the mapping
language XDMap are defined and discussed. Our techniques can be applied in
various XML data exchange scenarios, and are especially useful when the set of
data sources change dynamically (e.g. in P2P environment) [14,15].
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Abstract. We discuss, compare and relate some old and some new mod-
els for incomplete and probabilistic databases. We characterize the ex-
pressive power of c-tables over infinite domains and we introduce a new
kind of result, algebraic completion, for studying less expressive models.
By viewing probabilistic models as incompleteness models with addi-
tional probability information, we define completeness and closure un-
der query languages of general probabilistic database models and we
introduce a new such model, probabilistic c-tables, that is shown to be
complete and closed under the relational algebra.

1 Introduction

The representation of incomplete information in databases has been an impor-
tant research topic for a long time, see the references in [18], in Ch.19 of [2],
in [31], in [35,25], as well as the recent [33,30,29]. Moreover, this work is closely
related to recently active research topics such as inconsistent databases and re-
pairs [4], answering queries using views [1], and data exchange [13]. The classic
reference on incomplete databases remains [20] with the fundamental concept
of c-table and its restrictions to simpler tables with variables. The most impor-
tant result of [20] is the query answering algorithm that defines an algebra on
c-tables that corresponds exactly to the usual relational algebra (RA). A recent
paper [29] has defined a hierarchy of incomplete database models based on fi-
nite sets of choices and optional inclusion. One of our contributions consists of
comparisons between the models [29] and the tables with variables from [20].

Two criteria have been provided for comparisons among all these models: [20,
29] discuss closure under relational algebra operations, while [29] also emphasizes
completeness, specifically the ability to represent all finite incomplete databases.
We point out that the latter is not appropriate for tables with variables over an
infinite domain, and we contribute another criterion, RA-completeness, that
fully characterizes the expressive power of c-tables.

We also introduce a new idea for the study of models that are not complete.
Namely, we consider combining existing models with queries in various frag-
ments of relational algebra. We then ask how big these fragments need to be to
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obtain a combined model that is complete. We give a number of such algebraic
completion results.

Early on, probabilistic models of databases were studied less intensively than
incompleteness models, with some notable exceptions [7, 5, 28, 23, 10]. Essential
progress was made independently in three papers [15,22,34] that were published
at about the same time. [15, 34] assume a model in which tuples are taken in-
dependently in a relation with given probabilities. [22] assumes a model with
a separate distribution for each attribute in each tuple. All three papers at-
tacked the problem of calculating the probability of tuples occurring in query
answers. They solved the problem by developing more general models in which
rows contain additional information (“event expressions”,“paths”,“traces”), and
they noted the similarity with the conditions in c-tables.

We go beyond the problem of individual tuples in query answers by defining
closure under a query language for probabilistic models. Then we develop a new
model, probabilistic c-tables that adds to the c-tables themselves probability
distributions for the values taken by their variables. Here is an example of such a
representation that captures the set of instances in which Alice is taking a course
that is Math with probability 0.3; Physics (0.3); or Chemistry (0.4), while Bob
takes the same course as Alice, provided that course is Physics or Chemistry and
Theo takes Math with probability 0.85:

Student Course Condition
Alice x
Bob x x = phys ∨ x = chem
Theo math t = 1

x =

⎧⎨⎩
math : 0.3
phys : 0.3
chem : 0.4

t =
{

0 : 0.15
1 : 0.85

The concept of probabilistic c-table allows us to solve the closure problem by
using the same algebra on c-tables defined in [20].

We also give a completeness result by showing that probabilistic boolean
c-tables (all variables are two-valued and can appear only in the conditions, not
in the tuples) can represent any probabilistic database.

An important conceptual contribution is that we show that, at least for the
models we consider, the probabilistic database models can be seen, as prob-
abilistic counterparts of incomplete database models. In an incompleteness
model a tuple or an attribute value in a tuple may or may not be in the data-
base. In its probabilistic counterpart, these are seen as elementary events with
an assigned probability. For example, the models used in [15, 22, 34] are proba-
bilistic counterparts of the two simplest incompleteness models discussed in [29].
As another example, the model used in [10] can be seen as the probabilistic
counterpart of an incompleteness model one in which tuples sharing the same
key have an exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for
probabilistic c-tables will allow us to solve the problem of calculating probabil-
ities about query answers for any model that can be defined as a probabilistic
counterpart of the incompleteness models considered in [20, 29].
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This paper is purely theoretical. Nonetheless, it was motivated by the work the
authors are doing with others on the Orchestra1 and SHARQ2 projects. These
projects are concerned with certain aspects of collaborative information shar-
ing. Incompleteness arises in Orchestra (a peer-to-peer data exchange system)
in the process of update propagation between sites. Incompleteness is also ex-
ploited in query answering algorithms. Probabilistic models are used in SHARQ
(a bio-informatics data sharing system) to model approximate mappings between
schemas used by groups of researchers. The sources of uncertainty here include
data from error-prone experiments and accepted scientific hypotheses that allow
for the limited mismatch. We expect that the results of this paper will help us in
choosing appropriate representation systems that will be used internally in the
Orchestra and SHARQ systems.

2 Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [18], in Ch. 19 of [2],
and in [31]. A database that provides incomplete information consists of a set of
possible instances. At one end of this spectrum we have the conventional single
instances, which provide “complete information.” At the other end we have the
set of all allowable instances which provides “no information” at all, or “zero
information.”

We adopt the formalism of relational databases over a fixed countably infinite
domain D. We use the unnamed form of the relational algebra. To simplify the
notation we will work with relational schemas that consist of a single relation
name of arity n. Everything we say can be easily reformulated for arbitrary
relational schemas. We shall need a notation for the set of all (conventional)
instances of this schema, i.e., all the finite n-ary relations over D:

N := {I | I ⊆ Dn, I finite}

Definition 1. An incomplete(-information) database (i-database for
short), I, is a set of conventional instances, i.e., a subset I ⊆ N .

The usual relational databases correspond to the cases when I = {I}. The no-
information or zero-information database consists of all the relations: N .

Conventional relational instances are finite. However, because D is infinite
incomplete databases are in general infinite. Hence the interest in finite, syntac-
tical, representations for incomplete information.

Definition 2. A representation system consists of a set (usually a syntac-
tically defined “language”) whose elements we call tables, and a function Mod
that associates to each table T an incomplete database Mod(T ).

The notation corresponds to the fact that T can be seen as a logical assertion
such that the conventional instances in Mod(T ) are in fact the models of T (see
also [27, 32]).
1 http://www.cis.upenn.edu/~zives/orchestra
2 http://db.cis.upenn.edu/projects/SHARQ
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The classical reference [20] considers three representation systems: Codd ta-
bles, v-tables, and c-tables. v-tables are conventional instances in which vari-
ables can appear in addition to constants from D. If T is a v-table then3

Mod(T ) := {ν(T ) | ν : Var(T ) → D is a valuation for the variables of T }

Codd tables are v-tables in which all the variables are distinct. They correspond
roughly to the current use of nulls in SQL, while v-tables model “labeled” or
“marked” nulls. c-tables are v-tables in which each tuple is associated with a
condition — a boolean combination of equalities involving variables and con-
stants. We typically use the letter ϕ for conditions. The tuple condition is tested
for each valuation ν and the tuple is discarded from ν(T ) if the condition is not
satisfied.

Example 1. Here is an example of a v-table.

R :=
1 2 x
3 x y
z 4 5

Mod(R) =

⎧⎨⎩
1 2 1
3 1 1
1 4 5

,
1 2 2
3 2 1
1 4 5

,
1 2 1
3 1 2
1 4 5

, . . . ,
1 2 77
3 77 89
97 4 5

, . . .

⎫⎬⎭
Example 2. Here is an example of a c-table.

S :=
1 2 x
3 x y x = y ∧ z �= 2
z 4 5 x �= 1 ∨ x �= y

Mod(S) =
{

1 2 1
3 1 1 ,

1 2 2
1 4 5 , . . . ,

1 2 77
97 4 5 , . . .

}

Several other representation systems have been proposed in a recent paper [29].
We illustrate here three of them and we discuss several others later. A ?-table
is a conventional instance in which tuples are optionally labeled with “?,” mean-
ing that the tuple may be missing. An or-set-table looks like a conventional
instance but or-set values [21, 26] are allowed. An or-set value 〈1, 2, 3〉 signifies
that exactly one of 1, 2, or 3 is the “actual” (but unknown) value. Clearly,
the two ideas can be combined yielding another representation systems that we
might (awkwardly) call or-set-?-tables.4

Example 3. Here is an example of an or-set-?-table.

T :=
1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉

〈4, 5〉 4 5 ?
Mod(T ) =

⎧⎨⎩
1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3 ,

1 2 2
3 1 3
4 4 5

, . . . ,
1 2 2
3 2 4

⎫⎬⎭
3 RA-Completeness and Finite Completeness

“Completeness” of expressive power is the first obvious question to ask about
representation systems. This brings up a fundamental difference between the
3 We follow [2, 29] and use the closed-world assumption (CWA). [20] uses the open-

world assumption (OWA), but their results hold for CWA as well.
4 In [29] these three systems are denoted by R?, RA and RA

? .
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representation systems of [20] and those of [29]. The presence of variables in a
table T and the fact that D is infinite means that Mod(T ) may be infinite. For
the tables considered in [29], Mod(T ) is always finite.

[29] defines completeness as the ability of a representation system to represent
“all” possible incomplete databases. For the kind of tables considered in [29] the
question makes sense. But in the case of the tables with variables in [20] this
is hopeless for trivial reasons. Indeed, in such systems there are only countably
many tables while there are uncountably many incomplete databases (the subsets
of N , which is infinite). We will discuss separately below finite completeness
for systems that only represent finite database. Meanwhile, we will develop a
different yardstick for the expressive power of tables with variables that range
over an infinite domain.

c-tables and their restrictions (v-tables and Codd tables) have an inherent
limitation: the cardinality of the instances in Mod(T ) is at most the cardinality of
T . For example, the zero-information database N cannot be represented with c-
tables. It also follows that among the incomplete databases that are representable
by c-tables the “minimal”-information ones are those consisting for some m of all
instances of cardinality up to m (which are in fact representable by Codd tables
with m rows). Among these, we make special use of the ones of cardinality 1:

Zk := {{t} | t ∈ Dk}.

Hence, Zk consists of all the one-tuple relations of arity k. Note that Zk =
Mod(Zk) where Zk is the Codd table consisting of a single row of k distinct
variables.

Definition 3. An incomplete database I is RA-definable if there exists a re-
lational algebra query q such that I = q(Zk), where k is the arity of the input
relation name in q.

Theorem 1. If I is an incomplete database representable by a c-table T , i.e.,
I = Mod(T ), then I is RA-definable.

Proof. Let T be a c-table, and let {x1, . . . , xk} denote the variables in T . We
want to show that there exists a query q in RA such that q(Mod(Zk)) = Mod(T ).
Let n be the arity of T . For every tuple t = (a1, . . . , an) in T with condition ϕt,
let {xi1 , . . . , xij} be the variables in ϕt which do not appear in t. For 1 ≤ i ≤ n,
define Ci to be the singleton {c}, if ai = c for some constant c, or πj(Zk), if
ai = xj for some variable xj . For 1 ≤ j ≤ k, define Cn+j to be the expression
πij (Zk), where xj is the jth variable in ϕt which does not appear in t. Define q
to be the query

q :=
⋃
t∈T

π1,...,n(σψt(C1 × · · · × Cn+k)),

where ψt is obtained from ϕt by replacing each occurrence of a variable xi with
the index j of the term Cj in which xi appears. To see that q(Mod(Zk)) =
Mod(T ), since Zk is a c-table, we can use Theorem 4 and check that, in fact,
q̄(Zk) = T where q̄ is the translation of q into the c-tables algebra (see the proof
of Theorem 4). Note that we only need the SPJU fragment of RA. #$
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Example 4. The c-table from Example 2 is definable as Mod(S) = q(Z3) where q
is the following query with input relation name V of arity 3: q(V ) := π123({1}×
{2} × V ) ∪ π123(σ2=3,4�=‘2’({3} × V )) ∪ π512(σ3�=‘1’,3�=4({4} × {5} × V )).

Remark 1. It turns out that the i-databases representable by c-tables are also
definable via RA starting from the absolute zero-information instance, N . In-
deed, it can be shown (Proposition 4) that for each k there exists an RA query
q such that Zk = q(N ). From there we can apply Theorem 1. The class of in-
complete databases {I | ∃q ∈ RA s.t. I = q(N )} is strictly larger than that
representable by c-tables, but it is still countable hence strictly smaller than
that of all incomplete databases. Its connections with FO-definability in finite
model theory might be interesting to investigate.

Hence, c-tables are in some sense “no more powerful” than the relational algebra.
But are they “as powerful”? This justifies the following:

Definition 4. A representation system is RA-complete if it can represent any
RA-definable i-database.

Since Zk is itself a c-table the following is an immediate corollary of the funda-
mental result of [20] (see Theorem 4 below). It also states that the converse of
Theorem 1 holds.

Theorem 2. c-tables are RA-complete.

This result is similar in nature to Corollary 3.1 in [18]. However, the exact
technical connection, if any, is unclear, since Corollary 3.1 in [18] relies on the
certain answers semantics for queries.

We now turn to the kind of completeness considered in [29].

Definition 5. A representation system is finitely complete if it can represent
any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other sys-
tems is discussed in [29] where a finitely complete representation system RA

prop
is also given (we repeat the definition in the Appendix). Is finite completeness a
reasonable question for c-tables, v-tables, and Codd tables? In general, for such
tables Mod(T ) is infinite (all that is needed is a tuple with at least one variable
and with an infinitely satisfiable condition). To facilitate comparison with the
systems in [29] we define finite-domain versions of tables with variables.

Definition 6. A finite-domain c-table (v-table, Codd table) consists of a c-
table (v-table, Codd table) T together with a finite dom(x) ⊂ D for each variable
x that occurs in T .

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed, to
obtain an or-set table from a Codd table, one can see dom(x) as an or-set and
substitute it for x in the table. Conversely, to obtain a Codd table from an or-set
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table, one can substitute a fresh variable x for each or-set and define dom(x) as
the contents of the or-set.

In light of this connection, finite-domain v-tables can be thought of as a kind
of “correlated” or-set tables. Finite-domain v-tables are strictly more expressive
than finite Codd tables. Indeed, every finite Codd table is also a finite v-table.
But, the set of instances represented by e.g. the finite v-table {(1, x), (x, 1)}
where dom(x) = {1, 2} cannot be represented by any finite Codd table. Finite-
domain v-tables are themselves finitely incomplete. For example, the i-database
{{(1, 2)}, {(2, 1)}} cannot be represented by any finite v-table.

It is easy to see that finite-domain c-tables are finitely complete and hence
equivalent to [29]’s RA

prop in terms of expressive power. In fact, this is true even
for the fragment of finite-domain c-tables which we will call boolean c-tables,
where the variables take only boolean values and are only allowed to appear in
conditions (never as attribute values).

Theorem 3. Boolean c-tables are finitely complete (hence finite-domain c-tables
are also finitely complete).

Proof. Let I = {I1, I2, . . . , Im} be a finite i-database. Construct a boolean c-
table T such that Mod(T ) = I as follows. Let � := %lgm&. For 1 ≤ i < m, put
all the tuples from Ii into T with condition ϕi, defined

ϕi :=
∧
j

¬xj ∧
∧
k

xk,

where the first conjunction is over all 1 ≤ j ≤ � such that jth digit in the �-
digit binary representation of i − 1 is 0, and the second conjunction is over all
1 ≤ k ≤ � such that the kth digit in the �-digit binary representation of i− 1 is
1. Finally, put all the tuples from Im into T with condition ϕm ∨ · · · ∨ ϕ2� . #$
Although boolean c-tables are complete there are clear advantages to using vari-
ables in tuples also, chief among them being compactness of representations

Example 5. Consider the finite c-table {(x1, x2, . . . , xm : true)} where dom(x1)
= dom(x2) = · · · = dom(xm) = {1, 2, . . . , n}. The equivalent boolean c-table
has nm tuples.

If we additionally restrict boolean c-tables to allow conditions to contain only
true or a single variable which appears in no other condition, then we obtain a
representation system which is equivalent to ?-tables.

Since finite c-tables and RA
prop are each finitely complete there is an obvi-

ous näıve algorithm to translate back and forth between them: list all the in-
stances the one represents, then use the construction from the proof of finite
completeness for the other. Finding a more practical “syntactic” algorithm is an
interesting open question.

4 Closure Under Relational Operations

Definition 7. A representation system is closed under a query language if for
any query q and any table T there is a table T ′ that represents q(Mod(T )).
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(For notational simplicity we consider only queries with one input relation name,
but everything generalizes smoothly to multiple relation names.)

This definition is from [29]. In [2], a strong representation system is defined in
the same way, with the significant addition that T ′ should be computable from
T and q. It is not hard to show, using general recursion-theoretic principles,
that there exist representation systems (even ones that only represent finite i-
databases) which are closed as above but not strong in the sense of [2]. However,
the concrete systems studied so far are either not closed or if they are closed
then the proof provides also the algorithm required by the definition of strong
systems. Hence, we see no need to insist upon the distinction.

Theorem 4 ( [20]). c-tables, finite-domain c-tables, and boolean c-tables are
closed under the relational algebra.

Proof. (Sketch.) We repeat here the essentials of the proof, including most of the
definition of the c-table algebra. For each operation u of the relational algebra [20]
defines an operation ū on c-tables as follows. For projection, we have

π̄	(T ) := {(t′ : ϕt′) | t ∈ T s.t. π	(t) = t′, ϕt′ =
∨

ϕt}

where � is a list of indexes and the disjunction is over all t in T such that
π	(t) = t′. For selection, we have

σ̄c(T ) := {(t : ϕt ∧ c(t)) | (t, ϕt) ∈ T }

where c(t) denotes the result of evaluating the selection predicate c on the values
in t (for a boolean c-table, this will always be true or false, while for c-tables and
finite-domain c-tables, this will be in general a boolean formula on constants and
variables). For cross product and union, we have

T1 ×̄ T2 := {(t1 × t2 : ϕt1 ∧ ϕt2) | t1 ∈ T1, t2 ∈ T2}
T1 ∪̄ T2 := T1 ∪ T2

Difference and intersection are handled similarly. By replacing u’s by ū we trans-
late any relational algebra expression q into a c-table algebra expression q̄ and
it can be shown that

Lemma 1. For all valuations ν, ν(q̄(T )) = q(ν(T )).

From this, Mod(q̄(T )) = q(Mod(T )) follows immediately. #$

5 Algebraic Completion

None of the incomplete representation systems we have seen so far is closed under
the full relational algebra. Nor are two more representation systems considered
in [29], Rsetsand R⊕≡ (we repeat their definitions in the Appendix).
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Proposition 1 ( [20, 29]). Codd tables and v-tables are not closed under e.g.
selection. Or-set tables and finite v-tables are also not closed under e.g. selection.
?-tables, Rsets, and R⊕≡ are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see be-
fore Definition 4) {Z1, Z2, . . .}, by relational algebra queries yields equivalence
with the c-tables. In this spirit, we will investigate “how much” of the relational
algebra would be needed to complete the other representation systems consid-
ered. We call this kind of result algebraic completion.

Definition 8. If (T ,Mod) is a representation system and L is a query language,
then the representation system obtained by closing T under L is the set of ta-
bles {(T, q) | T ∈ T , q ∈ L} with the function Mod : T × L → N defined by
Mod(T, q) := q(Mod(T )).

We are now ready to state our results regarding algebraic completion.

Theorem 5 (RA-Completion).

1. The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2. The representation system obtained by closing v-tables under SP queries is
RA-complete.

Proof. (Sketch.) For each case we show that given a arbitrary c-table T one can
construct a table S and a query q of the required type such that q̄(S) = T . Case
1 is a trivial corollary of Theorem 1. The details for Case 2 are in the Appendix.

#$

Note that in general there may be a “gap” between the language for which clo-
sure fails for a representation system and the language required for completion.
For example, Codd tables are not closed under selection, but at the same time
closing Codd tables under selection does not yield an RA-complete representa-
tion system. (To see this, consider the incomplete database represented by the
v-table {(x, 1), (x, 2)}. Intuitively, selection alone is not powerful enough to yield
this incomplete database from a Codd table, as, selection operates on one tuple
at a time and cannot correlate two un-correlated tuples.) On the other hand, it is
possible that some of the results we present here may be able to be “tightened”
to hold for smaller query languages, or else proved to be “tight” already. This is
an issue we hope to address in future work.

We give now a set of analogous completion results for the finite case.

Theorem 6 (Finite-Completion).

1. The representation system obtained by closing or-set-tables under PJ queries
is finitely complete.

2. The representation system obtained by closing finite v-tables under PJ or
S+P queries is finitely complete.

3. The representation system obtained by closing Rsets under PJ or PU queries
is finitely complete.
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4. The representation system obtained by closing R⊕≡ under S+PJ queries is
finitely complete.

Proof. (Sketch.) In each case, given an arbitrary finite incomplete database, we
construct a table and query of the required type which yields the incomplete
database. The details are in the Appendix. #$

Note that there is a gap between the RA-completion result for Codd tables,
which requires SPJU queries, and the finite-completion result for finite Codd
tables, which requires only PJ queries. A partial explanation is that proof of
the latter result relies essentially on the finiteness of the i-database.

More generally, if a representation system can represent arbitrarily-large i-
databases, then closing it under RA yields a finitely complete representation
system, as the following theorem makes precise (see Appendix for proof).

Theorem 7 (General Finite-Completion). Let T be a representation sys-
tem such that for all n ≥ 1 there exists a table T in T such that |Mod(T )| ≥ n.
Then the representation system obtained by closing T under RA is finitely-
complete.

Corollary 1. The representation system obtained by closing ?-tables under RA
queries is finitely complete.

6 Probabilistic Databases and Representation Systems

Finiteness assumption. For the entire discussion of probabilistic database
models we will assume that the domain of values D is finite. Infinite domains
of values are certainly interesting in practice; for some examples see [22, 33, 29].
Moreover, in the case of incomplete databases we have seen that they allow
for interesting distinctions.5 However, finite probability spaces are much simpler
than infinite ones and we will take advantage of this simplicity. We leave for
future investigations the issues related to probabilistic databases over infinite
domains.

We wish to model probabilistic information using a probability space whose
possible outcomes are all the conventional instances. Recall that for simplicity
we assume a schema consisting of just one relation of arity n. The finiteness of
D implies that there are only finitely many instances, I ⊆ Dn.

By finite probability space we mean a probability space (see e.g. [11])
(Ω,F ,P[ ]) in which the set of outcomes Ω is finite and the σ-field of events
F consists of all subsets of Ω. We shall use the equivalent formulation of pairs
(Ω, p) where Ω is the finite set of outcomes and where the outcome probability
assignment p : Ω → [0, 1] satisfies

∑
ω∈Ω p(ω) = 1. Indeed, we take P[A] =∑

ω∈A p(ω).

5 Note however that the results remain true if D is finite; we just require an infinite
supply of variables.
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Definition 9. A probabilistic(-information) database (sometimes called
in this paper a p-database) is a finite probability space whose outcomes are
all the conventional instances, i.e., a pair (N , p) where

∑
I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealis-
tic because there are 2N possible instances, where N := |D|n, and we would
need that many (minus one) probability values. Thus, as in the case of incom-
plete databases we define probabilistic representation systems consisting
of “probabilistic tables” (prob. tables for short) and a function Mod that asso-
ciates to each prob. table T a probabilistic database Mod(T ). Similarly, we define
completeness (finite completeness is the only kind we have in our setting).

To define closure under a query language we face the following problem. Given
a probabilistic database (N , p) and a query q (with just one input relation name),
how do we define the probability assignment for the instances in q(N )? It turns
out that this is a common construction in probability theory: image spaces.

Definition 10. Let (Ω, p) be a finite probability space and let f : Ω → Ω′ where
Ω′ is some finite set. The image of (Ω, p) under f is the finite probability space
(Ω′, p′) where 6 p′(ω′) :=

∑
f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebra and its sublanguages
defined by subsets of operations.

Definition 11. A probabilistic representation system is closed under a query
language if for any query q and any prob. table T there exists a prob. table T ′

that represents q(Mod(T )), the image space of Mod(T ) under q.

7 Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for proba-
bilistic models of databases [34, 15, 16, 9] (they are called “independent tuple
representation in [30]). Such tables are the probabilistic counterpart of ?-tables
where each “?” is replaced by a probability value. Example 6 below shows such
a table. The tuples not explicitly shown are assumed tagged with probability 0.
Therefore, we define a p-?-table as a mapping that associates to each t ∈ Dn a
probability value pt. In order to represent a probabilistic database, papers using
this model typically include a statement like “every tuple t is in the outcome
instance with probability pt, independently from the other tuples” and then a
statement like

P[I] =
(∏

t∈I

pt

)(∏
t�∈I

(1− pt)
)
.

In fact, to give a rigorous semantics, one needs to define the events Et ⊆ N ,
Et := {I | t ∈ I} and then to prove the following.

Proposition 2. There exists a unique probabilistic database such that the events
Et are jointly independent and P[Et] = pt.
6 It is easy to check that the p′(ω′)’s do actually add up to 1.
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This defines p-?-tables as a probabilistic representation system. We shall how-
ever provide an equivalent but more perspicuous definition. We shall need here
another common construction from probability theory: product spaces.

Definition 12. Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Their
product is the space (Ω1×· · ·×Ωn, p) where7 p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn).

This definition corresponds to the intuition that the n systems or phenomena
that are modeled by the spaces (Ω1, p1), . . . , (Ωn, pn) behave without “interfer-
ing” with each other. The following formal statements summarize this intuition.

Proposition 3. Consider the product of the spaces (Ω1, p1), . . . , (Ωn, pn). Let
A1 ⊆ Ω1, . . . , An ⊆ Ωn.

1. We have P[A1 × · · · ×An] = P[A1] · · ·P[An].
2. The events A1×Ω2× · · ·×Ωn, Ω1×A2× · · ·×Ωn, . . . , Ω1×Ω2× · · ·×An

are jointly independent in the product space.

Turning back to p-?-tables, for each tuple t ∈ Dn consider the finite probability
space Bt := ({true, false}, p) where p(true) := pt and p(false) = 1 − pt. Now
consider the product space

P :=
∏

t∈Dn

Bt

We can think of its set of outcomes (abusing notation, we will call this set P
also) as the set of functions from Dn to {true, false}, in other words, predicates
on Dn. There is an obvious function f : P → N that associates to each predicate
the set of tuples it maps to true.

All this gives us a p-database, namely the image of P under f . It remains to
show that it satisfies the properties in Proposition 2. Indeed, since f is a bijection,
this probabilistic database is in fact isomorphic to P . In P the events that are
in bijection with the Et’s are the Cartesian product in which there is exactly
one component {true} and the rest are {true, false}. The desired properties then
follow from Proposition 3.

We define now another simple probabilistic representation system called prob-
abilistic or-set-tables (p-or-set-tables for short). These are the probabilistic
counterpart of or-set-tables where the attribute values are, instead of or-sets,
finite probability spaces whose outcomes are the values in the or-set. p-or-set-
tables correspond to a simplified version of the ProbView model presented in [22],
in which plain probability values are used instead of confidence intervals.

Example 6. A p-or-set-table S, and a p-?-table T .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

7 Again, it is easy to check that the outcome probability assignments add up to 1.
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A p-or-set-table determines an instance by choosing an outcome in each of the
spaces that appear as attribute values, independently. Recall that or-set tables
are equivalent to finite-domain Codd tables. Similarly, a p-or-set-table corre-
sponds to a Codd table T plus for each variable x in T a finite probability space
dom(x) whose outcomes are in D. This yields a p-database, again by image space
construction, as shown more generally for c-tables next in section 8.

Query answering. The papers [15,34,22] have considered, independently, the
problem of calculating the probability of tuples appearing in query answers. This
does not mean that in general q(Mod(T )) can be represented by another tuple
table when T is some p-?-table and q ∈ RA (neither does this hold for p-or-set-
tables). This follows from Proposition 1. Indeed, if the probabilistic counterpart
of an incompleteness representation system T is closed, then so is T . Hence the
lifting of the results in Proposition 1 and other similar results.

Each of the papers [15, 34, 22] recognizes the problem of query answering
and solves it by developing a more general model in which rows contain addi-
tional information similar in spirit to the conditions that appear in c-tables (in
fact [15]’s model is essentially what we call probabilistic boolean c-tables, see
next section). We will show that we can actually use a probabilistic counter-
part to c-tables themselves together with the algebra on c-tables given in [20] to
achieve the same effect.

8 Probabilistic c-Tables

Definition 13. A probabilistic c-table (pc-tables for short) consists of a
c-table T together with a finite probability space dom(x) (whose outcomes are
values in D) for each variable x that occurs in T .

To get a probabilistic representation system consider the product space

V :=
∏

x∈Var(T )

dom(x)

The outcomes of this space are in fact the valuations for the c-table T ! Hence
we can define the function g : V → N , g(ν) := ν(T ) and then define Mod(T ) as
the image of V under g.

Similarly, we can talk about boolean pc-tables, pv-tables and probabilistic
Codd tables (the latter related to [22], see previous section). Moreover, the p-?-
tables correspond to restricted boolean pc-tables, just like ?-tables.

Theorem 8. Boolean pc-tables are complete (hence pc-tables are also complete).

Proof. Let I1, . . . , Ik denote the instances with non-zero probability in an arbi-
trary probabilistic database, and let p1, . . . , pk denote their probabilities. Con-
struct a probabilistic boolean c-table T as follows. For 1 ≤ i ≤ k − 1, put
the tuples from Ii in T with condition ¬x1 ∧ · · · ∧ ¬xi−1 ∧ xi. Put the tu-
ples from Ik in T with condition ¬x1 ∧ · · · ∧ ¬xk−1. For 1 ≤ i ≤ k − 1, set
P[xi = true] := pi/(1 −

∑i−1
j=1 pj). It is straightforward to check that this yields

a table such that P[Ii] = pi. #$
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The previous theorem was independently observed in [30].

Theorem 9. pc-tables (and boolean pc-tables) are closed under the relational
algebra.

Proof. (Sketch.) For any pc-table T and any RA query q we show that the
probability space q(Mod(T )) (the image of Mod(T ) under q) is in fact the same
as the space Mod(q̄(T )). The proof of Theorem 4 already shows that the outcomes
of the two spaces are the same. The fact that the probabilities assigned to each
outcome are the same follows from Lemma 1. #$

The proof of this theorem gives in fact an algorithm for constructing the answer
as a p-database itself, represented by a pc-table. In particular this will work for
the models of [15, 22, 34] or for models we might invent by adding probabilistic
information to v-tables or to the representation systems considered in [29]. The
interesting result of [9] about the applicability of an “extensional” algorithm
to calculating answer tuple probabilities can be seen also as characterizing the
conjunctive queries q which for any p-?-table T are such that the c-table q̄(T ) is
in fact equivalent to some p-?-table.

9 Some Ideas for Further Work

The new results on algebraic completion may not be as tight as they can be.
Ideally, we would like to be able show that for each representation system we
consider, the fragment of RA we use is minimal in the sense that closing the rep-
resentation system under a more restricted fragment does not obtain a complete
representation system.

We did not consider c-tables with global conditions [17] nor did we describe
the exact connection to logical databases [27, 32]. Even more importantly, we
did not consider complexity issues as in [3]. All of the above are important
topics for further work, especially the complexity issues and the related issues
of succinctness/compactness of the table representations.

As we see, in pc-tables the probability distribution is on the values taken by
the variables that occur in the table. The variables are assumed independent
here. This is a lot more flexible (as the example shows) than independent tuples,
but still debatable. Consequently, as part of the proposed work, trying to make
pc-tables even more flexible, we plan to investigate models in which the assump-
tion that the variables take values independently is relaxed by using conditional
probability distributions [14].

Space limitations prevent us from giving details, but there is a good reason
why the c-table algebra was in essence rediscovered in [15, 22, 34] and to some
extent in [28]. The condition that decorates a tuple t in q̄(T ) can be seen as
the lineage [8], a.k.a. the why-provenance [6], of the tuple t. We plan to discuss
elsewhere the connection between algorithms for computing why-provenance and
the c-table algebra.
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It would be interesting to connect this work to the extensive literature on
disjunctive databases, see e.g., [24], and to the work on probabilistic object-
oriented databases [12].

Probabilistic modeling is by no means the only way to model uncertainty in
information systems. In particular it would be interesting to investigate possi-
bilistic models [19] for databases, perhaps following again, as we did here, the
parallel with incompleteness.
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Appendix

Proposition 4. There exists a relational query q such that q(N ) = Zn.

Proof. Define sub-query q′ to be the relational query

q′(V ) := V − π	(σ	 �=r(V × V )),

where � is short for 1, . . . , n and � �= r is short for 1 �= n+ 1∨ · · · ∨n �= 2n. Note
that q′ yields V if V consists of a single tuple and ∅ otherwise. Now define q to
be the relational query

q(V ) := q′(V ) ∪ ({t} − π	({t} × q′(V ))),

where t is a tuple chosen arbitrarily from Dn. It is clear that q(N ) = Zn. #$
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Definition 14. A table in the representation system Rsets is a multiset of sets
of tuples, or blocks, each such block optionally labeled with a ‘?’. If T is an Rsets

table, then Mod(T ) is the set of instances obtained by choosing one tuple from
each block not labeled with a ‘?’, and at most one tuple from each block labeled
with a ‘?’.

Definition 15. A table in the representation system R⊕≡ is a multiset of tuples
{t1, . . . , tm} and a conjunction of logical assertions of the form i ⊕ j (meaning
ti or tj must be present in an instance, but not both) or i ≡ j (meaning ti is
present in an instance iff tj is present in the instance). If T is an R⊕≡ table
then Mod(T ) consists of all subsets of the tuples satisfying the conjunction of
assertions.

Definition 16. A table in the representation system RA
prop is a multiset of or-

set tuples {t1, . . . , tm} and a boolean formula on the variables {t1, . . . , tm}. If T
is an RA

prop table then Mod(T ) consists of all subsets of the tuples satisfying the
boolean assertion, where the variable ti has value true iff the tuple ti is present
in the subset.

Theorem 5 (RA-Completion).

1. The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2. The representation system obtained by closing v-tables under SP queries is
RA-complete.

Proof. In each case we show that given an arbitrary c-table T , one can construct
a table S and a query q such that q̄(S) = T .

1. Trivial corollary of Theorem 1.
2. Let k be the arity of T . Let {t1, . . . , tm} be an enumeration of the tuples

of T , and let {x1, . . . , xn} be an enumeration of the variables which appear
in T . Construct a v-table S with arity k + n+ 1 as follows. For every tuple
ti in T , put exactly one tuple t′i in S, where t′i agrees with ti on the first k
columns, the k+1st column contains the constant i, and the last m columns
contain the variables x1, . . . , xm. Now let q be the SP query defined

q := π1,...,k(σ�m
i=1 k+1=‘i’∧ψi

(S))

where ψi is obtained from the condition ϕti of tuple ti by replacing variable
names with their corresponding indexes in S. #$

Theorem 6 (Finite Completion).

1. The representation system obtained by closing or-set-tables under PJ queries
is finitely complete.

2. The representation system obtained by closing finite v-tables under PJ or
S+P queries is finitely complete.
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3. The representation system obtained by closing Rsets under PJ or PU queries
is finitely complete.

4. The representation system obtained by closing R⊕≡ under S+PJ queries is
finitely complete.

Proof. Fix an arbitrary finite incomplete database I = {I1, . . . , In} of arity k.
It suffices to show in each case that one can construct a table T in the given
representation system and a query q in the given language such that q(Mod(T )) =
I.

1. We construct a pair of or-set-tables S and T as follows. (They can be com-
bined together into a single table, but we keep them separate to simplify
the presentation.) For each instance Ii in I, we put all the tuples of Ii in S,
appending an extra column containing value i. Let T be the or-set-table of
arity 1 containing a single tuple whose single value is the or-set 〈1, 2, . . . , n〉.
Now let q be the S+PJ query defined:

q := π1,...,kσk+1=k+2(S × T ).

2. Completion for PJ follows from Case 1 and the fact that finite v-tables are
strictly more expressive than or-set tables. For S+P , take the finite v-table
representing the cross product of S and T in the construction from Case 1,
and let q be the obvious S+P query.

3. Completion for PJ follows from Case 1 and the fact (shown in [29]) that
or-set-tables are strictly less expressive than Rsets. Thus we just need show
the construction for PU . We construct an Rsets table T as follows. Let m
be the cardinality of the largest instance in I. Then T will have arity km
and will consist of a single block of tuples. For every instance Ii in I, we
put one tuple in T which has every tuple from Ii arranged in a row. (If the
cardinality of Ii is less than m, we pad the remainder with arbitrary tuples
from Ii.) Now let q be the PU query defined as follows:

q :=
m−1⋃
i=0

πki,...,ki+k−1(T )

4. We construct a pair of R⊕≡-tables S and T as follows. (S can be encoded as
a special tuple in T , but we keep it separate to simplify the presentation.)
Let m = %lg n&. T is constructed as in Case 2. S is a binary table containing,
for each i, 1 ≤ i ≤ m, a pair of tuples (0, i) and (1, i) with an exclusive-or
constraint between them. Let sub-query q′ be defined

q′ :=
m∏

i=1

π1(σ2=‘i’(S))

The S+PJ query q is defined as in Case 2, but using this definition of q′. #$
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Theorem 7 (General Finite Completion). Let T be a representation system
such that for all n ≥ 1 there exists a table T in T such that |Mod(T )| ≥ n. Then
the representation system obtained by closing T under RA is finitely-complete.

Proof. Let T be a representation system such that for all n ≥ 1 there is a
table T in T such that |Mod(T )| ≥ n. Let I = {I1, ..., Ik} be an arbitrary
non-empty finite set of instances of arity m. Let T be a table in T such that
Mod(T ) = {J1, . . . , J	}, with � ≥ k. Define RA query q to be

q(V ) :=
⋃

1≤i≤k−1

Ii × qi(V ) ∪
⋃

k≤i≤	

Ik × qi(V ),

where Ii is the query which constructs instance Ii and qi(V ) is the boolean
query which returns true iff V is identical to Ii (which can be done in RA).
Then q(Mod(T )) = I. #$
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Abstract. An architecture is proposed providing robust data acquisition facili-
ties from input documents containing tabular data. This architecture is based on
a data-repairing framework exploiting integrity constraints defined on the input
data to support the detection and the repair of inconsistencies in the data arising
from errors occurring in the acquisition phase. In particular, a specific but expres-
sive form of integrity constraints (steady aggregate constraints) is defined which
enables the computation of a repair to be expressed as a mixed integer linear
programming problem.

1 Introduction

The need to acquire data from different sources of information often arises in many ap-
plication scenarios, such as e-procurement, competitor analysis, business intelligence.
In several cases these sources are heterogenous documents, possibly represented ac-
cording to different formats, ranging from paper documents to electronic ones (PDF,
MSWord, HTML files). In order to be exploited to provide valuable knowledge, infor-
mation must be extracted from the original documents and re-organized into a machine-
readable format. The problem of defining efficient and effective approaches accom-
plishing this task is a challenging issue in the context of Information Extraction (IE).
Most of traditional IE techniques focus on efficiency, providing unsupervised extraction
algorithms which automatically extract records from documents. However, it frequently
happens that some of the extracted records are not correctly recognized, i.e. the value of
one (or more) field has been misspelled. In several contexts (such as balance analysis)
extracted information must be 100% error free in order to be profitably exploited, thus
unsupervised approaches are not well-suited. In these cases, data transcription from in-
put documents into a machine-readable format requires massive human intervention,
thus compromising efficiency and making valuable resources be wasted. Human inter-
vention is mainly devoted to verifying the correctness of acquired data by comparing
them with the content of source documents.

Indeed, if integrity constraints are defined on the input data, this kind of human inter-
vention can be reduced by automatically verifying whether acquired data satisfy these
constraints, thus limiting manual corrections to those pieces of acquired data which do
not satisfy them. In fact current approaches exploiting integrity constraints on source
documents require inconsistent acquired data to be manually edited by a human oper-
ator. This editing task is likely to be onerous, since a large amount of data in the input
documents need to be accessed and compared with the acquired ones.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 297–317, 2006.
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The idea underlying this paper is that human intervention can be reduced by exploit-
ing some repairing technique to suggest the “most likely” way of fixing inconsistent
data. We introduce the architecture of a system (namely, DART - Data Acquisition and
Repairing Tool) based on this idea. The motivation of this work and the contribution
provided by this system can be better understood after reading the following example,
describing a specific application scenario (that is, data acquisition from balance sheets).

Example 1. The balance sheet is a financial statement of a company providing informa-
tion on what the company owns (its assets), what it owes (its liabilities), and the value
of the business to its stockholders. A thorough analysis of a company balance sheet is
extremely important for both stock and bond investors, since it allows potential liquid-
ity problems to be detected, thus determining the company financial reliability as well
as its ability to satisfy financial obligations.

Figure 1 is a portion of a document containing two cash budgets for a firm, each of
them related to a year. Each cash budget is a summary of cash flows (receipts, disburse-
ments, and cash balances) over the specified periods.

Receipts beginning cash 20
cash sales 100
receivables 120
total cash receipts 220

Disbursements payment of accounts 120
2003 capital expenditure 0

long-term financing 40
total disbursements 160

Balance net cash inflow 60
ending cash balance 80

Receipts beginning cash 80
cash sales 100
receivables 100
total cash receipts 200

Disbursements payment of accounts 130
2004 capital expenditure 40

long-term financing 20
total disbursements 190

Balance net cash inflow 10
ending cash balance 90

Fig. 1. An input document

This cash budget satisfies the following integrity constraints:

a) for each year, the sum of cash sales and receivables in section Receipts must be
equal to total cash receipts;

b) for each year, the sum of payment of accounts, capital expenditure and long-term
financing must be equal to total disbursements (in section Disbursements);

c) for each year, the net cash inflow must be equal to the difference between total cash
receipts and total disbursements;

d) for each year, the ending cash balance must be equal to the sum of the beginning
cash and the net cash inflow;

Generally balance sheets like the ones depicted in Figure 1 are available as paper
documents, thus they cannot be automatically processed by balance analysis tools, since
these work only on electronic data. In fact, some companies do business acquiring elec-
tronic balance data and reselling them in a format suitable for being processed by com-
mercial analysis tools. Currently electronic versions are obtained by means of either
human transcriptions or OCR acquisition tools. Both these approaches are likely to re-
sult in erroneous acquisition, thus compromising the reliability of the analysis task.

An example of numerical value recognition error occurring during the acquisition
phase is the recognition of the value 250 instead of 220 for “total cash receipts” in the
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year 2003. Consequently, some constraints are not satisfied on the acquired data for
year 2003:
i) in section Receipts, the value of total cash receipts is not equal to the sum of values
of cash sales and receivables;

ii) the value of net cash inflow is not to equal the difference between total cash receipts
and total disbursements.

Furthermore, some symbol recognition errors in non-numerical strings may occur
in the acquisition phase. For instance, the item “bgnning cesh” could be recognized
instead of “beginning cash”. #$
DART is a system supporting the acquisition of heterogeneous documents and the su-
pervised repairing of the acquired data. With respect to Example 1, DART will sug-
gest to change the “total cash receipts” value for year 2003 from 250 (i.e. the acquired
value) to 220, thus reducing the human intervention, as the human operator is no longer
required to access the whole input document to fix acquisition errors making integrity
constraints violated. In particular, DART is based on the notion of card-minimal repair
introduced in [16], where the problem of repairing numerical data which are incon-
sistent w.r.t. aggregate constraints is addressed. Aggregate constraints defined in [16]
can express constraints like those defined in the context of balance-sheet data. The no-
tion of card-minimal repair is well-suited for our context, where data inconsistency
is due to bad symbol recognition during the acquisition phase. Indeed, applying the
card-minimal semantics means searching for repairs changing the minimum number
of acquired values, which corresponds to the assumption that the minimum number of
errors occurred in the acquisition phase.

This work stems from a specific application context, where data to be acquired are
balance sheets. In this scenario, the relevant information is formatted according to a
tabular layout. Therefore, our acquisition approach is targeted to tabular data. However,
observe that this feature does not limit DART to the acquisition of balance sheets, as
tabular data often occur in many different application contexts, such as web sites pub-
lishing product catalogs.

Related Work
The most widely used notion of repair and consistent query answer on inconsistent data
is that of [2]: a repair of an inconsistent database D is a databaseD′ satisfying the given
integrity constraints and which is minimally different from D. The consistent answer
of a query q posed on D is the answer which is in every result of q on each repair D′.
Different approaches to the problem of extracting reliable information from inconsistent
data had been introduced in [1,8].

Based on the notions of repair and consistent query answer introduced in [2], sev-
eral works investigated more expressive classes of queries and constraints. In [3] ex-
tended disjunctive logic programs with exceptions were used for the computation of
repairs, and in [4] the evaluation of aggregate queries on inconsistent data was investi-
gated. A further generalization was proposed in [19], where the authors defined a sound
and complete technique (in presence of universally quantified constraints) based on
the rewriting of constraints into extended disjunctive rules with two different forms of
negation (negation as failure and classical negation). In [9,10] a practical framework for
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computing consistent query answer for large relational database has been presented,
and the system Hippo supporting projection-free relational algebra queries and denial
integrity constraints was presented.

All the above-cited approaches assume that tuple insertions and deletions are the
basic primitives for repairing inconsistent data. More recently, in [11] a repairing strat-
egy using only tuple deletions was proposed, and in [7,24,25] repairs consisting of also
value-update operations were considered. The latter are the first approaches performing
repairs at the attribute-value level.

In [6] the problem of repairing databases by fixing numerical data at attribute level
was investigated in presence of both denial constraints (where built-in comparison pred-
icates are allowed) and a non-linear form of multi-attribute aggregate constraints (when
constraints of this form are defined, the repair existence problem was shown to be unde-
cidable). In [16] the problem of repairing and extracting reliable information from data
violating a given set of aggregate constraints was investigated. These constraints consist
of linear inequalities on aggregate-sum queries issued on measure values stored in the
database. This syntactic form enables meaningful constraints to be expressed, such as
those of Example 1 as well as other forms which often occur in practice.

In this work we define a restricted class of aggregate constraints and provide a
method to compute a card-minimal repair defined in [16] (according to the card-
minimal semantics, a repaired database D′ minimally differs from the original data-
base D iff the number of value updates yielding D′ is minimum w.r.t. all other possible
repairs). We exploit this computation method in the DART system where data are ac-
quired by means of acquisition tool and information is extracted and transformed by a
wrapping system.

There has been a lot of research work related to web information extraction. Special-
ized information extraction procedures, called wrappers, represent an effective solution
to capture text contents of interest from a source-native format and encode such contents
into a structured format suitable for further application-oriented processing. Web wrap-
pers typically exploit markup-tag and lexical token information to infer the template
structuring the contents in a web page.

Traditional issues concerning wrapper systems are the development of powerful lan-
guages for expressing extraction patterns and the ability of generating these patterns
with the lowest human effort [5,13]. Several systems for generating web wrappers
have been recently proposed. We mention here DEByE [20], XWRAP [21], Lixto [5],
SCRAP [15,17], RoadRunner [13]. All these systems do not provide any facility for ef-
fectively handling tabular data. Indeed, there are no systems that address data extraction
from HTML tables in a satisfactory way. In [14] data extraction from HTML tables with
unknown structure is addressed. This system fails when dealing with small tables and in
finding mappings related to numeric attributes. A wrapper-learning system called WL2
is presented in [12]. It uses very specific extraction rules which can be applied only to
documents which are structurally similar to the documents in the training example.

Main contributions
In this work we introduce a system architecture aiming at supervised acquiring of in-
formation encoded into tabular data inside documents with possibly heterogeneous for-
mats. Main novelties of our proposal are the following:
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1. Our system embeds a wrapping module for extracting information from tabular
data. This module can manage tables having “variable” structures, i.e. tables whose
cells can span multiple rows and columns, according to no pre-determined scheme.
This is a valuable feature, as all existing wrapping techniques do not work at all or
are far from being satisfactory on tabular data without a “rigid” structure.

2. A framework for computing card-minimal repairs on wrongly acquired data is in-
troduced to drive the data validation process. This framework exploits a specific
form of aggregate constraints (namely, steady aggregate constraints) defined on
the source documents to check the consistency of the acquired data and computing
a repair.

Describing our wrapping technique in detail is out of the scope of this paper. Here
we will focus on presenting the architecture of our system and the technique adopted
for computing repairs.

2 DART in a Nutshell

DART (Data Acquisition and Repairing Tool) is a system providing robust data ac-
quisition facilities. It takes as input documents containing tabular data, and it exploits
integrity constraints defined on the input data to support the detecting and the repairing
of inconsistencies due to errors occurring in the acquisition phase. If acquisition errors
are detected, the system proposes a way to correct these errors. Proposed corrections
are validated by means of human intervention. In order to detect and repair inconsis-
tencies, integrity constraints are considered expressing algebraic relations among the
numerical data reported in the cells of the input tables. These constraints are exploited
only to fix the acquired numerical values. Moreover, a dictionary of the terms used in
the specific scenario which the input documents refer to is exploited to provide spelling
error corrections on non-numerical strings.

Two kinds of user interact with DART, namely the acquisition designer and the op-
erator. The former is an expert on the application context and specifies the metadata
which are used to support both the extraction of tabular data and the repairing process.
The latter interacts with the system during the acquisition of each document: if the
acquired data need to be corrected, he is prompted to validate proposed corrections.

As shown in Figure 2, DART consists of two macro-modules. The first module takes
as input documents containing tabular data and returns a relational database where the
extracted tabular data are stored. It performs three steps: it loads the input document
and convert it in HTML format, it extracts the tabular data from the HTML document
and it transforms them into a database instance. This module exploits metadata speci-
fied by the acquisition designer, which describe the structure and the semantics of the
input documents1. The second module takes as input the database instance D generated
by the acquisition and extraction module. It locates possible inconsistencies in D and
returns a repair for D. Both the inconsistency detection and the repair computation are

1 As it will be clear in the following, designing an extraction module taking as input HTML doc-
uments will make it possible to exploit its features also in Web applications, where the problem
of automatically extracting information from HTML pages often arises in many scenarios.
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Fig. 2. Data flow in DART

accomplished according to a set of aggregate constraints AC defined by acquisition de-
signer and represented in the metadata. In more detail, the repairing module transforms
the problem of finding a card-minimal repair2 for D w.r.t. AC into an MILP instance
(Mixed-Integer Linear Programming problem) and solves it providing a repair for D.
The proposed repair is then validated by the operator, who either accepts it or requires
to compute a different repair. In fact, it can be the case that the proposed repair is un-
satisfactory since the operator realizes that it consists of value updates which do not
correspond to the actual content of the source document. In this case the operator in-
serts further constraints on the acquired data. Basically, he drives the repairing process
by specifying the exact values that some pieces of the repaired data must take.

3 Preliminaries

We assume classical notions of database scheme, relational scheme, and relations. In
the following we will also use a logical formalism to represent relational databases,
and relational schemes will be represented by means of sorted predicates of the form
R(A1 :∆1, . . . , An :∆n), where A1, . . . , An are attribute names and ∆1, . . . , ∆n are
the corresponding domains. Each ∆i can be either Z (infinite domain of integers), R
(reals), or S (strings). Domains R and Z will be said to be numerical domains, and
attributes defined over R or Z will be said to be numerical attributes. Given a ground
atom t denoting a tuple, the value of attribute A of t will be denoted as t[A].

Given a database scheme D, we will denote as MD (namely, Measure attributes)
the set of numerical attributes representing measure data. That is, MD specifies the
set of attributes representing measure values, such as weights, lengths, prices, etc. For
instance, in Figure 3, MD consists of the only attribute Value.

3.1 Aggregate Constraints

Given a relational scheme R(A1 : ∆1, . . . , An : ∆n), an attribute expression on R is
defined recursively as follows:

- a numerical constant is an attribute expression;

each Ai (with i ∈ [1..n]) is an attribute expression;
-- e1ψe2 is an attribute expression on R, if e1, e2 are attribute expressions on R and
ψ is an arithmetic operator in {+,−};

- c×(e) is an attribute expressions on R, if e is an attribute expression on R and c a
numerical constant.

2 As it will be shown in Section 3.2, a card-minimal repair for a database is a repair changing
the minimum number of values w.r.t. all possible repairs.
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Let R be a relational scheme and e an attribute expression on R. An aggregation
function on R is a function χ : (Λ1 × · · · × Λk) → R, where each Λi is either Z, or R,
or S, and it is defined as follows:

χ(x1, . . . , xk) = SELECT sum(e)
FROM R
WHERE α(x1, . . . , xk)

where α(x1, . . . , xk) is a boolean formula on x1, . . . , xk, constants and attributes of R.

Example 2. Consider the database scheme D consisting of the single relation scheme
CashBudget(Year, Section, Subsection, Type, Value), and its instance reported in Fig-
ure 3. This instance represents a possible output of the acquisition and extraction mod-
ule when DART takes as input the document in Figure 1 (it results from the case that a
symbol recognition error occurred in the acquisition phase, so that the acquired value of
total cash receipts is 250 instead of 220). Values ‘det’, ‘aggr’ and ‘drv’ in column Type
stand for detail, aggregate and derived, respectively. In particular, an item of the table
is aggregate if it is obtained by aggregating items of type detail of the same section,
whereas a derived item is an item whose value can be computed using the values of
other items of any type and belonging to any section.

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20
2003 Receipts cash sales det 100
2003 Receipts receivables det 120
2003 Receipts total cash receipts aggr 250
2003 Disbursements payment of accounts det 120
2003 Disbursements capital expenditure det 0
2003 Disbursements long-term financing det 40
2003 Disbursements total disbursements aggr 160
2003 Balance net cash inflow drv 60
2003 Balance ending cash balance drv 80
· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
2004 Receipts beginning cash drv 80
2004 Receipts cash sales det 100
2004 Receipts receivables det 100
2004 Receipts total cash receipts aggr 200
2004 Disbursements payment of accounts det 130
2004 Disbursements capital expenditure det 40
2004 Disbursements long-term financing det 20
2004 Disbursements total disbursements aggr 190
2004 Balance net cash inflow drv 10
2004 Balance ending cash balance drv 90

Fig. 3. A cash budget

The following aggregation functions are defined on the relational scheme CashBud-
get:
χ1(x, y, z) = SELECT sum(Value)

FROM CashBudget
WHERE Section=x

AND Year=y AND Type=z

χ2(x, y) = SELECT sum(Value)
FROM CashBudget
WHERE Year = x

AND Subsection=y

Function χ1 returns the sum of Value of all the tuples having Section x, Year y and
Type z. For instance, χ1(‘Receipts’, ‘2003’, ‘det’) returns 100 + 120 = 220, whereas
χ1(‘Disbursements’, ‘2003’, ‘aggr’) returns 160. Function χ2 returns the sum of Value of
all the tuples where Year=x and Subsection=y. In our running example, as the pair
Year, Subsection is a key for the tuples of CashBudget, the sum returned by χ2 is
an attribute value of a single tuple. For instance, χ2(‘2003’, ‘cash sales’) returns 100,
whereas χ2(‘2004’, ‘net cash inflow’) returns 10. #$
Definition 1 (Aggregate constraint). Given a database scheme D, an aggregate con-
straint on D is an expression of the form:
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∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(Xi) ≤ K

)
(1)

where:
1. c1, . . . , cn,K are constants;
2. φ(x1, . . . , xk) is a conjunction of atoms containing the variables x1, . . . , xk;
3. each χi(Xi) is an aggregation function, where Xi is a list of variables and con-
stants, and variables appearing in Xi are a subset of {x1, . . . , xk}.

Given a database D and a set of aggregate constraints AC, we will use the notation
D |= AC [resp. D �|= AC] to say that D is consistent [resp. inconsistent] w.r.t. AC.
Observe that aggregate constraints enable equalities to be expressed as well, since an
equality can be viewed as a pair of inequalities. For the sake of brevity, in the following
equalities will be written explicitly.

Example 3. Constraints a) and b) defined in Example 1 can be expressed as: for each
section and year, the sum of the values of all detail items must be equal to the value of
the aggregate item of the same section and year, that is:
Constraint 1:
∀ x, y, s, t, v CashBudget(y, x, s, t, v) =⇒ χ1(x, y, ‘det’)− χ1(x, y, ‘aggr’) = 0

#$
For the sake of simplicity, in the following we will use a shorter notation for denoting
aggregate constraints, where universal quantification is implied and variables in φwhich
do not occur in any aggregation function are replaced with the symbol ‘ ’. For instance,
Constraint 1 of Example 3 can be written as:
CashBudget(y, x, , , ) =⇒ χ1(x, y, ‘det’)− χ1(x, y, ‘aggr’) = 0

Example 4. Constraints c) and d) of Example 1 can be expressed as follows:
Constraint 2: CashBudget(x, , , , ) =⇒

χ2(x, ‘net cash inflow’) − (χ2(x, ‘total cash receipts’) − χ2(x, ‘total disbursements’)) = 0

Constraint 3: CashBudget(x, , , , ) =⇒
χ2(x, ‘ending cash balance’) − (χ2(x, ‘beginning cash’) + χ2(x, ‘net cash balance’)) = 0

3.2 Repairing Inconsistent Databases

Updates at attribute-level will be used in the following as the basic primitives for repair-
ing data violating aggregate constraints. Given a relational scheme R in the database
scheme D, let MR = {A1, . . . , Ak} be the subset of MD containing all the attributes
in R belonging to MD.

Definition 2 (Atomic update). Let t = R(v1, . . . , vn) be a tuple on the relational
scheme R(A1 : ∆1, . . . , An : ∆n). An atomic update on t is a triplet < t,Ai, v

′
i >,

where Ai ∈ MR and v′i is a value in ∆i and v′i �= vi.

Update u =< t,Ai, v
′
i > replaces t[Ai] with v′i, thus yielding the tuple u(t) =

R(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

Observe that atomic updates work on the setMR of measure attributes, as our frame-
work is based on the assumption that data inconsistency is due to errors in the acqui-
sition phase. Therefore we only consider repairs aiming at re-constructing the correct
measure data.
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Example 5. Update u =< t,Value, 130 > issued on the following tuple:
t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100)
returns the tuple: u(t) = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 130). #$

Given an update u, we denote the pair < tuple, attribute> updated by u as λ(u). That
is, if u = < t, Ai, v > then λ(u) =< t,Ai >.

Definition 3 (Consistent database update). Let D be a database and U = {u1, . . . ,
un} be a set of atomic updates on tuples of D. The set U is said to be a consistent
database update iff ∀ j, k ∈ [1..n] if j �=k then λ(uj) �= λ(uk).

Informally, a set of atomic updates U is a consistent database update iff for each pair of
updates u1, u2 ∈ U , u1 and u2 do not work on the same tuples, or they change different
attributes of the same tuple.

The set of pairs < tuple, attribute > updated by a consistent database update U will
be denoted as λ(U) = ∪ui∈U{λ(ui)}.

Given a database D and a consistent database update U , performing U on D results
in the database U(D) obtained by applying all atomic updates in U .

Definition 4 (Repair). Let D be a database scheme, AC a set of aggregate constraints
on D, and D an instance of D such that D �|= AC. A repair ρ for D is a consistent
database update such that ρ(D) |= AC.

Example 6. A repair ρ for CashBudget w.r.t. constraints 1), 2) and 3) consists in de-
creasing attribute Value in the tuple: t = CashBudget(2003, ‘Receipts’, ‘total cash
receipts’, ‘aggr’, 250) down to 220; that is, ρ = { < t,Value, 220 > }. #$

If a repair exists, different repairs can be performed on D yielding a new database con-
sistent w.r.t. AC, although not all of them can be considered “reasonable”. For instance,
if a repair exists for D changing only one value in one tuple of D, any repair updating
all values in all tuples of D can be reasonably disregarded. To evaluate whether a repair
should be considered “relevant” or not, we use an ordering criteria stating that a repair
ρ1 is preferred w.r.t. a repair ρ2 if the number of changes issued by ρ1 is less than ρ2.

Example 7. Another repair for CashBudget is: ρ′ = {〈t1, Value, 130〉, 〈t2, Value, 70〉,
〈t3, Value, 190〉}, where:

t1 = CashBudget( 2003, ‘Receipts’, cash sales’, ‘det’, 100),
t2 = CashBudget( 2003, ‘Disbursements’, ‘long-term financing’, ‘det’, 40),
t3 = CashBudget ( 2003, ‘Disbursements’, ‘total disbursements’, ‘aggr’, 160).

Observe that ρ < ρ′, where ρ is the repair defined in Example 6. #$

Definition 5 (Card-minimal repair). Let D be a database scheme, AC a set of aggre-
gate constraints on D, and D an instance of D. A repair ρ for D w.r.t. AC is card-
minimal repair iff there is no repair ρ′ for D w.r.t. AC such that |λ(ρ′)| < |λ(ρ)|.

Example 8. Repair ρ of Example 6 is a card-minimal repair. #$
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Given a database D which is not consistent w.r.t. a set of aggregate constraints AC,
different card-minimal repairs can exist on D. In our running example, repair ρ of
Example 6 is the unique card-minimal repair.

In [16] the problem of repairing and extracting reliable information from data violat-
ing a given set of aggregate constraints has been investigated. It has been shown that 1)
given a database D violating a set of aggregate constraints, deciding whether a repair
for D exists is NP-complete, and 2) given a database D violating a set of aggregate
constraints and a repair ρ for D, deciding whether ρ is a card-minimal repair is coNP-
complete. Furthermore, the consistent query answer under both the set-minimal and the
card-minimal semantics has been studied.

Observe that, as the repair-existence problem is NP-complete, there is no ε-
approximation algorithm A [23] for the computation of a card-minimal repair for D,
unless P = NP . Otherwise, running A would result in obtaining a possible repair for
D (not necessarily a card-minimal one) in polynomial time.

4 Steady Aggregate Constraints

In this section we introduce a restricted form of aggregate constraints, namely steady
aggregate constraints. On the one hand, steady aggregate constraints are less expressive
than (general) aggregate constraints, but, on the other hand, computing a card-minimal
repair w.r.t. a set of steady aggregate constraints can be accomplished by solving an
instance of an MILP (Mixed Integer Linear Programming) problem. This allows us to
adopt standard techniques addressing MILP problems to accomplish the computation of
a card-minimal repair (as it will be clear in the following, this would not be possible for
general aggregate constraints). However, observe that the loss in expressiveness is not
dramatic, as steady aggregate constraints suffice to express relevant integrity constraints
in many real-life scenarios. For instance, all the aggregate constraints introduced in our
running example can be expressed by means of steady aggregate constraints.

Before providing the formal definition of steady aggregate constraint, we introduce
some preliminary notations.

Given a relational scheme R(A1, . . . , An) and a conjunction of atoms φ containing
the atom R(x1, . . . , xn), we say that the attribute Aj corresponds to the variable xj ,
for each j ∈ [1..n]. Given an aggregation function χi, we will denote as W(χi) the
union of the set of the attributes appearing in the WHERE clause of χi and the set of
attributes corresponding to variables appearing in the WHERE clause of χi. Given an
aggregate constraint κ where the aggregation functions χ1, . . . , χn occur, we will de-
note asA(κ) the set of attributes

⋃n
i=1W(χi). Given an aggregate constraint κ, we will

denote as J (κ) the set of attributes such that for each A ∈ J (κ) there are two atoms
Ri(xi1 , . . . , xin) and Rj(xj1 , . . . , xjm) in φ(x1, . . . , xk) satisfying both the following
conditions:

1. there are il ∈ [i1..in] and jh ∈ [j1..jm] such that xil
= xjh

;
2. A corresponds to either xil

or xjh
.

Basically,J (κ) contains attributesA corresponding to variables shared by two atoms
in φ.
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The reason why sets A(κ) and J (κ) have been introduced is that they allow us to
detect a useful property. In fact, in the case that A(κ) ∪ J (κ) does not contain any
measure attribute, the tuples in the database instance D which are “involved” in κ (i.e.
the tuples where φ and the WHERE clauses of the aggregation functions in κ evaluate
to true) can be detected without looking at the values of their measure attributes. As it
will be clear in the following, if this syntactic property holds we can translate κ into
a set of linear inequalities and then express the computation of a card-minimal repair
w.r.t. κ as an instance of MILP.

Definition 6 (Steady aggregate constraint). Let D be a database scheme,MD the set
of measure attributes ofD and κ an aggregate constraint onD. An aggregate constraint
κ is said to be a steady aggregate constraint if:

(A(κ) ∪ J (κ)) ∩MD = ∅ (2)

Example 9. Consider a database scheme D containing the relational schemes R1(A1,
A2, A3) and R2(A4, A5, A6), where MD = {A2, A4}. Let κ be the following aggre-
gate constraint on D:

∀ x1, x2, x3, x4, x5 (R1(x1, x2, x3), R2(x3, x4, x5) =⇒ χ(x2) ≤ K) (3)

where:
χ(x) = SELECT sum(A6)

FROM R2
WHERE A5 = x

We have that A(κ) = {A5, A2} and J (κ) = {A3, A4}, therefore κ is not a steady
aggregate constraint.

Consider Constraint 1 of our running example. We have that A(Constraint 1) =
{Y ear, Section, T ype} and J (Constraint 1) = ∅. Since MD = {V alue}, Constraint
1 is a steady aggregate constraint. Similarly, it is straightforward to show that also con-
straints 2) and 3) are steady aggregate constraints. #$

5 Computing a Card-Minimal Repair

Several theoretical issues regarding the consistent query answer (CQA) problem have
been widely investigated for different classes of constraints, and some techniques for
evaluating the CQA have been proposed too (see Related Work section). It can be shown
that all complexity results (characterizing either the repair existence problem and the
consistent query answer problem) given in [16] (where general aggregate constraints
were considered) are still valid for our restricted class of aggregate constraints.

Indeed, in our specific application scenario, we are more interested in computing a
repair (fixing all the acquired values) than evaluating whether a single acquired value is
“reliable”. The main contribution of this section is the definition of a technique for com-
puting a card-minimal repair for a database w.r.t a set of steady aggregate constraints,
which is based on the translation of the repair-evaluation problem into an instance of
a mixed-integer linear programming (MILP) problem [18]. Our technique exploits the
restrictions imposed on steady aggregate constraints w.r.t. general aggregate constraints
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to accomplish the computation of a repair. As it will be clear later, this approach does
not work for (general) aggregate constraints.

Consider a database scheme D and a set of steady aggregate constraintsAC on D. In
this case, we can model the problem of finding a card-minimal repair as MILP problem
(if the domain of numerical attributes is restricted to Z then it can be formulated as an
ILP problem).

We first show how a steady aggregate constraint can be expressed by a set of linear
inequalities.

Consider the steady aggregate constraint κ:

∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(yi1 , . . . , yimi
) ≤ K

)
(4)

where ∪n
i=1{yi1 , . . . yimi

} is a subset of {x1, . . . , xk} and for each i ∈ [1..n]:

χi(yi1 , . . . yimi
) = SELECT sum(ei)

FROM Rχi

WHERE αi(yi1 , . . . , yimi
)

Without loss of generality, we assume that each attribute expression ei occurring in
the aggregation function χi is either an attribute or a constant.

We associate a variable zt,Aj to each database value t[Aj ], where t is a tuple in the
database instance D and Aj is an attribute in MD. zt,Aj is defined on the same domain
as Aj . For every ground substitution θ of x1, . . . , xk such that φ(θx1, . . . , θxk) is true,
we will denote as Tχi the set of the tuples involved in the aggregation function χi, that
is Tχi = {t : t |= αi(θyi1 , . . . , θyimi

)}.
The translation of χi, denoted as P(χi), is defined as follows:

P(χi) =

⎧⎨⎩
∑

t∈Tχi
zt,Aj if ei = Aj ;

ei · |Tχi | if ei is a constant.

Starting from P(χi), the whole constraint κ can be expressed as a set S of lin-
ear inequalities as follows. For every ground substitution θ of x1, . . . , xk such that
φ(θx1, . . . , θxk) is true, S contains the following inequality:

n∑
i=1

ci · P(χi) ≤ K (5)

Observe that this construction is not possible for a non-steady aggregate constraint
since, given a database instance D and an aggregation function χi in the constraint, we
cannot determine Tχi : changing a measure value might result in changing the set of the
tuples involved the aggregation function.

For the sake of simplicity, in the following we associate to each pair 〈t, Aj〉 an integer
index i, therefore we write zi instead of zt,Aj . If we assume that the number of values
involved in constraints in AC concerning the given database instance D is N then the
index i will take values in [1..N ].

As shown above, we can translate each steady aggregate constraint into a system lin-
ear inequalities. The translation of all aggregate constraints in AC produces the system
of linear inequalities A · Z ≤ B, where Z = [z1, z2, . . . , zN ]T . This system will be
denoted as S(AC).
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Example 10. Consider the database scheme D of our running example, the database
instance in Figure 3 and the set of aggregate constraints AC consisting of constraints
1), 2) and 3). The values involved in constraints in AC w.r.t. the given database instance
in Figure 3 are as many as the number of tuples, that is N = 20. Therefore, zi, with
i ∈ [1..20] is the variable associated to the database value t[V alue], where t is the i-th
tuple in Figure 3. For instance, z2 is the variable associated with the value of attribute
Value in the tuple t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100).

The translation of constraints 1), 2) and 3) is the following, where we explicitly write
equalities instead of inequalities:

1)

⎧⎪⎪⎨⎪⎪⎩
z2 + z3 = z4
z5 + z6 + z7 = z8
z12 + z13 = z14
z15 + z16 + z17 = z18

2)
{
z4 − z8 = z9
z14 − z18 = z19

3)
{
z1 − z9 = z10
z11 − z19 = z20

S(AC) consists of the system obtained by assembling all the equalities reported above
(basically, it is the intersection of systems 1,2,3). #$

In the following we will denote the current database value corresponding to the vari-
able zi as vi. That is, if zi is associated with t[Aj ], then vi = t[Aj ]. Every solution s of
S(AC) corresponds to a (possibly non-minimal) repair ρ(s) of D w.r.t. AC. In particu-
lar, for each variable zi which is assigned a value different from vi, repair ρ(s) contains
an atomic update assigning the value zi to the database item corresponding to zi.

In order to decide whether a solution s of S(AC) corresponds to a card-minimal
repair, we must count the number of variables of s which are assigned a value different
from the corresponding source value in D. This is accomplished as follows. For each
i ∈ [1..N ], we define a variable yi = zi − vi on the same domain as zi. Consider the
following system of linear inequalities, which will be denoted as S′(AC):{

AZ ≤ B
yi = zi − vi ∀i ∈ [1..N ] (6)

As shown in [22], if a system of equalities has a solution, it has also a solution where
each variable takes a value in [−M,M ], where M is a constant equal to n · (ma)2m+1,
where m is the number of equalities, n is the number of variables and a is the maximum
value among the modules of the system coefficients. It is straightforward to see that
S′(AC) can be translated into a system of linear equalities in augmented form with
m = N + r and n = 2 ·N + r, where r is the number of rows of A3.

In order to detect if a variable zi is assigned (for each solution of S′(AC) bounded
by M ) a value different from the original value vi (that is, if |yi| > 0), a new binary
variable δi will be defined. δi will have value 1 if the value of zi differs from vi, 0
otherwise. To express this condition, we add the following constraints to S′(AC):⎧⎨⎩

yi ≤Mδi ∀i ∈ [1..N ]
−Mδi ≤ yi ∀i ∈ [1..N ]
δi ∈ {0, 1} ∀i ∈ [1..N ]

(7)

3 Observe that the size of M is polynomial in the size of the database, as it is bounded by
log n + (2 · m + 1) · log(ma).
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The system obtained by assembling S′(AC) with inequalities (7) will be denoted as
S′′(AC). For each solution s′′ of S′′(AC), the following hold: 1) for each zi which is
assigned in s′′ a value greater than vi, the variable δi is assigned 1 (this is entailed by
constraint yi ≤ Mδi); 2) for each zi which is assigned in s′′ a value less than vi, the
variable δi is assigned 1 (this is entailed by constraint−Mδi ≤ yi). Moreover, for each
zi which is assigned in s′′ the same value as vi (that is, yi = 0), variable δi is assigned
either 0 or 1.

Obviously each solution of S′′(AC) corresponds to exactly one solution for S(AC)
(or, analogously, for S′(AC)) with the same values for variables zi, and, vice versa, for
each solution of S(AC) whose variables are bounded by M there is at least one solution
of S′′(AC) with the same values for variables zi. As solutions of S(AC) correspond to
repairs for D, each solution of S′′(AC) corresponds to a repair ρ for D w.r.t. AC such
that, for each update u = 〈t, A, v〉 in ρ it holds that |v| ≤ M . Repairs satisfying this
property will be said to be M-bounded repairs.

In order to consider only the solutions of S′′(AC) where each δi is 0 if yi = 0, we
consider the following optimization problem S∗(AC), whose goal is minimizing the
sum of the values assigned to the variables δ1, . . . , δN :

min
∑N

i=1 δi⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

AZ ≤ B
yi = zi − vi ∀i ∈ [1..N ]
yi −Mδi ≤ 0 ∀i ∈ [1..N ]
−yi −Mδi ≤ 0 ∀i ∈ [1..N ]
zi, yi ∈ R ∀i ∈ IR

zi, yi ∈ Z ∀i ∈ IZ

δi ∈ {0, 1} ∀i ∈ [1..N ]

(8)

where IR ⊆ {1, . . . , N} and IZ ⊆ {1, . . . , N} are the sets of the indexes of the vari-
ables z1, . . . , zN (and, equivalently, y1, . . . , yN ) defined on the domains R and Z, re-
spectively.

It is straightforward to see that any solution of S∗(AC) corresponds to an M-bounded
repair ρ for D w.r.t. AC having minimum cardinality w.r.t. all M-bounded repairs for
D w.r.t. AC. It can be shown that if there is a repair for D w.r.t. AC, then there is an
M-bounded card-minimal repair ρ∗ for D (this follows from Lemma 1 in [16]). This
implies that any solution of S∗(AC) corresponds to a card-minimal repair for D w.r.t.
AC.

Basically, the minimum value of the objective function of S∗(AC) represents the
number of atomic updates performed by any card-minimal repair, whereas the values
of variables z1, . . . , zN , y1, . . . , yN , δ1, . . . , δN corresponding to an optimum solution
s∗ of S∗(AC) define the atomic updates performed by the card-minimal repair ρ(s∗).

Example 11. The optimization problem obtained starting from the database in the Fig-
ure 3 of our running example and from the set of steady aggregate constraints consisting
of 1), 2) and 3) is shown in Figure 4. Specifically, since it is assumed that the domain
of attribute V alue of relation CashBudget is Z, then IZ = {1, . . . , 20} and IR = ∅.
The value of the constant M is 20 · (28 · 250)2·28+1.
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The minimum value of the objective function of this optimization problem is 1 (only
δ4 = 1). This problem admits only one optimum solution where the value of each
variable y1, . . . , y20 is 0 except for y4 that takes value −30. The card-minimal repair
corresponding to this solution is that of Example 6. #$

min
�20

i=1 δi������������������
�����������������

z2 + z3 = z4

z5 + z6 + z7 = z8

z12 + z13 = z14

z15 + z16 + z17 = z18

z4 − z8 = z9

z14 − z18 = z19

z1 − z9 = z10

z11 − z19 = z20

y1 = z1 − 20
y2 = z2 − 100
y3 = z3 − 120

y4 = z4 − 250
y5 = z5 − 120
y6 = z6 − 0
y7 = z7 − 40
y8 = z8 − 160
y9 = z9 − 60
y10 = z10 − 80
y11 = z11 − 80
y12 = z12 − 100
y13 = z13 − 100
y14 = z14 − 200

y15 = z15 − 130
y16 = z16 − 40
y17 = z17 − 20
y18 = z18 − 190
y19 = z19 − 10
y20 = z20 − 90
yi − Mδi ≤ 0 ∀i ∈ [1..20]
−yi − Mδi ≤ 0 ∀i ∈ [1..20]
zi, yi ∈ Z ∀i ∈ [1..20]
δi ∈ {0, 1} ∀i ∈ [1..20]

Fig. 4. MILP-problem instance for the running example

6 DART Architecture

The DART architecture is shown in Figure 5, where the organization of both the Ac-
quisition and extraction module and the Repairing module of Figure 2 are described in
more detail. In the following we discuss the tasks accomplished by these modules.

6.1 Acquisition Module

This module performs the task of acquiring the information contained in the (either
electronic or paper) input documents, and represents it into an electronic document
whose format is suitable for the extraction phase accomplished by the Data Extraction
Module. As the current implementation of DART embeds a wrapper working on HTML
documents, input documents which are not already in this format are converted into an
HTML document by means of a format-conversion tool (in the current implementation
this tool supports the conversion of PDF, MSWord, RTF documents). In particular, pa-
per documents are first digitized and processed by means of an OCR tool (yielding PDF
documents) whose output is then processed by the converter.

6.2 Data Extraction Module

The Data extraction module carries out both the information extraction and the database
generation tasks. The former task is accomplished by a wrapping sub-module which
takes as input the HTML document generated by the Acquisition module as well as a
set of extraction metadata providing information on the semantics and the structure of
data contained into the input document.
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Fig. 5. The DART Architecture

Fig. 6. Domains and hierarchical relationships

Wrapper
Data to be extracted from the input HTML document are contained into tables whose
position inside the document is specified inside the extraction metadata. The informa-
tion encoded into each table is extracted by evaluating whether its rows match some
patterns (namely row patterns) defining structure and content of the data to be extracted.

Before explaining how the wrapping sub-module works, we give some details about
the set of extraction metadata.

This set contains domain descriptions, row patterns and hierarchical relationships.
Domain descriptions specify a set of domains and the sets of lexical items that be-
longs to each domain. For instance, considering the balance sheet analysis context,
Section and Subsection are domains. Some lexical items belonging to the former are
“Receipts”, “Disbursements”, “Balance”, whereas some lexical items belonging to the
latter are “beginning cash”, “receivables”, “payment of accounts” and “capital expen-
diture”. In the following we will denote the set of these domains as Dom. Hierarchical
relationships are relations among lexical items belonging to different domains. For in-
stance, the items “beginning cash”, “cash sales”, “receivables” and “total cash receipts”
are specializations of “Receipts”. Figure 6 depicts some domains, some lexical items
belonging to them and some hierarchical relationships represented by means of arrows.
A row pattern specifies the structure and the content of a table row. The structure is
given specifying an ordered set of cells. The content of a cell is either a domain belong-
ing to Dom or a standard domain such as Integer, String, etc. A row pattern r matches
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a row rt of a table in an input document if r and rt have the same number of cells and
if the content of the i-th cell of rt matches the domain specified into the i-th cell of r.
A row pattern contains an headline indicating the semantics of the domains specified
in the cells. The headline will be exploited in the database generation task to construct
a relation scheme. In a row pattern, hierarchical relationships can be specified among
lexical items expected in some cells. For instance, it is possible to require that a lexi-
cal item expected in a cell must be a generalization of another lexical item required in
another cell.

Example 12. Consider the row pattern shown in Figure 7(a). The headline consists of
the cells with the dashed border. The row pattern indicates that the rows which must
be extracted from the input table consist of 4 cells. In particular, both the first and the
last cells specify that a value of type Integer is required, and the headline specifies that
the first value is interpreted as Year and the last as Value. The second cell indicates that
a lexical item s1 belonging to the Section domain is expected. The third cell imposes a
hierarchical relationship, indicated by an arrow. It specifies that a lexical item s2 belong-
ing to the Subsection domain is required, and that s2 must be specialization of s1. #$

a) b)

Fig. 7. a)A row pattern b)A row pattern instance

The wrapper takes as input a set of row patterns and the HTML document returned
by the acquisition module, and returns a set of row pattern instances. A row pattern
instance is the result of the matching between a table row and the set of row patterns.
First, for each row rt of the input table, the wrapper identifies the row pattern r that
matches rt at best, i.e. it chooses the row pattern having the most similar structure and
the most compatible content w.r.t. rt. After this choice the wrapper constructs the row
pattern instance p relative to r.

In more detail, the evaluation of the matching between a table row and a row pattern
yields a score representing the matching degree. The matching is performed comparing
the table cells and the corresponding row pattern cells. The comparison between a row
pattern cell and an input table cell yields a cell matching score. The whole row pattern
instance is associated with a score obtained by applying a suitable t-norm to all the
matching scores of its cells.

Each cell matching score results from “validating” the string s in the table cell w.r.t
the domain d specified in the cell of the row pattern. The validation of s w.r.t. d is
accomplished by identifying the item s′ in d which is the most similar 4 to s, and
returning the similarity degree between s′ and s. Given a string s and a domain d we
denote the item in d which is the most similar to s as msi(d, s). The string [resp. the
domain] contained in the i-th cell of a document row rt [resp. row pattern r] will be
denoted as rt(i) [resp. r(i)].

4 s′ must also satisfy the hierarchical relationships specified in the row pattern.



314 B. Fazzinga et al.

For each document row rt, the row pattern r for which the matching degree is max-
imum is chosen. Then a row pattern instance p is constructed, where the i-th cell of p
contains the item msi(r(i), rt(i)).

Observe that the construction of the row pattern instance is a form of repair on the
input data. Indeed, incorrect items in the input tables (i.e. items which do not belong to
the corresponding domain in the specified row pattern) are transformed into the most
similar valid lexical items.

Finally, we obtain a set of row pattern instances such that each document row is
mapped on a row pattern instance.

Example 13. Consider the document in Figure 1 and the row pattern in Figure 7(a). As-
sume that a symbol recognition error in non-numerical string occurs, like the recogniz-
ing of the item “bgnning cesh” instead of “beginning cash”. The matching between the
first document row and this row pattern returns the row pattern instance in Figure 7(b),
where Integer in the first cell is bound to “2003”, Section to “Receipts”, Subsection to
“beginning cash” and Integer in the last cell is bound to “20”. In Figure 7(b) the match-
ing scores for the cells are also depicted. The third cell score (90%) is lower than the
others (100%), since it comes from a non-exact match.

Note that the value “2003” is coded into a multi-row cell of the input table, and it is
bound in this row pattern instance since the wrapper considers this value associated to
all the document rows which are adjacent to the multi-row cell. #$

Database Generator
The Database generator sub-module takes as input the set of row pattern instances
returned by the wrapper module and returns a database instance D conforming to the
database scheme defined in the extraction metadata.

Extraction metadata specify also classification information providing classification
of lexical items depending on the role they play in aggregation constraints. For instance,
in Example 1 lexical items in the domain Subsection are classified as detail, aggregate
and derived items (the meaning of these classes has been defined in Example 2).

The definition of the database scheme contained in the extraction metadata contains
both the definition of the relational scheme (that is, the name of the relations and, for
each relation, the names of its attributes) and the correspondence between each rela-
tion scheme and the row pattern instances taken as input. For instance in our running
example the relational scheme specified in the extraction metadata consists of CashBud-
get(Year, Section, Subsection, Type, Value). Moreover, the extraction metadata contain
the specification that attributes Year, Section, Subsection, Value correspond to the cells
of the row pattern instances described by the same names in the headline, whereas the
attribute Type is determined by classification information.

Each row pattern instance taken as input is exploited to insert a new tuple in the
corresponding relation. For instance, each tuple t in Figure 3 is obtained from a row
pattern instance r returned by the wrapper. In particular, the values of the attributes
Year, Section, Subsection, Value in t are taken from the corresponding cells of the row
pattern instance r. Moreover the value of the attribute Type is implied by the value of
the attribute Subsection according to classification information.
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6.3 Repairing Module

The input of the repairing module is the database D obtained by the data extraction
module and a set AC of steady aggregate constraints implied by the constraint meta-
data. The repairing module returns a card-minimal repair for D w.r.t. AC. This is ac-
complished by means two phases: first, the problem of finding a card-minimal repair
for D w.r.t. AC is translated into an instance of an MILP problem (as we have shown
in Section 5), and then such an obtained MILP instance is solved by means of an MILP
solver, which is implemented using LINDO API 4.0 (available at www.lindo.com).

Validation Interface
The Validation Interface is the component allowing the operator to interact with DART.
When a document is processed, the Validation Interface displays the repair computed by
the Repairing module by showing the suggested set of value updates. Then, the operator
examines the proposed repair by comparing every updated value with the corresponding
source value in the input document. If the operator verifies that the suggested updated
values are equal to the corresponding source values, then the repair is accepted and the
repaired data is considered as consistent. Otherwise, a new repair is computed by the
Repairing module according to operator “instructions”. That is, for each suggested up-
date u which has not been accepted by the operator, the operator can specify the actual
source value v corresponding to the database item d changed by u. Then an aggregate
constraint is added to the set of constraints inputted into the MILP transformer, forc-
ing the value of d to be equal to v. Similarly, accepting an update u on the database
item d is translated into an aggregate constraint forcing the value of d to be equal to the
value suggested by the repair. After this, a new repair is computed, corresponding to the
solution of the new MILP instance obtained by assembling the aggregate constraints re-
sulting from Constraint Metadata with those resulting from operator validation. This
process goes on until the generated repair is accepted by the operator.

At each iteration, the operator is not requested to validate values which had been
already validated in a previous iteration. Moreover, the computation of a repair can be
re-started after validating only some of the suggested updates. Every repair is proposed
to the operator by displaying its updates in a specific order. That is, an update u2 is
displayed before another update u2 if the database item d1 changed by u1 is involved
in a larger number of ground aggregate constraints than the database item d2 changed
by u2 (i.e. if the variable corresponding to d1 occurs in the MILP instance in a larger
number of inequalities than the variable corresponding to d2). This ordered displaying
is an heuristics which is useful in the case that the operator chooses to re-start the repair
computation after a small number of validations, and it aims at finding an acceptable
repair in a small number of iterations.

7 Conclusions and Future Works

DART is currently being developed. Both the Acquisition and extraction module and
the Repairing module have been implemented, but no user-friendly interface is cur-
rently available. Preliminary tests show that DART effectively supports the acquisition
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of balance data, providing the correct repair of wrongly acquired data in a few itera-
tions in most cases. A more extensive experimental evaluation of system effectiveness
will be accomplished on larger data sets when a user-friendly visual interface will be
available.
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Abstract. One of the goals of cleaning an inconsistent database is to
remove conflicts between tuples. Typically, the user specifies how the
conflicts should be resolved. Sometimes this specification is incomplete,
and the cleaned database may still be inconsistent. At the same time,
data cleaning is a rather drastic approach to conflict resolution: It re-
moves tuples from the database, which may lead to information loss and
inaccurate query answers.

We investigate an approach which constitutes an alternative to data
cleaning. The approach incorporates preference-driven conflict resolu-
tion into query answering. The database is not changed. These goals
are achieved by augmenting the framework of consistent query answers
through various notions of preferred repair. We axiomatize desirable
properties of preferred repair families and propose different notions of
repair optimality. Finally, we investigate the computational complexity
implications of introducing preferences into the computation of consis-
tent query answers.

1 Introduction

In many novel database applications, violations of integrity constraints cannot
be avoided. A typical example is integration of two consistent data sources that
contribute conflicting information. At the same time the sources are autonomous
and cannot be changed. Inconsistencies also occur in the context of long running
operations. Finally, integrity enforcement may be neglected because of efficiency
considerations.

Integrity constraints, however, often capture important semantic properties
of the stored data. These properties directly influence the way a user formulates
a query. Evaluation of the query over an inconsistent database may negatively
affect the meaning of the answers.

Example 1. Consider the schema

Mgr(Name,Dept, Salary,Reports)
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together with with two key dependencies:

Dept→ NameSalaryReports, (fd1)
Name→ Dept SalaryReports, (fd2)

In an instance of this schema a tuple (x, y, z, v) denotes the fact that x manages
the department y, receives a salary z, and is required to write v reports annually.

Now suppose we integrate the following (consistent) sources:

s1 = {(Mary,R&D, 40k, 3)}, s2 = {(John,R&D, 10k, 2)},
s3 = {(Mary, IT, 20k, 1), (John, PR, 30k, 4)}.

The integrated instance r = s1 ∪ s2 ∪ s3 contains 3 conflicts:

1. (Mary,R&D, 40k, 3) and (John,R&D, 10k, 2) w.r.t. fd1,
2. (Mary,R&D, 40k, 3) and (Mary, IT, 20k, 1) w.r.t. fd2,
3. (John,R&D, 10k, 2) and (John, PR, 30k, 4) w.r.t. fd2.

These inconsistencies may result from changes that are not yet fully propagated.
For example, Mary may have been promoted to manage R&D whose previous
manager John was moved to manage PR, or conversely, John may have been
moved to manage R&D, while Mary was moved from R&D to manage IT .

Consider the query Q1 asking if John earns more than Mary:

∃x1, y1, z1, x2, y2, z2.Mgr(Mary, x1, y1, z1) ∧Mgr(John, x2, y2, z2) ∧ y1 < y2.

The answer to Q1 in r is true but this is misleading because r may not correspond
to any actual state of the world.

One way to deal with the impact of inconsistencies in the results of the query
evaluation is data cleaning [18]. Although there exist a wide variety of tools for
automatic elimination of duplicates, extraction and standardization of informa-
tion, there are practically no tools that automatically resolve integrity constraint
violations [20]. Usually, the user is responsible for providing a procedure that
decides how the conflicts should be resolved. The standard repertoire of actions
that can be performed on a conflicting tuple is [24]: removing the tuple, leaving
the tuple, or reporting the tuple to an auxiliary (contingency) table. Typically,
the data cleaning system provides useful information which may include:

– the timestamp of creation/last modification of the tuple (the conflicts can
be resolved by removing from consideration old, outdated tuples),

– the source of the information of the tuple (a user can consider the data from
one source more reliable than the data from the other).

Applying of data cleaning has several shortcomings:

– If the user provides insufficient information to resolve all the conflicts then
data cleaning results in an inconsistent database; this again may lead to
misleading answers.
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– Physically removing the tuples from the database may lead to information
loss.

– Data cleaning does not allow to utilize the incomplete information often
present in inconsistencies.

The framework of repairs and consistent query answers [1] incorporates an
alternative approach to deal with inconsistent databases, geared toward utiliz-
ing incomplete information. A repair is a consistent database minimally different
from the given one, and a consistent answer to a query is the answer present in
every repair. This approach does not remove physically any tuples from the data-
base. The framework of [1] has served as a foundation for most of the subsequent
work in the area of querying inconsistent databases (for recent developments see
[5,13], for the surveys of the area see [4,3,8]).

Example 2. The instance r of Example 1 has 3 repairs:

r1 = {(Mary,R&D, 40k, 3), (John, PR, 30k, 4)},
r2 = {(John,R&D, 10k, 2), (Mary, IT, 20k, 1)},
r3 = {(Mary, IT, 20k, 1), (John, PR, 30k, 4)}.

Because Q1 is false in r1 and r2, true is not a consistent answer to Q1.

The standard framework of consistent query answers does not contain any way
to incorporate additional user input about how to resolve some conflicts. One can
attempt to first clean the database and then use the consistent query answers
approach. However, this is a radical approach: removing tuples may lead to
information loss. Instead, we propose to use additional user input in the form of
preferences to select only the preferred repairs. Query answers present in every
preferred repair are called preferred consistent query answers.

Example 3. Suppose the user finds the source s3 to be less reliable than s1 and
less reliable than s2. The user does not know, however, the relative reliability
of the sources s1 and s2. The cleaning of r with this information yields an
inconsistent database:

r′ = {(Mary,R&D, 40k, 3), (John,R&D, 10k, 2)}.

Consider the query Q2 asking if Mary earns more and has fewer reports to write
than John:

∃x1, y1, z1, x2, y2, z2.Mgr(Mary, x1, y1, z1)∧Mgr(John, x2, y2, z2)∧ y1 > y2 ∧ z1 < z2.

The answer to this query in the “cleaned” database r′ is false. False is also the
consistent answer to Q2 in r′. Note, however, that, neither false nor true is a
consistent answer to Q2 in r.

Intuitively, however, the repairs r1 and r2 incorporate more of reliable infor-
mation than the repair r3 (all tuples of r3 come from a less reliable source s3).
If we consider r1 and r2 as the only preferred repairs, then true is the preferred
consistent answer to Q2.
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In this paper we extend the framework of consistent query answers with addi-
tional input consisting of preference information Φ. We use Φ to define the set of
preferred repairs RepΦ. When we compute preferred consistent answers, instead
of considering the set of all repairs Rep, we use the set of preferred repairs. We
assume that there exists a (possibly partial) operation of extending Φ with some
additional preference information and we write Φ ⊆ Ψ when Ψ is an extension of
Φ. Φ is total if it cannot be extended further. We identify the following desirable
properties of families of preferred repairs:

P1 Non-emptiness
RepΦ �= ∅.

P2 Monotonicity: extending preferences can only narrow the set of preferred
repairs

Φ ⊆ Ψ ⇒ RepΨ ⊆ RepΦ.

P3 Non-discrimination: if no preference information is given, then no repair
is removed from consideration

Rep∅ = Rep.

P4 Categoricity: given maximal preference information we obtain exactly one
repair

Φ is total ⇒ |RepΦ| = 1.

We also note that properties P2 and P3 imply an important property

P5 Conservativeness: preferred repairs are a subset of all repairs

RepΦ ⊆ Rep.

In Section 3 we also study various notions of repair optimality which ensure a
proper use of preference information to select preferred repairs.

2 Preliminaries

In this paper, we work with databases over a schema consisting of only one
relation R with attributes from U . We use A,B, . . . to denote elements of U and
X,Y, . . . to denote subsets of U . We consider two disjoint domains: uninterpreted
names D and natural numbers N . Every attribute in U is typed. We assume that
constants with different names are different and that symbols =, �=, <, > have
the natural interpretation over N .

The instances of R, denoted by r, r′, . . . , can be seen as finite, first-order
structures, that share the domains D and N . For any tuple t from r by t.A
we denote the value associated with the attribute A. In this paper we consider
first-order queries over the alphabet consisting of R and binary relation symbols
=, �=, <, and >.

The limitation to only one relation is made only for the sake of clarity and
along the lines of [9] the framework can be easily extended to handle databases
with multiple relations.



322 S. Staworko, J. Chomicki, and J. Marcinkowski

2.1 Inconsistency and Repairs

The class of integrity constraints we study consists of functional dependencies
(FD). We use X → Y to denote the following constraint:

∀t1, t2 ∈ R.
∧

A∈X

t1.A = t2.A⇒
∧

B∈Y

t1.B = t2.B (1)

We identify conflicts as follows: tuples t1 and t2 are mutually conflicting in the
database r w.r.t. the set of functional dependencies F if t1 and t2 belong to r and
there exists a functional dependency of the form (1) in F such that t1.A = t2.A
for all A ∈ X and t1.B �= t2.B for some B ∈ Y . A database r is inconsistent
with a set of constraints F if and only if r contains some conflicting tuples w.r.t.
F . Otherwise, the database is consistent.

In the framework of [1] when repairing a database two operations are con-
sidered: adding or removing a tuple. In the presence of functional dependencies
adding new tuples cannot remove conflicts and hence only repairs obtained by
deleting tuples have to be considered.

Definition 1 (Repair). Given a database r and a set of integrity constraints
F , a database r′ is a repair of r w.r.t. F if r′ is a maximal subset of r consistent
with F . By Rep(r, F ) we denote the set of all repairs of r w.r.t F .

A repair can be viewed as the result of a process of cleaning the input relation.
Note that since every conflict can be resolved in two different ways and conflict
are often independent, there may be an exponential number of repairs.

Example 4. For any natural number n consider an instance

rn = {(0, 0), (0, 1), . . . , (n− 1, 0), (n− 1, 1)}

of the schema R(A,B). Note that the set of all repairs of rn w.r.t. the functional
dependency A → B is equal to the set of all functions from {0, . . . , n − 1} to
{0, 1}.

Also note that the set of repairs of a consistent relation r contains only r.
Given a relation instance r and a set of functional dependencies F , a conflict

graph G(r, E) is a graph whose vertices are the tuples of r and two tuples are
adjacent if only if they are mutually conflicting w.r.t. F . Conflict graphs are
compact representations of repairs because the set of all repairs is equal to the
set of all maximal independent sets of the corresponding conflict graph.

Example 5. The conflict graph for the instance rn for n = 4 and the functional
dependency A→ B from Example 4 is presented in Figure 1.

For a given tuple t, by n(t) we denote its neighborhood in the conflict graph, i.e.
all tuples conflicting with t; and the vicinity of t is v(t) = {t} ∪ n(t).
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(0, 1)

(0, 0)

(1, 1)

(1, 0)

(2, 1)

(2, 0)

(3, 1)

(3, 0)

Fig. 1. A conflict graph

2.2 Priorities and Preferred Repairs

For the clarity of presentation we assume a fixed database instance r with a fixed
set of functional dependencies F .

To represent the preference information, we use acyclic orientations of some
(not necessarily all) edges of the conflict graph. Orientations allow us to express
the preferences at the level of single conflicts and acyclicity ensures unambiguity
of the preference.

Definition 2 (Priority). A priority (in r w.r.t. F ) is a binary relation ( ⊆
r×r such that ( is acyclic and x ( y implies that x and y are mutually conflicting
(in r w.r.t. F ). If x ( y we say that that x dominates y. A priority ( is total if
for every pair x, y of mutually conflicting tuples (in r w.r.t. F ) either x ( y or
y ( x.

From the point of the user interface it is often more natural to define the priority
as some acyclic binary relation on r and then consider the priority relation only
on conflicting tuples. Naturally, those approaches are equivalent.

Extending an orientation consists of orienting some conflicting edges that were
not oriented before; formally, a priority (′ is an extension of ( if (′ ⊇ (. Note
that an extension (′ is also a priority and therefore (′ is acyclic and defined only
on mutually conflicting tuples. Also observe that a priority cannot be extended
further if and only if it is total.

Conflict resolution. A total priority provides an unambiguous information on
how each conflict should be resolved. The Algorithm CR uses a total priority
to construct a consistent database by iteratively selecting tuples that are not
dominated by any other tuples, i.e. tuples selected by the winnow operator [7]:

ω�(r) = {t ∈ r|¬∃t′ ∈ r.t′ ( t}.

After selecting a tuple t, t is removed together with its neighbors from further
consideration.

Proposition 1. Given a total priority (, the Algorithm CR computes a unique
repair for any sequence of choices in Step 3.

Preferred repairs. In our work we investigate families of preferred repairs.
Formally, a family of preferred repairs is a function X -Rep defined on triplets
(r, F,(), where ( is a priority in r w.r.t. a set of FDs F , such that X -Rep(r, F,()
is a set of repairs. We say that a family X1-Rep subsumes a family X2-Rep,
denoted X1-Rep * X2-Rep, if for every (r, F,() we have that X1-Rep(r, F,() ⊆
X2-Rep(r, F,().
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Algorithm CR: Conflict Resolution

1: r′ ← ∅
2: while ω�(r) �= ∅ do
3: choose any x ∈ ω�(r)
4: r′ ← r′ ∪ {x}
5: r ← r \ �{x} ∪ n(x)

�
� where n(x) – the neighborhood of x.

6: return r′

2.3 Preferred Consistent Query Answers

We generalize the notion of consistent query answer [1] by considering only
preferred repairs when evaluating a query (instead of all repairs). We only study
closed first-order logic queries. We can easily generalize our approach to open
queries along the lines of [1,9]. For a given query Q we say that true is an answer
to Q in r, if r |= Q in the standard model-theoretic sense.

Definition 3 (X -Consistent query answer). Given a database r, a set of
FDs F , a closed query Q, a priority (, and a family of repairs X -Rep, true
(false) is the X -consistent query answer to a query Q in r w.r.t. F and ( if for
every repair r′ ∈ X -Rep(r, F,() we have r′ |= Q (resp. r′ �|= Q).

Note that we obtain the original notion of consistent query answer [1] if we
consider the whole set of repairs Rep(r, F ).

3 Priority-Based Repairing

The main purpose of introducing P1–P4 is the identification of the desired prop-
erties of families of preferred repairs. We note that all properties except for P4
do not require any use of the priority itself to eliminate repairs. This makes it
possible to construct a family of preferred repairs which satisfies P1–P4 but
which practically makes no use of the given priority.

Example 6. Consider a family of repairs, which for a total priority consists of
the clean database obtained with Algorithm CR and for non-total priorities it
consists of all repairs. This family of repairs fulfills properties P1–P4.

Thus we investigate a number of increasingly complex notions of repair optimal-
ity that ensure an effective use of the preference information:

1. r′ is a locally optimal repair, if no tuple x from r′ can be replaced with a
tuple y such that y ( x and the resulting set of tuples is consistent;

2. r′ is a Pareto optimal if no nonempty subset X of tuples from r′ can be
replaced with a tuple y such that ∀x ∈ X.y ( x and the resulting set of
tuples is consistent;

3. r′ is a globally optimal if no nonempty subset X of tuples from r can be
replaced with a set of tuples Y such that ∀x ∈ X.∃y ∈ Y.y ( x and the
resulting set of tuples is consistent.
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We note that global optimality implies Pareto optimality which in turn implies
local optimality. Intuitively, global optimality makes an aggressive use of priori-
ties to select repairs, while local optimality does so in a less aggressive manner.

3.1 Locally Optimal Repairs

By L-Rep we denote the family selecting all locally optimal repairs. The following
example illustrates that the notion of local optimality allows to effectively use
priorities to handle relations with one key dependency.

Example 7. Consider the relational schema R(A,B) with a key dependency F =
{A → B} and take an instance r = {ta = (1, 1), tb = (1, 2), tc = (1, 3)} with
the priority ( = {(ta, tc), (ta, tb)}. Figure 2 contains the corresponding conflict
graph and its orientation. The repairs areRep(r, F ) = {r1 = {ta}, r2 = {tb}, r3 =
{tc}}. Only r1 is locally preferred.

Proposition 2. L-Rep satisfies properties P1–P3.

As it’s shown on the following example, locally optimal repairs do not satisfy
P4.

Example 8. Consider the relational schema R(A,B,C) with a functional depen-
dency A→ B and take an instance r = {ta = (1, 1, 1), tb = (1, 1, 2), tc = (1, 2, 3)}
with the total priority ( = {(tc, ta), (tc, tb)}. The corresponding conflict graph
can be found in Figure 3. The set of repairs consists of two repairs Rep(r, F ) =
{r1 = {ta, tb}, r2 = {tc}}. All repairs are locally optimal.

ta

tb tc

Fig. 2. Use of L-Rep

tc

ta tb

Fig. 3. Non-categoricity of L-Rep

3.2 Pareto Optimal Repairs

In Example 8, we note that even though the priority suggests rejecting r1 from
consideration, the notion of local optimality is too weak to do so. The main
reason is the existence of violations of functional dependency with duplicates
(ta and tb which are not conflicting, but both of them conflict with tc). The
notion of Pareto optimality, on the other hand, effectively applies the priority
in the situations of violations of one non-key functional dependency: the repair
r1 is not Pareto optimal and r2 is. By P -Rep we denote the family selecting all
Pareto optimal repairs. We note that P -Rep is as effective in enforcing priorities
as L-Rep.

Proposition 3. P -Rep satisfies properties P1–P4. Moreover P -Rep * L-Rep
and for one key dependency L-Rep coincides with P -Rep.
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3.3 Globally Optimal Repairs

Pareto optimality selects repairs whose compliance with the priority cannot be
improved by exchanging a set of tuples with a dominating tuple. The following
example presents a situation where one may decide to use global optimality to
provide a finer selection of repairs.

Example 9. Consider the schema R(A,B,C,D) with two functional dependen-
cies F = {A → B,C → D} and suppose we have a database: r = {ta =
(1, 1, 0, 0), tb = (1, 2, 0, 0), tc = (1, 1, 1, 1), td = (1, 2, 2, 1), te = (0, 0, 2, 2)} with
a priority ( = {(ta, tb), (tb, tc), (tc, td), (td, te)}. The conflict graph is presented
on Figure 4. The set of repairs is Rep(r, F ) = {r1 = {tb, te}, r2 = {tb, td}, r3 =
{ta, tc, te}}. Repairs r2 and r3 are Pareto optimal. However, only the repair r3
is globally optimal.

ta

tb

tc

td

te

Fig. 4. Pareto vs. global optimality

Let G-Rep be the family selecting all globally optimal repairs.

Proposition 4. G-Rep satisfies properties P1–P4. Moreover G-Rep * P -Rep
and for one functional dependency G-Rep coincides with P -Rep.

Globally optimal repairs can be characterized in an alternative way.

Proposition 5. For a given priority ( and two repairs, we say that r2 is pre-
ferred over r1, denoted r1  r2, if

∀x ∈ r1 \ r2. ∃y ∈ r2 \ r1. y ( x.

A repair r′ is globally optimal if and only if it is -maximal (there is no repair
r′′ such that r′  r′′).

This particular “lifting” of a preference on objects to a preference on sets of
objects can be found in other contexts. For example, a similar definition is used
for a preference among different models of a logic program [22], or for a preference
among different worlds [17].

3.4 Common Optimal Repairs

Now, we investigate the question whether there are repairs common for any
family of optimal repairs that satisfies the properties P1 and P2, i.e. given any
(r, F,() is there a repair r′ which is in X -Rep(r, F,() for any family X -Rep
of optimal repairs satisfying P1 and P2? The answer is negative for families
of locally optimal repairs. For instance we can construct two families of locally
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optimal repairs that define the same set of preferred repairs as L-Rep except
that for the setting in Example 8 one returns only r1 while the other only
r2. Surprisingly, the situation is different for families of Pareto (and thus also
globally) optimal repairs.

Theorem 1. For every instance r, every set of functional dependencies F ,
and every priority ( in r w.r.t. F , there exists a repair r′ such that r′ ∈
X -Rep(r, F,() for any family X -Rep of Pareto optimal repairs that satisfies P1
and P2.

We define a new family of C -Rep which selects only common repairs of all families
of Pareto optimal repairs satisfying the properties P1 and P2. C -Rep is another
family of preferred repairs that satisfies all properties.

Proposition 6. C-Rep is a family of globally optimal repairs, i.e. C-Rep *
G-Rep, and C-Rep satisfies properties P1-P4.

Interestingly the family of common repairs has an alternative procedural charac-
terization.

Proposition 7. For a given instance r, a given set of functional dependencies
F , and a given priority (, the set C-Rep(r, F,() consists of all results of Algo-
rithm CR for any sequence of choices in Step 3.

We also note that under some conditions, the properties P1 and P2 specify
exactly one family of globally optimal repairs.

Theorem 2. C-Rep and G-Rep coincide for priorities that cannot be extended
to a cyclic orientation of the conflict graph.

4 Computational Properties

In this section we study the computational implications of using priorities to
handle inconsistent databases. Because of space restriction we skip the proofs
(they can be found in [10] or derived using the techniques presented there).

4.1 Data Complexity

In our paper we use the notion of data complexity [23] which captures the com-
plexity of a problem as a function of the number of tuples in the database. The
input consists of the relation instance and the priority relation, while the data-
base schema, the integrity constraints, and the query are assumed to be fixed.
For a family X -Rep of preferred repairs we study two fundamental computational
problems:

(i) X -repair checking – determining if a database is a preferred repair of a given
database i.e., the complexity of the following set

BX
F = {(r,(, r′) : r′ ∈ X -Rep(r, F,()}.

(ii) X -consistent query answers – checking if true is an answer to a given query
in every preferred repair i.e., the complexity of the following set

DX
F,Q = {(r,() : ∀r′ ∈ X -Rep(r, F,().r′ |= Q}.



328 S. Staworko, J. Chomicki, and J. Marcinkowski

4.2 Negative Results

First we state that computing preferred consistent query answers with any family
of Pareto (and thus also globally) optimal repairs that satisfies P1 and P2 leads
to intractability.

Theorem 3. For any family X -Rep of Pareto optimal repairs that satisfies P1
and P2, there exists a set of two functional dependencies F and a quantifier-free
ground query Q (consisting of one atom) to which computing the X -consistent
answer is co-NP-hard.

Proof. We reduce computing X -consistent query answers to the complement of
SAT. Take then any CNF formula ϕ = c1∧ . . . ∧ck over variables x1, . . . , xn and
let cj = lj,1 ∨ . . . ∨ lj,mj . We assume that there are no repetitions of literals in
a clause (i.e., lj,k1 �= lj,k2). We construct a relation instance rϕ over the schema
R(A1, B1, A2, B2) in the presence of two functional dependencies F = {A1 →
B1, A2 → B2}. The instance rϕ consists of the following tuples:

• wi = (i, 1, i, 1) corresponds to the positive valuation of the variable xi (for
every i = 1, . . . , n),

• w̄i = (i,−1,−i, 1) corresponds to the negative valuation of the variable xi

(for every i = 1, . . . , n),
• vj

i = (n+ j, 1,−i, 0) corresponds to the use of the literal xi in the clause cj ,
• vj

i = (n+ j, 1, i, 0) corresponds to the use of the literal ¬xi in the clause cj ,
• dj = (n+ j, 1, 0, 1) corresponds to the clause cj ,
• b = (0, 0, 0, 0) corresponds to the formula ϕ.

The constructed priority (ϕ is the minimal priority on rϕ (w.r.t. F ) such that:

w̄i (ϕ vj
i , vj

i (ϕ dj , dj (ϕ b,

wi (ϕ v̄j
i , v̄j

i (ϕ dj .

The query we consider is Q = ¬R(b). On Figure 5 we can find a conflict graph
of an instance received from reduction of a formula ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨
¬x4 ∨ x5 ∨ ¬x6).

Now we show that

(rϕ,(ϕ) ∈ DF,Q ⇐⇒ ∀r′ ∈ X -Rep(rϕ, F,(ϕ).b �∈ r′ ⇐⇒ ϕ �∈ SAT.

⇒ Suppose there exists a valuation V such that V |= ϕ. Consider then the
following instance

r′ ={wi|V (xi) = true} ∪ {w̄i|V (xi) = false} ∪
{vj

i |V (xi) = true} ∪ {v̄j
i |V (xi) = false} ∪ {b}.

We claim that r ∈ X -Rep(rϕ, F,(ϕ). To prove this consider the follow-
ing priority (′=(ϕ ∪{(vi, v̄i)|V (xi) = true} ∪ {(v̄i, vi)|V (xi) = false}.
By P1 we have that X -Rep(rϕ, F,(′) is non-empty. We can prove that
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w̄1 w1 w̄2 w2 w̄3 w3 w̄4 w4 w̄5 w5 w̄6 w6

v̄1
1 v1

2 v1
3 v2

3 v̄2
4 v2

5 v̄2
6

d1 d2

b

Fig. 5. Conflict graph for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x3 ∨ ¬x4 ∨ x5 ∨ ¬x6) with �ϕ

r′ belongs to X -Rep(rϕ, F,(′) using the fact that X -Rep is a family of
Pareto optimal repairs (for brevity we skip this step). And from P2 we
get that X -Rep(rϕ, F,(′ ) ⊆ X -Rep(rϕ, F,(ϕ) and hence r′ belongs to
X -Rep(rϕ, F,(′). Since b ∈ r this contradicts (rϕ,(ϕ) ∈ DF,Q.

⇐ For brevity we just sketch this part of the proof. Suppose there exists a repair
r′ ∈ X -Rep(rϕ, F,(ϕ) such that b ∈ r′. We can prove that the following
valuation

V (xi) =

⎧⎪⎨⎪⎩
true if vi ∈ r′,
false if v̄i ∈ r′,
true otherwise

satisfies ϕ which is a contradiction.

It’s an open question whether a similar statement holds for families of locally
optimal repairs. We note that computing preferred consistent query answers
is co-NP-hard if we consider slightly restricted locally optimal repairs: locally
optimal repairs for which there doesn’t exists a pair of tuples x1, x2 which can
be replaced with a tuple y such that y ( x1 and y ( x2 and the resulting set of
tuples is consistent. Therefore we state the following conjecture.

Conjecture 1. For any family X -Rep of preferred repairs satisfying P1, P2, and
global local optimality computing X -consistent answers is co-NP-hard.

Another argument for this conjecture is the intractability of computing L-consi-
stent query answers (the proof of co-NP-hardness is omitted here, however, it
uses the reduction from the proof of Theorem 3.)

Theorem 4. L-repair checking is in PTIME and L-consistent query answers
are co-NP-complete.

To find if a repair r′ is Pareto optimal we seek a tuple y ∈ r \ r′ whose all
neighbors in r′ are dominated by y. Such a tuple exists if and only if r′ is
not Pareto optimal. The tractability of P -checking implies that computing P -
consistent answers is in co-NP: the nondeterministic machine uses a polynomial
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(in the size of r) number of nondeterministic steps to construct a repair r′, checks
if r′ is Pareto optimal; the machine finds the answer to the query in r′ (if r′ is
not Pareto then the machine halts with the answer ‘yes’). With Theorem 3 we
obtain:

Corollary 1. P -repair checking is in PTIME and P -consistent query answers
are co-NP-complete.

Checking if a repair is globally optimal requires, however, an essential use of non-
determinism. This also promotes computing preferred consistent query answers
to a higher level of the polynomial hierarchy (proofs of the following claims can
be found in [10].)

Theorem 5. G-repair checking is co-NP-complete and G-consistent query an-
swers are Πp

2 -complete.

The procedural nature of common repairs makes it possible to check if a repair
r′ belongs to C -Rep(r, F,() with a simulation of Algorithm CR with the choices
in Step 3 restricted to ω�(r) ∩ r′. Naturally this process can be performed in
polynomial time. Again using Theorem 3 we get:

Corollary 2. C-repair checking is in PTIME and C-consistent query answers
is co-NP-complete.

4.3 Positive Results

We show how to compute consistent query answers if only one key dependency is
present. Note that under one key dependency all previously introduced families of
repairs coincide and hence we simply talk about preferred repairs. We note that
under one key dependency the corresponding conflict graph consists of disjoint
cliques. A repair is obtained by choosing one tuple from each clique. If a priority
is given then a preferred repair is obtained by choosing a non-dominated tuple
from each clique, i.e. a tuple selected with the winnow operator.

Now, we show how to adopt the algorithm from [8] to find if true is the
preferred consistent answer to a query Φ in r for a given priority ( w.r.t. one
key dependency. We assume that the query is in CNF: Φ = Φ1 ∧ . . . Φn. We note
that true is not a preferred consistent query answer if and only if there exists a
preferred repair r′ such that r′ �|= Φi for some i. The algorithm attempts to find
if such a repair exists for every i. If the algorithm is successful for some i then
the answer is false; otherwise the answer is true. Let’s fix i and consider ¬Φi

¬Φi = R(t1) ∧ . . . ∧R(tk) ∧ ¬R(tk+1) ∧ . . . ∧ ¬R(tm).

We use the following test:

Claim. For every j ∈ {1, . . . ,m} if tj ∈ r we identify the clique Cj the tuple tj
belongs to. A preferred repair r′ such that r′ |= ¬Φi exists if and only if:

1. {t1, . . . , tk} ⊆ r,
2. {t1, . . . , tk} is independent,
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3. {t1, . . . , tk} ∩ {tk+1, . . . , tn} = ∅,
4. tj ∈ ω�(Cj) for every j ∈ {1, . . . , k},
5. ω�(Cj) \ {tk+1, . . . , tm} �= ∅ for every j ∈ {k + 1, . . . , n} such that tj ∈ r.

Proof. ⇒ The conditions 1, 2, and 3 are trivially implied. We observe that every
tuple in r′ is selected among non-dominated tuples from the clique it belongs to
(with {t1, . . . , tk} ⊆ r′ this proves 4) and r′ is maximal, i.e. r′ contains a tuple
selected from every clique (with {tk+1, . . . , tm} ∩ r′ = ∅ this proves 5).
⇐ We construct the repair r′ as follows. First, for every j ∈ {1, . . . , k} we

select the tuple tj from Cj (feasible by 1, 2, and 3). The condition 4 guarantees
that none of the tuples tk+1, . . . , tm is selected in this step. Next, for every
j ∈ {k+1, . . . ,m}, such that tj ∈ r, from the clique Cj we select a tuple different
from tk+1, . . . , tm (feasible by 5). Finally, we select an arbitrary non-dominated
tuple from every remaining clique. Obviously, r′ |= ¬Φi.

We also observe that the described test can be performed in time polynomial in
the size of the database.

Along the lines of [2,8] this algorithm can be further extended to handle one
functional dependency. Because for one FD the family of locally optimal repairs
does not coincide with other families of preferred repairs, we can extend this
algorithm is two different directions: computing the preferred consistent query
answers w.r.t. locally optimal repairs and w.r.t. Pareto optimal repairs.

Theorem 6. For one functional dependency computing preferred consistent
query answers is in PTIME for L-Rep, P -Rep, G-Rep, and C-Rep.

5 Related Work

We limit our discussion to the work on using priorities to maintain consistency
and facilitate resolution of conflicts.

The first article to notice the importance of priorities in information systems
is [11]. The authors study there the problem of updates of databases containing
propositional sentences. The priority is expressed by storing a natural number
with each clause. If during an update (inserting or deleting a sentence) the in-
consistency arises, then the priorities are used in a fashion similar to G-repairs
to select minimally different repairs. We note, however, that the chosen repre-
sentation of priorities imposes a significant restriction on the class of considered
priorities. In particular it assumes transitivity of the priority on conflicting facts
i.e. if facts a, b, and c are pair-wise conflicting and a has a higher priority than
b and b has a higher priority than c, then the priority of a is higher than c.
This assumption cannot be always fulfilled in the context of inconsistent data-
bases. For example the conflicts between a and b, and between b and c may be
caused by violation of one integrity constraint while the conflict between a and
c is introduced by a different constraint. While the user may supply us with a
rule assigning priorities to conflicts created by the first integrity constraint, the
user may not wish to put any priorities on any conflicts created by the other
constraint.
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A similar representation of priorities used to resolve inconsistency in first-order
theories is studied in [6], where the inconsistent set of clauses is stratified (again
the lowest strata has the highest priority). Then preferred maximal consistent
subtheories are constructed in a manner analogous to C -repairs. Furthermore,
this approach is generalized to priorities being a partial order, by considering all
extensions to weak orders. Again, however, this approach assumes the transitiv-
ity of priority on conflicts, which as we explained previously may be considered
a significant restriction.

In the context of logic programs, priorities among rules can be used to handle
inconsistent logic programs (where rules imply contradictory facts). More pre-
ferred rules are satisfied, possibly at the cost of violating less important ones. In
a manner analogous to Proposition 5, [22] lifts a total order on rules to a pref-
erence on (extended) answers sets. When computing answers only maximally
preferred answers sets are considered.

[21] investigate disjunctive logic programs with priorities on facts. A transi-
tive and reflexive closure of user supplied priorities on facts is used to define a
relation of preference on models of the program. The definition of preference on
models of the disjunctive program is essentially different from the characteriza-
tion of globally optimal repairs in Proposition 5. The answer to a program in the
extended framework consists of all maximally preferred answer sets. The main
shortcoming of using this framework is it computational infeasibility (which is
specific to decision problems involving general disjunctive programs): comput-
ing answers to ground queries to disjunctive prioritized logic programs under
cautious (brave) semantics is Πp

3 -complete (resp. Σp
3 -complete). We note that a

family of preferred repairs defined in analogous manner does not satisfy P2 and
P4 but satisfies P1, P3, and P5.

A simpler approach to the problem of inconsistent logic programs is presented
in [16]. There, conflicting facts are removed from the model unless the priority
specifies how to resolve the conflict. Because only programs without disjunction
are considered, this approach always returns exactly one model of the input
program. Constructing preferred repairs in a corresponding fashion (by removing
all conflicts unless the priority indicates a resolution) would similarly return
exactly one database instance (fulfillment of P1 and P4). However, if the priority
is not total, the returned instance is not a repair and therefore the P5 is not
satisfied. Such an approach leads to a loss of (disjunctive) information and does
not satisfy P2 and P3.

[12] proposes a framework of conditioned active integrity constraints, which al-
lows the user to specify the way some of the conflicts created with the constraint
can be resolved. This framework satisfies properties P1 and P3 and doesn’t sat-
isfy P2 and P4. [12] also describes how to translate conditioned active integrity
constraints into a prioritized logic program [21], whose preferred models corre-
spond to maximally preferred repairs. We note that the framework of prioritized
logic programming is computationally more powerful (computing answers under
the brave semantics is Σp

3 -complete) than required by the problem of finding if
an atom is present in any repair (Σp

2 -complete). It is yet to be seen if less power-
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ful programming environments (like general disjunctive logic programs) can be
used to compute preferred answers.

[19] uses ranking functions on tuples to resolve conflicts by taking only the
tuple with highest rank and removing others. This approach constructs a unique
repair under the assumption that no two different tuples are of equal rank (satis-
faction of P4). If this assumption is not satisfied and the tuples contain numeric
values, a new value, called the fusion, can be calculated from the conflicting
tuples (then, however, the constructed instance is not a repair in the sense of
Definition 1 which means a possible loss of information).

A different approach based on ranking is studied in [15]. The authors consider
polynomial functions that are used to rank repairs. When computing preferred
consistent query answers, only repairs with the highest rank are considered. The
properties P3 and P5 are trivially satisfied, but because this form of preference
information does not have natural notions of extensions and maximality, it is
hard to discuss postulates P2 and P4. Also, the preference among repairs in this
method is not based on the way in which the conflicts are resolved.

An approach where the user has a certain degree of control over the way the
conflicts are resolved is presented in [14]. Using repair constraints the user can
restrict considered repairs to those where tuples from one relation have been
removed only if similar tuples have been removed from some other relation. This
approach satisfies P2 but not P1. A method of weakening the repair constraints
is propose to get P1, however this comes at the price of losing P2.

6 Conclusions and Future Work

In this paper we proposed a general framework of preferred repairs and preferred
consistent query answer. We also proposed a set of desired properties a family
of preferred repairs should satisfy. We presented 4 families of preferred repairs:
L-Rep, P -Rep, G-Rep, and C -Rep. Figure 6 summarizes the computational com-
plexity results; its first row is taken from [8].

Repair Check
Consistent Answers to Possible

{∀,∃}-free queries conjunctive queries Applications
Rep PTIME PTIME co-NP-complete no priorities given

L-Rep PTIME co-NP-complete key
P -Rep PTIME co-NP-complete one FD
G-Rep co-NP-complete Π2

p -complete many FDs with
C -Rep PTIME co-NP-complete mutual conflicts

Fig. 6. Summary of complexity results

We envision several directions for further work. Along the lines of [2], the
computational complexity results could be further studied, by assuming the con-
formance of functional dependencies with BCNF.
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Extending our approach to cyclic priorities is an interesting and challenging
issue. Including priorities in similar frameworks of preferences [14] leads to los-
ing the monotonicity. A modified, conditional, version of monotonicity may be
necessary to capture non-trivial families of repairs.

Finally, one can extend our framework to handle a broader class of constraints.
Conflict graphs can be generalized to hypergraphs [8], necessary to deal with
denial constraints. Then, more than two tuples can be involved in a single conflict
and the current notion of priority does not have a clear meaning.
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Abstract. For several reasons a database may not satisfy a given set
of integrity constraints (ICs), but most likely most of the information in
it is still consistent with those ICs; and could be retrieved when queries
are answered. Consistent answers to queries wrt a set of ICs have been
characterized as answers that can be obtained from every possible mini-
mally repaired consistent version of the original database. In this paper
we consider databases that contain null values and are also repaired, if
necessary, using null values. For this purpose, we propose first a pre-
cise semantics for IC satisfaction in a database with null values that is
compatible with the way null values are treated in commercial database
management systems. Next, a precise notion of repair is introduced that
privileges the introduction of null values when repairing foreign key con-
straints, in such a way that these new values do not create an infinite
cycle of new inconsistencies. Finally, we analyze how to specify this kind
of repairs of a database that contains null values using disjunctive logic
programs with stable model semantics.

1 Introduction

In databases, integrity constraints (ICs) capture the semantics of the application
domain, and help maintain the correspondence between this domain and the
database when updates are performed. However, there are several reasons for a
database to be or become inconsistent wrt a given set of ICs [6]; and sometimes
it could be difficult, impossible or undesirable to repair the database in order to
restore consistency [6]. This process might be too expensive; useful data might
be lost; it may not be clear how to restore the consistency, and sometimes even
impossible, e.g. in virtual data integration, where the access to the autonomous
data sources may be restricted [9].

In those situations, possibly most of the data is still consistent and can be
retrieved when queries are posed to the database. In [2], consistent data is char-
acterized as the data that is invariant under certain minimal forms of restoration
of consistency, i.e. as the data that is present in all minimally repaired and con-
sistent versions of the original instance, the so-called repairs. In particular, an
answer to a query is defined as consistent when it can be obtained as a standard
answer to the query from every possible repair.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 336–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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More precisely, a repair of a database instance D, as introduced in [2], is a new
instance of the same schema as D that satisfies the given ICs, and makes minimal
under set inclusion the symmetric set difference with the original instance, taken
both instances as sets of ground database atoms.

In [2, 13, 14, 17] algorithms and implementations for consistent query answer-
ing (CQA) have been presented, i.e. for retrieving consistent answers from incon-
sistent databases. All of them work only with the original, inconsistent database,
without restoring its consistency. That is, inconsistencies are solved at query time.
This is in correspondence with the idea that the above mentioned repairs provide
an auxiliary concept for defining the right semantics for consistent query answers.
However, those algorithms apply to restricted classes of queries and constraints,
basically those for which the intrinsic complexity of CQA is still manageable [15].

In [3, 20, 5, 6] a different approach is taken: database repairs are specified as
the stable models of disjunctive logic programs, and in consequence consistent
query answering amounts to doing cautious or certain reasoning from logic pro-
grams under the stable model semantics. In this way, it is possible to handle
any set of universal ICs and any first-order query, and even beyond that, e.g.
queries expressed in extensions of Datalog. It is important to realize that the
data complexity of query evaluation in disjunctive logic programs with stable
model semantics [16] matches the intrinsic data complexity of CQA [15], namely
both of them are ΠP

2 -complete.
All the previous work cited before did not consider the possible presence

of null values in the database, and even less their peculiar semantics. Using
null values to repair ICs was only slightly considered in [3, 5, 6]. This strategy
to deal with referential ICs seemed to be the right way to proceed given the
results presented in [11] that show that repairing cyclic sets of referential ICs by
introducing arbitrary values from the underlying database domain leads to the
undecidability of CQA.

In [10] the methodology presented in [5, 6], based on specifying repairs using
logic programs withe extra annotation constants, was systematically extended
in order to handle both; (a) databases containing null values, and (b) referential
integrity constraints (RICs) whose satisfaction is restored via introduction of
null values. According to the notion of IC satisfaction implicit in [10], those
introduced null values do not generate any new inconsistencies.

Here, we extend the approach and results in [10] in several ways. First, we
give a precise semantics for integrity constraint satisfaction in the presence of
null values that is both sensitive to the relevance of the occurrence of a null
value in a relation, and also compatible with the way null values are usually
treated in commercial database management systems (the one given in [10] was
much more restrictive). The introduced null values do not generate infinite repair
cycles through the same or other ICs, which requires a semantics for integrity
constraint satisfaction under null values that sanctions that tuples with null
values in attributes relevant for checking the IC do not generate any new in-
consistencies. A new notion of repair is given accordingly. With the new repair
semantics CQA becomes decidable for a quite general class of ICs that includes
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universal constraints, referential ICs, NOT NULL-constraints, and foreign key
constraints, even the cyclic cases.

The logic programs that specify the repairs are modified wrt those given in
[10], in such a way that the expected one-to-one correspondence between the
stable models and repairs is recovered for acyclic sets of RICs. Finally, we study
classes of ICs for which the specification can be optimized and a lower complexity
for CQA can be obtained.

2 Preliminaries

We concentrate on relational databases, and we assume we have a fixed relational
schema Σ = (U ,R,B), where U is the possibly infinite database domain such
that null ∈ U , R is a fixed set of database predicates, each of them with a
finite, ordered set of attributes, and B is a fixed set of built-in predicates, like
comparison predicates. R[i] denotes the attribute in position i of predicate R ∈
R. The schema determines a language L(Σ) of first-order predicate logic. A
database instance D compatible with Σ can be seen as a finite collection of
ground atoms of the form R(c1, ..., cn),1 where R is a predicate in R and c1, ..., cn
are constants in U . Built-in predicates have a fixed extension in every database
instance, not subject to changes. We need to define ICs because their syntax is
fundamental for what follows.

An integrity constraint is a sentence ψ ∈ L(Σ) of the form:

∀x̄(
m∧

i=1

Pi(x̄i) −→ ∃z̄(
n∨

j=1

Qj(ȳj , z̄j) ∨ ϕ)), (1)

where Pi, Qj ∈ R, x̄ =
⋃m

i=1 x̄i, z̄ =
⋃n

j=1 z̄j , ȳj ⊆ x̄, x̄ ∩ z̄ = ∅, z̄i ∩ z̄j = ∅
for i �= j, and m ≥ 1. Formula ϕ is a disjunction of built-in atoms from B,
whose variables appear in the antecedent of the implication. We will assume
that there is a propositional atom false ∈ B that is always false in a database.
Domain constants other than null may appear instead of some of the variables
in a constraint of the form (1). When writing ICs, we will usually leave the prefix
of universal quantifiers implicit. A wide class of ICs can be accommodated in
this general syntactic class by appropriate renaming of variables if necessary.

A universal integrity constraint (UIC) has the form (1), but with z̄ = ∅, i.e.
without existentially quantified variables:

∀̄x̄(
m∧

i=1

Pi(x̄i) −→
n∨

j=1

Qj(ȳj) ∨ ϕ). (2)

A referential integrity constraint (RIC) is of the form (1), but with m = n = 1
and ϕ = ∅, i.e. of the form2: (here x̄′ ⊆ x̄ and P,Q ∈ R)

∀x̄ (P (x̄) −→ ∃ȳ Q(x̄′, ȳ)). (3)

1 Also called database tuples. Finite sequences of constants in U are simply called
tuples.

2 To simplify the presentation, we are assuming the existential variables appear in the
last attributes of Q, but they may appear anywhere else in Q.
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Class (1) includes most ICs commonly found in database practice, e.g. a denial
constraint can be expressed as ∀̄x̄(

∧m
i=1 Pi(x̄i) −→ false). Functional dependen-

cies can be expressed by several implications of the form (1), each of them with a
single equality in the consequent. Partial inclusion dependencies are RICs, and full
inclusion dependencies are universal constraints. We can also specify (single row)
check constraints that allow to express conditions on each row in a table, so they
can be formulated with one predicate in the antecedent of (1) and only a formula
ϕ in the consequent. For example, ∀xy(P (x, y) → y > 0) is a check constraint.

In the following we will assume that we have a fixed finite set IC of ICs of
the form (1). Notice that sets of constraints of this form are always consistent
in the classical sense, because empty database always satisfy them.

Example 1. For R = {P,R, S} and B = {>,=, false}, the following are ICs: (a)
∀xyzw (P (x, y)∧R(y, z, w) → S(x)∨(z �= 2∨w ≤ y)) (universal). (b)∀xy(P (x,
y) → ∃z R(x, y, z)) (referential). (c)∀x(S(x) → ∃yz(R(x, y) ∨R(x, y, z))). �

Notice that defining ϕ in (1) as a disjunction of built-in atoms is not an im-
portant restriction, because an IC that has ϕ as a more complex formula can
be transformed into a set of constraints of the form (1). For example, the for-
mula ∀xy (P (x, y) → (x > y ∨ (x = 3 ∧ y = 8))) can be transformed into:
∀xy (P (x, y) → (x > y ∨ x = 3)) and ∀xy (P (x, y) → (x > y ∨ y = 8)).

The dependency graph G(IC ) [12] for a set of ICs IC of the form (1) is defined
as follows: Each database predicate P in R appearing in IC is a vertex, and there
is a directed edge (Pi, Pj) from Pi to Pj iff there exists a constraint ic ∈ IC such
that Pi appears in the antecedent of ic and Pj appears in the consequent of ic.

Example 2. For the set IC containing the UICs ic1 : S(x) → Q(x) and ic2 :
Q(x) → R(x), and the RIC ic3 : Q(x) → ∃yT (x, y), the following is the depen-
dency graph G(IC ):

S Q

R

T1 3

2

the edges are labelled just for reference. Edges 1 and 2 correspond to the con-
straints ic1 and ic2, resp., and edge 3 to ic3. �

A connected component in a graph is a maximal subgraph such that for every
pair (A, B) of its vertices, there is a path from A to B or from B to A. For a
graph G, C(G) := {c | c is a connected component in G}; and V(G) is the set of
vertices of G.

Definition 1. Given a set IC of UICs and RICs, ICU denotes the set of UICs
in IC . The contracted dependency graph, GC(IC ), of IC is obtained from G(IC )
by replacing, for every c ∈ C(G(ICU )),3 the vertices in V(c) by a single vertex
and deleting all the edges associated to the elements of ICU . Finally, IC is said
to be RIC-acyclic if GC(IC ) has no cycles. �

3 Notice that for every c ∈ C(G(ICU )), it holds c ∈ C(G(IC )).
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Example 3. (example 2 cont.) The contracted dependency graph GC(IC ) is ob-
tained by replacing in G(IC ) the edges 1 and 2 and their end vertices by a vertex
labelled with {Q,R, S}.

Q ,R,S T3

Since there are no loops in GC(IC ), IC is RIC-acylic. If we add a new UIC:
T (x, y) → R(y) to IC , all the vertices belong to the same connected component.
G(IC ) and GC(IC ) are, respectively:

S Q

R

T1

2

3

4 Q,R,S
T

3

Since there is a self-loop in GC(IC ), the new IC is not RIC-acylic. �

As expected, a set of UICs is always RIC-acyclic.

3 IC Satisfaction in Databases with Null Values

We deal with incomplete databases in the classic sense that some information
is represented using null values [21] (cf. also [19]). More recently, the notion of
incomplete database has been used in the context of virtual data integration
[23, 9], referring to data sources that contain a subset of the data of its kind in
the global system; and in inconsistent databases [11, 15], referring to the fact
that inconsistencies may have occurred due to missing information and then,
repairs are obtained through insertion of new tuples.

There is no agreement in the literature on the semantics of null values in
relational databases. There are several different proposals in the research litera-
ture [29, 4, 25, 28], in the SQL standard [31, 22], but also implicit semantics in
the different ways null values are handled in commercial database management
systems (DBMSs).

Not even within the SQL standard there is a homogenous and global semantics
of integrity constraint satisfaction in databases with null values; rather, different
definitions of satisfaction are given for each type of constraint. Actually, in the
case of foreign key constraints, three different semantics are suggested (simple-,
partial- and full-match). Commercial DBMSs implement only the simple-match
semantics for foreign key constraints. Some criticisms to the treatment of nulls
in the SQL standard have been expressed by the database community, c.f. [32].

One of the reasons why it is difficult to agree on a semantics is that a null
value can be interpreted as an unknown, inapplicable or even withheld value.
Different null constants can be used for each of these different interpretations
[27]. Also the use of more than one null value (of the same kind), i.e. labelled
nulls, has been suggested [30], but in this case every new null value uses a new
fresh constant; for which the unique names assumption does not apply. The
latter alternative allows to keep a relationship between null values in different
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attributes or relations. However commercial DBMSs consider only one null value,
represented by a single constant, that can be given any of the interpretations
mentioned above.

In [10] a semantics for null values was adopted, according to which a tuple with
a null value in any of its attributes would not be the cause for any inconsistencies.
In other words, it would not be necessary to check tuples with null values wrt
possible violations of ICs (except for NOT NULL- constraints, of course). This
assumption is consistent in some cases with the practice of DBMSs, e.g. in IBM
DB2 UDB. Here we will propose a semantics that is less liberal in relation to
the participation of null values in inconsistencies; a sort of compromise solution
considering the different alternatives available.
Example 4. For IC containing only ψ1 : P (x, y, z) → R(y, z), the database D =
{P (a, b, null)} would be: (a) Consistent wrt the semantics in [10] because there
is a null value in the tuple (b) Consistent wrt the simple-match semantics of
SQL:2003 [22], because there is a null value in one of the attributes in the set
{P [2], P [3], R[1], R[2]} of attributes that are relevant to check the constraint. (c)
Inconsistent wrt the partial-match semantics in SQL:2003, because there is no
tuple in R with a value b in its first attribute. (d) Inconsistent wrt the full-match
semantics in SQL:2003, because there cannot be a null in an attribute that is
referencing a different table.

If we consider, instead of ψ1, the constraint ψ2 : P (x, y, z) → R(x, y), the
same database would be consistent only for the semantics in [10], because the
other semantics consider only the null value in the attributes that are relevant
to check the constraint, and in this case there is no null value there. �

Even though there are different possible semantics, we would like to define and
concentrate in a null-value semantics that would allow us to integrate our re-
sults with commercial databases. This is why we would like to generalize in a
declarative and homogenous way the semantics defined in SQL:2003 [22] that
is implemented in commercial DBMSs like IBM DB2 UDB. For this reason we
consider only one kind of null value. We also want our null-value semantics to
be uniform for a wide class of ICs that goes beyond the type of constraints
supported by commercial DBMS.

Example 5. Consider a database with a table that stores courses with the pro-
fessor that taught it and the term, and a table that stores the experience of
each professor in each course with the number of times (s)he has taught the
course. We have a foreign key constraint based on the RIC ∀xyz(Course(x, y, z)
→ ∃w Exp(y, x, w)) together with the constraint expressing that table Exp
has {ID ,Code} as a key. We can be sure there are no null values in those two
attributes. Now consider the instance D:

Course Code ID Term
CS27 21 W04
CS18 34 null
CS50 null W05

Exp ID Code Times
21 CS27 3
34 CS18 null
45 CS32 2
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In IBM DB2, this database is accepted as consistent. The null values in columns
Term and Times are not relevant to check the satisfaction of the constraints. In
order to check the constraint the only attributes that we need to pay attention
to are ID and Code. If null is in the one of these attributes in table Course, the
tuple is considered to be consistent, without checking table Exp. For example
Course(CS50,null,W05) has a null value in ID, therefore DB2 does not check if
there is a tuple in Exp that satisfies the constraint. It does not even check that
there exists a tuple in Exp with attribute Code=CS50.

This behavior for foreign key constraints is called simple-match in the SQL
standard, and is the one implemented in all commercial DBMS. The partial- and
full-match would not accept the database as consistent, because partial-match
would require Exp to have a tuple (any non-null value,CS50, any value); and
full-match would not allow a tuple with null in attributes ID or Code in table
Course.

If we try to insert tuple (CS41,18, null) into table Course, it would be rejected
by DB2. This is because the attributes ID and Code are relevant to check the
constraint and are different from null, but there is no tuple in Exp with ID=18
and Code=CS41. �

Example 6. Consider the single-row check constraint ∀ID ∀Name ∀Salary (Emp
(ID , Name, Salary) → Salary > 100) and the database D below. DB2 accepts

Emp ID Name Salary
32 null 1000
41 Paul null

this database instance as consistent.
Here, in order to check the satisfaction
of the constraint, we only need to verify

that the attribute Salary is bigger than 100; therefore the only attribute that
is relevant to check the constraint is Salary. DBMSs will accept as consistent
any state where the condition (the consequent) evaluates to true or unknown.
The latter is the case here. Tuple ( 32, null, 50) could not be inserted because
Salary > 100 evaluates to false. Notice that the null values in attributes other
that Salary are not even considered in the verification of the satisfaction. �

When dealing with primary keys, DBMSs use a bag semantics instead of the set
semantics, that is, a table can have two copies of the same tuple. The following
example illustrates the issue.

Example 7. Since the SQL standard allows duplicate rows, i.e. uses the bag
semantics, it is possible to have the database D below. If this database had P [1]

P A B
a b
a b

as the primary key, then D would not
have been accepted as a consistent
state, i.e. the insertion of the second
tuple P (a, b) would have been rejected.

This is one of the cases in which the SQL standard deviates from the relational
model, where duplicates of a row are not considered. In a commercial DBMS a
primary key is checked by adding an index to the primary key and then ensuring
that there are no duplicates. Therefore if we try to check the primary key by
using the associated functional dependency P (x, y), P (x, z) → y = z we would
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not have the same semantics since D satisfies the functional dependency in this
classical, first-order representation. �

With the type of first-order constraints that we are considering, we cannot en-
force a bag semantics, therefore we will assume that D is consistent.

In order to develop a null-value semantics that goes beyond the ICs supported
by DBMSs, we analyze other examples.

Example 8. Consider the UIC ∀xyzstuw(Person(x, y, z, w) ∧ Person(z, s, t, u)
→ u > w+ 15), and the database D below. This constraint can be considered

Person Name Dad Mom Age
Lee Rod Mary 27
Rod Joe Tess 55
Mary Adam Ann null

as a multi-row check constraint. If we
want to naturally extend the seman-
tics for single-row check constraints, D
would be consistent iff the condition

evaluates to true or unknown. In this case, D would be consistent because the
condition evaluates to unknown for u = null and w = 27. Here the relevant
attributes to check the IC are Name, Mom, Age. �

Example 9. Consider the UIC ∀xyz(Course(x, y, z) → Employee(y, z)) and the
database D: Course Code Term ID

CS18 W04 34
Employee Term ID

W04 null
Since Term, ID is not a primary key of Employee, the constraint is not a foreign
key constraint, and therefore it is not supported by commercial DBMS. In con-
trast to foreign key constraints, now we can have a null value in the referenced
attributes. In order to extend the semantics used in commercial DBMS. to this
case, we refer to the literature. For example, in [25] the satisfaction of this type
of constraints is defined as follows: An IC ∀x̄ȳP (x̄) → ∃z̄Q(ȳ, z̄) is satisfied if,
for every tuple t1 ∈ P , there exists a tuple t2 ∈ Q, such that t1 provides less or
equal information than t2, i.e. for every attribute, the value in t1 is the same as
in t2 or the value in t1 is null . In this example we have the opposite situation:
(W04,34) does not provide less or equal information than (W04,null). Therefore,
we consider the database to be inconsistent wrt the constraint. Note that the
only attributes that are relevant to check the constraint are Term and ID. �

Examples 6, 5, 8 and 9 show that there are some attributes that are “relevant”
when the satisfaction of a constraint is checked against a database.

Definition 2. For t a term, i.e. a variable or a domain constant, let posR(ψ, t)
be the set of positions in predicate R ∈ R where t appears in ψ. The set A of
relevant attributes for an IC ψ of the form (1) is
A(ψ) = {R[i] | x is variable present at least twice in ψ, and i ∈ posR(ψ, x)} ∪

{R[i] | c is a constant in ψ and i ∈ posR(ψ, c)}. �

Remember that R[i] denotes a position (or the correspondent attribute) in re-
lation R. In short, the relevant attributes for a constraint are those involved in
joins, those appearing both in the antecedent and consequent of (1), and those
in ϕ.
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Definition 3. For a set of attributes A and a predicate P ∈ R, we denote by
PA the predicate P restricted to the attributes in A. DA denotes the database
D with all its database atoms projected onto the attributes in A, i.e. DA =
{PA(ΠA(t̄)) | P (t̄) ∈ D}, where ΠA(t̄) is the projection on A of tuple t̄. DA

has the same underlying domain U as D. �

Example 10. Consider a UIC ψ : ∀xyz(P (x, y, z) → R(x, y)) and D below.
P A B C

a b a
b c a

R A B
a 5
a 2

Since x and y appear twice in ψ, A(ψ)
= {P [1], R[1], P [2], R[2]}. The value in
z should not be relevant to check the

satisfaction of the constraint, because we only want to make sure that the values
in the first two attributes in P also appear in R. Then, checking this is equivalent
to checking if ∀xy(PA(ψ)(x, y) → RA(ψ)(x, y)) is satisfied by DA(ψ). For a more
complex constraint, such as γ : ∀xyzw(P (x, y, z)∧R(z, w) → ∃vR(x, v)∨w > 3),
variable x is relevant to check the implication, z is needed to do the join, and w
is needed to check the comparison, therefore A(γ) = {P [1], R[1], P [3], R[2]}.
DA(ψ) : DA(γ) :

PA(ψ) A B
a b
b c

RA(ψ) A B
a 5
a 2

PA(γ) A C
a a
b a

RA(γ) A B
a 5
a 2

�

An important observation we can make from Examples 6, 5, 8 and 9 is that,
roughly speaking, a constraint is satisfied if any of the relevant attributes has
a null or the constraint is satisfied in the traditional way (i.e. first-order satis-
faction and null values treated as any other constant). We introduce a special
predicate IsNull(·), with IsNull(c) true iff c is null , instead of using the built-in
comparison atom c = null , because in traditional DBMS this equality would be
always evaluated as unknown (as observed in [29], the unique names assumption
does not apply to null values).

Definition 4. A constraint ψ as in (1) is satisfied in the database instance D,
denoted D |=

N
ψ iff DA(ψ) |= ψN , where ψN is

∀x̄(
m∧

i=1

P
A(ψ)
i (x̄i) → (

∨
vj∈A(ψ)∩x̄

IsNull(vj) ∨ ∃z̄(
n∨

j=1

Q
A(ψ)
j (ȳj , z̄j) ∨ ϕ))), (4)

where x̄ = ∪m
i=1x̄i and z̄ = ∪n

j=1 z̄j. DA(ψ) |= ψN refers to classical first-order
satisfaction where null is treated as any other constant in U . �

We can see from Definition 4 that there are basically two cases for constraint
satisfaction: (a) If there is a null in any of the relevant attributes in the an-
tecedent, then the constraint is satisfied. (b) If no null values appear in them,
then the second disjunct in the consequent of formula (4) has to be checked, i.e,
the consequent of the original IC restricted to the relevant attributes. This can
be done as usual, treating nulls as any other constant.

Formula (4) is a direct translation of formula (1) that keeps the relevant at-
tributes. In particular, if the original constraint is universal, so is the transformed
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version. Notice that the transformed constraint is domain independent, and then
its satisfaction can be checked by restriction to the active domain.

As mentioned before, the semantics for IC satisfaction introduced in [10] con-
sidered that tuples with null never generated any inconsistencies, even when the
null value was not in a relevant attribute. For example, under the semantics in
[10], the instance {P (b,null)} would be consistent wrt the IC ∀xy(P (x, y) →
R(x)), but it is intuitively clear that there should be a tuple R(b). The new se-
mantics corrects this, and adjusts to the semantics implemented in commercial
DBMS.

Notice that in a database without null values, Definition 4 (so as the definition
in [10]) coincides with the traditional, first-order definition of IC satisfaction.

Example 11. Given the ICs: (a) ∀xyz(P (x, y, z) → R(x, y)), (b) ∀x(T (x) →
∃yzP (x, y, z)), the database instance D below is consistent.

P A B C
a d e
b null g

R D E
a d

T F
b

For (a), the variables x and y are relevant to check the constraint, therefore
A1 = {P [1], R[1], P [2], R[2]}; and for (b), the variable x is relevant to check the
constraint; therefore A2 = {P [1], T [1]}.
DA1 : DA2 :

PA1 A B
a d
b null

RA1 D E
a d

PA2 A
a
b

TA2 F
b

To check if D |=N ∀xyz(P (x, y, z) → R(x, y)), we need to check if DA1 |=
∀xy(PA1(x, y) → (IsNull(x) ∨ IsNull(y) ∨ RA1(x, y))) For x = a and y = d,
DA1 |= PA1(a, d), but none of them is a null value, i.e. IsNull(a) and IsNull(d)
are both false, therefore we need to check if DA1 |= RA1(a, d). For x = b and
y = null , DA1 |= PA1(b,null), and since DA1 |= IsNull(null), the constraint is
satisfied. The same analysis can be done to prove that D satisfies constraint (b),
this is by checking DA2 |= ∀x(TA2(x) → (IsNull(x) ∨PA2(x)))

If we add tuple P (f, d,null) to D, it would become inconsistent wrt constraint
(a), because DA1 �|= (PA1(f, d) → (IsNull(f) ∨ IsNull(d) ∨RA1(f, d))). �

Example 12. Consider the IC ψ: ∀xywz ((P1(x, y, w)∧P2(y, z)) → ∃u Q(x, z, u))
and the database D:

P1 A B C
a b c
d null c
b e null

null b b

P2 D E
b a
e c
d null

null b

Q F G H
a a c
b null c
b c d

null c a

Variables x, y and z are relevant to check the constraint, therefore the set of rele-
vant attributes is A(ψ) = {P1[1], P1[2], P2[1], P2[2], Q[1], Q[2]}. Then we need to
check if DA(ψ) |= ∀xyz ((PA(ψ)

1 (x, y) ∧ P
A(ψ)
2 (y, z)) → (IsNull(x)∨ IsNull(y)∨

IsNull(z) ∨QA(ψ)(x, z)), where DA(ψ) is
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P
A(ψ)
1 A B

a b
d null
b e

null b

P
A(ψ)
2 D E

b a
e c
d null

null b

QA(ψ) F G
a a
b null
b c

null c

When checking the satisfaction of DA(ψ) |= ψN , null is treated as any other
constant. For example for x = d, y = null and z = b, the antecedent of the rule
is satisfied since PA(ψ)

1 (d,null) ∈ DA and P
A(ψ)
2 (null , b) ∈ DA. If null had been

treated as a special constant, with no unique names assumption applied to it,
the antecedent would have been false. For these values the consequence is also
satisfied, because IsNull(null) is true. In this example, DA(ψ) |= ψN , and the
database satisfies the constraint. �

Notice that in order for formula (4) to have z̄ �= ∅, i.e. existential quantifiers,
there must exist an atom Qj(ȳj , z̄j) in the corresponding IC of the form (1), such
that z̄j has a repeated variable. This is because that is the only case in which a
constraint can have (A(ψ) � x̄) �= ∅.

Example 13. Given ψ : ∀x(P (x, y) → ∃zQ(x, z, z)) and D = {P (a, b), P (null , c),
Q(a,null ,null)}, A(ψ) = {P [1], Q[1], Q[2], Q[3]}. D satisfies ψ iff DA |= ψN ,
with DA(ψ) = {PA(a), PA(null), QA(a,null ,null)} and ψN : ∀x(PA(ψ)(x) →
(IsNull(x) ∨ ∃zQA(ψ)(x, z, z))). The constraint is satisfied, because for x = a it
is satisfied given that there exists the satisfying value null for z; and for x = null
the constraint is satisfied given that IsNull(null) is true. �

The predicate IsNull also allows us to specify NOT NULL-constraints, which
are common in commercial DBMS, and prevent certain attributes from taking a
null value. As discussed before, this constraint is different from having x �= null.

Definition 5. A NOT NULL-constraint (NNC) is a denial constraint of the
form ∀̄x̄(P (x̄) ∧ IsNull(xi) → false), (5)

where xi ∈ x̄ is in the position of the attribute that cannot take null values. For
a NNC ψ, we define D |=

N
ψ iff D |= ψ in the classical sense, treating null as

any other constant. �

Notice that a NNC is not of the form (1), because it contains the constant null .
This is why we give a separate definitions for them. By adding NNCs we are able
to represent all the constraints of commercial DBMS, i.e. primary keys, foreign
key constraints, check constraints and NOT NULL-constraints.

Our semantics is a natural extension of the semantics used in commercial
DBMSs. Note that: (a) In a DBMS there will never be a join between a null
and another value (null or not). (b) Any check constraint with comparison,
e.g <,>,=, will never create an inconsistency when comparing a null value with
any other value. These two features justify our decision in Definition 4 to include
the attributes in the joins and the elements in ϕ among the attributes that are
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checked to be null with IsNull, because if there is a null in them an inconsistency
will never arise.

Our semantics of IC satisfaction with null values allows us to integrate our
results in a compatible way with current commercial implementations; in the
sense that the database repairs we will introduce later on would be accepted as
consistent by current commercial implementations (for the classes of constraints
that can be defined and maintained by them).

4 Repairs of Incomplete Databases

Given a database instance D, possibly with null values, that is inconsistent, i.e.
D does not satisfy a given set IC of ICs of the kind defined in Section 3 or
NNCs. A repair of D will be a new instance with the same schema as D that
satisfies IC and minimally differs from D.

More formally, for database instances D,D′ over the same schema, the dis-
tance between them was defined in [2] by means of the symmetric difference
∆(D,D′) = (D � D′) ∪ (D′ � D). Correspondingly, a repair of D wrt IC was
defined as an instance D′ that satisfies IC and minimizes ∆(D,D′) under set
inclusion. Finally, a tuple t̄ was defined as a consistent answer to a query Q(x̄)
in D wrt IC if t̄ is an answer to Q(x̄) from every repair of D wrt IC . The defin-
ition of repair given in [2] implicitly ignored the possible presence of null values.
Similarly, in [3, 5, 11], that followed the repair semantics in [2], no null values
were used in repairs.

Example 14. Consider the database D below and the RIC: Course(ID ,Code) →
Course ID Code

21 C15
34 C18

Student ID Name
21 Ann
45 Paul

∃Name Student(ID ,Name). D is in-
consistent, because there is no tuple in
Student for tuple Course(34,C18) in

Course. The database can be minimally repaired by deleting the inconsistent
tuple or by inserting a new tuple into table Student. In the latter case, since the
value for attribute Name is unknown, we should consider repairs with all the
possible values in the domain. Therefore, for the repair semantics introduced in
[2], the repairs are of the two following forms

Course ID Code
21 C15

Student ID Name
21 Ann
45 Paul

Course ID Code
21 C15
34 C18

Student ID Name
21 Ann
45 Paul
34 µ

for all the possible values of µ in the domain, obtaining a possibly infinite number
of repairs. �

The problem of deciding if a tuple is a consistent answer to a query wrt to a set
of universal and referential ICs is undecidable for this repair semantics [11].

An alternative approach is to consider that, in a way, the value µ in Example
14 is an unknown value, and therefore, instead of making it take all the values in
the domain, we could use it as a null value. We will pursue this idea, which re-
quires to modify the notion of repair accordingly. It will turn out that consistent
query answering will become decidable for universal and referential constraints.
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Example 15. (example 14 cont.) By using null values, there will be two repairs:

Repair 1: Repair 2:
Course ID Code

21 C15
Student ID Name

21 Ann
45 Paul

Course ID Code
21 C15
34 C18

Student ID Name
21 Ann
45 Paul
34 null

Here null tells us that there is a tuple with 34 in the first attribute, but unknown
value in the second. �

Now we define in precise terms the notion of repair of a database with null values.

Definition 6. [6] LetD,D′, D′′ be database instances over the same schema and
domain U . It holdsD′ ≤D D′′ iff: (a) For every database atom P (ā) ∈ ∆(D,D′),
with ā ∈ (U � {null}),4 it holds P (ā) ∈ ∆(D,D′′); and (b) For every atom
Q(ā,null)5 ∈ ∆(D,D′), with ā ∈ (U � {null}), there exists a b̄ ∈ U such that
Q(ā, b̄) ∈ ∆(D,D′′) and Q(ā, b̄) �∈ ∆(D,D′). �

Definition 7. Given a database instance D and a set IC of ICs of the form (1)
and NNCs, a repair of D wrt IC is a database instance D′ over the same schema,
such that D′ |=

N
IC and D′ is ≤D-minimal in the class of database instances

that satisfy IC wrt |=N , and share the schema with D, i.e. there is no database
D′′ in this class with D′′ <D D′, where D′′ <D D′ means D′′ ≤D D′ but not
D′ ≤D D′′. The set of repairs of D wrt IC is denoted with Rep(D, IC ). �

In the absence of null , this definition of repair coincides with the one in [2].

Example 16. The database instance D = {Q(a, b), P (a, c)} is inconsistent wrt
the ICs ψ1 : (P (x, y) → ∃zQ(x, z)) and ψ2 : (Q(x, y) → y �= b).6 because
D �|=

N
ψ2. The database has two repairs wrt {ψ1, ψ2}, namely D1 = {}, with

∆(D,D1)={Q(a, b), P (a, c)}, and D2 = {P (a, b), Q(a,null))}, with ∆(D,D2) =
{Q(a, b), Q(a,null)}. Notice that D2 �≤D D1 because Q(a,null) ∈ ∆(D,D2) and
there is no constant d ∈ U such thatQ(a, d) ∈ ∆(D,D1) andQ(a, d) �∈ ∆(D,D2).
Similarly, D1 �≤D D2, because P (a, c) ∈ ∆(D,D1) and P (a, c) �∈ ∆(D,D1). �

Example 17. If the database instance is {P (a,null), P (b, c), R(a, b)} and IC con-
sists only of (P (x, y) → ∃z R(x, z)), then there are two repairs:D1 = {P (a,null),
P (b, c), R(a, b), R(b,null)}, with ∆(D,D1)={R(b,null)}, and D2 = {P (a,null),
R(a, b)}, with ∆(D,D2) = {P (b, c)}. Notice, for example, that D3 = {P (a,null),
P (b, c), R(a, b), R(b, d)}, for any d ∈ U different from null , is not a repair: Since
∆(D,D3) = {R(b, d)}, we have D2 <D D3 and, therefore D3 is not ≤D-minimal.

�

4 That ā ∈ (U � {null}) means that each of the elements in tuple ā belongs to (U �
{null}).

5 null is a tuple of null values, that, to simplify the presentation, are placed in the
last attributes of Q, but could be anywhere else in Q.

6 The second IC is non-generic [7] in the sense that it implies some ground database
literals. Non generic ICs have in general been left aside in the literature on CQA.
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Example 18. Consider the UIC ∀xy(P (x, y) → T (x)) and the RIC ∀x(T (x) →
∃yP (y, x)), and the inconsistent database D = {P (a, b), P (null , a), T (c)}. In this
case, we have a RIC-cyclic set of ICs. The four repairs are

i Di ∆(D,Di)
1 {P (a, b), P (null , a), T (c), P (null , c), T (a)} {T (a), P (null, c)}
2 {P (a, b), P (null , a), T (a)} {T (a), T (c)}
3 {P (null , a), T (c), P (null , c)} {P (a, b), P (null , c)}
4 {P (null , a)} {P (a, b), T (c)}

Notice that, for example, the additional instance D5 = {P (a, b), P (null , a), T (c),
P (c, a), T (c)}, with ∆(D,D5) = {T (a), P (c, a)}, satisfies IC , but is not a repair
because D1 <D D5. �

The previous example shows that we obtain a finite number of repairs (with
finite extension). If we repaired the database by using the non-null constants
in the infinite domain with the repair semantics of [2], we would obtain an
infinite number of repairs and infinitely many of them with infinite extension,
as considered in [11].

Example 19. Consider a schema with relations R(X,Y ), with primary key R[1],
and a table S(U, V ), with S[2] a foreign key to table R. The ICs are ∀xyz (R(x, y)
∧R(x, z) → y = z) and ∀uv (S(u, v) → ∃y R(v, y)), plus the NNC ∀xy(R(x, y)∧
IsNull(x) → false). Since the original database satisfies the NNC and there is no
constraint with an existential quantifier over R[1], the NNC will not be violated
while trying to solve other inconsistencies. We would have a non-conflicting in-
teraction of RICs and NNCs. Here D = {R(a, b), R(a, c), S(e, f), S(null , a)} is
inconsistent and its repairs are D1 = {R(a, b), S(e, f), S(null, a), R(f,null)},
D2 = {R(a, c), S(e, f), S(null, a), R(f,null)}, D3 = {R(a, b), S(null, a)} and
D4 = {R(a, c), S(null, a)}. �

If a given database D is consistent wrt a set of ICs, then there is only one repair,
that coincides with D. The following example shows what can happen if we
have a conflicting interaction of a RIC containing an existential quantifier over
a variable with an additional NNC that prevents that variable from taking null
values.

Example 20. Consider the database D = {P (a), P (b), Q(b, c)}, the RIC ∀x (P (x)
→ ∃y Q(x, y)), and the NNC ∀xy(Q(x, y) ∧ IsNull(y) → false) over an exis-
tentially quantified attribute in the RIC. We cannot repair as expected using
null values. Actually, the repairs are {P (b), Q(b, c)}, corresponding to a tuple
deletion, but also those of the form {P (a), P (b), Q(b, c), Q(a, µ)}, for every
µ ∈ (U � {null}), that are obtained by tuple insertions. We thus recover the
repair semantics of [2]. �

With an appropriate conflicting interaction of RICs and NNCs we could recover
in our setting the situation where infinitely many repairs and infinitely many
with finite extension appear (c.f. remark after Example 18). Our repair semantics
above could be modified in order to repair only through tuple deletions in this
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case, when null values cannot be used due to the presence of conflicting NNCs.
This could be done as follows: If Rep(D, IC ) is the class of repairs according to
Definitions 6 and 7, the alternative class of repairs, Repd(D, IC ), that prefers
tuple deletions over insertions with arbitrary non-null elements of the domain
due to the presence of conflicting NNCs, can be defined by Repd(D, IC ) :=
{D ′ | D′ ∈ Rep(D, IC ) and there is no D′′ ∈ Rep(D, IC ′) with D′′ <D D′},
where IC ′ is IC without the (conflicting) NNCs.

Since the semantics introduced Definitions 6 and 7 is easier to deal with, and
in order to avoid repairs like those in Example 20, we will make the following

Assumption: Our sets IC , consisting of ICs of the form (1) and NNCs, are non-
conflicting, in the sense that there is no NNC on an attribute that is existentially
quantified in an IC of the form (1).

In this way, we will always be able to repair RICs by tuple deletions or tuple
insertions with null values. Notice that every set of ICs consisting of primary key
constraints (with the keys set to be non-null), foreign key constraints, and check
constraints satisfies this condition. Also note that if there are non conflicting
NNCs, the original semantics and the one based on Repd-repairs coincide. The
repair programs introduced in Section 5 compute specify the Repd-repairs, so
our assumption is also relevant from the computational point of view.

It is possible to prove that under our repair semantics there will always exists a
repair for a databaseD wrt a set of non-conflicting ICs. This follows from the fact
that a database instance with no tuples always satisfies the ICs. Furthermore, the
set of repairs is finite and each of them is finite in extension (i.e. each database
relation is finite). This can be proved establishing first by contradiction that the
repairs are restricted to have constants in adom(D)∪ const(IC )∪ {null}, where
adom(D) is the active domain of the original instance D and const(IC ) is the
set of constants that appear in the ICs. Since the constants that can appear in
the repairs are finite there is a finite set of candidates to repairs, and each of
them is finite.

Proposition 1. Given a database D and a set IC of non-conflicting ICs: (a)
For every repair D′ ∈ Rep(D , IC ), adom(D′) ⊆ adom(D)∪const(IC )∪{null}.
(b) The set Rep(D , IC ) of repairs is non-empty and finite; and every D ′ ∈
Rep(D, IC ) is finite.7 �

Theorem 1. The problem of determining if a database D′ is a repair of D wrt
a set IC consisting of ICs of the form (1) and NNCs8 is coNP -complete. �

Definition 8. [2] Given a database D , a set of ICs IC , and a query Q(x̄), a
ground tuple t̄ is a consistent answer to Q wrt IC in D iff for every D ′ ∈
Rep(D , IC ), D′ |= Q[t̄]. If Q is a sentence (boolean query), then yes is a con-
sistent answer iff D ′ |= Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent
answer is no. �

7 For proofs of all results go to www.scs.carleton.ca/∼lbravo/IIDBdemos.pdf
8 In this case we do not need the assumption of non-conflicting ICs.
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In this formulation of CQA we are using a notion D′ |= Q[t̄] of satisfaction of
queries in a database with null values. At this stage, we are not committing to
any particular semantics for query answering in this kind of databases. In the
rest of the paper, we will assume that we have such a notion, say |=q

N , that can
be applied to queries in databases with null values. Some proposals can be found
in the literature [22, 26, 34]. In principle, |=q

N may be orthogonal to the notion
|=N for satisfaction of ICs. However, in the extended version of this paper we will
present a semantics for query answering that is compatible with the one for IC
satisfaction. For the moment we are going to assume that |=q

N can be computed
in polynomial time in data for safe first-order queries, and that it coincides
with the classical first-order semantics for queries and databases without null
values. We will also assume in the following that queries are safe [33], a sufficient
syntactic condition for domain independence.

The decision problem of consistent query answering is

CQA(Q, IC ) = {(D, t̄) | t̄ is a consistent answer to Q(x̄) wrt IC in D}.
Since we have Q and IC as parameters of the problem, we are interested in the
data complexity of this problem, i.e. in terms of the size of the database [1]. It
turns out that CQA for FOL queries is decidable, in contrast to what happens
with the classic repair semantics [2], as established in [11].

Theorem 2. Consistent query answering for first-order queries wrt to non-
conflicting sets of ICs of the form (1) and NNCs is decidable. �

The ideas behind the proof are as follows: (a) There is a finite number of database
instances that are candidates to be repair given that the use only the active
domain of the original instance, null and the constants in the ICs. (b) The
satisfaction of ICs in the candidates can de decided by restriction to the active
domain given that the ICs are domain independent. (c) Checking if D1 ≤D D2
can be effectively decided. (d) The answers to safe first-order queries can be
effectively computed.

The following proposition can be obtained by using a similar result [15] and
the fact that our tuple deletion based repairs are exactly those considered in
[15], and every repair in our sense that is not one of those contains at least one
tuple insertion.

Theorem 3. Consistent query answering for first-order queries and non-conflict-
ing sets of ICs of the form (1) or NNCs is Πp

2 -complete. �

In the proof of this theorem NNCs are not needed for hardness. Actually, hard-
ness can be obtained with boolean queries.

5 Repair Logic Programs

The stable models semantics was introduced in [18] to give a semantics to dis-
junctive logic programs that are non-stratified, i.e. that contain recursive defin-
itions that contain weak negation. By now it is the standard semantics for such
programs. Under this semantics, a program may have several stable models; and
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what is true of the program is what is true in all its stable models (a cautious
semantics).

Repairs of relational databases can be specified as stable models of disjunctive
logic programs. In [6, 10, 12] such programs were presented, but they were based
on classic IC satisfaction, that differs from the one introduced in Section 3.

The repair programs we will present now implement the repair semantics
introduced in Section 3 for a set of RIC-acyclic constraints. The repair programs
use annotation constants with the intended, informal semantics shown in the
table below. The annotations are used in an extra attribute introduced in each
database predicate; so for a predicate P ∈ R, the new version of it, P , contains
an extra attribute.

Annotation Atom The tuple P (ā) is...
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
t�� P (ā, t��) it is true in the repair

In the repair program, null is treated as any other constant in U , and therefore
the IsNull(x) atom can be replaced by x = null .

Definition 9. Given a database instance D , a set IC of UICs, RICs and NNCs,
the repair program Π(D , IC ) contains the following rules:

1. Facts: P (ā) for each atom P (ā) ∈ D .
2. For every UIC ψ of form (2), the rules:
�n

i=1 Pi (x̄i, fa) ∨�m
j=1 Qj (ȳj , ta) ← �n

i=1 Pi (x̄i, t�),
�

Qj ∈Q′ Qj (ȳj , fa),
�

Qk∈Q′′ not Qk(ȳk),
�

xl∈A(ψ)∩x̄ xl �=null , ϕ̄.

for every set Q′ andQ′′ of atoms appearing in formula (2) such thatQ′∪Q′′ =⋃m
j=1 Qj(ȳj) and Q′ ∩ Q′′ = ∅.9 Here A(ψ) is the set of relevant attributes

for ψ, x̄ =
⋃n

i=1 xi and ϕ̄ is a conjunction of built-ins that is equivalent to
the negation of ϕ.

3. For every RIC of form (3), the rules:
P (x̄, fa) ∨ Q (x̄′,null , ta) ← P (x̄, t�), not aux (x̄′), x̄′ �= null .
And for every yi ∈ ȳ:
aux (x̄′) ← Q (x̄′, ȳ, t�), not Q (x̄′, ȳ, fa), x̄′ �= null , yi �= null .

4. For every NNC of the form (5), the rule:
P (x̄, fa) ← P (x̄, t�), xi = null .

5. For each predicate P ∈ R, the annotation rules:
P (x̄, t�) ← P (x̄). P (x̄, t�) ← P (x̄, ta).

6. For every predicate P ∈ R, the interpretation rule:
P (x̄, t��) ← P (x̄, t�), not P (x̄, fa).

7. For every predicate P ∈ R, the program denial constraint:
← P (x̄, ta), P (x̄, fa). �

9 We are assuming in this definition that the rules are a direct translation of the
original ICs introduced in Section 2; in particular, the same variables are used and
the standardization conditions about their occurrences are respected in the program.
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Facts in 1. are the elements of the database. Rules 2., 3. and 4. capture, in the
right-hand side, the violation of ICs of the forms (2), (3), and (5), resp., and,
with the left-hand side, the intended way of restoring consistency. The set of
predicates Q′ and Q′′ are used to check that in all the possible combinations,
the consequent of a UIC is not being satisfied. Since the satisfaction of UICs and
RICs needs to be checked only if none of the relevant attributes of the antecedent
are null , we use x �= null in rule 2. and in the first two rules in 3. (as usual,
x̄′ �= null means the conjunction of the atoms xj �= null for xj ∈ x̄′). Notice that
rules 3. are implicitly based on the fact that the relevant attributes for a RIC
of the form (3) are A = {x | x ∈ x̄′}. Rules 5. capture the atoms that are part
of the inconsistent database or that become true in the repair process; and rules
6. those that become true in the repairs. Rule 7. enforces, by discarding models,
that no atom can be made both true and false in a repair.

Example 21. (example 19 cont.) The repair program Π(D , IC ) is the following:
1. R(a, b). R(a, c). S(e, f). S(null , a).
2. R (x, y, fa) ∨ R (x, z, fa) ← R (x, y, t�), R (x, z, t�), y �= z, x �= null .
3. S (u, x, fa) ∨ R (x,null , ta) ← S (u, x, t�),not aux(x), x �= null .

aux(x) ← R (x, y, t�), not R (x, y, fa), x �= null , y �= null .
5. R (x, y, t�) ← R (x, y, ta). R (x, y, t�) ← R(x, y). (similarly for S)
6. R (x, y, t��) ← R (x, y, ta).

R (x, y, t��) ← R(x, y), not R (x, y, fa). (similarly for S)
7. ← R (x, y, ta), R (x, y, fa). ← S (x̄, ta), S (x̄, fa).

Only rules 2. and 3. depend on the ICs: rules 2. for the UIC, and 3. for the RIC.
They say how to repair the inconsistencies. In rule 2., Q′ = Q′′ = ∅, because
there is no database predicate in the consequent of the UIC. There is no rule 4.,
because there is no NNC. �

Example 22. Consider D = {P (a, b), P (c,null)} and the non-conflicting set of
ICs: {∀P (x, y) → R(x) ∨ S(y),P (x, y) ∧ IsNull(y) → false}. Then Π(D , IC ) :
1. P (a, b). P (c,null).
2. P (x, y, fa)∨R (x, ta)∨S (y, ta) ← P (x, y, t�), R (x, fa), S (y, fa), x �= null , y �= null .

P (x, y, fa)∨R (x, ta)∨S (y, ta) ← P (x, y, t�), R (x, fa), not S(y), x �= null , y �= null .
P (x, y, fa)∨R (x, ta)∨S (y, ta) ← P (x, y, t�), not R(y), S (x, fa), x �= null , y �= null .
P(x, y, fa)∨R (x, ta)∨S(y, ta) ← P(x, y, t�), not R(y), not S(y), x �= null , y �= null .

4. P (x, y, fa) ← P (x, y, t�), y = null .
5. P (x, y, t�) ← P (x, y, ta). P (x, y, t�) ← P (x, y). (similarly for R and S)
6. P (x, y, t��) ← P (x, y, ta).

P (x, y, t��) ← P (x, y), not P (x, y, fa). (similarly for R and S)
7. ← P (x, y, ta), P (x, y, fa). (similarly for R and S)
The rules in 2. are constructed by choosing all the possible sets Q′ and Q′′ such
that Q′∪Q′′ = {R(x), S(y)} and Q′∩Q′′ = ∅. The first rule in 2. corresponds to
Q′ = {R(x), S(y)} and Q′′ = ∅, the second for Q′ = {R(x)} and Q′′ = {S(y)},
the third for Q′ = {S(y)} and Q′′ = {R(x)}, and the fourth for Q′ = ∅ and
Q′′ = {R(x), S(y)} �
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The repair program can be run by a logic programming system that computes
the stable models semantics, e.g. DLV system [24]. The repairs can be obtained
by collecting the atoms annotated with t�� in the stable models of the program.

Definition 10. Let M be a stable model of program Π(D , IC ). The database
instance associated with M is DM = {P (ā) | P ∈ R and P (ā, t��) ∈ M}. �

Example 23. (example 21 continued) The program has four stable models (the
facts of the program are omitted for simplicity):
M1 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, t��),

S (null , a, t��), R (f,null , ta), R (a, b, t��), R (a, c, fa), R (f, null , t�),
R (f,null , t��) },

M2 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, t��),
S (null , a, t��), R (f,null , ta), R (a, b, fa), R (a, c, t��), R (f, null , t�),
R (f,null , t��) },

M3 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, fa),
S (null , a, t��), R (a, b, t��), R (a, c, fa)},

M4 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, fa),
S (null , a, t��), R (a, b, fa), R (a, c, t��)}.

The databases associated to the models select the underlined atoms: D1 =
{S(e, f), S(null , a), R(a, b), R(f,null)}, D2 = {S(e, f), S(null , a), R(a, c), R(f,
null)} D3 = {S(null , a), R(a, b)} and D4 = {S(null , a), R(a, c)}. As expected
these are the repairs obtained in Example 19. �

Theorem 4. Let IC be a RIC-acylic set of UICs, RICs and NNCs. If M is
a stable model of Π(D , IC ), then DM is a repair of D with respect to IC .
Furthermore, the repairs obtained in this way are all the repairs of D. �

6 Head-Cycle-Free Programs

In some cases, the repair programs introduced in Section 5 can be transformed
into equivalent non-disjunctive programs. This is the case when they become
head-cycle-free [8]. Query evaluation from such programs has lower computa-
tional complexity than general disjunctive programs, actually the data complex-
ity is reduced from ΠP

2 -complete to coNP -complete [8, 16]. We briefly recall
their definition.

The dependency graph of a ground disjunctive program Π is the directed
graph that has ground atoms as vertices, and an edge from atom A to atom B
iff there is a rule with A (positive) in the body and B (positive) in the head. Π
is head-cycle free (HCF) iff its dependency graph does not contain any directed
cycles passing through two atoms in the head of the same rule. A disjunctive
program Π is HCF if its ground version is HCF.

A HCF program Π can be transformed into a non-disjunctive normal pro-
gram sh(Π) that has the same stable models. It is obtained by replacing every
disjunctive rule of the form

∨n
i=1 Pi(x̄i) ←

∧m
j=1 Qj(ȳj), ϕ. by the n rules

Pi(x̄i) ←
∧m

j=1 Qj(ȳj), ϕ,
∧

k �=i not Pk(x̄k)., for i = 1, ..., n.
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For certain classes of queries and ICs, consistent query answering has a data
complexity lower than ΠP

2 , a sharp lower bound as seen in Theorem 3 (c.f. also
[15]). In those cases, it is natural to consider this kind of transformations of the
disjunctive repair program. In the rest of this section we will consider sets IC of
integrity constraints formed by UICs, RICs and NNCs.

Definition 11. A predicate P is bilateral with respect to IC if it belongs to
the antecedent of a constraint ic1 ∈ IC and to the consequent of a constraint
ic2 ∈ IC , where ic1 and ic2 are not necessarily different. �

Example 24. If IC = {∀x (T (x) → ∃ y R(x, y), ∀xy (S(x, y) → T (x))}, the only
bilateral predicate is T . �

Theorem 5. For a set IC of UICs, RICs and NNCs, if for every ic ∈ IC , it holds
that (a) ic has no bilateral predicates; or (b) ic has exactly one occurrence of a
bilateral predicate (without repetitions), then the program Π(D , IC ) is HCF. �

For example, if in IC we have the constraint P (x, y) → P (y, x), then P is a
bilateral predicate, and the condition in the theorem is not satisfied. Actually, the
programΠ(D, IC ) is not HCF. If we have instead P (x, a) → P (x, b), even though
the condition is not satisfied, the program is HCF. Therefore, the condition is
sufficient, but not necessary for the program to be HCF.

This theorem can be immediately applied to useful classes of ICs, like denial
constraints, because they do not have any bilateral literals, and in consequence,
the repair program is HCF.

Corollary 1. If IC contains only constraints of the form ∀̄(
∧n

i=1Pi(t̄i) → ϕ),
where Pi(t̄i) is a database atom and ϕ is a formula containing built-in predicates
only, then Π(D, IC) is HCF. �

As a consequence of this corollary we obtain, for first-order queries and this
class of ICs, that CQA belongs to coNP , because a query program (that is non-
disjunctive) together with the repair program is still HCF. For this class of con-
straints, with the classical tuple-deletion based semantics, this problem becomes
coNP -complete [15]. Actually, CQA for this class with our tuple-deletion/null-
value based semantics is still coNP -complete, because the same reduction found
in [15] can be used in our case.

7 Conclusions

We have introduced a new repair semantics that considers, systematically and
for the first time, the possible occurrence of null values in a database in the
form we find them present and treated in current commercial implementations.
Null values of the same kind are also used to restore the consistency of the
database. The new semantics applies to a wide class of ICs, including cyclic sets
of referential ICs.

We established the decidability of CQA under this semantics, and a tight
lower and upper bound was presented. The repairs under this semantics can be
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specified as stable models of a disjunctive logic program with a stable model
semantics for acyclic foreign key constraints, universal ICs and NOT NULL-
constraints, covering all the usual ICs found in database practice.

In an extended version of this paper we will provide: (a) An extension of our
semantics of IC satisfaction in databases with null values that can also be applied
to query answering in the same kind of databases. (b) A more detailed analysis
of the way null-values are propagated in a controlled manner, in such a way that
no infinite loops are created. (c) Construction of repairs based on a sequence of
“local” repairs for the individual ICs.
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Abstract. Recent approaches in the research on inconsistent databases
have started analyzing the first-order reducibility of consistent query an-
swering, i.e., the possibility of identifying classes of queries whose con-
sistent answers can be obtained by a first-order (FOL) rewriting of the
query, which in turn can be easily formulated in SQL and directly evalu-
ated through any relational DBMS. So far, the investigations in this di-
rection have only concerned subsets of conjunctive queries over databases
with key dependencies. In this paper we extend the study of first-order re-
ducibility of consistent query answering under key dependencies to more
expressive queries, in particular to unions of conjunctive queries. More
specifically: (i) we analyze the applicability of known FOL-rewriting tech-
niques for conjunctive queries in the case of unions of conjunctive queries.
It turns out that such techniques are applicable only to a very restricted
class of unions of conjunctive queries; (ii) to overcome the above limita-
tions, we define a new rewriting method which is specifically tailored for
unions of conjunctive queries. The method can be applied only to unions
of conjunctive queries that satisfy an acyclicity condition on unions of
conjunctive queries.

1 Introduction

Consistent query answering. Research in consistent query answering (CQA)
studies the definition (and computation) of “meaningful” answers to queries
posed to databases whose data do not satisfy the integrity constraints (ICs)
declared on the database schema [2,11,4].

Recent studies in this area have established declarative semantic characteri-
zations of consistent query answering over relational databases, decidability and
complexity results for consistent query answering, as well as techniques for query
processing [2,6,11,4,3,5]. In particular, it has been shown that computing con-
sistent answers of conjunctive queries (CQs) is coNP-hard in data complexity,
i.e., in the size of the database instance, even in the presence of very restricted
forms of ICs (single, unary keys).

From the algorithmic viewpoint, the approach mainly followed is query an-
swering via query rewriting: (i) First, the query that must be processed (usually
a conjunctive query) is reformulated in terms of another, more complex query.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 358–374, 2006.
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Such a reformulation is purely intensional, i.e., the rewritten query is indepen-
dent of the database instance; (ii) Then, the reformulated query is evaluated over
the database instance. Due to the semantic nature and the inherent complex-
ity of consistent query answering, Answer Set Programming (ASP) is usually
adopted in the above reformulation step [11,3,5], and stable model engines like
DLV [13] can be used for query processing.

First-order reducibility of Consistent Query Answering. An orthogonal
approach to consistent query answering is the one followed by recent theoretical
works [2,6,10,12], whose aim is to identify classes of first-order reducible queries,
i.e., queries whose consistent answers can be obtained by rewriting the query in
terms of a first-order (FOL) query.

The advantage of such an approach is twofold: first, this technique allows for
computing consistent answers efficiently in data complexity. More specifically,
in this case, the data complexity of consistent query answering is the one of
standard evaluation of FOL queries over databases, i.e., LogSpace. Second,
consistent query answering in these cases can be performed through standard
database technology, since the FOL query synthesized can be easily translated
into SQL and then evaluated by any relational database management system.
On the other hand, this approach is only limited to particular subclasses of
the problem. In particular, Fuxman and Miller in [10] have studied databases
with key dependencies, and have identified a broad subclass of CQs that can be
treated according to the above strategy.

Our contribution. In this paper we study first-order reducibility of consis-
tent query answering for unions of conjunctive queries in the presence of key
dependencies. More specifically, our contribution can be summarized as follows:

1. first, we analyze the direct applicability of the rewriting technique of [10] to
unions of conjunctive queries. In particular, we characterize the subclass
of unions of conjunctive queries for which a first-order rewriting can be
computed in a modular way, such that the FOL rewriting of a union of
conjunctive queries corresponds to the union of the FOL rewritings of each
single conjunctive query. Each query belonging to such a subclass is a union
of conjunctive queries in which (i) every disjunct can be rewritten exploiting
the rewriting technique presented in [10], and (ii) repetition of atom symbols
in different disjuncts is limited according to a suitable condition (see Section
3). It turns out that this way of FOL-reducing unions of conjunctive queries
is possible only for a very restricted class of unions of conjunctive queries;

2. to overcome the limitations of the previous approach, we define a new rewrit-
ing method which is specifically tailored for unions of conjunctive queries.
The method can be applied only to a subclass of unions of conjunctive
queries, in particular the queries that satisfy an acyclicity condition on
unions of conjunctive queries: for each such query q, the method produces
a FOL-rewriting of the query whose evalutation produces the consistent an-
swers to q. Note that this new defined subclass, properly contains the one
described in the previous item.
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Relevance of our results. We believe that the relevance of our study is twofold:

1. Extending the study of first-order reducibility of consistent query answering
from conjunctive (i.e., select-project-join) queries to more expressive queries
is certainly interesting: in this respect, the extension to unions of conjunctive
queries is particularly important, since the possibility of expressing unions
is probably the most important expressive feature which is missed by the
language of conjunctive queries.

2. As explained in Section 5, we argue that the ability of handling unions of
conjunctive queries is necessary in order to extend the first-order reduc-
tion techniques of consistent query answering to other forms of integrity
constraints, specifically to inclusion dependencies. Besides key dependen-
cies, inclusion dependencies, and in particular foreign keys, are certainly the
most important form of integrity constraints in relational schemas. At the
best of our knowledge this problem has not been studied yet. Notably, the
analysis of first-order reduction of consistent query answering of unions of
conjunctive queries constitutes a necessary first step in order to arrive at the
definition of analogous methods for (unions of) conjunctive queries under
key and foreign key dependencies.

Structure of the paper. In the next section, we present some preliminary
definitions. In Section 3 we recall the method for first-order reducibility of con-
junctive queries under key dependencies and study under which conditions this
technique can be directly applied to unions of conjunctive queries. Then, in Sec-
tion 4 we define a new query rewriting algorithm specifically designed for unions
of conjunctive queries, and discuss formal properties of the method. Finally, we
conclude in Section 5.

2 Inconsistent Databases and Consistent Answers

Syntax. We consider to have an infinite, fixed alphabet Γ of constants repre-
senting real world objects, and we take into account only database instances
having Γ as domain. Moreover, we assume that different constants in Γ denote
different objects, i.e., we adopt the so-called unique name assumption.

A database schema S is constituted by a relational signature A, i.e., a set
of relation symbols in which each relation is associated with an arity (positive
integer) indicating the number of its attributes, and a set of integrity constraints
specified over A. An attribute of a relation symbol r is an integer b such that
1 ≤ b ≤ n, where n is the arity of r. We consider schemas which contain only key
dependencies specified over A. A key dependency (KD) over A is an expression
of the form key(r) = {i1, . . . , ik}, where r is a relation symbol of A, and, if n is
the arity of r, 1 ≤ ij ≤ n for each j such that 1 ≤ j ≤ k. We assume that at
most one KD is specified over a relation r and we say that an attribute of r is a
key attribute if it belongs to the set key(r) (otherwise we say that it is a non-key
attribute). We denote with the pair 〈A,K〉, a database schema S with signature
A and set of key dependencies K over A.
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A term is either a variable or a constant of Γ . An atom is an expression of
the form p(t1, . . . , tn) where p is a relation symbol of arity n and t1, . . . , tn is a
sequence of n terms. An atom is called fact if all the terms occurring in it are
constants. A database instance D for S is a set of facts over A. We denote as rD

the set {t | r(t) ∈ D}.
A union of conjunctive queries (UCQ) q of arity n over a (database schema

with) signature A is an expression of the form

h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm

where the atom h(x1, . . . , xn) is called the head of the query (denoted by head(q)),
d1 ∨ . . .∨dm is called the body of the query (denoted by body(q)), and for each i ∈
{1 . . .m}, di, called the i-th disjunct of q, is a conjunction of atoms ai,1∧ . . .∧ai,k,
whose predicate symbols are inA, such that all the variables occurring in the query
head also occur in di. Ifm = 1, q is simply called conjunctive query (CQ). In a UCQ
q, we say that a variable is a head variable if it occurs in the query head, while we
say that a variable is existential if it only occurs in the query body. Moreover, we
call an existential variable shared in a disjunct d of q if it occurs at least twice in d
(otherwise we say that it is non-shared in d). Obviously, if q is a CQ, an existential
variable shared (resp. non-shared) in the unique disjunct of q will be simply called
shared (resp. non-shared) in q.

A FOL query of arity n is an expression of the form

{x1, . . . , xn | Φ(x1, . . . , xn)}

where x1, . . . , xn are variable symbols and Φ is a first-order formula with free
variables x1, . . . , xn.

Semantics. First, we briefly recall the standard evaluation of queries over a
database instance. Let q be the UCQ h(x1, . . . , xn) :– d1 . . . . . . . . . dm and let
t = 〈c1, . . . , cn〉 be a tuple of constants of Γ . A set of facts I is an image of t
w.r.t. q if there exists a substitution σ of the variables occurring in a disjunct di

of q such that σ(head(q)) = h(t) and σ(di) = I. Given a database instance D,
we denote by qD the evaluation of q over D, i.e., qD is the set of tuples t such
that there exists an image I of t w.r.t. q such that I ⊆ D.

Given a FOL query q and a database instance D, we denote by qD the evalu-
ation of q over D, i.e., qD = {〈c1, . . . , cn〉 | D |= Φ(c1, . . . , cn)}, where each ti is
a constant symbol and Φ(c1, . . . , cn) is the first-order sentence obtained from Φ
by replacing each free variable xi with the constant ci.

Then, we define the semantics of queries over inconsistent databases. A data-
base instance D violates the KD key(r) = {i1, . . . , ik} iff there exist two distinct
facts r(c1, . . . , cn), r(d1, . . . , dn) in D such that cij = dij for each j such that
1 ≤ j ≤ k.

Let S = 〈A,K〉 be a database schema. A database instance D is legal for S if
D does not violate any KD in K.

A set of ground atoms D′ is a repair of D under S iff: (i) D′ ⊆ D; (ii) D′ is
legal for S; (iii) for each D′′ such that D′ ⊂ D′′ ⊆ D, D′′ is not legal for S. In
words, a repair for D under S is a maximal subset of D that is legal for S.
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The problem in which we are interested is consistent query answering [2,6]:
given a database schema S, a database instance D, and a UCQ q, return all
tuples t of constants of Γ such that, for each repair D′ of D under S, t ∈ qD

′
.

Each such tuple is called consistent answer to q in D under S.
Furthermore, analogously to [10], we say that consistent query answering for

a class C of UCQs is FOL-reducible (or simply that the class C is FOL-reducible),
if for every database schema S = 〈A,K〉 and every query q ∈ C over A, there
exists a FOL query qf over A such that for every database instance D, t is a
consistent answer to q in D under S iff t ∈ qDf . We call such a qf a FOL-rewriting
of q under S. Notice that FOL-reducibility is a very interesting property from
a practical point of view, since FOL queries correspond to queries expressed in
relational algebra (i.e., in SQL). Observe also that every FOL query can be eval-
uated in LogSpace wrt data complexity, i.e., computational complexity w.r.t.
the size of the database instance (see e.g., [1]). It follows that if a class C is
FOL-reducible, then consistent query answering for C is in LogSpace wrt data
complexity.

3 FOL-Rewriting of UCQs Via FOL-Rewriting of CQs

It is well known that the consistent query answering problem studied in this
paper is coNP-hard in data complexity for generic conjunctive queries (and thus
for generic unions of conjunctive queries) [4,6]. As a consequence, the issue of
scalability of query answering with respect to (large) database instances turns
out to be crucial [3,8]. In this respect, an interesting approach is the one that
aims at identifying subclasses of queries for which the problem is tractable [7,6],
or FOL-reducible [2,10,9]. In particular, in [10] the authors study the problem
for the class of conjunctive queries, and define a subclass of CQs, called Ctree,
for which they provide an algorithm for FOL-rewriting under schemas which
contain only KDs. The class Ctree is based on the notion of join graph: a join
graph of a conjunctive query q is the graph that contains (i) a node Ni for
every atom in the query body, (ii) an arc from Ni to Nj if an existential shared
variable occurs in a non-key position in Ni and occurs also in Nj , (iii) an arc
from Ni to Ni if an existential shared variable occurs at least twice in Ni, and
at least one occurrence is in a non-key position. According to [10], Ctree is the
class of conjunctive queries (a) without repeated relation symbols, (b) in which
every join from non-key to key attributes involves the entire key of at least one
relation and (c) whose join graph is acyclic. As pointed out in [10], this class
of queries is very common, since cycles are rarely present in queries used in
practice.

A class of CQs slightly more general than Ctree, called C+
tree, has been con-

sidered in [12], and a new algorithm, called CQ-FolRewrite, for FOL-rewriting
of such CQs has been proposed. Conjunctive queries belonging to such a class
respect condition (a) and (c) above, but admit also joins from non-key attributes
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that not necessarily involve the entire key of a relation (i.e., condition (b) above
has been removed)1.

In what follows we consider the algorithm CQ-FolRewrite and study a possible
extension of it in order to deal with queries specified in the more expressive
language of unions of conjunctive queries. In particular, we consider UCQs where
each disjunct is of class C+

tree. Notice that, even if CQA of CQs in the class C+
tree

is FOL-reducible, CQA for queries that are unions of C+
tree queries is not in

general FOL-reducible as shown by the following theorem.

Theorem 1. Let S = 〈A,K〉 be a database schema, D a database instance for
S, q a UCQ of arity n over S, and t an n-tuple of constants in Γ . The problem
of establishing whether t is a consistent answer to q in D under S is coNP-hard
with respect to data complexity.

Proof. (Sketch) The proof is by reduction of the three-colorability problem to
the complement of our problem.

For the sake of completeness, we show the algorithm CQ-FolRewrite and its sub-
routine NodeRewrite in Figure 1 and Figure 2, respectively.

Algorithm CQ-FolRewrite(q,S)
Input: CQ q ∈ C+

tree with q = h(x1, . . . , xn) :– d

schema S = 〈A,K〉
Output: FOL query
begin

compute JG(q);
return {x1, . . . , xn |

�

N∈roots(JG(q))

NodeRewrite(JG(q), N,S)}

end

Fig. 1. The algorithm CQ-FolRewrite

In the algorithm, we exploit a refined notion of join graph, in which we asso-
ciate to each node an adornment which specifies the different nature of terms in
the atoms, as formally specified below.

Definition 1. Let S = 〈A,K〉 be a database schema, q be a CQ over A, and
a = r(x1, . . . , xn) be an atom (of arity n) occurring in the body of q. Then,
let key(r) = {i1, . . . , ik} belong to K, and let 1 ≤ i ≤ n. The type of the i-th
argument of a in q, denoted by type(a, i, q) is defined as follows:

1 The algorithm CQ-FolRewrite takes into account also other forms of integrity con-
straints specified on the database schema (a.k.a. exclusion dependencies), which are
not considered in the present paper.



364 D. Lembo, R. Rosati, and M. Ruzzi

Algorithm NodeRewrite(JG(q), N,S)
Input: Join Graph JG(q);

node N of JG(q)
schema S = 〈A,K〉

Output: FOL formula
begin

let a = r(x1/t1, . . . , xn/tn) be the label of N ;
for i := 1 to n do

if ti ∈ {KB,B} then vi := xi

else vi := yi, where yi is a new variable
if each argument of a is of type B or KB then f1 := r(x1, . . . , xn)
else begin

let i1, . . . , im be the positions of the arguments of a of type S, U, KU;
f1 := ∃yi1 , . . . , yim . r(v1, . . . , vn)

end;
if there exists no argument in a of type B or S then return f1

else begin
let p1, . . . , pc be the positions of the arguments of a of type U, S or B;
let �1, . . . , �h be the positions of the arguments of a of type B;
for i := 1 to c do

if tpi = S then zpi := xpi else zpi := y′
i, where y′

i is a new variable
for i := 1 to n do

if ti ∈ {KB,KU} then wi := vi else wi := zi;

f2 := ∀zp1 , . . . , zpc . r(w1, . . . , wn) →
�
� �

N′∈jgsucc(N)

NodeRewrite(JG(q), N ′,S)

�
�∧

�
i∈{�1,...,�h}

wi = xi

return f1 ∧ f2

end
end

Fig. 2. The algorithm NodeRewrite

1. If i1 ≤ i ≤ ik, then:
– if xi is a head variable of q, a constant, or an existential shared variable,

then type(a, i, q) = KB;
– if xi is an existential non-shared variable of q, then type(a, i, q) = KU.

2. Otherwise (i /∈ {i1, . . . , ik}):
– if xi is a head variable of q or a constant, then type(a, i, q) = B;
– if xi is an existential shared variable of q, then type(a, i, q) = S;
– if xi is an existential non-shared variable of q, then type(a, i, q) = U.

Terms typed by KB or B are called bound terms, otherwise they are called un-
bound. We call the typing of a in q the expression of the form r(x1/t1, . . . , xn/tn),
where each ti is the type of the argument xi in q.

In the algorithm, JG(q) denotes the join graph of q, in which each node
Ni is labelled with the typing of the corresponding atom ai in q, and jgsucc(N)
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denotes the set of node which are successors on N in the join graph. Furthermore,
roots(JG(q)) denotes the set of nodes that are roots in JG(q) (notice that each
join graph for a query of class C+

tree is actually a set of trees, i.e. a forest). For
a detailed description of the algorithm we refer the reader to [12], where also
soundness and completeness of CQ-FolRewrite with respect to the problem of
consistent query answering for CQs belonging to the C+

tree class are established.
We are now ready to attack the study of consistent query answering for UCQs

specified over database schemas with key dependencies. We start by analyzing
the possibility of solving the problem for a UCQ q by simply applying the al-
gorithm CQ-FolRewrite to each disjunct di of q, and taking as result the query
qf obtained by the union of the FOL queries produced by each such execution
of CQ-FolRewrite. In order to do that, in the following we obviously consider
UCQs whose disjuncts are of class C+

tree. Formally, we provide the algorithm
UCQ-FolRewrite shown in Figure 3.

Algorithm UCQ-FolRewrite(q,S)
Input: UCQ q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm such that di ∈ C+

tree for i ∈ {1, . . . , m};
schema S = 〈A,K〉

Output: FOL query
begin

for i := 1 to m do
begin

qi = h(x1, . . . , xn) :– di;
compute JG(qi);

end

return {x1, . . . , xn |
m�

i=1

�

N∈roots(JG(qi))

NodeRewrite(JG(qi), N,S)};

end

Fig. 3. The algorithm UCQ-FolRewrite

Example 1. Consider a database schema S = 〈A,K〉, such that A contains the
binary relation symbols r1, r2 and r3, and K contains the dependencies key(r1) =
{1}, key(r2) = {1}, key(r3) = {1}. Consider the UCQ

q :– (r1(x, y) ∧ r2(y, z)) ∨ (r3(x, y) ∧ r2(y, z))

over A. The join graphs of each disjunct are as follows:

r1 (x/KU, y/S) (N1) −→ (N2) r2 (y/KB, z/U)
r3 (x/KU, y/S) (N1) −→ (N2) r2 (y/KB, z/U)

Now it is easy to see that any disjunct in the query is in class C+
tree. Then,

the first-order query returned by the execution of UCQ-FolRewrite(q,S) is

qf = { | (∃x, y.r1(x, y) ∧ ∀y′.r1(x, y′) → ∃z.r2(y′, z))∨
(∃x, y.r3(x, y) ∧ ∀y′.r3(x, y′) → ∃z.r2(y′, z))}
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For such an example it is possible to verify that the query above is actually
the FOL-rewriting of the input query q, i.e., for every database instance D, t is
a consistent answer to q in D under S iff t ∈ qDf .

Now, the question arises whether the condition that any disjunct in the input
query q is in class C+

tree is sufficient in order to guarantee soundness and, in
particular, completeness of the algorithm. The following example shows that
actually this is not the case.

Example 2. Assume to have a database schema S = 〈A,K〉, such that A contains
the relation symbol r of arity 2, and K contains the dependency key(r) = {1}.
Consider the UCQ q :– r(x, c1) ∨ r(x′, c2) over A, in which c1 and c2 are
different constant symbols. It is immediate to verify that any disjunct in the
query is in class C+

tree. Then, the first-order query returned by the execution of
UCQ-FolRewrite(q,S) is

qf = { | (∃x, y.r(x, y) ∧ ∀y′.r(x, y′) → y′ = c1)∨
(∃x, y.r(x, y) ∧ (∀y′.r(x, y′) → y′ = c2) }.

Now, assume to have the database instance D = {r(a, c1), r(a, c2)}, which is
not legal for S. It is easy to see thatD �|= Φ, where Φ is the sentence corresponding
to the body of qf , i.e., according to a notation commonly adopted in the database
theory for boolean queries, 〈〉 �∈ D, where 〈〉 indicates the empty tuple. On the
other hand, the repairs of D under S are R1 = {r(a, c1)} and R2 = {r(a, c2)},
and the body of the query q evaluates to true in both R1 and R2, i.e. 〈〉 is a
consistent answer to q in D under S.

The example above shows that the algorithm UCQ-FolRewrite is in general in-
complete (even if it is easy to see that it is always sound). This is mainly due
to the fact that separately rewriting single disjuncts does not take into ac-
count the interaction that may exist between them. Indeed, the body of the
FOL-rewriting that the algorithm constructs for each single disjunct di (i.e.,∧

N∈roots(JG(qi))
NodeRewrite(JG(qi), N)) is a FOL formula, which we denote

with φ, such that, given an assignment of the free variables of φ (i.e., a tuple of
constants t), the sentence φ(t) is satisfied only by those database instances D
such that in any repair of D there is an image of t w.r.t the disjunct di. On the
other hand, for a union of conjunctive queries q, for a tuple t to be a consistent
answer to q it is sufficient that in any repair of D there exists an image of the
tuple w.r.t. q, i.e. with respect to any disjunct dj of q (in other words, the dis-
junct which provides the image has not to be the same in any repair). This is
actually the case we have in Example 2.

Despite the above limitations of the algorithm, we are able to identify a sub-
class of conjunctive queries for which the algorithm UCQ-FolRewrite is sound and
complete. To this aim, we provide the following definition.
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Definition 2. Let S = 〈A,K〉 be a database schema, let r be a relation symbol
of A such that key(r) = {1, . . . , n} ∈ K. Let q be a UCQ over A and let a1 =
r(x,y) and a2 = r(z,w) be two different atoms occurring respectively in two
different disjuncts d1 and d2 of q, such that x = x1, . . . , xn, y = y1, . . . , ym,
z = z1, . . . , zn, w = w1, . . . , wm are sequences of terms. Then, we say that a1
and a2 are interacting in q if

1. the sequences of terms in key position in a1 and a2 unify, i.e., there exists a
unifier between x and z;

2. there exists j ∈ {1, . . . ,m} such that yj and wj are not identical constants;
3. a1 (resp. a2) is such that either a1 is not a leaf in the join graph of d1 (resp.

d2) or there exists a non-key argument of a1 (resp. a2) which is bound.

Notice that the atoms r(a, c1) and r(a, c2) in the example above are interacting
atoms in the query q. Now we are able to define the class we were looking for.

Definition 3. A UCQ q belongs to the class UCQNI of non-interacting UCQs if:

– each disjunct di of q is in C+
tree;

– there do not exist two interacting atoms a1 and a2 in q.

It is easy to see that the query in Example 1 belongs to the class UCQNI , whereas
the query in in Example 2 does not.

Theorem 2. Let S = 〈A,K〉 be a database schema, q ∈ UCQNI be a query over
S. Then, the FOL query qf returned by the algorithm UCQ-FolRewrite(q,S) is a
FOL-rewriting of q under S.

In other words, the above theorem states that the problem of consistent query
answering under key dependencies is FOL-reducible for the class UCQNI .

4 Algorithm

In this section we try to overcome the limitations of the rewriting technique
presented in the previous section, by defining a new FOL-rewriting algorithm
for UCQs. Based on such an algorithm, we are able to identify the class of
acyclically interacting queries, a class of UCQs which extends the class UCQNI

defined in Section 3, and to prove that acyclically interacting queries constitute
a class of FOL-reducible queries under key dependencies.

4.1 The Algorithm UCQ-FolRewriteNew

We are now ready to define the algorithm UCQ-FolRewriteNew, a FOL rewrit-
ing algorithm for UCQs that, differently from the previous algorithm UCQ-
FolRewrite, takes into account the semantic interactions between the query
disjuncts.

In the algorithm UCQ-FolRewriteNew(and in the other algorithms iteratively
invoked by UCQ-FolRewriteNew and presented in this section), with a little abuse
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of terminology we call typed query associated to a query q the query qt obtained
from q by replacing each atom with its typing. Analogously, the typed disjunct
associated to a disjunct d is the disjunct dt obtained from d by replacing each
atom with its typing. Coherently to the above definitions, when the operator
JG, used for constructing the join graph of a query, is applied to a typed query
qt, the nodes of JG(qt) respect the typing specified by qt, i.e., each node of the
graph is labeled with the corresponding typing indicated in qt. We also point
out that in the query Q in input to UCQ-FolRewriteNew, each variable symbol
only occurs in a single disjunct of Q, and the new variables introduced by the
algorithm NodeRewriteNew(see below) are always fresh symbols with respect to
all the executions of the algorithm.

The algorithm UCQ-FolRewriteNew is presented in Figure 4.

Algorithm UCQ-FolRewriteNew(Q,S)
Input: a first-order reducible UCQ Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;

schema S = 〈A,K〉
Output: FOL query (representing the rewriting of Q)
begin

let Qt be the typed query associated to Q;
for i := 1 to m do

let dt
i be the typed disjunct associated to di;

return {x1, . . . , xn |
�

i=1,...,m

DisjunctRewrite(dt
i, Q

t,S , (∅, ∅)) }

end

Fig. 4. The algorithm UCQ-FolRewriteNew

Algorithm DisjunctRewrite(d, Q,S ,P)
Input:

a typed union of conjunctive queries Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;
a typed disjunct d that appears in Q;
schema S = 〈A,K〉;
P = (M, E) where M is a list of atoms and E is a set of equalities;

Output: FOL query (representing the rewriting of the disjunct d)
begin

q = h(x1, . . . , xn) :– d;
compute JG(q);
return {

�

N∈roots(JG(q))

NodeRewriteNew(JG(q), N, Q,S ,P)}

end

Fig. 5. The algorithm DisjunctRewrite

Such algorithm calls the algorithm DisjunctRewrite, described in Figure 5, which
computes the rewriting of a single disjunct di of the UCQ, by recursively calling
the subroutine NodeRewriteNew, presented in Figure 6.

The algorithm NodeRewriteNew is actually a new version of the algorithm
NodeRewrite presented in Section 3. Notably, NodeRewriteNew (executed on a
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Algorithm NodeRewriteNew(JG(q), N, Q,S ,P)
Input: join graph JG(q);

node N of JG(q);
a typed query Q = h(x1, . . . , xn) :– d1 ∨ . . . ∨ dm;
schema S = 〈A,K〉;
P = (M, E) where M is a list of atoms and E is a set of equalities;

Output: FOL formula
begin

let a = r(x1/t1, . . . , xn/tn) be the label of N ;
for i := 1 to n do

if ti ∈ {KB,B} then vi := xi

else vi := yi, where yi is a new variable;
if each argument of a is of type B or KB then f1 := r(x1, . . . , xn)
else begin

let i1, . . . , im be the positions of the arguments of a of type S, U, KU;
f1 := ∃yi1 , . . . , yim . r(v1, . . . , vn)

end;
if there exists no argument in a of type B or S
then return f1

else begin
let p1, . . . , pc be the positions of the arguments of a of type U, S or B;
let �1, . . . , �h be the positions of the arguments of a of type B;
for i := 1 to c do

if tpi = S then zpi := xpi else zpi := y′
i, where y′

i is a new variable
for i := 1 to n do

if ti ∈ {KB,KU} then wi := vi else wi := zi;
if occurs(Πkd(a),P)

then f2 =

�
� �

N′∈jgsucc(N)

NodeRewriteNew(JG(q),N ′, Q,S ,P) ∧
�

i∈{�1,...,�h}
wi = xi

�
�

else begin
M = M ∪ {Πkd(a)};
E = E ∪ {w1 = u1, . . . , wn = un};
f2 := ∀zp1 , . . . , zpc . r(w1, . . . , wn) →�

� �

N′∈jgsucc(N)

NodeRewriteNew(JG(q),N ′, Q,S ,P) ∧
�

i∈{�1,...,�h}
wi = xi

�
�∨

�
dj∈Int(N)

∃uj1 , . . . , ujs .w1 = u1 ∧ . . . ∧ wn = un ∧

∧ DisjunctRewrite(τ (dj), τ (Q),S ,P);
return f1 ∧ f2

end
end

end

Fig. 6. The subroutine NodeRewriteNew

disjunct d) recursively calls DisjunctRewrite to properly take into account the role
of other disjuncts which have relation symbols in common with d. More precisely,
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the rewriting produced by the algorithm NodeRewriteNew suitably encodes the
possibility that, given an assignment of the head variables of the UCQ Q (i.e., a
tuple of constants t), an “opponent fact” r(c′) to a fact r(c) (i.e., such that r(c)
and r(c′) have the same key) that belongs to an image of t w.r.t. a disjunct di of
Q, might not be part of any image of the same disjunct di but may be part of an
image of t w.r.t. another disjunct dj of the query. Thus, the formula in the FOL-
rewriting must look for the existence of such an image of dj . It can be shown
that this non-local check must be performed only in the presence of interacting
atoms in Q. More precisely, when NodeRewriteNew is computing the rewriting
of a node corresponding to an atom a, it must recursively invoke DisjunctRewrite
only for each disjunct dj such that there is an atom b in dj that is interacting
with a in Q.

In the algorithms DisjunctRewrite and NodeRewriteNew, P is the pair (M,E)
in which M is a list of atoms and E is a set of equalities of terms. Each atom
in the list M is obtained by means of the operator Πkd applied to a typing
a = r(x1/t1, . . . , xn/tn) (i.e., a label of a node of a join graph).Πkd(a) returns the
atom r(xi1 , . . . , xia), where i1, . . . , ia are positions of the arguments of a of type
KU or KB, i.e., xi1 , . . . , xia are the key-arguments of the atom r(x1, . . . , xn).
The function call occurs(Πkd(a),P) returns true if the atom Πkd(a) is in the
list M or it can be constructed from an atom of M according to the equalities
of terms contained in E. Otherwise occurs(Πkd(a),P) returns false. This check
avoids useless calls of the algorithm DisjunctRewrite and guarantees termination
of the procedure. Furthermore, Int(N) denotes the set of disjuncts of Q that
contain atoms interacting with the atom corresponding to the node N (and
different from the disjunct which N belongs to); u1, . . . , un denote the terms oc-
curring the interacting atom in the disjunct dj , and uj1 , . . . , ujs are the variables
occurring in such atom; τ is an operator which modifies the typing of each atom
(in the disjunct dj and in the query Q in the two invocations τ(dj) and τ(Q),
respectively) by assigning KB to the key arguments of the interacting atom, and
B to the other (non-key) arguments.

Example 3. Consider again the query q of Example 2, and execute the algorithm
UCQ-FolRewriteNew(q,S). Then the FOL-rewriting produced by the algorithm
is as follows

{ | (∃y1.r(y1, c1)∧∀y2.r(y1, y2) → y2 =c1 ∨ (∃y3.y1 =y3 ∧ y2 =c2 ∧ r(y3, c2)))∨
(∃y1.r(y1, c2) ∧ ∀y2.r(y1, y2) → y2 = c2 ∨ (∃y3.y1 = y3 ∧ y2 = c1 ∧ r(y3, c1)))}.

Notice that in such a case the check on the execution of DisjunctRewrite,
which we have talked about above, avoids the execution of identical calls of such
a procedure.

We finally point out that the rewriting produced by the algorithm can be refined
in order to get a simplified version of it (which could be evaluated in a more
efficient way). However, this is outside the scope of the present paper.
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4.2 Termination and Correctness

The algorithm UCQ-FolRewriteNew in general does not terminate. In order to
charaterize the class of queries for which the algorithm terminates, we give the
following definitions.

Definition 4. Given two atoms a = r(x1, . . . , xn, w1, . . . , wm), b = r(y1, . . . , yn,
z1, . . . , zm), where key(r) = {1, . . . , n}, we say that a and b are key-unifiable
if, for each i s.t. 1 ≤ i ≤ n: (i) xi is a variable; or (ii) yi is a variable; or
(iii) xi = yi. If a and b are key-unifiable, we denote by σa→b the substitution
{yi ← xi | 1 ≤ i ≤ n and yi is a variable}.2

Definition 5. A UCQ Q = {x1, . . . , xm | d1 ∨ . . . ∨ dn} has a ∨-cycle if there
exists a sequence d1

i1 , . . . , d
k
ik

(with k > 1) and a sequence of relation symbols
rj1 , . . . , rjk−1 such that:

– d1
i1

= di1 ;
– ik = i1;
– for each h s.t. 1 ≤ h ≤ k − 1, rjh

occurs both in dh
ih

and in dh+1
ih+1

;
– let a be the atom with relation rjh

in dh
ih

and let b be the atom with relation
rjh

in dih+1 . Then, a and b are key-unifiable. Moreover, for each h s.t. 1 ≤
h ≤ k − 1, dh+1

ih+1
= σa→b(dih+1 );

– the key arguments of rj1(dk
ik

) contain at least one existential variable not
occurring in the key arguments of rj1(d1

i1
).

In a ∨-cycle, the disjuncts dj
ij

and dj+1
ij+1

are connected through two atoms a

(occurring in dij ) and b (occurring in dij+1 ) such that a and b are on the same
relation symbol r. The key arguments of a are “passed” to b, thus dij+1 is trans-
formed according to such a substitution.

Example 4. Let us consider the UCQ

q :– (r1(x, y) ∧ r2(y, z)) ∨ (r2(x, y) ∧ r1(y, z))

We now show that there is an ∨-cycle in q which starts from the atom r1(x, y)
of the first disjunct. Indeed, the ∨-cycle is due to: (i) the presence of the atom
r1(x, y) in the first disjunct and the atom r1(y, z) in the second disjunct, which
constitutes the first part of the cycle; (ii) the presence of the atom r2(x, y) in the
second disjunct and the atom r2(y, z) in the first disjunct, which constitutes the
second part of the cycle; (iii) the fact that, after this cycle, the key argument of
the atom r1(x, y) in the first disjunct is unbound.

It is easy to verify that a a necessary condition for a UCQ Q to have a ∨-cycle
is the presence of interacting atoms in Q.

Definition 6. A UCQ Q = {x1, . . . , xm | d1 ∨ . . . ∨ dn} belongs to the class
UCQAI of acyclically interacting UCQs if:
2 In the definition of key-unifiable atoms, head variables are considered as constants.
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1. each conjunction di is such that the CQ {x1, . . . , xm | di} belongs to C+
tree;

2. there are no ∨-cycles in Q.

Informally, according to the above definition, a UCQ Q is acyclically interacting
if the interacting atoms in the query disjuncts are such that they do not con-
stitute a ∨-cycle in Q, i.e., a cycle of interactions that, starting from an atom
r(x), cycles back to the same atom introducing at least one existential variable
in the key arguments of the atom.

From the semantic viewpoint, the presence of an ∨-cycle implies that, when
checking for the opponents of an image r(t) of a query atom a, we need to check
for the opponents of another image r(t′) of a, where t′ has in its key arguments a
new value that does not occur neither in t nor in the query Q. This immediately
implies non-termination of the algorithm UCQ-FolRewriteNew, since at every
such iteration there are new key arguments in the call to NodeRewriteNew for
the atom a. Vice versa, the absence of such a cycle implies termination of the
algorithm, since no new term (with respect to the terms occurring in the query
Q) is introduced in the calls to NodeRewriteNew, hence the number of possible
instantiations of the calls to NodeRewriteNew is finite.

The following property formalizes the fact that the class of acyclically in-
teracting queries is precisely the class of UCQs for which the algorithm UCQ-
FolRewriteNew terminates.

Theorem 3. Let Q be a UCQ, and let S be a schema. The execution of the algo-
rithm UCQ-FolRewriteNew with input Q terminates if and only if Q is acyclically
interacting.

Moreover, the following theorem establishes soundness and completeness of the
algorithm UCQ-FolRewriteNew for the class of acyclically interacting UCQs.

Theorem 4. If Q is acyclically interacting, then for every database instance D
for S, a tuple t is a consistent answer to Q in D under S iff t ∈ QD

r , where
Qr is the FOL query returned by UCQ-FolRewriteNew(Q) (i.e., the FOL query
returned by the algorithm UCQ-FolRewrite(Q) is a FOL-rewriting of q under S).

As a corollary of the above theorem, we obtain that the class UCQAI is FOL-
reducible.

Finally, we point out that:

– the class of UCQAI is a proper superset of the class of UCQs UCQNI ana-
lyzed in Section 3 and for which the algorithm UCQ-FolRewrite is complete;

– if Q is a query in the class UCQNI , the algorithms UCQ-FolRewrite(Q) and
UCQ-FolRewriteNew(Q) return exactly the same FOL query.

5 Discussion and Conclusions

We believe that the study of first-order reducibility of consistent query answer-
ing for unions of conjunctive queries is relevant per se, since the possibility of
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expressing unions in queries is an important feature which has practical rel-
evance. However, we argue that the ability of handling unions of conjunctive
queries is necessary in order to solve via FOL-rewriting techniques the problem
of consistent query answering for (unions of) conjunctive queries issued over
database schemas which contain keys and foreign keys under the loosely-sound
semantics, a repair semantics which allows for properly dealing with both in-
complete and inconsistent databases3 [4,5].

Formally, given a database schema S which contains keys and foreign keys,
a loosely-sound repair of a database D is any database legal for S that con-
tains a repair (as so far intended in the present paper and formally specified in
Section 2) of D under S′, where S′ is obtained from S disregarding foreign key
dependencies. Roughly speaking, such semantics adds the ability to deal with in-
consistent databases to the first-order semantics commonly adopted for dealing
with incomplete databases. Indeed, in intuitive terms, it maintains the ability of
the first-order semantics to deliberately add facts to a database instance (prop-
erty that can be exploited to satisfy those dependencies that can be satisfied
by adding facts, as foreign keys), but it also allows for a (minimal) deletion of
facts, thus enabling the repairing of database instances with respect to those
dependencies, as key dependencies, that may generate inconsistency according
to the first-order semantics.

Notably, as showed in [5], in order to solve consistent query answering for
(unions of) conjunctive queries under the loosely-sound semantics, it is possible
to separately dealing with keys and foreign keys. According to the procedure
provided in [5], a query q is first processed only according to the foreign keys
issued over the database schema. Such a pre-processing produces a union of
conjunctive queries Q. Then, it is sufficient to solve consistent query answering
for the UCQ Q over the same database schema in which foreign keys have been
dropped. It is immediate to see, that if the query Q obtained is of class UCQAI ,
then to solve the second problem we can apply the algorithm UCQ-FolRewrite
presented in this paper.

Consequently, even if still preliminary, the analysis of first-order reduction of
unions of conjunctive queries we have presented turns out to be a necessary first
step in order to arrive to the definition of analogous methods for (unions of)
conjunctive queries under key and foreign key dependencies.
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Abstract. In this paper we propose an approach to manage in a correct
way valid time semantics for semistructured temporal clinical informa-
tion. In particular, we use a graph-based data model to represent radi-
ological clinical data, focusing on the patient model of the well known
DICOM standard, and define the set of (graphical) constraints needed to
guarantee that the history of the given application domain is consistent.

1 Introduction

In the clinical context the amount of multimedia temporal data is growing up.
Recently, there has been an increasing attention on semistructured multimedia
clinical data motivated also by the growing usage of XML (eXtensible Markup
Language) [14] for exchanging medical data and knowledge [6,12]. Semistruc-
tured data have some structure, that may be irregular or incomplete and does
not necessarily conform to a schema fixed in advance [1]. In the semistructured
data context, the same information can be structured in different ways within
the same document, and documents about the same topics can be structured in
different ways, thus an important issue is related to the integration of semistruc-
tured (XML) data. At this aim, in this paper we use a graphical data model to
represent in a simple and intuitive way semistructured documents coming from
different sources and (possibly) structured in different ways.

A further aspect which has gained increasing attention also for clinical data
is the management of the temporal dimension of information [6]. The time di-
mension usually considered for clinical data is valid time (VT), which is user-
provided, and represents the time when a fact is true in the considered do-
main [7]. Both for conceptual models and for the relational model, several pro-
posals deal with the issue of formalizing and managing valid time semantics of
related data [9]: for example, we could require that the database system must
be able to constrain the valid time of a visit, i.e. the time during which the visit
happened, to be during the valid time of the patient, i.e. the time during which
a person was hospitalized; on the other hand, we could require that the valid
time of the diagnosis starts after the beginning of the symptoms, the diagnosis
is based on.

The main issue we consider in this paper is related to the management of
valid time semantics for temporal semistructured multimedia clinical data. To
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represent semistructured multimedia temporal information we use the Multime-
dia Temporal Graphical Model (MTGM) [6], which is a general data model for
representing semistructured data, having multimedia and temporal features.

We propose a simple approach to manage valid time semantics in the semi-
structured data context allowing the definition of the set of constraints needed
to manage in a correct way the valid time dimension of information represented
by means of MTGM. Being MTGM a graph-based data model, we use a graph-
ical approach also to represent the constraints. A constraint will be composed
by a graph, used to identify the portions of the semistructured data where the
constraint has to be applied, and a set of formulae, representing restrictions to
impose on those information.

In particular, we apply our approach to clinical data, considering DICOM [2]
data. DICOM (Digital Imaging and Communications in Medicine) is a standard
method to encode and transfer images and related information between hetero-
geneous sources. DICOM is considered one of the most important standards in
radiology, and allows the physicians to store documents containing a diagnostic
report related to radiology images. Each report contains the interpretation and
the impressions of the radiologist. This kind of document is a typical example
of a semistructured document. It has a structure (defined by the DICOM stan-
dard) that could be irregular or incomplete: for example the interpretation of
the radiologist could be missing in a particular report.

The structure of the paper is as follows: in Section 2 we briefly describe some
research directions on multimedia temporal data and then introduce MTGM
through general clinical examples. Then, in Section 3, we describe how MTGM
allows us to model DICOM data, and in Section 4 we define the constraints
needed to manage in a correct way the valid time dimension. In Section 5 we
describe a prototype, developed by using the Java technology, managing mul-
timedia temporal clinical data, together with the defined constraints related to
the valid time semantics. Finally, in Section 6 we sketch some conclusions.

2 Managing Multimedia Temporal Data

In the context of multimedia database systems, it is possible to distinguish two
main research directions: the first one focuses on data modeling and querying
issues [4,5], while the second one is addressed to model multimedia presenta-
tions [3,11]. As examples of the first research direction, in [4] the authors present
a unified data model for multimedia types, such as images, sounds, videos and
long text data, while in [5] the author faces the problem of modeling temporal
aspects (at different granularities and with indeterminacy) of visual and related
textual entities in multimedia databases. As for the second research direction,
in [3] the authors deal with the mechanisms for the specification of synchro-
nization constraints between different media objects, while in [11] the authors
present a methodological approach for checking the temporal integrity of inter-
active multimedia documents.
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To this regard, MTGM deals with both the above research issues, in the man-
agement of clinical data [6]. MTGM can be considered as a logical model for
semistructured and multimedia data: the main advantages of this model are re-
lated to (i) the chance of representing in a flexible and common way information
having different structures, and (ii) the possibility of representing, in a seamless
way, both temporal aspects of multimedia data and their temporal presenta-
tion requirements. In this paper, we do not focus on the graphical description
of multimedia presentations, composed by semistructured and multimedia infor-
mation represented by means of MTGM, even though in the clinical context,
the possibility of composing presentations starting from the stored information
is an important feature. Details on multimedia presentations with MTGM can
be found in [6]. As for data modeling, multimedia temporal data are represented
through graphs: an MTGM graph is a directed, labeled graph, with a single root.
Figure 1 shows a portion of an MTGM graph representing information about a
pregnant patient and her ultrasound exam.
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Fig. 1. A portion of an MTGM graph

MTGM has complex, atomic and stream nodes: complex nodes represent ab-
stract entities and are depicted as rectangles, atomic nodes represent primitive
values and are depicted as ovals, and stream nodes (which are a particular kind
of atomic node) contain multimedia information and are depicted as thick ovals.
In the example of Figure 1, there are three complex nodes, Patient, EchoVisit
and Echography, and seven atomic nodes as, for example, Name, Birthday and
RiskFactor. The atomic node StreamFile (child of Echography) is a stream node
and contains the string “A104.mpg”, which refers to the file that encodes the
movie of the echography.

Nodes are connected through direct labeled edges (relational edges). Rela-
tional edges between complex nodes and their atomic nodes have labels with
name “HasProperty”, while relational edges between complex nodes and their
stream nodes have labels with name “HasMMProperty”.

Valid time is explicitly managed by MTGM both for nodes and edges. The
valid time1 of a complex node is represented in its label. The valid time of an
1 In this work dates are represented in the format DD/MM/YY. Format and granu-

larity of timestamps can be chosen with respect to the considered domain.
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atomic (stream) node is represented in the label of the edge between the atomic
node and its parent. For example, in Figure 1, the valid time of the node Pa-
tient is [01/01/03 10:00, now ] where “now” indicates that the represented fact is
currently true (i.e., Sharon Zi is still a patient), while the valid time of the sim-
ple node Physician related to the complex node Echo visit is [15/03/03 10:30,
15/03/03 11:30] (i.e., the visit has been executed by Ellen Dalthon during the
specified interval). The label of a relational edge is composed by the name of the
relationship and its valid time. The label of the edge relating a complex node to a
stream node contains also the specific subpart of the stream object the complex
node is related to. As shown in Figure 1, the label of the edge between Echogra-
phy and StreamNode is 〈HasMMProperty, [15/03/03 11:10, 15/03/03 11:15], [0,
infinity]〉 and represents the time during which the movie of the echography has
been recorded. In particular, the interval [0, infinity] describes the fact that all
the frames of the movie are related to the echography.

3 Modeling DICOM Data by the Multimedia Temporal
Graphical Model

DICOM is a standard method to represent images and related information, and
in particular it is considered as a standard in radiology. DICOM allows one to
store diagnostic reports containing radiology images and the interpretation and
the impressions of the radiologist [2].

The DICOM standard aims at allowing interoperability of medical image
equipment and considers several aspects: from network communication, to syn-
tax and semantics of exchanged information, to media storage services and file
format, to requirements for verifying standard conformance. In particular, in
this work, we consider the DICOM information model [2], which is an ER-based
schema of the domain considered by DICOM. Let us now focus on the represen-
tation of (part of) the DICOM model through MTGM [6].

In Figure 2 we show an example of an MTGM graph representing information
about a patient and her radiological data, according to the DICOM information
model. In Figure 2 Patient and Study are complex nodes, while nodes Name of
Patient and Physician’s Name of Study are simple nodes. The node Raw Data
of Image is a stream node. As for the temporal dimension, the valid time of
the Patient is [10/01/05, now ] where “now” indicates that the considered fact
is currently true. The valid time of an atomic (stream) node is represented in
the label of the edge connecting the atomic node and its parent. The label of a
relational edge is composed by the already mentioned name of the relationship
and by its valid time: for example, the label of the edge between Patient and
Study in Figure 2 is 〈References, [10/01/05, now]〉. The label of the edge relat-
ing a complex node to a stream node contains also the specific subpart of the
stream object the complex node is related to. In case of images the subpart is
specified by [x, y, width, height] that represents the portion of the image with
origin in (x,y) and dimensions width and height : as an example in Figure 2, the
label of the edge between the Image (with Number equal to 60) and Raw Data
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Fig. 2. An example of an MTGM graph

is 〈HasMMProperty, [20/01/05, now], [0, 0, 640, 480]〉. For readability reasons, in
Figure 2 we do not report all the edge labels.

4 Expressing Valid Time Semantics

Constraints on valid times must be able to guarantee that the history of the
given application domain is consistent. As an example, at a specific time instant,
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between two nodes it cannot exist more than one edge representing the same
relation.

The graphical formalism we use in the following constraints has been described
in [8,13]: a constraint is composed by a graph, which is used to identify the
subgraphs (i.e., the portions of a semistructured database) where the constraint
has to be applied, and a set of formulae, which represent restrictions imposed
on those subgraphs.

We distinguish two different categories of constraints for valid time values
of nodes and edges: basic constraints must be satisfied by every MTGM graph;
domain-dependent constraints are further constraints, which can be defined ei-
ther for some specific nodes and edges or for the whole graph for a specific clinical
domain. In the following, part a) of Figures from 3 to 9 identifies the subgraphs
where the constraint has to be applied, and part b) the set of formulae repre-
senting restrictions imposed on those subgraphs. Part c) shows an example of
intervals satisfying the related constraint.

4.1 Basic Constraints

In an MTGM graph, we identified the following basic constraints:

1. The time interval of an edge between a complex node and a simple node must
be related to the time interval of the complex node (Figure 3). Intuitively,
the relation between a complex node and a simple node cannot survive the
complex node; thus, the time interval of the edge cannot start before and
cannot end after the valid time of the complex node. This is due to the fact
that we suppose that a complex node is related to its properties (simple
nodes) while it is valid.

t_hs t_he

t_js t_je

<Nname_h , [t_hs,t_he]>

<Nname_k>
t

a) c)

<HasProperty_j, [t_js,t_je]>

b) tjs ≥ ths ∧ tje ≤ the

Fig. 3. The VT constraint on the time interval of edges pointing a simple node

2. A complex node cannot have, at a given time, different values for the same
property, and thus at a specific time instant, a complex node can be related
to at most one simple node with a particular name.

3. At a specific time instant, between two complex nodes it cannot exist more
than one edge with the same name. Intuitively, an edge represents a rela-
tionship between two complex nodes, thus it makes no sense representing
with two edges the same relationship.
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4.2 Domain Dependent Constraints

Other possible optional constraints that can be considered are the ones for im-
posing restrictions on the time interval of an edge connecting two complex nodes.
These constraints are strictly related to the semantics of the represented objects
and relationships. In this work, we consider radiological clinical data represented
by means of DICOM, and thus we define the set of constraints needed to manage
this kind of information in a consistent way. In Figure 2 we represented informa-
tion about the DICOM patient information model, related to radiology images,
by means of MTGM, and now we define the related set of domain dependent
constraints.

1. A patient can be examined only in the period of time in which she is valid
(i.e., she is alive), thus the valid time of the visit must be contained in the
valid time of the patient. Moreover the valid time of the edge must start at
the same time of the visit (Figure 4).

t

a)

<Patient, [t_hs,t_he]>

<Visit, [t_ks,t_ke]>

<References, [t_js,t_je]>

t_hs t_he

t_js

t_ks t_ke

t_je

c)

b) tks ≥ ths ∧ tke ≤ the ∧ tjs = tks

Fig. 4. The VT constraint on the relation between a patient and a visit

In this constraint we do not consider the end time of the edge, because we do
not fix a rigid relation between its value and the valid times of the patient
and the visit. Modifying the constraint, it is possible to require that the
start time of the edge is related to the start time of the visit, and that the
end time of the edge is related to the end time of the patient. In this case,
for each subgraph satisfying the structure shown in part a) of Figure 4 we
require that tks ≥ ths ∧ tke ≤ the ∧ tjs = tks ∧ tje = the. Intervals reported
in part c) of Figure 4 satisfy also this version of the constraint.

2. The situation of the patient with respect to the visit can be studied during
the visit or after the visit; thus the start time of the study must start at the
same time or after the valid time of the visit (Figure 5).

3. The result of the study can be defined during or after the study, thus the
valid time of the result must start after the start of the valid time of the
study (Figure 6).

4. The result can be interpreted after the creation of the result itself, thus the
valid time of the interpretation must start after the valid time of the result
(Figure 7).
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Fig. 5. The VT constraint on the relation between a visit and a study
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Fig. 6. The VT constraint on the relation between a study and a result
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c)
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Fig. 7. The VT constraint on the relation between a result and an interpretation

5. A patient can be considered for a study after the moment in which she
becomes a patient, thus the valid time of the study must start after the start
of the valid time of the patient (Figure 8).

6. An image must be related to a study, thus the valid time of the image must
be contained in the valid time of the study (Figure 9).
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Fig. 8. The VT constraint on the relation between a patient and a study
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Fig. 9. The VT constraint on the relation between a study and an image

Further, and more complex constraints could be defined: for example we could
require that the valid times of two studies related to the same patient do not
overlap.

4.3 Translating MTGM Graphs into XML Documents

MTGM can be seen as a logical model for semistructured data; an MTGM
graph can be physically realized through the emerging XML technology. Among
the main differences between MTGM and the data model underlying XML, we
have to consider (i) the fact that MTGM considers labeled graphs, while XML
mainly deals with trees, and (ii) that, while in MTGM both nodes and edges are
labeled, in XML only labeled nodes are allowed. Another important difference
is that XML node labels are in some way atomic, while in MTGM we deal with
compound labels.

The overall, main ideas underlying the designed translation technique can be
summarized as follows:

1. Complex nodes are translated into complex elements (i.e., elements which
contain other elements); in particular, they have a (nested) element for the
corresponding valid time and an element for each outgoing edge.
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2. Atomic (stream) nodes are translated into mixed elements (i.e., elements
containing both string values and other elements); in particular, they contain
the string representing their values and an element for their valid times
(which are contained, in the related MTGM graph, in the label of the ingoing
relational edge).

3. Edges between complex nodes are represented through complex elements
nested into the element corresponding to the complex node, which the edge
originates from. The element corresponding to the node the edge points to,
is referred through a suitable attribute in the element representing the edge.

4. Edges between a complex node and an atomic (stream) one are not translated
(see point 2.).

5. Compound labels are managed by introducing suitable sub-elements (i.e.,
nested elements), as for representing valid times of nodes and edges.

6. Elements corresponding to MTGM nodes have an attribute (of type ID),
which allows one to refer to them in an unambiguous way.

5 Managing Temporal Clinical Data by XML Native
Database Systems

Semistructured temporal DICOM data are managed by means of a system proto-
type developed by the Java technology, and based on the native XML database

Fig. 10. A screen shot of the described prototype



Managing Valid Time Semantics 385

system eXist [10]. The system prototype has been designed according to the
architecture described in [6] and allows us to store clinical radiological data
(represented by means of MTGM as shown in Figure 2) in an XML database,
as reported in Figure 10.

In the left part of Figure 10 it is possible to see the description of a portion of
the MTGM graph reported in Figure 2. The prototype allows us to create and
modify an MTGM graph by adding nodes and edges. The description of them
can be inserted by means of suitable windows (see the right part of Figure 10).
At the end of these operations, the MTGM graph is represented through an
XML document and stored in the eXist database.

The constraints described in Section 4 can be managed by the prototype,
which allows us to define a set of constraints on a graph-based representation of
information. The defined constraints are verified at each operation on the graph:
the graph can be modified only if the constraints are verified.

6 Conclusions

In this work we introduced a graph-based approach to manage in a correct
way valid time semantics for semistructured clinical information. In particular
we considered the patient data model proposed by the DICOM standard and
showed how to represent it by the semistructured temporal data model MTGM;
moreover we modeled valid time semantics of DICOM data through graphical
constraints. Finally, we showed how to use our system prototype to manage
radiological data. We plan to study and define more complex constraints related
for example to nodes connected by complex paths involving several edges, and
to further extend the implemented system to manage them.
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Abstract. Current methods for data integration are as difficult to use as
they are powerful. Motivated by our work with clinical data and the peo-
ple who analyze it, we present two components that allow non-technical
users that are domain experts to create and reuse complex data inte-
gration processes. The GUAVA (GUI As View Apparatus) component
enables data analysts to make informed data integration decisions based
on detailed accounts of the user interface that was used to generate
the data. The MultiClass component allows analysts to revisit decisions
made for prior studies and reuse them or not each time the data is used.
We describe these two components with examples where a warehouse of
clinical data is used to support research studies. We describe the state
of our implementation and why we believe the two components can be
automatically translated into ETL workflows.

1 Introduction

In a traditional data warehouse, database specialists construct an ETL (Extract-
Transform-Load) workflow to combine, and transform data from heterogeneous
data sources and accumulate it in a central place. Because ETL can include pro-
gramming code of any complexity, if a warehouse-building process can be done,
it can be done using ETL. However, an ETL workflow, once defined, encapsu-
lates only one set of decisions about how to integrate various source databases,
and is almost entirely inaccessible to those who are not database experts or pro-
grammers. If health-related databases are to be used in research, data must be
extracted from data sources and transformed differently for different studies, at
multiple points in time, using methods to be specified by clinical experts rather
than database experts.

In a clinical setting, there are additional weaknesses to the classical approach
of full data integration. First, it may be necessary to lose information. A data
source A with two categories, smokers or non-smokers, cannot be fully integrated
with a data source B with three related categories, non-smokers, cigar smokers,
or cigarette smokers without making a classification decision or declaring the
integration impossible. Many integration techniques [1,9,15] identify similarities

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 387–398, 2006.
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between data sources, without offering any guidance on how to answer the clas-
sification decision appropriately.

Second, integration techniques that do address the classification decision [6,7]
assume that there will be a single, integrated data source. We are interested
in supporting an environment where data is used in different studies and may
require different classifiers.

Because data integration solutions often require a person to read and under-
stand a database, it is often left to technical experts to decide how to integrate
data, even if they do not fully understand the data they are integrating. But,
the data in the database is not sufficient for most clinical inquiries. The user
interface of a software tool used to capture data defines the precise meaning
of data. A “1” in the field “smoker” might mean that the patient is a current
smoker, or instead could mean that they quit smoking one year ago.

We present two complementary components that allow domain experts to
make their own integration and classification decisions, as needed, for each study.
The first, GUI As View Apparatus (GUAVA), provides the user with a rich query
interface that is derived from the same GUI that clinical providers used to as-
semble and view the data originally. Users can thus view data in its original
context rather than the potentially obscure environment of a database. The
second component, MultiClass, allows domain experts to integrate and classify
data again and again, as needed. MultiClass captures these decisions and uses
them to generate ordinary ETL workflows. Analysts are also able to use Multi-
Class to document, inspect, reuse, and modify integration decisions from prior
studies.

Section 2 motivates this work by describing patient data used in clinical out-
comes research. We describe the GUAVA and MultiClass components in Section
3. Section 4 looks at current results. Section 5 briefly presents related research.
Section 6 describes our plans for future work and offers some conclusions.

2 The Status Quo

The primary actor in our scenario is the data analyst, a person trained in statis-
tical methodology with good domain knowledge. For clinical studies, this means
the analyst understands medical terminology and data. The data analysts that
we are observing work for the C linical Outcomes Research Initiative1 (CORI),
an organization that studies clinical data to improve the practice of clinical en-
doscopy. To encourage clinics to submit data, CORI developed a software report-
ing tool that clinics can use to document endoscopic procedures. Data from the
CORI software tool is periodically sent for inclusion in the CORI warehouse. An
ETL workflow performs schema transformation and data cleaning while moving
the data into the warehouse. Analysts then identify and extract relevant reports
for import into a statistical package for each study. Here are two studies that
the analysts may run:

1 More information about CORI can be found at http://www.cori.org.
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Study 1: We would like to find out, of all patients undergoing upper GI
endoscopy, how many (what proportion) had the indication of “Asthma-specific
ENT/Pulmonary Reflux symptoms”? Of these, include only those with no history
of renal failure and with cardiopulmonary and abdominal examinations within
normal limits. How many of these suffered the complication of transient hypoxia?
Of these, how many required each of the following interventions: surgery, IV
fluids, or oxygen administration?

Study 2: Of all procedures on ex-smokers, how many had a complication of
hypoxia?

These research studies as performed by an analyst are more than just queries.
A study comprises all of the decisions that a data analyst makes from the time
a request arrives to when final statistical analyses are run, and those decisions
can change over time. Those decisions are also based on the precise semantics
of both the study and the data; if a study defines an ex-smoker to be someone
who has quit in the last year, but the user interface indicates that an ex-smoker
is anyone who has ever smoked, the data may not be appropriate to use in that
study.

The technical demands of writing an ETL workflow are beyond the capabilities
of the CORI analysts. It is left to the development team to write the ETL
workflow, and as a consequence, the analysts do not completely understand the
process by which data arrives in the warehouse. Thus, they also cannot modify
that process as new research questions arise. To complicate matters, several
commercial reporting tool vendors have expressed an interest in contributing
data to CORI’s clinical data warehouse. Each new vendor necessitates a new
ETL workflow, potentially for each study.

3 Architectural Overview

The GUAVA and MultiClass components of our architecture enable data analysts
to express their own data extraction, integration, and cleaning for each study.
We introduce three artifacts (Figure 1):

– GUAVA trees (g-trees) that allow an analyst to explore the user interface of
a data capture tool to select the data of interest

– Study schemas that document the data that analysts want in studies
– Classifiers that relate elements of g-trees with the study schema

Anyone using the system can annotate and timestamp each of these artifacts,
as well as the studies themselves, so that it is clear who generated them, when,
and why.

To perform a study, the data analyst chooses data elements from (or adds
data elements to) a study schema, writes conditions similar to a WHERE clause
in SQL to filter out unwanted data, and then selects or defines new classifiers.
The analyst may choose to look at other studies that use the same study schema
to make informed decisions as to which classifiers to use.

MultiClass uses the specifications set out by the analyst to create an ETL
workflow that is tailored to a specific study. Thus, we can leverage existing ETL
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Fig. 1. GUAVA and MultiClass components and how they interface

and still offer the flexibility that analysts require when running studies over
semantically-rich data.

3.1 Scope

We do not expect our architecture to be a universal data integration solution.
GUAVA expects that a GUI accompanies each data source. The user interfaces
that interest us are reporting tools, where the primary purpose of the interface
is to facilitate data entry.

We are not working on resolving naming conflicts or automated schema match-
ing [1,10]. We assume that, because data analysts are domain experts, they are
capable of making judgments about domain-specific vocabulary, such as the fact
that “interventions” in one source refers to the same data as “complications” in
another source. Note that controlled vocabularies [4] or ontology, or other auto-
mated schema matching tools [10] may be useful in conjunction with GUAVA
to assist the user.

Also, we are not addressing instance identification problem [15]. Since an
endoscopy report is likely not created twice, MultiClass simply unions together
the results of ETL workflows from different contributors.

3.2 GUAVA: GUI as View Apparatus

Each contributor schema in Figure 1 is associated with a GUAVA tree (or g-
tree) that captures the structure and content of the user interface (Figure 2).
The g-tree demonstrates relationships that may not be present in the database
alone, such as a question that becomes enabled only if one answered a previous
question in a specific way. Each node in a g-tree (Figure 3) captures context
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Procedure

Complications Medical History 

Hypoxia

Surgeon Consulted

Other

Renal 
Failure

Alcohol 

Smoking

Frequency 

Fig. 2. An example dialog from a clinical tool and its corresponding g-tree. There is
a node in the g-tree for every control on the screen, even those that do not normally
store data, such as group boxes. Because the “frequency” textbox does not become
enabled until someone answers the “smoking” question, the “frequency” node appears
as a child of the “smoking” node.

information about a control on the interface, including the exact wording of
a control’s question and answer options, whether there is a default value, and
whether the control is required to be filled in.

The g-tree behaves like a view; when analysts write classifiers, they express
queries against the g-trees. Thus, each node in the g-tree must refer back to the
contributor’s database to get data. As a normal part of using the reporting tool,
when the user enters data into a field, the reporting tool places that data into the
database. In GUAVA, we exploit that connection between UI elements and the
database to generate mappings between the UI and the database automatically.

One benefit of our approach comes from how we deal with schematic het-
erogeneity, when information of interest appears as schema (such as table or
column names) in one data source and as data (a field in a table extent) in
another data source. The most frequent type of schematic heterogeneity arises
because contributors often use a generic database layout, where each row in
the database looks like “Entity, Attribute, Value”. The user interface, how-
ever, is not generic and does not have a generic layout; if one considers a single
screen in the interface as a row in the database, then each control represents a
column.

Informally, we have noticed that reporting tools maintain an in-memory struc-
ture with a simple design: each screen of the tool corresponds to a table, and
each control corresponds to a column. We call this design the näıve schema for
a tool. The physical database design is far different, typically with a generic
layout. We believe that the differences between the näıve schema and the real
database can be encapsulated by specific design patterns (Table 1). Each pattern
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(a) (b) (c)

Fig. 3. Details for three nodes from the g-tree in Figure 2. The alcohol node (a) has
one data value each for the selections in the drop-down list, and an option for free
text. The smoking node (b) has an option for ”unselected” because the radio list starts
out with no option selected. The frequency node (c) records that the control does not
become enabled unless the smoking control has an answer.

describes a data transformation; several put together describe how to translate
a query against the g-tree into one against the database.

Since the code for a user interface can be arbitrarily complex, there may be an
arbitrarily complex relationship between the UI and the underlying data source.
By exploring the utility of database patterns, we hope to show that most such
complex relationships can be expressed using a small number of design patterns.

3.3 MultiClass: Study Schema

A study schema collects all of the things that analysts want to study — like
a patient’s gender or smoking habits — and organizes them at a conceptual
level. The study schema may be incomplete compared to a global schema. Data
elements not needed in any study are simply omitted. Analysts can expand the
study schema as needed for new studies. For the data analysts at CORI, the
primary entity of interest is always the procedure; we expect that CORI would
only need to have one study schema. We allow multiple study schemas, e.g., with
patient or medications as the primary entity of interest.

A study schema simplifies the traditional ER model in that the only relation-
ship type is “has-a” with a single entity of primary interest sitting atop a tree,
much like a “part-of” hierarchy in a CAD database [13]. Using such a hierarchi-
cal model (Figure 4) meets the needs of clinical studies where the primary entity
of interest is the procedure. The biggest difference between a study schema and
an ER diagram is the addition of multiple domains for an attribute. Depending
on the study, analysts may want to represent an attribute like smoking habits
in different ways (Table 2).
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Table 1. Example database design patterns. Each design pattern represents a trans-
formation that one must perform when reading data into memory.

Pattern Description Data Transformation
Näıve No transformations are applied to

the data.
None — this is just the in-memory
database

Merge Data from several forms are drawn
from the same table.

Pull only data where C = form name
(C is a column that holds forms)

Split Attributes from a single form are dis-
tributed over several tables

Join

Generic Each row in a table represents an at-
tribute, rather than each column.

Execute an un-pivot operation, ei-
ther in code or SQL if the operator
exists in the DBMS

Audit No rows are ever deleted or updated.
Rows can be deprecated by setting
the value in a column. The reporting
tool only displays current data.

Pull only data where C = 0 (0 is a
sentinel to indicate that the row has
not been deleted)

 

Entity: Procedure 

Transient Hypoxia 
     • Boolean (yes/no)
Prolonged Hypoxia 
     • Boolean (yes/no) 
Surgery Performed 
     • Boolean (yes/no)
Smoking 
     • Integer (Packs/Day)
     • None, Current, Prev
     • None, Lt, Med, Hvy
Alcohol Use 
     • None, Light, Heavy

Entity: Finding of Fissure Entity: New Medication

Size 
     • Integer (mm)

Images Taken 
     • Boolean (yes/no)

Drug 
     • String (Name) 
     • String (Bar code) 
Dosage 
     • Integer (mg) 
Instructions 
     • String (full instructions) 
     • Integer (pills/day) 

Fig. 4. A study schema. Entities have attributes, which in turn have domain(s) that
correspond to different ways to represent them. The dashed lines indicate ”has-a”
relationships between entities, with the primary entity ”Procedure” at the top of the
tree.

Table 2. Three different domains for the ”smoking” attribute. There is no way to
translate any one representation into another without losing information.

Domain Elements Description
1 Positive Integers Number of packs smoked per day
2 None, Current, Previous No smoking, current smoker, or has

smoked in the past
3 None, Light, Moderate, Heavy General classification of smoking habits
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3.4 MultiClass: Classifiers

An analyst creates a classifier to relate nodes in a g-tree with domain entries
in a study schema. Each classifier is a list of declarative statements of the form
A← B, where A is an arithmetic calculation and B is a Boolean condition. Both
clauses use nodes in a g-tree as arguments (see Figure 5 for examples). Thus,
the input to a classifier is contributor data, but as displayed as it appears in a
user interface rather than as stored in a database.

MultiClass allows more than one classifier to map data from the same con-
tributor to the same domain. Different studies may interpret domain values
differently; a “previous” smoker may mean someone who has quit in the last
year, or in the last ten years, or at any time at all. MultiClass needs entity
classifiers to identify unique objects in a g-tree and bring them forward into a
study schema. An analyst creates an entity classifier just like any other classifier,
except the target object of the classifier is an entity rather than a domain. Also,
the classifier must refer to at least one node in the g-tree that represents a form
rather than an attribute.

 

None 
Light 

Moderate 
Heavy 

PacksPerDay = 0 
0 < PacksPerDay < 2 
2  PacksPerDay < 5 
PacksPerDay  5 

None
Light

Moderate
Heavy

PacksPerDay = 0 
0 < PacksPerDay < 1 
1  PacksPerDay < 2 
PacksPerDay  2 

Classifier Habits (Cancer) 
   Classifies packs per day according to 
conversations with cancer study on 5/3/02 

Classifier Habits (Chemistry) 
   Classifies packs per day according to flier 
from chemical studies

TumorX * TumorY * 
TumorZ * 0.52

 
 

TumorX > 0 AND 
TumorY > 0 AND 
TumorZ > 0 

Classifier Tumor Size 
   Estimates tumor volume based on 
dimensions in 3-space.  Assumes 52% 
occupancy from sphere-to-cube ratio. 

(a) 

(b) 

(c) 

Entity Classifier Relevant Procedures 
    Only consider procedures where surgery was 
performed 

Procedure Procedure AND 
SurgeryPerformed = TRUE 

Fig. 5. Example classifiers. Two classifiers (a) can relate data from a contributor to the
same domain for different studies. Another classifier (b) shows how to write classifiers
that refer to more than one g-tree node. An entity classifier (c) tells MultiClass how to
relate forms in the application with entities in the study schema, where “Procedure”
is a node in the g-tree that represents the form in Figure 2.

4 Analysis

We have shown a number of analysts our architecture with examples of g-trees,
classifiers, and study schemas and compared them with the statistical software
tools that they currently use. They confirm that g-trees are easy to read and
that classifiers are simple to write and organize.
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4.1 Research Directions

In the process of our research, we will investigate the validity of three hypotheses.
Hypothesis #1: It is possible to automatically generate a g-tree and

database mappings using an Integrated Development Environment
(IDE). The prototype of GUAVA that we are developing extends Visual Studio
.Net to generate a g-tree from the code that makes up the GUI of a reporting
tool. The prototype allows the developer to specify database design patterns
that relate the g-tree to the database.

Hypothesis #2: The artifacts of GUAVA and MultiClass are simple
enough that data analysts can use them without technical assistance.
We assert that g-trees are significantly simpler to read than database schemas,
that classifiers are easy to specify, and that domains are simple to understand
because they are a concept from statistics. Usability testing will include measur-
ing precision and recall; analysts should be able to extract only and all relevant
data from contributors without technical help.

Hypothesis #3: It is possible to compile studies into ETL workflows.
A study in MultiClass consists of classifiers that draw from databases using
GUAVA. At this early stage, we can show how to translate these objects into
an ETL workflow in specific cases. We aim to show that we can generate ETL
workflows by comparing the expressive power of our classifier language against
a set of common ETL components.

 

Source
G-Tree

Study 
GUAVA

Study Schema 

Classifiers Study Query

ETL ETL ETL
Temporary DB Temporary DB

Fig. 6. Translating GUAVA and MultiClass artifacts into ETL

We believe that the classifier language as specified here is equivalent in expres-
sive power to conjunctive queries with union. We can translate queries specified
against the g-tree into predefined SQL queries and ETL components that de-
pend on the database patterns used. At present, a study created over GUAVA
and MultiClass has a logical translation to a sequence of three ETL components,
each executing a query over the previous one’s results (Figure 6).

4.2 Implementation Status and Options

A prototype implementation of GUAVA is underway. Though we have identified
11 distinct database patterns so far, our initial prototype only considers the pat-
terns listed in Table 1. The prototype takes the standard .Net form components



396 J.F. Terwilliger, L.M.L. Delcambre, and J. Logan

and extends them with methods that allow the IDE to generate a g-tree. The
g-tree is stored as an XML Schema, which mimics the hierarchical nature of
the form interface and allows queries to return XML documents in a standard
format. Currently, we are working on developing the mechanism to translate
queries against the tree.

We are still in the early stages of development for MultiClass. We have de-
veloped the algorithms for translating the classifier language into XQuery. Our
approach is to identify all of the nodes in a g-tree that are referenced by the set
of classifiers. Then, treat each entity classifier as a “for-each” to iterate through
objects, each domain classifier as a variable assignment, and each rule in a clas-
sifier as a conditional statement. To date, we have successfully hand-translated
several collections of classifiers into both XQuery and Datalog.

We are still considering our options for implementing a study schema. The
näıve approach is to materialize the output of individual classifiers into relational
tables or XML documents. In the relational model, the result is a collection
of tables, one table per entity classifier per entity, with columns representing
classifier output (Figure 7). This option allows for simple data retrieval because
getting data from the study schema reduces to select-project-join queries. If
the classifiers/domains ratio is high, then a comprehensive materialized study
schema may be too large to manage. Alternatives include materializing only
often-used classifiers or determining relationships between classifiers. The latter
implies that if classifier A and classifier B share a simple algebraic relationship,
then we can materialize A’s output and compute B as needed.

 

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC Classifiers 
T T T T T F 0 A A A T H  
T T T T F F 1 B B B T M  
T F F F T F 2 A A B T L  
F F F F F F 0 C B C F N  

 

D1 D2 D3 D4 D5 Domains 

Smoking Alcohol Attributes 

Entity: Procedure, Data Source: CORI, Entity Classifier: Colonoscopies_Only 

Fig. 7. A fully-materialized study schema must also materialize every classifier, where
each classifier serves as a column in the table

5 Related Work

SEMEX. The SEMantic EXplorer project [2] also supports on-demand data
integration by non-technical users. SEMEX uses outside sources such as search
engines to suggest matches, but does not consult any user interface that may
have generated data. Also, SEMEX does not provide any way to classify values.
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Schematic Heterogeneity. SchemaSQL [8] and nD-SQL [5] demonstrate how
to extend SQL to accommodate schematic heterogeneity; however, few of these
features are available in commercial databases. They are also very difficult to
learn, even for expert SQL users, so even if we decide to use these languages in
our implementation, we will not require data analysts to learn them.
Mediated Schemas. A mediated schema serves a similar function as a study
schema: presenting a unified view of heterogeneous data sources to the end user
— in our case, a data analyst. A mediated schema uses Inter-schema Correspon-
dence Assertions (ICAs) to establish relationships between databases. Database
patterns and classifiers both act as ICAs, if one were to consider g-trees to be
schemas. There exist both a simple notation [12] and more complex notations
such as GLAV [7] for representing ICAs. These notations only express relation-
ships between sets of objects, such as equality or containment. They do not
express any transformation of data elements as is required for classifiers.
Context. The COIN project [11] stores context alongside data in the form of
metadata, and also automatically transforms data based on that context. Be-
cause a g-tree resides outside of the underlying database, GUAVA can attach
context information over an existing database regardless of implementation. Mul-
tiClass allows for multiple classifiers to transform data from the same context
to the same domain in different ways according to need.

6 Future Work and Conclusion

We want to extend the classifier language to allow data cleaning, since analysts
may also choose to discard data based on the needs of the particular study
they wish to run. We are also interested in handling new versions of a reporting
tool by propagating classifiers to the next version if their input nodes did not
change, and suggest new classifiers if there is a change. Finally, we are interested
in exploring whether GUAVA or MultiClass is able to provide benefits in other
domains, such as traffic data and financial applications.
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Abstract. To investigate molecular-biological causes and effects of diseases 
and their therapies it becomes increasingly important to combine data from 
clinical trials with high volumes of experimental genetic data and annotations. 
We present our approach to integrate such data for two large collaborative can-
cer research studies in Germany. Our platform interconnects a commercial 
study management system (eRN) with a data warehouse-based gene expression 
analysis system (GeWare). We utilize a generic approach to import different 
anonymized pathological and patient-related annotations into the warehouse. 
The platform also integrates different forms of experimental data and public 
molecular-biological annotation data and thus supports a wide range of genetic 
analyses for both clinical and non-clinical parameters. 

1   Introduction 

Clinical trials help to study the cure process and survival rate of patients for new or 
modified therapies and drugs, e.g. to deal with specific types of cancer. For this pur-
pose, many patient and treatment parameters are observed and analyzed. In addition 
to analyzing the success of entire therapies, one can also find parameters acting  
as classifiers, for which participating patients show a different therapy course and 
success. On the other hand, diseases and therapy processes are deeply affected by 
molecular-biological conditions for genes, proteins and their complex inter- and intra-
cellular interactions. For instance, cancer cells underlie genomic mutations and thus 
have a modified gene expression that is often increased in higher states of the disease. 
To better understand the genotype-phenotype interrelationships for diseases and their 
therapies it becomes increasingly important to combine clinical and molecular-
biological data, e.g. to investigate the relationship between pathological classifica-
tions and genomic disparities [Co03]. These studies utilize new experimental high 
throughput techniques for patients like microarray-based gene expression analysis 
[Ka05]. An ultimate goal is to support personalized therapies with respect to individ-
ual genetic patient conditions. 

The need to combine clinical and molecular-biological data poses specific data in-
tegration requirements. So far these different types of data are not only maintained in 
a variety of different data sources but are also managed by different complex data 
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management and analysis systems. Clinical trials typically involve many institutions 
and complex workflows. They are usually managed by commercial study manage-
ment software, such as eResearch Network1 (eRN), Oracle Clinical2, and MACRO3. 
Most of these systems are certified by public authorities, such as Federal Drug Ad-
ministration (FDA) in the USA and European Medicines Agency (EMEA) in Europe 
[Ku03]. On the other hand, molecular-biological experimental data is typically main-
tained in specific genomic databases, such as ArrayExpress [Bra03], Stanford Mi-
croarray Database (SMD) [She01], and Gene Expression Omnibus (GEO) [Ba05]. 
They support the analysis of huge amounts of gene expression data but without con-
sidering clinical parameters. In addition, there are numerous publicly available data 
sources providing annotations for molecular-biological analysis, e.g. Entrez [Ma05], 
SwissProt [Ba04], GeneOntology [GOC04], and OMIM [OMIM00]. 

Overviews of currently available approaches and tools for data integration in bioin-
formatics are given in [St03, LC03]. Most of the approaches focus on the integration 
of publicly available annotation data. [Na04] proposes a data warehouse platform to 
integrate patient-related data with data from different types of molecular-biological 
experiments and annotations. However, the platform is limited in the number of anno-
tation sources and does not support clinical trials across different institutions. NCICB 
(National Cancer Institute Center for Bioinformatics) has started a large biomedical 
data integration effort within the caBIG initiative (cancer Biomedical Informatics 
Grid) [Bu05,Co03]. 

In this paper, we present our analysis platform integrating clinical and molecular-
biological data for two large collaborative cancer research studies in Germany. One 
study aims at investigating molecular mechanisms of malignant lymphoma4, the other 
focuses on glioma5. First results [Hu06] are recently published. Our platform intercon-
nects the commercial study management system eRN with a data warehouse-based 
gene expression analysis platform (GeWare). We utilize a generic approach to import 
different pathological and anonymized patient-related annotations into the warehouse 
where it is used for improved data analysis. The platform also supports integration of 
different forms of experimental data and public molecular-biological annotation data. 
We believe our approach is quite general and applicable in similar research studies on 
analyzing molecular mechanisms for different types of diseases and therapies. 

In the next section we introduce the project environment and resulting require-
ments. Section 3 presents the overall architecture of our integration approach and 
platform. In section 4 we present our generic approach to import and maintain annota-
tions. Section 5 explains the multidimensional data warehouse model and different 
analysis capabilities before we conclude. 

2   Project Requirements  

Clinical trials typically involve complex workflows across different organizations. Fig. 
1 visualizes some process portion of a clinical trial focusing on major data acquisition 
                                                           
1 http://www.ert.com 
2 http://www.oracle.com/industries/life_sciences/clinical.html 
3 http://www.infermed.com/macro/ 
4 http://www.lymphome.de/en/Projects/MMML/index.jsp 
5 http://www.gliomnetzwerk.de/ 
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steps. It starts with the identification of relevant patients to participate in the clinical 
trial based on defined inclusion criteria. These criteria have to be carefully specified to 
select patients relevant for the respective research question while preserving enough 
patients to support statistically valid analysis. For selected patients personal data is 
captured, such as age, sex, material status or non-/smoker distinction. Some properties 
reflect habits and peculiarities of patients that can have a great impact in the later 
analysis, e.g. when the data is partitioned in non-/smoker portions. 

Common Data Acquisition and Analysis

Selection of Patients 
meeting pre-defined 
inclusion Criteria

Pathological Analysis
• Microscopy
• Antibody Tests

Periodic Doctor or Hospital Visits
• Operations
• Checkups

Tissue 
Extraction

Genome Location specific genetic Analysis
• Mutation profiling (Banding Technique, FISH)

Patient related
personal Data

Clinical Findings

Pathological 
Findings

Location specific 
genetic Findings

Chip-based 
genetic Data

Data

Genome-wide Chip-based genetic Analysis
• Mutation profiling (Matrix-CGH)
• Expression profiling (Microarray)

 

Fig. 1. Project environment and resulting data 

A clinical finding is produced whenever a patient visits a doctor or the hospital. 
That can happen regularly, e.g. for quarterly checkups, or when an adverse event 
happens. In both cases, the clinical finding describes the current clinical state of the 
patient and makes it possible to track the therapy status by utilizing precisely defined 
parameters. Typically, such clinical findings are stored in a study management sys-
tem. In addition, it could be necessary to extract diseased tissue material for a patient 
within an operation, e.g. cancer nodes. This material is then analyzed by pathologists, 
e.g. using light microscopy or antibody tests. The pathologists describe the properties 
of the extracted tissue material and hence create a pathological finding that can influ-
ence the decisions of doctors in the therapy process.  

Moreover, parts of the extracted tissue material can be utilized to experimentally 
measure properties at the genetic level, particularly using expression profiling and 
mutation profiling. Expression profiling studies the so-called expression behavior 
(activity) of interesting genes w.r.t. different conditions, e.g. healthy vs. diseased 
tissues or for different points in time. Microarrays [She95, Lo96] are the currently 
prevalent tools measuring the expression of thousands of genes at the same time. 

The second experimental approach, mutation profiling, focuses on the genetic di-
versity of patients. Normally, genes are located at fixed positions on a chromosome. 
However, individual mutations (insertions, deletions, moves) of sequences can have a 
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significant impact on the development and therapy of diseases.  This holds particu-
larly for large block-wise mutations, such as copies and movements across different 
chromosomes. Current techniques to measure such genetic imbalances include the 
banding analysis [Ca70], the Fluorescent in situ-Hybridization (FISH) [Me95], and 
Matrix-based comparative genomic hybridization (Matrix-CGH) [Ka92]. The first 
two techniques focus on a specific genome location and bring out a relative small 
number of data or just a description. By contrast, the Microarray-based gene expres-
sion and the Matrix-CGH mutation profiling operate genome-wide and, hence, gener-
ate huge amounts of data. Typically, the banding and FISH analyses are performed in 
different hospitals, while the Microarray-based expression and Matrix-CGH mutation 
profiling are centrally conducted by specialized labs. 

Requirements  
The sketched project environment and workflow require a comprehensive and stan-
dardized approach to integrate the different types of data and to perform data analysis. 
The specific requirements are: 

• Data integration: The different kinds of data obtained from the described 
clinical workflow need to be integrated for analysis, in particular personal 
data, several types of findings, and molecular-biological data produced by 
high-throughput techniques. The high volume of experimental data asks for a 
central management of the integrated data.  To enhance the analysis capabili-
ties it is also desirable to integrate molecular-biological annotation data from 
publicly available sources. 

• Utilization of existing information systems: Typically, commercial study 
management systems are utilized to manage patient-related personal data and 
her corresponding finding data, whereas different genomic databases manage 
expression and mutation profiling data. In order to save time and cost such al-
ready existing systems should be used and connected instead of designing a 
new comprehensive system from scratch. 

• Uniform data specification: Data of different steps such as clinical and 
pathological findings are generated in different hospitals and organizations. To 
keep the data comparable it is imperative to enforce uniform data acquisition 
procedures and standardized data formats. This concerns not only the metadata 
such as the sets of parameters to be provided but also the permissible data (in-
stance) values and their meaning. The latter may be enforced by conformed 
vocabularies. 

• Autonomous data input: Manual data input into paper forms should largely 
be avoided and replaced by direct data entry into the study management  
system. The data entry should be autonomously take place where the data is 
generated by using pre-defined web templates. The study management can 
centrally store the data and should perform extensive validity tests to ensure 
high data quality. 

• Central molecular-biological experiments: Molecular biological experi-
ments should be performed in a central laboratory for each type of experimen-
tal data. This ensures uniform laboratory conditions and device properties as 
needed for a comparative analysis of experimental data. 
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• Privacy aspects: Legal requirements demand the protection of the patients' 
privacy. In particular, identifying data such as id card number, social insurance 
number or the person's name must not be stored together with other data, e.g. 
clinical and pathological findings.  

• Advanced data analysis: Comprehensive molecular-biological data analysis 
should be supported for different theoretical and biological researchers to fully 
leverage the collected and integrated set of data. 

3   Platform Architecture 

To meet these requirements for two large collaborative cancer research studies we have 
developed a comprehensive data integration and analysis platform at the University of 
Leipzig. Fig. 2 shows the overall architecture of this platform. It interconnects two 
existing data management systems, the study management system eRN and the gene 
expression warehouse GeWare [KHR04]. Both systems themselves integrate data from 
several sources, permit interactive user input and support analysis of their data. 

The study management system eRN allows users at participating institutions to 
autonomously specify patient-related personal, clinical, and pathological data using 
predefined web forms. To enforce the anonymity of patient-related data, a technical 
patient identifier is generated whenever a new patient enters the clinical study. All 
personal identifications such as patient names or social security number are excluded 
and only anonymous patient data tagged with the technical patient identifier is entered 
in the study management system. To support high data quality the system implements 
different rule-based input and consistency checks (e.g. minimum and maximum val-
ues) as well as cross validations. Specific data validation reports indicate input imbal-
ances or missing data to be corrected by users before the data is accepted and made 
available for analysis. All analysis routines on study management data can be per-
formed via web interfaces but are typically restricted to basic statistical reports (e.g., 
number of examined patients at various stages of the therapy). 

While the eRN system manages patient-related data, the GeWare system deals with 
chip-based expression and mutation data. Currently, this data is generated at central 
labs by Microarray-based and Matrix-CGH chip experiments. This data is much more 
voluminous than the patient-related data and cannot be stored within eRN. GeWare 
provides web interfaces to upload new experimental data and to specify their techni-
cal annotations on laboratory conditions, such as hybridization temperature. 

To combine patient-related data with chip-based data for combined analysis, Ge-
Ware also imports a subset of patient-related data from eRN. The selection depends 
on the research project and currently subsumes about 100 to 130 parameter values per 
patient. While the patient-related data is identified by the patient identifier, the chip-
based data utilizes a chip identifier from which the patient identifier can not be  
derived. We thus provide a mapping table associating each chip identifier with the 
corresponding patient identifier to correctly combine clinical, pathological and ex-
perimental data and to permit an over-spanning data analysis. In addition, GeWare 
integrates publicly available gene/clone annotation data for extended analysis possi-
bilities. This data integration is performed by a query mediator approach and outlined 
in [Ki05]. 
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Fig. 2. Overall Architecture of the Platform 

GeWare comprises different reports and analysis methods. For instance, it is possi-
ble to find lists of differentially expressed genes according to different clinical cir-
cumstances by analyzing experimentally generated data together with biological and 
selected patient-related annotations. Furthermore, data can be exported for external 
analysis by specialized statistical or data mining software. 

The platform not only preserves the anonymity of personal data but also utilizes a 
sophisticated authentication and authorization concept for different user groups. In 
particular, access rights can be granted/revoked not only for the access to both sys-
tems and its data (patient-related annotations and experimental data), but also for the 
functions on the data, such as import, export, query etc. According to the user profile, 
e.g. doctors in a hospital, pathologists and biostatisticians, the web user interface is 
automatically generated to only cover the allowed functions of both systems. 

4   Annotation Integration 

Depending on the clinical focus, the trials can be conducted and documented in different 
ways. For instance, clinical lymphoma studies usually describe diseased cancer nodes 
using parameters such as node size and node type, but also the state of thyroids due to 
its important role in the metabolism. On the other hand, in glioma studies the specific 
brain region is important to annotate. Hence, the captured parameters typically differ 
between studies. Similarly, annotations of experimental conditions for microarray data 
and Matrix-CGH arrays may differ substantially. While standards like MIAME6/ 
MIAME-CGH [Bra01] give a recommendation about the minimal information to be 
captured, they do not specify what values should be used for each parameter. Hence, 
additional standardizations are needed to avoid non-comparable or conflicting data. 

                                                           
6 MIAME stands for Minimal Information about a Microarray Experiment. 
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Addressing these problems thus requires support for different sets of annotations 
for different studies and consistent data values. For this purpose, our platform pro-
vides a generic approach to specify and maintain annotations so that adding or chang-
ing annotation specifications are easily possible. For these specifications we provide 
so-called annotation templates to prescribe the parameters to be annotated and con-
trolled vocabularies to constrain permissible parameter values. A template consists  
of pages that group together related parameters, e.g. for personal data, pathological 
findings or experimental parameters. Each page can be hierarchically organized. An-
notation parameters and their corresponding values (metadata and data) are stored 
generically using the so-called Generic Annotation Model (GAM) introduced in 
[DR04]. These approaches for specifying and storing annotations avoid changing the 
database schema for new or changed annotations. This makes it easy to support addi-
tional clinical studies or additional types of annotations in our platform. 

Fig. 3 illustrates the process to specify annotations for a clinical study, to map an-
notation data from the study management system eRN to GeWare, and to use (query) 
annotations in GeWare. Initially, the annotation parameters for which values have to 
be captured in a new clinical trial are specified (Step 1). Furthermore, the 
 

Definition of the relevant parameter subset

Initiation of a clinical trial &
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e.g. parameter definition

Step 1

Step 2b

Step 2a

Preparation of the 
study management 
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Fig. 3. Defining, transferring, and querying patient-related annotations 
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study management system eRN is configured to manage data for the clinical trial 
(Step 2a). In addition, the subset of parameters to be transferred from eRN to GeWare 
for analysis purposes are specified (Step 2b). Based on these parameters a new tem-
plate can then be created in GeWare (Step 3) consisting of hierarchically arranged 
pages. Based on the database schema of eRN and the tree-based annotation schema of 
the template, a schema mapping (Step 4) is created for the relevant subset of parame-
ters. The result of this schema mapping associates each source element, i.e. the pa-
rameter specific attribute and table of the relational database schema of eRN, with the 
corresponding target element, i.e. the parameter-specific path in the annotation 
schema. While this schema mapping is currently performed manually, it could also be 
done semi-automatically by utilizing schema matching algorithms [RB01]. The result-
ing schema mapping is regularly used to transfer new patient-related annotation val-
ues from eRN to GeWare (Step 5). 

GeWare allows browsing through the annotations, querying them and applying 
them to extract and analyze experimental data (Step 6). For querying, the user can 
define multiple conditions that are combined with the logical operators AND, OR, 
and NOT. The query result identifies lists of chips, patients or genes that can be used 
to specify experimental data portions for further analysis. 

5   Multidimensional Data Model and Analysis 

GeWare is a relational data warehouse integrating and maintaining both annotation 
data and experimental data of different types. Fig. 4 shows a high-level view of its 
multidimensional schema built of dimension and fact tables. Experimental data like 
numerical expression values are stored in fact tables containing the majority of data. 
Dimensions provide information on the meaning of facts and are needed for their 
analysis. In particular they maintain selected annotation data on genes and chips / 
patients. Multidimensional modeling is a proven approach for data warehouses sup-
porting flexible and fast analysis for large data volumes. 

Our schema contains separate fact tables for genes and clones and for transformed 
and analyzed data values. The Gene Intensity fact table stores transformed gene ex-
pression data, whereas the Clone Intensity fact table contains intensity data of deter-
mined clones. Additional fact tables are kept for Expression and CGH Matrices, to 
store the intensities of those genes (clones) participating in gene (clone) groups de-
termined by a specific analysis method, such as clustering. 

The dimensions can be grouped into annotation- and processing-related dimen-
sions, which are shown in Fig. 4 together with some illustrating examples. Annotation-
related dimensions include tables for genes, chips, and clones (and thus patients) and 
their groupings. Processing-related dimensions specify transformation and analysis 
methods describing the computational methods and their parameters used to compute 
gene/clone intensities, and to determine gene (clone) groups for expression (CGH) 
matrices, respectively. 

Dimensions can be organized into generalization/specialization hierarchies to pro-
vide different levels of abstraction for analysis. For example, the chip dimension is 
organized into three levels, experiment, treatment group and chip. Experiment is the 
most abstract level describing a clinical trial encompassing many chips which can be 
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Fig. 4. Multidimensional data warehouse model 

grouped into so-called treatment groups. Each of these treatment groups may include 
chips for a specific experimental condition, e.g. for tissue probes from the same pa-
tient at a specific time point in the clinical trial. 

The sketched multidimensional data model supports high analysis flexibility. 
While current approaches typically evaluate a complete data matrix, i.e. gene expres-
sion and CGH matrix, containing the intensity values for all measured genes/clones 
and several/all chips, we now can focus on individual or comparative analysis to an 
arbitrary subset of intensity values determined by specific annotation values of inter-
est. The selection may be based on a value at a specific level of a single dimension or 
any combination for several dimensions, e.g. to consider both gene and clinical pa-
rameters. A variety of analysis methods can be applied to the selected data set, e.g. 
queries to determine differentially expressed genes or clustering to find co-expressed 
genes. Such result groups can in turn be saved for further queries and analysis. The 
platform also supports the export of the pre-computed analysis results, e.g. gene/clone 
groups and expression/CGH matrices, to perform analysis in external tools. 

As an example for a combined analysis of experimental and annotation data, Fig. 5 
shows a gene expression heatmap for a selected group of 25 genes (rows) and a treat-
ment group of 25 chips/patients (columns). Furthermore, the expression data is ana-
lyzed by hierarchical clustering for both, chips and genes. The dendrogram on the top 
represents the chip hierarchy while the one on the left hand side shows the gene hier-
archy. In addition, a classification of the chip data by pre-defined classifiers, in this 
case the cancer stage which was acquired by the clinical diagnoses, using available 
patient-related annotation data is visualized by a colored band (different colors repre-
sent different values) above the heatmap. Thus the user can determine if there is a 
correlation between the hierarchical order resulting from the clustering and the frag-
mentation stemming from the classification. 
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Chips / Patients

Genes

Clinical data

 

Fig. 5. Heatmap utilizing patient-related annotations 

6   Conclusions 

We presented a platform combining clinical and molecular-biological data for large-
scale collaborative clinical research studies. The approach combines two proven sub-
systems for managing clinical trials and gene expression analysis. The clinical study 
system uniformly captures patient-related data from several participating hospitals. 
All patient-related data is kept in anonymous form and is interrelated with other data 
by a technical patient id only. The warehouse-based platform imports selected clinical 
annotations from the study system and combines them with data of centrally per-
formed molecular-biological high-throughput experiments. Annotations are managed 
generically to easily support different studies and changing analysis needs. Currently, 
the platform is fully operational and is in use in two large clinical collaborative re-
search projects in Germany. 
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Abstract. We present a patient-oriented computer-based medical sys-
tem which proposes advices on mild clinical signs treatment and medica-
tion. Therefore, this system can be considered a self-medication assistant
tool. In a nutshell, this web application validates drug consumptions of a
given patient, based on patient information stored in an electronic health
care record, with a drug and symptom knowledge base. The efficiency
and accuracy of the knowledge base inferences depend on the quality,
quantity and recency of the drug instances. A practical source for these
information are databases. Thus we developed a data integration solu-
tion which enables the mapping of relational databases to a Description
Logics knowledge base.

1 Introduction

Nowadays, it becomes obvious that the french public health system has to evolve
in order to survive. Among possible evolutions, the act to provide assistance and
reliable services to the general public is promising. This approach may result in
giving more responsabilities to the patient and hence reducing the costs of care
for the health system. This issue is of central importance in countries where drug
over-consumption is a general practice. In France, this situation is partly due to
a high rate of drug reimbursements by the social security system. Consequently,
the adoption by the general public of such services may reduce costs for both
the patient and the public health system, prevent medical errors due to drug
interactions, and improve efficiency and quality of patient treatment. We believe
that these facts can be generalized to most industrial countries and hence will
soon cover a central aspect of computer-based medical systems.

We have developed, with the clinical pharmacology department at the Cochin
hospital in Paris (France), a system named IMSA (Interactive Multimedia Sys-
tem for Auto-medication) [3] and its extension XIMSA (eXtended IMSA) [4]
enabled with Semantic Web technologies. Both of these systems belong to this
category of medical information systems. The latest version of this system em-
beds a drug consumption checking service. The purpose of this module is to
check, according to data stored for a given patient, the adequacy, in terms of
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drug characteristics, of a medication (self) prescription. This service requires
inferences on updated and accurate drug knowledge to detect clinical and drug
contraindications, side effects, etc..

We have decided to store these data in a knowledge-based system to enable
reasoning from explicit as well as implicit data. As databases become widely
used, there is a need to translate data to the knowledge base and therefore
to embed a data integration solution in the framework. This solution ensures
that the right information is available at the right time from the right source of
information. Consequently an ontology has to be designed from the data sources
via a mapping solution, permitting tuples from these sources to populate the
knowledge base.

The representation of this ontology is based on Description Logics (DL) [1],
a fragment of first order logic, which are advocated as the key technology for
realizing the Semantic Web. Standardization efforts within the World Wide Web
Consortium (W3C) have resulted in the Web Ontology Language (OWL). Nu-
merous tools, such as editors and reasoners, are already available for this lan-
guage and thus Semantic Web applications can realistically be implemented with
recognized standards.

This paper is organized as follows. In section 2, we present and justify the drug
consumption checker tool within the context of the XIMSA system. In section
3, we present our data integration system which ensures that data contained in
relational databases are integrated in XIMSA’s ontology. In section 4, we present
some general integration issues related to our information migration solution.
Finally, we conclude this paper with some perspective on future works.

2 Drug Consumption Checker Application

The Drug Consumption Checker Application, henceforth DCCA, is a service pro-
posed within XIMSA, and is aimed at the general public. This system assists but
is not limited to a popular activity in most industrial countries : self-medication.
In this paper, we consider self-medication as the health activities to treat oneself
with or without drugs. Within this system, the goal of the DCCA module is
to provide patients with a tool that controls the adequacy of a drug (self) pre-
scription. The architecture of the DCCA service is supported by a drug ontology
and a Simplified Electronic Health Record (SEHR), especially designed for the
XIMSA system.

The goal of the SEHR is to store health related information concerning a
particular patient. The formalism adopted for the SEHR is the semi-structured
XML language. An instance of such a document stores three different categories
of patient information :

– general information concerning the owner of this document : social security
number, first and last name, gender, date of birth, etc..

– medical information concerning knowndiseases, allergies, current states (preg-
nancy, breast feeding, etc.).
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– drug consumption information which distinguishes discrete and continuous
(life long treatments) consumptions. Both consumptions require the start
date and dosage of the treatment. For a discrete consumption, additional
fields concerning the treatment duration and prescription source (either the
patient or a health care professional) are required. We consider that non-
discrete treatments are the responsability of health care professionals.

Example 1 proposes an XML extract from a SEHR which highlights the con-
sumption of the Marsilid c© drug between november 1st and november 10th,
thus it is a discrete prescription, with a dosage of one pill per day. This drug is
identified by the french identifier for drug products (cip code) 3442856 and has
been prescribed by a general practitioner.

Example 1. SEHR discrete consumption example
<discretePrescription >
<prescription >
<idnum >3442856 </idnum >
<nomMed >Marsilid </nomMed >
<posologie >1 comprime par jour </posologie >
<prescriptionSource >Dr XXX </prescriptionSource >
<datedebut >1/11/2005 </datedebut >
<datefin >10/11/2005 </datefin >
</prescription >
...
</discretePrescription >

The drug and symptom knowledge base is central to the architecture of XIMSA
as it is being used to make inferences in various services. In this paper, we
concentrate solely on the DCCA service and on the drug knowledge base. For the
following scenario, we consider that our knowledge base contains the Summary
of Product Characteristics (SPC) of all french drugs :

Example 2. On november 7th, 2005, a patient connected to the DCCA service
wants to self-prescribe the Pulmodexane c© drug. He selects this drug from the
system’s graphical user interface, accepts the default dosage and validates his
choice. The system then checks the patient’s SEHR. We consider that this docu-
ment contains no continuous prescription and that the only discrete prescription
entry corresponds to the one in example 1. The inference engine advises not to
use this drug at the moment because a contraindicated drug is currently being
medicated. The result of this inference is based on the analysis of the char-
acteristics of the Recommended International Non-proprietary Names (RINN)
of Pulmodexane, i.e. dextromethrophan and the Marsilid, i.e. iproniazide. Nav-
igating the knowledge base, the system is able to find that these two chemical
substances are contraindicated one another. Additionally, the system proposes
some drugs belonging to the Pulmodexane’s therapeutic class, i.e. anti-coughing,
which are coherent with a current marsilid treatment.

The quality of the DCCA inferences results from the sufficiency, recency and
accuracy of the data contained in the knowledge base. To ensure these quality
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requirements, it is necessary to consider the knowledge base’s domain : phar-
macology and its market. In France, the drug market is rapidly evolving due
to frequent addition, modification and deletion of drugs, drug switches, reim-
bursement rate changes, emergence of the generics market, etc.. Given these
characteristics, the most reliable source of information for the population of this
knowledge base are drug related databases. In the context of XIMSA, we already
maintain a drug database, named self, which stores all the information contained
in the SPCs (posology, composition, contraindication, side effects, therapeutic
class, price, social security system reimbursement rate, pharmaceutical labora-
tory, etc.) plus some extra information provided by collaborating health care
professionals, i.e. comments on drugs as well as drug rating. Although databases
are widely used in the drug industry, there does not exist an exhaustive and
up-to-date french drug database, even from french administrations. Hence, in
order to fulfill DCCA’s recency and exhaustivity requirements, it is pertinent to
translate and integrate data contained in multiple drug databases in XIMSA’s
knowledge base.

3 Data Integration

The development of the XIMSA application motivated the development of the
DBOM (DataBase Ontology Mapping) system. DBOM is a fully-implemented
and domain-independent application which enables the creation, population and
maintenance of a DL-based ontology from database sources. This solution is
based on a declarative mapping document. In order to present our data integra-
tion solution, it is necessary to provide some formal and general aspects about
the components involved in the mapping.

3.1 Preliminaries

The prototype we have developed adopts a database reverse engineering ap-
proach which enables to design an ontology from a set of Entity-Relationship
diagrams. This design is materialized through a mapping file whose purpose is
to build a DL ontology schema and populate it from tuples of source databases.

We now characterize the system underlying the DBOM system and its cor-
nerstone : the mapping language.

Definition 1. The DBOM system is supported by a migration system MI which
is a triple (S,O,M), where :

– S is a set of source schemas of relational databases.
– O is the (target) ontology schema formalized in OWL DL.
– M is a set of formulas of a language LM over S and O.

The definition of MI emphasizes relations with data exchange [12] and data
integration [13] systems. We now contrast the DBOM approach with the com-
parison of data exchange and integration provided in [8] :
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– as in both data exchange and integration, the source schemas are given and
the mapping is a set of formulas constructed by a human expert.

– as in data integration, the ontology (target) schema is a reconciliation of the
sources and is constructed from the processing of the source schemas given
a mapping.

– as in data exchange, the target instances are materialized, while they are
virtualized in the case of data integration.

The target schema is an ontology designed in a DL. This family of knowl-
edge representation formalisms allow the represention and reasoning over domain
knowledge in a formally and well-understood way. In the DBOM approach, a DL
ABox (assertional box or extension of the knowledge base) is considered as a view
of the relational database. Our contribution to this issue lies in the possibility to
richly axiomatized the terminology; thus permitting the creation of expressive
ontologies, corresponding to the SHOIN (D) DL, equivalent to the OWL DL
language. Another interesting feature is the solution proposed to maintain the
synchronization between the database tuples and the ABox of the knowledge
base [5]. We assume readers are familiar with the semantics of DL, though we
recall that the syntax for concepts in SHOIN (D) [11] are defined as follows,
where Ci is a concept, A is an atomic concept, Ri is an object role, S is a simple
object role, T is a datatype role, D is a datatype, oi is an individual and n is a
non-negative integer :

C → A | ¬ C1 | C1 # C2 | C1 $ C2 | ∃ R1.C | ∀ R1.C | ≥ n S | ≤ n S |
{o1, .., om} | ≥ n T | ≤ n T | ∃ T.D | ∀ T.D

The reason of our interest in the SHOIN (D) DL is its syntactical equivalence
with the OWL DL language [6], an expressive ontology language developed by
the W3C and which is already supported by numerous tools (editors, reasoners,
etc.). The choice of this formalism is motivated by our need to reason over web
compliant data represented in an expressive, formal and decidable knowledge
representation language. It is important to emphasize that semantic integration
plays a key role in the growth of the Semantic Web and thus motivates many
researches in this field, [5] proposes a study of relevant projects in this field.

Finally, regarding the source schema, we assume we have a fixed database
schema P={P1, .., Pn} where Pi, with 1 ≤ i ≤ n, are predicates corresponding to
the database relations. We also have a fixed, possibly infinite database domain
D and a fixed set of built-in predicates B (=, �=, <,>,≤,≥). We define the first-
order language L as P ∪D∪B. Each predicate of L has an arity, i.e., the number
of arguments taken.

3.2 Integration of the Self Database

The idea of the DBOM solution is to integrate data contained in relational
databases in an ontology as expressive as the SHOIN (D) DL.

Concretly, data contained in tuples of P, a database instance, are mapped
to concepts Ci and roles Ri of the ontology ([1] chap.16). The population of
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the ABox is performed via the execution of queries contained in the definition
of concrete concepts and (binary) roles. The extract of the self database, pre-
sented in example 3, focuses on drugs and their chemical substances. Primary
keys of relations are underlined and they correspond to a french drug identifier
code (cip) and an international code for the identification of chemical substances
(atcCode). The Anatomical Therapeutic Chemical (ATC) system [14] proposes
an international classification of drugs and is part of WHO’s initiatives to achieve
universal access to needed drugs and rational use of drugs. In this classification,
drugs are classified in groups at five different levels. The subset P’ of the rela-
tional schema P of the self database proposes the last level which corresponds
to chemical substances. Finally, the drugRate attribute contains a drug grade
based on a tolerance/efficiency ratio and is designed by health care professionals
of our research group.

Example 3. Schema extract of the self database
drug (cip, drugName, drugPrice, drugRate)
rinn (atcCode, substanceName)
rinnToDrug (cip, atcCode)

Given the relational schema of example 3, we propose a possible mapping in
example 4. This mapping is presented in the form of conjunctive queries as
they are more readable and concise than the XML serialization. The mapping
provides a complete freedom to the ontology designer and offers the ability to
integrate some or all P ′

i of P’. It is also possible to define concepts and prop-
erties that are not mapped to any P ′

i of P’, meaning that these members must
be abstract because no instantiations will be possible, as there are no queries
attached. The abstract (and concrete) members feature have the same meaning
than in object-oriented programming, thus abstract member can not be instan-
tiated while concrete ones can. These definitions enable to design rich gener-
alization/specialization relations between members. Example 4 only proposes
concrete members as we primarilly focus in this paper on data integration and
not on knowledge base inferences. For readability reasons, concepts start with
an uppercase letter and properties are lowercased.

Example 4. A valid DBOM mapping file for example 3’s relational schema
Drug � { (W,X,Y,Z) | drug(W,X,Y,Z)}
Rinn � { (X,Y) | rinn(X,Y)}
rinnToDrug � { (X,Y) | rinnToDrug(X,Y)}

This example emphasizes that the integration solution adopts a Global-As-View
(GAV) approach. The GAV solution means that each assertion in M relates
an element of the target schema O to a query over a source schema S. The
counterpart of GAV is the Local-As-View approach (LAV) where the mapping
specifies the content of the source in terms of the global schema. A comparison of
the two approaches, and possible translations from one to the other, is available
in [2].



Data Integration Targeting a Drug Related Knowledge Base 417

The XML serialization of example 4’s Drug concept is presented in example
5. In this example, we consider that the prolog of the mapping has defined the
following elements :

– the hasName, hasPrice, hasGrade datatype properties, binary properties
where the domain is an ontology concept instance and the range is an XML
schema data type corresponding to the domain D of the Pi mapped attribute.

– the information (database driver, hostname, login, password) necessary for
a connection to the self database. An alias, named selfDB, is declared for
this connection.

Example 5. XML serialization of the Drug concept
<class namespace=”drug” className=”Drug” >
<instance dbSrc=”selfDB” query=”SELECT * FROM drug;” >
<id >
<field value=”1”/ >
</id >
<data >
<field value=”2” datatypeProperty=”hasName”/ >
<field value=”3” datatypeProperty=”hasPrice”/ >
<field value=”4” datatypeProperty=”hasGrade”/ >
</data >
</instance >
</class >

DBOM processes such an XML mapping in the following manner :

– given the attributes of the instance element (second line), a SQL query is
performed for an identified database connection.

– the tuples resulting from this query processing are mapped to data type
properties. A special data type property serves as a primary key, to relate
unambiguously database tuples and knowledge base instances, an operation
required by the maintenance solution. Agregated primary keys can be defined
in DBOM mapping files.

The identification of the database connection for each SQL view definition en-
ables to integrate several databases in a single mapping instance. This can be
done by declaring several database connection aliases in the prolog.

3.3 Integrating Several Databases with DBOM

We now consider practical and concrete integrations in DCCA with the self
database. This database does not contain all drugs available on the french market
and may also need to integrate emerging standards. So it may be necessary to
integrate data from additional databases. We can distinguish two integration
situations :

– “instance integration” where the new source populates a given target schema
with instances that are not yet available in the knowledge base.
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– “schema integration” where the new source requires modifications of the tar-
get schema by adding concepts and properties. These newly created concepts
and properties are then populated from this source.

An example of “instance integration” is proposed in the following scenario :
a database containing some drugs, and their chemical substances, missing from
the self database, has been found and is thus integrated. The schema of the
database (db1 ) is proposed in example 6 :

Example 6. Schema of the db1 database
drug (cip, drugName, drugPrice)
molecule (atcCode, moleculeName)
moleculeToDrug (atcCode, cip)

We emphasize that the schema of db1 does not contain a drug grade column as it
is a specificity of the self database. Given this relational schema, a possible map-
ping instance can integrate anti-coughing drugs containing the dextromethorphan
chemical substance which can be unambiguously identified with the R05DA09
ATC code. This code extract uses a special representation of conjunctive queries
where database names are prefixing attribute names.

Example 7. A valid DBOM mapping integrating the self and db1 databases
Drug � { (W,X,Y,Z) | SELF.drug(W,X,Y,Z)}
Drug � { (X,Y,Z) | DB1.drug(X,Y,Z) ∧ DB1.moleculeToDrug(W,X)
∧ W=’R05AD09’}
RINN � { (X,Y) | SELF.rinn(X,Y)}
RINN � { (X,Y) | DB1.molecule(X,Y) ∧ X=’R05AD09’}
drugToRinn � { (X,Y) | SELF.rinnToDrug(X,Y)}
drugToRinn � { (X,Y) | DB1.moleculeToDrug(X,Y) ∧ X=’R05AD09’ }

This mapping highlights several aspects of the integration with DBOM :

– the use of queries for the population of the knowledge base enables the design
of ’filters’, e.g. we only select drugs with the dextromethorphan chemical
substance from db1.

– the use of set operations on the results of queries. The semantics of this map-
ping emphasizes the use of the union set operations which allows to combine
the results of the several views for the same member, e.g. two definitions for
the Drug concept.

– the drugs populated from the db1 database do not contain grade values. In
such a situation, the DBOM’s processing does not assign any value to this
drug, thus such a drug does not have a hasGrade data property. This is due
to the fact that the first Drug definition has four attributes in its view while
the second one only has three attributes.

A situation of “schema integration” corresponds to the need to integrate valu-
able data from health care institutions. We take as an example the integration
of a DDD database. The Defined Daily Dose “is the assumed average mainte-
nance dose per day for a drug used for its main indication in adults” [14]. The
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integration of this classification may serve to propose posology in the absence
of such data for a particular drug. Although, the DDD has some drawbacks in
the context of compound drugs ( with several RINNs), it still is an interesting
candidate for integration. The relational schema of example 8 highlights the re-
lation between the ATC/DDD system where each molecule is identified by an
ATC code and characterized by the defined daily dose, unit of dosage and notes.
Anotehr relation contains all the administration routes avalailable, e.g. oral.

Example 8. Schema of the ddd database
ddd (atcCode, ddd, unit, adminId, notes)
administrationRoute(adminId, adminRouteName)

We can propose a mapping instance for the self and ddd databases which as-
sumes that :

– DDD information (dosage, unit, administration route and notes) are stored
in a Ddd concept.

– the adminRouteName for an adminId is stored directly, in the form of a
property, in the Ddd concept.

– we consider that all RINN that match a DDD are in the self database; oth-
erwise the ddd database can easily be filtered before the mapping processing
to match all the ATC code of the self database.

– a rinnToDrug property relates an Rinn instance to a Ddd instance.

Example 9. A valid DBOM mapping file for the self and ddd schemas
Drug � { (W,X,Y,Z) | SELF.drug(W,X,Y,Z)}
Rinn � { (X,Y) | SELF.rinn(X,Y)}
Ddd � { (T,U,V,Z,X) | DDD.ddd(T,U,V,Y,X) ∧ DDD.administrationRoute
(Y,Z)}
drugToRinn � { (X,Y) | SELF.rinnToDrug(X,Y)}
rinnToDDD � { (X,X) | DDD.ddd(X,Y)}
A more efficient mapping proposition would merge all the information contained
in Ddd instances in the corresponding Rinn instances. But this operation re-
quires to write views in the GAV mapping joining relations from both databases.
Such an operation is not yet implemented in the DBOM framework but is on
our future works list.

Figure 1 proposes a graph extract of the knowledge base resulting from the
processing of example 9’s mapping. In the context of DCCA, graph navigation
enables to make inferences using explicit as well as implicit knowledge. Enriching
Figure 1’s graph with a contraindicatedWith symmetric property between RINNs
R05DA09 and N05AF06, we would be able to detect that any drug containing the
dextromethorphan chemical substance is contraindicated with a drug containing
the iproniazide substance.

4 Data Integration Issues in DBOM

DBOM faces all the commonly encountered problems of data integration which
are based on heterogeneity, redundancy and inconsistency :
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Fig. 1. Ontologie graph resulting from example 9’s mapping

– structural heterogeneity is due to structure differences between sources, e.g.
naming conflicts, data type conflicts, integrity conflicts, etc..

– semantic heterogeneity is due to different interpretations of the data and
domain of sources, e.g. representation conflicts, subsumption conflicts, etc..

– redundancy is due the absence of common key identifier between sources for
equivalent relations.

– inconsistency is due to the presence of different values for equivalent data in
different source, incomplete information, etc..

Solving these heterogeneity problems is a complex and time-consuming task
that is usually left to the user. In the XIMSA system, a particular attention
is given to the selection of source candidates. They are generally proposed by
health care professionals and validated by the user responsible for the mapping.
Several operations, such as data cleaning [9] may be required to process the
mapping. Whether these problems are solved manually or in a (semi-)automatic
way, semantic is the key issue. This is a challenging problem because there are
few reliable and non-subjective information sources for semantic :

– the creator of the database who are generally not accessible or have forgotten
about the data.

– documentations are generally missing or tend to be outdated, sketchy and
incorrect.

Many solutions are designed to solve these problems in a semi-automatic way,
meaning that the user is involved in the processing of the system [7] in terms of
validation of the results, providing some clues to solve problems, etc..

An interesting service proposed within DBOM is the maintenance of both the
database sources and the knowledge base. This maintenance solution is described
in [5] for a single database source. The idea of this maintenance is two fold :

– to automatically maintain the synchronization between the knowledge base
instances and the database tuples. This means that whenever a tuple is up-
dated (insertion, deletion and modification) in a source, the corresponding
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knowledge base instance has to be modified. [5] emphasizes that the synchro-
nization can be delayed because of integrity constraints expressed on sources
relational schema.

– to semi-automatically maintain the database tuples from detection of incon-
sistencies on the knowledge base’s side. The semi-automatic aspect of this
maintenance means that the intervention of a user is required to solve the
inconsistency.

A practical scenario for the second form of maintenance is now proposed :
“A health care professional collaborating to XIMSA inserts a new drug in the self
database. This drug belongs to the ’anti-coughing’ therapeutic class and contains
the iproniazide chemical substance. This tuple is automatically translated in the
form of a concept instance, and its properties, in the knowledge base. XIMSA’s
inference engine then tries to detect possible inconsistencies in the knowledge
base and finds that the relation between the therapeutic class and the RINN
was not unknown.”. The treament of such inconsistencies is not automatized
and XIMSA awaits from the user to correct or validate this new entry.

In a data integration context, the maintenance solution needs to efficiently
identify the source of a knowledge base instance. This identification serves to
correct the data at the source level, for example the modification of a newly
inserted drug in the self database. The purpose of these updates is to maintain
the self database consistent because it is exploited in several other situations :
additional services in XIMSA, support of dynamic web sites, a book [10], etc..
These interventions can be processed only on updatable sources, as we are not
granted to modify all integrated sources, e.g. a ddd database.

5 Conclusion

This paper present an extension to the DBOM system, formerly a migration
tool from a unique database to a Semantic Web compliant (OWL DL) knowledge
base. This extension now proposes to integrate several sources in an ontology and
processes its instantiation from tuples of the sources. This approach considers
the DL Abox as a relational view over the relational databases.

We have presented conceptual and functional aspects of this system via prac-
tical examples in the context of a drug prescription checking tool. Through data
integration, the DCCA is ensured to access an up-to-date drug market knowledge
base and hence supports efficient and high-quality patient reasoning procedures.
This approach turned out to be very efficient in the context of XIMSA. As a
self-medication tool, XIMSA aims to be used by the general public. Hence the
content of the drug characteristics (SPCs) have been transformed and translated
to be more easily understood by patients.

We are now thinking about developing a XIMSA version tailored to health
care professionals. This tool would assist general practitioners to prescribe drugs
to their patients in a more secure and cost-effective way. Some tests conducted
with medicine students have shown that such a tool may be interesting to this
community. We believe that DBOM’s functionalities may help to integrate new
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drug concepts and standards from the pharmaceutical industry , e.g. the french
drug efficiency rating (SMR) and amelioration (AMSR).

The DBOM system is also evolving on several aspects and we are currently :

– developing a Protégé plug-in to enable the design of mapping files with a
graphical user interface. This plug-in would benefit from a collaboration
with other OWL components (class, property tabs, visualization and rule
solutions, etc.).

– studying the maintenance of the knowledge given some particular source
schema modifications. This is a novel approach as at the moment our main-
tenance solution only tackles instance modifications.
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3. Curé, O. : Overview of the IMSA project, a patient-oriented information system
Data Science Journal 1(2): pp 66-75 (2002)
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Abstract. Data management in medicine usually takes place through the usage
of heterogeneous and legacy systems. So far, these information systems were
rarely reusable into other investigations and, expecially in multicenter studies,
their development absorbed part of the given funding. To overcome these lim-
itation, we developed the EPIweb system, i.e. a totally configurable web-based
information system which helps the epidemiologists/public health practitioners
to conduct their (distributed) researches by following a workflow made up of the
selection of the remote centers, the creation of the questionnaires, the data entry,
the statistical processing of the data, and the generation of the technical reports.
The most important EPIweb features are shown in the paper by means of a recent
investigation conducted with the system. Finally, we discuss some open issues
regarding the improvement of the EPIweb system in the direction of scientific
workflow management.

1 Introduction

To support their decisions, clinicians and public health practitioners use both informa-
tion technology, statistical and operational research methods [1,2,3], usually applied to
massive amount of data stored on databases (e.g., [4]).

Recently, the need for “[...] collecting and analyzing morbidity, mortality, and other
relevant data and facilitate the timely dissemination of results to appropriate decision
makers [...]” [5] has lead to the development of several Internet-based information sys-
tems, among the many we mention PHIN [6] which proposes an automated exchange
of data between public health partners through ebXML compliant web services [7],
ESSENCE system [8] which uses a secure file transfer protocol to send the data over
the Internet, RSVP [9] which uses a combination of web and Java technologies to col-
lect the data, and a long list of information systems developed to support their related
multicenter studies (e.g., [10,11]).

So far, these sophisticated information systems were rarely reusable and, expecially
in multicenter studies, their development absorbed part of the given funding. Further-
more, some of these systems focused only on the data collection activity, and the tasks
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of analyse, display, report and map the collected data were demanded to specialized
software. To overcome these limitations, we present the EPIweb system [12], i.e. a
web-based information system [13] which helps the epidemiologists to conduct their
studies by adopting a clear and guided workflow made up of the following phases: the
selection of the remote centers (also through randomization), the creation of the ques-
tionnaires, the data entry, the statistical processing of the data, and the generation of the
technical reports. All these phases are configurable, therefore the system is both flexible
and responsive to changing requirements, and also reusable and “tailorable” to different
investigations. Furthermore, the underlying database supports information integration
since data coming from different sources can be integrated in the form of answers given
to different questionnaires.

To show these features, an investigation entirely performed through the EPIweb
system regarding the middle school students’ nutritional habits in the Municipality
of L’Aquila is discussed. The “lesson learned” from this study suggests several im-
plementation improvements and particularly in the direction of scientific workflow
management.

2 EPIweb Features and Architecture

EPIweb implements the workflow highlighted in figure 1: an epidemiological study
starts with the selection of the remote centers, continues with the questionnaires devel-
opment, the data entry, the data analysis, the report generation, and ends with a discus-
sion of the achieved results. The following three typologies of users “interact” with the
workflow: the epidemiologists (hereafter called study administrators) which organize
and manage their studies, the remote centers which participate in the data entry, and the
users which read the reports and discuss the published results.

Fig. 1. The EPIweb workflow of an epidemiological study

The EPIweb system is a web-based application following the architecture depicted
in figure 2. At the highest level of abstraction, the apache web server [14] takes care of
both the communication with the clients – when necessary through a secure connection
– and the execution of the PHP scripts [15]. The scripts implement all the EPIweb fea-
tures, by relying on the MySQL database [16] to store the data, on STATA™ [17] to
execute the statistical analyses, and on the LATEX typesetting system [18] to produce the
technical reports. Since the proposed architecture incorporates LATEX and STATA™ like
two software components reused in a wider project, a reduction of the overall develop-
ment efforts was achieved [19]. This architecture also reduces the deployment efforts,
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Fig. 2. The EPIweb architecture

i.e. the costs connected with the set of activities which follow the initial release, since
the software updates or bug fixes are applied only in the EPIweb system.

In detail, the architecture is divided into four sections, namely: the navigation, the
data entry, the studies management and the administration sections.

The navigation section is opened to the users, and offers the possibility to download
free datasets and reports, and to debate the results of the available investigations through
a discussion forum. The free datasets are generated on-the-fly by a PHP script which
extracts from the underlying database the proper tuples. The free reports are available
as PDF files stored in the file system.

In the data entry section, the remote centers can fill in the questionnaire and/or inte-
grate into the underlying database any old dataset if available as CSV data. We remark
that the entered data is validated towards several constraints defined by the epidemiol-
ogist. The constraints may regard:

– that a question must be considered as a primary key;
– an allowed range for a numeric answer;
– when a missing value can be accepted;
– the definition of relationships between questions, i.e. a question can be placed if a

certain statement is true. The interface of the EPIweb system currently allows the
development of statements in which a question is placed only in connection with
the value of a previous answer.

The studies management section allows an epidemiologist to organize its study in
terms of the following areas: (i) users, (ii) centers, (iii) questionnaires, (iv) statisti-
cal analyses, (v) reports, and (vi) forums. The users area offers the possibility to
involve other users in the investigation. In the centers area, remote centers can be
included/excluded from the data entry. The questionnaires are organized as a list of
questions created through a visual interface, and can be developed to honor the above
mentioned constraints. The following kind of data types can be used:
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– Free text (limited to 80 characters);
– Integer values (the range is -2147483648 to 2147483647);
– Floating values (the allowable values are −3.402823466 ·10+38 to −1.175494351 ·

10−38, 0, and 1.175494351 · 10−38 to 3.402823466 · 10+38);
– Sets of values (stored as integers).

To process the data, the administrators define a list of analyses by selecting the de-
sired one among a set of predefined statistical analyses and graphs, or by creating new
variables. Then, STATA™ is invoked in background by providing it with a dataset and
a do-file containing the needed commands. As output, STATA™ produces (i) a log file
with the results of the analyses and (ii) a collection of EPS files containing the graphs.
In case, the collected data can also be exported in the CSV format – readable by most
programs like Excel, Epi Info™, STATA™ and SAS™ – and analysed through an ex-
ternal software. The technical reports are created from a list of comments regarding the
results of the most significant statistical analyses: the EPIweb system automatically “as-
sembles” all the given comments/results,automatically creates a tex file, then invokes
LATEX to produce the PDF file, and finally displays such a file as the resulting technical
report. The report contains: (i) a title page, (ii) a page with a note and the list of the par-
ticipants of the study, (iii) the table of contents, (iv) a chapter with a description of the
epidemiological study and a note which foregoes the results, (v) a central chapter with
all comments/results regarding the analysis, (vi) the description of the questionnaire
and of the dataset, (vii) the list of tables, and (viii) the list of figures.

Finally, in the administration section, a discussion forum regarding the results of a
study can be opened and moderated. Furthermore, a user management facility is also
provided.

The database was conceptually modelled (see E/R diagram depicted in figure 3) to
allow the storage (i) of the epidemiological data organized in terms of answers given
to questionnaires, (ii) of the statistical analysis as a collection of processings taken
from certain statistical models, and (iii) of the reports from comments given to selected
processings. In detail, a dataset comes from a questionnaire, whose name is stored in
the database. A questionnaire is made up of a list of questions. The questions are orga-
nized as a double-linked list, where thenext/prev attributes point to the next/previous
questions, respectively. The type attribute indicates the datatype of the expected an-
swer and the opt attribute stores its possible options. The null attribute indicates
whether a missings value might be accepted, and the text attribute contains the text
of the question. The ic attribute is used to store an eventual internal consistency check.
Actually, it is under consideration the possibility to model constrainst using the results
coming from business rules [20]. To a certain question, an answer is given, whose value
is stored in the proper attribute (either int, float or str80). The flag missing is
obviously used to represent a missing value. Furthermore, the time in which the answer
was entered is stored in the time stamp attribute. A statistical processing is the ac-
tual application of a certain model in a given analysis. Therefore, a model has a name, a
typewhich specifies whether it is a statistical analysis or a graph, and a stata cmds
attribute which contains its abstract STATA implementation. A model becomes “tan-
gible” by means of the proper varlist, by prefix, if qualifier and opt options,
stored in the processing entity. Hence, the models represent all the available statistical
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Fig. 3. The E/R diagram of the underlying database

analyses/graphs, while the processings are the actual analyses executed by an epidemi-
ologist in his/her investigation.

This conceptual model supports information integration since data coming from dif-
ferent sources can be stored in the database as answers given to ad-hoc developed ques-
tionnaires. In other terms, each different data source is represented by a questionnaire,
whose questions must reflect the metadata structure of the original data source.

3 The Case Study

Hereafter, a sample system run which shows how EPIweb supported an investigation
regarding the middle school students’s nutritional habits in the Municipality of L’Aquila
(Italy) [21] is reported.

The epidemiologist connects to the server, logs in as an EPIweb administrator, and
creates a new study by giving it a name (i.e. “Middle school students’ nutritional habits
in the Municipality of L’Aquila”) and a short description. Hence, the epidemiologist
decides to select the remote centers through simple randomization. By clicking on the
proper link, a pop-up window is opened, and the epidemiologist (i) adds all the possible
remote centers, (ii) randomly selects a subset of a chosen size, and (iii) stores the result-
ing centers into the database. Then, the epidemiologist develops the questionnaire by
sequentially adding the needed questions. In this phase, the epidemiologist has to take
attention in specifying e.g. when a missing value might be accepted, the list of the al-
lowed answers (by using the associative sets), the range of acceptance, when a question
should be asked, etc.
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Figure 4 shows the question regarding if the student has breakfast. The expected an-
swer belongs to a set of choices: 0=Always, 1=Sometimes, and 2=Never. Therefore, the
epidemiologist creates the “Do you have breakfast?” question as a “Set of values” with
a related associative set specified with the string 0 "Always" 1 "Sometimes"
2 "Never" (see figure).

Fig. 4. The questionnaire creation area (first question)

Figure 5 shows the subsequent question, which regards the reason because the stu-
dent does not have breakfast. Since this question must be asked only to the students who
answered “Never” to the previous one, an internal consistency check must be applied:
the question is asked only if the answer given to the “Do you have breakfast?” question
is equal to 2 (i.e. “Never”).

Fig. 5. The questionnaire creation area (subsequent, constrained question)

When the questionnaire is ready, the epidemiologist enables the data entry. The
remote centers log in the EPIweb system and fill in their questionnaires question by
question. Depending on the constraints given by the epidemiologist, the system either
accepts or rejects the questionnaire.

When the data entry is over, the epidemiologist begins the statistical processing of the
data. Initially, he decides to investigate the age of the students. To this aim, he creates
a table and a pie chart regarding the question “How old are you?”. Figure 6 shows
the interface used to create the statistical analysis, and the corresponding result. With
similar operations, the epidemiologists continues the analysis and adds all the needed
statistics, tests and graphs.
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Fig. 6. The age distribution

Finally, he starts the development of the technical report. We recall that the report
is created by the EPIweb system by “assembling” the comments given to the analy-
ses/graphs that the epidemiologist considers relevant. Figure 7 finally depicts the pro-
duced report.

We remark that a study can be also repeated periodically, since the timestamp of
each answer is stored in the dataset. Also the center which entered the answer is stored
in the dataset, therefore, comparisons regarding e.g. centers, repeated studies can be
performed.

4 Discussion

The paper discussed the need for an integrated and flexible approach to effectively col-
lect, validate, analyse, display and report epidemiological data. We have briefly shown
in the sample system run that the EPIweb system can be easily “tailored” to the speci-
ficities of an epidemiological study, and that it can handle a large variety of investi-
gations by properly changing the questionnaire and the statistical analyses. It is worth
remarking that the EPIweb system implements a centralized flow of information, which
makes available both the statistical investigations and/or the technical reports regarding
the most important research findings timely.

The study regarding the nutritional habits was also used to assess the advantages of the
EPIweb system, throughout its comparison with similar investigations conducted with
traditional methods. The physician who supervised the data entry, who also weighed and
measured the students, reported that the data collection activity was greatly improved by
the adoption of the EPIweb system: the data was collected timely and directly in a digital
format, and the entering of typos was prevented. Nevertheless, the epidemiologist who
managed this study, even if satisfied of the processing capabilities, asked for improving
the report generation interface which allows only a stereotyped organization.
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Fig. 7. The technical report

Further open issues arised during the investigation. The workflow embedded in the
EPIweb system which “drives” an epidemiological study was not clearly perceived by
the epidemiologist, which asked for a more clear and intuitive interface. Furthermore,
we state that a fundamental support could be given in the selection of the best statis-
tical analysis useful to reach a certain research objective. We point out that this aim
can be achieved by implementing in the next release of the EPIweb system a scientific
workflow management based on a hierarchical statistical analyses organization like that
highlighted in figure 8, which extends the flowcharts for relating reseach questions to
statistical methods available in [22]. In the figure, the research objective is the main
question, then further “refinements” are required (e.g., the variable type, if a graph or a
measure is needed), until the proper statistics is selected. For instance, to measure the
dispersion of a numerical variable (i.e., not expressed in terms of ranks, neither frequen-
cies), the system could propose to evaluate either its variance or standard deviation.
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– Which is the central tendency?
• Variable: numerical

* Measure
· Mean

* Graph
· Histogram
· Steam-leaf plot
· Box graph
· Frequency polygon

• Variable: ranks
* Measure

· Median
· Mode

* Graph
· Bar graph
· Box graph

• ...
– Which is the dispersion?

• Variable: numerical
* Variance
* Standard deviation

• Variable: ranks
* Max-min
* IRQ

• ...
– Do you want to investigate into the normality deviation?

• Variable: numerical
* Skewness
* Kurtosis

– Is there a difference? [22]
– Is there an association? [22]
– Are there two or more independent variables? [22]

Fig. 8. A possible hierarchical organization of (a portion of) the statistical analyses useful for
medical research
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22. Dawson-Saunders, B., Trapp, R.G.: Appendix C: Flowcharts for relating reseach questions
to statistical methods. In: Basic & Clinical Biostatistics. Appleton & Lange (1994)



T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 433 – 444, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Tag-Based Data Model for Privacy-Preserving  
Medical Applications 

Surya Nepal, John Zic, Frederic Jaccard, and Gregoire Kraehenbuehl  

CSIRO ICT Centre PO Box 76, Epping NSW 1710 Australia1 
{Surya.Nepal,John.Zic, Frederic.Jaccard,  

Gregoire.Kraehenbuehl}@csiro.au 

Abstract. In autonomous distributed healthcare environments, patients’ elec-
tronic medical records are controlled and managed by each healthcare facility. 
It is important to ensure that when records are accessed and transferred that it is 
done securely, while still respecting patients’ rights on privacy and confidential-
ity of their personal health information. We propose a new tag-based data 
model for representing patients’ electronic medical records as well as access 
and transfer policy statements. This model helps to categorize the patient in-
formation, as well as expressing patients’ consent for a variety of domains (in-
dividual, health care provider and facility). Unlike most existing data models 
used in healthcare information systems, our model supports patients’ consent 
expression in terms of healthcare facilities, healthcare providers, their roles, and 
categories of medical records or any combination of them within a single 
framework. Our model has been demonstrated by developing a prototype sys-
tem using some trusted computing components.  

1   Introduction 

The coordination of individual’s health care relies on the sharing of personal health 
information among healthcare providers such as local clinics, test laboratories and 
hospitals. It is well known that there are potential benefits and risks associated with 
sharing patients’ electronic medical records [3]. One of the risks is patient’s loss of 
privacy and confidentiality, where patients may not want to share or transfer their per-
sonal health information without their knowledge, and retain the rights to both access 
and transfer of this information.  

The effective usage of personal health information systems is hard to achieve with-
out addressing the patients’ privacy and confidentiality concerns [2]. Different models 
have been proposed and demonstrated to address their concerns. An eConsent model 
has been developed and demonstrated in [1]. The model proposed a novel, privacy-
preserving anonymous transfer protocols based on the concept of ‘placeholders’. 
However, the model was based on a number of assumptions that represent a subset of 
real world application such as medical records are organized in nested structure to re-
solve the conflicts in policies [1].  
                                                           
1 This work is completed as part of CeNTIE project that is supported by the Australian Gov-

ernment through the Advanced Networks Program of the Department of Communications, In-
formation Technology and the Arts. 
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This paper offers an alternate way to organize medical records and express access 
and transfer policies. Our approach, which we call tag-based model, extends the 
eConsent model so as to address the weaknesses in the current eConsent model.  

In our model, an electronic medical record has a number of policy tags associated 
with them, which we call eTags. Each of these tags has two fields: category and pol-
icy. The category field categorizes records into different groups such as heart, head 
and AIDS. The policy field, which we call eCo (electronic consent), consists of rights 
expressions. Unlike RBAC [6] and the eConsent model [1], our approach allows defi-
nition of permission for both transfer and access in terms of (a) roles, (b) healthcare 
Facilities, (c) healthcare providers, and (d) categories of information. 

The following summarizes the key characteristics of our tag-based model. 

• Default policy expression: each healthcare facility, patient and their 
families may have different policies for different categories of medical re-
cords. Our model supports default policies for patients, their families and 
healthcare facilities. For example, a patient can define a default policy for 
his AIDS related record so that all of his AIDS related records are sub-
jected to this default policy. A facility can define its own default policy 
for AIDS related records, where AIDS related records of all patients in the 
facility are subjected to this policy. Similarly, a patient’s family can de-
fine default policies for all the members of their family.  

• Access and transfer policy: the policy expression mechanism allows the 
specification of both inter- and intra-facility access and transfer rights ex-
pressions. This enables, for example, a patient to deny specific healthcare 
facilities for receiving their personal health information.  

• Uniform model: our model used eTags for both categorization and policy 
expressions, and allows us to define a set of policies for different catego-
ries of information.  

• Flat model: there is no nested and hierarchical structure in information 
representation, and provides flexible way of representing information and 
defining policies.  

• Categorization into multiple groups: in our model, electronic medical 
records are categorized according to a common, well-defined medical on-
tology. For example, a prescription related to “headache” that has side ef-
fect on heart can be categorized into three different groups – heart, head 
and prescription- by attaching their respective eTags.  

• Prioritized conflict resolution: the model has an underlying priority-
based conflict resolution mechanism for resolving policy conflicts be-
tween varies eCos..  

• General policy expression: the model extends the usual role-based policy 
expression to allow policy expressions in terms of healthcare facilities, 
healthcare providers and categories of information. For example, a policy 
expression such as “grant access to AIDS related records to Dr. Smith 
while working as a heart specialist in North Ryde Medical Center” is pos-
sible in our model.  

The rest of the paper is organized as follows. In Section 2, we describe a motivat-
ing example and identify some of the privacy and confidentialty problems that need to 
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be solved. The flat data model is described in Section 3. Section 4 briefly describes a 
prototype implemented in a trusted environment. Section 5 presents the related work 
and the last section presents the concluding remarks and the future work. 

2   A Motivating Scenario 

We consider an example distributed healthcare environment that includes two health-
care facilities: Western Sydney Hospital and North Shore Hospital. Each hospital is 
autonomous and has its own medical information systems. However, as is often re-
quired, these hospitals share patients’ personal health information in order to provide 
effective services. For example, Western Sydney Hospital may move a patient to 
North Shore Hospital and transfer all their medical records with them.  

Each hospital has its own set of privacy and confidentiality policies for patient re-
cords held within their medical information systems. For example, a doctor working 
in the emergency department is permitted to have access to all medical records of a 
patient admitted to an emergency ward. Though the basic policies are setup by gov-
ernment rules and legislation, each hospital may implement these policies differently. 
That is, each hospital may have different set of policies for different categories of in-
formation. For example, Western Sydney Hospital may have different set of policies 
for AIDS related records to that of North Shore hospital. Any data model must sup-
port a variety of default access policies for hospitals so that all medical records in the 
hospital are subjected to these policies.  

It is a fundamental assumption that a patient owns their personal health information. 
A patient may have policies that differ from those of a particular hospital. For exam-
ple, a patient can define a policy that all AIDS related records are accessible to their 
doctor, and no other doctor in the hospital can access it except in case of emergency. 
Similarly, a patient’s family may define their own policies for family members. For 
example, only family doctors may be allowed to access immunization records of the 
family members. Any data model developed and used must support the definition of 
default family and patient policies.  

The discussion so far has been on specific policies of hospitals, patients’ families 
and patients. As we mentioned earlier, a patient is an ultimate owner of his/her health 
information and thus must be able to define policies for individual electronic medical 
records independently. For example, a patient’s AIDS related records policy may 
grant access to only family doctors. Of course, the patient may require that a particu-
lar blood test to be examined by AIDS specialist. Furthermore, the patient may not 
want to disclose the AIDS related records to the family doctor even though the family 
has defined a policy that all records of family members are accessible to the family 
doctor. 

The hospitals may share health information with each other to provide better ser-
vices. Similar to access policies, transfer policies are also defined at hospital, family, 
patient and record levels. The hospital may define its own transfer policy to another 
facility, but any information sharing is only possible if the patient allows it in their 
transfer policy  

Transfer and access policies may be defined at on entities such as hospitals, patients, 
families and medical records. However, some policies may also need to be defined on 
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for a group of medical records such as AIDS related records. This means medical re-
cords need to be categorized so that it is possible to define policies for a set of records 
in a category. 

Hospital default policies are normally expressed on Roles within the facility. For 
example, Western Sydney Hospital may have policy that a doctor or nurse in an 
emergency doctor role can access all information. However, patient policies are less 
likely to depend on roles, and rather express policies in terms of individual doctors, 
such as “grant access to AIDS related records to Dr. Smith”.  

In order to model the above scenario, the data model must be able to express and 
support (a) agreed upon information categorization such as AIDS and Heart, (b) ac-
cess and transfer policy rights expression, (c) default policy expressions for hospitals, 
patients and family, (d) default policy expression for different categories of informa-
tion, and (e) policy expressions for both indentified individuals and roles.  

2.1   Security Features 

The discussion so far has presented some of been the characteristics of the data 
model. This section briefly identifies the security requirements that are necessary to 
meet the patient’s privacy and confidentiality requirements on the access and transfer 
of their personal health information. They include:  

• no loss of privacy and confidentiality for the patient; 
• medical records should be accessible to only those providers who need to 

know; 
• access should be limited to those portions of medical records that pertain 

to the provider’s role; 
• a log or audit trail must be maintained about all access to any part of the 

medical records; 
• anonymity must be maintained if the medical record is published into the 

public domain for research purpose; 
• the release/transfer of data needs patients’ authorization;  
• any confidential data must carry the confidentiality information;  
• the medical records transfer to other side must be protected;  
• a secure transfer mechanism must be established; 

These requirements and their impact on the required protocols to implement these 
requirements are further discussed in a forthcoming paper. 

3   The Tag-Based Data Model  

This section presents our tag-based data model and how it provides the health infor-
mation requirements discussed in Section 2.  

An electronic record (eRec) is our fundamental unit of information. An eRec could 
be a diagnostic report, X-ray image, or prescription as shown in Fig 1. Each eRec may 
have an arbitrary number of electronic tags (eTags) attached to it. 

Each eTag has two fields: category and policy expression (as shown in Fig. 1) that 
we refer to as an eCo (electronic consent). The category field is a tuple, consisting of 
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type of category and its associated value. The type determines whether the category is 
related to patient, family or facility. The value provides the categorization information 
within the category type. The eCo field consists of a set of access and transfer rights 
policies for the category. 

Finally, each policy has a timestamp representing the time of creation of the policy. 
This is used for conflict resolution (as shown later) as well as for audit purposes. 

 

Fig. 1. eTag Structure 

Each eTag can be placed into one of three broad classes: (a) a special NULL cate-
gory with a non-empty set of policies, used to express record-specific policies. (b) An 
eTag with a NULL policy but with category information, used for categorization pur-
poses only. (c) An eTag with both category information and a set of policies that 
groups the set of records and specifies group-related policies. 

eRecs

 Diagnostic Report
-------------------

--------------------------------
---------------------------------
----------------------------------

---------------------------------------
-------------------------------

eTags

X-ray
-------------------

--------------------------------
---------------------------------
----------------------------------

---------------------------------------
-------------------------------

Presecription
-------------------

--------------------------------
---------------------------------
----------------------------------

---------------------------------------
-------------------------------

Blood Test Report
-------------------

--------------------------------
---------------------------------
----------------------------------

---------------------------------------
-------------------------------

 

Fig. 2. eRecs and eTags in the data model 

Our model allows eTags and eRecs to be related via a many-to-many relation as 
shown in Fig. 2. This allows an eRec to be categorized into multiple groups by attach-
ing multiple eTags onto the eRec. Further, access and transfer rights are defined by 
each eTag, allowing complex access and transfer relationships to be defined and en-
forced. 

The information held in the eTag catagory is also sensitive, in that poorly designed 
systems may result in accidental violation of privacy and confidentiality requirements. 
Our eTags have an eCo that applies to both an eRec and to category information. This 
means a medical practitioner will not have access to the eTags if the eCo defined in 
the eTag denies access to the practitioner.  

Our eCo expresses both the transfer and access rights of a particular eRec. One 
could define an eCo access rights using standard policy languages such as XACML 
[12] , or EPAL [13]. However, most of the current policy expression languages are 
primarily used for expressing access policies. Languages that may by used to express 
transfer policies are a recent development, such as those that came out of the Family 
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Domain effort within Motorola [14] and are now in OMA 2.0 [15]. These languages 
are very rich and allow generalised application to any DRM application. However, we 
did not require their full capabilities for this application, and so we defined our own, 
application-specific rights policy expression language, described in the following  
section.  

Note that we have omitted any formal description of the model due to the limited 
space available in this paper. 

3.1   Policy Expression Language 

Fig. 3 shows our rights policy expression language in BNF style. 

policy :=  

  policy_TRANSFER | policy_ACCESS 

policy_TRANSFER :=  

  (‘grant’ | ‘deny’) ‘transfer to’ (FACILITY) 
policy_ACCESS:=  

  policy_ACCESS_GRANT | policy_ACCESS_DENY 

policy_ACCESS_GRANT:=  

  ‘grant’ ‘access to’  

  (((PRINCIPAL | ROLE)[‘with append right’]) | FACILITY) 

policy_ACCESS_DENY :=  

  ‘deny’ ‘access to’ (PRINCIPAL | ROLE | FACILITY) 

Fig. 3. Policy Expression Language 

The transfer policy grants or denies transfer to a certain facility (or hospital). The 
access policy grants or denies access to health practitioners (or principal), their roles 
or facilities. The access permission can be granted with append rights for healthcare 
practitioners or their roles defined in the facility. A doctor can access an electronic re-
cord, if and only if the access policies: (a) allow access to the subject or to the Role 
and (b) allow access to the Facility. That is, both the facility and practitioners need to 
have access permission in order to access the medical records. Similarly, a doctor can 
transfer an electronic record if and only if (a) the access policies allow access to the 
subject and his facility and (b) transfer policies grant transfer permission to the desti-
nation facility. 

3.2   Policy Enforcement and Conflict Resolution Mechanism 

In order to determine whether a principal can access an eRec or not, all the policies 
listed in the eCo of all eTags attached to the eRec must be evaluated. However, the 
policies defined in different eTags may conflict each other. To address this, we first 
define a policy priority, based on the following eTag type partial order:  

Facility ⊆ Family ⊆ Patient ⊆ NULL (1) 



 A Tag-Based Data Model for Privacy-Preserving Medical Applications 439 

We then use this order to define a prioritized multi-step conflict resolution mecha-
nism, as follows. 

1. Higher priority wins: A simple check is first performed according the order pre-
sented in Equation (1), above. Unfortunately, this first step cannot resolve all con-
flicts, since a single eCo may contain multiple policies. Similarly, an eRec can 
have multiple eTags from the same level of priority.  

2. More specific wins: If eTags have identical priorities, we resolve the conflict us-
ing a principal of “more specific wins”. For example, a policy concerning a doctor 
wins over a policy concerning a role because a doctor is more specific than the 
role. If this rule fails to resolve the conflict, we move onto the following step. 

3. Most recent wins: At this point, we resolve identical priorities and specifities by 
use of the timestamp and a rule where “most recent wins”. 

4. “Deny” wins over “grant”: Should all the rules fail up to this point, the policy 
with “deny” wins over the policy with “grant”. 

4   Prototype Implementation 

We implemented a demonstration system running on four PCs. Fig. 4 depicts the 
overall architecture of our “MedicClient/Server” system. The system has six major 
components: 

 

Fig. 4. MedicClient/Server Architecture 

1. Policy enforcement: responsible for enforcing policies and resolving conflicts 
while accessing and transferring medical records. It is also responsible for generat-
ing and maintaining of audit logs. 

2. Integrity measurement/validation: is used to measure the current environment of 
the computer where MedicServer is running and verifies that the measurements 
sent by other facility are as expected and so can be trusted.  
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3. Secure communication: encrypts the outgoing information and decrypts the in-
coming information. 

4. Attestation: is used to determine the identity of the remote facility 
5. Pre/post processing: processes the eTag for transfer. 
6. Storage and Retrieval: is responsible for storing and retrieving an eRec from the 

SQL databases. 

We consider only two components: storage and retrieval, and policy enforcement 
and monitoring since the scope of this paper is the data model. We present the trusted 
computing components (integrity measurement and validation, attestation and secure 
protocols) in a forthcoming paper. 

Storage and retrieval: Electronic medical records and all other data needed for the 
functioning of components are stored in a persistent, securely encrypted store imple-
mented using SQL server and ADO.NET classes to connect data sources and to re-
trieve and update stored data.  

 

Fig. 5. E-R diagram for the tag-based model 

Fig. 5 shows the relationships between the various entities in our tag-based model. It 
can be seen from the figure that a policy is defined on the roles and facilities as well 
as individual doctors. It is worthwhile noting that the doctor eTag is a NULL policy, 
as it does not have any relationship with the policy entities. The entities and their rela-
tionships were used to create the SQL tables held on the server, and used trusted 
computing technology to ensure the privacy and security of the SQL data. 

Guided by the requirement that the patient’s medical record privacy must be pro-
tected, we decided to encrypt the information in an eRec table entry. This is because 
each table entry contains a patient’s medical record. This decision then allowed a 
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simple database implementation, as only the eRec table entry data needs to be se-
cured. Decryption of the information in an eRec could be done without using another 
access to the database.  

The eRec data is encrypted using Triple DES, and requires the use of a symmetric 
key created at the time of installation of our system. An asymmetric key is created 
and registered at the same time and is used for the purposes of sealing the symmetric 
key so as to prevent unauthorized access to the symmetric key. Sealing can be simply 
described as an encryption function that allows only the hardware device and its spe-
cific software environment that created the object to decrypt it. The implemented 
mechanisms rely on the support of the Trusted Platform Modules (TPM) and Trusted 
Software Stack (TSS) library, and are not discussed any further in this paper. These 
will be presented in a subsequent paper.  

Policy enforcement and monitoring: Again, due to space constrains, we only briefly 
describe only one of the many implemented functions of this component, namely the 
access policy enforcement. The access policy enforcement mechanism consists of two 
steps. The first checks whether the doctor is allowed to access the information or not. 
The second step checks whether the facility where the doctor is trying to access the 
information is allowed to access it or not. For both steps, all related policies for an 
eRec are collected from eTags in a list and checked against the conflict resolution 
mechanism described in Section 3.2 to see whether the winner mode is “grant” or 
“deny”. If both facility and doctor lists come out with the winner mode as “grant”, 
then the access is granted to the doctor in the facility for the eRec. In all other cases, 
access is denied.  

5   Related Work 

Heath services can be improved significantly by sharing patient information, but this 
needs to be balanced with patient’s privacy and confidentiality requirements. The 
electronic medical record systems enable the easy sharing and distribution of patient 
information. However, the disclosure of a patient’s medical records without his/her 
permission is prohibited. In this section, we first discuss the related work in health in-
formatics in general and then discuss the work closely related to our proposed model.  

Huston [8] discusses the general security concerns on implementing e-medical  
records and technological and administrative tools available for safeguarding the  
e-medical records. Stein [7] discusses the different scenarios of electronic medical re-
cords and highlights the threats and promises. Reliability, Accountability and Privacy 
are considered as threats, whereas consistency, flexibility, availability, and quality are 
considered as promises.  

One of the major privacy concerns is secure transfer of electronic medical records 
from one service provider to other. Task force on medical informatics [3] discusses 
some issues related to transfer of medical records. Chadwick and Mundy [2] look at 
the security requirements for electronic transfer of prescriptions from the perspectives 
of confidentiality, integrity and availability. It analyzed the four different transfer 
models published in UK: Transcript Consortium Model, Pharmacy 2U Consortium 
Model, SchlumbergerSema Consortium Model, and University of Salford Model.  
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Evered and Bogeholz [5] present a case study of the access control requirements 
for a health information system in a small aged care facility. The study was focused 
on the use of static per-method access control list. The case study found that the 
method is inadequate as the policy constrains become complex even for a small sys-
tem taken in the case study.  

Reid et al. [6] examined the RBAC as a candidate access control mechanism for 
health care information and found that the range of access policy expressions sup-
ported by RBAC is not adequate. The paper proposed a model where the access con-
trol is given through a consumer centric role called care team role. The advantage of 
this model is that a subgroup of entities within a role can be explicitly granted or de-
nied access to health information. Motta and Furuie [10] extend the RBAC reference 
model by introducing contextual authorisation. The authorization module not only 
uses the positive and negative authorization, but also user affiliation, time and loca-
tion of access, user and patient relationship, patient status, etc. 

Khayat and Abdallah [4] present a formal model for flat role-based access control, 
which we see closer to our model. This model overcomes the some of the problems as 
it uses the flat model. However, this model does not consider the problem-oriented 
approach where the patient’s medical condition is divided into a list of discrete prob-
lems such as diabetes, coronary artery disease and lower back pain as in [7]. The rea-
son behind it is that the model considers only roles. Our approach has overcome this 
problem by flattening not only roles, but also problems (or categorization of medical 
records) as well as medical information as done in our model.  

Choudhri et al. [9] presents a healthcare systems based on mobile technology. The 
system delivers different versions of the documents based upon their roles using dy-
namic trust model. The model is based on transitive trust, that is, a doctor can dele-
gate his role to other doctors. During the delegation process, the doctor may give his 
full rights or limited rights. This means a doctor who was not denied by patients could 
have access to the patient information through delegation. We have not dealt with 
transitive trust in our model.  

6   Conclusions and Future Work 

Previous eConsent data models were developed on a set of restricted assumptions. By 
widening the assumptions and examining the realistic use of eConsent within the 
health care system, we noted that these eConsent data models needed to be changed. 
As a consequence, we developed a flexible data model for electronic medical records, 
called tag-based data model. The data model allows representing patients’ medical re-
cords along their consents. The model also allows us to categorize medical records 
into different group and define default policies for such categories. Unlike existing 
role-based access model, our data model supports both access and transfer policies on 
roles, and on categories of information, facilities and healthcare practitioners.  

Our experience has been that the data model allows a great deal of flexibility and 
autonomy to the end users, and imposes a minimal set of semantic requirements on its 
use in specifying policies and catagories. Because eTags and eRecs are securely en-
crypted, indexing and searching requires the extension of the current data model to 
include metadata information.  
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Finally, we demonstrated the feasibility of the use of this data model by developing 
a prototype system based on .NET and trusted computing technologies. The prototype 
system gave us an insight of difficulties in implemented secure medical applications. 
One of the issues was the need for a good user interface to allow the complex rela-
tionships of the model to be accurately captured as well as easily understood. Other 
issues such as secure transport protocol, and the establishment of mutual trust will be 
presented in subsequent papers.  
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Abstract. Several query languages have been proposed for managing
data streams in modern monitoring applications. Continuous queries ex-
pressed in these languages usually employ windowing constructs in order
to extract finite portions of the potentially unbounded stream. Explicitly
or not, window specifications rely on ordering. Usually, timestamps are
attached to all tuples flowing into the system as a means to provide or-
dered access to data items. Several window types have been implemented
in stream prototype systems, but a precise definition of their semantics
is still lacking. In this paper, we describe a formal framework for express-
ing windows in continuous queries over data streams. After classifying
windows according to their basic characteristics, we give algebraic ex-
pressions for the most significant window types commonly appearing in
applications. As an essential step towards a stream algebra, we then pro-
pose formal definitions for the windowed analogs of typical relational
operators, such as join, union or aggregation, and we identify several
properties useful to query optimization.

1 Introduction

Data streams have emerged as a modern paradigm for managing time-varying,
volatile, unpredicted and possibly unbounded information in various monitor-
ing applications. Typical examples include data generated from telecom calls,
financial tickers, sensor readings over large areas or traffic measurements. Such
information must be handled online as data items flow rapidly into the system
from multiple sources. Over this dynamic data, the system must provide timely
and incremental responses to multiple continuous queries, ideally keeping in pace
with the data arrival rate.

Compared to one-time queries in conventional DBMS’s, continuous queries
differ substantially in their semantics. Since the size of the stream is potentially
unbounded, the state of the data is not known in advance, so responses clearly
depend on the set of stream tuples available during query evaluation. Several
operations, such as aggregation or join between streams, may need special treat-
ment, e.g., previously arrived tuples must be maintained, at the expense of a sig-
nificant overhead. Obviously, since streaming data is usually retained in memory
and not physically stored on disk, it is not practically feasible to ”remember” the
entire history of rapidly accumulating stream elements due to resource limita-
tions. Besides, it is probably not worth maintaining stale tuples for long, as the
significance of each isolated item is time-decaying for most realistic applications.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 445–464, 2006.
c© IFIP International Federation for Information Processing 2006
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To overcome such difficulties, windows have been introduced in query formula-
tion. Such constructs generally emphasize on the latest data by taking advantage
of an ordering among tuples, usually established through timestamp values at-
tached to every item. Intuitively, at any time instant, a window operator specifies
a finite set of recent tuples from the unbounded stream; this finite portion of
the stream will be subsequently used to evaluate the query and produce results
corresponding to that time instant. As time advances, fresh items get included
in the window at the expense of older tuples that stop taking part in compu-
tations (and perhaps may get discarded altogether). In general, windows evolve
in a prescribed mode keeping up with the continuous arrival of data items. Cer-
tain variants have been suggested for effective stream processing, like sliding,
landmark or tuple-based windows, whereas several types have been successfully
implemented in prototype systems [1,6,8,13]. However, most of these constructs
are described in an abstract manner or by giving motivating examples, without
paying particular attention to their subtle semantics.

The structure of a window clearly determines the snapshot of the dataset
over which the query will be evaluated each time. But how can the extent of
that window be defined in order to obtain a particular portion of the stream?
Should this extent be allowed to change over time and in which specific pattern?
Should window’s contents be overlapping between any two successive snapshots?
Finally, is it possible for windowing constructs to be intertwined with relational
operators and under what semantic interpretation for their results?

In this paper, we provide a foundation for window specification over data
streams with precise semantics. First, we sketch out a simple, yet quite robust
model for querying data streams that is capable enough to capture their volatile
nature. This model adheres to well-founded relational concepts and extends re-
cent approaches in data stream management. Our contributions are as follows:

• We identify certain generic properties of windows that offer a sound basis for
their taxonomy in several categories. Through these properties we can then
create a mechanism for expressing typical window variants over streams.

• We introduce a parameterized scope function as a building block that enables
effective specification of both the window’s extent and its progression across
time. Composite window types may then be defined by simply arranging
their basic features according to the semantics of the query at hand.

• We provide formal definitions of well-known relational operators combined
with windowing specifications that can be used to express queries on streams.
We further investigate characteristic properties that may prove useful to
query formulation and transformation.

The remainder of this paper is organized as follows: Section 2 presents a frame-
work for data stream modeling and explains the semantics of continuous queries.
In Section 3 a basic algebraic representation is introduced for windows accord-
ing to their taxonomy into distinct types. Section 4 proposes a combination of
windowing constructs with certain relational operators outlining several useful
properties. Related work is briefly reviewed in Section 5. Finally, Section 6 offers
conclusions and hints to future research directions.
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2 A Framework for Querying Data Streams

2.1 Basic Notions on Data Streams

Items of a data stream are commonly represented as relational tuples [3], not
excluding a semistructured form [16]. Henceforth we opt for a specification of
stream items as relational tuples:

Definition 1 (Schema of tuples). The tuple schema E of streaming items is
represented as a set of elements 〈e1, e2, . . . , eN 〉 of finite arity N . Each element
ei is termed attribute with name Ai and its values are drawn from a possibly
infinite atomic data type domain Di. Every tuple is an instance of the schema
and it is described by its values at the respective attributes.

A timestamp value is attached to every streaming tuple as a means of providing
order among the data items that interminably flow into the system. It is often
convenient to represent time as an ordered sequence of distinct moments (like
clock ticks). Alternatively, simple sequence numbers may also serve as a means
for ordering tuples, i.e., a unique serial number is attached to each tuple upon
admission to the system. The following definition covers both interpretations:

Definition 2. Time Domain T is regarded as an ordered, infinite set of dis-
crete time instants τ ∈ T. A time interval [τ1, τ2] ∈ T consists of all distinct
time instants τ ∈ T for which τ1 ≤ τ ≤ τ2.

From the definition above, it follows that T may be considered similar to the
domain of natural numbers IN. The extent of each interval is also a natural
number, as it is simply the count of all distinct time instants occurring between
its bounds. At each timestamp τ ∈ T, a possibly large, but always finite number
of data elements of the stream arrive for processing [3]. Thus, multiset (bag)
semantics apply and duplicates are allowed, signifying that zero, one or multiple
identical tuples may arrive at any single instant:

Definition 3 (Data Stream). A Data Stream S is a mapping S : T → 2R that
at each instant τ ∈ T returns a finite subset from the set R of tuples with common
schema E. A supplementary attribute Aτ (not included in E) is designated as
the timestamp of tuples and takes its ever-increasing values from T.

Note that other temporal indications (e.g., attached at data sources) are still
allowed in the schema, although not explicitly considered as timestamps. In
contrast, timestamp is a distinctive attribute attached to every stream element.

From a historical perspective, a data stream may be regarded as an ordered
sequence of elements evolving in time, so its current contents are all tuples
accumulated so far. On the other hand, an instance of the stream at any distinct
time instant is a finite multiset of tuples with that specific timestamp value.

Definition 4. Current Stream Contents S(τi) of a Data Stream S at time
instant τi ∈ T is the set S(τi) = {s ∈ S : s.Aτ ≤ τi}.

Definition 5. Current Stream Instance SI(τi) of a Data Stream S at time
instant τi ∈ T is the set SI(τi) = {s ∈ S : s.Aτ = τi}.
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Timestamps serve as a unique time indication for the entire tuple and also as a
common time reference for all incoming tuples. Each tuple maps to exactly one
timestamp, but multiple tuples can have identical timestamp values. Timestamps
cannot be assigned a NULL value. Hence, a total order of stream items may be
defined by taking advantage of properties inherent in Time Domain:

Definition 6. Temporal Ordering is defined as a many-to-one mapping fO :
DS → T from data type domain DS of the tuples belonging to a data stream S
to Time Domain T, with the following timestamp properties:
i) Existence: ∀ s ∈ S, ∃ τ ∈ T, such that fO(s) = τ .
ii) Monotonicity: ∀ s1, s2 ∈ S, if s1.Aτ ≤ s2.Aτ , then fO(s1) ≤ fO(s2).

Temporal ordering is crucial in stream processing because data items must be
given for processing in accordance to their timestamps. As a general rule when
evaluating a continuous query at time τ , all stream tuples with timestamps upto
that particular τ must be available. Hence, no item should propagate for further
execution if its timestamp value is less than the latest tuple produced by the
system. Handling out-of-order tuples is beyond the scope of this paper.

2.2 Semantics of Continuous Queries

Intuitively, the results of a continuous query on a data stream may be considered
as a union of the sets of tuples returned from successive query evaluations over
the current stream contents at every distinct time instant. Similarly to [7,19],
we may formally define:

Definition 7 (Continuous Query over Stream). Let Q a continuous query
submitted at time instant τ0 ∈ T on data stream S. The results Qc that would
be obtained at τi ∈ T are the union of the subsets Q(S(τ)) of qualifying tuples
produced from a series of one-time queries Q on successive stream contents S(τ):

∀ τi ∈ T, τi ≥ τ0, Q
c(S(τi)) =

�

τ0≤τ≤τi
Q(S(τ))

The problem with this evaluation method is that it may not be practically feasi-
ble each time to compute query results by taking into account all stream contents
due to the overwhelming bulk of data that keep accumulating continuously. Peri-
odic evaluation is no better: if only intermediate stream contents are considered
in each evaluation, it may happen that newer results may cancel tuples included
in formerly given answers.

A conservative approach is to accept queries with append-only results, thus
not allowing any deletions or modifications at answers already produced. This
class of continuous queries is called monotonic [7]:

Definition 8 (Monotonic Continuous Query over Stream). A continuous
query Q applied over data stream S is characterized monotonic when

∀ τ1, τ2 ∈ T, τ1 ≤ τ2, if S(τ1) ⊆ S(τ2), then Q(S(τ1)) ⊆ Q(S(τ2)),

where Q(S(τi)) denotes results for query Q that have been produced from quali-
fying tuples of stream contents S(τi) at time instant τi.
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Obviously, the above definitions can be generalized for multiple input streams.
It is important to note that monotonicity refers to query results and not to
incoming stream items. As long as tuples may only be added to, but never
discarded from results, incremental evaluation of queries involving projections or
selections may be carried out as simple filters without particular complications.
However, joins or set-theoretic operations may involve stream items that have
arrived at previous time instants, so a state must be continuously maintained for
them [20]. Blocking operators, like aggregation or sorting, cannot produce even
a single tuple of their result before reading the entire input. Stateful operators,
like join or intersection, are equally problematic: in order to execute a join, all
tuples from both streams must be maintained, just in case a newly arriving data
item matches an older tuple from the other stream.

In order to bound the increasing memory requirements of query operators,
sliding windows are usually applied over the infinite streams and always return
a finite portion of the most recent data items. However, continuous queries spec-
ifying sliding windows over streams are non-monotonic, since new results are
produced but some older ones get expired due to window movement [10]. Re-
garding evaluation of sliding window queries, the interesting idea of negative
tuples [11] has been suggested as a way to cancel previously returned, but no
longer valid results. Certainly, this approach entails revision of typical query
operators to make them capable to handle positive and negative tuples alike.

The exact role of relational tables in continuous queries is another concern.
Whereas in Gigascope [13] there is no support for relations, other approaches
allow static tables (e.g., AURORA [1]) or even arbitrary updates in time-varying
relations (as in STREAM [3]). In the latter case, insertion and deletion tuples are
used to represent the changing state of such a relation. In [10] it is suggested the
notion of non-retroactive relations, whose updates affect only upcoming results
but do not alter any previously given query answers. In this work, our focus
is strictly on streams, setting aside for future research their interaction with
relations.

We think that our proposition for window semantics presented in the next
sections is flexible enough to be used under any of the aforementioned inter-
pretations of continuous queries. Our main focus is on precise specification of
windows, i.e., stream portions that may be regarded as temporary relations
where typical operators may be applied under well-known relational semantics.

3 An Algebraic Representation for Windows

3.1 Window Semantics and Properties

In all data stream prototype systems, submission of continuous queries is always
accompanied by –mostly sliding– window specifications on any stream involved
in the query. A window is generally considered as a mechanism for adjusting
flexible bounds on the unbounded stream in order to fetch a finite, yet ever-
changing set of tuples, which may be regarded as a temporary relation.
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Definition 9 (Window over Data Stream). Let WE a window with con-
junctive condition E applied at time instant τ0 ∈ T over the items of a data
stream S, i.e., over its current contents S(τ0). Then:

∀ τi ∈ T, τi ≥ τ0, WE(S(τi)) = {s ∈ S(τi) : E(s, τi) holds}

provided that | WE(S(τi)) |≤ n, for any large, but always finite n ∈ IN.

Therefore, each window is applied over the items of a single data stream S and
at every τi returns a concrete finite set of tuples WE(S(τi)) ⊂ S(τi) which is
called the window state at this time instant. When a continuous query involves
multiple streams (e.g., joins), a separate window must be specified for each one,
even if identical semantics are applied to all of them (i.e., similar expressions E).

Window specification is achieved by means of a windowing attribute [16] that
helps in establishing order among stream items. We adhere to timestamps for
ordering stream elements, so in the discussion below we designate timestamp
attribute as the one used for obtaining tuples qualifying for condition E. Con-
junctive condition E clearly depends on the windowing attribute and in our
framework it takes the form of a scope function. This condition determines the
exact structure of the window through its distinctive properties:

• upper bound: the timestamp of the most recent data item of the window,
i.e., the greatest time indication or sequence number. Note that this is not
necessarily the current timestamp, as the window may be delayed by an
offset with regard to the most recent stream tuple.

• lower bound: the timestamp of the oldest data item within the window.
• extent: the ”size” of the window, that may be expressed either as the number

of tuples included in it or as the temporal interval spanning its contents.
• mode of adjustment: as time advances. This crucial property determines

whether and in what way a window changes state over time.

These properties are useful for classifying windows into distinct types accord-
ing to the following criteria that prescribe their evolution with time:

Measurement Unit. Provided that one of its bounds is specified (e.g., the
current time instant) a window can be described through its size, such that its
contents may be obtained indirectly through their relative position to the known
bound. Therefore, the scope of the window can be measured in:

• logical units, usually in timestamp values. Hence, a time-based window is
derived from the time interval spanning its contents.

• physical units, implying the number of tuples falling within window’s bounds.
Typical variants include count-based (Fig. 1a) and partitioned windows.

Most often, the upper bound is known, as it can be derived easily either from
the current timestamp value (under the logical interpretation) or the most recent
tuple of the stream (physical interpretation) [6].
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Fig. 1. Typical window variants illustrated for three consecutive states at time instants
τk, τk +1, τk +2. New data items are piling up on top of previously arrived ones. Boxes
depicted with the same fill style represent tuples with identical timestamps. (a) Count-
based sliding window of size N = 6. (b) Landmark window with lower bound fixed at
τk. (c) Sliding time-based window of temporal extent ω = 2 and progression step β = 1.
(d) Tumbling window of temporal extent ω = 2 and progression step β = 2.

Edge Shift. Alternatively, a window can be explicitly defined by its two bounds
(or edges), which are commonly expressed as specific timestamp values for each
state. Depending on whether edges can change over time, we distinguish between:

• fixed-bound windows, where at least one of the bounds remains anchored at
a specific time instant. The other edge of the window is allowed to move
freely. It is the upper bound that is usually shifted forward in pace with
time progression, as occurs in landmark windows [8] (Fig. 1b).

• variable-bound windows, where both bounds change over time. For instance,
in sliding windows both edges proceed in tandem at the same pace such that
the window size (expressed either in time units or in tuple count) stays fixed.

Progression Step. Except for the case its bounds remain fixed, a window
changes progressively its contents either due to the arrival of new streaming
tuples or because of the advancement of time1. Therefore, transition between
any two successive states of a window may be carried out at:

• Unit step. In that case, window’s bounds advance smoothly one tuple-at-a-
time or at every discrete time instant (assuming that a global clock exists).
Overlaps should be expected between successive states of a window: when
progression step is expressed in time units (time-based sliding windows), tu-
ples with the oldest timestamp are discarded and those with the most recent
timestamp get inserted; in general, the number of expired tuples is not neces-
sarily equal to those appended (Fig. 1c). As for count-based sliding windows,

1 In general, windows may be allowed to move not only forward in time, but also
backwards. However, this approach is of little practical importance for applications
that need to process data streams online. In this paper, we assume that windows
move along the direction of increase in timestamp values.
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each incoming tuple throws away the oldest one. In both cases, window’s
contents get modified only across its bounds, retaining all tuples in between.

• Hops that span multiple time instants or a specific number of tuples. De-
pending on whether this hop size is smaller or larger than the window size,
overlapping or non-overlapping window extents may be created, respectively.
For example, non-overlapping tumbling windows [1,13] are used to get differ-
ent portions of the stream, so that no data item takes part in calculations
twice (Fig. 1d).

Many window variants can be specified on the basis of the aforementioned
classification criteria, depending on the semantics of the respective continuous
queries. For instance, a sliding time-based window (Fig. 1c) may be needed so
that the time interval covered by its contents remains fixed, although the number
of tuples within the window might be varying over time. Besides, conjunctive
condition E that identifies qualifying tuples may be extended with additional
filtering predicates on other attributes apart from the windowing one, in a way
that value-based windows may be expressed [6]. However, the main motivation
behind windowing constructs is their combination with typical relational opera-
tors (join, aggregation, etc.), so that their windowed analogs can be specified in
continuous queries over data streams.

In the next subsections, we attempt a rigorous algebraic description of the
principal window types that have been proposed in the context of data streams,
assuming that timestamps are used as windowing attributes. We adopt from [6]
the basic discrimination in physical and logical windows, according to the unit
in which window contents are determined.

3.2 Physical Window Types

Since these windowing constructs are determined by a predefined number of
tuples, they are sliding by default, so naturally, their extent spans the most recent
stream elements (”backward”). We are not aware of any practical application
that might ask for the N data items that will be arriving after the k-th element
(”forward”), because it cannot be known in advance whether or even when this
specific tuple will be observed in the flow of the unbounded stream. In the
following, window states are determined only at single-tuple units, as it seems
unlikely to specify a slide parameter of multiple tuples in most cases.

Count-Based Windows. At every time instant τ ∈ T a typical count-based
window covers the most recent N tuples of stream S:

Wn(S, τ,N) = {s ∈ S(τ) : ∃ τ1 ∈ T (τ1 ≤ τ ∧ | {s ∈ S(τ) : τ1 ≤ s.Aτ ≤ τ} |≤ N)
∧ ∀ τ2 ∈ T (τ2 < τ1 ∧ | {s ∈ S(τ) : τ2 ≤ s.Aτ ≤ τ} |> N)}

The above formula implies the method utilized to identify qualifying tuples:
intuitively, starting from the current time instant τ and going steadily backwards
in time, tuples are being obtained until their total count exceeds threshold N (cf.
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Fig. 1a for a graphical representation of such a window with size N = 6 tuples).
Nevertheless, subtle issues may arise with this policy. When the contents of
count-based windows are derived through their sequence numbers [3], it must be
clear how many times possible duplicates are counted and how ties are broken
for the N -th element. A similar case, but concerning timestamped tuples, arises
in our definition above: ties may still occur when only k elements need be chosen
out of a batch of m > k tuples corresponding to the lower bound of the window,
in order to reach the predefined total count N . As a convenient workaround to
resolve both subtleties, tuples may be selected in a non-deterministic fashion, as
suggested for ROW-based windows in CQL [3].

Partitioned Windows. The semantics of this window type are applied to
the streaming tuples by first partitioning them according to a subset L =
{A1, A2, . . . , Ak} of grouping attributes, as in extended relational algebra. There-
fore, several substreams are derived, each one corresponding to an existing combi-
nation of values 〈a1, a2, . . . , ak〉 on the grouping attributes. From each resulting
partition the most recent N elements are taken and the union of these sub-
sets provides the final set of window tuples. Note that the windowing attribute
(timestamp) is not allowed to participate in the list of grouping attributes. For-
mally, this operation may be defined as follows:

Wp(S, τ, L,N) = {s ∈ S(τ) : ∀Ak ∈ L, s.Ak = ak ∧ ak ∈ Dk ∧
∧ ∃ τ1∈ T (τ1 ≤ τ ∧ | {s ∈ S(τ) : s.Ak = ak ∧ τ1 ≤ s.Aτ ≤ τ} |≤ N) ∧
∧ ∀ τ2 ∈ T (τ2 < τ1 ∧ | {s ∈ S(τ) : s.Ak = ak ∧ τ2 ≤ s.Aτ ≤ τ} |> N)}

In contrast to usual relational semantics, aggregate functions (like SUM, AVG,
etc.) are not applied to the partitions formed after grouping stream elements.
Instead, a subset of N tuples is obtained from each partition and not just a
single value expressing their total count. Observe that count-based windows may
be regarded as a special case of partitioned windows where all tuples of the
stream get assigned to a single partition with no grouping attributes specified.

3.3 Logical Window Types

In logical windows, the timestamp values of streaming tuples are checked for
inclusion within a prespecified temporal interval. We conveniently express this
requirement by means of a scope function that may be defined for each window
type as a mapping from Time Domain T to the domain of possible time intervals:

scope : T → {[τ1, τ2] : τ1, τ2 ∈ T, τ1 ≤ τ2}

Essentially, at every time instant the scope function returns the window bounds
(and not its actual contents), taking as parameters the properties of the respec-
tive window type (extent, progression step, etc.).

Due to lack of space, in the following we present the most representative
variants of logical windows that have been implemented for several stream pro-
totypes, although the expressiveness of this approach has a broader applicability.
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Landmark Windows maintain one of their bounds fixed at a specific time
instant, letting the other follow the evolution of time. We distinguish two cases:

Lower-bounded landmark window. The lower bound (i.e., the starting time τl)
of the window is permanent, whereas the upper bound proceeds with time. If
this construct is applied at time τ0, then at any subsequent time τ ≥ τ0 ∈ T the
scope function takes the form:

scopel(τ) =
{
∅ if τ0 ≤ τ < τl

[τl, τ ] if τ0 ≤ τl ≤ τ

Therefore, streaming tuples of S with timestamps that qualify for the scope
of this landmark window are returned as its state at every time instant:

Wl(S, τ, τ0, τl) = {s ∈ S(τ) : s.Aτ ∈ scopel(τ)}
Note that this window type will keep appending new tuples indefinitely, unless

either the query is explicitly revoked (and hence the window is cancelled) or the
stream is exhausted and no tuples enter into the system anymore.

Upper-bounded landmark window. Here it is the upper edge that has been fixed
to a future time instant, which might not yet have occurred, but it will eventually
occur due to time monotonicity. Assuming that such a window is applied at time
τ0, the scope function is as follows:

scopeu(τ) =
{

[τ0, τ ] if τ0 ≤ τ < τu

[τ0, τu] if τ0 ≤ τu ≤ τ

and the upper-bounded landmark window is defined accordingly:

Wu(S, τ, τ0, τu) = {s ∈ S(τ) : s.Aτ ∈ scopeu(τ)}
Of course, there is no point in specifying upper bounds in the past (τu < τ0).

Intuitively, as long as the upper bound has not been reached yet, the scope of
window keeps expanding. After time instant τ = τu, the scope will no longer
change, so the window will ”close” and its bounds will be fixed. For append-only
streams, this means that the contents of the upper-bounded window will there-
after be ”frozen”, like a materialized snapshot of a particular stream portion.

Fixed-Band Windows. Combining the aforementioned landmark window vari-
ants, a band window function with fixed upper and lower bounds is constructed:

scopeb(τ) =

⎧⎨⎩
∅ if τ < τl

[τl, τ ] if τl ≤ τ ≤ τu

[τl, τu] if τu < τ

and Wb(S, τ, τl, τu) = {s ∈ S(τ) : τl ≤ τu ∧ s.Aτ ∈ scopeb(τ)}
Note that the state is not related to the moment τ0 this window is initially

applied, hence even arbitrary time intervals (”bands”) in the past may be ex-
pressed. From a semantics point of view, as soon as the current stream timestamp
τ exceeds the upper bound (third branch), window’s contents will remain un-
changed, assuming that they can be maintained in memory indefinitely.
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Fig. 2. Two successive states of a sliding window at time instants τ and τ + β. This
window obtains tuples delayed by δ time units with regard to current time (i.e., lagged
elements). Since β < ω, window states (ω) may have overlapping tuples. In case β ≥ ω,
there is no longer smooth state transition, thus a tumbling window is actually applied.

Time-Based Sliding Windows. This is probably the most common class of
windows over data streams, defined by means of time units (recall that physical
windows also slide as new tuples arrive). Let τ0 ∈ T be the time instant that
a continuous query is initially submitted specifying a sliding window Ws. Let
ω denote the invariable temporal extent of this window, β its progression step
and suppose that the upper bound of the window has a delay (or lag) δ with
regard to the current time instant τ . Then the scope of this sliding window may
be defined as a function of time:

scopes(τ) =

⎧⎪⎪⎨⎪⎪⎩
∅ if τ0 ≤ τ < τ0 + δ
[τ0, τ − δ] if τ0 ≤ τ − δ < τ0 + ω ∧ mod((τ − τ0), β) = 0
[τ − δ − ω + 1, τ − δ] if τ ≥ τ0 + δ + ω ∧ mod((τ − τ0), β) = 0
scopes(τ − 1) if mod((τ − τ0), β) �= 0

In the most common case, the upper bound of the sliding window coincides with
the current timestamp of the stream (i.e., δ = 0), so the previous scope function
may be simplified as follows:

scopes(τ) =

⎧⎨⎩
[τ0, τ ] if τ0 ≤ τ < τ0 + ω ∧ mod((τ − τ0), β) = 0
[τ − ω + 1, τ ] if τ ≥ τ0 + ω ∧ mod((τ − τ0), β) = 0
scopes(τ − 1) if mod((τ − τ0), β) �= 0

Note that τ0, τ ∈ T are expressed in timestamp values, whereas parameters
ω, δ, β are actually sizes of time intervals (hence ω, δ, β > 0). For the sake of
clarity, all parameters may be considered as natural numbers according to the
definition of the Time Domain T, so the scope function is evaluated at discrete
time instants of T. For every time instant τ ∈ T, the qualifying tuples are
included in the window state:

Ws(S, τ, τ0, ω, β, δ) = {s ∈ S(τ) : s.Aτ ∈ scopes(τ)}

In the most general case where β < ω, overlaps are observed between the extents
of any two successive states of a sliding window, thus a subset of their contents
remains intact across states (common tuples in both ω in Fig. 2). In the mean-
time of any two successive evaluations that are β units apart, no change occurs
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to the qualifying tuples. That is exactly the meaning of the recursive expression
at the last branch of the function, which provides a warranty that window’s
bounds change discontinuously at time instants that depend strictly on the pat-
tern stipulated by the progression step β. The definition allows for the existence
of ”half-filled” windows with extent less than ω at early evaluation stages, so the
window may be considered as being gradually filled with tuples. As soon as the
extent reaches its capacity, the window starts exchanging some older tuples with
newly arriving ones. Since time evolution implies an analogous change of time
intervals derived from scope, this function is by definition monotonic. Function
scope holds even for time instants in the future, thus covering all forthcoming
stream elements, no matter when they will actually arrive for processing.

Progression step β is usually set equal to the granularity of time (e.g., sec-
onds), so that the window slides smoothly in pace with the advancement of time.
In that case, the recursive branch in the above definition for the scope function
is redundant, as window’s contents are modified at every time instant.

Finally, by setting τ = NOW, ω = 1, δ = 0 and β = 1 in the definition of the
scope function, it is very easy to express an important class of sliding windows
that obtain the current instance SI(τ) of the stream, i.e., all its tuples with the
current timestamp value (in [3] the shortcut S [NOW] is used for this purpose).

Time-Based Tumbling Windows. The scope function defined for sliding
windows is generic enough to express windows with arbitrary progression step
(even β ≥ ω). Intuitively, tumbling windows accept streaming tuples in ”batches”
that span a fixed time interval. This is particularly useful when aggregates must
be computed over successive, yet non-overlapping portions of the stream, in a
way that no tuple takes part in computations more than once [13]. Usually, a
new window state is created as soon as the previous one has ceased to exist: the
lower bound of the current state and the upper bound of its preceding one are
consecutive time instants. This variant can be derived by simply setting β = ω
at the scope function scopes of a sliding window, assuming a standard extent ω
is used. At each evaluation, disjoint stream portions of equal extent are returned
and thus window contents are obtained in a discontinuous fashion:

Wt(S, τ, τ0, ω, ω, δ) = {s ∈ S(τ) : s.Aτ ∈ scopes(τ)}

Alternatively, for several applications (e.g., traffic monitoring), different window
sizes might be needed (e.g., for peak or night hours, weekends etc.). In that case,
function scopes is still valid by replacing fixed extent ω with a time-varying ω(τ).
In [1] tumbling windows may be accompanied with user-defined predicates so as
to determine the end of temporary states, but this approach is mainly geared
towards implementation efficiency rather than query semantics.

3.4 Monotonicity of Window Types

From the discussion above, it is apparent that monotonicity varies according
to the characteristics of window types, since edge shift and progression step
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clearly determine containment and expiration of timestamped tuples with regard
to the window specified. In [10] a characterization on monotonicity has been
introduced for query operators with respect to sliding windows. More specifically,
sliding windows are described as weakest non-monotonic: although new tuples
are appended to a window state pushing older ones out of it, order is always
preserved, since tuples are included into and excluded from a sliding window
(either time- or count-based) in a FIFO fashion.

Here, we will briefly comment upon monotonicity of the remaining window
variants. In particular, partitioned windows are weak non-monotonic. Although
the contents of each of its constituent substreams change in FIFO order, some
partitions may be modified more often than others. In fact, depending on the
pattern of incoming tuples, some combinations of values on the grouping at-
tributes may be observed more frequently. As a result, the expiration order of
tuples does not generally coincide to their insertion order into the window.

However, lower- and upper-bounded landmark windows are monotonic. In
either case, no tuple is ever removed from window state. Therefore, at any time
instant the window state subsumes all previous ones. Accordingly, fixed-band
windows are also monotonic, as their bounds remain intact over time.

The case appears more intricate for tumbling windows. At a first glance, each
window state has no overlapping tuples with its predecessor, so this type is clearly
non-monotonic. However, every state ceases to exist in its entirety as soon as
the new one is initiated, so it may be assumed that each participating tuple is
removed from that window at the same order it was inserted, emulating some
kind of deferred elimination. Therefore, tumbling windows may be considered as
weakest non-monotonic, exactly like their sliding counterparts.

4 Windowed Queries over Data Streams

As already pointed out, the main motivation behind the introduction of win-
dows is the necessity to unblock query operators in stream processing. In fact,
the combination of windows with relational operators creates their windowed
analogs that accept streams of timestamped tuples as input and generate tem-
porary relations as answers. If resulting tuples must be reassembled as a stream
for further processing, a converse Streamline operator (like ISTREAM, DSTREAM,
RSTREAM proposed in [3]) is needed to progressively make up the derived stream.
However, this transformation does not affect window semantics and it will not be
further examined here. Derived items are always given suitable time indications,
whose value is operation dependent. Next, we describe these windowed opera-
tors and briefly present some of their properties, but a meticulous investigation
regarding the minimal set of operators for a stream algebra is left for future
work.

4.1 Windowed Operators

Since projection and selection are neither blocking nor stateful operators, ap-
plication of windows is not strictly necessary, because both operators act like
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filters over each streaming tuple. However, in many circumstances query seman-
tics either include window specification (e.g., maintain all sensor readings over
the past hour) or even impose a suitable one to facilitate query execution [3].

Windowed Projection. We define windowed projection πW
L as an operator that

applies a window2 W over the contents of a stream S and returns all qualifying
tuples retaining a restricted set of chosen attributes L = {A1, A2, . . . , Ak}:

πW
L(S(τ)) = πL (W (S(τ))) = {〈s.A1, s.A2, . . . , s.Ak, s.Aτ 〉 : s ∈ W (S(τ))}

This ”vertical” operator treats the contents of each window state as a typical
relation and it simply projects out any unnecessary attributes. Note that the
timestamp values from attribute Aτ of input tuples are attached to the resulting
ones as well.

This operation can be further extended to generalized projection, in which
expressions involving attributes, constants or arithmetic operators may be com-
puted by considering each tuple of S in turn. Occasionally, a renaming operator
may be utilized to control the names of composite expressions that appear as
attributes in derived streams, in the same sense as in relational algebra [2].

Windowed Selection. Assuming that a condition F will be applied to each
state of a window W over stream S, the selection operator can be defined as

σW
F (S(τ)) = σF (W (S(τ))) = {s ∈ W (S(τ)) : F (s) holds}

Condition F may be an atomic one, that is, either s.Ai = ai or s.Ai = s.Aj . In
the former case, the value of an attribute Ai is checked for equality to an atomic
value ai ∈ Di from its data type domain. In the latter case, Ai, Aj can be any two
distinct attributes (apart from the timestamp) in the schema of stream tuples.
Further, a generalized condition F may be defined with comparison operators
θ ∈ {=, �=, <,≤, >,≥} or as a conjunction of atomic selections, exactly as in
relational algebra [2], since each predicate is applied over the temporary relation
derived from its respective window state. Note that the schema of each tuple is
left intact by this ”horizontal” operator, hence the original timestamp value is
retained in attribute s.Aτ for each item s at the output.

Windowed Duplicate Elimination. This operator applies a window W over
the contents of a stream S and returns the most recent appearance of each tuple,
eliminating any other identical tuple within the current extent of W :

δW(S(τ)) = δ (W (S(τ))) =
{s∈W (S(τ)) :� ∃ s′∈ W (S(τ)), ∀ Ai∈ E, s′.Ai =s.Ai ∧ s′.Aτ ≥s.Aτ}

Note that a more conservative strategy can be adopted, which maintains each
distinct tuple as long as its timestamp falls within window’s extent. Only when
this tuple expires, is it replaced by a more recent identical tuple [10].

2 For clarity, we henceforth eliminate conjunctive condition E in window notation.
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Fig. 3. Join operation between two streams S1 and S2 with different windows specified
over each one. Each incoming tuple from either stream is tested for possible match with
every tuple in the window applied to the other stream such that potential matches
(pointed to with arrows) are returned.

Windowed Join. This symmetric binary operator may be applied between two
streams (and easily generalized for multi-way joins), but there is no restriction
that windows of the same type or the same scope must be specified over each
stream3. At each time instant τ ∈ T, the windowed join between two streams
returns the concatenation of pairs of matching tuples taken from either window
state. In particular:

S1(τ) �
W S2(τ) = W1(S1(τ)) � W2(S2(τ)) = {〈s1, s2, τm〉 :
s1∈W1(S1(τ)), s2∈W2(S2(τ)) ∧ J(s1, s2) ∧ τm =min(s1.Aτ , s2.Aτ )}

As illustrated in Fig. 3, each newly arriving tuple within window W1 of stream
S1 is checked for possible matches against the current state of window W2 of
stream S2, and vice versa. Matching is performed according to the join condition
J involving attributes from both streams (e.g., S1.Ai = S2.Aj). If matching tu-
ples are found, the resulting joined element must be assigned a new timestamp
value. Several policies have been suggested: in [10] the minimum of the two orig-
inal timestamp values is given to the new tuple, with the natural interpretation
that the concatenated tuple should expire from window as soon as one of the
original tuples expire. Although this rule is acceptable from a semantics point of
view (hence we adopt it in the definition above), it can lead to disorder among
the joined tuples and to complications on further processing. Alternatively [4],
the most recent from the pair of timestamp values attached to its constituent
tuples can be chosen, as a means to preserve ordering in the derived stream. It
has also been suggested that each resulting tuple may be assigned to the time
instant it was produced from the join operator [6], but this approach might be

3 In this paper we do not examine interaction of streams with static relational tables
(e.g., in joins), as we consider that windows are applied solely over streams.
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troublesome for successive joins in complex execution plans. In all cases, the
chosen timestamp value substitutes existing ones at the concatenated tuple, so
that only one timestamp attribute is retained.

Windowed Aggregation. Similarly to the respective operator in extended
relational algebra, at first a grouping of window’s tuples takes place according to
their values for those attributes specified in grouping list L = {Ai, Aj , . . . , An}.
Next, for each combination of values 〈ai, aj , . . . , an〉, an aggregation function f
(like COUNT, SUM, MIN, MAX or AVG) is applied. If no attributes are specified, then
all tuples in the window are regarded as belonging to a single group. Formally:

γfW

L (S, τ)=γf
L (W (S(τ))) = { 〈ai, aj , . . . , an, f(ai, aj , . . . , an), τm〉 : τm = τ ∧

∀ Ak ∈ L, ak ∈ Dk, s ∈ W (S(τ)) ∧ ak = s.Ak}

Note that the current time instant (assuming a global system clock exists) is
attached to the resulting tuple as its timestamp. Alternatively, the most recent
timestamp among all window state elements may be used, so that ordering can
be achieved for the operator’s output. More adequately, the min(s.Aτ ) among
all current tuples s ∈ W (S(τ)) participating in a group may be assigned as the
timestamp τm for this group, but that may cause disorder to the derived stream.

Windowed Set-Theoretic Operations. As it will become obvious from the
following algebraic expressions, set-theoretic operations on data streams adhere
to bag semantics as in relational algebra [9]. Therefore, we extent tuple schema
with a positive integer value k that counts the number of duplicate stream el-
ements within each window state. In the following, we denote as 〈s, k〉 a bag
(multiset) where tuple s appears k times. Operations like Windowed Union, Win-
dowed Intersection, and Windowed Difference are applied at each instant τ ∈ T
over the respective window states (even of diverse specifications), provided that
both streams involved in these operations must have identical schemata:

S1(τ)
�

W S2(τ) = W1(S1(τ))
⋃

W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,

( 〈s, k1〉 ∈W1(S1(τ)) ∨ 〈s, k2〉 ∈ W2(S2(τ)) ) ∧ k = k1 + k2 ∧ k �=0}

S1(τ)
�

W S2(τ) = W1(S1(τ))
⋂

W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,

〈s, k1〉 ∈ W1(S1(τ)) ∧ 〈s, k2〉 ∈W2(S2(τ)) ∧ k=min(k1, k2) ∧ k �=0}

S1(τ) W S2(τ) = W1(S1(τ)) −W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,
〈s, k1〉 ∈W1(S1(τ)) ∧ 〈s, k2〉 ∈ W2(S2(τ)) ∧ k = max(0, k1 − k2) ∧ k �=0}

Observe that these operators essentially treat all copies of a tuple as being dis-
tinct to each other, so they simply manipulate their number of occurrences. Also
note that the timestamp attached to resulting tuples is the time instant of their
evaluation, as existing timestamps are not taken into account when checking for
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duplicates. This might be reasonable since window contents are treated as tran-
sitory multisets. Alternatively, the k most recent (or the k older) tuples of each
multiset may be returned each time, with the drawback of unsynchronized re-
sults produced from successive window states. Generalization of windowed union
and intersection for more than two stream inputs is trivial.

4.2 Properties of Windowed Operators

Due to lack of space, we present just some indicative properties of the windowed
operators defined previously, so as to emphasize their usefulness in query rewrit-
ing. First, it is obvious that projection is commutative with both logical and
physical windows, that is, πL (WE(S(τ))) = WE(πL(S(τ))).

Selection commutes with logical time-based windows only, i.e., σF (WE(S(τ)))
= WE(σF (S(τ))), but not physical ones [3]. Evidently, the state of a count-based
window may contain different items if selection has formerly been applied to
the stream. Similarly, duplicate elimination also commutes solely with logical
windows, i.e., δ (WE(S(τ))) = WE(δ(S(τ))).

On the other hand, stateful operators like joins, intersections or aggregates,
generally do not commute with any type of windows. Still, windowed analogs of
binary operators have some interesting properties:
Rewriting Rules for Windowed Joins.

i) Commutative: S1(τ) �
W S2(τ) = S2(τ) �

W S1(τ)

ii) Associative: (S1(τ) �
W S2(τ)) �

W S3(τ) = S1(τ) �
W (S2(τ) �

W S3(τ))

iii) Distributive over selection: σF (S1(τ) �
W S2(τ)) = σF (S1(τ)) �

W σF (S2(τ))
Similarly to selections, this property holds for logical windows only.

iv) Distributive over projection: πL(S1(τ) �
W S2(τ))=πL(πL1(S1(τ)) �

W πL2(S2(τ)))
Attribute lists L1 and L2 used for the separate projections over each stream
must include attributes in list L and attributes involved in join conditions.

As for Windowed Union and Windowed Intersection, commutativity and as-
sociativity hold, but not distribution over selection. Note that union is not a
blocking operator for streams, since its result may be produced in an incremen-
tal fashion by simply merging the current instances SI(τ) of incoming streams.

5 Related Work

Stream processing has become a very fertile topic for database researchers over
the past few years, but here we review issues mostly relative to continuous queries
and window semantics. The first notion of continuous queries over append-only
databases appeared in Tapestry [19] as a means to provide timely responses by
utilizing periodic query execution and identifying several rewriting rules for in-
cremental evaluation. In [7], this approach was extended such that continuous
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semantics could deal with more involved cases, i.e., when deletions or modifi-
cations are allowed in the database, and not just insertions. Previous work in
sequence databases [18] has provided useful semantics and a declarative language
for managing ordered relations, but it is not too expressive for continuous queries
over infinite streams. Besides, issues such as temporal modeling, ordering and
indexing have been extensively studied in the context of temporal databases [12].
In [14] a temporal foundation for a stream algebra is attempted, which makes a
distinction between logical and physical operator levels. Transformation rules are
provided between a logical level that refers to query specification and a physical
level that covers implementation issues. In terms of windows, only sliding and
fixed variants are supported.

There have been several proposals for a query language over data streams.
The declarative Continuous Query Language (CQL), which is being developed
for the STREAM prototype [3], supports management of both dynamic streams
and updatable relations and introduced mappings between them. CQL adopts
semantics for queries and windows that are closest in spirit to ours. A more
detailed approach on stream and query semantics is provided in [5], but win-
dowing issues are covered briefly for tuple-based and time-based sliding win-
dows only. StreaQuel is a SQL-like query language that is being developed for
the TelegraphCQ project [8], although a subset of its functionality has been im-
plemented so far. At present, continuous queries in TelegraphCQ may only be
specified through time-based sliding windows, but there are plans to support
more window variants (landmark, fixed, band). Several window types have also
been implemented in Aurora [1], a prototype system that assumes a work-flow
paradigm for data streams, instead of a relational one. Apart from windowed
versions of join and sort operations, the main focus is on computing aggregates
through sliding and tumbling windows. Gigascope [13] is a system for managing
network flow in large data communication networks, where all stream tuples in-
clude an ordering attribute, exactly as in sequence databases. No windows are
explicitly defined in its stream-only language GSQL, but their semantics can
be indirectly expressed into constraints by analyzing the timestamps of input
streams and query properties.

Most recently, window semantics are briefly touched in [16] in a more general
setting for data stream representation, whereas a more detailed examination of
window aggregates is proposed by the same authors in [15]. In brief, they at-
tach explicit identifiers to all window states created during processing and they
maintain the window states where each tuple actually participates in. This is per-
formed by means of a special function that is the inverse of the one returning the
extent. In essence, an additional attribute is attached to the grouping list used
for aggregation; hence, windowed aggregation reduces to a simple relational one.
One of their goals is to deal with disorder in incoming stream elements, hence
they accept as windowing attribute any one with a totally ordered domain, i.e.,
not only timestamps or sequence numbers. Further, their view focuses mostly on
aggregates, and it covers only sliding, landmark and partitioned windows. The
authors in [10] distinguish time-evolving streams from relational tables in order
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to derive update patterns for continuous queries. These patterns are classified
according to monotonicity, in order to develop suitable physical query plans for
processing and data structures for state maintenance. However, that insightful
framework is limited to time-based sliding windows only, with no formal founda-
tions. Although we set out with a similar overall approach on window semantics,
we differ substantially in the development of window formalization. We avoid to
assign identifiers to transient window states, since we think that it relates mostly
to optimization issues rather than query semantics. We do not focus strictly on
window interaction with aggregates, but we tackle all main relational opera-
tions. Further, we provide a detailed description of windows’ properties and rich
semantics for the most typical variants.

6 Conclusions and Future Work

In this paper we developed a foundation with clear semantics for specifying win-
dows over data streams. To the best of our knowledge, our approach is the first to
determine several common properties for windows, presenting a sound taxonomy
of the most significant variants proposed in the literature. In order to overcome
subtle intricacies, we introduced a generic scope function as a building block
for effective specification of both the window’s extent and its progression across
time. More composite window types can then be defined by simply arranging
their basic characteristics in consistency with query semantics. Further, our al-
gebraic formulation for the windowed analogs of principal relational operators
is of particular importance as a mechanism for expressing queries on streams
and checking for syntactic equivalences. Overall, we believe that this approach
is an essential step towards creating an algebra and a query language for man-
aging data streams. Of course, several demanding topics remain open for future
research, such as inclusion of relations or completeness of stream operators.

We are currently implementing (in C++) several operators to verify feasibil-
ity of our semantic foundations. We have begun developing a simplified stream
processing engine for submitting continuous queries, which, of course, is far from
a full-fledged DSMS. As of the time of writing this paper, all window variants
have been successfully constructed, as well as windowed implementations for se-
lection, projection and join in order to support typical SPJ continuous queries.
Encouraged by these positive indications, we are in the process of gradually in-
corporating more operations, particularly aggregation and duplicate elimination.

We also believe that this framework is a promising area for research concerning
multidimensional streams. In connection to our preliminary work [17], we further
plan to investigate modeling of moving objects, introducing algebraic constructs
for space-based windows and developing operators for typical spatiotemporal
queries, such as range or nearest-neighbor search. Finally, shared execution of
various spatiotemporal predicates and window subsumption in multiple dimen-
sions are considered most challenging issues in such a dynamic setting.
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10. L. Golab and M. Tamer Özsu. Update-Pattern-Aware Modeling and Processing of
Continuous Queries. In ACM SIGMOD, pp. 658-669, June 2005.

11. M. Hammad, W. Aref, M. Franklin, M. Mokbel, and A. Elmagarmid. Efficient
Execution of Sliding Window Queries over Data Streams. Technical Report CSD-
TR-03-035, Purdue University, 2003.

12. C.S. Jensen and R.T. Snodgrass. Temporal Data Management. IEEE Transactions
on Knowledge and Data Engineering, 11(1): 36-44, January 1999.

13. T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spatscheck. A Heartbeat
Mechanism and its Application in Gigascope. In VLDB, pp. 1079-1088, September
2005.
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Abstract. Querying live media streams is a challenging problem that be-
comes an essential requirement in a growing number of applications. We
address the problem of evaluating continuous queries on media streams
produced by media sources such as webcams and microphones. The tem-
poral attributes and the order of stream tuples play essential roles in live
stream generation and query execution. Furthermore, the temporal con-
straints and query semantics of related streams provide additional query
optimization opportunities. We investigate the modeling issues and intro-
duce the query processing techniques of a live media stream management
system (MedSMan), including media capturing, automatic feature gener-
ating, declaration and query languages, temporal stream operators and
querying algorithms. A prototype is implemented and we present exper-
imental results to show the performance of our prototype using various
real-time media experiments.

1 Introduction

In recent times, processing continuous queries over live and unbounded streams
has become a major research area in data management. A number of research
groups are developing data stream processing systems for a wide variety of prob-
lem domains including network data management, traffic monitoring, business
data analysis, environmental sensor networks and immersive environments. At
the same time, the proliferation of various sensor devices (e.g., webcam, micro-
phone, RFid, etc) has fuelled many applications utilizing massive media streams
in a unifying way. We consider the problem of continuous querying on multiple
live media streams, by taking advantages of automatic and real-time multimedia
information processing techniques. The basic premise behind delivering multi-
media information is that while each individual media channel contains some
information, it is the synchronous combination of the channels that captures the
intended semantics of the content. We use the term live multimedia to refer to
the scenario where the multimedia information is not “produced” though manual
editing, but is captured in a real-life setting by different sensors and streamed to
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a central processor. This makes live multimedia stream query systems distinct.
First, their primary problem is to effectively combine multiple media streams
as well as auxiliary non-media information to answer standing queries about
the situations observed by the media sensors. For example, consider a profes-
sional conference room equipped with multiple cameras and microphones cap-
turing the activities of both the speaker and audience. A remote user wants to
connect to the speaker’s video only when he or she talks about “multimedia
database”. This is different from research issues in the standard image, video
and audio database systems which centers around similarity queries and prob-
lems like scene detection and shot segmentation using different features. Second,
unlike alphanumeric symbolic streams, media streams often cannot be directly
queried. Instead, queries on them are evaluated by computing feature streams
from them. The data model for media streams need to capture this media-feature
dependency. Third, real-life applications often specify their queries in terms of
events occurring over intervals of time (i.e., an interval event with a start and
a end time). The events need to be expressed in terms of the underlying media
streams as well as the derived feature streams.

1.1 Prior Work

There has been considerable prior work on data stream management systems
(DSMSs), such as OpenCQ [1], NiagaraCQ [2], Aurora [3], Telegraph [4],
COUGAR [5], and STREAM system [6]. A number of research issues of DSMSs
have been received significant attentions, including data models, continuous
query semantics, query languages, blocking operators, memory requirements,
cost metrics and statistics, approximations, adaptivity and query optimizations,
and scalability issues. Much of this earlier work has focused on alphanumeric
symbolic streams, while live media streams have received less attention - due
to the heterogeneity of multimedia and tremendous on-line processing costs (in
terms of time, memory and CPU). However, advances in multimedia informa-
tion systems and digital signal processing techniques are decreasing the media
processing costs and making the queries of live media streams viable. As a result,
there is a need for a unifying data stream management system effectively com-
bining extensible digital processing techniques and the general DSMS research.

A media stream is usually the output of a sensor device such as a video,
audio or motion sensor that produces a continuous or discrete signal, but typ-
ically cannot be directly used by a data stream processor. To evaluate queries
on media streams, one needs to continuously extract content-based descriptors,
that we call features, from them and identify the qualifying media portions by
evaluating queries on the generated feature streams, which are post-processed by
one or more transformers and correlated to the media streams temporally and
in terms of content. We previously studied the media stream generation, as well
as feature function implementations (especially for feature streams derived from
single media or feature stream) in [7]. Considering the interval nature of media
tuples, we do not use window based approaches [8], but a per-tuple triggering
approach. Temporal sequence research has developed sequence models [9] and
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access modes (e.g., stream-probe) [10] for accessing sequences. But our problem
is different since for any tuple in one stream, there are no fixed correspond-
ing tuple(s) in another stream. Therefore, we treat all joining streams equally
in accessing and triggering operations. We cannot directly use many efficient
algorithms developed for temporal join, such as RI-tree-based [11], partition-
based [12,13], and index-based [14,15] algorithms, because media streams have
very high arrival rates compared to typical relation updates. The construction
overhead of these algorithms triggered by each tuple arrival may not be offset
by the benefit of using them. Further, we studied event modelling and the re-
lated environment modelling issues in [16]. In this paper, we focus on stream
processing techniques by utilizing temporal constraints and query semantics be-
tween related media and feature streams, particularly for the purpose of query
optimizations.

1.2 Example

We use a typical live media query example for illustration throughout this paper.
Consider a surveillance application in which both live video and audio are used to
automatically detect potential intrusions. A video stream (video1) is captured
by a camera and an audio stream (audio2) is produced by a microphone. If
abnormal movements occur in video1 and abnormal sounds occur in audio2 at
the same time, a possible intrusion is identified and the corresponding video
frames should be displayed.

1.3 Outline

The rest of the paper is organized as follows. Section 2 discusses the modelling
issues of media and feature streams. Section 3 presents the query techniques
of our system, including query languages, stream operators, query execution,
cost metrics and optimizations. A brief introduction of system implementation
is introduced in Section 4. We run a number of real-time media stream queries
and analyze the results in Section 5. Finally, we conclude our work and future
research in Section 6.

2 Media and Feature Stream Model

2.1 Formal Definitions

Because of their continuous nature and the stream dependency, both media
and feature elements require explicit and exact timestamps. The time attributes
provide valuable information for the stream generating and query processing. In
our framework, the element of a media or feature stream is defined as a tuple,
which consists of a logical sequence number (sqno) indicating its position in a
stream, a temporal extent defined by a pair of start and end timestamps (ts,
te] (for a time-point attribute ts = te, a single time point is represented as td),
and any other media or feature attribute. We give a series of conventions and
definitions that make more precise the notions of media and feature streams.
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Convention 1. A sequence T , is said to be continuously well-ordered iff (1)
T is well-ordered, and (2) for each time-unit (tsi, tei], there must be one and only
one directly following time-unit (tsi+1, tei+1] in T , where tei = tsi+1. We refer
to a continuously well-ordered set of time-units as a continuous time set. A
corresponding tuple value holds in each time-unit.

Convention 2. A sequence T is said to be discretely well-ordered if and only
if T is well-ordered, i.e., the continuity clause does not apply to two consecutive
units. We refer to a discretely well-ordered set of time-points as a discrete time
set. At each time-point td, a corresponding tuple value holds.

Definition 1. A continuous media stream is a sequence of tuples, each con-
sists of a sequence number (msqno) uniquely identifying its position in stream, a
pair of start and end timestamps (ts, te] whose domain is a continuous time set,
and a media valued attribute vm valid only during (ts, te].

Definition 2. A discrete stream is a sequence of tuples, each consists of a
sequence number (msqno) uniquely identifying its position in stream, a media or
non-media valued attribute vm, and a time-point td, defined on a discrete time
set domain, indicating when vm arrives intermittently.

Definition 3. A feature stream is defined as a sequence of tuples, each con-
sists of a sequence number (fsqno) uniquely identifying its position in stream, a
feature value attribute vf , a time-point attribute tf indicating when vf is com-
puted, and a set m̄sqno identifying the media tuples or a set f̄sqno identifying
other feature tuples, from which a feature tuple is derived.

For example, a pixel movement detection is derived from two consecutive video
frames. Table 1 shows a feature tuple is derived from two media tuples of same
media stream.

Table 1. A feature can be derived from two media tuples

fsqno(k) vf (k) tf (k) msqno(i) vm(i) tbi tei

msqno(j) vm(j) tbj tej

Note the start and end time of a tuple are the valid time defined in temporal
database. In particular, a feature tuple is an entity dependent on its deriving
media tuple(s), and its value is atomic in that its semantics represents one aspect
of all media tuples from which it is derived. Therefore, a feature tuple has a
representing interval equal to the time-unit or set of time-units of its deriving
media tuples. In the above example, the representing interval of fsqno(k) derived
from msqno(i) and msqno(j) is (tbi, tej ].

2.2 Special Querying Issues

A number of unique issues should be considered in designing a general data
model for time-based media and feature streams.
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TimeAttributes and Order.Our definitions in previous section require explicit
time attributes in both media and feature streams. Stream tuples are generated
and queried not in isolation but in synchronization. Further, we assume all tu-
ples in a stream are either continually well-ordered by intervals or discretely well-
ordered by time-points. Note tuples from different streams may not be totally or-
dered, but partially ordered. For the presence of explicit time attributes, tuples in
a relation produced from a stream by sliding window operators are also ordered in
time, rather than a bag of unordered tuples. As we will present in later sections, the
order of tuples is necessary to guarantee tuple continuity for queries over intervals.

Stream Uncertainties. Uncertainties exist in media stream capturing, feature
stream generating and stream querying. Figure 1 shows a timing diagram of
synchronization among related media and feature streams. The notations in the
figure are defined as follows:

tRs(k): The start timestamp of the k-th tuple in stream R.
tRe(k): The end timestamp of the k-th tuple in stream R.
TR

(k): The interval of the k-th tuple in stream R.
vR
(k): The timestamp indicating when the k-th tuple in stream R is generated.

DR,S
(k) : The generation delay of the k-th tuple in stream R which is derived from

stream S.

In this paper, we assume a feature stream is derived from a single media
stream and a tuple in a derived stream has the same sqno as its source tuple in
a deriving stream, thus setting up the mapping between two streams. One the
one hand, the intervals (TR

(k)) of the deriving streams (e.g., media streams M

and N) are variable. On the other hand, the generation delays (DR,S
(k) ) of tuples

in the derived streams (e.g., feature streams X and Y ) are not constant, which
depend on the transmission delays and computation delays. In the extreme case,
if a deriving tuple takes too long to generate its derived tuple, it might affect
the following tuple(s). For example, the (i + 1)-th tuple in stream N has to be
skipped since it arrives before its previous tuple finishes the i-th feature tuple
generation for stream Y . As a result, the derived tuples in feature stream Y are
not continual. This non-determinism nature of media and feature streams must
be addressed by query synchronization.

Query Synchronization. In most multimedia applications, especially for audio-
visual applications, the synchronization between different media streams needs
to be precise to satisfy perceptual continuity, when viewed by the human user.
Synchronization is required not only in media composition but also in many other
phases throughout the entire media stream query processing.

Live media query processing contains multiple sub-processings (threads), such
as media capturing, feature generating and stream querying, thus forming a “pro-
ducer - consumer” relation. Each consumer thread depends on the results of its
producer thread(s). Because of the uncertainties of streams, specific operations
performed on some tuples in a thread may cost longer than the expected times
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Fig. 1. A timing diagram of synchronization among media and feature streams

of both its producer and consumer threads. In order to preserve the continuity
in stream tuple order, we can implement these threads through a blocking ap-
proach, i.e., a producer thread does not send new input to its consumer until the
consumer finishes processing the previous input. By this way, we may slow down
the data rate of the producer. An alternative is a non-blocking approach, i.e., to
skip some inputs that cannot be processed by its consumer (e.g., the (i + 1)-th
tuple in stream N is skipped in Figure 1).

Due to the unbounded nature of streams, continuous queries over streams are
often defined in terms of sliding windows, either tuple-based or time-based [8].
Nevertheless, such windows do not take the tuple intervals into account. In those
applications, a tuple (e.g., temperature reading) is instant-based, rather than
interval-based. This is not true for typical media stream tuples, and may have
problems (e.g., false join) in joining tuples with non-overlapping intervals. A
loose window including multiple non-overlapping tuples cannot satisfy the strict
temporal join constraint for media or feature tuples from different streams. In-
stead, we require a more precise and strict metric to join them. We apply an
overlap join (O Join) TSJ1 defined in [17]: All participating tuples that satisfy
the join condition share a common time point. Tuples whose temporal attributes
overlap in time have the highest temporal relevance, thus can be joined. Those
non-temporal attributes of tuples can only be joined after satisfying the premise
that the corresponding temporal attributes are overlapping in time. As shown
in Figure 1, the i-th tuple in stream M can be overlap joined with three tuples
in stream N , i.e., the j-th, (j + 1)-th and (j + 2)-th.

In a query plan involving more than one unsynchronized input streams, it is
essential to decide which one(s) act as the trigger stream to execute the query
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plan. In general, we can make every input stream as the trigger such that each of
their arrival tuple will trigger the query execution. By this way, the query delay
may be reduced. However, as we show in later section, this is not absolutely true
in all cases, due to the complex constraints and synchronization among related
streams and threads. Instead, there are scenarios where a “master-slave” ap-
proach is preferred to reduce the overall query cost (including query delay, CPU,
memory, etc), i.e., to select one input stream as the master stream triggering the
query execution and treat all the other input streams as salve streams tuning
to the master stream. In particular, this approach allows to reduce unnecessary
high-cost feature tuple generations and the overall performance improvement is
significant.

Stream Operator Complexities. The stream based operators are quite dif-
ferent from the traditional record based operators. In many cases, it is the re-
sponsibility of a stream operator to determine tuple(s) from deriving stream(s)
as its input to generate the corresponding output tuple(s) at a specific time. In
addition, the uncertainties of tuple arrival and tuple generation cost bring even
more complexities to stream operators.

A feature stream is produced by one or more stream operators (called trans-
formers) operating on one or multiple related media or other feature streams.
Feature streams are complex in terms of tuple values, deriving media or feature
streams, feature tuple interval semantics, and generation costs. Moreover, frag-
ments from multiple media streams can be composed to form a media stream of
a new format. In general, a stream operator should take N (N ≥ 1) input (media
or feature) stream(s) and generate a new stream of a format defined by users.
Our definition of stream operator also applies to the standard query operators,
such as selection, projection, join, etc.

The stream operator design and implementation depend on users’ specific re-
quirement. Due to the heterogeneity of media streams and different application
needs, it is desirable for a querying system to be extendable to user-defined
operators, i.e., the system allows users to design and implement their own trans-
formers and plug codes into the querying system [18].

3 Query Processing

3.1 Media and Feature Stream Description Languages

We have designed a Media Stream Description Language (MSDL) and a a Fea-
ture Stream Description Language (FSDL) for media stream capturing and fea-
ture stream generating [7]. In our example, there are two media streams. First,
video1 is captured from a webcam connected to a local port (vfw://0) with a
data rate of 10 frames per second (FPS):

create type frame { integer frame num primary key,
time frame st, time frame et, image content };

create media stream video1 of frame from
sensortype cam sensorsource vfw://0 datarate 10.0;
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Second, audio2 is captured from a local port (dsound://) with audio clip
buffer size of 40ms:

create type audioclip { integer clip num primary key,
time clip st, time clip et, audiobuffer clip };

create media stream audio2 of audioclip from
sensortype mic sensorsource dsound:// capturebuffersize 40;

Different media streams may have different sensor-dependent initialization
parameters. For example, video1 is defined with a data rate, while audio2 is
defined with a clip buffer size.

Further, we can generate one movement detection feature stream from video1
and a sound detection feature stream from audio2:

create type mvFeature { integer mv sn primary key,
time mv bt, time mv et, integer mv pixel };

create feature stream mvFStream1 of mvFeature on video1
with mv sn:=getFrameNum(frame num)

mv bt:=getFrameTime(frame bt)
mv et:=getFrameTime(frame et)
mv pixel:=getMovementNum(content);

create type sdFeature { integer sd sn primary key,
time sd bt, time sd et, double sd energy };

create feature stream sdFStream3 of sdFeature on audio2
with sd sn:=getFrameNum(clip num)

sd bt:=getFrameTime(clip bt)
sd et:=getFrameTime(clip et)
sd energy:=getSoundEnergy(clip);

Note any feature tuple in both feature streams is derived from a single media
tuple of the deriving media stream.

3.2 Query Expression

We also designed a query language, MF-CQL [16], extended from CQL [19]. Our
query example can be issued as:

Query 1. Select content From video1, mvFStream1, audio2, sdFStream3 Where
mv pixel > 5000 And sd energy > 32.0;

The logical query plan is shown in Figure 2, where:

mv: Movement feature transformer for video;
sd: Sound feature transformer for audio;
FSel: Selection operator for feature stream;
ProjX : Projection operator filtering out attribute(s) X;
MFetch: Map operator fetching media tuples via corresponding feature tuples;
Fbi-Join: Binary overlap join operator for two feature streams.
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Fig. 3. Optimized query plan

3.3 Cost Model for Operators

Queue length for MFetch. A MFetch operator is used to inactively pull the
buffered tuple(s) in its queue at a time, triggered by the corresponding feature
tuple(s). The queue length for a stream R at time t is:

LQ(t) =
∫ t

t−D(t)
λR(τ) dτ, (1)

where t is the time when a target tuple is retrieved, and D(t) denotes the delay
from the arrival time of the target tuple to t. Note our implementation maintains
a common media/feature tuple queue for each media/feature stream, and sets
a queue length to maximum satisfying all MFetch operators associated with a
given media stream.

O Join Cost. A traditional, cardinality-based cost model is incapable of pro-
ducing cost estimates of join over unbounded streams, and a unit-time basis cost
model as a new metric should be proposed [20].

Table 2. Notation for cost

Notation Description
Ncomp Comparing number for pairing two tuples
Ccomp Unit cost of one comparison
λX(t) Arrival rate of stream X at time t

NX,Y (t) Number of tuples in stream Y to be paired by a tuple in X at time t
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The selection of temporal attributes used in O Join (including T-Join) de-
pends on the types of joining streams in a join query:

Case(1): If the O Join operates on two feature streams derived from a same
media stream, the comparing attribute is sqno, thus Ncomp = 1;

Case(2): Otherwise, the comparing attributes are both the start and end time-
stamps of interval, thus Ncomp = 2.

A unit-time based cost formula of O join between streams R and S during period
[t1, t2] is:

CR��S(t1, t2) =
Ccomp ×Ncomp

t2− t1
×
∫ t2

t1
[λR(t)NR,S(t)+λS(t)NS,R(t)] dt, (t2 > t1).

(2)
The cost of Om Join operator joining m (m > 2) streams is:

C��m(t1, t2) =
2Ccomp

t2− t1
×

∫ t2

t1

m∑
i=1

m∑
j=1
j �= i

λSi(t)NSi,Sj (t) dt. (3)

Query Delay. For one qualified tuple in a media stream, its query delay is
defined as the time difference between it enters the system and it leaves the
topmost operator. Query delay is both media stream dependent and individual
tuple dependent, because (1) different media tuples have different tuple extents
and feature computation delays (FCDs); (2) a particular media tuple may be
joined with multiple tuples from other streams; thus (3) different tuples in one
stream joined with a common tuple in another stream may have different delays.

3.4 Query Optimization

By utilizing the temporal constraints and query semantics among media and the
derived stream streams, we can apply a number of optimizations.

Reverse Order in O Join. According to equations (2) and (3), we should
minimize the number (NX,Y(t)) of tuples to be paired to reduce the join cost.
The ordering nature of sqno and interval timestamps provides optimizations for
join operator. The O Join is a merge scan join by using the ordered sqnos and in-
terval timestamps. This is similar to Temporal Equijoin (TEJ-1) algorithm [21].
Rather than using ascending order in TEJ-1, our implementation takes the de-
scending order, because each new arrival tuple (i.e., trigger tuple) has the latest
sqno and timestamp. We pair it with every tuple in the other stream queue
from rear to front, i.e., in a reverse order, and terminate pairing at the first
tuple that can not be overlap joined in time; thus we minimize the comparison
number.

Push Down T-Join. The query plan shown in Figure 2 has two sub-processes
– the feature generating and the stream querying. One problem of this approach
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is that the feature generating thread always runs and is independent of the fol-
lowing querying thread, i.e., whether a feature tuple is really used or not in
the querying subprocess, it is always computed. According to our experiments,
the feature computation cost (in terms of delay, CPU and memory) is the most
significant factor in overall query cost. Nevertheless, the temporal constraints be-
tween related streams, together with application semantics, provide optimization
opportunities in many scenarios. In our example, The sound feature generation
costs much lower than the movement feature generation. The movement feature
is only necessary when the predicate of sound feature is qualified (normally only
in a small portion of time the abnormal sound is detected). Upon these observa-
tions, we develop a optimization rule by using T-Join (a special form of O Join
only joining on time attributes) as follows:

Rule 1. Push down temporal join (T-Join):
Projf (Sel(FeatTran(R)) Fbi-Join S ) =Sel(FeatTran(Projm(R T-Join S))),
where FeatTran is the feature transformer from media stream R of type m to
feature type f , and S is another join (media or feature) stream.

The rule implies that other operators are processed after applying temporal join
operator T-Join first to reduce the number of unnecessary operations, especially
the high-cost feature generations. This rule is especially useful in the cases where
one feature transformer is expensive while another one is much cheaper. We
apply this rule to our example and have an optimized logical query plan shown
as Figure 3.

3.5 Query Execution

Figure 3 shows there is no explicit feature stream generating thread. Insteand,
the feature generation operators are integrated into the stream query processing
thread. This integration not only simplifies issuing queries (i.e., reducing the
declaration of feature stream generation), more important, it allows performing
optimizations covering every phase of media stream querying in a unifying way.

Note the node of video1 can be split into two node instances (i.e., creating
two pointers to same memory address); thus we get a tree structured query plan,
called transformation tree (TT). By taking a post-order serialization, we can get
a serialized transformation tree (STT) consisting of tree types of nodes:

Data node: It is an input stream and a leaf node of TT. It has a queue buffering
tuples at this node at a time.

Transformer node: It is one of the various operators inside TT. It takes one
or multiple data nodes as input and produces a new data node of any format.

Number node: It is the number N (N ≥ 1) of data nodes that a transformer
node takes as input.

For example, the STT of Figure 3 is serialized as:
Ex1:

@video1, @video1, @audio2, $sd, #1, $Selsd, #1, $T-Join, #2, $Projmv, #1,
$mv, #1, $Selmv, #1, $MFetch, #2;
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where @, $ and # are the token symbols used in our query parser indicating the
data node, transformer node and number node, respectively.

The algorithm to execute the STT is:

List SST = makeCopy(SST0); // make a new instance for each run1

while (SST is not empty)
Node node = STT.getFirstNode(); //will remove node from SST
if (node is a DataNode)

DataNode dataNode = (DataNode) node5

stack.push(dataNode);
else //must be a Transformer Node

TranNode tranNode = (TranNode) node;
Node node1 = STT.getFirstNode(); //must be a Number Node
int num = ((NumNode) node1).intValue();10

DataNode dataNode_im = new DataNode(); //intermediate result
for (int = 1 to num) // get num Data Nodes

Node node2 = stack.pop();
inputDataList.add((DataNode)node2);

dataNode_im = TranExec(tranNode, inputDataList); //transform15

stack.push(dataNode_im);
DataNode result = (DataNode) stack.pop();

By default, every new arriving tuple in video1 or audio2 can trigger the query
plan. We notice video1 is a direct child of T-Join. A fact is that if there is no
tuple available in the queue of audio2 at a time, it is unnecessary for a new
arriving video1 tuple to trigger the query plan, since the T-Join will not produce
any output at this time. Therefore, a “master-slave” approach is preferred to
reduce the number of triggering streams. Only audio2’s new arriving tuples
need to trigger the query plan, and video1’s tuples just wait in queue for being
processed by T-Join when triggered by audio2.

4 Implementation

The prototype of MedSMan is implemented using Java (JDK 1.5.0). We use
APIs provided by Java Media Framework (JMF2.1.1) and OpenCV (integrated
with the Java based query engine via Java Native Interface (JNI)) for real-time
audio/video capturing and feature generating. The stream description and query
languages are implemented using Java Compiler Compiler (JavaCC).

Our implementation consists of two major components, including media/
feature stream generation [7] and stream querying execution. The former per-
mits a designer to directly capture various live data streams from different sensor
devices, and form media streams consisting of logical media tuples. Then, more
meaningful feature streams can be automatically derived from media streams for
the query purpose. Stream queries are parsed and generate physical query plans.
MedSMan runs physical plans using an individual tuple triggering approach for
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media and feature stream query execution, thus reduces query delays. The query
execution of the two sub-processes approach (see Figure 2) is presented in [16].

We implement the SST algorithm and provide an open system which enables
users to design, implement and upload special operator codes fulfilling their ap-
plication requirements. These codes are dynamically loaded at run-time [18].
This goal is achieved by using Java’s dynamic class loader capabilities. In addi-
tion, we also support a language structure allowing users to specify the master
stream in the join query for query optimizations. More important, by integrat-
ing a set of related individual operators and using our SST algorithm, users can
design “super” operators that can take multiple media streams of any formats
as input and perform the special transformation or query functionalities.

5 Experiments and Analysis

We run a number of query examples on multiple live media and feature streams,
and evaluate performances for two different implementing approaches. We in-
vestigate FCDs, query delays, tuple queue and optimization effects. Our exper-
iments run on a XP machine with dual 2.4GHz CPUs and 2GB RAM.

5.1 Blocking Approach

We begin with the blocking approach which creates a strict “producer-consumer”
relationship among media capturing thread, feature generating thread and stream
querying thread. We examine the FCDs and their impacts on the deriving media
streams. With the media and feature stream defined in Section 3.1, we issue two
examples performing single feature queries as follows:

Query 2. Select content From video1, mvFStream1 Where mv pixel > 5000;

Query 3. Select clip From audio2, sdFStream3 Where sd energy > 32;

The average frame interval, FCD(mv) and query delay for Query 2 are 204.2
ms, 199.7 ms and 463.3 ms, respectively. Figure 4 (a) shows they vary with the
video frame number. The average interval is much greater than the expected
value, i.e., 100 ms, since we use the blocking approach and the average FCD(mv)
is greater than the expected data rate of video1. The video thread only produce
a new frame after the previous one is computed by the mv transformer. As a
result, the total query delay is accumulated and significant. In Query 3, the
average clip interval, FCD(sd) and query delay are 39.99 ms, 5.89 ms and 9.11
ms, respectively. These metrics are much better than those of Query 2, because
the average FCD(sd) is quite small compared to its audio clip interval (i.e., 40
ms), although there are a few big jitters as shown in Figure 4 (b).

Then, we perform Query 1 which joins two feature streams derived from two
different media streams. Figure 5 (a) shows the query delays for each video frame
and each audio clip. Note one video frame overlaps with multiple sequential audio
clips (similarly, one audio clip may overlaps with one or two video frames).
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Fig. 4. Performances of single media single feature queries

The average delay of the video frames is 393.1 ms, and the average max delay
of the audio clips is 622.5 ms for the oldest one waiting in queue, since an
optimization is implemented by making a slower feature (i.e., mvFestream1) tuple
trigger the faster feature (i.e., sdFStream3) tuples waiting in queue, in order to
remove an unnecessary trigger stream. Figure 5 (b) shows the varying length of
sdFStream3’s queue with an average of 13.9, which indicates the necessary size
of buffering memory of audio2 for this query.

The above experiments and results show FCDs play a significant role in de-
termining dynamic tuple intervals and total query delays. However, we can uti-
lize the temporal constraints and query semantics between streams to reduce
the number of unnecessary feature generations, thus improve the overall perfor-
mance.

5.2 Non-blocking Approach

We perform Query 1 by executing the serialized tree expressed in Ex1 through
the non-blocking approach. In addition, we indicate audio2 as the master stream
for the purpose of optimization. We are interested in the performance of T-Join
operator which plays a key role in the query execution and optimization. In order
to avoid the outside performance affects from other operators, we assume the
selectivities of both Selmv and Selsd are 1. An important metric discussed here
is the selectivity(video1), i.e., M/N , where M and N are the number of frames
entering and leaving the query plan tree, respectively. T-Join determines this
metric value when assuming the selectivities of related selection operators as 1.
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Besides, we define an output window WT−Join, which is the maximum number
of tuples that T-Join can output at a time. This metric implies that if the T-Join
produces more than WT−Join tuples, only the latest WT−Join tuples are output
and the other earlier tuples are skipped. The necessity of WT−Join is explained
as follows.

From Figure 3, the qualified M (M ≥ 1) tuples out of T-Join are projected
and then sent to feature transformer mv, which performs the feature generation
for every tuple. If FCD(mv) is greater than the expected frame interval or M is
large, mv will be a blocking operator which blocks the entire query plan execution
for a period of SUMFCD =

∑M
i=1 FCDi. During a blocking period, video1’s new

arriving tuples are buffered in queue but not processed. However, if SUMFCD

is too large, the new tuples will replace the old ones in video1’s queue, since the
size of the queue is limited. As a result, the following M Fetch operator cannot
retrieve the deriving media tuple which is required by a qualified but seriously
delayed feature tuple.

As shown in Figure 6 (a), SUMFCD increases linearly as WT−Join increases,
so does the query delay. Figure 6 (b) shows the frame interval and FCD(mv)
do not change much with WT−Join. The selectivity of video1 reaches the climax
about 0.38 with WT−Join = 13 as shown in (c). After that, it drops dramatically
and jumps to 0 after WT−Join is greater 17, because we set the size of video1’s
queue as 50 and the average frame interval is about 97 ms. This implies that a
query delay greater than 4850 ms will make the qualified feature tuple fail to
fetch its deriving media tuple, which has been dequeued. Note all the metrics in
Figure 6 are average values.
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Fig. 6. Performance affects of WT−Join

Figure 7 shows which portions of the original video frames sequences are
queried out by choosing different WT−Join. Obviously, in case of WT−Join = 1,
the output frames are the most evenly distributed and the query delay is minimal
(314.8 ms). As WT−Join increases, the selectivity may not reduce and may even
increase a little (before reaching the climax), but the output tuples are not evenly
distributed, which is not preferred in an application where allocating system
resource to monitor evenly across time is important. Moreover, the query delays
also increase linearly.

The average number of media tuples getting queried in a unit period by us-
ing non-blocking approach may not be greater than that of using the blocking
approach (e.g., the ratio of the former to the latter is 70% when WT−Join=1).
However, this only holds when assuming the selectivities of related selection as
1, which is not true in typical queries and forces the mv transformer to work in
the worst blocking status. In actual cases, SUMFCD is much less; thus the non-
blocking approach works more efficiently. Further, the non-blocking approach
does not delay the media stream capturing thread. This implies the media sig-
nal sampling resolution is not degraded; thus more media tuples have chances to
be captured and then queried. This approach also makes the capturing thread
independent of querying thread. This is essential when multiple queries share
a common media stream. In addition, the average query delay is smaller when
setting WT−Join as 1. The optimal value of WT−Join depends on the actual
selectivities of related selection operators, the tuple intervals of joining media
streams, and the FCDs of feature streams.
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6 Conclusion and Future Work

This paper presents our approach to dealing with continuous querying over live
heterogeneous media streams by effectively combining extendible digital process-
ing techniques with a general media stream management system. A number of dis-
tinct issues in modelling media stream are investigated. By utilizing the coherent
temporal constraints, as well as query semantics, of media streams and the derived
feature streams, we can design efficient stream operators and query execution al-
gorithm for live media and feature stream querying. We analyze the cost metrics
of media stream querying and introduce several optimizations. One additional ad-
vantage of our system implementation is its openness for users to design, imple-
ment and plug their own operators into our system. A number of experiments are
run over live media stream queries by using both blocking and unblocking imple-
mentations. We also discuss the metrics and performances of our system.

In the near future, we will investigate scalability issues, sharing of multi-
ple queries, and more complex features derived from multiple media or exist-
ing feature streams out of a large number of distributed sensors. We also plan
to investigate other factors, such as media transmission delays and compres-
sion/decompression, that may affect system performance.
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Abstract. This paper is a critical analysis of the concept of ontology thus as it is
used in contemporary computing science. It identifies three main problems with
such a concept, two of which are intrinsic to it and one of which is extrinsic, so
to speak, being related to the use that of ontology is made in applications.

The first problem with ontology is that the only accepted definition of its main
artifact is teleological rather than structural as it would be proper in computing
science. The second problem is that claiming that ontology is in any way a se-
mantic discipline requires such a limited and outdated notion of semantic to be
to all practical purposes useless. The third and final problem is that the limita-
tions and misconceptions of ontology might make it a limiting factor, rather than
a help, for many of the applications for which it is sought.

The article concludes that a profound reconsideration of the relation between
computers and semantics might be overdue.

1 Introduction

The purpose of this paper (the lifting-cum-paraphrase of whose title I hope St. Thomas
Aquinas will forgive) is to analyze the foundations and the value (in a rather broad
sense) of what today is commonly known, among researchers and practicioners of in-
formation systems, as ontology. I will make three arguments: the first two will be en-
demic to computing science, while the third will be of a broader nature, touching upon
the relation between the ontological offering of computing science and the disciplines
to which the offer is made. Of the two endemic arguments, the first will be of a formal
nature, viz. the investigation of an acceptable definition of ontology, while the second
is of a more theoretical nature, so to speak, in that it deals with the common assumption
that ontology can be used to formally specify the semantics of a certain domain of dis-
course. This division can be seen, mutatis mutandi, as a mirror of the linguistic division
into which ontology would locate itself: the first section (the one on the definition of
ontology) deals with its syntax; the second section deals with the semantics of ontol-
ogy, and the third with the way ontology is applied in disciplines outside of computing
science, that is, it deals with the pragmatics of ontology. The parallel with the three tra-
ditional levels of linguistics should not be taken too seriously, of course, but it should
be located somewhere between the general guideline and the pure divertissement.

Before taking on these subjects, however, I should like to take a little space to settle,
once and for all, a terminological matter. The word ontology originates in metaphysics
where it is, according to the Britannica,
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the study of being as such, i.e. of the basic characteristics of all reality.

Ontology, as defined in metaphysics, is the study of being, not of beings: it is not
a taxonomy of existing things and consequently, for instance, Linneus never claimed
to be doing ontology (and quite correctly so). It is true that John Scot’s De divisionis
Naturae is generally regarded as an ontological work, but this is due to its Platonic
assumption of the universals as the only reality, and not to the taxonomical structure
of the work per se. The word ends with the suffix -logy and, due to the programmatic
rather than methodological connotation of the suffix in this case, it has no plural: there
are no different studies of being as such, but any way of studying it is part of the same
discipline of ontology. The Oxford English Dictionary, quite correctly, doesn’t report
any plural for the word ontology.

In computing, the word ontology is used with two different connotations: as a disci-
pline and as the artifacts that the discipline produces. While the term ontology is usable
(by an admittedly rather daring metaphorical extension) in the first case, as a name for
the artifact it is clearly improper: a better name in this case would be ontonomy (plural
ontonomies)1. In this paper, I will keep the distinction and refer to the discipline as
ontology and to the artifact as ontonomy.

Some readers might see into all this the expression of too fine a pont, an empty
pseudo-intellectualistic annoyance, but I disagree quite emphatically with any such as-
sessment: computing is a mathematical discipline, and precision in the terms that one
uses is of the greatest importance for it, the unwanted connotations of a term often
leading to confusion. Since confusion is precisely what I ascribe the existence of com-
putational ontology to, it is important to try to avoid falling into easy connotational
pitfalls, the risk of pedantry being in any case preferrable to that of imprecision.

2 Syntactic Definition of Ontology

Given the importance that these days is ascribed to ontology in many areas of infor-
mation management, it is surprisingly hard to come across a mathematically acceptable
definition of the discipline or of its artifacts. The most common definition or, at least,
the one that I hear around the most, is along the following lines:

an ontology is a formalization of a conceptualization.

The most quoted source of this definition appears to be [7], but the definition is
widely accepted (see [12,2], for example). The problems of this definition are of several
orders, and I will consider some of them in a short while but, for the moment, I would
like to concentrate on the functional nature of it: this definition doesn’t tell us what an

1 Quite surprisingly (to me, at least), this is not a neologism. The term was used in 1803 by J.
Stewart in his Opus Maximum as more or less as synonym of ontology. Given its derivation
from oντoς , (present participle of to be) and νoµια, (distribution, arrangement), I think that
my connotation is better than Stewart’s. A more appropriate name, with less metaphysical
baggage, would be (from oικoς , household) the word economy but, as the readers undoubtedly
know, the term is already used for an altogether different discipline.
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ontology is but, rather, what it is (generally) used for. This kind of definition is of course
unacceptable in computing science.

Consider, as a parallel, the definition of formal grammar: if researchers in program-
ming languages had used the same criteria of rigor (or lack thereof) as researchers in
ontology, the definition would sound something such as:

a formal grammar is the specification of a programming language.

But this is unacceptable: for one thing, while computing scientists do use formal
grammars in order to formalize programming languges, there is no reason why this
should be their only use. Linguists (at least those adhering to the Chomskyan current
of the Anglo-American philosophy of language) use it to describe parts of natural lan-
guage, and there is no reason why other uses should not be found. Finding new uses will
not change the nature of the artifact, but will invalidate functional definitions such as the
one given above. A functional definition describes the use of an artifact, but it doesn’t
specify its nature and structure, how we can identify it: given an arbitrary string of sym-
bols, a definition should allow one to determine whether the string is a formal grammar
or not. To this end, a structural definition is necessary. In the case of formal grammar,
the definition is the well known one: a formal grammar is a 4-tuple (N,T, S, P ), where
N is a finite set (called the set of non-terminals),T is a finite set, disjoint fromN (called
the set of terminals), etc.

With this definition, one can proceed to define the language recognized by the gram-
mar, and its properties. In the case of ontology, with very few exceptions, a structural
definition is not provided: researchers are building a huge edifice on a formal struc-
ture without knowing what that structure is. Artificial intelligence does indeed have a
definition of ontonomies but, in that case, an ontonomy is defined as the collection of
all symbols used in a logic system, with the indication of which names are functions,
which are predicates, and which are constants [10]. There is nothing wrong with this
definition, but it certainly bears little resemblance to what the information system on-
tologists are doing. In particular, this definition doesn’t include any relation between
the terms and doesn’t lay any semantic claim.

* * *

Many researchers in information systems are blissfully unaware of the fact that they
are building such an enormous edifice on such weak foundations, but not all. One in-
teresting attempt at a formal foundation of ontology has been made by Guarino [8].
Guarino’s starting point is the notion of intensional relation. Consider a relation such
as [above](x, y) (which contains all pairs x, y such that x is above y). One can consider
a set of objects, say a, b, c, and d, and create a relation, say

[above] = {(a, b), (a, d), (b, d)} , (1)

which states that a is above b and d, and b is above d. This definition makes the con-
cept “above” dependent on the specific configuration of a, b, c, and d: if b were above
a, instead of a being above b, the relation would change. This extensional notion of
“aboveness” is in this sense unsatisfactory: the concept of one thing being above an-
other should be independent of the particular world configuration that we are analyzing.
Guarino solves this insufficiency by introducing the notion of intensional relation.
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Let D be a set of elements. An n-ary relation on D is a subset of Dn and therefore
2Dn

is the set of all n-ary relations on D. Let W be a set of worlds, that is, grosso
modo, a set of legal configurations of the elements of D. An intensional relation r is an
assignment, to each possible world in W , of a relation (n-ary, in this example) on D,
that is, an intensional relation is a function

r : W → 2Dn

. (2)

So, given a world w in which a is above b and nothing else is above anything, we would
have

[above](w) = {(a, b)} . (3)

Given a logical language L(V ) built on a vocabulary V , an extensional model for
L(V ) is a pair (D,R)—where D is a set, and R a set of relations on D—such that V
can be mapped to D and predicates of L to elements of R. Similarly to this standard
definition, Guarino defines an intensional model for a language by replacing R with
a set of intensional relations. An intensional model for L(V ) can be seen then as a
function that maps any possible world w to an extensional model relative to that world.

This intensional interpretation of a language is also called an ontological commit-
ment. An ontonomy (my term, of course, not Guarino’s) is then defined as follows:

Given a language L, with ontological commitment K , an [ontonomy] for L is
a set of axioms designed in a way such that the set of its models approximates
as best as possible the set of intended models of L according to K ([8])

There are three ways in which this definition is unsatisfactory, at least as a computing
science theory (some points of the definition have a certain philosophical interest, but
this is besides the point in a computing milieu).

Firstly, the notion of intensional relation is in some way related to the Kripkean no-
tion of possible worlds, but with some important distinguo. In Kripke, possible worlds
are formal models indexed by a variable that corresponds to a degree of modality. A
predicate is true (false) in a world depending on what it predicates about the exten-
sional relation existing in the model corresponding to the degree of modality of that
world. Extensional relations are what determine the essence of the world and, there-
fore, what determines the structure of a model.

In the case of ontology, however, we have to resort to the notion of possible worlds
in order to define extensional relations, which implies that extensional relations can’t be
expressed in the world (if they were, the extensional relations would be logically prior
to the intensional, and the latter could not be used to define the former). But, if this is
the case, no possible world can have any structure, and not only can’t they be used as a
model in the Kripkean sense, but they can’t even induce an extensional relation.

To put it in a different way: given a formal world of blocks, in order to instantiate
the extensional relation [above], one needs to know whether block a is above block b;
but the only way in which this can be known is to check whether (a, b) ∈ [above]:
the worlds, that one needs in order to define the intensional relation, can only have
structure by virtue of the extensional relations that the intensional ones are supposed to
define. We are stuck in the middle of a circular argument. All this does not imply that
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intensional relations do not exist, but it does imply that, whetever they are, they are not
a function from worlds to extensional relations, as the model requires.

Secondly, an ontology is defined as a system of axioms that defines (approximately, but
this will be my third point) the set of models of a languageL. On one hand, this definition
leaves one with the complete freedom to choose the logic system in which these axioms
are drawn while, on the other hand, it makes an ontonomy dependent on the choice of
the languageL. Given this latitude, it is not clear whether this definition defines anything
worth defining. In order to dispense with the dependency on the languageL (which runs
quite against the common notion of ontonomy), one could say that an ontonomy is a
system of axioms for which there is a languageL such the axioms define the same set of
models as the ontological commitment of L. But, presumably, for all non-contradictory
set of axioms it is possible to define such a language so the definition would reduce simply
to the statement that an ontonomy is any set of statement in any formal language. Such
a definition is formally correct, but it is also so generic as to be of no use.

Thirdly, we have the presence of the word “approximates.” With this addendum, any
system of statements that admits at least one model that is also a model for a language
L is an ontonomy for L. If we abstract from the language, then any set of statements
that admits at least a model is an ontonomy. In particular, any set of tautologies is an
ontology. Allowing for approximation, in other words, worsens the problem considered
in the previous point: the definition is formally consistent, but too broad to be of any
use: many things, from a C program to a very well structured grocery list, to a tax return
form would qualify.

To this, one should add that Guarino’s definition is not innocent of functionalism:
given a set of statements in a certain logic system the only thing that makes them into
an ontonomy is their intended use: if the statements are used to provide models con-
sistent with an ontological commitment, then they form an ontonomy, otherwise they
don’t. This is not a structural definition of the type that computing science seeks. To
come back to my previous example, given the definition of a grammar, and an arbitrary
string, then one can decide whether the string is a grammar based on structural consid-
erations only, even if one doesn’t know that grammars are used to specify languages.
The definition is structural and, in a sense, closed: it can be checked by making ref-
erence to the definition alone, without any teleological consideration. With Guarino’s
definition of ontonomy such a possibility does not exist.

* * *
A formally correct, structural definition of ontonomy that has been proposed in the

literature is based on the algebraic theory of abstract data type, in particular on the
notion of sub-typing. The theory has been proposed, e.g. by Bench-Capon and Malcom
in [1], and its theoretical presupposition are in Goguen and Meseguer’s order-sorted
algebras [6]. An order-sorted algebra is a multi-sorted algebra (Ω, (Aα|α ∈ S)) where
the set of sorts S is endowed with a partial order relation called the sub-sort relation.
Given a partially ordered set of sort names S = (S,≤), a collection Σ of types equation
symbols, and a set E of equations on the symbols of Σ, one obtains a order-sorted
equational theory T = (S, Σ,E). If D is a model of T , then call (T,D) a data domain.

If we have a set of classes with attributes, Bench-Capon and Malcom use the sorts of
the order-sorted equational theory to model the attributes, a data domain to model the
attribute values, and a separate order model to model the classes:
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Definition 1. An ontology signature is a triple (D, C, A), where D = (T,D) is a data
domain, C = (C,≤) is a partial order, called a class hierarchy, and A is a family of
sets Ac,e of attribute symbols for c ∈ C and e ∈ C + S, where S is the set of sorts in
T . The family is such that Ac′,e ⊆ Ac,e′ whenever c ≤ c′ and e ≤ e′2.

An ontonomy is then simply a pair (Σ,A), whereΣ is an ontology signature andA a set
of axioms. A model of such an ontonomy is a model ofΣ that satisfies the axioms ofA.

While this is a rigorous structural definition, it has the problem of reducing ontology
to the specification of a type system whose components are structures3. The basic rela-
tion between types here is the sub-typing relation (the partial order ≤ among classes),
while all other relations have to be introduced as attributes. In other words, this model
is strongly oriented towards monocriterial taxonomies, although it is more general than
a simple taxonomy in that it allows the classification structure to be a partial order (viz.
a directed acyclic graph) rather than a tree. It is, in other words, too limited a definition
to cover the uses that are being done of the idea of ontology: while the theory can serve
as the foundation of a discipline of ontology, it is too weak to provide a sound basis to
the current uses of the notion.

Even with all these defects, the model of Bench-Capon and Malcom has the clear
advantage of providing the type of definition necessary for computing science, without
resorting to unacceptable teleological notions. To the best of my knowledge this is, to
this date, the most promising attempt at a definition of an ontonomy, and the one most
likely to be eventually extended to an acceptable definition.

3 Ontology and Semantics

While a correct structural definition is still very elusive (and while most practicioners
seem blissfully unaware of—or unconcerned by—the problem), there is a general con-
sensus that ontology is somehow involved with the semantics of an information system,
that ontonomies, whatever their structural definition will turn out to be, contain con-
cepts and relations between them. The idea is not immediately obvious: ontonomies
contain symbols, not unlike any formal system (or not unlike any data base, for that
matter), and one should wonder what makes the symbols contained in an ontonomy be
concepts. This question constitutes the semantic problem of ontology, which I propose
to discuss in this section.

It is worth reminding that, when we are talking about semantics in the context of on-
tology, we are talking about something very different than, say, the semantics of a pro-
gramming language. In programming languages, semantics is simply a function from
states to states of a certain abstract machine. In ontology, the semantic that is modeled
is supposed to be the semantics of the group in which the system is inserted, that is,
the relation between the data in an information system and the symbols of an ontology
is supposed to be isomorphic to the signification relation between signifier and signi-
fied in human culture. So, while the development of a theory of programming language

2 [1].
3 Bench-Capon and Malcom call these elements “classes,” but they should not be confused with

the classes used in object oriented models: the classes of this model are not abstract, since their
attributes are explicitly declared.
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semantics doesn’t require any cognitive endorsement, the assertion that there is a com-
putational discipline of ontology requires the endorsement of a theory of signification.
Unlike programming language semantics, information system semantics (and ontology
with it) is not theoretically innocent, so to speak.

If we take the rather general view that an ontonomy is a set of symbol and of re-
lations between them then, with respect to the problem of meaning, one might ask
whether these relations are constitutive or not. A negative answer leads to an atomism
á la Fodor, while a positive answer leads to a point of view resembling very much what
Fodor himself calls inference rôle semantics. I will begin by assuming that the answer
is negative, that is that conceptual atomism is the theory of choice.

* * *

The possibility that symbols signify “by themselves” that is, independently of the
relations between them requires the endorsement of a very strong form of conceptual
atomism found, as far as I can tell, only in Fodor’s informational semantics:

Informational semantics denies that “dog” means dog because of the way it
is related to other linguistic expressions [...]. Correspondingly, informational
semantics denies that the concept DOG has its content in virtue of its position
in a network of conceptual relations4.

Note that the “correspondingly” here requires a fairly important metaphisical invest-
ment since it maps conceptual structures to linguistic ones. This, passim, is the same
investment that ontology requires when it takes a linguistic structure (constituted of
words and relations) and calls it a conceptual model.

Informational semantics has to struggle hard to eradicate itself from radical nativism:
by the account of representational theories of mind, only composed concepts can be ac-
quired (through inference from their components), thus conceptual atomism seems to
imply that all concepts are innate. For Fodor, acquiring a concept means “getting nomo-
logically locked to the property that the concept represents”5 but the way to acquire a
concept is having the right kinds of experiences. So, if one doesn’t want to throw away
the conceptual atomism baby together with the radical nativism bath water, the problem
that one faces is “why is it so often experience with doorknobs, and so rarely experience
with whipped cream or giraffes, that leads one to lock to doorknobhood?”6

Explanations that rely on hypothesis testing turn out to deny atomism, so they can’t
be applied. Fodor’s solution to this problem is to stipulate that doorknobhood is con-
stituted by how its strikes us, viz. “being a doorknob is having the property that minds
like ours come to resonate to in consequence to relevant experience with stereotypical
doorknobs”7

The serious flaw of this notion is that, since it needs to avoid any oppositional or
structural definition of meaning in order to save atomism, it can’t take into account
the dependence of a single concept on the way in which different cultures divide the

4 [3], p. 73.
5 ibid. p. 125, emphasis in the original.
6 ibid. p. 127.
7 ibid. p. 137, emphasis in the original.
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semantic field. To stay on Fodor’s example, the English words “doorknob” and “door
handle” correspond (roughly) to the Italian words “pomello” and “maniglia.” But the
areas covered by these concepts are not the same: while pomelli are, in general, door-
knobs, some of the things that English speakers call doorknobs would qualify, for the
Italian, as maniglie. The schema is more or less the following:

doorknob

doorhandle
maniglia

pomello

Why is it then that Italian minds “resonate” with doorknobs differently than English
minds? By Fodor’s account, there must be something different between English and
Italian minds. A consequence of the consumption of wine and olive oil?

It appears, in other words, that we can’t give a sensible explanation of the difference
between doorknobs and pomelli unless we consider them differentially and opposition-
ally in the context of their respective languages. Doorknob is not a positive term, but
serves to establish a distinction, an opposition in the semantic field of a language. Dif-
ferent languages break the semantic field in different ways, and concepts arise at the fis-
sures of these divisions. Consider, as an example, the way in which adjectives of old age
are constituted in Italian, Spanish and French8. The basic adjective, vecchio/viejo/vieux
is applied both to things and to persons. There are specific forms, however: in Spanish,
añejo is an appreciative form used mainly for alcoholic beverages (un ron añejo). The
Italian adjective anziano applied mainly to people, and the correspondence is roughly
anziano/anciano/âgé, but anziano has a broader meaning that the other two adjectives,
being used in expressions such as “il sergente anziano” to denote seniority in a function,
a situation in which the Spanish would use antiguo and the French ancien. Note that the
Spanish also has the possibility of using the word mayor as a softer and more respectful
form of denoting a person of old age, while the corresponding Italian and French words
are never used in this sense. The correspondence is, in other words, according to this
schema

Italian Spanish French
añejo

vecchio viejo vieux
anziano anciano âgé

mayor
antiguo ancien

antico antique

8 I am taking this example, with some adaptation, from [5].
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Here too, in order to save atomism and the nomological relation between concepts
and world that goes with it, one should explain why it is that Italian, Spanish, and French
minds resonate differently with age and, this, of course, by making reference only to the
relation between individual concepts and the state of affairs in the world: differential or
oppositional explanations related to the semantic field are not allowed by atomism.

At the origin of these problems there is, among other things, a certain confusion that
computational ontologists have been known to make between signification and designa-
tion: the general idea in ontology seems to be that A means B if and only if A designates
B. It is important however to keep the distinction between the two and, for this, I will
just consider a famous example from Husserl ([9], p. 47): the winner at Jena/the loser
at Waterloo. We notice that the meaning of tehse two phrases is different, although their
designatum is the same: Napoleon.

Designation is a relation between a linguistic plane and an extra-linguistic one, but
signification is a purely linguistic relation. That is, pace Fodor, meaning is not a nomo-
logical relation between mind and world, but a collection of relations and oppositions
within the language.

* * *

These facts point quite strongly away from atomism that is, away from the (admit-
tedly naı̈ve) hypothesis that a symbol in an ontonomy possesses meaning qua symbol,
by virtue of its name alone, without reference to the other elements of the ontonomy9.

We are thus led to considering the second hypothesis given in the opening of this
section, namely that the relations that one finds in an ontonomy are constitutive of
meaning. Consider, for instance, the following ontonomy:

car * motorvehicle# roadvehicle# ∃size.small

pickup * motorvehicle# roadvehicle# ∃size.big (4)

motorvehicle * ∃uses.gasoline

roadvehicle * ∃4has.wheels

The meaning of the word ”car” is not given here by the juxtaposition of the three letters
/c/, /a/, and /r/, but by its (structural) relation with the terms ”motorvehicle,” ”roadvehi-
cle,” ”size,” and ”small,” together with the relation of these terms with other terms and
so on. In other words, one can say that the meaning of the word ”car” is given by the
following structure

D * B #C # ∃ρ3.F

E * B #C # ∃ρ3.G (5)

B * ∃ρ1.A

C * ∃4ρ2.H

9 This is not conceptual atomism á la Fodor, which is all but naı̈ve, but the naı̈ve interpretation
that of it has been given in computing science.
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which we can represent by the following diagram

A

ρ1

B

��
��

��
� C

��
��

��
�

ρ2(4)
H

F Dρ3
E

ρ3
G

(6)

The meaning of the word “car” is to be found in the structure of this definition that is,
essentially, in the following diagram:

·

·

��
��

��
� ·

��
��

��
�

·

· · · ·

(7)

Replacing D with ”car” in (6), we obtain the structural meaning of the concept CAR.
(Here I am using capitalization to denote concepts and words in quotes to denote lin-
guistic entities; a Saussurean semiotician would say that ”car” is a signifier and CAR
the corresponding signified.)

The problem with the position that the structure (6) is the meaning of the word ”car”
(that is, to be completely clear, that (6) is CAR) comes from the following structure:

dog * animal # quadruped# ∃size.small

horse * animal # quadruped# ∃size.big (8)

animal * ∃ingests.food

quadruped * ∃4has.leg

which is isomorphic to (6), that is, to CAR. Unless one is ready to concede that CAR
= DOG (and I expect quite a few people to object to this identification on ground of
affection either toward their poodle or toward their BMW), one must admit that there is
something wrong in our definition.

The structural definition of meaning can be saved, in this circumstance, by noticing
that quadrupeds are animals, while road vehicles are not necessarily motor vehicles (a
horse-drawn cart, a small omnibus, or one of those four wheels bicycles that are often
rented out at seaside resorts are examples of road vehicles with four wheels but no
engine) so, in (8) we can affirm

quadruped * animal (9)

and change the first two relations to

dog * quadruped# ∃size.small (10)

horse * quadruped# ∃size.big (11)
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If this new structure is still not enough to differentiate between different concepts, we
can add more predicates. The question is: when can we stop? The answer is that we
can’t: if meaning is in the structure (and we have already ruled out the hypothesis that
meaning is in the symbols themselves), then the meaning of a sign is given by the trace
on it of all the other signs of the language, and no part of the system can self-sustain
once detached from the whole.

* * *
But even an hypothetical (and impossible) macrostructure containing the whole lan-

guage and its lexical relations would not be sufficient to save the semantic programme
of ontology: the ontological meaning would still be normative, the codification of an
author’s intention at the time the text was written, and would omit the essential active
rôle of the reader in the construction of meaning. In order to maintain the possibility of
recording meaning once and for all, ontology must anchor it to a pre-linguistic inten-
tional act of the author: reconstructing meaning means reconstructing this intentional
status. The only way in which ontology can keep a stable meaning is by constant polic-
ing and an authoritarian normativism that sets, once and for all, the ’true’ intentions of
the author. There is no social participation in this construction of meaning: the reader
can be replaced by an algorithm. To the Barthesian death of the author, ontology opposes
a drastic “death of the reader.” The underlying philosophy here is that of signification
as a market, an old pre-structuralist view associated with the bourgeois individualism:
meaning belongs to the author like a commodity, and language is just the currency that
allows one to exchange this meaning-commodity with someone who is also an owner
of meaning. But it is unlikely that such a privately owned, pre-linguistic intentional act
may exist: meaning arises in language, and it is a product of a shared system of signi-
fication. What can be articulated and understood depends on this shared code. One can
no longer see an intentional act that pre-dates language and that language simply re-
flects (the essentialist view of the ontologists notwithstanding). Reality, and the writing
subject, are the product of language. And just as language interacts with other social
and cultural systems, so does the act of reading. It is reading—historically and concep-
tually situated—that constructs meaning connecting the cues that the text gives with the
complex network of conventions, discourses, and situatedness in which it occurs.

Consider a sign on a door that says “trespassers will be prosecuted.” The context
necessary to understand this sign is considerable. I must understand, for instance, that
this sign is not informative in the sense that a newspaper headline is: I am not being
informed that there have been trespassers somewhere and that they will be prosecuted
sometime in the future: in western societies at least, information of this kind is not
written on signs hanging from doors, especially if we see that the sign is made of plastic
or wood (and therefore is durable) and the writing is not dated. Such a sign typically is
a threat, the word “trespasser” refers to me (the reader) in case I decide to walk through
the door, and it threatens me of prosecution if I do so. The threat also implies that
prosecution is likely to result in punishment. I must understand that trespassing in this
context means to cross this door, not some door in the palace of the king of Siam. I have
to have a general knowledge of private property to understand that preventing people
from entering into a building is one of the rights that society grants to proprietors (while,
for instance, preventing people from looking at the building is in general not such a
right), that there are authorities that will guarantee the respect of these rights, and that
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they will punish people who infringe these rights, that the sign has been placed there
with their tacit approval, and so on...

None of these elements, necessary for understanding, is in the text: they must be
supplied by a specific situation. The text here takes meaning by being situated (viz.
placed in a situation: a door on a building rather than, say, a shelf on a store that sells
signs) and in a certain relation with other texts that are not present, namely the political
discourse that regulate private property, the speech through which certain customs have
been implanted in the reader, and so on. Finally, all this linguistic discourse rests on
a substratum of human practices and action: the political relation of power between
authority and citizens, and the fact that in order to understand punishment one must
understand pain (psychological pain, at least).

There is more to meaning, in other words, than just relations between terms: the
creation of signification is a back-and-forth process between the text and the reader; the
reader, influenced by the text, creates a frame of reference in which the text itself can
be given meaning. This is what Gadamer [4] called the hermeneutic circle: the parts
of the text can be understood in terms of the whole context, and the context becomes
intelligible by means of the parts.

Ontology is trying to break this circle by removing the reader from it: it removes the
creative act of the reader and tries to encode the essence of the meaning in such a way
that it can be read without interpretation.

In this, it falls into the trap of believing that a text is just an author’s intended mean-
ing, and that therefore it is possible to re-code the text leaving the meaning unaltered.
But if the meaning arises through an historically situated interaction of the reader with
the text, then the text is the only possible closure of the hermeneutic circle, the only
possible representation of itself, and changing the code will change the meaning. There
is, in other words, no objective, essential or immutable meaning that can be encoded,
either through ontological or other means in such a way that its interpretation will not
require the active, culturally and historically situated, participation of the reader.

4 The Pragmatics of Ontology

The previous section suggested quite decisively and conclusively that the abmitious se-
mantic programme of ontology is unattainable. Yet, as we all know, ontonomies are
eagerly sought after, to the point of being hailed as a cornerstone of the constituenda
semantic web. It is interesting to question why this is the case. A full answer to this
question would require investigating in some depth the sociology of the computing en-
terprise and its relation with other economic forces, and analysis that is in the absolutest
terms beyond the scope of this paper. I will venture only the briefest of comments.

The view of meaning as a commodity and of signification as a market transaction fit
quite well, of course, with certain commercial aspects of the web, and it is no surprise
that, in an age in which intellectual property rights are expanded to levels never dreamt
before, a view of signification that allows the commodification of meaning (and thus,
potentially, its patentability) should be regarded with more than a passing interest in the
semantic web area. It is, in other words, not a surprise that the semantic web is these
days probably the more fertile ground for the application of ontology.
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It is also not surprising that the idea that meaning is to be sought in a series of
taxonomies (naı̈ve as it might be) should have arisen in an environment close to the
programming profession, where taxonomies have been popularized as a programming
discipline by object oriented methods: a lot of the ontological vocabulary, especially
in the vicinity of the semantic web, shows a definite debt to that of the programming
profession. Of course, the wide adoption of a taxonomy in a certain discipline tends to
confine the discourse around certain terms an to establish an orthodoxy which might
stifle alternative discourses: whether this is useful depends on the status of the disci-
pline. The taxonomy of Linneus was a great help to the relatively mature discipline
of zoology, but the taxonomization of all the elements into air, water, fire, and earth
contributed to the failure of the Greek to develop a science of nature. Given the perva-
siveness of computers, and the social pressure to use them, the terms and taxonomies
that they impose tend to become strong norms. By forcing computerized data bases,
normative semantics, and taxonomies on a vital but not yet settled discipline we might
take away its vitality more than help it.

5 Conclusions

Semantics (in the sense of information systems semantics) seems to have become a most
powerful “buzz-word” in the computing profession (a profession that is becoming, alas,
very responsive to hype and word clout), and ontology seems occasionally to ascend to
the status of a panacea. But, from within the point of view of computing science, there
are at least two serious problems with this panacea.

The first is that, while we appear eager to use ontonomies in the most diverse appli-
cations, we are quite unable to define them with precision. More than a specific onto-
logical problem, this issue is a symptom of a preoccupying relaxation of the standards
of rigor of computing and, as such, should not be taken lightly, even from researchers
not directly connected with ontology.

The second problem is in the idea of semantics to which ontology makes reference,
an idea that is clearly insufficient in the light of all that is known about the process of
signification. In a sense, the choice of such a model of signification reveals a certain
cultural autism, so to speak, of computing science, and a certain historical arrogance.
The problem of signification has been studied at least since the debate between the
Stoics and the Epicureans on the nature of the sign, has been an important concern
in medieval philosophy, and has been absolutely central in the philosophy of the XX
century. But, faced with the problem of signification, computing scientists chose to
disregard all this and to start from zero.

This problem is not specific to computing science, but it appears to be fairly common
among technologists: “High tech, in fact, appears not only as optimistic about the future
but also more indifferent toward and, in other contexts, more manipulative of the past
than earlier technologies have been”10. Computing science is falling here in the very
typical technological fallacy of considering history—cultural history, in this case, as
“irrelevant save as the supposed contrast with the golden age ahead. It is as if high
tech arrived and flourished in an historical vacuum of no more than a few decades and
10 [11], p. 177.
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as if everything before it can simply be forgotten”11. But, of course, to think this way
is illusory. The problem of signification and the viable relations between a syntactic
manipulation device such as a computer and semantics are much more complex than
the simple schematism of ontology would imply.

Given the importance that the presence of computing devices has in the disciplines
in which they are used; given the influence that these devices have in promoting or
constraining certain discourses in these disciplines, the computing profession has the
responsibility of rejecting facile solutions. It has the responsibility of understanding the
different perspectives on semantics, of being aware of the history of such problem and,
ultimately, to re-analyze the relations between computers and the process of significa-
tion. Computers are syntactic machines, and it not immediately obvious that they can
be of any help in dealing with semantics. The problem is worth exploring, but in a more
complex way, without prejudices: the first question should not be how to we use a com-
puter to represent semantics, but whether we should do so. We computing professional
must have the acumen to discover the answer, and the cultural humility to accept it,
whatever it might be.
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Abstract. A data stream management system executes a large number
of continuous queries in parallel. As stream characteristics and query
workload change over time, the plan initially installed for a continuous
query may become inefficient. As a consequence, the query optimizer will
re-optimize this plan based on the current statistics. The replacement of
the running plan with a more efficient but semantically equivalent plan
at runtime is called dynamic plan migration. In order to have a sound
semantic foundation for query optimization, we investigate dynamic plan
migration for snapshot-equivalent plans. We develop a general method for
dynamic plan migration that treats the old and new plan as snapshot-
equivalent black boxes. This enables the query optimizer to apply the
conventional transformation rules during re-optimization. As a conse-
quence, our approach supports the dynamic optimization of arbitrary
continuous queries expressible in CQL, whereas existing solutions are
limited in their scope.

1 Introduction

Dynamic query optimization at runtime is important for a data stream man-
agement system (DSMS) because the subscribed queries are long-running and
the underlying stream characteristics such as arrival rates and data distributions
may vary over time. In addition, the query workload may gradually change. In
this case, dynamic query optimization may be useful to enable a DSMS to save
system resources by subquery sharing.

There are two major steps in dynamic query optimization. First, the query
optimizer needs to identify a plan with optimization potential. For this purpose,
a DSMS keeps a plethora of runtime statistics, e. g., on stream rates, and selec-
tivities. In the second step, the query optimizer replaces the currently running,
inefficient plan by a semantically equivalent but more efficient new plan. This
transition at runtime is called dynamic plan migration [1]. Dynamic plan mi-
gration is easy as long as query plans only consist of stateless operators, such
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as selection and projection, and inter-operator queues. In order to perform the
migration, it is sufficient to pause the execution of the old plan first, drain out
all existing elements in the old plan afterwards, replace the old plan by the new
plan, and resume the execution finally. In contrast to stateless operators, state-
ful operators like join and aggregation must maintain information derived from
previously received elements as state information to produce correct results. Mi-
gration strategies for query plans with stateful operators are complex because
it is non-trivial to appropriately transfer the state information from an old plan
to a new plan.

Besides the essential requirement of correctness, a migration strategy should
take the following performance objectives into account. It should (i) not stall
query execution for a significant timespan as catching up with processing could
cause system overload afterwards, (ii) continuously produce results during migra-
tion – the smoother the output rate the better, and (iii) minimize the migration
duration and migration overhead in terms of system resources like memory and
CPU costs.

To the best of our knowledge, dynamic plan migration has only been ad-
dressed in [1] so far. The authors proposed two different migration strategies,
moving states (MS) and parallel track (PT). MS computes the state of the new
plan instantly from the state of the old plan at migration start. Afterwards the
old plan is discarded and the execution of the new plan is started. In order to
apply MS, the query optimizer requires a detailed knowledge about the oper-
ator implementations because it needs to access and modify state information.
Despite the fact that it may be possible to define those transitions correctly for
arbitrary transformation rules involving joins, aggregation, duplicate elimination
etc., the implementation will be very complex and inflexible. For that reason, we
prefer the second strategy proposed in [1], namely PT, as starting point for our
black box migration approach. In contrast to MS, PT runs both plans in parallel
for a certain timespan to initialize the new plan gradually with the required state
information. Although [1] claims that PT is generally applicable to continuous
queries over data streams, we identified problems if stateful operators other than
joins occur in a plan, e. g., duplicate elimination and aggregation. In this paper
we develop a general migration strategy which overcomes these deficiencies.

The basis of our approach is the temporal semantics for continuous queries
over data streams defined in [2]. The algebraic transformation rules known from
conventional database systems can be transferred to the stream algebra in [2]
because the stream-to-stream operators are snapshot-reducible [3,4] to their
counterparts in the extended relational algebra. Snapshot-reducibility is also
the reason why the semantics and stream algebra in [2] are in accordance with
CQL [5], an extension of SQL for continuous queries. Based on this semantic
foundation, our migration strategy requires for correctness that both plans – the
old and new – produce snapshot-equivalent results. Note that applying conven-
tional transformation rules guarantees this property for the algebra in [2].

As we generalize PT, we treat the old and new plan as snapshot-equivalent
black boxes which can consist of arbitrary operators. The basic idea of our
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approach is to define a split time. For all time instants before the split time,
results are computed by the old plan, whereas the new plan computes the results
for all other time instants. The migration is finished as soon as the timestamps
of the elements in all input streams reached the split time.

The contributions of this paper can be summarized as follows:

– We show that PT fails to cope with plans involving stateful operators other
than joins.

– We propose our general solution for dynamic plan migration of arbitrary
CQL queries, called GenMig, prove its correctness, and discuss implementa-
tion issues. Besides a straightforward implementation, we suggest two opti-
mizations.

– We analyze the performance of GenMig with regard to the objectives men-
tioned above, and compare it to PT.

The rest of this paper is organized as follows. Section 2 introduces semantic
foundations and briefly summarizes implementation techniques for continuous
queries over data streams. In Section 3, we demonstrate that PT fails for plans
with other stateful operators than joins. Our general plan migration strategy is
presented in Section 4. Section 5 shows the results of our experimental studies.
Related work is discussed in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

In order to understand the rationale of our approach, it is important to know
the underlying semantics and compatible implementations. In analogy to tra-
ditional database management systems, we distinguish between a logical and a
physical operator algebra. The logical stream algebra defines the semantics of
the operations, whereas the physical algebra provides implementations.

2.1 Semantic Foundations

Time. The notion of time is of utmost importance in stream processing. As com-
mon in most approaches, we assume each stream element to be equipped with a
timestamp, and streams to be ordered by this timestamp attribute. Furthermore,
we assume that only a finite number of elements has the same timestamp. Let
T = (T,≤) be a discrete time domain with a total order ≤. We use T to model
the notion of application time, not system time. For the sake of simplicity, let T
be the non-negative integers {0, 1, 2, 3, . . .}.

Sliding Window Queries. Sliding window queries are the most common and
important type of continuous queries in DSMS. Without loss of generality, we
assume time-based sliding window queries in this paper. A sound semantics for
this query type has been established in recent years [2,5] based on the operations
of the well-known extended relational algebra [6,7].
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Fig. 1. Snapshot reducibility

The operators in [2] can be classified into two categories: window operators
and standard operators. The window operators model the sliding window se-
mantics. In a logical query plan, a window operator is placed downstream of
each source for which a window has been specified in the corresponding query
representation, e. g., CQL [5]. The rest of the plan consists of standard operators
borrowed from the temporal relational algebra [3]. The standard operators are
snapshot-reducible to their relational counterparts and are used in the same way.

Definition 1 (Snapshot-Reducibility). We denote a stream-to-stream oper-
ation opT with inputs S1, . . . , Sn as snapshot reducible if for each time instant
t ∈ T , the snapshot at t of the results of opT is equal to the results of applying
its relational counterpart op to the snapshots of S1, . . . , Sn at time instant t.

Figure 1 illustrates the temporal concept of snapshot reducibility [3,4]. A snap-
shot of a stream at a time instant t can be considered as a relation since it
represents all tuples valid at that time instant.

Definition 2 (Snapshot-Equivalence). Two streams are snapshot-equivalent
if for all time instants t, the snapshots at t of both streams are equal.

We denote two query plans as equivalent if they produce snapshot-equivalent re-
sults. Note that conventional transformation rules applied to snapshot-reducible
operators preserve snapshot-equivalence [3]. Snapshot equivalence is the reason
why the common relational transformation rules are still applicable to the stream
algebra [2] and make query optimization feasible.

Remark 1. Figure 1 can also be used to motivate that [2] and [5] basically have
the same expressiveness. The abstract semantics proposed for STREAM trans-
forms the input streams into relations, uses operations of the relational alge-
bra for processing, and transforms the output relations back into streams. The
window specifications are included in the mappings from streams to relations.
Hence, the stream-to-stream approach in [2] works completely on the left side of
Figure 1, whereas STREAM goes the way round on the right side.

2.2 Interval-Based Implementation

There currently exist two major implementation techniques compatible with
the semantics introduced above: the interval-based implementation [2,8], and
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the positive-negative tuple approach [5,9]. We describe the implementation of
GenMig for the interval-based approach, but additionally outline how it can be
adapted to the positive-negative approach.

The stream-to-streamoperator algebra in [2] relies on so-calledphysical streams.

Definition 3 (Physical Stream). A physical stream S is a potentially infinite,
ordered sequence of elements (e, [tS , tE)) composed of a tuple e belonging to the
schema of S and a half-open time interval [tS , tE) where tS , tE ∈ T . A physical
stream is non-decreasingly ordered by start timestamps.

The interpretation of a physical stream element (e, [tS , tE)) is that a tuple e is
valid during the time interval [tS , tE).

Input Stream Conversion. Input streams of many stream applications pro-
vide elements with a timestamp attribute, but no time interval. As those streams
are usually ordered by timestamps, a physical stream can be generated easily by
mapping each incoming element e with its internal timestamp t to (e, [t, t+ 1)),
where +1 indicates a time period at finest time granularity.

Window Operator. The window operator assigns a validity according to its
window size to each element of its input stream. For a time-based sliding win-
dow, the window size w ∈ T represents a period in application time. For each
element (e, [tS , tS + 1)), the window operator extends its validity by adding the
window size to its end timestamp, i. e., (e, [tS , tS + 1 +w)). This is intuitive for
a time-based sliding window query since a stateful operation downstream of a
window operator has to consider an element for additional w time instants. In
the general case, where nesting of continuous sliding window queries is permit-
ted, the window operator produces for each incoming element (e, [tS , tE)) a set
of elements by extending the validity of each single time instant by the window
size w. Note that a window operator does not affect stateless operations, such
as selection and projection.

Query Plans. Query plan construction is basically the same as in conventional
database systems, except that the query optimizer has to place the window oper-
ators in addition. The window operators are placed downstream of the source for
which a window has been specified. This placement is performed by the query op-
timizer when transforming the posed query into the corresponding logical query
plan. Thereafter, the query optimizer computes the physical plan by choosing a
physical operator for each logical one.

Temporal Expiration. Besides the desired semantics, windowing constructs
(i) restrict the resource usage and (ii) ensure non-blocking behaviour of stateful
operators over infinite streams [10]. For stateful operators like joins, elements in
the state expire due to the validity assigned by the window operator. A stateful
operator considers an element (e, [tS , tE)) in its state as expired if it is guaranteed
that it will not be involved in the result production any more. That means,
no element in one of its input streams will arrive in the future whose time
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interval will overlap with [tS , tE). According to the total order maintained for
each physical stream, this condition holds if the minimum of all start timestamps
of the latest incoming element from each input stream is greater than tE . A
stateful operator can delete all expired elements from its state. In those cases
where application-time skew between streams and latency in streams becomes
an issue, heartbeats [11] can be used to explicitly trigger additional expiration
steps.

Examples. Our examples throughout the paper are based on two stateful op-
erators: join and duplicate elimination. The snapshot-reducible join satisfies the
following conditions [2,8]: (a) for two participating stream elements, the join
predicate has to be fulfilled and (b) their time intervals have to intersect. The
time interval associated with the join result is set to the intersection of the
two participating time intervals. The snapshot-reducible duplicate elimination
removes duplicate tuples at each single snapshot. That means, the output must
not contain two elements with identical tuples and intersecting time intervals.

2.3 Positive-Negative Implementation

Another common implementation technique for continuous queries is the Positive-
Negative (PN) tuple approach, used in STREAM [12] and Nile [9] for instance. The
PN implementation is based on streams with elements of the following format: a
tuple e, a timestamp t ∈ T , and a sign, + or−. A stream is ordered by timestamps.
The signs are used to define the validity of elements. The standard operators are
modified to handle positive and negative tuples, in particular with regard to tem-
poral expiration. For each incoming stream element with application timestamp
t, the window operator sends a positive element with that timestamp, and after
w + 1 (window size + 1) time units, a negative element is sent with timestamp
t+w+1 to signal the expiration. For further details, we refer the reader to [9,12].

A pair consisting of a positive and its corresponding negative element can
be used to express a stream element in the interval-based approach. Namely,
(e, [tS , tE)) can be implemented by sending a positive element (e, tS ,+) and
negative element (e, tE ,−). Hence, positive elements refer to start timestamps,
whereas negative elements refer to end timestamps. Even at this physical level,
the semantic equivalence of both approaches becomes obvious. However, the
interval approach does not have the drawback of doubling stream rates due to
sending positive and negative tuples.

3 Problems of the Parallel Track Strategy

After outlining PT, we demonstrate that PT produces incorrect results if applied
to plans involving stateful operators other than joins. Note that the authors
in [1] claim that their migration strategies are generally applicable. We assume
a global time-based window of size w as in [1]. We use the term box to refer to
the implementation of a plan, i. e., the physical query plan actually executed.
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3.1 Parallel Track Strategy

At migration start PT pauses the processing only shortly to plug in the new
box. Then, it resumes the old box and runs both boxes in parallel. The results
of both plans are merged. Finally, when the states in the old box solely consist
of elements that arrived after migration start, the migration is over and the old
box can be safely removed. This implies that all elements stored in the state
before migration start have been purged due to temporal expiration.

The following aspects guarantee the correctness of the PT strategy according
to [1]: (i) Although all elements arriving during migration are processed by both
plans, the combined output must not contain duplicates, that means results
produced by both plans for the same snapshot. This is achieved by marking the
elements with flags, old and new, which indicate if an element arrived before
and after the migration start time, respectively. For combined results, e. g., join
results, a new flag is assigned if all involved elements had a new flag. To guarantee
correctness, PT removes all results of the old box that are assigned with a new
flag as those are additionally produced by the new box. (ii) In order to preserve
temporal ordering, the output of the two boxes has to be synchronized. PT
simply buffers the output of the new box during migration.

3.2 Problems

The PT strategy as proposed in [1] works well for join reordering but fails if
other stateful operators are involved. We illustrate this by a concrete example.
Let us consider the migration scenario given in Figure 2 consisting of an equi-
join (��) and a duplicate elimination (δ) which is pushed down for optimization
purposes. Recall that this is a standard transformation rule which holds in the
stream algebra due to our semantic foundations. Figure 2 shows the query plans
as well as the inputs and outputs of the operators.

Example 1. We have two input streams A and B delivering the elements listed
in the upper right table. The table labelled with �� depicts the correct results
of the join inside the old box. The table labelled with δ contains the correct
results of the duplicate elimination of the old box. The tables δ′1, δ

′
2, and ��′

correspond to the operator results of the new box. Correctness here refers to the
snapshot-reducible semantics assumed. Although we use our notation with half-
open time intervals to denote the validity of elements, the example solely relies on
snapshot-reducible operator semantics and thus is implementation independent.
Recall that a time interval just describes a contiguous set of time instants.

All input elements are considered to be valid for 100 time units, which is
the global window size. The migration start is at time instant 40. The ele-
ment (a, [20, 121)) from input B, which is marked as old, joins with the element
(a, [50, 151)) from input A. Hence, the join result (a, [50, 121)) is marked as old.
As [50, 121) overlaps with the time interval of the duplicate elimination’s result
(a, [111, 121)), this is also marked as old. Therefore, it definitely belongs to the
output of the old box. Unfortunately, (a, [111, 121)) has a temporal overlap with
(a, [70, 151)) which is a result of the new box. Consequently, the complete output
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Fig. 2. Plan migration with duplicate elimination

contains tuple a for the snapshots 111 to 120 twice. Thus, PT does not produce
correct results.

The reason for this problem is that the validity of results of the old box can refer
to points in time which are beyond the plan migration start time. These time
instants may additionally be addressed by the new box. Since the new box has
no information about the old box, duplicates at those time instants may occur
in the output, which is the union of both boxes. GenMig overcomes this problem
by introducing a split time which is greater than all time instants occurring in
the old box.

Note 1. The problem of PT is not restricted to duplicate elimination but arises
for other operators as well, e. g., aggregation and difference. Although join re-
ordering is a very important transformation rule which is covered by PT, there
exist rules for other stateful operators [3,13] for which PT will fail in a similar
way as shown above.

4 A General Strategy for Plan Migration

In this section we propose GenMig which overcomes the problems of PT while
maintaining its merits, namely (i) a gradual migration from the old to the new
plan, and (ii) generating results during migration.

4.1 Logical View

We first present the basic idea of GenMig from a purely logical and semantic
perspective.
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GenMig Strategy. Given two snapshot-equivalent plans, the query optimizer
determines a point in application time denoted as Tsplit. At this time instant the
time domain is split into two partitions.

– For all time instants t < Tsplit the results are produced by the old plan.
– For all time instants t ≥ Tsplit the results are produced by the new plan.

The union of both plans represents the total results. Tsplit refers to the plan
migration end because up from this point in time the new plan produces the
output by itself, and thus the old plan can be discarded. The migration duration
is the period from migration start to Tsplit.

Correctness. Under the assumption that the old and new plan produce a
snapshot-equivalent output, the total output of GenMig is complete. The output
is computed for every single time instant. Due to snapshot-equivalence it does
not matter if the results for a snapshot are produced by either the old or the
new plan. The duplicate elimination problem does not arise because the results
of the two plans are disjoint in terms of timestamps.

4.2 Physical View

GenMig is very clear and easy at the logical level. However, at the physical level it
is impractical to compute the query results for every single snapshot separately.

Algorithm 1. GenMig
Input : streams I1, . . . , In, old plan with state information, new plan without

state information, global window constraint w
Output : streams O1, . . . , Om, new plan with state information
foreach input stream Ii, i ∈ {1, . . . , n} do1

Start monitoring the start timestamps;2

Keep the most recent start timestamps of Ii as tSi ;3

Pause the execution of the old plan as soon as tSi has been set for each input;4

Tsplit ← max{tSi |i ∈ {1, . . . , n}} + w + 1 + ε;5

Insert a Split operator downstream of each source of the old plan;6

Insert a Coalesce operator at the top of both plans for each output stream;7

Resume the execution of the old plan and start the execution of the new plan;8

while min{tSi |i ∈ {1, . . . , n}} < Tsplit do9

Continue the execution of both plans;10

Signal the end of all input streams to the old plan;11

Stop the execution of the old plan;12

Pause the execution of the new plan;13

Remove the old plan, coalesce and split operators;14

Connect inputs and outputs directly with the new plan;15

Resume the execution of the new plan;16
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Fig. 3. GenMig strategy

Interval-Based Implementation of GenMig. Algorithm 1 shows the imple-
mentation of GenMig for the interval-based approach [2,8]. The input consists of
the old currently running box, the corresponding input streams, and the new box
without any state information. In contrast to the PT strategy, GenMig does not
start with plan migration instantly. It starts monitoring the start timestamps
instead.

Remark 2. In contrast to [1] where a single migration start time is used, our ap-
proach maintains a migration start time for each input. This has the advantage
that GenMig does not require the scheduling to obey the global temporal order-
ing by start timestamps, which would be in conflict with sophisticated scheduling
strategies [14,15,16] otherwise.

Algorithm 2. Split
Input : stream I , split time Tsplit

Output : streams Oold, Onew

foreach new incoming stream element (e, [tS , tE)) ∈ I do1

if tS < Tsplit then2

if tE ≤ Tsplit then Append (e, [tS , tE)) to Oold;3

else4

Append (e, [tS, Tsplit)) to Oold;5

Append (e, [Tsplit, tE)) to Onew ;6

else7

Append (e, [tS, tE)) to Onew ;8
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Algorithm 3. Coalesce
Input : streams I0 (from old plan), I1 (from new plan), hash maps M0, M1,

heap H , split time Tsplit

Output : stream O
foreach new incoming stream element (e, [tS , tE)) ∈ Ii, i ∈ {0, 1} do1

tout ← 0;2

if tE < Tsplit ∨ tS > Tsplit then3

Append (e, [tS, tE)) to H ;4

else5

if i = 0 then6

if ∃(e′, [t′
S , t′

E)) ∈ M1 where e = e′ then7

Append (e, [tS, t′
E)) to H and remove it from M1;8

else Insert (e, [tS, tE)) into M0;9

if i = 1 then10

if ∃(e′, [t′
S , t′

E)) ∈ M0 where e = e′ then11

Append (e, [t′
S, tE)) to H and remove it from M0;12

tout ← t′
S;13

else Insert (e, [tS, tE)) into M1;14

while tout ≥ H.top.tS do15

Append H.top to O and remove it from H ;16

if migration finished then17

Flush H and append its elements to O;18

After initialization, i. e., when for each input stream a timestamp tSi has been
determined, the old box is paused. The split time Tsplit is set to the maximum
of all tSi plus the window size w plus 1 plus ε. This setting ensures that Tsplit

is greater than any time instant in the old box.

Remark 3. Without loss of generality, we assume ε to be chosen so that Tsplit

neither occurs as start nor end timestamp in any input stream. This can for
instance be achieved if Tsplit is expressed at a finer time granularity [17] and ε
refers to a chronon according to that granularity. From the implementation side,
this assumption can be assured easily but is omitted in the algorithms due to
clarity reasons.

In addition to setting the split time, two novel operators – split and coalesce
– are inserted at the inputs and outputs, respectively. Figure 3 illustrates this
placement. For their implementations, see Algorithms 2 and 3. The stateless
split operator splits the time interval of an incoming element at Tsplit into two
disjoint intervals. The tuple e associated with the first interval is sent to the old
box, e associated with the second interval is sent to the new box.

The coalesce operator inverts the effects of splitting. Coalesce merges two
equivalent tuples, each of one input, with adjacent time intervals. Contrary to
split, coalesce is a stateful operator because it has to maintain data structures,



508 J. Krämer et al.

e. g., hash maps, for the detection of equivalent tuples. Furthermore, a heap
ordered by start timestamps is required to ensure the ordering property of the
output stream.

The migration end is defined as the point in application time when the mon-
itored start timestamps of all input streams are equal or greater than Tsplit.
Then, the optimizer signals the end of all input streams to the old box in order
to drain out intermediate elements. After that, the heap inside the coalesce op-
erator containing the new results can be flushed. Finally, the optimizer shortly
interrupts the processing to discard the old box as well as the split and coalesce
operators before it continues to execute the new plan stand-alone.

4.3 Correctness

Lemma 1. GenMig produces correct results and preserves the temporal order-
ing.

Proof. (sketch)

1. No elements are lost during the insertion and removal of the split and coalesce
operators because the processing of the boxes is suspended during these
steps.

2. The split operator guarantees that all elements valid at snapshots smaller
than Tsplit are transferred to the old box, while the elements with snapshots
equal or greater than Tsplit are processed by the new box. This matches
with the logical view of GenMig (see Section 4.1). Since no snapshot is lost
under this partitioning and each box produces snapshot-equivalent results,
the union of both plans contains the entire result.

3. PT uses a marking mechanism to detect duplicates, i. e., results at the same
snapshot produced by both plans. We showed in Section 3 that this marking
fails for stateful operators other than joins. GenMig overcomes these prob-
lems because the split operator ensures that the results of both boxes are
disjoint in terms of snapshots due to the choice of Tsplit. As Tsplit is greater
than any snapshot referenced in the old box, the corresponding snapshot-
reducible operators in that box will never produce a result with a snapshot
equal or larger than Tsplit. Moreover, the new box will never generate results
for snapshots smaller than Tsplit. Consequently, GenMig inherently avoids
the generation of duplicates as addressed for PT.

4. The temporal ordering is preserved as (i) all operators inside a box produce
a correctly ordered output, (ii) the split operators are stateless and do not
affect the ordering, and (iii) the coalesce operator explicitly synchronizes the
results of the old and the new box according to the start timestamp ordering.

5. The coalesce operator combines the results of both plans. It does not have
any semantic effects as coalesce preserves snapshot-equivalence [3]. Because
it merges stream elements with identical tuples and adjacent time intervals,
it rather serves as an optimization which inverts the negative effects of the
split operator on stream rates.
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6. Due to the global window constraint of w time units, the maximum interval
length in a plan is limited to w time units (see window operator in Section 2).
Snapshot-reducibility implies that the time intervals in the output stream
of a standard operator can only have shorter time intervals. Hence, setting
Tsplit to max{tSi |i ∈ {1, . . . , n}} + w + 1 + ε ensures that Tsplit is greater
than any time instant occurring in the old box. #$

4.4 Performance Analysis

Given the sufficient-system-resources assumption as in [1], the difference between
system and application becomes negligible. We can thus identify durations in
application time with those in system time. The migration duration of GenMig
is determined by Tsplit −min{tSi} where tSi denotes the migration start time
of input i. For negligible application time skew between streams and negligible
latency in streams, the migration duration is approximately w time units due to
the choice of Tsplit.

Compared to PT, GenMig has the following advantages:

– For join trees with more than one join, the required time for migration is only
w time units instead of 2w. GenMig requires at most w time units because
all elements in the old plan have become outdated at Tsplit. GenMig does
not need to wait until all old elements were purged from states in the old
box as done for PT. Consequently, the allocated memory for the old box can
be released earlier.

– GenMig does not require any mechanisms to detect duplicates at the output
of the old box. Hence, those costs for duplicate detection can be saved.

– GenMig does not need to buffer the entire results of the new box during
migration for ordering purposes. All results produced by the new box during
migration can be coalesced and emitted. The size of the heap and hash maps
inside the coalesce operator is predominantly determined by the application
time skew between the input streams. Heartbeats [11] and sophisticated
scheduling strategies can be used to minimize application time skew and
thus the memory allocation of the coalesce operator.

– According to [1], the migration for PT is finished if all old elements have
been removed from the old box. For join trees with more than one join, this
happens after 2w time units. Interestingly, the old box only produces output
during the first w time units. The other w time units are used to purge all
old elements from the states. For snapshot-reducible query plans, there will
be no output during this timespan. Therefore, PT has the following output
rate characteristics. For the first w time units, the output rate corresponds
to the output rate of the old box. The next w time units there is no output.
At the migration end there is a burst when the buffer on top of the new box
is flushed. In contrast, GenMig directly switches from the output rate of the
old box to the one of the new box at migration end (Tsplit).
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4.5 Optimizations

Optimization 1 - Reference Point Method The reference point method [18,19] is
a common technique for index structures to prevent duplicates in the output. We
can use this method as an optimization of GenMig if the following modifications
are performed. The split operator has to be modified to send the elements to the
old plan without splitting, i. e., with the full intervals. The coalesce operator is
removed and replaced by a simple selection and a union. The selection is placed
on top of the new box and drops all elements with a start timestamp equal to
Tsplit. The union of the old box and the selection generates the final output.
We treat the start timestamp of results of the new box as reference point. This
reference point is compared with Tsplit. If it is larger than Tsplit, the element is
not a duplicate and sent to the output.

Using the reference point method makes coalescing superfluous. Hence, it
saves the memory and processing costs spent on the coalesce operator. Both
boxes produce their output correctly ordered. As we use the start timestamp
as reference point, all results from the old box have a smaller start timestamp
than those from the new box. Therefore, it is sufficient to first output the results
of the old box and afterwards those of the new box. Under the assumptions of
a global temporal scheduling as in [1], no buffer is needed to synchronize the
output of both boxes. Note that all additional operators required for GenMig
with reference point optimization (split, union, and selection) have constant costs
per element.

Optimization 2 - Shortening Migration Duration The migration duration could
be shortened if Tsplit is set to the maximum end timestamp inside the old box
plus 1 plus ε. This setting still satisfies the correctness condition that Tsplit has
to be greater than any time instant occurring in the old box. However, such an
optimization requires to monitor the end timestamps in addition. If a DSMS
provides this information as some kind of metadata, it could be effectively used
to reduce the migration duration and thus gain savings of system resources. This
optimization is particularly effective if the plan to be optimized is not close to
window operators. In this case, it is likely that the time intervals are significantly
shorter than the window size.

4.6 Positive-Negative Implementation for GenMig

The GenMig algorithm can easily be transferred to the positive-negative tuple
approach [9,5]. Instead of monitoring the start timestamps, the timestamps of
the positive elements are monitored. Tsplit is set as proposed in Algorithm 1. The
split operator sends all incoming positive and associated negative elements to
the new box and additionally to the old box if their timestamps are smaller than
Tsplit. Using the timestamp of an element, independent of its sign, as reference
point, we accept results from the old box if their timestamps are less than Tsplit,
and from the new box if it is greater than Tsplit. Since the results generated by
both plans are correctly ordered, it is sufficient to first output the results of the
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old box and afterwards those from the new box. The migration end is reached
if all input streams passed Tsplit.

5 Experimental Evaluation

Although the primary focus of this work is on the semantics, generality, and cor-
rectness of GenMig, we conducted a set of experiments that compares GenMig
with PT for join reordering. We observed that even in this case, where PT is
only applicable, GenMig is at least as efficient as PT. In addition, we validated
GenMig for a variety of transformation rules beyond join reordering. However,
those experiments only show the correctness of GenMig and point out the poten-
tial of dynamic query optimization. As these do not contribute further insights
into our approach, we omitted them due to space limitations.

We implemented PT and GenMig in our PIPES framework [20,21] with Java 5.
Our hardware was a PC with an Intel Pentium 4 processor (2.8 GHz) and 1 GB
of RAM running Windows XP Professional. To have a fair comparison with
the original PT implementation in [1], we executed the plans in a single thread
according to the global temporal ordering. Since a comparison with PT is only
possible for joins, we executed 4-way nested-loops joins as done in [1].

Fig. 4. Characteristics of Parallel Track and GenMig

In our first experiment, we ensured the sufficient-system-resources assumption
which means that query execution can keep up with stream rates. Each input
stream delivered 5000 random numbers with a rate of 100 elements per second.
The random numbers were distributed uniformly between 0 and 500 for streams
A and B, and between 0 and 1000 for streams C and D. We performed time-
based sliding window equi-joins with a global window size of 10 seconds. The
old plan was set to the left-deep join tree ((A �� B) �� C) �� D which was rather
inefficient due to the huge intermediate result produced by A �� B. The goal of



512 J. Krämer et al.

the dynamic plan migration was to switch to the more efficient right-deep join
tree A �� (B �� (C �� D)). The migration started after 20 seconds.

GenMig finished the migration w time units (10 seconds) after migration
start as expected. In contrast, PT requires 2w time units due to purging all
old elements from the old box. This complies with the analysis in [1]. During
migration the output rate of PT decreases because the results of the new box
are buffered as shown in Figure 4. For PT, after 30 seconds the output rate is
0 for 10 seconds. During this period the purging of old elements took place. At
the migration end for PT after 40 seconds (migration start + 2 · window size
= 20 + 2 · 10 = 40), the results of the new box which had been buffered during
migration were immediately released. This caused the significant burst in the
output rate. Such a burst may lead to a temporary system overload and should
be avoided whenever possible. In contrast to PT, GenMig produces results with
a smooth output rate during migration.

Fig. 5. Memory usage of Parallel Track and GenMig

Figure 5 shows the memory usage of GenMig and PT during the experiment.
For sake of comparability, we only measured the memory allocated for the values.
We omitted the overhead of timestamps – GenMig requires two timestamps per
element (time interval), whereas PT needs up to four. Note that the memory
usage can only differ during migration. Figure 5 demonstrates that PT con-
tinuously requires more memory than GenMig during this period. Overall, the
system has an increased memory usage during plan migration but profits from
the reduced memory usage of the new plan afterwards. This temporary increase
of memory usage is smaller for GenMig.

Our second experiment was aimed at comparing the total system load of
PT, GenMig with coalesce, and GenMig with reference point optimization. We
processed the same random numbers associated with the same application time-
stamps as before. But this time, we processed the input streams as fast as pos-
sible. This means, we no longer synchronized application and system time, and
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Fig. 6. Performance comparison of Parallel Track, GenMig with coalesce, and GenMig
with reference point optimization

the system was saturated. This is a widely accepted approach to determine the
efficiency of stream join algorithms [22]. Furthermore, we simulated a more ex-
pensive join predicate to emphasize the effects of complex join computations.
Figure 6 depicts our performance measurements. At the beginning the slope of
the curves, which corresponds to the output rate, is less steep than at the end
because the left-deep join plan is not as efficient as the right-deep plan. During
migration the slope reaches its minimum as both plans run in parallel. The total
runtimes demonstrate that GenMig is superior to PT. Moreover, the reference
point optimization improves the coalesce variant of GenMig slightly as it avoids
the CPU costs caused by the coalesce operator.

To sum up the experiments, GenMig is not only more general than PT but also
more efficient for the case of join reordering where both strategies are applicable.

6 Related Work

In recent years adaptivity issues for query processing and optimization have
attracted research attention. The following discussion is limited to work related
to stream processing. The interested reader is referred to [23] for a survey beyond
streams.

Our work directly refers to the dynamic plan migration strategies proposed
in [1] as it generalizes PT towards arbitrary continuous query plans. To the
best of our knowledge, the strategies published in [1] are the only methods for
dynamic plan migration in DSMS.

There are several papers on different topics of runtime optimizations for DSMS
but these do not tackle plan migration issues explicitly. In [24] the problem of
executing continuous multiway join queries is addressed for streaming environ-
ments with changing data characteristics. GenMig does not aim at optimizing
multiway join performance by materializing intermediate join views. In contrast,
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it is designed more general and treats join reordering as one possible transfor-
mation rule. Proactive re-optimization [25] is a novel optimization technique in
stream processing in which the optimizer selects the initial query plan with the
background information that this plan is likely to be re-optimized in future due
to uncertainty in estimates of the underlying statistics. However, the choice of
a suitable plan is not the focus of GenMig. It rather describes how to migrate
from one plan to another snapshot-equivalent plan.

Eddies [26] perform a very flexible kind of adaptive runtime optimization for
continuous queries. Unlike traditional approaches where elements are processed
according to a given query plan until the plan is re-optimized, all operators of
a query plan are connected with the eddy. For each incoming element, the eddy
determines an individual query plan. PT and GenMig are by far not as flexible
as eddies, but the per-element routing is expensive and only profitable in highly
dynamic environments. Moreover, eddies are limited to queries with selection,
projection, and join, whereas GenMig considers more general plans.

Cross-network optimization issues for continuous queries are discussed in [27]
for the Borealis stream processing engine, but not at a semantic level with con-
crete techniques for plan migration as presented in this paper. How GenMig can
be adapted to a distributed environment remains as an open issue for future
work.

7 Conclusions

In this paper we first identified shortcomings of the parallel track strategy, an
existing solution for the dynamic plan migration problem in DSMS. We showed
that this strategy fails to cope with plans involving stateful operators other than
joins. We consequently proposed a general approach to dynamic plan migration,
called GenMig, which enables a DSMS to optimize arbitrary CQL queries at
runtime. Our analysis and performance comparison shows that GenMig with its
optimizations is at least as efficient as parallel track, while being more general.
Due to the underlying semantics, the whole set of conventional transformation
rules can be applied for optimization purposes. Moreover, GenMig does not
require any specific knowledge about the operator states and implementations
because it treats the old and new plans as black boxes which only have to produce
snapshot-equivalent results to ensure correctness. Due to its generality and ease
of use, GenMig is likely to be integrated into existing and future DSMS as a
basic mechanism for the dynamic query optimization of continuous queries.

References

1. Zhu, Y., Rundensteiner, E.A., Heineman, G.T.: Dynamic Plan Migration for Con-
tinuous Queries Over Data Streams. In: Proc. of the ACM SIGMOD. (2004)
431–442
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Abstract. ORM (Object-Role Modeling) is a rich and well-known conceptual 
modeling method. As ORM has a formal semantics, reasoning tasks such as 
satisfiability checking of an ORM schema naturally arise. Satisfiability 
checking allows a developer to automatically detect contradicting constraints. 
However, no complete satisfiability checker is known for ORM. In this paper, 
we revisit existing patterns from literature that indicate unsatisfiability of ORM 
schemes i.e., schemes that cannot be populated, and we propose refinements as 
well as additions for them. Although this does not yield a complete procedure – 
there may be ORM schemes passing the pattern checks while containing 
unsatisfiable roles – it yields an efficient and easy to implement detection 
mechanism (specially in interactive modeling tools) for the most common 
conceptual modeling mistakes. 

1   Introduction 

ORM (Object-Role Modeling) is a conceptual modeling approach and the historic 
successor of the NIAM (Natural-language Information Analysis Method) [VB82]. 
ORM schemes can be translated into pseudo natural language statements. The 
graphical representation and the translation into pseudo natural language make it a lot 
easier, also for non-computer scientists, to create, check and adapt the knowledge 
about the Universe of Discourse (UoD) needed in an information system.  

Although ORM was originally developed as a database modeling approach, it  
has been also successfully reused in other conceptual modeling scenarios,  
such as ontology modeling [J05], business rule modeling [H97,N99,DJM02a], XML-
Schema conceptual design [BGH99], etc. Hence, we shall regard an ORM schema, in 
this paper, as a general conceptual model independently of a certain modeling 
scenario or domain1. 

ORM has a well-defined formal semantics (see e.g. [H89,BHW91,T96,TM95]). 
This formal semantics naturally leads to the question of satisfiability checking, i.e. 
given a concept/role in a schema, is there a model (an interpretation/population of the 
schema that satisfies all constraints) such that the concept/role has a non-empty 
population. From a practical perspective, such reasoning procedures can help the 
                                                           
1 We sometimes interchange the term “ORM schema” with the term “axiomatization” to refer 

to the same thing.  
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developer in analyzing the validity of the constructed schema for the domain. In 
particular, it allows to detect concepts and roles in a schema that always have an 
empty population, symptoms of a faulty model: there are too many constraints or 
constraints are too harsh2.   

For example, consider Fig. 1, stating that Students and Employees are types of 
Persons where no Student can be an Employee (and vice versa), and a PhD Student is 
both a Student and an Employee. Thus, the PhDStudent type cannot be populated. 
Otherwise, a PhD Student would be both a student and an employee which contradicts 
with the fact that Student and Employee need to be disjoint types (by the exclusion 
constraint). Although there are types in the schema in Fig. 1 that cannot be satisfied, 
there is a formal model satisfying the global schema: e.g. let PhDStudent have an 
empty population, Student and Employee disjoint populations, and Person some 
superset of the union of the populations of Student and Employee.  

 

Fig. 1. Unsatisfiability of ORM schema 

Types of Satisfiability. Formally, we distinguish between three types of satisfiability 
of an ORM schema [BHW91]. First, schema satisfiability checking of an ORM 
schema is checking whether there exists a model of the schema (or less abstract, some 
population for the schema) as a whole.  A satisfiable ORM schema does not need to 
satisfy any concepts or roles per se, as exemplified in Fig. 1.  The only condition is 
that all constraints are satisfied by the (possibly empty) populations.  Second, concept 
satisfiability checking amounts to checking whether all concepts (i.e. object-types) are 
satisfied (can be populated) by a model (by a population) of the schema. Concept 
satisfiability is thus stronger than schema satisfiability as a model of the schema that 
satisfies all concepts is, by definition, also a model of the schema. Finally, role 
satisfiability checking amounts to checking whether there exists a model of the 
schema that satisfies (populates) all roles in the schema. This is the strongest form of 
satisfiability checking as it implies concept satisfiability: if a role is satisfied, the 
corresponding concept that plays the role is also satisfied. Given these implications 
(role then concept then schema satisfiable), we refer to role satisfiability as strong 
satisfiability and to schema satisfiability as weak satisfiability. 

In this context, we are particularly interested in strong satisfiability: checking whether 
all roles in the schema are satisfiable: since a weakly satisfiable model may contain 
empty roles, problems with contradictory constraints are not necessarily detected. Note 
that if the schema does not contain roles we will also look at concept satisfiability. 
                                                           
2 We assume the UoD itself is consistent, such that faults in the model have their origin in the 

modeling and not in the UoD. 
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In this paper, we refine, optimize, and re-represent existing ORM “formation rules” 
found formed in [H89,DMV,BHW91], as well as introduce new ones for detecting 
unsatisfiable roles (we call it unsatisfiability constraint patterns).  Furthermore, we 
indicate how a significant part of these existing rules are not aimed at detecting 
unsatisfiability but are guidelines for good modeling, e.g., to avoid redundant/implied 
constraints. 

Our patterns approach for detecting unsatisfiable models is motivated by the needs 
that unsatisfiability procedures should be easy to implement and applicable in 
interactive modeling. The latter requirement enforces that the procedures should be 
fast as well. We shall come back to this motivation in Sec. 4, and illustrate how our 
approach can be applied in interactive ontology modeling tools, which indeed help 
ontology builders to quickly detect unsatisfiability in the early phases of ontology 
modeling. Our experience in applying this approach for the development of a 
customer complaint ontology (developed by 10s of lawyers) will be reported in Sec. 4 
as well.  

Although our approach covers the most common unsatisfiability cases in practice, 
it cannot be complete, i.e., there are ORM schemas that are not strongly satisfiable but 
will fail to be detected by our patters. This is because of the general problem of 
determining consistency for all possible constraint patterns in ORM is undecidable 
[H97], e.g., the use of transitivity combined with frequency constraints is problematic 
with regards to decidability. In Sec. 4, we shall discuss and compare our patterns 
approach with the work that we have done on mapping (large part of) ORM into 
description logics (DLs) [JF05]. We shall discuss that the patterns approach (which 
we present in this paper) offers fast and easy to implement and understand reasoning 
mechanism specially for interactive modeling. We believe that both approaches 
complement each other.  

The remainder of the paper is organized as follows. In Sec. 2, we introduce 9 
patterns for detecting unsatisfiability of ORM models. Section 3 discusses related 
work, Sec. 4 illustrates the implementation of the patterns, and Sec. 5 contains 
discussion, conclusions and directions for future work. 

2   Unsatisfiability Patterns in ORM Conceptual Schemes 

In this section, we present and discuss 9 patterns that can be used to detect 
unsatisfiability in an ORM conceptual schema3. We adopt the ORM formalization and 
syntax as found in [H89,H01], except three things. First, although ORM supports n-
ary predicates, only binary predicates are considered. Second, our approach does not 
support objectification, or the so-called nested fact-types in ORM. Finally, our 
approach does not support the derivation constraints that are not part of the ORM 
graphical notation. 

Pattern 1 (Top common supertype) 

In this pattern, subtypes that do not have a top common supertype are detected. In 
ORM, all object-types are assumed by definition to be mutually exclusive, except 
                                                           
3 An extended version of this work can be found in [J05]. 
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those that are subtypes of the same supertype. Thus, if a subtype has more than one 
supertype, these supertypes must share a top supertype; otherwise, the subtype cannot 
be satisfied. In Fig. 2 the object-type C cannot be satisfied because its supertypes A 
and B do not share a common supertype, i.e. A and B are mutually exclusive. 

 

Fig. 2. Subtype without a top common supertype 

Formally, for each subtype T in the schema, let  persT.DirectSu be the set of all n 

direct supertypes of T . Let  .SuperspersT.DirectSu i be all supertypes of the i-th direct 

supertype of T . If (T.DirectSupers1.supers∩ ...∩ T.DirectSupersn .supers) = ∅, then the 
object-typeT cannot be satisfied. See the appendix for the implementation detail. 

Pattern 2 (Exclusive constraint between types) 

In this pattern, subtypes of mutually exclusive supertypes (caused by an exclusive 
constraint) are detected. Fig. 3 shows a case where D cannot be satisfied because its 
supertypes are mutually exclusive. The set of instances of D is the intersection of the 
instances of B and C, which is an empty set according to the exclusive constraint 
between B and C. 

 

Fig. 3. Subtype with exclusive supertypes 



 Unsatisfiability Reasoning in ORM Conceptual Schemes 521 

 

Formally, for each exclusive constraint between a set of object-types 
}T,{T T n1 …= , let .SubsTi  be the set of all possible subtypes of the object-type iT , 

and .SubsTj  be the set of all possible subtypes of the object-type jT , where ji ≠ , the 

set ( .SubsT.SubsT ji ∩ ) must be empty. See the appendix for the implementation 

detail. 

Pattern 3 (Exclusion-Mandatory) 

In this pattern, contradictions between exclusion and mandatory constraints are 
detected. In Fig. 4, we show three examples of unsatisfiable schemes. 

 

Fig. 4. Unsatisfiable schemes because of mandatory and exclusion conflicts 

In the first case (a), the role r3 will never be played. The mandatory and exclusion 
constraints restrict that each instance of A must play r1 and the instance that plays  r1 
cannot play r3. In the second case (b), both r1 and r3 will never be played. According 
to the two mandatory constraints, each instance of A must play both r1 and r3. At the 
same time, according to the exclusion constraints, an instance of A cannot play r1 and 
r3 together. Likewise, in the third case (c), r3 and r5 will never be played. As B is a 
subtype of A, instances of B inherit all roles and constraints from A. For example, if an 
instance of B plays r5, then this instance – which is also instance of A – cannot play r1 
or r3. However, according to the mandatory constraint, each instance of A must play r1 
and, according to the exclusion constrain, it cannot play r1, r3 and r5 all at the same 
time. In general, a contradiction occurs if an object-type plays a mandatory role that is 
exclusive with other roles played by this object-type or one of its subtypes. Formally, 
for each exclusion constraint between a set of single roles R , let  .TRi be the object-

type that plays the role iR , RRi ∈ . For each ( iR , jR ), where ji ≠  and iR  is 

mandatory, If TRTR ji .. =  or SubsTRTR ij ... ∈  -where SubsORi ..  is the set of all 

subtypes of the object-type Ri.O, then some roles in R  cannot be populated.  

Pattern 4 (Frequency-Value) 

In this pattern, contradictions between value and frequency constraints are detected. 
In Fig. 5, the role r1 cannot be populated. If the frequency constraint FC(3 - 5) on 

r1 is satisfied, each instance of A must play r1 at least three times, and thus three  
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Fig. 5. Contradiction between value and frequency constraints 

different instances of B are required. However, there are only two possible instances 
of B, which are declared by the value constraint {‘x1’, ‘x2’}. For each fact-type 
( BrA ), let c be the number of the possible values of B  that can be calculated from 
its value constraint, and let FC( mn − ) be a frequency constraint on the role r , then c  
must be equal or more than n . Otherwise, the role r  cannot be satisfied, as the value 
and the frequency constraints contradict each other.  

Pattern 5 (Value-Exclusion-Frequency) 

In this pattern, contradictions between value, exclusion, and frequency constraints are 
detected. Fig. 6 shows a particular contradiction between those three constraints.  Due 
to the frequency constraint, there should be at least two different values to populate 
r1. In order to populate r3, we need, by the exclusion constraint, a value different 
from the two for role r1. In total, we thus need three different values in order to be 
able to populate both r1 and r2, but this contradicts with the value constraint on 
object-type A: we only have 2 values at our disposal. Note that any combination with 
only two of the three constraints does not amount to unsatisfiability; we explicitly 
need the combination of the three of them.  

 

Fig. 6. Contradiction between value, exclusion, and frequency constraints 

A special case occurs in the absence of frequency constraints, e.g., Fig. 7: 
according to the exclusion constraint, there should be at least three different values of 
A to play r1, r2 and r3. However, according to the value constraint, there are only two 
possible values of A. 

We assume that exclusion constraints are in their most compact form. For example, 
the exclusion constraint in Fig. 7 is the compact representation of three different 
exclusion constraints: between r1 and r3, r3 and r5, and r1 and r5. 
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Fig. 7. Contradiction between value and exclusion constraints 

Formally, for each exclusion constraint, let  }R , ,{R  R n1 …= be the set of roles 

participating in this constraint.  With each of those roles Ri, we associate the inverse 
role Si, and we let fi be the minimum of the frequency constraint on Si (if there is no 
frequency constraint on Si, we take fi equal to 1). Let T  be the object-type that plays 
all roles in R . Let C  be the number of the possible values of T , according to the 
value constraint. C  must always be more than or equal to f1+…+ fn. Otherwise, some 
roles in R  cannot be satisfied. See the appendix for the implementation detail. Note 
that this pattern is actually a generalization of the previous pattern where there are no 
exclusion constraints. However, the current pattern explicitly focuses on the exclusion 
constraints attached to a role, taking into account the frequency constraints, to decide 
whether some roles are unsatisfiable. As pattern 4 does not contain exclusion 
constraints, a similar strategy would not work. 

Pattern 6 (Set-comparison constraints) 

In this pattern, contradictions between exclusion, subset, and equality constraints are 
detected. Fig. 8 shows a contradiction between the exclusion and the subset 
constraints. This contradiction implies that both predicates cannot be populated. 

 

Fig. 8. A non fact-type populatable schema 

The exclusion constraint between the two roles r1 and r3 means that their 
populations should be distinct. However, in order to satisfy the subset constraint 
between (r1, r2) and (r3, r4), the populations of r1 and r3 should not be distinct. In 
other words, the exclusion constraint between r1 and r3 implies an exclusion 
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constraint between (r1, r2) and (r3, r4) [H89], which contradicts any subset or 
equality constraint between both predicates. Fig. 9 shows the implications for each 
set-comparison constraint that might be declared between parts of role sequences. 
These implications are taken into account when reasoning for contradictions between 
the three set-comparison constraints. 

 

Fig. 9. Main set-comparison implications 

In addition, an equality constraint is equivalent to two subset constraints. Hence, 
we refer to a subset or an equality constraint as a SetPath. Formally, for each 
exclusion constraint between A and B: If A and B are two predicates, there should not 
be any (direct or implied) SetPath between these predicates; If A and B are single 
roles, there should not be any (direct or implied) SetPath between both roles or 
between the predicates that include these roles. Otherwise, the two predicates cannot 
be populated, as the two constraints contradict each other. See the appendix for the 
implementation detail. 

Pattern 7 (Uniqueness-Frequency) 

In this pattern, all occurrences of a uniqueness constraint that contradicts with a 
frequency constraint on the role are detected. E.g., in Fig. 10 the uniqueness 
constraint indicates that the role r1 should be played by at most one element, while 
the frequency constraint demands that there are at least 2 and at most 5 participants in 
the role (denoted as FC(2-5)). It is thus impossible to populate r1. Formally, 
unsatisfiability of a role occurs if there is a frequency constraint FC(min-max)  and a 
uniqueness constraint on some role (or predicate) r where min is strictly greater than 
1.  See the appendix for the implementation detail. 

 

Fig. 10. Unsatisfiability of frequency and uniqueness constraint 

Pattern 8 (Ring constraints) 

ORM allows ring constraints to be applied to a pair of roles that are connected 
directly to the same object-type in a fact-type, or indirectly via supertypes. Six kinds 
of ring constraints are supported by ORM: antisymmetric (ans), asymmetric (as), 
acyclic (ac), irreflexive (ir), intransitive (it), and symmetric (sym) [H01,H99]. For  
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Fig. 11. Irreflexivity on the ring constraint 

example, Fig. 11 shows an irreflexivity on the Sister Of role, indicating that no 
woman is her own sister. 

The relationships between the six ring constraints are formalized by [H01] using 
the Euler diagram as in Fig. 12. This formalization indeed helps to visualize the 
implication and incompatibility between the constraints. For example, one can see 
 

 

Fig. 12. Relationships between ring constraints [H01] 

Table 1. All possible compatible combinations or ring constraints 
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that acyclic implies reflexivity, intransitivity implies reflexivity, the combination 
between antisymmetric and irreflexivity is exactly asymmetric, and acyclic and 
symmetric are incompatible, i.e. their combination leads to unsatisfiability). 

In general, unsatisfiability occurs if two ring constraints that are disjoint in the 
Euler diagram are used. Based on the Euler diagram, we derive in Table 1. all 
possible compatible combinations of the six ring constraints. Combinations that do 
not appear in the table are incompatible and lead to unsatisfiable roles, e.g., (Sym, it) 
and (Ans), (Sym, it) and (It, ac), or (Ans, it) and (Ir, sym). 

Pattern 9 (Loops in Subtypes) 

In this pattern, loops in the subtype relation are detected. Since in ORM, the 
population of a subtype is a strict subset, i.e. a subset and not equal, of the population 
of its supertype [H01], one cannot have loops. Otherwise, one would have that a 
population is a strict subset of itself, which is not possible. In Fig. 13, none of the 
object-types A, B, or C can be satisfied since they form a loop. 

 

Fig. 13. Loop in subtypes 

Formally, for each subtype T in the schema, let T.Supers be the set of all 
supertypes of T . If T in T.Supers, then the object-typeT cannot be satisfied. See the 
appendix for the implementation detail. Note that there is no analogous pattern for 
subset constraints; no strict subset relation is required for subset constraints, such that 
loops in subset constraints imply equality of the involved roles but do not lead to 
unsatisfiability in general. 

3   Related Work 

In [H89], 7 formation rules for constraints on ORM conceptual schemes are 
described. We discuss to which extent these rules can also be used for detecting 
unsatisfiability of roles and how they relate to the patterns described in the previous 
section. 

Formation rule 1 (A frequency constraint of 1 is never used (the uniqueness 
constraint must be used instead)) and rule 2 (A frequency constraint cannot span a 
whole predicate) prefer one syntactical form over another (rule 1) or prohibit a, from 
a logical perspective, nonsensical4 frequency constraint (rule 2). Rule 1 is, however, 
not relevant, where we call a rule relevant if it is relevant from an unsatisfiability 
detection perspective, i.e. a rule is relevant, if in case it is violated, there is an 

                                                           
4 Nonsensical, since predicates are interpreted as sets, where each element in a set is, by 

definition of sets, unique in that set. 
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unsatisfiable role. Regarding rule 2, as the population of an ORM predicate is 
basically a set, any frequency constraint FC(min-max) where min is strictly greater 
then 1 leads to unsatisfiability. Rule 2 is, however, too strict in the sense that a 
frequency constraint FC(1-max), although redundant, does not lead to unsatisfiability. 
Pattern 7 takes care of the latter case (where it is assumed, as is implicit in ORM, that 
a predicate is spanned by a uniqueness constraint). Note that we are only interested in 
unsatisfiability; from a modeling perspective the formation rules are most certainly 
useful, in the sense that they, e.g., avoid adding redundant constraints to the schema. 

Rule 3 (No role sequence exactly spanned by a uniqueness constraint can have a 
frequency constraint) is again too strict by itself to be relevant for unsatisfiability. For 
example, a constraint FC(1 – 5) and a uniqueness constraint on the same role do not 
yield an unsatisfiable role. They are, however, equivalent with FC(1 – 1) or with a 
mandatory plus a uniqueness constraint, thus, from a modeling perspective, formation 
rule 3 makes sense, but it does not necessarily lead to an unsatisfiable role. We 
loosened up rule 3 to take this into account in pattern 7. 

Rule 4 (No uniqueness constraint can be spanned by a longer uniqueness 
constraint) is again not relevant for unsatisfiability. Rule 5 (An exclusion constraint 
cannot be specified between roles if at least one of these roles is marked as mandatory) 
is exactly pattern 3; we made it explicit that the rule applies to subtypes as well.   

Rule 6 (An exclusion constraint cannot be specified between two roles attached to 
object-types one of which is specified as a subtype of the other) is not relevant for 
unsatisfiability. There are ORM conceptual schemes violating rule 6, although all 
roles are satisfiable, e.g., Fig. 14. 

 
Fig. 14.  ORM schema violating formation rule 6 but with satisfiable roles 

For example, populate r5 with some ‘a’, then ‘a’, by the subtyping, must play one 
of the roles r1 or r3. It cannot play r3 due to the exclusion constraint but nothing 
keeps it from playing r1.  

The last formation rule, rule 7 (A frequency constraint with upper bound n cannot 
be specified on a role sequence if n is less than the product of the maximum 
cardinalities of the other role populations for the predicate), is covered by pattern 4 
since we restrict ourselves to binary predicates5. The 7 ORM formation rules thus 
provide useful criteria for constructing ORM schemes: in a lot of cases they avoid 
unsatisfiability as well as implied (redundant) constraints. However, the rules mix 

                                                           
5 Maximal cardinalities in [H89] correspond to value constraints. 
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both syntactical and semantical criteria, occasionally yielding too strict criteria for 
detecting unsatisfiability. The constraint patterns, described in Sec. 3, focus on the 
semantical aspect of unsatisfiability only. 

In [DMV], the RIDL-A module of the RIDL* workbench, a database engineering 
tool based on the NIAM methodology [VB82], checks whether a conceptual schema 
is correctly constructed.  Since NIAM is the predecessor of ORM, it is interesting to 
compare the criteria RIDL-A employs to our patterns. Of particular interest in the 
RIDL-A module are the Validity Analysis (rules V1-V6) and Set Constraint Analysis 
(rules S1 – S4) parts. 

It appears that none of the Validity Analysis rules are relevant for unsatisfiability. 
The Set Constraint Analysis part contains 4 rules dealing with three types of 
constraints: subset, equality, and exclusion. S1 and S3 say that a subset (resp. 
equality) constraint may not be superfluous6. Although interesting from a modeling 
perspective, neither S1 nor S3 lead to unsatisfiability of roles in itself. S2 (A subset 
constraint may not contain any loops) is not relevant for unsatisfiability; the 
population of the roles would be equal but can be non-empty. Note that we use the 
definition of subset constraints on predicates as in [H89], i.e. a role r1 is a subset of r2 
if every element playing role r1 also plays r2. In particular, r1 does not need to be a 
strict subset of r2: they may be equal. S2 is relevant for subset constraints between 
subtypes since those are strict; we covered this with pattern 9. 

Finally, S4 (The OTSETS7 involved on an exclusion constraint may not have a 
common subset) is a valid condition for detecting inconsistency. It is, however, too 
general, in the sense that it is actually the definition of an exclusion constraint, and 
does not indicate how the exclusion might yield unsatisfiable roles. 

4   Implementation and Discussion 

The DogmaModeler, an ontology and business rules engineering tool, implements the 
patterns described in this paper. Fig. 15 displays these patterns as a menu in the 
DogmaModeler Validator Settings window8. Users can choose to enable or disable 
the enforcement of these validation patterns when reasoning about the satisfiability of 
an ORM model. The DogmaModeler typically implements the satisfiability patterns 
that we have developed in Sec. 2. In the appendices, we present 9 algorithms, which 
are written in a JAVA-like code, to implement the 9 patterns in DogmaModeler. One 
can see, from these algorithms, that DogmaModeler does not only detect unsatisfiable 
ORM models, but also, it gives (through the generated message) details about the 
detected problems, such as, which constraints cause the unsatisfiability, the problems 
with the other constraints, etc. 

Experience in developing ontologies in DogmaModeler shows that detecting 
unsatisfiability in an interactive manner helps ontology builders in quick detection of 
mistakes. In other words, we found that interactive detection of unsatisfiability 
improves the modeling skills of ontology builders, especially those who are not well 
trained in ontology modeling and logics.  

                                                           
6 A constraint is superfluous – or implied – if it can be derived from other constraints. 
7 The OTSET of a role corresponds, roughly, to the population of a role. 
8 The specification of the last three implication patterns is adopted from [H89]. 



 Unsatisfiability Reasoning in ORM Conceptual Schemes 529 

 

 

Fig. 15. DogmaModeler’s support of logical validations 

It is probably worth to note that our motivation for developing this patterns-
approach was derived from our experience in using ORM to develop a Customer 
Complaint Ontology [J05,JVM03], which was done within the CCFORM project, 
IST-2001-38248. This ontology was built by 10s of lawyers, and the presented 
reasoning patters were applied to guide those lawyers to detect inconsistency 
problems in early phases. One of the interesting lessons we have learned in this 
project is that the implementation of the patterns (in an interactive manner during the 
ontology modeling process) enabled the lawyers to learn how to avoid such mistakes 
the next time. Some of them even admitted that they understood some logics from 
their experience in using DogmaModeler9. 

As we have mentioned earlier, we have also tackled the ORM satisfiability 
problem in another way. We have mapped ORM into the DLR Description Logic 
[JF05], DLR is a powerful and decidable fragment of first order logic [CDLNR98]. 
This mapping10 provides us a complete reasoning support for ORM schemes, i.e. 
users are able to check (strong and weak) satisfiability of an ORM schema by 
satisfiability checking of the corresponding DLR knowledge base, which can be done 
using RACER11.  
                                                           
 9 More details about DogmaModeler and our experience in CCFORM are not presented in this 

paper because of the space limitations, but can be found e.g. in [J05], [J06], [JVM03] and 
[JDM03].   

10 Some ORM constrains (but are rarely used in practice) cannot be mapped into DLR such as 
ring constraints, frequency constraints on several roles, etc. 

11 http://www.racer-systems.com/products/download/index.phtml (July 2005). 
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On comparison between pattern detection approaches and a complete reasoning 
procedure in description logic, we find that both approaches complement each other. 
Pattern detection approaches are easy to implement, specially in interactive modeling 
tools, and is bound to be cheaper in terms of reasoning time than a complete 
reasoning procedure. A complete procedure, e.g. by mapping an ORM schema to a 
DL knowledge base and deploying existing DL reasoners, typically is exponential.  
So even in the presence of a complete reasoner, the patterns can be used to quickly 
detect any “trivial” inconsistencies before calling the more expensive (but complete) 
procedure, thus speeding up the modeling process. Last but not least, a pattern 
detection algorithm can be designed and optimized for certain usages, e.g. specifically 
for ORM unsatisfiability, while a DL translation would rely on a general knowledge 
base reasoning which e.g. cannot be optimized for ORM constructs. 

5   Conclusions and Further Research 

We presented 9 patterns to detect unsatisfiability of roles in an ORM schema, and 
discussed the relation with existing rules in the literature. The implementation and 
application of this approach has been illustrated and discussed. 

In the future, we intend to devise more patterns for unsatisfiability checking, e.g., 
checking which combinations that involve more than 2 constraints lead to 
unsatisfiability while leaving out one constraint would not lead to unsatisfiability (as 
in pattern 5). Moreover, we intend to extend our approach to detect unsatisfiability for 
ORM derivation rules, assertional knowledge, etc.  

Although the 9 patterns are patters that arise frequently in faulty modeling, they are 
by no means complete. E.g., one could demand that for irreflexive roles at least 2 
different values need to be present. 

One may notice that our patterns can be easily translated to other knowledge 
representation languages, especially for ontology and business-rules modeling tools12. 
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Appendix: Algorithms 

Pattern 1 
For each subtype T[x] { 
 Let T[x].DirectSupers = the set of all direct supertypes of T[x]. 
 n = T[x].DirectSupers.size 
 If ( n > 1)   {  
   For (i = 1 to i=n)     {  
     Let T[x].DirectSupers[i].Supers = the set of all possible supertypes  
                                                          of T[x].DirectSupers[i]    } 
   // if the intersection of all T[x].DirectSupers[i].supers is not empty, 
       then the composition is not satisfiable.   
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   if (Intersection(T[x].DirectSupers[1].supers, … T[x].DirectSupers[n].supers)) 
       is empty  { 
        Satisfiability = false 
        Message= (“The subtype T[x].DirectSupers[i] cannot  
             be satisfied as its supertypes do not have a top common supertype.“)        }} }  

Pattern 2 
For each exclusive constraint Exv[x] { 
  Let Exv[x].T = the set of the object-types participating in Exv[x]. 
  //For each pair of object-types participating in the exclusion constraint: 
  For (i = 1 to i = Exv[x].T.size) { 
     For (j = 1 to j = Exv[x].T.size) { 
        If (i not equal j) { 
            Let Exv[x].T[i].Subs = the set of subtypes of the object-type Exv[x].T[i]. 
            Let Exv[x].T[j].Subs = the set of subtypes of the object-type Exv[x].T[j]. 
            S = IntersectionOf(Exv[x].T[i].Subs, Exv[x].T[j].Subs) 
            If (S is not empty) { 
               Satisfiability = false 
               Message = (“all subtypes in <S> cannot be instantiated because of <Exv[x]>“) }}}}   } 

Pattern 3 
For each exclusion constraint Exs[x] between a set of single roles { 
  Let Exs[x].roles = the set of all roles participating in Exs[x]. 
  For (i=1 to Exs[x].roles.size) 
    If (Exs[x].roles[i].Mandatory = true) { 
      For (j=1 to Exs[x].roles.size) { 
        If (I not equal j){ 
         Let Exs[x].roles[i].T = the object-type that plays the role Exs[x].roles[i] 
         Let Exs[x].roles[j].T = the object-type that plays the role Exs[x].roles[j] 
         Let Exs[x].roles[i].T.Subs = the set of all subtypes of Exs[x].roles[i].T 
         If (Exs[x].roles[i].T = Exs[x].roles[j].T) OR  
                                           In(Exs[x].roles[j].T, Exs[x].roles[i].T.Subs ) { 
             Satisfiability = false 
             Message = (“There are some roles in <Exs[x].roles> that cannot 
                be instantiated because of the <Exv[x]>“)}}}}} 
An alternative but more compact algorithm can be: 
For each exclusion constraint Exs[x] between a set of single roles { 
  Let Exs[x].roles = the set of all roles participating in Exs[x]. 
  Let MandRoles = the set of all mandatory roles from Exs[x].roles. 
  If (MandRoles  is not empty) 
     For (i=1 to ManRoles.size) 
       For (j=1 to Exs[x].roles.size) 
         Let MandRoles[i].T = the object-type that plays the role MandRoles[i] 
         Let Exs[x].roles[j].T = the object-type that plays the role Exs[x].roles[j] 
         Let Exs[x].roles[j].T.Subs = the set of all subtypes of Exs[x].roles[j].T 
         If Not In(MandRoles[i].T, Exs[x].roles[j].T.Subs) 
             Satisfiability = false 
             Message= (“There are some roles in  
                <Exs[x].roles> that cannot be populated because of the <Exv[x]>“)}}}}   } 

Pattern 4 
For each frequency constraint F[x] { 
    Let F[x].min = the lower bound of the frequency constraint F[x]. 
    Let T = the object-type that is played by the role holding F[x]. 
    Let T.Values = the value constraint on T. 
    // if there is no value constraint on T, then T.Values = null 
    If (T.Values is not null) and (T.Values.size < F[x].min) { 
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         Satisfiability = false. 
         Message =(“the role <T.r> cannot be instantiated because the 
              <F[x]> and the <T.Values> contradict each other”). } } 

Pattern 5 
For each exclusion constraint Exs[x] between a set of single roles { 
  Let Exs[x].Roles = the set of roles participating in the exclusion Exs[x]. 
  Let Exs[x].InvRoles = the set of inverse roles of Exs[x].Roles. 
  For ( Si in  Exs[x].InvRoles) { 
 If ( there is frequency constraint on Si ) 
  fi = minimum freq. const. on Si; 
 else fi = 1;   } 
  Let F = sum(fi). 
  Let O = the object-type that plays all roles in Exs[x].Roles. 
  Let O.Values = the value constraint on O. 
  // if there is no value constraint on O, then O.Values = null 
  If (O.Values is not null) and (O.Values.size < F) {  
         Satisfiability = false. 
        Message =(“Some roles in <Exs[x].Roles> cannot be instantiated because 
               the <Exs[x]> and the <O.Values> contradict each other”).} } 

Pattern 6 
For each exclusion constraint Exs[x] { 
 If (Exs[x] between predicates) { 
    Let Exs[x].predicates = the set of all predicates participating in Exs[x]. 
    \\ For each pair of predicates participating in the exclusion 
    For (i = 1 to i = Exs[x].predicates.size) { 
      For (j = 1 to j = Exs[x].predicates.size) { 
        If (i not equal j) { 
          Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j]) 
          // Sp is the set of all subset or equality constraints that specify or imply a  
          // SetPath between the current tuple of predicates.  
          If (Sp is not empty) { 
             Satisfiability = false. 
             Message = (“the exclusion constraint <Exs[x]> contradicts some subset  
                                 and/or equality constraints on the predicates in <Sp>”).}}}}} 
 Else { // then the Exs[x] is between roles 
    Let Exs[x].roles = the set of all roles that participate in Exs[x]. 
    \\ For each pair of roles participating in the exclusion constraint 
    For (i = 1 to i = Exs[x].roles.size) { 
      For (j = 1 to j = Exs[x].roles.size) { 
        If (i not equal j) { 
          Sr = GetSetPathsBetween(Exs[x].roles[i], Exs[x].roles[j]) 
          // Sr is the set of all subset or equality constraints that specify or imply a  
          // SetPath between the current tuple of roles. 
          Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j]) 
          // Sp is the set of all subset or equality constraints that specify or imply a  
          // SetPath between the predicates of the current tuple of roles. 
          If (Sr is not empty) OR (Sp is not empty) { 
             Satisfiability = false. 
             Message = (“the exclusion constraint <Exs[x]> contradicts some Subset  
                   and/or equality constraints on the predicates in Sp”). }}}}}}} 

Pattern 7 
For each frequency constraint F[x] { 
    Let F[x].min = the lower bound of the frequency constraint F[x]. 
   Let R = the role (predicate) on which F[x] is placed. 
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    If ( there is uniqueness constraint on R ) and ( F[x].min > 1 ) 
       Satisfiability = false 
        Message= (“The frequency constraint F[x] cannot  be satisfied as it conflicts with a 
uniqueness constraint.“) } 

Pattern 8 
For each role R { 
  Let RC = the set of ring constraints on R 
   If ( RC not allowed according to Table 1.) 
        Satisfiability = false 
        Message= (“The ring constraints RC cannot  be satisfied.“) } 

Pattern 9 
For each subtype T[x] { 
 Let T[x].Supers = the set of all supertypes of T[x]. 
If ( T[x] in T[x].Supers )   {  
        Satisfiability = false 
        Message= (“The subtype T[x] is part of a loop, thus it cannot be satisfied.“)       }}}  
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Abstract. Web ontology language OWL DL has two-valued model theory se-
mantics so that ontologies expressed by it become trivial when contradictions
occur. Based on classical description logic SHOIN (D), we propose the four-
valued description logic SHOIN (D)4 which has the ability to reason with in-
consistencies. By transformation technic, we convert the reasoning problems of
SHOIN (D)4 to the counterparts of SHOIN (D). So SHOIN (D)4 pro-
vides us with an approach to deal with contradictions by classical reasoning
mechanism.

1 Introduction

The semantic web which is full of semantic information makes computers process in-
formation automatically. Kinds of standard semantic web languages provided by W3C1,
such as OWL DL and OWL Lite [1], are based on a rigorous logic basis — description
logic which proves to be very useful for defining, integrating and maintaining ontolo-
gies [2]. Among the family of description logics is SHOIN (D) which is very close to
OWL DL [3].

Description logics inherit the triviality from first order logic, that is, a single contra-
diction in the knowledge base leads to the only trivial logic consequence which includes
everything. Therefore, a description logic knowledge base is ill when inconsistent. Con-
sidering a fragment of an ontology in medical treatment [4]: the one in surgical team
does not belong to the team permitted to read patient’s private record, while the one in
urgency team does. We can express the knowledge by SHOIN (D) as follows:

SurgicalT eam * ¬ReadPatientRecordTeam
UrgencyTeam * ReadPatientRecordTeam

When we know the fact that john belongs both to SurgicalT eam and to Urgency-
Team, we find that there is a contradiction about whether john is allowed to read
patient’s record. Under two-valued semantics, this knowledge base has no model so
that anything can be deduced from it, even irrelative information like Patient(john).

Decomposing the connections between information of being true and information of
being false, thus yielding an extended semantics for ontology language, is the approach

� This work is supported by NSFC (grant number 60496322).
1 http://www.w3c.org
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adopted in this paper to deal with inconsistencies. Actually, our work is based on multi-
valued logic, whose truth value set is extended so that we can assign the contradiction
to an additional truth value denoting contradiction. In the literature, the theory which
describes contradiction but is nontrivial is called paraconsistent logic [5,6,7]. The un-
derlying idea of this paper is Belnap’s four-valued logic [8,9] , which proves basic and
important both in multi-valued logic and in para-consistent logic.

Terminological logic is an early version of description logic. Patel-Schneider [10]
has proposed four-valued semantics for a terminological logic system which provides a
tractable inclusion by the weaker inference ability of four-valued logic. In [10], struc-
tural subsumption algorithm is used to compute inclusion relation between classes (con-
cepts), which is the first generation reasoning system of DLs and cannot treat complex
constructors, such as disjunction ($), full negation (¬), and full existence restriction
(∃R.C). Therefore, the language studied in [10] does not include these constructors
which are important for OWL DL. Moreover, the semantics of inclusion has direct ef-
fect on complexity, thus defining more kinds of inclusion relations is difficult in [10].
In this paper, we propose a kind of four-valued semantics for all of these constructors
as well as a complete algorithm for reasoning with SHOIN (D)4 in a framework of
two-valued SHOIN (D).

There are three main approaches to deal with inconsistent ontologies. The first is
to reason with one(several) consistent subset(s) selected according to some principles,
such as syntax/semantics relevance principle [11] and priority principle [4]. The second
is to diagnose and repair contradictions when encountered. The third is through non-
classical reasoning theory under new semantics. In this paper, we extend propositional
four-valued semantics to ontology languages, thus forming SHOIN (D)4 which is a
four-valued version of SHOIN (D). The underlying idea is that we value the whole
original theory instead of only choosing some sub-theory to take part in reasoning.
However, ours is different from the third method in that we propose the decomposition
of four-valued semantics to the two-valued, whereby existing reasoning systems for
OWL DL remain useful for SHOIN (D)4 . SHOIN (D)4 includes all the construc-
tors of SHOIN (D) so that it can be used as an ontology language which is compatible
with OWL DL but has the ability to deal with inconsistencies.

In the rest, we first briefly review description logic SHOIN (D) and Belnap’s four-
valued FOUR. Then we describe SHOIN (D)4 in details in section 3, and prove its
inference can be reduced to that of SHOIN (D) in section 4. At last, we conclude this
paper, compare it with related work, and point out our future work.

2 Description Logic and Four-Valued Logic

2.1 OWL DL and Description Logic SHOIN (D)

OWL DL is a subset of ontology web language OWL that has close relation with
SHOIN (D). The main semantic relationship for OWL DL is entailment between pairs
of OWL ontologies. An ontology O1 entails an ontology O2, written O1 |= O2, if and
only if all interpretations that satisfy O1 also satisfy O2 [1]. Moreover, the OWL DL
entailment can be transformed into SHOIN (D) knowledge base (un)satisfiability [3].
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Generally, a description logic system includes: the set of concept and role construc-
tors, inclusion assertions in TBox, fact assertions in ABox, and reasoning mechanism
on TBox and ABox. The semantics of SHOIN (D) is given by means of an interpre-
tation I = (∆I , ·I) consisting of a non-empty domain ∆I , disjoint from the datatype
(or concrete) domain ∆I

D, and a mapping ·I , which interprets atomic and complex con-
cepts, roles, and nominals according to Table 1 [3]. All the axiom forms contained in
TBox and ABox of SHOIN (D) are also shown in Table 1. An interpretation satisfies
a knowledge base K iff it satisfies each axiom in K; K is satisfiable (unsatisfiable) iff
there exists (does not exist) such an interpretation.

Table 1. Syntax and Semantics of SHOIN (D)

Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆I
D

abstract role RA R RI ⊆ ∆I × ∆I

datatype role RD U UI ⊆ ∆I × ∆I
D

individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I ⊆ ∆I × ∆I

top concept � ∆I

bottom concept ⊥ ∅
conjunction C1 � C2 CI ∩ DI

disjunction C1 � C2 CI ∪ DI

negation ¬C ∆I \ CI

oneOf {o1, ...} {o1
1, ...}

exists restriction ∃R.C {x | ∃y, (x, y) ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x | ∀y, (x, y) ∈ RI → y ∈ CI}
atleast restriction ≥ n.R {x | card({y.(x, y) ∈ RI}) ≥ n}
atmost restriction ≤ n.R {x | card({y.(x, y) ∈ RI}) ≤ n}

datatype exists ∃U.D {x | ∃y, (x, y) ∈ UI ∧ y ∈ DI}
datatype value ∀U.D {x | ∀y, (x, y) ∈ UI → y ∈ DI}
datatype atleast ≥ n.U {x | card({y.(x, y) ∈ UI}) ≥ n}
datatype atmost ≤ n.U {x | card({y.(x, y) ∈ UI}) ≤ n}
datatype oneOf {v1, ...} {vI

1 , ...}
Axiom Name Syntax Semantics

concept inclusion C1 � C2 CI
1 ⊆ CI

2

object role inclusion R1 � R2 RI
1 ⊆ RI

2

object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 � U2 UI
1 ⊆ UI

2

individual inclusion a : C aI ∈ CI

individual equality a = b aI = bI

individual inequality a �= b aI �= bI

2.2 Bilattice and Four-Valued Logic

For a given Domain, ({< P,N >},≤k,≤t) constructs a bilattice space [12], where
P and N are subsets of Domain which stand for the information set of being true
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and of being false, respectively; and where the two partial orders ≤k and ≤t reflect
differences in the amount of truth and the amount of information, respectively. The
logical operators on the bilattice are defined as follows:

– Negation(¬) on direction ≤t: ¬ < P,N > = < N,P >
– Lower bound(∧) and upper bound(∨) on direction ≤t:

< P1, N1 > ∧ < P2, N2 >=< P1 ∩ P2, N1 ∪N2 >

< P1, N1 > ∨ < P2, N2 >=< P1 ∪ P2, N1 ∩N2 >

The negation as well as lower and upper bounds on direction ≤k are also defined by
Fitting in [12], but the above is enough for this paper since we only consider logic
constructors in truth direction ≤t.

Belnap’s four-valued logic FOUR [8,9,13], whose truth value set is FOUR =
{t, f,-,⊥} (also written as {t}, {f},{t, f}, and ∅, respectively), is a special bilattice
logic. The designated set of FOUR is {t,-} and three kinds of implications of it are
material implication( �→), internal implication(⊃) and strong implication(→) defined as
follows [13,14]:

ϕ �→ ψ
def= ¬ϕ ∨ ψ.

ϕ ⊃ ψ
def=

{
ψ if ϕ ∈ {t,-},
t if ϕ ∈ {f,⊥}.

ϕ→ ψ
def= (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ).

ϕ↔ ψ
def= (ϕ→ ψ) ∧ (ψ → ϕ).

Note that, exception could occur for material implication, while it is not the case
for internal and strong implications, since ϕ �→ ψ = - still holds when ϕ = - and
φ ∈ {f,⊥}. Intuitively, it is the contradictions in the precondition that bring exceptions
for material implication, that is, material implication tolerates the situation that the con-
clusion is not true (valuing f or ⊥) when we have information asserting the truth of
the precondition (valuing- which includes truth information). For the other two impli-
cations, conclusions must be true when the preconditions are true. Therefore, internal
and strong implications cannot characterize exceptions. Furthermore, when we lack the
information about precondition, i.e. its truth value is ⊥, the conclusion of material im-
plication must value t or-which means it has information of being true; the conclusion
of strong implication should value f or ⊥, which means we lack information of it being
true; the conclusion of internal implication accepts any truth value of FOUR. How-
ever, internal implication corresponds to the basic consequence of the four-valued logic
as the following proposition says:

Proposition 1. [14]

– Γ, ψ |=4 φ,∆ iff Γ |=4 ψ ⊃ φ,∆.
– If Γ |=4 ψ, Γ |=4 ψ ⊃ φ, then Γ |=4 φ.

The following counterexamples show that material and strong implications don’t have
the above property:
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– {ψ,¬ψ,¬φ} |=4 ψ �→ φ, but {ψ,¬ψ,¬φ} �|=4 φ.

– {ψ, φ,¬φ} |=4 φ, but {φ,¬φ} �|=4 ψ → φ.

Strong implication characterizes a class of stricter implication relationship: on one
hand, when there is information of being true about the precondition, its conclusion
must have information of being true; on the other hand, when there is information of
being false about the conclusion, its precondition must have information of being false.
The following proposition shows that the four-valued equality between two formulas
can be defined through strong implication instead of material and internal implications.

Proposition 2. [14] For every schemata Θ,ψ ↔ φ |=4 Θ(ψ) ↔ Θ(φ).

3 Four-Valued Description Logic SHOIN (D)4

3.1 Syntax

The inclusion axiom in TBox characterizes human’s exact knowledge of concept clas-
sifications. For example, surgeon* doctor means ”whenever an instance is a surgeon,
he/she must be a doctor”. Salem et al. [4] declare that there are three types of infor-
mation in a knowledge base (KB for short): facts, assertions without exception, and
assertions with exception. Without distinguishing different information, contradictions
easily occur in KB. Consider the following KB: (1) Generally, the person who is not a
stuff of the hospital is not allowed to check patient’s record; (2) However, the person
who is doing temporary study practices in the hospital is generally allowed to do so.
For this KB, some graduate of a medicine college may become an exception of the first
axiom of KB — that is, although he/she is not a stuff of the hospital, he/she has the
permission to read patient’s record. The inclusion described in SHOIN (D) is exact
knowledge without exceptions.

The concept constructors and fact axioms in SHOIN (D)4 are the same as those
in SHOIN (D). In addition, three kinds of inclusion axioms, denoted by C �→ D,
C � D, and C → D called material inclusion, internal inclusion and strong inclusion
respectively, are defined in SHOIN (D)4 . These three inclusions are corresponding to
the three implications in four-valued logic FOUR. The first allows exceptions, and the
other two do not. These three subsumptions help us to describe various class hierarchies.
The exactnesses expressed by them increase one by one. For example, ”Bird �→ Fly”
means that birds can fly with exceptions, that is, there may be some bird which cannot
fly; ”Bird � Fly” means that every bird must can fly. Note that, if we have some infor-
mation indicates that some bird cannot fly, this implication still cannot tell us whether
it is not a bird; ”Bird → Fly” means that an instance can fly whenever it is known to
be a bird. Moreover, it can not be a bird if we know it cannot fly. Similarly, three kinds
of inclusion axioms both of object and of datatype roles are defined in SHOIN (D)4 .

Knowledge with different exactness surely exists in human mind. So does it in the
Semantic Web. However, all standard ontology languages for semantic web don’t con-
sider it. The main goal of this paper is to propose SHOIN (D)4 which provides us
with a way to characterize them.
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3.2 Semantics

Generally speaking, there are four situations describing whether an individual is an
instance of a concept: we surely know it is an instance of the concept; we surely know
it is not an instance of the concept; we neither know it is an instance of the concept
nor not (the situation of lacking information); or we have data indicating both it is an
instance of the concept and not (the contradictory situation). So we define the semantic
of SHOIN (D)4 concepts by bilattice in this subsection.

For any given domain ∆ and a concept C, we assign C an extended truth value
< P,N >, where P is the subset of ∆ that supports C to be true and N is the subset of
∆ that supports C to be false. Cancelling the requirementsP ∩N = ∅ and P ∪N = ∆
in classical semantic conditions of SHOIN (D), an extended semantics forms and
we will show that inconsistencies and uncertainty can be properly handled under this
semantics.

For brevity, we first define positive projecting operator and negative projecting oper-
ator as follows:

Definition 1. proj+(·) and proj−(·) are respectively positive projecting operator and
negative projecting operator on bilattice space ({< P,N >},≤k,≤t), such that for
any < P,N >,

proj+(< P,N >) = P ;

proj−(< P,N >) = N.

Definition 2. A four-valued interpretation I = (∆I , ·I) of SHOIN (D)4 includes an
object domain ∆I , a datatype domain ∆I

D , and a function ·I which satisfies all the
interpretation requirements as shown in Table 2. (In Table 2, ∧ and ∨ are the lower and
upper bound of bilattice on direction ≤t, respectively. " stands for set cardinality.)

The following definition indicates why we use the name ”four-valued interpretation” in
definition 2.

Definition 3. For any given instance a, b ∈ ∆I , concept name C and object/datatype
role name R:

– CI(a) = t, iff aI ∈ proj+(CI) and aI �∈ proj−(CI);
– CI(a) = f , iff aI �∈ proj+(CI) and aI ∈ proj−(CI);
– CI(a) = -, iff aI ∈ proj+(CI) and aI ∈ proj−(CI);
– CI(a) = ⊥, iff aI �∈ proj+(CI) and aI �∈ proj−(CI).
– RI(a, b) = -, iff (aI , bI) ∈ proj+(RI) and (aI , bI) ∈ proj−(RI);
– RI(a, b) = f , iff (aI , bI) �∈ proj+(RI) and (aI , bI) ∈ proj−(RI);
– RI(a, b) = t, iff (aI , bI) ∈ proj+(RI) and (aI , bI) �∈ proj−(RI);
– RI(a, b) = ⊥, iff (aI , bI) �∈ proj+(RI) and (aI , bI) �∈ proj−(RI);

where, t, f,-,⊥ are truth values of four-valued logic.

The semantics of material inclusion axioms, internal inclusion axioms, and strong in-
clusion axioms, as shown in Table 3, are corresponding to the sematics of material im-
plication, internal implication, and strong implication in four-valued logic, respectively.
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Table 2. Syntax and Semantics of SHOIN (D)4

Constructor Syntax Semantics
A AI =< P, N >, where P, N ⊆ ∆I

D DD ⊆ ∆I
D

R RI =< P1 × P2, N1 × N2 >, where Pi, Ni ⊆ ∆I for i = 1, 2
U UI =< P1 × P2, N1 × N2 >, Pi ∈ ∆I , Ni ⊆ ∆I

D for i = 1, 2
o oI ∈ ∆I

v vI = vD

R− (R−)I = (RI)−

� < ∆I , ∅ >
⊥ < ∅, ∆I >

C1 � C2 CI ∧ DI

C1 � C2 CI ∨ DI

¬C (¬C)I =< N, P >,CI =< P, N >

{o1, ...} < {oI
1, ...}, N >

∃R.C < {x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj+(CI)},
{x | ∀y, (x, y) ∈ proj+(RI) ⇒ y ∈ proj−(CI)} >

∀R.C < {x | ∀y, (x, y) ∈ proj+(RI) ⇒ y ∈ proj+(CI)},
{x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj−(CI)} >

≥ n.R < {x | #(y.(x, y) ∈ proj+(RI)) ≥ n},
{x | #(y.(x, y) �∈ proj−(RI)) < n} >

≤ n.R < {x | #(y.(x, y) �∈ proj−(RI)) ≤ n},
{x | #(y.(x, y) ∈ proj+(RI)) > n} >

∃U.D < {x | ∃y, (x, y) ∈ proj+(UI) ∧ y ∈ DI},
{x | ∀y, (x, y) ∈ proj−(UI) ⇒ y ∈ DI} >

∀U.D < {x | ∀y, (x, y) ∈ proj+(UI) ⇒ y ∈ DI},
{x | ∃y, (x, y) ∈ proj−(UI) ∧ y ∈ DI} >

≥ n.U < {x | #(y.(x, y) ∈ proj+(UI)) ≥ n},
{x | #(y.(x, y) �∈ proj−(UI)) < n} >

≤ n.U < {x | #(y.(x, y) �∈ proj−(UI)) ≤ n},
{x | #(y.(x, y) ∈ proj+(UI)) > n} >

oneOf {v1, ...} {vI
1 , ...}

A four-valued interpretation I satisfies a SHOIN (D)4 knowledge base K iff it
satisfies each axiom in K. K is satisfiable (unsatisfiable) iff there exists (does not exist)
such an interpretation.

For an interpretation I = (∆I , ∆I
D, ·I) of a SHOIN (D)4 ontology, the semantics

of an object concept C in it is some element, say < P0, N0 >, of the bilattice space
(< P,N >,≤t,≤k) which is formed based on ∆I (i.e., P,N ∈ ∆I ). If we restrict that
P0 ∩ N0 = ∅ and P0 ∪ N0 = ∆I , then it is the classical two-valued semantics of C.
The situation is the same for object role name and datatype role name. Therefore, the
semantics of SHOIN (D)4 is an extension of that of SHOIN (D).

In the following two propositions, we show that the semantics defined above has the
similar intuition as the classical two-valued semantics.
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Table 3. Syntax and Semantics of axioms in SHOIN (D)4

Axiom Name Syntax Semantics
concept material inclusion C1  → C2 ∆I \ proj−(CI

1 ) ⊆ proj+(CI
2 )

concept internal inclusion C1 � C2 proj+(CI
1 ) ⊆ proj+(CI

2 )
concept strong inclusion C1 → C2 proj+(CI

1 ) ⊆ proj+(CI
2 ) and

proj−(CI
2 ) ⊆ proj−(CI

1 )
object role material inclusion R1  → R2 ∆I × ∆I \ proj+(RI

1) ⊆ proj+(RI
2)

object role internal inclusion R1 � R2 proj+(RI
1) ⊆ proj+(RI

2)
object role strong inclusion R1 → R2 proj+(RI

1) ⊆ proj+(RI
2) and

proj−(RI
2) ⊆ proj−(RI

1)
datatype role material inclusion U1  → U2 ∆I × ∆I

D \ proj+(UI
1 ) ⊆ proj+(UI

2 )
datatype role internal inclusion U1 � U2 proj+(UI

1 ) ⊆ proj+(UI
2 )

datatype role strong inclusion U1 → U2 proj+(UI
1 ) ⊆ proj+(UI

2 ) and
proj−(UI

2 ) ⊆ proj−(UI
1 )

object role transitivity Trans(R) RI = (RI)+

individual inclusion a : C aI ∈ proj+(CI)
individual equality a = b aI = bI

individual inequality a �= b aI �= bI

Proposition 3. Let C,D be concepts. For any SHOIN (D)4 interpretation I ,

(C # -)I = CI , (C $ -)I = -I ,

(C # ⊥)I = ⊥I , (C $ ⊥)I = CI .

Proof. For any given interpretation I = (∆I , ·I)-I =< ∆I , ∅ >,⊥I =< ∅, ∆I >.
Without loss of generalitysuppose CI =< P,N >. By definition 2

(C #-)I = < P ∩∆I , N ∪ ∅ >=< P,N >= CI

(C $-)I = < P ∪∆I , N ∩ ∅ >=< ∆I , ∅ >= -I

(C #⊥)I = < P ∩ ∅, N ∪∆I >=< ∅, ∆I >= ⊥I

(C $⊥)I = < P ∪ ∅, N ∩∆I >=< P,N >= CI . �
Proposition 4. Let C,D be concepts, R be an object role name or a datatype role
name. For any SHOIN (D)4 interpretation I ,

(¬¬C)I = CI , (¬-)I = ⊥I , (¬⊥)I = -I ,

(¬(C $D))I = (¬C # ¬D)I , (¬(C #D))I = (¬C $ ¬D)I ,

(¬(∀R.C))I = (∃R.¬C)I , (¬(∃R.C))I = (∀R.¬C)I ,

(¬(≥ n.R))I = (< n.R)I , (¬(≤ n.R))I = (> n.R)I .

Proof. For any interpretation I = (∆I , ·I),-I =< ∆I , ∅ >,⊥I =< ∅, ∆I > Without
loss of generalitysuppose CI =< P,N >,DI =< P ′, N ′ >. By definition 2, the first
three formulae hold obviously. Since

(¬(C $D))I = ¬ < P ∪ P ′, N ∩N ′ >=< N ∩N ′, P ∪ P ′ >,
(¬C # ¬D)I =< N,P > ∧ < N ′, P ′ >=< N ∩N ′, P ∪ P ′ > .
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(¬(C $D))I = (¬C # ¬D)I .
(¬(C #D))I = (¬C $ ¬D)I follows in the same way.
Note that proj+(CI) = proj−((¬C)I ) = P, proj−(CI) = proj+((¬C)I ) = N .

By definition 2

(¬(∀R.C))I = ¬ < {x | ∀y, (x, y) ∈ proj+(RI) ⇒ y ∈ proj+(CI)},
{x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj−(CI)} >

= < {x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj−(CI)},
{x | ∀y, (x, y) ∈ proj+(RI) ⇒ y ∈ proj+(CI)} >

= < {x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj+((¬C)I)},
{x | ∀y, (x, y) ∈ proj+(RI) ⇒ y ∈ proj−((¬C)I)} >

= (∃R.¬C)I

Therefore, (¬(∀R.C))I = (∃R.¬C)I .
By the same approach, we can prove that (¬(∃R.C))I =(∀R.¬C)I , (¬(≥ n.R))I =

(< n.R)I , and (¬(≤ n.R))I = (> n.R)I . �

3.3 Expressivity of SHOIN (D)4

We explain the expressivity of SHOIN (D)4 by following examples.

Example 1. Let knowledge base K be as follows

TBox = ∃hasPatient.Patient � Doctor. (The one who has a patient must be a doctor)

ABox = {Doctor(john),¬Doctor(john), Patient(mary),
hasPatient(bill,mary)}.

Obviously, there is a contradiction in ABox. If it is a SHOIN (D) knowledge base, we
can conclude anything fromK. But as a SHOIN (D)4 knowledge base, we get positive
answer to the query ”is there any information indicating bill is a doctor?”, since for each
four-valued model of K , the following holds: (bill,mary) ∈ proj+(hasPatientI),
mary ∈ proj+(PatientI), john ∈ proj+(DoctorI ), and john ∈ proj−(DoctorI ).
By definition 2, bill ∈ proj+((∃hasPatient.Patient)I), so bill ∈ proj+(DoctorI ).
But we cannot get positive answer to the query ” is there any information indicating bill
is not a doctor?”, since for the following model I of K ,

DoctorI =< {john, bill}, {john} >,PatientI =< {mary}, ∅ >,
hasPatientI =< {(bill,mary)}, ∅ >

we see that bill �∈ proj−(DoctorI).
Therefore, the SHOIN (D)4 knowledge base can tolerate inconsistency without

destroying useful inferences, that is it reasons para-consistently.

Example 2. Let K be the following knowledge base

TBox4 =
{
SurgicalT eam � ¬ReadPatientRecordTeam
UrgencyTeam � ReadPatientRecordTeam

ABox = {SurgeicalT eam(john), UrgentT eam(john)}.
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The SHOIN (D)4 knowledge base is satisfiable since it has a model as followings:

SurgicalT eamI ∈ {< {john}, ∅ >, < {john}, {john} >},
UrgencyTeamI ∈ {< {john}, ∅ >, < {john}, {john} >},
ReadPatientRecordTeamI =< {john}, {john} > .

When queried ”is there any information declining that john is allowed to read pa-
tient’s record”, it answers ”yes” since john ∈ proj+(ReadPatientRecordTeamI)
for every models of K; when queried ”is there any information declining that john is
not allowed to read patient’s record”, it answers ”yes” because for every model of K,
john ∈ proj−(ReadPatientRecordTeamI). However, when queried ”is there any
information declining that john is (not) a patient”, it answers ”no” since for some model
of K, john �∈ proj+(−)(PatientI).

In short, SHOIN (D)4 gives the positive answers to both aspects of a contradiction,
while remains other information not contrary. In this sense, SHOIN (D)4 reflects
system’s information actually.

Let us consider an example including material and internal inclusion axioms:

Example 3. We have the following knowledge: ”generally speaking, the bird with a
pair of swings can fly. Penguin is a kind of bird and has a pair of swings, but it cannot
fly. Tweety is a penguin with a pair of swings w.” We can describe it by SHOIN (D)
ontology (TBox, ABox) and SHOIN (D)4 ontology (TBox4, ABox) as follows:

TBox =

⎧⎪⎪⎨⎪⎪⎩
Bird # ∃hasW ing.W ing * F ly
Penguin * Bird
Penguin * ∃hasW ing.W ing
Penguin * ¬F ly

TBox4 =

⎧⎪⎪⎨⎪⎪⎩
Bird # ∃hasW ing.W ing �→ F ly
Penguin � Bird
Penguin � ∃hasW ing.W ing
Penguin � ¬F ly

ABox = {Bird(tweety), P enguin(tweety), W ing(w), hasW ing(tweety, w)}.

K = (TBox, ABox) is an unsatisfiable SHOIN (D) knowledge base from which
everything follows. But K4 = (TBox4 ,ABox ) is a satisfiable SHOIN (D)4 knowl-
edge base. Among its models is the following I = ({tweety, w}, ·I):

BirdI =< {tweety}, {tweety} >, F lyI =< ∅, {tweety} >, PenguinI =<
{tweety}, ∅ >, W ingI =< {w}, ∅ >, hasW ingI =< {tweety}, {w} >.

Under this interpretation, tweety ∈ proj+(BirdI) ∩ proj−(BirdI ), that is the
value of BirdI(tweety) is -. Similarly, F lyI(tweety) = f, P enguinI(tweety) =
t, W ingI(w) = t, hasW ingI(tweety, w) = t. We see that exceptions can be ex-
pressed by SHOIN (D)4 system. We will continue to discuss the reasoning of this
example in section 4.2.

Let us consider another example with number restriction constructor:
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Example 4. ”The one who has at least one child is a parent. Generally speaking, par-
ent is married. We have the fact that single Smith adopts a child Kate. ” This is a possi-
ble ontology. But it can not be expressed by any classical OWL DL ontology language
without contradiction. We can express it by SHOIN (D)4 in a novel way:

TBox =
{
≥ 1.hasChild � Parent
Parent �→ Married

ABox = {hasChild(smith, kate),¬ Married(smith)}
This is a satisfiable SHOIN (D)4 knowledge base. For example, the following is its
models with domain {smith, kate}:

– M1-M4: (≥ 1.hasChild)I =< {smith}, ∅ >, MarriedI =< {smith}, {smith} >,
hasChildI =< {(smith, kate)}, ∅ > or < {(smith, kate)}, {(smith, kate)} >,
ParentI =< {smith}, ∅ > or < {smith}, {smith} >;

– M5-M6: (≥ 1.hasChild)I =< {smith}, ∅ >, ParentI =< {smith}, {smith} >,
hasChildI =< {(smith, kate)}, ∅} > or < {(smith, kate)}, {(smith, kate)} >,
MarriedI =< ∅, {smith} >;

– M7-M8: hasChildI =< {(smith, kate)}, {(smith, kate), (smith, smith)} >,
(≥ 1.hasChild)I =< {smith}, {smith} >, MarriedI =< {smith}, {smith} >,
ParentI =< {smith}, ∅ > or < {smith}, {smith} >;

– M9: hasChildI =< {(smith, kate)}, {(smith, kate), (smith, smith)} >,
(≥ 1.hasChild)I =< {smith}, {smith} >, ParentI =< {smith}, {smith} >,
MarriedI =< {smith}, ∅ >;

The corresponding four-valued semantics of the above models are as shown in Table
4 (s is Smith for short and k is Kate for short).

Table 4. Four-valued Models of Example 4

hasChild(s, k) ≥ 1.hasChild(s) Parent(s) Married(s)
M1-M4 t/� t t/� �
M5-M6 t/� t � f
M7-M8 � � t/� �

M9 � � � f

Since the role hasChild is not reflexive (namely, no one will relate itself by this
role), we declare that the semantics of SHOIN (D)4 had better not refer to unreason-
able interpretation like hasChild(smith, smith) for nonreflexive roles. The effect of
distinguishing reflex roles to DL systems is to be study.

4 Reducing SHOIN (D)4 to SHOIN (D)

Because we don’t consider the four-valued semantics of datatype concepts, in the rest,
we only denote an interpretation of SHOIN (D)4 as I = (∆I , ·I) instead of I =
(∆I , ∆I

D, ·I) for simpleness.
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For any interpretation I = (∆I , ·I) of SHOIN (D)4 and any concept C, we
can decide the semantics of C by the positive projection of CI and (¬C)I accord-
ing to the equation proj+((¬C)I ) = proj−(CI), although there’s no relation between
proj+(CI) and proj−(CI).

We introduce the following notations to characterize the relationship between four-
valued and two-valued semantics.

Definition 4. (Decomposability) The four-valued semantics of SHOIN (D)4 can be
decomposed into two-valued semantics of SHOIN (D), iff for any SHOIN (D)4
knowledge base K and its concept C and object (datatype) role R, there is an two-
valued SHOIN (D) knowledge base K and its two concepts C1,C2 and two object
(datatype) roles R1,R2 such that for any four-valued interpretation I of K, there’s a
two-valued interpretation I of K, such that

CI =< P, N > iff C1
I

= P, C2
I

= N.

RI =< P1 × P2, N1 ×N2 > iff R1
I

= P1 × P2, R2
I

= ∆I ×∆I \N1 ×N2.

where P, N, P1, P2, N1 and N2 are subsets of ∆I .

The decomposability of SHOIN (D)4 means that the four-valued semantics of con-
cept C and role R can be divided into the two-valued semantics of two SHOIN (D)
concepts C1, C2 and roles R1, R2. Arieli [15,16] provides some techniques to reduce
some models of four-valued logic to classical two-valued semantics. Yue [17] pro-
poses a formula transformation technique to distinguish material implication and in-
ternal implication of four-valued logic. We will further study transformation technique
to decompose the four-valued semantics of SHOIN (D)4 in the next section. Further-
more, we will see that the decomposability of SHOIN (D)4 enables the inference of
SHOIN (D)4 to be reduced to that of SHOIN (D).

4.1 Concept, Role and Axiom Transformations

Let L be a SHOIN (D)4 language, L = {C, R, a | C is a concept name, R is a role
name, a is an individual}.A(L) is set of atomic concepts ofL.L={C,¬C, R+, R=, a |
C, R, a ∈ L, C,¬C are the concept transformations of C and¬C respectively, R+, R=

are two role transformations of role R. a is the renamed name of individual a in I}.
Concept transformation and role transformation of a SHOIN (D)4 concept C and

a role R are defined as follows:

Definition 5. For any given concept C ∈ L, C ∈ L is the concept transformation of
C, such that

(1) If C = A, A ∈ A(L), then C = A+;
(2) If C = ¬A, A ∈ A(L), then C = A−;
(3) If C = -, then C = -;
(4) If C = ⊥, then C = ⊥;
(5) If C = E #D, then C = E #D;
(6) If C = E $D, then C = E $D;
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(7) If C = ∃R.D where R is an object role or a datatype role, then C = ∃R+.D;
(8) If C = ∀R.D where R is an object role or a datatype role, then C = ∀R+.D;
(9) If C =≥ n.R where R is an object role or a datatype role, then C =≥ n.R+;

(10) If C =≤ n.R where R is an object role or a datatype role, then C =≤ n.R=;
(11) If C = ¬¬D, then C = D;
(12) If C = ¬(E #D), then C = ¬E $ ¬D;
(13) If C = ¬(E $D), then C = ¬E # ¬D;
(14) If C = ¬(∃R.D) where R is an object role, then C = ∀R+.¬D;
(15) If C = ¬(∀R.D) where R is an object role, then C = ∃R+.¬D;
(16) If C = ¬(≥ n.R) where R is an object role or a datatype role,

then C =≤ (n− 1).R=;
(17) If C = ¬(≤ n.R) where R is an object role or a datatype role,

then C =≥ (n + 1).R+;
(18) If C = {o1, ...} where oi is an individual, then C = {o1, ...};
(19) (R−)+ = (R+)−, (R−)= = (R=)−

Based on the concept and role transformations, we give the axiom transformations as
follows:

Definition 6. The transformation of axioms of SHOIN (D)4 are defined as follows:

(1) C1 �→ C2 = ¬¬C1 * C2;
C1 � C2 = C1 * C2;
C1 → C2 = {C1 * C2,¬C2 * ¬C1}.
where, Ci(i = 1, 2) is a concept.

(2) R1 �→ R2 = R=
1 * R+

2 ;
R1 � R2 = R+

1 * R+
2 ;

R1 → R2 = {R+
1 * R+

2 , R=
1 * R=

2 }.
where, Ri(i = 1, 2) is an object role or a datatype role.

(3) Trans(R) = {Trans(R+)}
where, R is an object role.

(4) a : C = a : C, a = b = a = b, a �= b = a �= b
where,a, b are individuals, C is a concept.

Definition 7. (Classical Induced KB) We say the classical induced KB of any given
SHOIN (D)4 knowledge base K, written K, if all axioms in K are exactly the trans-
formations of axioms in K.

Obviously, concept, role and axiom transformations can be finished in polynomial time.

4.2 SHOIN (D)4 Reasoning

In this section we first show the decomposability of SHOIN (D)4 , and then prove that
the standard reasoning problems of SHOIN (D)4 can be reduced to those of classical
SHOIN (D).

Definition 8. (Classical Induced Interpretation) Let I = (∆I , ·I) be an interpretation
of SHOIN (D)4 , and K be the classical induced KB of K. I ′s classical induced inter-
pretation I = (∆I , ·I) is defined as follows:
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– I and I have the same domain, i.e. ∆I = ∆I ;
– I and I interpret instance names in the same way, i.e. aI = aI ;
– For any atomic concept A, if AI =< P, Q >, then (A+)I = P, (A−)I = Q;
– For any object or datatype role R, if RI =< P1 × P2, N1 ×N2 >, then (R+)I =

P1 × P2, and (R=)I = ∆I ×∆I \N1 ×N2.

The semantics of complex concepts are obtained in the standard way.

Definition 9. (Four-valued Induced Interpretation) Let I be the interpretation of an
SHOIN (D) knowledge base K, I’s four-valued induced interpretation I = (∆I , ·I)
is defined as follows

– I and I have the same domain, i.e. ∆I = ∆I ;
– I and I interpret instance names in the same way, i.e. aI = aI ;
– For any primitive concept A, if (A+)I = P, (A−)I = Q, then AI =< P, Q >;
– For any object and datatype role R, if (R+)I = P1 × P2, and (R=)I = Q1 ×Q2,

then RI =< P1 × P2, ∆
I ×∆I \Q1 ×Q2 >.

The semantics of complex concepts are obtained according to definition 2.

From definitions 8 and 9, the classical induced KB of a SHOIN (D)4 knowledge base
K is two-valued theory, whose constructors are those of SHOIN (D). Therefore, we
can change a SHOIN (D)4 knowledge base into a SHOIN (D) one by transforma-
tion technique.

Lemma 5. The semantics of SHOIN (D)4 can be decomposed to two-valued seman-
tics of SHOIN (D).

Proof. LetK be a SHOIN (D)4 knowledge base and C be a concept. For any interpre-

tation I, we prove by structure induction that CI =< P, N > iff C
I

= P,¬C
I

= N ,
where I is the Classical Induced Interpretation of I .

Case: C is an atomic concept A is easy by definition 9, 8.
Case: C = ¬D. C = ¬D,¬C = D,

– Suppose CI =< P, N >. Then DI =< N, P >. By induction assumption, we

know D
I

= N,¬D
I

= P. That is ¬C
I

= N, C
I

= P .

– Whereas, suppose C
I

= P,¬C
I

= N . Then D
I

= N,¬D
I

= P . By induction
assumption, we know DI =< N, P >. Through the semantics of negation, we
know CI =< P, N >.

Case: C = D $ E. C = D $ E, and ¬C = ¬D # ¬E,

– Suppose CI =< P, N >,DI =< P1, N1 >, EI =< P2, N2 >. Then P1 ∪ P2 =

P, N1 ∩N2 = N . By induction hypothesis, we know D
I

= P1,¬D
I

= N1, E
I

=

P2, and ¬E
I

= N2. Therefore C
I

= D
I ∪ E

I
= P1 ∪ P2 = P , and ¬C

I
=

¬D
I ∩ ¬E

I
= N1 ∩N2 = N .
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– Whereas, suppose C
I

= P,¬C
I
=N, D

I
=P ′,¬D

I
=N ′, and E

I
=P ′′,¬E

I
=

N ′′. By the definition of semantics, P = P ′ ∪ P ′′, N = N ′ ∩ N ′′. By induction
hypothesis, DI =< P ′, N ′ >, EI =< P ′′, N ′′ >. Therefore, CI =< P ′ ∪
P ′′, N ′ ∩N ′′ >=< P, N > by definition of semantics of SHOIN (D)4 .

Case: C = D # E. the proposition holds likewise.
Case: C = ∀R.D. C = ∀R.D and ¬C = ∃R.¬D,

– Suppose CI =< P, N >, DI =< P1, N1 >. By semantics definition, we know
P = {x | ∀y, R(x, y) ⇒ y ∈ proj+(DI)}, N = {x | ∃y, R(x, y) ∧ y ∈
proj−(DI)}. By induction hypothesis, D

I
= P1 and ¬D

I
= N1. Therefore,

N1 = proj−(DI). (Note that P1 = proj+(DI))

C
I

= (∀R.D)I = {x | ∀y, R(x, y) ⇒ y ∈ (D)I}
= {x | ∀y, R(x, y) ⇒ y ∈ P1} = P,

¬C
I

= (∃R.¬D)I = {x | ∃y, R(x, y) ∧ y ∈ (¬D)
I}

= {x | ∃y, R(x, y) ∧ y ∈ N1} = N.

– Whereas, suppose C
I

= P,¬C
I

= N, D
I

= P ′,¬D
I

= N ′. By the definition of
semantics,

P = C
I

= (∀R.D)I = {x | ∀y, R(x, y) ⇒ y ∈ P ′},

N = ¬C
I

= (∃R.¬D)I = {x | ∃y, R(x, y) ∧ y ∈ N ′}.

By induction hypothesis, DI =< P ′, N ′ >. Furthermore, by the semantics of
SHOIN (D)4 , we know

CI =< {x | ∀y, R(x, y) ⇒ y ∈ P ′}, {x | ∃y, R(x, y) ∧ y ∈ N ′} >=< P, N >

Case: C = ∃R.D. the lemma holds likewise.
Case: C =≥ n.R. C =≥ n.R+,¬C =≤ (n− 1).R=:

– Suppose CI =< P, N >, RI =< P1 × P2, N1 ×N2 >. By definition 2,

P = {x | �(y.(x, y) ∈ proj+(RI)) ≥ n} = {x | �(y.(x, y) ∈ P1 × P2) ≥ n}

= {x | �(y.(x, y) ∈ (R+)I) ≥ n} = (≥ n.R+)I = C
I
,

N = {x | �(y.(x, y) �∈ proj−(RI)) < n}
= {x | �(y.(x, y) ∈ ∆I ×∆I \N1 ×N2) < n}

= {x | �(y.(x, y) ∈ (R=)I) < n} = (≤ (n− 1).R=)I = ¬C
I
,

Note that (R+)I = P1 × P2, (R=)I = ∆I ×∆I \N1 ×N2 by definition 8.
– Whereas, Suppose (≥ n.R+)I = P, (≤ (n − 1).R=)I = N, (R+)I = P1 ×

P2, (R=)I = ∆1×∆2\N1×N2. Then P = {x | �(y.(x, y) ∈ P1×P2) ≥ n}, N =
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{x | �(y.(x, y) �∈ N1 ×N2) < n}. By definition 9, RI =< P1 × P2, N1 ×N2 >.
By definition 2,

CI = < {x | �(y.(x, y) ∈ P1 × P2) ≥ n}, {x | �(y.(x, y) �∈ N1 ×N2) < n} >

= < P, N > .

Case: C =≤ n.R. the lemma can be proven in the same way.
In all, let C1 = C, C2 = ¬C , we see that for any concept C, CI =< P, N > iff

CI
1 = P and CI

2 = N .
For any role R, from definition 9 and 8, we can see that RI =< P1×P2, N1×N2 >

iff R1
I

= P1 × P2, R2
I

= ∆I ×∆I \N1 ×N2. �

Theorem 6. The interpretation I = (∆I , ·I) is a model of knowledge base K iff there
is a model of K, say I = (∆I , ·I), which is the classical induced knowledge base of K.

Proof. (Necessity) For any interpretation I of K, let the interpretation I be I’s classical
induced interpretation. According to the relationship between K and K, for any K’s
inclusion of the form ¬¬C * D ∈ K, C �→ D ∈ K. Suppose CI =< P1, N1 >,

DI =< P2, N2 >. By lemma 5, ¬C
I

= N1, D
I

= P2. Therefore, (¬¬C)I = ∆I \
N1 = ∆I \N1. I satisfies C �→ D. So ∆I \N1 ⊆ P2. Therefore, (¬¬C)I ⊆ D

I
. That

is, I satisfies ¬¬C * D.
For any K’s inclusion of the form C * D ∈ K, ¬C * ¬D �∈ K, C � D ∈ K.

Suppose CI =< P1, N1 >, DI =< P2, N2 >. By lemma 5, C
I

= P1, D
I

= P2. I
satisfies C � D. Therefore, P1 = proj+(CI) ⊆ proj+(DI) = P2, that is I satisfies
C * D.

For any K’s inclusion pair of the form {C * D,¬D * ¬C} ⊆ K, C → D ∈
K. Suppose CI =< P1, N1 >, DI =< P2, N2 >. By lemma 5, C

I
= P1, D

I
=

P2,¬C
I

= N1,¬D
I

= N2. I satisfies C → D. Therefore, P1 = proj+(CI) ⊆
proj+(DI) = P2, N2 = proj−(DI) ⊆ proj−(CI) = N1, that is I satisfies {C *
D,¬D * ¬C}.

For any assertion of the form a:C. a:C belongs to the K. Suppose CI =< P, N >,
aI = δ0 ∈ ∆I , then (C)I = P, aI = δ0. Because I satisfies a:C, δ0 ∈ P, that is I

satisfies a:C. Finally, since aI = (a)I , bI = (b)I , (a)I = (b)I iff aI = bI , (a)I �= (b)I

iff aI �= bI .
For any K’s role inclusion R=

1 * R+
2 , R1 �→ R2 ∈ K. Assume RI

1 =< P 1
1 ×

P 1
2 , N1

1 ×N1
2 >, RI

2 =< P 2
1 × P 2

2 , N2
1 ×N2

2 >. By definition 8, (R+
2 )I = P 2

1 × P 2
2 ,

R=
1 = ∆I ×∆I \N1

1 ×N1
2 . I satisfies R1 �→ R2, so (R)

1I == ∆I ×∆I \N1
1 ×N1

2 ⊆
P 2

1 × P 2
2 = (R+

2 )I . That is. I satisfies R=
1 * R+

2 .
For any K’s role inclusion R+

1 * R+
2 , R1 � R2 ∈ K. Suppose RI

1 =< P 1
1 ×

P 1
2 , N1

1 ×N1
2 >, RI

2 =< P 2
1 × P 2

2 , N2
1 ×N2

2 >. By definition 8, (R+
2 )I = P 2

1 × P 2
2 ,

R+
1 = P 1

1 × P 1
2 . I satisfies R1 � R2, so (R+

1 )I = P 1
1 × P 1

2 ⊆ P 2
1 × P 2

2 = (R+
2 )I .

That is. I satisfies R+
1 * R+

2 .
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For any Tran(R+) ∈ I , Trans(R) ∈ K. Suppose RI =< P 1
1 × P 1

2 , N1
1 ×N1

2 >.
I satisfies Trans(R), then RI = (RI)+, that is P1 × P2 = (P1 × P2)+. By definition
8, (R+)I = ((R+)I)+. That is, Trans(R+).

(sufficiency) For any interpretation I = (∆I , ·I) of K, let I be the four-valued
semantics of I . By the similar approach, we can prove that the proposition holds. �

For SHOIN (D), the inclusion axioms can be reduced to unsatisfiability of concepts.
The following corollary shows similar results of inclusion axioms and concept satisfia-
bility of SHOIN (D)4 .

Corollary 7. For a SHOIN (D)4 ontology K, the material inclusion axiom C �→ D
holds in K iff ¬¬C # ¬D is unsatisfiable in K; The internal inclusion axiom C � D
holds in K iff C # ¬D is unsatisfiable in K; The strong inclusion axiom C → D holds
in K iff C # ¬D,¬D # ¬¬C is unsatisfiable in K.

We explain by the following example that SHOIN (D)4 can express inconsistency in a
knowledge base, meanwhile inference is done by calling existing reasoning techniques
which is based on two-valued semantics.

Example 5. (Example 3 contd.) By transformations, we obtain the following classical
induced KB, K, of the example 3:

TBox =

⎧⎪⎪⎨⎪⎪⎩
¬Bird− # ¬∀.hasW ing.W ing− * F ly+

Penguin+ * Bird+

Penguin+ * ∃hasW ing.W ing+

Penguin+ * F ly−

ABox={Peguin+(tweety), Bird+(tweety), W ing+(w), hasW ing+(tweety, w)}.

By classical tableaux algorithm, F ly−(tweety) holds, that is, tweety cannot fly. But
F ly+(tweety) does not holds, which means that K is not trivial. So is the original
SHOIN (D)4 knowledge base by theorem 6.

5 Related Work

Patel-Schneider [10] has proposed four-valued semantics for a terminological logic to
equip it with a tractable inclusion relation, while we use the similar method but with
some extensions to equip ontology language OWL DL with the ability to represent and
reason with contradictions. The direct effect of inclusion form on the validity of algo-
rithm makes the inclusion get only very easy cases in [10]. The algorithm used in [10]
for computing inclusion is tractable, while it cannot treat concept union, full negation
and exist quantification. Therefore, Patel-Schneider restricts the language without these
constructors in [10]. However, the description logic SHOIN (D)4 studied in this paper
includes all of these constructors. Moreover, we proves that the standard inferences of
SHOIN (D)4 can be converted to those of SHOIN (D). Thus, both the complexity
and decidability of SHOIN (D)4 are the same as those of SHOIN (D).
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The material inclusion proposed in this paper is a method to deal with knowledge
with exceptions, which is based on four-valued logic. Salem et al. [4] adopt possibilistic
logic and lexicographical inference combining MSP algorithm [18] which can make
a stratification among the knowledge with exceptions according to the principle that
the ones with higher stratification will be preferential to others which conflict with
the former and are of lower stratifications. Huang [11] introduces syntax relevance to
selection function whereby some consistent sub-theory(sub-theories) can be selected to
be reasoned with. Both approaches mentioned above infer on a consistent sub-theory,
while the approach in this paper acknowledges contradictions and allow them to join
in reasoning instead of ignoring them. Note that conclusions deduced in this way may
contain contradiction also. However, as we have seen, the inconsistencies are localized
without destroying useful conclusions.

In this paper, four-valued ontology can be changed into a two-valued one so that
we can make full use of existing inference systems instead of studying new mecha-
nism. Formula transformations have been used to compute complex model [15,16,17].
However, those works are all based on propositional language. The extension of trans-
formation techniques to ontology language is a core work of this paper as well.

6 Conclusion

We defined four-valued semantics for concepts, object (datatype) roles, and axioms,
thus forming an inconsistent tolerance description logic SHOIN (D)4 . Mature rea-
soning mechanisms of classical description logic remain useful for SHOIN (D)4 be-
cause of concept and axiom transformations. SinceSHOIN (D) is the underlying logic
system of OWL DL, SHOIN (D)4 provides us with an approach to infer with incon-
sistent OWL DL ontology by classical inference mechanism.

The underlying idea through this paper is considering contradiction as static or hid-
den — that is, it is based on paraconsistent logic. Another method to treat contradiction
is nonmonotonic logic which views inconsistency as dynamic and modifiable. We will
further compare and combine these two methods to find out excellent methods for se-
mantic web to reason with inconsistencies in the future work.
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Abstract. This paper presents a new intelligent mediators configuration
approach which exploits high expressive description logics to represent
metadata, and reasoning tasks in order to build more flexible mediation
systems. A user specifies a needs expression in terms of (i) an interesting
view over a given application domain, (ii) sources preferences and (iii)
architectural requirements. A well-adapted mediator, is automatically
configured according to these needs through a reasoning-based configu-
ration process. A configured mediator can therefore be adapted in order
to build knowledge-based mediation systems with an arbitrary architec-
ture.

1 Context and Motivations

Mediation systems [1] were introduced to provide an integrated view over dis-
tributed and heterogeneous data sources for accessing them in a transparent
way. During these last years, their role has constantly evolved. Several media-
tion approaches, providing different modeling and implementing solutions, have
been proposed.

In order to provide query expression and metadata management with more
semantics, a particular kind of data integration approach, commonly called
knowledge-based mediation system, has been proposed. Differently from clas-
sical mediation systems, they use high expressive knowledge representation for-
malisms, i.e., description logics, as basis for data integration. This allows to have
a more precise semantic representation of application domains, and to improve
classical mediation tasks with inference capabilities.

This work focuses on knowledge-based mediation systems. For this reason,
we analyzed many existing approaches according to several aspects such as
the integration approach, data model and associated query language, and more
particularly the mediation system architecture. According to this latter aspect,
knowledge-based mediation systems can be mainly divided into two main cate-
gories (cf. Figure 1):

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 554–572, 2006.
c© IFIP International Federation for Information Processing 2006
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– centralized mediation systems [2,3,5,7,8,6] are based on a domain ontology
acting as an integrated view over a set of distributed and heterogeneous
data sources. A user formulates a query over the domain ontology. Then the
query is rewritten into a set of local expressions over local sources, which
are consequently accessed in a transparent way. The mediator represents the
single access point to the system, and local sources are directly accessible
from it.

– distributed mediation systems [4,9] aim to integrate a very large number
of distributed data sources. This makes the construction of an integrated
view over them a very difficult task to achieve. Therefore, query processing
becomes a distributed task and the centralized mediator is replaced by a net
of cooperative components commonly called peers. Each peer provides a local
ontology modeling one or more underlying local sources. A user formulates a
query over a peer. If locally retrieved data does not fulfill user expectatives,
the query is forwarded to some neighbors peers1 for execution in order to
retrieve mode data.

To our knowledge, no mediation system, being able to adapt to both applicative
contexts, exists today.

Fig. 1. Existing approaches

This paper focuses on the intelligent mediator configuration process of
ADEMS2 and on the role of mediators within a knowledge-based mediation sys-
tem. The architecture of ADEMS has been previously presented in [10], therefore,
the paper gives no details on the mediator internal architecture and on query
expression and processing.

ADEMS exploits the high expressive description logic SHIQ(D) [12] to repre-
sent metadata, and exploits reasoning tasks in order to automatically configure
well-adapted mediators. A user specifies a needs expression in terms of (i) the
interesting view over a given application domain, (ii) sources preferences and,
(iii) architectural requirements. ADEMS configures a well-adapted mediator ac-
cording to these needs, being able to adapt centralized as well as distributed
architectures. A configured mediator manages metadata as knowledge within a

1 Neighbor peers are those ones that a peer can directly access. Differently from cen-
tralized approach, not all resources are directly accessible from a peer (mediator).

2 ADEMS, an ADaptable and Extensible Mediation Service.
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set of ontologies, and exploits inference in order to semantically improve the
query processing task. Nevertheless, for a lack of space, this paper mainly fo-
cuses on the mediator configuration process, and on the role of mediators within
a knowledge-based mediation system. No details on the mediator internal archi-
tecture and functions are given.

The remainder of this document is organized as follows. Section 2 presents the
ADEMS approach. It describes the general architecture of a mediation system, its
components, i.e. a set of mediators and sources, and the way they interact. Then
it introduces the mediator configuration process. Section 3 illustrates the needs
expression structure and shows how its ontological representation allows to better
represent the semantics of metadata. Section 4 shows how a needs expression is
analyzed and a mediator is configured accordingly, by exploiting reasoning tasks.
Metadata involved in such a process is also illustrated. Section 5 discusses on
implementation issues and experimental validations. Finally, Section 6 concludes
the paper.

2 Approach

In our approach, a mediation system consists of a net of interconnected mediators
giving access to a set of heterogeneous and distributed local sources (cf. Figure 2).
Each mediator corresponds to a user access point to the mediation system. No as-
sumptions about the systemtopologyaredone.The systemarchitecture is notfixed
a priori and it is adaptable to different applicative contexts/user requirements.

Fig. 2. ADEMS mediation system

For doing so, a mediator is modeled a general-purpose reusable mediation com-
ponent. It becomes a specific ad-hoc component through a configuration process,
whose goal is to adapt a mediator to a particular user needs definition. The me-
diator configuration process consists of building a set of ontologies describing the
behavior of a mediator: a (i) mediation ontology represents a user-defined view
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over a domain description and acts as a global schema (integrated or not) over
a set of underlying local resources (sources as well as other mediators), and (ii)
a set of metadata ontologies representing all necessary metadata about available
resources, the data they manage and the way to access them. Therefore, from a
user X point of view (cf. dashed box in the Figure 2), a mediation system con-
sists of a mediator X accessing a set of resources. A user formulates a query over
its mediation ontology and the query is evaluated over the mediator resources
in a transparent way. The user perception of the whole mediation system is lim-
ited to his/her own configured mediator, representing his/her access point to
data. We will show later in this paper how, according to the way a mediator
is configured, our approach allows to emulate both centralized and distributed
knowledge-based mediation systems, and to enable more complex architectures.

Configuring a mediator in such a way is a difficult and tedious task for a human
operator. For this reason, in order to help users with this task, we propose the
ADEMS mediator configuration service (cf. Figure 3). The service manages all

Fig. 3. The ADEMS approach

necessary metadata as knowledge within a set of ontologies. For each application
domain, the service manages (i) a domain ontology, modeling its entities and
acting as a shared vocabulary, e.g., bioinformatics, and (ii) a set of metadata
ontologies representing all necessary metainformation to access available local
sources for a domain, e.g., mappings and sources capabilities. A user specifies a
needs expression (cf. Fig 3-a) in terms of an interesting domain, and a view over
it, architectural and source requirements. The service analyzes the user-defined
needs expression and exploits reasoning tasks to extract pertinent metadata to
configure the mediator (cf. Fig 3-b): the mediation ontology is built as a view over
the selected domain ontology, and metadata ontologies as a subset of metadata
ontologies within the service.

3 Needs Expression

A needs expression is modeled as a complex concept definition within the needs
expression ontology. This is the most important metadata ontology of the service
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as it plays a key role during the whole mediator configuration process. This on-
tology is built around a main central concept Need, representing a whole needs
expression. The goal of this ontology is to exploit reasoning tasks to classify
needs expressions in order to deduce containment relations, and to exploit this
knowledge to discover when a mediator can exploit another mediator as a pos-
sible resource. For this reason, metadata in this ontology is manipulated at the
intensional level, i.e., classes. Each new needs expression is represented in this
ontology as a new subclass of Need. The satisfiability and subsumption verifica-
tions can then be exploited, to verify all needs expressions consistency and to
classify them.

A needs expression is composed of three main parts, that we call metadata
categories. Each category represents a set of metadata aspects. The concept Need
is defined as follows:

Need ≡ ∃hasConceptSet.ConceptSet ∧
∃hasArchitecture.Architecture ∧
∃hasSourcePreference.SourcePreference

where the three main categories are: ConceptSet, representing the interesting
view the domain; SourcePreference and Architecture, specifying source preferences
and architectural requirements respectively.

Given a new needs expression, a new class, representing it, is defined as fol-
lows:

Need i ≡ ∃hasConceptSet.ConceptSet i ∧ (1)

∃hasArchitecture.Architecture i ∧
∃hasSourcePreference.SourcePreference i

where, Need i is deduced to be subclass of Need, and classes ConceptSet i,
Architecture i and SourcePreference i represent values for each category. In the
remainder of this section, we present details on the three needs expression cate-
gories: ConceptSet, Architecture and SourcePreference.

3.1 ConceptSet

A user defines an interesting view over a domain by selecting a set of concepts
from the corresponding domain ontology. An algorithm (not shown here) ana-
lyzes selected concepts and generates a mediation ontology accordingly. In order
to classify needs, in our approach, a whole view over an application domain is
represented by a single concept definition called concept set. A concept set is
defined as follows:

ConceptSet i ≡ C1 ∨ ... ∨ Cn

ConceptSet i � ConceptSet

Clearly, this concept must be explicitely defined as a subclass of ConceptSet
in order to exploit reasoning capabilities. Given two concept sets ConceptSet i
and ConceptSet j defined as follows:
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ConceptSet i ≡ C1 ∨ ... ∨ Cn−1 ∨ Cn

ConceptSet j ≡ C1 ∨ ... ∨ Cn−1

the subsumption relation ConceptSet j * ConceptSet i is interpreted as a con-
tainment relation between their corresponding views. This motivates the use of
a union of concepts to represent this aspect.

By default, when a domain concept, e.g., Person, is added to a concept set,
it is considered with all its associated attributes. However, it is possible to ex-
plicitely specify a view over a class in order to consider interesting attributes
only. For this purpose, our model provides a special property definition without
to specify a restriction over an atomic concept. In order to conserve a meaning-
ful subsumption relation between concept sets, this property restriction models
attributes that are not taken into account in the view. Here is an example:

ConceptSet i ≡ C1

ConceptSet j ≡ C1 ∧ ∃ without.ATT1 ∧
... ∧ ∃ without.ATTn

Subsumption verification allows to infer that ConceptSet j is subclass of
ConceptSet i. Clearly, the subsumption relation between concept sets reflects the
containment relation between their respective mediation ontologies.

More complex views may so be defined. Here is an example:

ConceptSet 1 ≡ Person ∨ Car ∨ Job

ConceptSet 2 ≡ Person ∨ Car

ConceptSet 3 ≡ (Person ∧ ∃ without.Age) ∨ Car

ConceptSet 4 ≡ (Person ∧ ∃ without.Age ∧
∃ without.Gender) ∨ Car

Reasoning tasks allow to deduce the following subsumption relation between
views:

ConceptSet 4 � ConceptSet 3 � ConceptSet 2 � ConceptSet 1

3.2 Architecture

Architectural aspects are modeled as follows:

Architecture ≡ ∃hasImportDegree.ImportDegree ∧
∃hasExportDegree.ExportDegree ∧
∃hasMatDegree.MatDegree ∧
∃hasIntDegree.IntDegree

where Architecture represents a category containing the four aspects ImportDegree,
ExportDegree, MatDegree and IntDegree.



560 G. Bruno, C. Collet, and G. Vargas-Solar

ImportDegree: this dimension defines the possible strategies to adopt when ex-
ploiting other running mediators as resources. We refer to this feature as resource
import. Each strategy is enabled by one of the following values:

– ImportAll: the mediator may import any pertinent resource, independently
of its ownership. This value is modeled as an atomic class.

– ImportGroup: specifies the group of trusted users/owners from which me-
diators can be imported. Any specified group is modeled as a subclass of
ImportGroup.

– ImportNone: specifies that no mediator is imported. This value corresponds
to an atomic class definition.

According to the semantic of this aspect, in order to guarantee the contain-
ment relation between two needs, the following subsumption relations must be
stated:

ImportNone � ImportGroup � ImportAll (2)

In order for a mediator M1 to be potentially imported by M2, the group of
users specified by the M1’s import degree must be contained by the one of M2.
In other words, M2 cannot import M1 if M1’s import degree contains at least a
user which is not considered in M2’s import degree, as this will violate the M2
strategy.

These considerations motivate the use of union of classes to model a group of
trusted users in the import degree. Here is an example:

User 1 ∨ User 2 � ImportGroup (3)

ImportNone � User 1 ∨ User 2 (4)

Statement (3) specifies a new group composed by User 1 and User 2. This is
done by stating the union of classes as a subclass of ImportGroup class. Statement
(4) guarantees the containment relation between any group and the empty one.

Figure 4-a shows an example of import groups classification. In this example,
eight groups have been specified, and each of them corresponds to a different
independently defined needs expression. Let us suppose that a user wants to
retrieve all resources which may be imported by a mediator configured according
the need Need 1. As Need 1 imports resources from users Jim, Jack and John, only
needs Need 3, Need 5, Need 6 and Need 7 can be normally be imported. Modeling
import groups as union of classes allows to retrieve importable resources for a
mediator by asking for synonyms and descendants of the class representing its
import degree value.

ExportDegree: this dimension specifies the reusability degree of a new defined
mediator in the context of future user needs expressions. We refer to this feature
as resource export. Three strategies are allowed and represented by the following
values:

– ExportNone: specifies that no further defined mediator can reuse this medi-
ator in the future. Its values correspond to an atomic class.
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Fig. 4. Import and export degrees classification

– ExportGroup: specifies the group of users that can reuse the mediator in future
configurations. Any specified group is modeled as subclass of ExportGroup.

– ExportAll: specifies that any further defined mediator can reuse this mediator
in the future. No user restriction are given.

In order to respect the needs containment according to this aspect, the fol-
lowing subsumption relations must be respected:

ExportAll � ExportGroup � ExportNone (5)

In order for a mediator M1 to be importable by M2, the set of users specified
by the M1’s export degree must contain the one of M2. In other words, M2
cannot import M1 and, at the same time, export itself to other user than the
ones allowed for M1, because this will violate the M1 strategy. Consequently,
M1’s export degree must be subclass of the M2’s one, what justifies the use of a
conjuction of classes to represent the export degree value. A group is defined as
the conjuction of classes representing user names. Here is an example:

User 1 ∧ User 2 � ExportGroup (6)

ExportAll � User 1 ∧ User 2 (7)

Statement (6) specifies a new group composed by User 1 and User 2. This is
done by stating the conjunction of classes as a subclass of ExportGroup class.
Statement (7) guarantees the containment relation between any group and the
whole set of users.

Figure 4-b shows an example of export groups classification. In this example,
eight groups have been specified, and each of them corresponds to a different
independently defined needs expression. Let us suppose that a user wants to re-
trieve all resources which may be imported by a mediator configured according
the need Need 3. As Need 3 exports to users Jim and Jack, only needs Need 1
and Need 2 can be normally be imported. Similarly to the import degree as-
pect, modeling an export group as a conjunction of classes allows to retrieve
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importable resources for a mediator by asking for synonyms and descendants of
the class representing its export degree value.

Notice that, differently from the ImportDegree, the ExportDegree must neces-
sarily contain the name of the user defining the need. This is motivated by the
fact that a user always exports to himself his own resources. However, a user
does not necessary import resources from himself.

MatDegree : this dimension specifies the materialization strategy to adopt within
a mediation system. This dimension may take the following two values, modeled
as atomic classes:

– Materialized: specifies that the materialization is allowed in all mediators
composing the mediation system. Retrieved data can be materialized at the
mediator level as well as into its imported resources. When data freshness is
not a priority, this allows for a faster data retrieval.

– NoMaterialized: specifies that no materialization is allowed. This corresponds
to a fully virtual approach and only non-materializing resources will be im-
ported.

In order to respect the needs containment, the following subsumption relation
is stated:

NoMaterialized � Materialized

stating that a materialized mediator can import materialized as well as non-
materialized resources, but not viceversa.

IntDegree: this dimension specifies the integration degree for the mediator, which
may essentially take two possible values:

– Integrated: specifies that the mediator provides the user with an integrated
global representation over underlying resources. This latter corresponds to
the mediation ontology which is built as a subgraph of the domain ontol-
ogy. A mediator configured in such a way can import integrated as well
as non-integrated resources. This strategy is typical adopted in approaches
providing a transparent access to underlying local sources, e.g. centralized
mediation systems.

– Non-integrated: specifies that the mediator provides the user with a non-
integrated global representation. The mediation ontology consists of a set
of local ontologies. This feature can be interesting for expert users, which
prefer to deal with local sources, or in highly distributed mediation systems,
where no integrated global representation is required. In this approach, only
non-integrated resources can be imported. This feature enables peer-to-peer
mediation systems.

In order to respect the need containment, the following subsumption relation is
stated:

Non-integrated � Integrated
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stating that an integrated mediator can import non-integrated as well as inte-
grated resources, but not viceversa.

Given a new needs expression definition Need i, a new class Architecture i is
defined. Here is an example:

Architecture i ≡ ∃hasImportDegree.(Jim ∨ Jack) ∧
∃hasExportDegree.Jim ∧
∃hasMatDegree.Materialized ∧
∃hasIntDegree.Integrated

stating that the corresponding mediator imports previously defined mediators
from users Jim and Jack, but can be reused only by Jim. Materialization is
allowed and the mediator provides an integrated view over underlying resources.

3.3 Source Preference

Source preferences are modeled in the needs expression ontology as follows:

SourcePreference ≡ ∃hasQuality .Quality ∧
∃hasAvailability .Availability ∧
∃hasCost.Cost

where Quality, Availability and Cost represent three metadata sub-categories. No-
tice that these aspects are given for explanation purpose. We do not propose in
this paper a source annotation model. Our goal is to show how to apply ontolo-
gies and reasoning tasks to model such kind of metadata and deduce knowledge
about it. Consequently, other pertinent aspects and categories could be used
instead, e.g. local source capabilities. In our approach this can be easily done by
simply modifying the needs ontology.

Quality: this metadata category specifies the required quality level for local
sources. The class Quality is defined as follows:

Quality ≡ ∃sourceQuality .Z ∧ ∃dataQuality .Z ∧
∃dataFreshness .Z

where sourceQuality, dataQuality and dataFreshness are integer attributes
modeling some possible quality criteria.

Availability: it describes the required availability level for pertinent local sources.
The class Availability is defined as follows:

AlwaysAvailable � Availability

TemporarilyAvailable ≡ Availability ∧
∃begin d .Z ∧ ∃end d .Z ∧
∃begin h.Z ∧ ∃end h.Z
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A selected source may be always available or in a period only. In our example,
the period is specified by four integer attributes. begin d and end d represent
respectively the first day and the last day of the period. begin h and end h
represent the initial and final hour of service in the day. This simple source
availability model could be easily improved by specifying more complex class
definitions and/or constraints.

Cost: this class is used to represent the cost of accessing a data source. It is
defined as follows:

Cost ≡ ∃fixedCost .Z ∧ ∃variableCost .Z ∧
∃connectionSpeed .Z

where the three attributes represent respectively fixed access cost, variable access
cost, e.g., euros per hour, and the connection speed for accessing the data source.

When a new needs expression Need i is defined, a new class SourcePreference i
representing source preferences is specified. Here is an example:

SourcePreference i ≡ ∃hasQuality .(∃sourceQuality .min3 ∧
∃dataQuality .min1 ∧
∃dataFreshness .max5) ∧

∃hasAvailability .(∃begin d .max1 ∧
∃end d .min31 ∧
∃begin h.max0 ∧
∃end h.min23) ∧

∃hasCost.(∃fixedCost .equal0 ∧
∃variableCost .equal0 ∧
∃connectionSpeed .min10)

where the user requires the source quality to be at least 3, data quality to be
at least 1 and data freshness no more than 5 days. Sources must be available 24
hours a day, during the month of January. They must be accessible for free and
provide a connection speed which corresponds at least to 10Mbps.

4 Mediator Configuration

Given a valid needs expression, represented within the needs ontology, a mediator
can be configured accordingly. Therefore, a needs expression is first analyzed in
order to identify pertinent metadata by exploiting reasoning tasks. Then the
corresponding set of ontologies, i.e., mediator configuration, is generated and
made available in a web repository for download. This allows a mediator to
access the repository in order to download its configuration at runtime. Thanks
to this approach, no mediator recompilation is needed, and the configuration
can be updated at any time.
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The remainder of this section focuses on the three main configuration steps
which are: architecture identification, mediators importation, candidate source
selection. For a lack of space, no details on the mediator ontologies generation
are given.

4.1 Architecture Identification

The first step of the mediator configuration consists of identifying the archi-
tecture of a mediation system. For doing so, firstly, the integration degree is
analyzed. According to its value, two main mediation system categories may be
identified:

– integrated mediation systems: the mediation ontology is built as a view over
the domain ontology. The domain ontology acts as a shared domain vocab-
ulary. Centralized knowledge-based mediation systems are included in this
category.

– non-integrated mediation systems: are characterized by a mediation ontology
consisting of a non-integrated view over a set of local sources ontologies.
It gives access to underlying sources by applying their local vocabulary.
Distributed knowledge-based mediation systems are in this category.

Fig. 5. Integration and import degrees

Secondly, the import degree aspect is analyzed. According to its value, com-
bined with the integration degree aspect, four main mediation systems architec-
tures can be identified (cf. Figure 5). If mediators importation is not enabled
(ImportNone), mediation systems are composed of only one mediator accessing
underlying local sources. When an integrated mediation ontology is defined (cf.
configuration 1 in the Figure), the resulting mediation system allows to emulate
a centralized architecture.If the mediation ontology consists of a non-integrated
view over local sources (cf. configuration 2), the mediation system represents a
kind of multidatabase system [13].
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If mediators importation is enabled, the mediation system may be composed
of more than one mediator. When a configured mediator provides an integrated
mediation ontology (cf. configuration 3), it may import both integrated and
non-integrated mediators as resources. This allows to build more complex archi-
tecture such as hierachical mediation in [11]. However, when a non-integrated
mediation ontology is adopted, imported mediators act as neighbour peers into
a distributed mediation system (cf. configuration 4). This allows to emulate ex-
isting knowledge-based distributed mediation systems.

Thirdly, after having identified all resources of the new configured mediator,
the way the mediator accesses them is analyzed. Two possible methods may be
applied to access imported resources 3:

– rewriting is needed when a mediation ontology X and a resource ontology
Y (mediator or wrapper) adopt two different vocabularies. In this case a
query expressed over the mediation ontology X (or a part of it) is rewritten
according to the target vocabulary Y by exploiting inter-ontology semantic
correspondences.

– dispatching is applied when a mediation ontology X and a resource ontology
Y adopt the same vocabulary. In this case no rewriting is needed and a query
(or a part of it) can be dispatched to the underlying resource for execution.

Independently of the mediation system architecture, a configured mediator is
always characterized by:

– a mediation ontology (integrated or not), acting as a global schema, and
– a set of resources accessible by rewriting and/or dispatching.

Therefore, a mediator can easily be adapted to several mediation system archi-
tectures. Figure 6 gives some architecture examples (rewriting is represented by
a continous arrow, while dispatching by a dashed one). For instance, in a central-
ized mediation system, a mediator X is configured so that all of its resources (i)
correspond to wrapped sources and (ii) are accessed by rewriting. This is due to
the fact that local sources are described by their own ontologies, independently
of the mediator vocabulary. On the other hand, building a distributed mediation
system means to cope with both mediators and wrappers as resources. The medi-
ator (or peer) X accesses its underlying local sources by dispatching queries. This
is due to the fact that each mediator in the distributed mediation system applies
the local vocabulary to describe underlying data. Therefore, accessing other me-
diators requires a rewriting task through inter-ontology correspondences. More
complex architecture can be configured, e.g. hierachical architecture allows to
exploit previously defined mediators as resources by dispatching (partial) queries
to them.

4.2 Mediators Importation

This task consists of identifying which running mediators can be imported as
resources by a new configured mediator. This task is performed by exploiting
3 Remember that resources are local sources and imported mediators.
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Fig. 6. Mediation system architectures

the concepts classification in the needs ontology. Let the need Ni be composed of
n aspects, whose values are represented by classes {Di1, ..., Din}. Let a mediator
Mi be configured according to the needs expression Ni. Given two needs N1 and
N2, if:

– ∀j={1..n} D1j ≡ D2j , then it is deduced that N1 ≡ N2. This means that M1
and M2 have equivalent characteristics and consequently M1 can be reused
by M2 as a resource and viceversa.

– ∀j={1..n} D1j * D2j , then it is deduced that N1 * N2. ADEMS interprets
such a relation as a needs containment, which means that a mediator M1 can
be reused by a mediator M2 as a pertinent resource.

In all other cases, N1 and N2 cannot be classified, and therefore, nothing can be
stated.

Given a set of independently defined needs expressions, they are automatically
classified by exploiting reasoning tasks. Let us suppose that two needs expression
are defined as follows:

Need 1 ≡ ∃hasConceptSet.ConceptSet 1 Need 2 ≡ ∃hasConceptSet.ConceptSet 2
∧ ∃hasArchitecture.Architecture 1 ∧ ∃hasArchitecture.Architecture 2
∧ ∃hasSourcePreference.SourcePref 1 ∧ ∃hasSourcePreference.SourcePref 2

ConceptSet 1 ≡ Person ∨ Car ∨ Job ConceptSet 2 ≡ Person ∨ Car

Architecture 1 ≡ Architecture 2 ≡
∃hasImportDegree.(Jim ∨ Jack) ∃hasImportDegree.(Jim ∨ Jack)

∧ ∃hasExportDegree.Jim ∧ ∃hasExportDegree.Jim
∧ ∃hasMatDegree.FullMaterialized ∧ ∃hasMatDegree.FullMaterialized
∧ ∃hasIntDegree.Centralized ∧ ∃hasIntDegree.Centralized

SourcePref 1 ≡ SourcePref 2 ≡
∃hasQuality .(∃sourceQuality .min3 ∃hasQuality .(∃sourceQuality .min3

∧ ∃dataQuality .min1 ∧ ∃dataQuality .min3

∧ ∃dataFreshness .max5) ∧ ∃dataFreshness .max2)
∧ ∃hasAvailability .AlwaysAvailable ∧ ∃hasAvailability .AlwaysAvailable
∧ ∃hasCost.(∃fixedCost .max10 ∧ ∃hasCost.(∃fixedCost .equal0

∧ ∃variableCost .equal0 ∧ ∃variableCost .equal0
∧ ∃connectionSpeed .min10) ∧ ∃connectionSpeed .min10)
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Subsumption allows to deduce the following relations:

ConceptSet 2 � ConceptSet 1 (8)

Architecture 2 ≡ Architecture 1 (9)

SourcePref 2 � SourcePref 1 (10)

The subsumption relation (8) is evident and does not require more expla-
nation. Identical architectural choices (9) give as result an equivalence relation
between classes Architecture 2 and Architecture 1. This equivalence has no im-
pact on the needs classification. In (10) SourcePref 2 is deduced to be subclass
of SourcePref 1. This is due to the fact that all of its role restrictions are more
restrictive or as much as the ones of SourcePref 2. For instance, the data fresh-
ness for Need 2, i.e., data must not be older than 2 days, is more restrictive than
the Need 1 one, i.e. days must not be older than 5 years. Therefore the following
subsumption relation is deduced:

Need 2 � Need 1

Now, let us suppose that architectural requirements for both needs were de-
fined differently:

Architecture 1≡ Architecture 2 ≡
∃hasImportDegree.(Jim) ∃hasImportDegree.(Jim ∨ Jack)

∧ ∃hasExportDegree.Jim ∧ ∃hasExportDegree.Jim
∧ ∃hasMatDegree.FullMaterialized ∧ ∃hasMatDegree.FullMaterialized
∧ ∃hasIntDegree.Centralized ∧ ∃hasIntDegree.Centralized

Given the fact that the mediator M1 can import resources from Jim, but not
from Jack, the following subsumption relations are deduced:

ConceptSet 2 � ConceptSet 1

Architecture 2 " Architecture 1

SourcePref 2 � SourcePref 1

therefore, Need 2 and Need 1 cannot be classified and the mediator M2 will not
be deduced to be a potential resource for M1.

A similar effect can be obtained if a disjointness relation between the two needs
can be inferred for at least one aspect. Let us suppose that source preferences
for both needs were defined as follows:

SourcePref 1 ≡ SourcePref 2 ≡
∃hasQuality .(∃sourceQuality .min3 ∃hasQuality .(∃sourceQuality .min3

∧ ∃dataQuality .min1 ∧ ∃dataQuality .min3

∧ ∃dataFreshness .max5) ∧ ∃dataFreshness .max2)
∧∃hasAvailability .AlwaysAvailable ∧∃hasAvailability .AlwaysAvailable
∧∃hasCost .(∃fixedCost .equal5 ∧∃hasCost.(∃fixedCost .equal0

∧ ∃variableCost .equal0 ∧ ∃variableCost .equal0
∧ ∃connectionSpeed .min10) ∧ ∃connectionSpeed .min10)



Configuring Intelligent Mediators Using Ontologies 569

Due to their incompatible values for the aspect fixedcost, SourcePref 2 and
SourcePref 1 are deduced to be disjoint classes. Consequently Need 2 and Need 1
cannot be classified.

4.3 Candidate Sources Selection

A candidate source is a source that respects user-defined source preferences in
the needs expression, i.e., availability, quality and cost requirements, but it does
not necessarily fulfil the view definition, i.e. concept set. We refer as a pertinent
source, a candidate source which also respects the user-defined view definition.

Metadata about sources is modeled within the source metadata ontology,
whose structure is quite similar to the source preference category in the needs
expression ontology. Let us imagine that the source metadata ontology contains
the following two definitions:

Source 1 ≡ Source 2 ≡
∃hasQuality .(∃sourceQuality .equal3 ∃hasQuality .(∃sourceQuality .equal1

∧ ∃dataQuality .equal10 ∧ ∃dataQuality .equal1
∧ ∃dataFreshness .equal1) ∧ ∃dataFreshness .equal5)

∧∃hasAvailability .AlwaysAvailable ∧∃hasAvailability .AlwaysAvailable
∧∃hasCost .(∃fixedCost .equal5 ∧∃hasCost.(∃fixedCost .equal0

∧ ∃variableCost .equal0 ∧ ∃variableCost .equal0
∧ ∃connectionSpeed .equal15) ∧ ∃connectionSpeed .equal10)

∧∃hasKeyword .Person ∧∃hasKeyword .Car
∧∃hasKeyword .Car ∧∃hasKeyword .Motorbike

The set of candidate sources, is retrieved by executing a reasoning-based query
over the source metadata ontology. This query is built by using knowledge about
user-defined source preferences in the needs expression.

In integrated mediation systems, candidate sources are firstly retrieved by
comparing the source preferences with metadata contained within the source
metadata ontology. This is done by defining a new class based on the user-
defined source preferences. Here is an example:

SourcePref 1 ≡ ∃hasQuality .(∃sourceQuality .min3 ∧
∃dataQuality .min1 ∧
∃dataFreshness .max5) ∧

∃hasAvailability .AlwaysAvailable ∧
∃hasCost.(∃fixedCost .max5 ∧

∃variableCost .equal0 ∧
∃connectionSpeed .min10)

The candidate sources are retrieved by asking for synonyms and descendants
of this class definition over the source metadata ontology. In our example, a
query based on the class SourcePref 1, retrieves the source Source 1 only. Once
candidate sources are discovered, pertinent ones are identified by exploiting the
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concept set information and semantic correspondences. This task is performed
during the generation of the mediator configuration ontologies.

In non-integrated mediation systems, the pertinence of sources can be verified
during the candidate sources retrieval. This is made possible by the presence of
source annotations as a set of keywords. Let us illustrate this aspect with an
example:

SourcePref 1 ≡ ∃hasQuality .(∃sourceQuality .min3 ∧
∃dataQuality .min1 ∧
∃dataFreshness .max5) ∧

∃hasAvailability .AlwaysAvailable ∧
∃hasCost.(∃fixedCost .max15 ∧

∃variableCost .equal0 ∧
∃connectionSpeed .min10)

∃hasKeyword .(Person ∨ House)

In this example, source preferences establish that the fixed cost must not ex-
ceed 15. This would make both sources Source 1 and Source 2 two valid candi-
date sources. In order to identify pertinent sources, the concept set information
is exploited to filter pertinent sources thanks to their keywords annotation. For
example, let us suppose that the specified concept set in the needs expression
corresponds to (Person ∨ House). The query SourcePref 1 is modified in order
to take into account the concept set information as shown above. This allows to
deduce that the only pertinent source is Source 1 (Person * Person ∨ House).
Clearly this requires a source annotation effort in terms of the domain ontol-
ogy vocabulary. Anyway, if the keywords information is not available for each
source description, or deduced sources do not satisfy the user expectatives, a
non-integrated mediation system requires the user to manually select pertinent
sources among candidate ones.

5 Implementation and Validation

We have implemented prototypes of the service and of the general purpose medi-
ator. They have been implemented by using the Java platform and by exploiting
the RACER [14] inference engine. RACER allows for an efficient SHIQ(D) on-
tologies management, and permits importing their description in several emerg-
ing standard languages such as OWL4 and DAML+OIL5. RACER allows us to
guarantee sound and complete reasoning tasks and provides highly optimized al-
gorithms for terminology classification and reasoning on concrete datatypes [15].

Our approach has been validated in the context of computer assisted instruc-
tion (CAI) through the configuration of an integrated mediation system named

4 W3C-OWL - http://www.w3.org/2004/OWL/
5 DAML+OIL - http://www.daml.org/
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SKIMA [16]. A graphical application, built on top of a configured mediator gives
a transparent access to distributed material, e.g. documents. The domain ontol-
ogy represents concepts and relations regarding the PI (programmed instruction)
context, e.g. course, learner, section, document, exercise. Sources are modeled via
a SHIQ(D) representation and integrate, via semantic correspondences, data
about students and teachers, available courses with associated material and ex-
ercises. Students work through the programmed material by themselves at their
own speed and after each step test their comprehension by answering questions.

We are currently conducting a validation experience in bioinformatics in the
context of the Mediagrid project[17]. Mediagrid provides an infrastructure for
giving a transparent access to biological sources. Using such an infrastructure,
biologists can correlate expression levels of a gene and observe their evolution
using data stored in a set of distributed data sources. Our goal is to exploit the
ADEMS service in order to configure knowledge-based mediators being:

– able to exploit the current Mediagrid query evaluation capabilities, and
– adaptable to biologists needs in terms of view of interests over a biological

domain ontology, architectural requirements and sources preferences.

6 Conclusions

This paper shows how to use ontologies for describing metadata and config-
uring mediators in an intelligent way. Given a user needs expression, ADEMS
configures a mediator by generating a set of ontologies describing its necessary
metadata. Reasoning tasks are also fully exploited for processing queries ex-
pressed in terms of the mediation ontology entities. Satisfiability and subsump-
tion checking allow for query consistency verification and containment. Moreover,
the knowlege-based query processing allows to enable approximative as well as
partial query plans generation.

Being our approach strongly based on reasoning tasks, performances of the
mediator configuration process are tightly related to the efficiency of the ex-
ploited reasoner. Currently, our approach allows fast metadata classification and
mediator configuration, thanks to our metadata model and the use of RACER
that provides efficient reasoning algorithms. More tests still have to be done in
the presence of a very large amount of metadata. Recent research works, aiming
to provide efficient reasoning algorithms on large ontologies, let us believe that
future advances of inference engines will enable large-scale knowledge manage-
ment. Future improvements in this research domain will validate our approach
on huge number of data sources providing important volumes of distributed data.
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1 Introduction

Ontologies, formal specifications of domains, have evolved in recent years as a lead-
ing tool in representing and interpreting Web data. The inherent heterogeneity of Web
resources, the vast amount of information on the Web, and its non-specific nature re-
quires a semantically rich tool for extracting the essence of Web source content. The
OntoBuilder project [5] supports the extraction of ontologies from Web interfaces, rang-
ing from simple Search Engine forms to multiple-pages, complex reservation systems.
Ontologies from similar domains are then matched to identify ontology mappings.

Given a sample form, filled by the user, and given a new form, from another Web site,
OntoBuilder finds the best mapping between the two forms. This, in turn, can serve a
system in automatically filling the fields, a sort of a query rewriting.

Unlike systems such as Protégé [2] OntoBuilder enables fully-automatic ontology
matching, and therefore falls within the same category as GLUE [1]. The use of on-
tologies, as opposed to relational schema or XML, as an underlying data model allows
a flexible representation of metadata, that can be tailored to many different types of
applications. OntoBuilder contains several unique matching algorithms, that can match
concepts (terms) by their data types, constraints on value assignment, and above all, the
sequencing of concepts within forms (termed precedence), capturing sequence seman-
tics that reflect business rules.

2 Overview of OntoBuilder

OntoBuilder was developed using Java, which makes it portable to various platforms
and operating system environments. OntoBuilder generates dictionary of terms by ex-
tracting labels and field names from Web forms, and then it recognizes unique relation-
ships among terms, and utilize them in its matching algorithms. There are two types
of relationships OntoBuilder is specifically equipped to deal with, namely composition
and precedence. The latter is discussed later in this section.

OntoBuilder is a generic tool and serves as a module for several projects at the Tech-
nion. For example, we have designed a framework for evaluating automatic schema
matching algorithms [4], and we use OntoBuilder both for evaluation and for improving
our methodology. This framework provides a sufficient condition (we term monotonic-
ity) for a matching algorithm to generate “good” ontologies. Our empirical results
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Fig. 1. AA versus Delta

with OntoBuilder show that its algorithms satisfy one of the forms of monotonicity
we present in [4]. Also, algorithms from OntoBuilder are being employed in an agent
negotiation protocol for trading information goods [6]. Finally, OntoBuilder is used as
a testbed for experimenting with simulataneous top-K mapping evaluation [3].

The rest of this section presents the main features and highlights of OntoBuilder,
focusing on the sequence semantics. The detailed description can be found in [5,7].
The process of ontology extraction and matching is divided into four phases. The input
to the system is an HTML page representing a Web site main page. First, the HTML
page is parsed and all form elements and their labels are identified. Next, the system
produces an initial version of global (target) ontology and local (candidate) ontologies.
Finally, the ontologies are matched to produce amapping.

Ontology matching aims at refining domain information by mapping various ontolo-
gies within the same domain. OntoBuilder supports an array of matching and filtering
algorithms. Additional algorithms can be implemented and added to the tool as plug-
ins. Algorithm parameters (such as weights) are specified using an XML configuration
file which can be edited using a user-friendly interface.

Ontology matching is based on term and value matching, the former compares labels
and field names using string matching, while the latter provides a measure of similarity
among domains, as reflected by constrained data fields, such as drop-down lists and
radio buttons. OntoBuilder provides several preprocessing techniques, based on Infor-
mation Retrieval well-known algorithms such as stoplists and dehyphenation. It also
supports automatic domain recognition and normalization to enhance the matching.

Once terms are extracted, OntoBuilder analyzes the relationships among them to
identify ontological structures of composition and precedence. We focus here on the
latter. Precedence determines the order of terms in the application according to their
relative order within a page and among pages. In any interactive process, the order
in which data are provided may be important. In particular, data given at an earlier
stage may restrict the availability of options for a later entry. For example, car rental
forms will present pickup information before return information. Also, airline reser-
vation systems will introduce departure information before return information. Such
precedence relationships can usually be identified by the activation of a script, such as
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Fig. 2. The OntoBuilder user interface

(but not limited to) the one associated with a SUBMIT button. It is worth noting that
the precedence construct rarely appears as part of basic ontology constructs. This can
be attributed to the view of ontologies as static entities whose existence is independent
of temporal constraints. It is our conjecture (supported by experiments) that precedence
reflects time constraints of the application business rules and thus can be used to match
better heterogeneous ontologies.

OntoBuilder employs unique algorithms for identifying structure similarity using
composition and precedence constructs. Structure similarity is determined based on
structure partitioning into subontologies, using terms as pivots, and comparison of sub-
ontologies. For example, using the precedence construct and two terms in two ontolo-
gies as pivots within their own ontology, OntoBuilder computes the similarity of sub-
ontologies that contain all terms that precede the pivots and also the subontologies that
contain all terms that succeed the pivots (recall that Web forms enforce complete order-
ing of fields). A higher similarity among subontologies increases the similarity of the
pivot terms themselves. This simple, yet powerful algorithm, has proven to be success-
ful in a series of experiments performed with OntoBuilder on variety of Web sites. For
example, consider Figure 1. The form of Delta airline reservation system contains two
time fields, one for departure and the other for return. Due to bad design (or designer’s
error), the departure time entry is named dept time 1 while return time is named
dept time 2. Both terms carry an identical label, Time, since the context can be easily
determined (by a human observer of course) from the positioning of the time entry with
respect to the date entry. For American Airlines reservation system (see Figure 1 on the
right), the two time fields of the latter were not labeled at all (relying on the proximity
matching capabilities of an intelligent human observer), and therefore were assigned,
using composition by association, with the label Departure Date and Return Date.
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The fields were assigned the names departureTime and returnTime. Term matching
would prefer matching both Time(dept time 1) and Time(dept time 2) of Delta
with Return Date(returnTime) of American Airlines (note that ‘dept’ and ‘depar-
ture’ do not match, neither as words nor as substrings). Value matching cannot differ-
entiate the four possible combinations. Using precedence matching, OntoBuilder was
able to correctly map the two time entries, since the subontologies of the predecessors
of Time(dept time 2) and Return Date(returnTime) match better than subontolo-
gies of other combinations.

OntoBuilder provides an easy to use environment for ontology authoring. Therefore,
it can be used to build ontologies from scratch or refine extracted ontologies. In order to
provide an intuitive interface to the user, the system implements common visualization
techniques such as graph representations and hyperbolic views for ontologies, Web site
maps, and document structures. Figure 2 provides a snapshot of OntoBuilder’s user
interface.

3 System Demonstration

We will demonstrate OntoBuilder using an easy-to-follow example of matching Car
rental ontologies. The system will create ontologies of car rental Web sites on-the-fly,
and combine them into a global ontology. The benefits of OntoBuilder in resolving, in
an automatic manner, semantic heterogeneity, including synonyms and designer errors,
will be highlighted. In particular, we will focus on the use of the precedence construct
in correctly identifying mappings.

OntoBuilder is available at http://ie.technion.ac.il/OntoBuilder.
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Abstract. Federated information systems integrate various heteroge-
neous autonomic databases and information systems. Queries respect to
the federation have to be translated into the local query language and
must be transformed with respect to the local data model. This paper
deals with the problem of a global query according to an object-relational
federation service. This SQL query is to be translated into an equivalent
XQuery expression, so that it can be processed by the corresponding
XML component database system according to the local schema.

1 Introduction

Federated database and information systems (FDBIS) represent system archi-
tectures for multidatabase systems [1]. In general, one characteristic of FDBIS is
that component database systems are not restricted concerning the underlying
data model or query language. As a result, the participants of the federation
may be very heterogeneous. A general architecture of a federation is shown in
Fig. 1.

The approach introduced in this paper deals with the heterogeneity between
the object-relational and the XML-based data model, for which the query lan-
guages SQL and XQuery are applied respectively. However, this paper does not
focus on transformation from XQuery into SQL, because there are several ap-
proaches and implementation techniques, for example considered in [4,10]. It
mainly focuses on the transformation of SQL into XQuery, for which two essen-
tial scenarios are possible.

In the first case, there is an XML-based federation service, which uses XQuery
as query language and an object-relational component database system, which
is accessed by a local application via SQL. If the local application queries the
federation with respect to the local schema, this statement has to be transformed
into XQuery and must correspond to the global schema. This scenario is handled
e.g. in [6].

In the second case, to which the introduced algorithm refers, the federation
service is based upon the object-relational data model, which is queried by SQL.
These SQL queries according to the global schema have to be transformed for
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Fig. 1. General architecture of a federation (according to [3])

every participant of the federation. In case of an XML database, every query
must be translated into an XQuery request respect to a single document or a
collection of XML documents.

Using a rule-based system for such a transformation, as described in [5] for
other languages, can cause an unreasonably high administration costs. An XML
database system (XMLDBS) usually does not manage only one document col-
lection which is valid relating to a schema, but uses a multitude of variably
structured documents and diverse schemata. On the contrary, rule systems are
static and cause problems within dynamic applications. However, as data, and
hence the underlying schema descriptions, of XMLDBS in most cases are changed
frequently, every modification would cause an adaptation of the rule system.

To counter these effects, this paper introduces an algorithm, which is able to
automatically perform such a transformation relating to diverse schema descrip-
tions. Former approaches need a valid XML and/or relational representation of
the data. E.g., [6] needs a predefined schema for the transformation. This ap-
proach uses only a set of paths as mapping description of a federation system. A
schema for the query transformation can be automatically and arbitrarily gener-
ated (it depends possibly on the federated system). Changing the schema causes
only the adaptation of the mapping between the local and the global schema; an
adaptation of the algorithm is not required. However, this paper only presents
the fundamental algorithm, which is restricted to the basic SQL statements.
This means, only elementary logical operators (e.g. <, >, =), which can be linked
with AND, OR, and NOT, are allowed for the clauses WHERE and HAVING. Further-
more, aggregate functions are possible within the HAVING clause. [7] goes into
details concerning the realisation of other SQL constructs (e.g., between, exists,
and contains) and describes further phases and problems occurring at query
processing in federated information systems.

The purpose of this algorithm is to generate a tuple (schema description,
XQuery statement) based on the mapping of the local schema onto the global
schema and of the SQL query with respect to the global schema. The XQuery
expression within the tuple represents the local equivalent of the global SQL
request and is queried respect to the document collection whose documents are
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valid according to the given schema. Then, the federation system sends this tuple
to the appropriate XML CDBS, which processes the request.

2 Query Processing

Starting point of the query processing is a SQL request in turns of the federation
service’s global schema. Assuming a semantics conserving mapping between the
local schema description and the global federation schema, a translation table is
created prior to the actual transformation. This table contains a list of all global
attribute names as well as the local schema’s corresponding path expressions,
which are assigned to the respective global attributes. The global SQL request in
conjunction with this translation table is the basis of the query processing, which
can be subdivided into four separate phases described below and demonstrated
with an example within the next section.

Phase 1

The first step of the algorithm analyses and classifies the query which must be
transformed. For this purpose all occurrences of global attribute names within
the query are determined and substituted with their corresponding path expres-
sion by applying the translation table. As a result of this substitution a list of
paths is generated, which can be interpreted as a tree structure. This tree, in the
following called query tree, represents a sub tree of that one that is described by
the underlying federated schema, and is restricted to that information, which is
relevant to the query.

The nodes of the created query tree are now tagged with three different flags,
which classify the query tree. These flags are called return elements, where ele-
ments and splitting nodes.

The return elements result from those path expressions, which occur within
the SELECT, GROUP BY, HAVING, and ORDER BY clauses after the substitution of
all global attribute names.

The WHERE clause of the query has to be processed to determine the where el-
ements. Because of a missing schema every element of the query tree has to be
considered as a potential list of path expressions. Therefore, by using the where
elements it is specified which part of the WHERE clause references which element
of the query tree. By regarding the selection condition as a conjunction of selec-
tion conditions, every conjunction term refers to the bottom element in the query
tree, which contains all occurring path expressions in the descendant-or-self axis.
Therefore, the WHERE clause is decomposed into a list of conjunctions via the dis-
tributive law. Consequently, this list consists of either disjunctions or atomic com-
parisons and would fit the primal WHERE clause if joined with AND. All elements of
the list include at least one path expression after the substitution of the global
attributes. Then, the most common path (mcp) is determined for every element
within the list. This one is the last element of the query tree, which includes all
elements of the current list element within the descendant-or-self axis. As a result
every mcp now represents a where element in the query tree.
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Finally, the splitting nodes have to be determined. Splitting nodes describe
nodes, which lead to a new FLWR expression within the result query for each
subtree of this node. Therefore, for each element of the query tree is checked,
whether it matches one of the patterns shown in Fig. 2. In case it does, the
element is marked as a splitting node. Pattern a) represents the context of the
query, that is that tree element, which contains all XML elements concerning the
request. Patterns b) to e) analyse, whether the current element includes where
elements as well as return elements within the descendant-or-self axis.

Fig. 2. Patterns of splitting nodes

Consequently, the result of the first transformation step is a tagged query
tree, which is shown exemplarily in Fig. 3. This tree represents the input for the
next phase of the transformation.

Phase 2

The second transformation step is a mapping algorithm which generates a For-
Let-Where-Return (FLWR) expression for every splitting node within the query
tree. The result is a nested XQuery statement representing the tagged query
tree. The mapping uses a top-down method by determining the first splitting
node beginning from the root element. This is the context node the SQL-query
refers to. The outermost FLWR expression is now composed of a for clause,
which declares the splitting node as context node, a where clause, which corre-
sponds to a conjunction of the selection conditions of the where elements, and
a return clause. For generating the return clause the descendant axis of each
node is checked, whether it contains return elements only; in this case, the re-
turn elements are output out directly as path expressions. If the descendant axis
includes a splitting node, it will be used as context node for a new FLWR state-
ment. Then, the mapping algorithm is repeated, whereby the context node is
considered relatively to the superior splitting node, and the where clause repre-
sents a conjunction of all where elements within the descendant-or-self axis of
the current splitting node. Fig. 3 shows an example of this mapping algorithm.
The XQuery statement generated during this second transformation step already
represents a relational SET-OF-TUPLE-OF structure. Consequently, the result
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R1

R2

Fig. 3. Example of a mapping

of the XQuery expression is a set of tuple elements, which are valid with respect
to the SELECT clause and contain the specified return elements to emulate the
relational SET-OF-TUPLE-OF representation. This structure is the basis of the
third transformation phase.

Phase 3

The third transformation step realises the optionally specified GROUP BY and
HAVING clauses. As the second phase already generated a relational structure, the
handling of these clauses is not a serious problem anymore. Thereby, this phase
is subdivided into two stages, because a HAVING clause is optional. The first par-
tial stage realises the grouping by generating a new FLWR statement, which uses
the output of the second transformation step as input. Here, every grouping at-
tribute is referenced within the for clause, so that an n-dimensional vector space
is spanned. Afterwards, every tuple element is assigned to a point inside this vec-
tor space via the let clause. Every non-empty point, that means a combination
of values at least one tuple element is assigned to, represents a grouping. There-
upon, by the return clause a result set is created which consists of a set of group
elements. A group element includes the grouping attributes as well as the tuple
elements, which have identic values regarding the grouping attributes.

Based on this generated structure the selection concerning theHAVING clause
can be realised. Again a FLWR expression is created, which uses the previous
one as input. Thereby, every group element is passed through sequentially by
using the group element inside the for clause as context node. The where clause
results directly from the HAVING clause; only the global attribute names must
be substituted with the corresponding paths and be considered relatively to the
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context node. The result set generated within the return clause matches that
one of the first stage. The procedure of this third transformation step is explained
graphically in Fig. 4.
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Fig. 4. Realisation of GROUP BY and HAVING clauses

Phase 4

The fourth transformation phase realises the possibly specified ORDER BY clause
as well as the SELECT clause, which may include aggregate functions and re-
namings. For this a new FLWR expression is generated again. Three different
circumstances have to be considered to determine the context node:

1. The global SELECT clause contains aggregate functions only and no at-
tributes. If a grouping exists, the aggregate functions refer to the result’s
group element, otherwise they refer to the result element, thus the whole
result set. In both cases, the aggregate functions refer to the parent node of
the tuple element.

2. The global SELECT clause contains attributes only, no aggregate functions.
If a grouping exists, the attributes have to be declared inside the GROUP BY
clause and consequently refer to the group element. In case of no GROUP BY
clause the attributes refer to every single tuple element. In both cases, the
attributes refer to all direct children of the result element.
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3. The global SELECT clause contains attributes as well as aggregate functions.
Hence a GROUP BY clause was specified with respect to those attributes that
occur within the SELECT clause as direct attributes. This also means that
these attributes are identical within all tuple elements of the grouping. Con-
sequently, this case is to be handled analogically to the second one.

The ORDER BY clause of the FLWR statement can be determined analogically to
the HAVING clause, which was described in the third transformation step. Now
the return clause contains aggregate functions, which are referenced directly
via Agg(/tuple/attribute), and attributes, which can be output immediately
via /attribute. Thereby, every output is enclosed in tags which are named
either after the attribute name, after the specified alias, or after the concate-
nation of the aggregate function name and the attribute name. The so defined
output is enclosed in <tuple> tags again. In this way, a SET-OF-TUPLE-OF
representation of the requested output is created.

The output generated during this phase represents the final result of the
query transformation. Now, the tuple (schema name, XQuery statement) can be
transmitted to the respective XML CDBS for evaluation. It is also possible to
optimise or minimise the XQuery expression first. There are several proposals,
[9] describes one of them.

3 Transformation Example

The described algorithm is demonstrated by an example in the following section.
Therefore, the following query example is used:

SELECT Name, Address->City AS City
FROM Hotels
WHERE Name LIKE "Beach%" AND

(Address->ZIP < 20000 OR
Address->City = "Freiburg")

GROUP BY Name, Address->City

During the first step of the transformation a list of all occurring path expressions
is determined. Based on the underlying schema description the list may look like
this:

hotels/hotel/name
hotels/hotel/address
hotels/hotel/address/zip
hotels/hotel/address/city

With this list of path expressions a sub tree of the underlying schema is de-
scribed, which is marked with where elements, return elements and splitting
nodes. In the example the return elements only result from the substituted
path expressions within the SELECT and GROUP BY clause. On the one hand, the
list of where elements contains the atomic comparison
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W1 = Name LIKE "Beach%",

on the other hand, it includes the disjunction

W2 = Address->ZIP < 20000 or
Address->City = "Freiburg".

After substituting all global attributes the most common paths of the where
elements are:

mcp(W1) = hotels/hotel/name,
mcp(W2) = hotels/hotel/address.

By applying the patterns in Fig. 2 three splitting nodes can be derived from
this result. This transformation step as well as the marked query tree and the
resulting splitting nodes are shown in Fig. 5.

The second step of the transformation uses the marked query tree in Fig. 5
as input for the mapping algorithm. Starting from the root element the first
splitting node (hotels/hotel) is determined as context node, whereupon the
first FLWR expression is generated accordingly. As both child elements also
contain splitting nodes, two FLWR expressions are generated for them. These
new expressions are positioned relatively to the first splitting node. Within these
splitting nodes, the return elements can be directly referenced as a result. This
transformation phase is illustrated in Fig. 6

As a result of the generated XQuery expression a structure is created, which
is valid respect to the following generic DTD:

<!ELEMENT result (tuple*)>
<!ELEMENT tuple (Name, City)>
<!ELEMENT Name ANY>
<!ELEMENT City ANY>

From this DTD it is recognisable, that the step already created a relational
SET-OF-TUPLE-OF representation of the primary hierarchic structure. This
structure is used again as an input for the third transformation step, which
implements the grouping. Therefore, a new FLWR expression, consisting of a
let and return clause, is generated. Within the let clause a variable is bound
to the output of the second transformation step, which is rearranged within
the return clause. This is done by generating a new FLWR statement, which
references the grouping attributes inside the for clause as well as name and city.
As a result, every possible combination of both attributes is considered. After
that, those tuple elements, which contain the same combination of values, are
assigned to every combination inside the let clause. Finally, within the return
clause is ensured that no empty combinations are accepted for the result and a
group element is created. The latter consists of the combination of all values as
well as of those tuple elements which contain the respective combination. This
grouped structure is used as an input for the fourth step of the transformation.
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address

SELECT Name,    Address->City

FROM Hotels

WHERE Name LIKE “Beach%“ AND

(Address->ZIP < 20000 OR Address->City = “Freiburg“)

GROUP BY Name,    Address->City

global schema - XML schema description

Name - hotels/hotel/name
Address - hotels/hotel/address
Address->City - hotels/hotel/address/city
Address->ZIP - hotels/hotel/address/zip

return element

where element return element

where  element

splitting node

ZIP<20000 OR
City = ’Freiburg’

Name LIKE
“Beach%“

Fig. 5. Process of the first transformation step

Based on the case differentiation concerning the SELECT clause, the second
condition is fulfilled (the SELECT clause contains only attributes, but no ag-
gregate functions). Hence, the selection is applied to the child elements of the
result element, which is the tuple element in the example. The just generated
FLWR expression references the tuple element as context node, and the selection
attributes can be output inside the return clause directly. The XQuery state-
ment created during this transformation step represents the overall result of the
transformation algorithm1:

for $final in (
let $result :=(
<result>

{ for $a1 in hotels/hotel
where $a1/name LIKE "Beach%" and

($a1/address/zip < 20000
or $a1/address/city = "Freiburg")

return
<tuple>
{ for $a2 in $a1/name

where $a2 LIKE "Beach%"
return

1 The LIKE operator acts only as an interim solution and has to be transformed in
accordance with the rules described in [7]. The corresponding XQuery expression
depends on the function fn:substring().
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Fig. 6. Process of the second transformation step

<Name> {$a2 } </Name>,
for $a3 in $a1/address
where $a3/zip < 20000 or

$a3/city = "Freiburg"
return

<City> {$a3/city } </City>}
</tuple>}

</result>)
return
<result>
{ for $groupBy1 in distinct-values($result/tuple/Name ),

$groupBy2 in distinct-values($result/tuple/City )
let $new := $result/tuple[Name = $groupBy1 and

City = $groupBy2]
return
if ($new != " ") then (

<group>
<Name> {$groupBy1 } </Name>
<City> {$groupBy2 } </City>
{$new }

</group> ) }
</result> )/child::node()

return
<tuple>
<Name> {$final/Name } </Name>
<City> {$final/City } </City>

</tuple>
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This XQuery statement along with the name of the corresponding schema can
be forwarded to the XML CDBS. Based on these information, the latter is able
to determine a document collection whose documents are valid respect to the
given schema and can apply the generated query to this collection.

4 Related Work

With the exception of the approach of Escobar et al. mentioned in Sect. 1, we are
not aware of other architectures which realise an algorithm for transforming SQL
queries into XQuery statements. Though, there are many commercial systems
which integrate disparate data sources (in most cases (object-)relational and
XML-based data) into a global schema, these systems either allow only one
query language according to the global data model or they forward the XQuery
and SQL statements only to the corresponding data sources.

The commercial BizQuery Suite by ATS [2], for instance, is a software sys-
tem for virtual integration of disparate data, which are provided by a unified
XML-based view. In this way, XQuery requests across multiple data sources are
possible, but no transformation of SQL into XQuery statements is performed.
The same approach is realised by the first type 4 JDBC driver for XML files
by Sunopsis [8]. The driver loads (upon connection or user request) the XML,
EDI or IDoc structure and data into a relational schema, using an XML to SQL
mapping. After that, the user works on the relational schema, manipulating data
through regular SQL statements or specific driver commands. Upon disconnec-
tion or user request, the XML driver is able to synchronise the data and the
structure stored in the schema back to the XML file. Similar to the BizQuery
system the JDBC driver implements the querying according to heterogeneous
data sources by mapping the data into a global schema, which is either object-
relational or XML-based, but not by translating the requests.

5 Summary and Future Prospects

The aim of the introduced algorithm is the fully automatic transformation of a
global SQL request into an equivalent XQuery expression which can be delivered
to an XML component database system with relating to an XML document col-
lection. The only precondition for that is a semantics conserving mapping of the
local schema description onto the federation service’s global schema. Based on
this mapping and the current SQL request, the corresponding XQuery statement
is generated. The presented example of such a transformation demonstrates the
application of the algorithm.

However, the algorithm as introduced here is restricted to simple structured
queries and was implemented prototypically to demonstrate the feasibility in
principle. The realisation of further constructs, as for instance the LIKE operator
or nested queries, is discussed in [7]. The application to SQL extensions is also
imaginable. An interesting SQL extension in this context is MM/Full-Text. By



588 H. Jahnkuhn et al.

the provided information retrieval techniques, which allow comparisons with
stemming or distance based queries, the full-text supplement of XQuery could
also be realised by this algorithm.

References

1. Bell, D., Grimson, J.: Distributed Database Systems. Addison-Wesley (1992)
2. BizQuery: A Software System for Virtual Integration of Disparate Data. ATS.

http://www.atssoft.com/products/bizquery.htm (22 August 2005)
3. Sheth, A. P., Larson, J. A.: Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Surveys, Vol. 22,
No. 3 (September 1990)

4. DeHaan, D., Toman, D., Consens, M.P., Özsu, M.T.: A comprehensive XQuery to
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Abstract. Adaptive query processors make decisions as to the most
effective evaluation strategy for a query based on feedback received while
the query is being evaluated. In essence, any of the decisions made by
the optimizer (e.g., on operator order or on which operators to use)
may be revisited in an adaptive query processor. This paper focuses on
changes to physical operators (e.g., the specific join operators used, such
as hash-join or merge-join) in pipelined query evaluators. In so doing,
the paper characterizes the runtime properties of pipelined operators in
a way that makes explicit when specific operators may be replaced, and
that allows the validity of operator replacements to be proved. This is
illustrated with reference to the substitution of join operators during
their evaluation.

1 Introduction

The execution plan of a query describes how the query is to be evaluated. The
plan makes explicit the decisions made by the query optimizer, e.g., with respect
to the order of evaluation of operators, the algorithms and auxiliary data struc-
tures to be used, the allocation of plan fragments to resources, and the level of
partitioned parallelism. An adaptive query processor (e.g., [5]) may revise any
of these different kinds of decision at query runtime.

Many proposals have been made for adaptive query processing techniques
(see [2] for a recent survey). However, few of the proposals provide a formal
characterization of the adaptations undertaken, and thus the validity of the
runtime changes proposed is rarely addressed in a rigorous manner. We cannot
point to any cases in which published adaptive strategies have subsequently been
shown to produce incorrect results, but contend that certain forms of adaptation
may benefit from a more formal approach. We observe that adaptive strategies
may be associated with complex protocols for halting, revising and resuming
execution plans (e.g., [14]), and that certain categories of runtime change may
only be fully explored when the safety net of a formal foundation is in place. One
such category, which is the focus of this paper, is the replacement of operators
in pipelined query plans.

In pipelined plans, which have been shown to be effective for increasing re-
source usage and reducing response times in parallel and distributed settings,
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many operators may be being evaluated simultaneously. As such, if a particular
operator is ineffective in a specific context, the replacement of that operator
without disrupting its suppliers or consumers may provide effective and focused
adaptation. However, during evaluation an operator may maintain internal data
structures, and at any point in time may have partially processed some of its in-
puts. This paper presents an approach to the description of partially-evaluated
operators that makes explicit the issues associated with in-flight operator re-
placement, and enables the validity of specific transformations to be proved.
This is illustrated with reference to the substitution of physical join operators.

We observe that operator replacement for pipelined evaluation has not been
extensively investigated to date. Several strategies that may lead to changes
in the physical operators used by a plan do not adapt during operator evalu-
ation (e.g., [15,9,8]). POP [10] explores several approaches to adaptation that
materialize the results of complete sub-plans, but when an operator is replaced
during its evaluation, the replacement operator starts evaluating from scratch,
thus repeating work that was done by its predecessor. Rio [3] tests the suitabil-
ity of an operator at a place in a plan by sampling and caching its inputs,
and, like POP, when an algorithm is replaced it is rerun from scratch over
its input buffers. This paper complements existing work by investigating finer-
grained operator replacement and by providing a formal characterization of the
changes made.

The remainder of the paper is structured as follows. Section 2 describes the
technical context for the material that follows. Section 3 provides a notation for
describing partially evaluated operators, characterizes the states in which an op-
erator can safely be replaced, and illustrates the overall approach by considering
the replacement of physical join operators, including a proof of validity for an
example transformation. Section 4 presents some conclusions.

2 Technical Context

This section defines some terms and notions that are used later in the paper.
A query plan P can be represented by a tree consisting of a set of query

operator nodes and a set of edges representing data that flows from child nodes
to parent nodes. Given a node N , PN denotes the sub-plan of P rooted at N .
Given a query plan P , [[P ]] denotes the result obtained by evaluating P .

In this paper, the nodes of a plan are considered to be drawn from a physical
algebra, i.e., one in which the node identifies the algorithm to be used. Examples
are presented later in the paper of adaptations where one physical join operator
replaces another. Five representative join algorithms, viz., hash join, nested-loop
join, merge join, index nested-loop join and symmetric hash join are considered.
An equality join condition and bag semantics are assumed throughout. Assume

that R is the left, and S the right, input of a join. Let
H
��,

NL
�� ,

M
��,

IN
�� and

SH
�� ,

respectively, denote the above physical join operators, the algorithms for which
are described briefly below:
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– Hash Join [7]: All R-tuples are read and stored in a hash table, indexed on
the join attribute(s). Then, each S-tuple is read in turn and used to probe
the hash table. Any matching R-tuples are retrieved.

– Nested-Loop Join [11]: Each R-tuple is read in turn and compared with
all S-tuples to find which ones match.

– Merge Join [11]: Given inputs sorted on the join attribute(s), the tuples are
read from either R or S in turn and to find which ones is S or R (respectively)
match.

– Index Nested-Loop Join [4]: Each R-tuple is read in turn and its join
attribute(s) are then used to search an index on S and retrieve the tuples
that match.

– Symmetric Hash Join (Pipelined Hash Join) [16]: Each tuple from
either R or S is read in turn and is both stored in the hash table for R (or S,
respectively) and used to to probe the hash table for S (or R, respectively).
Any matching R- (or S-) tuples (respectively) are retrieved.

In this paper, pipelined evaluation is assumed to be implemented using the
iterator model [7], which has three principal functions: Open, Next and Close.
The Open function prepares the operator for result production. The Next func-
tion produces the results one at a time, and the Close function performs clean-
ing up. When combined with communication operators such as exchange [6], the
iterator model supports pipelined parallelism.

A state-transition diagram can be used to capture the evaluation trace of
operators implemented using the iterator model. These states are labelled as
I, O, O′, N, N′, C and C′ in Figure 1.

Open() in progress
Open() returned

Open() concluded
Next called()

Next() in progress
Next() returned

Next() concluded
Close() called

Close() in progress

Next called()

Open() called Close() returned

I
C

′

O O
′

N N
′

C

Fig. 1. The state-transition diagram of an iterator

In this paper, the emphasis is on adapting query plans in the state N′, as other
states are either in-progress states or else are only reached before or after the
operator as a whole has been evaluated. In state N′, a call to the Next function
has been evaluated and its result returned. If the operator has not returned all
its results, the Next function will be called again, and the operator returns
to state N. On the other hand, if the operator has returned all its results, the
Close function is called and the operator moves to state C and then C′.

3 Replacing Physical Operators

This section presents an approach to the description and validation of operator
replacement for pipelined query plans. The following issues are addressed:
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1. The provision of a notation for describing partially evaluated query plans.
2. The identification of points during operator evaluation, referred to as quies-

cent states, in which the results produced by an operator in state N′ can be
defined precisely in terms of the inputs read by the operator up to then.

3. The description, for different physical operators, of the data produced and
the results that remain to be produced, in quiescent states.

4. The provision of an approach to proving that specific operator replacements
are result-neutral, i.e., that they have no effect on the result that is output.

3.1 A Notation for Partially Evaluated Query Plans

Expressions in logical or physical algebras, such as (R �� S), describe query
plans, but provide no way of describing the runtime properties of the plan,
such as the data produced by an operator at a point in time. To describe
not only the plan, but also its evaluation status, some additional notation is
introduced.

Given a sub-plan PN , let I be a child node of N.

– I+
[N :S] is the portion of [[I]] that has been returned by a previously made

call to the Next() function of I when node N is in state S, where S ∈
{I, O, O′, N, N′, C, C′}. Therefore, I+

[N :S] ⊆ [[I]].
– I−[N :S] is the portion of [[I]] that has yet to be returned to N by subsequent

calls to the Next() function of I. As a result, I = (I+
[N :S] ∪ I−[N :S]).

– last(I+
[N :S]) is the set containing the last tuple added into [[I+

[N :S]]].

3.2 Quiescent States

Section 3.1 provided a notation for describing the state of the inputs to an op-
erator during operator evaluation. However, the relationship between the input
read by an operator and the output produced by an operator at a point in time
may be different at different points in the trace, i.e., at different occurrences of

N′. Thus, during the evaluation of a hash join R
H
��S, the operator is in state

N′, and the inputs read by the algorithm are R+
[N :N′] and S+

[N :N′], where N is

the relevant instance of
H
�� in the plan. Assuming that the left operand is used

to populate the hash table, R+
[N :N′] = [[R]]. The tuples produced so far by the

algorithm may not be denoted by R+
[N :N′] �� S+

[N :N′], because the last tuple read
from S may join with many tuples in R. As such, the tuples produced by the
operator will only be R+

[N :N′] �� S+
[N :N′] if last(S+

[N :N′]) has been joined with every
matching tuple in R.

A quiescent state for an operator is one in which the result produced by the
operator in state N′ can be precisely defined in terms the input to the operator
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at that point in time. The test as to whether or not an operator is in a quiescent
state is operator-specific. To make possible a quiescence test, we extend the
interface to an operator with an isQuiescent function, which determines from
the internal state of the operator whether or not it is in a quiescent state.

Algorithm 3.1: Nested-Loop Join(Operator R, Operator S)

comment: R and S are the outer and the inner inputs, respectively
Tuple r, s, eof comment: the state of the operator

boolean procedure Open()
if (R.Open() and S.Open())

then
{

r ← R.Next() comment: set up the outer loop
return ( true )

else return ( false )

Tuple procedure Next()

while ( true )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ← S.Next()
if (s �= nil and r �= nil)

then

{
if (r.joinAtt() = s.joinAtt())
then return (concat(r,s))
else continue

else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: no s ∈ S to match with r ∈ R

r ← R.Next()
if (r �= nil)

then

⎧⎨⎩
comment: restart S

S.Close()
S.Open()

else
{
comment: R was consumed
break ;

return (eof ← nil)

boolean procedure Close()
if (R.Close() and S.Close())

then return ( true )
else return ( false )

boolean procedure hasNext()
return (eof �= nil)

boolean procedure IsQuiescent()
comment: returns true if the inner input been consumed
return (¬(S.hasNext()))
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The following are characterizations of the quiescent states for the example
join operators, assuming that R is the left, and S the right, input of a join.

– Hash Join: The last S-tuple read has been joined with all matching R-
tuples in the hash table.

– Nested-Loop Join: The last R-tuple read has been joined with all matching
S-tuples.

– Merge Join: The last R-tuple read has been joined with all matching S-
tuples and the join attribute value(s) of the next R-tuple is different from
that of the last R-tuple read.

– Index Nested-Loop Join: The last R-tuple read has been joined with all
matching S-tuples that were retrieved by a lookup on an index on S.

– Symmetric Hash Join: The last tuple read from either R or S has been
joined with all matching tuples in the hash table for S or R, respectively.

Algorithm 3.1 defines Nested-Loop Join(R,S) and formalizes the quiescent-
state test for this algorithm, viz., that a state is quiescent if there are no more
S-tuples to read (in that pass).

Related notions include moments of symmetry, from the work on eddies, which
determine when the order of the inputs to a join can be changed [1]; this is a
narrower notion than that of a quiescent state, as it defines conditions for a
specific adaptation. In [12], operators are classified, with respect to their ability
to participate in adaptations, on the basis of properties shared by groups of
algorithms (e.g., that they have fixed memory consumption); here, quiescent
states are used not so much to identify different forms of algorithm as to support
the algebraic-level description of operator states, as described in Section 3.3.

3.3 Describing Partial Results

When an operator is in a quiescent state, it is possible to define its result precisely
in terms of the data it has consumed. As a consequence, it is also possible to
define precisely the portion of the result that remains to be produced.

Table 1 describes both the intermediate results produced by the different
operators at quiescent states and the corresponding portion of the result that
has yet to be returned. As an example, for hash join with operands R and
S, at a quiescent state, every tuple that has been read into the hash table (i.e.,
R+

[N :N′] = [[R]]) has been joined with every tuple that has been read from the other
operand (i.e., S+

[N :N′]). To complete the evaluation, every tuple in R+
[N :N′] = [[R]]

needs to be joined with the tuples that have yet to be read from S (i.e., S−
[N :N′]).

A similar justification lies behind the other entries in Table 1.
When one join operator is to be replaced with another operator at a quiescent

state, the rightmost column in Table 1 describes the work that remains to be
done by the new operator. Section 3.4 describes how the validity of the entries
in Table 1 can be proved.
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Table 1. The intermediate result and the remainder of R �� S in a quiescent N′

Physical Join Operator (
X
��) Intermediate Result Remainder

Hash Join (
H
��) [[R+

[
H
��:N′]

��S+

[
H
��:N′]

]] [[R+

[
H
��:N′]

��S−
[
H
��:N′]

]]

Nested-Loop Join (
NL
�� ) [[R+

[
NL
�� :N′]

��S]] [[R−
[
NL
�� :N′]

��S]]

Merge Join (
M
��) [[(R+

[
M
��:N′]

− last(R+

[
M
��:N′]

)) [[(last(R+

[
M
��:N′]

) ∪R−
[
M
��:N′]

)

��(S+

[
M
��:N′]

− last(S+

[
M
��:N′]

))]] ��(last(S+

[
M
��:N′]

) ∪ S−
[
M
��:N′]

)]]

Index Nested-Loop Join (
IN
�� ) [[R+

[
IN
�� :N′]

��S]] [[R−
[
IN
�� :N′]

��S]]

Symmetric Hash Join (
SH
�� ) [[R+

[
SH
�� :N′]

��S+

[
SH
�� :N′]

]] [[(R+

[
SH
�� :N′]

��S−
[
SH
�� :N′]

)

∪(R−
[
SH
�� :N′]

��S+

[
SH
�� :N′]

)

∪(R−
[
SH
�� :N′]

��S−
[
SH
�� :N′]

)]]

3.4 Replacing Operators

To compute the remainder of the result, an adaptive system may choose to
replace an operator in a plan with one that it is predicted will perform better
in a specific setting. For example, a nested-loop join may have been selected by
the optimizer based on inaccurate predictions for the cardinalities of the inputs
to a join; if in practice the cardinalities used by the optimizer are revealed to
be underestimates, it may be appropriate to migrate to a hash join instead.
Alternatively, a hash join may have been assigned on the assumption that the
selectivity of the right hand operand was quite high; if it turns out to be low,
it may be more effective to complete the evaluation using an index nested-loop
join. There could also be resource restrictions that, e.g., lead to a hash table
within a join exceeding the available memory, which in turn leads to options
being explored such as changing to a join algorithm that uses less memory, e.g.,
nested-loop join.

In essence, with reference to Table 1, an operator in a quiescent state can be
replaced by any other operators if the remainder of the result can be computed.
The complete result is then the union of that produced by the original oper-
ator with that produced by the replacement operators; this union may not be
carried out explicitly, as replacement operators may simply be planted within a
suspended plan, which then resumes evaluation. The suspension and resumption
of plans has been discussed in the literature (e.g., [14]).

Using the notation from Section 3.3, the following rule could be used to in-
dicate that a nested-loop join can be replaced during its evaluation at a quiescent
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state by a hash join, where the value to be computed by the hash join is that

described in the Remainder column in Table 1. For any quiescent [
NL
�� : N′]:

[[R �� S]] = [[R+

[
NL
�� :N′]

��S]] ∪ [[R−
[
NL
�� :N′]

H
��S]] (1)

The decision as to whether or not a specific operator replacement is appropriate
in a context could be made with reference to a cost model that compares the
cost of completing the existing plan with the cost of changing from one plan to
another plus the cost for the evaluation of the replacement plan.

The next step is to prove that an operator replacement is result-neutral. To
do so, there are two proof obligations:

1. To show that the value of intermediate the join result from Table 1 in the
quiescent state N′ is correct.

2. To show that the union of the value produced by the original plan and the
value computed by the transformed plan provides a correct result for the
query.

Such proofs must be provided on a case-by-case basis, reflecting the fact that
different algorithms have different quiescent states, which leave different amounts
of work to be carried out by other algorithms. Due to limited space, proofs
are only provided for the replacement of a nested-loop join with a hash join
operator. Similar proofs for other physical join operators have been conducted
in an analogous manner but space constraints preclude their presentation here.

Proof by induction shows that, for a nested-loop join operator in a quiescent
state N′, the value of the intermediate join result is as stated in Table 1. Given

a sub-plan P
NL
��

, for all integers i ≥ 1, let N′(i) represent the i-th occurrence of
the quiescent state in the execution trace of this operator’s evaluation.

Theorem 1 (Value of the Intermediate Result for Nested-Loop Join)

[[P
NL
��

[N′(i)] ]] = [[R+

[
NL
�� :N′(i)]

��S]] (2)

Proof

Basis step: If i = 1, then (2) becomes:

[[P
NL
��

[N′(1)] ]] = [[R+

[
NL
�� :N′(1)]

��S]] (3)

Let the first matching tuple read from R be tr1 . Then, R+

[
NL
�� :N′(1)]

= {tr1}. Sub-

stituting R+

[
NL
�� :N′(1)]

in (3) yields:

[[P
NL
��

[N′(1)] ]] = [[{tr1}��S]] (4)
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which holds, because given that the quiescent-state test for Nested-Loop Join
in Section 3.2 is satisfied in the first quiescent N′, it follows that the first match-
ing tuple from R has been joined with all matching tuples in S.

Induction step: In a quiescent state N′, for any integer k ≥ 1, the induction
hypothesis states that:

[[P
NL
��

[N′(k)] ]] = [[R+

[
NL
�� :N′(k)]

��S]] (5)

Assuming (5), we prove that

[[P
NL
��

[N′(k+1)] ]] = [[R+

[
NL
�� :N′(k+1)]

��S]] (6)

Firstly, following from the quiescent-state test for Nested-Loop Join in Sec-
tion 3.2, the value of a sub-plan in the subsequent quiescent state to a quiescent

state k (i.e., [[P
NL
��

[N′(k+1)] ]]) equals the intermediate result at k (i.e., [[P
NL
��

[N′(k)] ]])
unioned with the result of joining the tuples in S with the most recently read
tuple of R (i.e., last(R+

[
NL
�� :N′(k+1)]

)):

[[P
NL
��

[N′(k+1)] ]] = [[P
NL
��

[N′(k)] ]] ∪ [[last(R+

[
NL
�� :N′(k+1)]

)��S]] (7)

Using the right-hand side of (5) to substitute [[P
H
��

[N′(k)] ]] in (7) gives:

[[P
NL
��

[N′(k+1)] ]] = [[R+

[
NL
�� :N′(k)]

��S]] ∪ [[last(R+

[
NL
�� :N′(k+1)]

)��S]] (8)

Since the value of symbol ([[ ]]) denotes the result set of evaluating a plan frag-
ment, two or more results can be unioned, so (8) becomes:

[[P
NL
��

[N′(k+1)] ]] = [[(R+

[
NL
�� :N′(k)]

��S) ∪ (last(R+

[
NL
�� :N′(k+1)]

)��S)]] (9)

From (9), by the distributivity of join with respect to union, it follows that:

[[P
NL
��

[N′(k+1)] ]] = [[(R+

[
NL
�� :N′(k)]

∪ last(R+

[
NL
�� :N′(k+1)]

))��S]] (10)

By the definition of the quiescence condition in Section 3.2, it follows that:

last(R+

[
NL
�� :N′(k+1)]

) � R+

[
NL
�� :N′(k)]

(11)
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Therefore, the left operand of the join in the right-hand side of (10) becomes:

(R+

[
NL
�� :N′(k)]

∪ last(R+

[
NL
�� :N′(k+1)]

)) = R+

[
NL
�� :N′(k+1)]

(12)

Substituting the right-hand side of (12) in (10) gives (6), as desired. #$

We note that this proof is independent of the join operator that is to replace the
nested-loop, and thus that the proof need not be repeated for different target

operators. Next, we have to prove that changing from
NL
�� to

H
�� is result-neutral.

Given a sub-plan P J , where J is quiescent in state N′, we show that replacing
J with J ′ is result-neutral when J is a nested-loop join and J ′ is a hash join.

Theorem 2 (Validity of Replacing Nested-Loop Join with Hash Join)

[[P J ]] = [[P J[N′] ]] ∪ [[P J′
]] (13)

Proof

According to Table 1, we get [[P J ]] = [[R
NL
�� S]], [[P J[N′] ]] = [[R+

[
NL
�� :N′]

��S]] and

[[P J′
]] = [[R−

[
NL
�� :N′]

H
��S]]. Substituting into (13) gives:

[[R
NL
�� S]] = [[R+

[
NL
�� :N′]

��S]] ∪ [[R−
[
NL
�� :N′]

H
��S]] (14)

Since the value of symbol ([[ ]]) denotes the result set of evaluating a plan frag-
ment, two or more results can be unioned, so (14) becomes:

[[R
NL
�� S]] = [[(R+

[
NL
�� :N′]

��S) ∪ (R−
[
NL
�� :N′]

H
��S)]] (15)

Assuming the correctness of Nested-Loop Join (i.e.,
NL
�� ) and Hash Join

(i.e.,
H
��) in implementing the semantics of logical join operation (i.e., ��), (15)

becomes:

[[R��S]] = [[(R+

[
NL
�� :N′]

��S) ∪ (R−
[
NL
�� :N′]

��S)]] (16)

From (16), by the distributivity of join with respect to union, it follows that:

[[R��S]] = [[(R+

[
NL
�� :N′]

∪R−
[
NL
�� :N′]

)��S)]] (17)

By the definitions of I+ and I− in Section 3.1, it follows that (R+ ∪R−) = R.
Substituting into (17) gives:

[[R��S]] = [[R��S]] (18)
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Thereby establishing (13), i.e., that replacing J with J ′ is result-neutral when J
is a nested-loop join and J ′ is a hash join. #$

We observe that no re-computation for the initial segment of the join result is
needed.

4 Conclusion

Adaptive query processing shows promise for improving the performance of query
evaluation, especially in settings in which available statistical information may
be unreliable or out-of-date.

This paper adds the following to existing results on adaptive query processing:

1. A notation for describing the properties of partially evaluated query plans;
this notation enables systematic and precise description of transformations
to query execution plans at runtime.

2. A demonstration of the use of the notation for describing changes to phys-
ical join operators within pipelined plans, including an example of how the
validity of such transformations can be proved.

The notation and proof strategies contributed in this paper can be generalized
to other pipelined physical operators. The paper is thus best thought of as con-
tributing a framework for such formal analysis task.

The above results seek to contribute to ongoing work on adaptive databases
by:

1. Encouraging the formal description of adaptations, thereby providing assur-
ances as to the correctness of changes made to execution plans at runtime.
Although a few adaptive strategies have received a formal treatment (e.g.,
[13] includes several proofs of properties of eddies and their extensions), such
a practice does not seem to be widespread.

2. Providing a formal underpinning for the replacement of physical operators
during their evaluation, thereby allowing finer-grained adaptations than have
been supported by most previous work that changes plans at runtime (e.g.,
[15,9,8,10]).

Acknowledgement. K. Eurviriyanukul thanks Rajamangala University of Tech-
nology Lanna, Chiang Mai, Thailand, for their financial support.
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Abstract. We describe the design and implementation of the linguistic query
language DDDquery. This language aims at querying a large linguistic database
storing a corpus of richly annotated historic German texts. We use a graph-based
data model that supports multiple independent annotation layers on a shared text
layer as well as alignments of text layers representing the same text or related
texts (e.g., translations). The corpus is stored in an object-relational database sys-
tem with a text retrieval extension.

DDDquery is based on XPath to leverage the familiarity of many users with
this language. It is translated to SQL in a two phase compilation with first order
logic as an intermediate language. This approach effectively decouples the query
language from the schema of the underlying corpus.

We provide an overview of DDDquery, the underlying ODAG data model, its
implementation as relational schema, the predicates of the intermediate language,
and describe both phases of the translation process.

1 Introduction

The project DDD1 is a large interdisciplinary project of linguists of historical Ger-
man, corpus linguists, computational linguists, and computer scientists for creating a
diachronic corpus of German, i.e., a collection of German texts ranging from the 8th
century to modern German carefully selected to cater linguistic research interests. Most
texts in the DDD corpus will be richly annotated, i.e., words will be annotated with
morphological, lexical, and grammatical information; sentences will be annotated with
their syntactic structure; and whole texts will be annotated with respect to the structure
of their content as well as with bibliographic and other meta-data [1].

In the DDD project, we are developing methods to store and manage large collec-
tions of richly annotated historic texts such as the Sachsenspiegel2 in an RDBMS [2].
The project is faced with non-tree-shaped annotation graphs and multiple annotation
hierarchies with conflicting structure that cannot be represented naturally in XML. For
instance, the logical organization of a text in sections, paragraphs, sentences, and words

1 www.deutschdiachrondigital.de
2 The “Sachsenspiegel” is the earliest code of common law written in German. The Heidel-

berg manuscript, a Middle High German version of the “Sachsenspiegel”, is available at
http://digi.ub.uni-heidelberg.de/cpg164; a detail is shown in Fig. 1

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 601–612, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Detail from page 1r of the “Heidelberger Sachsenspiegel”

often conflicts with the structure of its physical source (e.g., a manuscript) in pages,
lines, and whitespace-separated groups of characters: sentences may cross several lines,
logical words may be hyphenated etc. Historical linguists use several parallel text layers
(e.g., a so-called diplomatic version close to the original text witness, a more readable
normalized version, a word-by-word translation, alternative versions from different text
witnesses etc.) which need to be carefully aligned with each other (cf. Fig. 2). Searching
within text layers, in different annotation layers and across alignments in combination
with hierarchical and spatial relationships (e.g., precedence, inclusion, intersection of
text spans) poses further challenging requirements to the query language.

volgederwilku°nnenSwer lenrecht

Word Word Word Word

Line

Token Token Token Token Token Token

Sentence

Analysis

Article
gender=m
case=nom
number=sing

d~wilku°nnen volge dis

dis

Word

Line

Token

werlenrechtS

WordInitial

Normalized Text

DiplomaticText

... ...

...

...

...

...

...

...

Fig. 2. Exemplary annotation of the Sachsenspiegel (detail; cf. Fig. 1)

While in principle XML together with a reference mechanism such as XPointer can
be used to encode richly annotated corpora by means of so-called stand-off annota-
tion, we believe (with others [3,4]) that specialized data models are a more natural and
promising way to cope with the requirements of such corpora. Hence we have intro-
duced [5] the graph-based ODAG data model presented in Sec. 2 that extends the XML
data model. The particular requirements of linguists for querying corpora have led to
the development of various linguistic query tools and specialized query languages such
as CQP [6] and TigerSearch [7]. Recently, there have been proposals for XML-based
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linguistic query languages such as LPath [8]. While LPath is designed for querying tree
banks encoded in XML, we propose the query language DDDquery for querying richly
annotated corpora represented in our ODAG model. It goes beyond LPath by supporting
queries on text spans, on multiple annotation layers, and across aligned texts.

1.1 Requirements and Design Decisions

Our query language should build on an established and popular standard to leverage the
familiarity of users with this base language. We have decided to base the syntax of our
language on XPath due to its popularity, its simplicity (compared to XQuery) and the
similarity of our data model to XML. We need to extend XPath with linguistic query
operations such as projection through alignments and selection of text spans by content
(full-text retrieval) or according to spatial relationships (textual order).

As search results neither lists of whole documents (like in Information Retrieval) nor
linear sequences of nodes (like in XPath) are sufficient. A query needs to specify several
targets (e.g., a sentence together with a verb and noun phrase within this sentence)
the matches of which must be shown in their textual context together with selected
annotations. The result of a DDDquery query is a subgraph of the corpus where matches
of particular targets are specially tagged to facilitate highlighting by the presentation
layer that is in charge of formatting the results. Hence construction of arbitrary XML
documents (as supported by XQuery) is deliberately not offered by DDDquery.

While the DDD corpus will be stored in a object-relational database system, the
language should be independent from the implementation of this storage layer. Hence
we choose first-order logic over a fixed set of primitive predicates as an intermediary
language that abstracts from the underlying database schema.

With the corpus still in its planning stage, user requirements cannot be fully pre-
dicted. Hence we need an easily extensible language. Using the JavaCC and JJTree
tools facilitates syntactical extensions. New primitive predicates can easily be defined
in the logic-based intermediate layer in terms of SQL templates without changing our
logic-to-SQL compiler LoToS. Moreover, changes of the underlying relational schema
can be compensated to some extent by adapting the SQL templates.

1.2 Structure of the Paper

In the next section we discuss the underlying ODAG data model and how it is imple-
mented as relational schema. Then, in Sec. 3 we give an overview of DDDquery. The
intermediate language is presented in Sec. 4. Then we discuss the two translation phases
in Sec. 5 and Sec. 6 before we conclude the paper with Sec. 7.

2 The ODAG Linguistic Data Model

The principle elements of the ODAG linguistic data model are depicted in Fig. 3: Text
layers are represented by a text ID and the actual text content. Spans are continuous
intervals of texts, represented by their left and right border and by an optional score
(which may result from an approximate full text search). Elements, characterized by a
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+ id: int

+ text: String

Text

+ left: int

+ right: int

+ score: float

Span

+ name: String

Element

+ name: String

+ value: String

Attribute
1 within

0..1 refersTo

0..* 0..*

isChildOf

0..*1

describes

Fig. 3. The ODAG data model in form of an UML class diagram

name and further described by a set of Attributes, may refer to a span. An element may
have an ordered sequence of children and one or more parents, thus forming a DAG.
Cycles however are forbidden.

The relational schema presented here is a straight-forward implementation of this
data model. It is based on [9]. Text layers are stored in a table

text(id, content)
where content is a string (CLOB) storing the text of the text layer identified by
attribute id. ODAG elements are stored in table

element(id, name, tid, left, right, score)
where tid refers to the identifier of a text layer. If tid is not null, then the tuple
(tid,left,right,score) refers to a text span associated with the element.

The children of each element are stored in table
child(parent, pos, child)

where parent and child reference element.id and pos indicates the position of
a child within its siblings.

Since the ODAG data model generalizes XML to acyclic directed graphs, our storage
concept is based on a shredded interval-based storage scheme similar to [10]. In this
model, each document node is stored together with its so-called pre- and post-order
ranks. These ranks result from traversing the document tree depth-first and numbering
each node before (pre-order rank) and after (post-order rank) visiting its children. This
representation allows queries for the XPath axes to be translated into simple conditions
on rank-intervals. This approach has been generalized in [11] to support graph-based
data models such as ODAG. An ODAG element that can be reached on different paths
will be visited multiple times during a complete traversal of the ODAG. Hence for each
visit a different rank is attached to the element:

rank(element, pre, post)
Attribute pre stores a pre-order rank of the element referenced by attribute element
and attribute post stores the corresponding post-order rank.

The attributes of ODAG elements are stored in table
attribute(element, name, value)

An attribute is uniquely identified by the id of the element it describes (referred to by
attribute element) and its name.

3 Overview of the Query Language DDDquery

This section gives a brief overview of DDDquery. For a detailed presentation see [12].
DDDquery extends XPath to fulfill the linguists’ requirements and to handle the data
model outlined in Sec. 2.
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As in XPath, DDDquery’s fundamental language element is a path expression com-
posed of location steps. Each step consists at least of an axis and a node test and may
optionally contain predicates (which further constrain the set of matched nodes) and
variables (explained below). A path expression in a query matches a set of paths in the
corpus graph such that the steps match graph nodes and the axes describe the relations
between the respective nodes.

3.1 Complex Query Features

Linguists’ requirements [13] for corpus query languages include regular expressions on
path components and correlation of subqueries. For instance, sample query Q1 from [8]
“Noun phrases NP that immediately follow a verb V” (within the same Sentence S) can
be expressed in DDDquery using a shared variable $NP by

//S$S//V$V//immediately-following::NP$NP & $s//NP$NP

While this query can be expressed as well in LPath (but not in XPath), queries involv-
ing more complex correlations can not. Further features that go beyond LPath such as
alignments and multiple layers are supported using dedicated axes and elements.

3.2 Complex Search Results

Unlike XPath, where the path’s result is simply a sequence of nodes “pointed at” by
the path expression, DDDquery needs to offer more complex query results, e. g. context
information. Hence for each step the matching nodes can be selected for output by
binding the step to a variable. The variable name will be used to annotate the respective
nodes in the result, such that users and front-ends can recognize the mapping between
result nodes and query steps. The subgraph induced by the nodes selected for output will
be the result of the query. For example, //S$s//VP//NP$np selects all NP elements
which are descendants of VP elements which are descendents of S elements, but only
outputs the NP and S elements, marking them with “s” and “np”, respectively.

The purpose of DDDquery is to provide structured results containing all necessary
information needed for their presentation in a Web interface, but not to prepare docu-
ments in a presentation format such as HTML. Hence it does not provide constructs for
assembling arbitrary XML documents but returns the results in a fixed XML format,
which can then be post-processed using, for instance, XSLT.

3.3 Spans and Full Text Search

Spans (i. e. continuous intervals of text) are first class objects of the corpus data model.
They may be initially obtained either by following an association with an element node
or by a full text search in the document. We cope with spans by introducing special node
tests. For instance, DDDquery provides a node test exact-match(’Siegfried’)
which matches all text spans consisting of the exact string “Siegfried”. A similar test
is defined for regular expression matching, and the language is open for extension with
additional tests like a fuzzy text search.

To describe relations between spans there are respective axes like, e. g.,contained.
In particular, the semantics of the horizontal XPath axes like following and
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preceding have been adapted to refer to relations between spans. To allow navigation
from an element to the associated span and vice versa, we provide special axes. E. g.,
the path fragment

exact-match("XPath") / containing-element::sentence /
contained::exact-match("grammar")

navigates from a text span with the content XPath to a text span grammar which must
be contained in the same sentence.

3.4 Syntactic Sugar

Like XPath, DDDquery provides a simple, but rather verbose normative syntax able
to express all language features plus a set of abbreviations for common constructs.
In particular there are, like in LPath [8], shortcut symbols for axis steps using many
common axes (so a/following::b may be abbreviated as a --> b).

4 Intermediate Language

Queries in DDDquery are translated to an intermediate language called DDDlog that
is based on first-order logic with a fixed set of predicates. In DDDlog a query q is
defined as a horn clause H ← F . The head H = h(X1, . . . ,Xm) defines the variables
X1, . . . ,Xm as parameters of q. F is a Boolean formula defined recursively as F ::=
F1 ∨ F2|F1 ∧ F2|¬(F1)|p(t1, . . . ,tn)|p(t1, . . . ,tn)+. h and p are predicate symbols. The
call parameters t j are either constants or variables. The transitive closure operator ()+

provides a limited form of recursion that can be handled by current DBMS. A call
p(t1, . . . ,tn)+ is equivalent to a call r(t1, . . . ,tn) to a recursive predicate r/n defined as

r(X1, . . . ,Xn)≡ p(X1,X2, . . . ,Xn−1,Y ) ∧ (Y = Xn ∨ r(Y,X2, . . . ,Xn−1,Xn))

A query result is a substitution σ for all free variables in q such that the result Fσ ,
i.e., applying σ to F , is true.

A predicate is either a macro or a primitive. Macros are defined by a set of non-
recursive horn clauses, i.e., a macro defines an intensional database predicate. Macros
are expanded before query translation. Primitives are defined in terms of templates that
can be instantiated to SQL code. Templates are discussed in Sec. 6.

4.1 Representation of Corpus Nodes

The semantics of DDDquery is defined in terms of (corpus) nodes. Similar to document
nodes in XML there are different types of corpus nodes.

A corpus node is either a span, an instance of an element, or an instance of an at-
tribute. An element instance is an element together with a pre- and post-order rank for
this element and the optional span associated with this element. For each instance of
an element in combination with one of the element’s attributes there exists an attribute
instance. Since our FO-to-SQL compiler does not support polymorphic types, we rep-
resent all nodes by the same tuple type

(EltId,Name,Value,Pre,Post,TextId,Left,Right,Score)
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For spans only the last four components are not null. For element instances, component
Name stores the element name while value is null. For attribute instances, name and
value of the attribute are stored in the respective components. Attribute instances are
not associated with spans, hence the last four components are always null.

4.2 Predicates of the Intermediate Language

DDDlog defines a set of predicates for node tests (discussed in Sec. 5.1) and axis steps
(presented in Sec. 5.2). They are defined as macros building on other predicates: (i)
primitives providing the relational tables presented in Sec. 2 as extensional database
predicates, (ii) auxiliary predicates (s. Table 1) for accessing components of nodes, (iii)
basic predicates (s. Table 2) defining relationships between nodes, and (iv) primitives
providing access to various SQL functions.

Due to space limitations we cannot describe all predicates of the intermediate lan-
guage but must limit the presentation to some examples.

Table 1. Auxiliary Predicates

Predicate Definition
nodeRank(E,P,Q) E = (I,N,V,P,Q,T,L,R,C)
span(E,T,L,R,S) T �= null ∧ E = (I,N,V,P,Q,T,L,R,S)
elementId(E, I) E = (I,N,V,P,Q,T,L,R,C)

Table 2. Basic Predicates defined as macros

Predicate Definition
ancestor(A,D) nodeRank(A,PA,QA) ∧ nodeRank(D,PD,QD) ∧ PA < PD ∧QD < QA

immPrec(X ,Y ) span(X ,TX ,LX ,RX ,SX ) ∧ span(Y,TY ,LY ,RY ,SY ) ∧ TX = TY ∧ RX = LY

alias(X1,X2) X1 = (I,N,V,P1,Q1,T,L,R,C) ∧ X2 = (I,N,V,P2,Q2,T,L,R,C)

With the help of the auxiliary predicate nodeRank/3 we can define predicate
ancestor/2 as a relation on nodes. Similarly we can define spatial predicates such as
immPrec/2 on nodes that have spans on the same text layer. immPrec(X ,Y ) is satisfied
if the right boundary of the span of X coincides with the left boundary of the span of Y .

The predicate alias/2 tests whether two nodes are instances of the same element.
The textual content of a node associated with a span is computed by the primitive

predicate content(X ,S) that is defined by a SQL template since it needs to use the SQL
functionSUBSTR() for computing a substring of a text layer (s. Example 2 in Sec. 6.1).

For full-text retrieval we assume several primitives like matches(P,S,M) that take a
string P conforming to a certain syntax (e.g., for regular expressions) and a node S with
a span and return all sub-spans M that match P. Variants include predicates for matching
a pattern only against the whole span S or against prefixes or suffixes of S. Since SQL
and typical full-text retrieval extensions in existing database systems do not support
this type of operation well, we may need to support these primitives by appropriate
table functions.
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5 Translation to DDDlog

The DDDquery-to-DDDlog translation is implemented in JavaCC and JJTree.

5.1 Translation of Node Tests

Node tests are used to generate bindings for node variables. In Table 3 node tests for ele-
ment and attribute instances are presented that take an (optional) argument N specifying
the element/attribute name. Node tests for spans are treated in Sec. 5.3.

Table 3. Node tests

Predicate Definition
elementNode(N,E) element(I,N,T,L,R,C) ∧ rank(I,P,Q) ∧ E = (I,N,null,P,Q,T,L,R,C)
attributeNode(N,A) attribute(I,N,V ) ∧ rank(I,P,Q) ∧ A = (I,N,V,P,Q,null,null,null,null)

5.2 Translation of Axes

Each axis is implemented by a predicate that defines a node relation (s. Table 4) without
necessarily computing node bindings for the target nodes. Note that ancestorAxis/2

Table 4. Axis steps

Predicate Definition
childAxis(P,C) elementId(P,EP) ∧ elementId(C,EC) ∧ child(EP, ,EC)
parentAxis(C,P) elementId(C,EC) ∧ elementId(P,EP) ∧ child(EP, ,EC)
descendentAxis(A,D) ancestor(A,D)
ancestorAxis(D,A) elementNode( ,D′) ∧ alias(D,D′) ∧ ancestor(A,D′)

needs to find also ancestors A not on the path on which the descendent D has been
reached. Hence we need first to find all alias nodes D′ of D (i.e., all element instances
sharing the element with D, but representing different paths to reach this element).

5.3 Combination of Axis Steps and Node Tests

The primitives for text pattern matching mentioned in Sec. 4 conceptually combine an
axis step (e.g., computing all sub-spans of a span) with a node test (e.g., testing whether
the text content of a sub-span equals a given string). It would be extremely inefficient to
actually generate a large number of spans and then filter those spans satisfying the node
test. Hence we translate combinations of axis steps on spans and node tests involving
text pattern matching together. For instance, the query fragment

contains::exact-match(’word’)

is translated to a call exactMatchSubstring("word",S,M). The query fragment
following::re-match(’be.{1,5}en’)
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is translated to suffixAfter(S,T ) ∧ regexpMatchSubstring("be.{1,5}en",T,M)
where suffixAfter(S,T ) returns for a span S the suffix T of the whole text layer starting
at the right border of S.

In some cases, it is more efficient to bind spans in some other part of the query and
just test whether they match the pattern. This results in a different translation that avoids
to call a table function for text pattern matching. For instance,

contains::exact-match(’where’)/element::word
translates to elementNode( ,"word",W )∧ content(W,"where").

5.4 Example

The sample query//S$S//V$V//immediately-following::NP$NP & $s//NP$NP
introduced in Sec. 3.1 is translated to the following predicate definition:

Q1(S,V,NP) ≡ elementNode(’S’,S) ∧
ancestor(S,V ) ∧ elementNode(’V’,V ) ∧ immPrec(S,NP)
ancestor(S,NP) ∧ elementNode(’NP’,NP)

6 Translation from DDDlog to SQL

6.1 Templates

A primitive predicate p is defined by one or more templates T , each of which provides
an SQL implementation for a certain binding pattern that can be instantiated to an SQL
SELECT statement. The FO-to-SQL compiler combines these templates in such a way
that for every variable in a query there is a template that binds this variable. Primitives
are not necessarily extensional database predicates since their templates may combine
data from multiple tables of the underlying database and may contain calls to SQL
functions (e.g., for full-text search).

Definition 1 (Template)
A template T for a predicate p(a1, . . . ,am) has the form (A, I,R,σ ,τ,w) where

– A = 〈a1, . . . ,am〉 is the parameter vector of p.
– I ⊆ {a1, . . . ,am} is a set of input parameters that must be bound externally.
– O = {a1, . . . ,am}− I is the set of output parameters that can be computed by p.
– R = {r1, . . . ,rn} is a finite set of table aliases
– ER,I is the set of SQL expressions over aliases R and free variables I.
– σ : O → ER,I , the output substitution, assigns expressions to output parameters.
– τ : R → T ∪QR,I , the table assignment, assigns each table alias an element from

the set T of table names or from the set QR,I of sub-queries over R and I.
– w ∈ ER,I is an SQL condition that must be satisfied for each solution of p.

Example 1. The template for predicate element(E,N,T,L,R,C) may be defined as

Telement = (〈E,N,T,L,R,C〉,{e},σelement,{e �→ element}, true)
σelement = {E �→ e.id,N �→ e.name,

T �→ e.tid,L �→ e.left,R �→ e.right,C �→ e.score}
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A call to EDB predicate element, for instance element("e21",N,T,L,R,C), induces a
binding β for all (here: zero) input parameters and some output parameters, i.e., β (E) =
"e21". The template can be expanded then to the following SQL query which retrieves
the name and span for element "e21":

SELECT e.name, e.tid, e.left, e.right, e.score
FROM element e
WHERE e.id= "e21"

Example 2. The content of a span is the substring of the underlying text layer starting
from the left span boundary up to the right span boundary. The predicate content(T0,S,X)
is fulfilled if node X is associated with a span in text layer T0 whose content is string S.
The following template supports the binding pattern where X = (I,N,V,P,Q,T,L,R,C)
is given while T0 and S are requested:

Tcontent = (〈T0,S, I,N,V,P,Q,T,L,R,C〉,
{T,L,R},
{t},
{T0 �→ t.id,S �→ SUBSTR(t.content,L,R−L)},
{t �→ text},
(t.id= T AND T.id <> null))

6.2 Translation Algorithm

Although FO-to-SQL translation is standard textbook knowledge, we are not aware of
any ready-to-use implementation. Moreover, we wanted to support the transitive clo-
sure operator by using the recursive SQL constructs provided now by several DBMS.
Hence we developed the Logic To SQL compiler LoToS3 described in [14]. Depend-
ing on the underlying database system the transitive closure operator is translated into a
WITH RECURSIVE ... SELECT statement (e.g., DB2) or using the SELECT ...
CONNECT BY construct (Oracle).

6.3 Result Construction

Executing a DDDquery compiled to SQL produces a result table in which each tuple
represents the bindings of the query variables to corpus nodes. Our goal is to generate
a result document in which all relevant variable bindings are highlighted. Hence we
need a post-processing step in which the union of all variable bindings is computed and
sorted by pre-order rank to allow for the construction of a result document tree.

6.4 Example

The DDDlog representation of sample query Q1 (cf. Sec. 5.4) is translated by LoToS to
the SQL query listed in Table 5 that can be executed against a corpus stored using the
schema presented in Sec. 2.

3 Available at http://www.informatik.hu-berlin.de/ faulstic/projects/
DDD/software/LoToS/
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Table 5. SQL code for sample query Q1

SELECT
element1.id,
element3.id,
element2.id

FROM
element element1,
rank ancestor1,
rank descendant1,
rank ancestor2,
rank descendant2,
element element2,
element element3

WHERE element1.name="S"

AND element2.name="V"
AND element3.name="NP"
AND element1.id=ancestor1.element
AND ancestor1.element=ancestor2.element
AND descendant1.element=element2.id
AND descendant2.element=element3.id
AND ancestor1.pre=<descendant1.pre
AND descendant1.pre<ancestor1.post
AND ancestor2.pre=<descendant2.pre
AND descendant2.pre<ancestor2.post
AND (element2.tid IS NOT NULL)
AND (element3.tid IS NOT NULL)
AND element2.tid=element3.tid
AND element2.right=element3.left;

7 Conclusion and Future Work

We have given an overview of the linguistic query language DDDquery and its imple-
mentation. We are currently integrating the DDDquery parser developed in [12] with
the generic FO-to-SQL compiler LoToS [14] into a linguistic query processor. This
processor will be tested on a small sample corpus. Thorough performance tests on large
corpora need to be undertaken. Until a significant part of the DDD corpus becomes
available, we need to use synthetic data or data from existing corpora. Another open
point is how to support full-text retrieval on historic texts. The requirements of historic
linguists go beyond what is supported in typical full-text indexing solutions: proper
Unicode support, regular expression and substring matching, finding all matches within
texts rather than all matching texts etc. The two-phase compilation approach taken by
DDDquery allows to tune its relational implementation easily without touching the first
translation stage and the generic FO-to-SQL compiler.
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Abstract. In this paper, we propose a domain-specific query language called 
NeuroQL for the neuroscience domain. NeuroQL is designed primarily for 
neuroinformatics database users and aims to enable users to directly interact 
with neuroscience databases in their professional concepts and terms with the 
help of a conceptual data model. NeuroQL is DBMS independent and can be 
translated into traditional query language such as SQL, OQL and XQuery. It 
integrates some object-oriented features, and supports neuron domain-specific 
data types and query operators, which can dynamically evolve when the 
underlying database schema evolves.  

1   Introduction 

In recent years, neuroscientists have been accumulating data at an exponential rate. 
To accommodate this expansion of data, a variety of neuroscience databases have 
been developed to let neuroscientists store, retrieve, manipulate, and analyze their 
data. A list of neuroscience databases can be found at the society for Neuroscience 
website [2]. Usually users are provided a graphical query interface, through which 
users can create their queries. However the major problem of the query GUI solution 
is that it is application-dependent and supports limited types of queries. To provide a 
more flexible and powerful tool for neuroscientists to interface with neuroscience 
databases, we are proposing a neuron domain-specific query language (NeuroQL). 

The concept of domain-specific language (DSL) is not new. There are many 
domain-specific languages for different application domains. Best known are classic 
examples like PIC, SCATTER, CHEM, LEX, YACC, and Make, which are described 
in [6]. For a variety of domain-specific problems, domain-specific languages are more 
attractive than general-purpose languages (GPL) because of the features of easier 
programming, systematic re-use, and easier verification in DSLs [4, 5]. However, 
designing and developing a domain-specific language is not an easy task, sometimes 
it is even harder than developing the application itself. SQL can be considered as a 
domain-specific language focusing on the database domain. But it is still too general 
                                                           
* This work is funded in part by a Georgia State University Brains & Behavior Program, and by 
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and not application-user-friendly for life science database applications as mentioned 
above. So far, only a few domain-specific query languages (DS-QL) have been 
proposed [7, 8, 9] for life-science data. Hammer and Schneider proposed a high-level 
data model and object-oriented query algebra for genomic information [10]. However, 
none of them can be adapted or extended to neuroscience due to the significant 
difference on the underlying data structure and semantics. To our knowledge, no 
domain-specific query language exists for neuroscience. 

NeuroQL is motivated by the development of the NeuronBank system [1], which is 
an effort to develop an online reference source and informatics tool for exploring the 
vast knowledge of identified neurons and the circuits that they form. During the 
design of the NeuronBank system, neuroscientists expressed a desire of having a 
simple query language in their familiar concepts and terms so that they can query the 
database directly in a way close to their research language. This new query language 
will provide an advanced query function for experienced users as a supplement to the 
naïve query GUI, and should work on most types of DBMSs. Obviously, the current 
common query languages such as SQL, OQL [12], and XQuery [13] do not meet the 
requirements because they are all DBMS-dependent, and do not have built-in support 
to the neuroscience domain-specific data types and functions. Therefore, NeuroQL is 
designed for use by neuroinformatics database users, rather than the database 
administrators or developers. And it is mostly based on the neuron domain 
knowledge, unlike SQL and OQL that are based on the underlying relational database 
schema (see Fig. 1.). 

  
NeuroQL is a high-level canonical query language, whose basic idea was firstly 

introduced in [3]. The initial format and syntax of NeuroQL was proposed by the 
neuroscientists in our NeuronBank team. It integrates object-oriented concepts and 
supports most of neuron domain-specific data types, for example, neuron, soma, axon, 
and so on. These data types are systematically derived from the conceptual neuron 
data model - NeuroDM [3]. NeuroDM defines a small core data structure that holds 
on the neuron data in all species. It should not be changed in any neuron data model 
extension for an application. The underlying database schema is generated from 
NeuroDM as well. Thus, it is easy to set up the mapping between the database schema 
and the NeuroQL data types, which can dynamically update the data types in 
NeuroQL whenever the database schema evolves. NeuroQL also defines many 
 

SQL NeuroQL 

Relational DBMSs Neuron Domain 
Knowledge 

Fig. 1. The bases of NeuroQL and SQL 
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advanced neuron domain-specific query operators corresponding to the functions 
among some common objects in neuroscience. For example, the operator “bilateral” 
represents the bilateral function between two neurons, and the operator “project” 
represents the projection function from a neuron’s axon to a nerve. The conceptual 
and implementation architecture of NeuroQL is shown in Fig. 2. The domain-specific 
data types and query operators are the major constructs of NeuroQL so that the 
NeuroQL query statements are very close to the questions or queries that the 
neuroscientists ask in their research. 

 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2. The conceptual and implementation architecture of NeuroQL 

In NeuronBank system, NeuroQL is used in the Meta Search Engine (Fig. 3) to 
provide the advanced query functionality on integrated heterogeneous species 
databases. Although each species database represents the neuron data in different 
ways, they have the same core structure defined in NeuroDM. They can be built on 
different types of DBMS such as relational DBMS, object-oriented DBMS, and XML 
native database. The NeuroQL queries will be translated into corresponding SQL, 
OQL or XQuery queries according to the type of the underlying DBMS. 

 
Fig. 3. NeuroQL in NeuronBank 
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Overall, NeuroQL supports neuroscientists to query the databases using their 
professional concepts and operators after they understand the abstract conceptual data 
 

structures in the data models. We believe that understanding a conceptual data 
diagram (close to the users’ domain knowledge) is much easier than figuring out and 
remembering the details of the relational database schema, especially the referential 
constraints.  

2   Data Types and Query Operators in NeuroQL 

2.1   Data Types  

In addition to the common primitive data types, such as Integer, Float, Character, and 
Boolean, NeuroQL supports most of neuron domain-specific data types as well, such 
as neuron, soma, axon, nerve, ganglion, firing_pattern, connection, molecule, 
electrical synapse, chemical synapse, neuromodulation, and component. These 
domain-specific data types are systematically derived from the entities in the 
conceptual neuron data model. Fig. 4 shows an extension of NeuroDM used in the 
Tritonia species database of NeuronBank system.  

 

 

Fig. 4. An extension of NeuroDM [3] used in NeuronBank Tritonia species database 
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The algorithm translating a neuron data model into the data types of NeuroQL 
should be straightforward because it is similar to the process of converting an ER data 
 

model to the object-oriented classes. Following is an algorithm that generates the 
NeuroQL data types in the NeuronBank system from the NeuroDM, an extended ER 
data model with some OO features. 

NeuroQL_Data_Type_Generation_Algorithm: 

Input: NeuroDM 
Output: NeuroQL data types 
 
Begin: 
For each entity in NeuroDM 
   Create a new NeuroQL data type 
   For each attribute of the entity 
      If it is an atomic attribute 
         Create an atomic property 
      Else 
         Create a container property for that attribute 
   End of For    
   For each inheritance relationship 
      Inherit all properties and functions from the 
                super data type to the new data type 
   End of For    
   For each aggregation relationship 
      If the maximum number of members == 1 
         Create a new property for the aggregated data 
      Else 
         Create a container for the aggregated data 
   End of For    
   For each association relationship 
      Create a function returning the associated data 
   End of For 
End of For 
For each special table in NeuroDM 
   Create a new NeuroQL data type 
   For each column in the table 
      If it has an atomic data 
         Create an atomic property 
      Else 
         Create a container property for that attribute 
   End of For 
End of For 
End of Algorithm; 

Next is a data type example ‘neuron’ that is derived from the entity ‘neuron’ in 
NeuroDM. We adopt object-oriented concept in our data type definition as well. 
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Data Type: neuron 
 
   Properties: 
   //Properties derived from the entity ‘Neuron’ 
      neuronID                String 
      name                     String 
      synonym                 Set[String] 
      type                     String 
      genus                    String 
      species                  String 
      minSize                  Integer 
      maxSize                  Integer 
      functionCategory       String 
      remark                   String 
 
   //Properties derived from the aggregation  
   //relationships 
      itsSoma                     Soma 
      itsAxon                     Axon 
      itsFunctions               Set[Function] 
      itsElectrophysiology     Electrophysiology 
      itsMolecules               Set[Molecule] 
      itsFlaggedFeatures        Set[String] 
    
   Functions: 
   //Functions derived from the association  
   //relationships 
      Neuron  bilateral(); 
      Set[Neuron]  homologue(); 
      Set[Neuron]  contains(); 
      Set[Connection]  connect_neuron(Neuron); 

Since the mapping between NeuroQL data types and database schema is set up 
systematically, NeuroQL can be updated dynamically when the database schema 
evolves. This mapping will be used by NeuroQL Translator to translate a NeuroQL 
query instance to a corresponding DBMS-supported query instance like SQL query. 
By adding, deleting and changing the entities in the neuron data model, NeuroQL can 
be easily extended and customized. This feature is especially useful when NeuroQL is 
integrated into the database applications focusing on the neuron data in different 
species. 

2.2   Query Operators in NeuroQL 

The query operators (see Table 1) in NeuroQL are divided into 2 categories: primitive 
query operators and advanced query operators. Primitive query operators includes the 
common operators used in traditional query languages, and advanced query operators 
are corresponding to the functions among the objects in neuroscience The 
introduction of advanced query operators makes the NeuroQL query statements much 
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Table 1. Some query operators in NeuroQL 

Category Operators 

Primitive  
query operators 

+   -   *   /   %   >   >=   =   <=   <    
!= . LIKE   IN 

Advanced  
query operators 

connect,   parent,   children,   neighbors,   project, 
electricalSynapse,   chemicalSynapse,   location    
neuromodulation,   hasComponent,   pass,   circuit,   
itsFiringPatterns,   presynapticCell,   postsynapticCell. 

 

closer to the questions and queries asked by the neuroscientists in their research. The 
semantics of the query operators are discussed in the next section. 

3   Syntax and Semantics 

3.1   Syntax 

Following is the BNF grammar of NeuroQL and the interpretation of terminals is 
given in Table 2: 

<NeuroQL_query> ::= ( <result_list> ) [ <condition_list> ] 
<result_list> ::= <result_term> | <result_term> , <result_list> 
<result_term> ::= <single_class_term> | <single_class_term>.SET_PROPERTY 
<condition_list> ::= <condition_term> | <condition_term> , <condition_list> 
<condition_term> ::= /*EMPTY*/ |<declaration_term> | <comparison_term> 
<declaration_term> ::= <single_class_term> IDENTIFIER  

| <single_class_term>.SET_PROPERTY IDENTIFIER 
| <non_bool_op_term> IDENTIFIER 

<comparison_term> ::= <bool_op_term>  
| <operand> COMPARISON_OP <operand> 

<single_class_term> ::= DATATYPE | IDENTIFIER  
| <single_class_term>.SINGLE_PROPERTY 

<bool_op_term> ::= ADV_BOOL_OP(<parameter_list>) 
  | <single_class_term>.ADV_BOOL_OP(<parameter_list>) 
<non_bool_op_term> ::= ADV_NON_BOOL_OP (<parameter_list>) 
  | <single_class_term>.ADV_NON_BOOL_OP (<parameter_list>) 
<parameter_list> ::= <parameter> | <parameter>,<parameter_list> 
<parameter> ::= /*empty*/ | <operand> 
<operand> ::= CONSTANTS | <single_class_term> | <non_bool_op_term> 
  | <arithmetic_operand> ARITHMETIC_OP <arithmetic_operand> 
<arithmetic_operand> ::= CONSTANTS  

| <single_class_term>.SINGLE_PROPERTY 
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Table 2. The interpretation of terminals in NeuroQL grammar 

Terminals Interpretation 

DATATYPE 
{dt | dt is the name of a neuron-domain data type 
in NeuroQL} 

SINGLE_PROPERTY 
{p | p is a property of a neuron-domain data type 
in NeuroQL, which references to a single object} 

SET_PROPERTY 
{sp | sp is a property of a neuron-domain data type 
in NeuroQL, which references to a set of objects} 

IDENTIFIER {id | id ::= [_a-zA-Z][_a-zA-Z0-9]*} 

ADV_BOOL_OP 
{bop | bop is an advanced query operators in 
NeuroQL, which returns a Boolean value} 

ADV_NON_BOOL_OP 
{nbop | nbop is an advanced query operators in 
NeuroQL, which returns a non_boolean value} 

CONSTANTS {c | c is a constant value of a primitive data type} 

COMPARISON_OP {‘>’, ‘>=’, ‘=’, ‘<=’, ‘<’, ‘!=’, ‘LIKE’, ‘IN’}  

ARITHMETIC_OP {‘+’, ‘-’, ‘*’, ‘/’, ‘%’} 

We adopt the dot notation in NeuroQL, which simplifies the reference to a class or 
its properties. For example, the path expression of neuronA.itsSoma.colorPattern 
references the property “colorPattern” of a soma of a neuron instance, neuronA. And 
in SQL, this is usually done by joining multiple tables based on some referential 
constraints.  

3.2   Semantics 

A NeuroQL query has a very simple structure like (<result_list>)[<condition_list>]. 
The <result_list> is similar to the SELECT clause in SQL, which consists of a list of 
objects (i.e. <result_term> in grammar). Each object in the <result_list> can be an 
instance of a NeuroQL data type or a property of it. The <condition_list> lists all 
query criteria (<comparison_term>), that is, the conditions that the query result must 
satisfy.  

Let’s use RT1, RT2, …, RTn to represent the domain of each <result_term> 
respectively, then the domain of <result_list>, RL, is the set of n-tuples, whose first 
element is from RT1, the second element is from RT2, and so on. The query result 
includes the tuples in RL, which satisfy all conditions in the <condition_list>. 

The advanced query operators (Table 3) can be used in <condition_list> in order to 
simplify the expression of a query, and make it closer to a professional expression in 
the neuron research domain. 
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Table 3. The signatures and semantics of some advanced query operators in NeuroQL 

Operators Signatures Semantics 

Parent parent() 
parent: {t | t is a neuron instance }  {n | n is the 
neuron instance in cluster type, and t is a member 
cell of n.}  

Children children() 
children: {t | t is a neuron instance in cluster type } 

 { n | n is a neuron instance that is a member cell 
of t.} 

Neighbors 
Neighbors 
(double r) 

neighbors: {(t, r) | t is a neuron instance, 
r ∈ R} {n | n is a neuron instance, and the 
distance between t and n is less than or equal to r} 

Project 
Project 
(nerve v) 

project: {(t, v) | t is a neuron instance, v is a nerve 
instance}  {bool | bool = true if the axon of t 
projects to v, otherwise bool = false} 

Connect 
connect(String 
name, String type) 

connect:{(t, name, type) | t is a neuron instances, 
$name is a name of another neuron instance s, and 
$type ∈ {‘electrical’, ‘chemical’, 
‘neuromodulation’, ‘any’}} {bool | bool = true if 
there is a connection from t to s or from s to t , 
whose type matches the value of input $type, 
otherwise, bool=false.}  

electricalSynapse 
electricalSynapse 
(neuron s) 

electricalSynapse: {(t, s) | t and s are two neuron 
instances}  {bool | bool=true if there is an 
electrical_synapse instance between t and s; 
otherwise, bool=false}  

chemicalSynapse 
chemicalSynapse 
(neuron s, 
String pos) 

chemicalSynapse: {(t, s, pos) | t and s are two 
neuron instances, and pos ∈ {‘pre’, ‘post’, ‘any’}} 

 {bool | bool=true if there is a chemical_synapse 
instance from t to s if pos= ‘pre’, or from s to t if 
pos= ‘post’, or between t and s if pos= ‘any’; 
otherwise, bool=false}  

itsFiringPatterns itsFiringPatterns() 
itsFiringPattern: {t | t is a neuron instance }  {fp | 
fp is a firingpattern instance that t has} 

Location location() 
location: {t | t is a neuron instance }  {g |  g is a 
ganglion instance, at which t is located} 

presynaptic_cell presynaptic_cell() 
presynaptic_cell: {t | t is a neuron instance }  {n | 
n is a neuron instance, and there is a chemical 
synapse from n to t} 

postsynaptic_cell postsynaptic_cell() 
postsynaptic_cell: {t | t is a neuron instance }  {n 
| n is a neuron instance, and there is a chemical 
synapse from t to n} 

circuit 
circuit( 
Vector[neuron] v) 

circuit: {n | n ∈ v, and v is a set of neuron 
instances} {c | c is a circuit instance whose 
nodes include all neuron instances in v}  

hasComponent 
hasComponent 
(component p) 

hasComponent: {(t, p) | t is a neuron instance and p 
is a component instance} {bool | bool = true if p 
is a component of a chemical_synapse instance, 
whose presynaptic cell is t, otherwise bool = false} 

*: In order to simplify the syntax of NeuroQL, there is an implicit input of a neuron instance 
for all advanced query operators. 
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4   Some NeuroQL Query Examples 

In this section, we illustrate some NeuroQL query statements and their corresponding 
SQL query statements. Comparing the two kinds of query statements, it is obvious 
that it is easier for neuroscientists to write a NeuroQL query than an SQL query. 

Example 1:  
Query statement: all neurons that project to Nerve ‘Pd N 1’.  
                  (Note: ‘Pd N 1’ is the name of a nerve) 

NeuroQL query:  
     (neuron)[project(v), v.name = ‘Pd N 1’] 

SQL query generated by SQL-Generator: 

   SELECT   n.neuronid, n.name, n.synonym 
   FROM     nb_neuron n, nb_nerve v, nb_project p  
   WHERE    n.neuronid = p.neuronid AND  
           v.nerveid = p.nerveid AND v.name = ‘Pd N 1’ 

Example 2: 
Query statement:  all neurons that have an electrical synapse connection with the 
neuron “R3-13”. 

NeuroQL query:  
   (neuron)[connect(‘R3-13’,‘electrical’)] 
SQL query generated by SQL-Generator: 

   SELECT    n.neuronid, n.name, n.synonym 
   FROM      nb_neuron n, nb_neuron s, nb_esynapse e_syn  
   WHERE    n.neuronid =e_syn.presyncell AND  
             s = e_syn.postsyncell AND s.name = ‘R3-13’ 
   UNION 
   SELECT    n.neuronid, n.name, n.synonym 
   FROM      nb_neuron n, nb_neuron s, nb_esynapse e_syn  
   WHERE    n.neuronid =e_syn.postsyncell AND  
             s = e_syn.presyncell AND s.name = ‘R3-13’ 

Example 3: This is a complicated query example. 
Query statement: all neurons satisfying following conditions: 1) they have molecule 
‘5HT’; 2) they are the post-synaptic cell of some chemical synapse; 3) the pre-
synaptic cell of the chemical synapse in condition 2) has a firing pattern ‘Irregular 
with Burst’. 

 NeuroQL query:  
(neuron)[hasMolecules(’5HT’),chemicalSynapse(s,’post’),  

s.itsFiringPatterns sfp, sfp.name= ‘Irregular with 
Burst’] 

 
SQL query generated by SQL-Generator: 

   SELECT   n.neuronid, n.name, n.synonym 
   FROM    nb_neuron n, nb_molecule m, nb_hasmolecule hm 
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   WHERE    n.neuronid=hm.neuronid AND  
        m.moleculeid=hm.moleculeid AND m.name=’5HT’ AND  
        n.neuronid IN  
           (SELECT  c_syn.postsyncell 
            FROM    nb_neuron s, nb_csynapse c_syn 
            WHERE s.neuronid = c_syn.presyncell AND  
              s.neuronid IN  
                 (SELECT fp.neuroid 
                   FROM  nb_firingpattern fp 
                   WHERE fp.name=‘Irregular with Burst’)) 

The SQL-Generator is being implemented using Java compiling tools JFlex and 
JCup. The application is a terminal based interpreter in which the user can enter 
NeuroQL queries and see responses. The system checks for syntax, generates and 
executes SQL code and displays the answers to the query. 

5   Conclusions and Future Work 

In this paper, we propose a domain-specific query language (NeuroQL) specifically 
for the neuroscience domain. The motivation is from the neuroscientists’ desire of 
having a neuron query language supporting neuroscience concepts and functions so 
that they can directly interact with their data. Therefore, NeuroQL is designed 
primarily for neuroinformatics databases users, rather than the database administrators 
or developers. Based on the initial format and syntax proposed by the neuroscientists, 
we design NeuroQL as a high-level canonical query language, and implement it as an 
advanced query tool that can be used on any NeuroDM compatible neuroinformatics 
database applications. NeuroQL can be translated into most common types of query 
language such as SQL, OQL, and XQuery. Therefore, it is DBMS independent. 
NeuroQL integrates some object-oriented features, such as the dot notation, from 
OQL, and supports most of neuron domain-specific data types, for example, neuron, 
soma, axon, nerve, ganglion, synapse, molecule, firing-pattern, and so on. These data 
types are systematically derived from the conceptual neuron data model and mapped 
to the underlying database schema. This mapping will dynamically update NeuroQL 
data types whenever the database schema evolves. NeuroQL also defines many 
advanced neuron domain-specific query operators corresponding to the functions 
among the objects in neuroscience. The domain-specific data types and query 
operators are the major constructs of NeuroQL so that NeuroQL query statements are 
very close to the way, in which the neuroscientists ask questions or make a query in 
their research. 

Writing an common query statement like SQL requires the users to know exactly 
what the database schema and constraints are, for example, table names, column 
names, foreign keys, etc. The common solution to this problem is that most of 
database applications provide users some graphical query interface with some 
predefined query functions. But these graphical query interfaces are usually 
application-dependent, and provide only limited and predefined query functions to 
users. NeuroQL solves this problem by providing users an abstract and succinct 
conceptual data model diagram. This diagram models the neuron data structure in the 
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database from the neuroscience point of view. Therefore, it is very close to neuron 
domain knowledge and easy to understand. With the conceptual data model diagram, 
neuroscientists can write a NeuroQL query in their familiar concepts and operators. 
Besides, the object-oriented concept, built-in domain-specific data types, and 
advanced query operators all help neuroscientists master NeuroQL quickly. 

Because NeuroQL is designed for the database application users, it does not have 
the data definition and data update operations as in SQL, such as CREATE, ALTER, 
UPDATE, and INSERT operations. In the future, we will add some data update 
functions with restricted access to support neuroscientists to manipulate their data. 
Another future project is to develop more advanced query operators to facilitate 
interaction between neuroscientists and the database. 
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Abstract. In this paper we propose the GEM Language (GEL), a SQL-
like query language, which is able to extract information from semistruc-
tured temporal databases represented according to the Graphical
sEmistructured teMporal (GEM) data model.

1 Introduction

In the last years the database research community has devoted some efforts
to the development of methods for representing and querying semistructured
data [1] (i.e., data that have no absolute schema fixed in advance, and whose
structure may be irregular or incomplete). In this context, several approaches
have been proposed, in which labeled graphs are used to represent semistructured
data [9,11]. Recently, it has been recognized and emphasized that time is an
important aspect to consider also in the semistructured data context; thus, the
problem of representing and querying changes in semistructured data has been
considered in the database research field and some temporal data models, based
on labeled graphs [5,6,7], have been studied.

In this work, we consider the Graphical sEmistructured teMporal (GEM) data
model [6], which is general enough to include the main features of semistructured
data representation. GEM allows one to model either valid or transaction times:
the valid time (VT) of a fact is the time when the fact is true in the modeled
reality, whereas the transaction time (TT) of a fact is the time when the fact is
current in the database and may be retrieved [10].

In this paper we propose the GEM Language (GEL), a SQL-like query lan-
guage, which is able to extract information from semistructured temporal
databases represented by means of the GEM data model. GEL is a language
designed for semistructured data and, similarly to Lorel [2], can be seen as an
extension of OQL [4]. In particular, the most important features which add some
novelty to GEL, with respect to the other main proposal, namely Chorel [5], are
the following: we allow for querying databases which manage either valid time
— and we will focus on it in the rest of the paper — or transaction time, while
most of the others only allow for managing transaction time; we can exploit the
generality of the GEM model, and thus build and query about general relation-
ships between objects: it provides expressive power both to the model and to
the language, without constraining the database to be tree-shaped and to use
just the containment relationship; we introduce suitable temporal predicates and
specific clauses and keywords for allowing the user to manage temporal aspects
of data.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 625–636, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Related Work

In [2], the authors propose the Lorel query language, a semistructured query
language based on the Object Exchange Model (OEM) [11]. OEM is a simple
graph-based data model, with objects as nodes and object-subobject relation-
ships represented as labeled arcs. Nodes are not labeled, labels are represented
only on the edges and represent the node the edge point to. In the OEM data
model each entity is represented by means of an object with an oid (object
identifier). Lorel queries are intuitive, based on a syntax similar to that of the
statement SELECT FROM WHERE of OQL [4], and use Path Expressions. A path
expression represents a path on the graph, and thus it identifies the objects
composing the path itself.

Chorel (Change Lorel) [5] is a query language for semistructured temporal
data and is an extension of the Lorel query language. The Chorel query lan-
guage is based on the DOEM (Delta-OEM ) [5] data model, which is a temporal
extension of OEM. Change operations (i.e., node insertion, update of node val-
ues, addition and removal of labeled arcs) are represented in DOEM by using
annotations on nodes and arcs of an OEM graph for representing the history.
Intuitively, annotations are the representation of the history of nodes and edges
as it is recorded in the database: indeed, this proposal takes (implicitly) into
account the transaction time dimension. DOEM and Chorel are implemented
by means of a method that encodes DOEM databases as OEM databases and
translates Chorel queries into equivalent Lorel [2] queries over the OEM en-
coding. Chorel queries are similar to Lorel queries, and can contain annotation
expressions. For example, the query

SELECT Guide.<add>restaurant;

requires the restaurants having an add annotation, i.e., those restaurants which
have been added to the database after its creation.

Chorel is a very flexible and powerful language, but is limited by the data
model it is based on. As an example, neither OEM nor DOEM allow for the
representation of general relationships: they represent only the containment
relationship.

In [14], the authors extend the XPath [13] data model and query language
to include valid time. In particular, they extend XPath’s data model by adding
to each node a list of disjoint intervals or instants representing valid time, and
impose that the valid time of a node is constrained to be a subset of the valid time
of a node’s parent. Moreover, a valid-time axis is added to the query language
to retrieve nodes according a valid time view. The valid-time axis of a node
contains the valid-time information of the node itself. The main focus of [14] is
the extension of the XPath data model to represent valid time, and thus the
authors do not introduce any extension of XPath with temporal predicates and
aggregates.

In [8], the author presents an extension of XPath to support transaction time.
The proposed extension allows the representation of the history of an XML
document as a sequence of XML documents representing the versions of the
considered XML document. According to the data model extension, the author
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extends the query language to query the transaction time. At this aim several
new axes, node tests, and temporal constructs are added.

3 Representing Temporal Semistructured Data

In this work, we suppose to represent temporal semistructured data by means
of the Graphical sEmistructured teMporal data model (GEM), which represents
semistructured temporal data by means of rooted, connected, directed, labeled
graphs, where the temporal dimension is explicitly reported on node and edge
labels and is described as an interval. GEM allows the database designer to model
either transaction or valid times, by properly defining suitable constraints [6].

In designing GEL, we focus on the valid time dimension, as we want to focus on
query aspects related to changes in the represented real world. In this section,
we briefly describe the data model, by considering an example taken from a
medical scenario. Figure 1 shows a GEM graph, representing information about
the patient David Johnson.

Angina CAD Low Digoxin

<Description, [01/02/03;10:00,

<Demo, [04/02/03;10:00,now]>

David Johnson

<Drug, [12/03/03;08:30,

<Therapy, [12/03/03;08:30,15/03/03;08:30]>

              15/03/03;08:30]>

<D_Name, [12/03/03;08:30,15/03/03;08:30]>

<Name, [12/03/03;08:30,
                15/03/03;08:30]>

<Pathology, [12/03/03;08:05,now]>
<Possible_Pathology,

<Patient, [04/02/03;10:00,now]>

[12/03/03;08:05,now]>

<Diagnosis, [12/03/03;08:05,now]>

<P_Name, [12/03/03;08:05,now>

<Name, [12/03/03;08:05,now]>

<Name, [04/02/03;10:00,now]>

<P_Situation, [05/02/03;10:00,now]>

<Symptom, [01/02/03;10:00,
                03/02/03;15:00]>

                03/02/03;15:00]>

<S_Name, [01/02/03;10:00,03/02/03;15:00]>
<P_Severity, [13/03/03;08:05,14/04/03;08:00]>

<Severity, [13/03/03;08:05,
                14/04/03;08:00]>

Fig. 1. An example of a GEM graph

A GEM graph is composed by two kinds of nodes: complex and simple nodes.
The former represent abstract entities, whereas the latter represent primitive
values and are leaves. Complex nodes are depicted as rectangles, while simple
nodes are depicted as ovals. In the GEM data model [6], the symbol now is
used to define respectively the objects that are valid at the present time in the
considered reality, when considering the valid time dimension. Considering the
example depicted in Figure 1, the node Patient is a complex node, while the
node Name (child of Patient) is a simple node having value David Johnson.

In Figure 1, the nodes Patient and Name, and the edge Demo have valid time
interval1 [04/02/03;10:00,now]. The time interval represents that David Johnson
becomes a Patient from 10:00 of 04/02/03, and he is still a Patient.

Several constraints and relationships could exist between valid times of nodes
and edges: as an example, the valid time of a simple node could be contained in
the valid time of the related complex node: indeed, the simple node represents a
1 In this paper we adopt the format DD/MM/YY;HH:mm for timestamps.
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property of the related complex node. Figure 1 depicts the simple node Severity
having a valid time interval contained into the valid time of its related complex
node Pathology. As a further example, the valid time of the node Symptom starts
before the valid time of the related node Patient (i.e., the symptom appeared
before the patient was enrolled), and the valid time of the edge between Pa-
tient and Symptom represents the fact the symptom has been reported after the
patient was enrolled.

4 A Query Language for Semistructured Temporal Data

Semistructured (temporal) data may be irregular and incomplete and do not
necessarily conform to a fixed schema, thus flexibility in querying is needed.
GEL is able to manage irregularity by means of flexible statements and allows
one to extract and evaluate temporal information. Moreover, GEL supports the
filtering of query results based on temporal information.

GEL is similar to Lorel [2] and to OQL [4], and has a SQL-like syntax. GEL
queries are composed through the classical clauses SELECT, FROM, WHERE. The
expressions specified in each clause are path expressions, i.e., expressions repre-
senting paths, which allows one to reach a given object on the GEM graph.

In an OEM graph [11], edges between nodes represent only the containment
relationship, thus Lorel path expressions are based on this kind of relation-
ship, and use the “dot notation”; in a GEM graph, edges represent different
relationships and thus in the GEL syntax we decided to adopt the object-
oriented notation related to methods. For example, the GEL path expression
Patient.has(Symptom) can be read as “the Patient has the Symptom”, and
more formally, “the object Patient is related, by means of the relationship has,
to the object Symptom”.

An example of a GEL query is the following:

SELECT Patient.Demo(Name)
FROM Patient
WHERE Patient.P_situation(Symptom).S_name(Description) = "Angina"

Intuitively, this query requires to extract the Name object, identified by the path
expression in SELECT clause, starting from the object reported in the FROM clause,
but only if the required object satisfies the constraint imposed in the WHERE
clause. Temporal clauses TIME-SLICE and MOVING WINDOW can be used to specify
temporal features of required data, as detailed in Section 4.5.

As for the type system, in the semistructured data context flexibility is needed.
In order to convert data having different types, GEL adopts the Lorel [2] ap-
proach, based on type coercion.

The FROM clause could be left implied in the GEL queries. This characteristic,
rising from Lorel [2], derives from the fact that usually the value of this clause
is the object from which the path expressions, in the SELECT clause, start. If the
FROM clause is not specified, then it is automatically produced from the SELECT
clause, introducing in the FROM clause a path expression for each path expression
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in the SELECT clause. If the FROM clause is implied, then all the path expressions
in the SELECT clause must start with the root of the graph. For example, the
query

SELECT Patient.Diagnosis(Pathology)
WHERE Patient.Demo(Name) = "Smith"

becomes

SELECT Patient.Diagnosis(Pathology)
FROM Patient
WHERE Patient.Demo(Name) = "Smith"

In this way, the queries can be simplified leaving implied the FROM clause.

4.1 GEL Statements

A GEL query is based on the SELECT statement, as for OQL and SQL [4,12].
In the same way as OQL and SQL, in GEL the expression in the SELECT clause
states for the objects of the database which have to be retrieved, the expression
in the FROM clause specifies the objects to consider in the search, and the expres-
sion in the WHERE clause represents the constraints the retrieved objects have to
satisfy. Obviously, like in other syntactically similar languages, when there is no
constraint to be used in the WHERE clause, the whole clause itself can be missing.
In the following, we will adopt a current semantics for the query evaluation [12],
i.e., the query will return only the current objects which satisfy the query, for
all the cases where time dimensions are not referred to in the query. When vari-
ables are used in the query to refer to the temporal dimensions of nodes/edges,
the adopted semantics will be the non-sequenced one [12]: all the objects of the
database, even the non current ones, will be considered for the query evaluation.

The result of a GEL query is a multiset or bag of tuples of attribute values.
Each value can be either an atomic value or a node identifier; each attribute is
named according to the content of the SELECT clause. It is possible to use set
operators (intersect, union, except) to combine different queries (SQL-style).

4.2 Attribute Naming

In GEL, attributes can be renamed, as in SQL statements:

SELECT P.Diagnosis(Pathology).P_name(Name) as Path_name
FROM Patient P

in this case, Path name is the label of the retrieved object, i.e., in the origi-
nal graph the pathology name is labeled Name, while in the result it is labeled
Path name.

4.3 Variables

Variables can be used also inside an expression and can have different roles. GEL
allows one to use variables (i) as aliases to avoid to repeat long expressions, and
(ii) to identify each element to be instantiated in the query evaluation.
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SELECT P.P_name(Name) as Path_name
FROM Patient.Diagnosis(Pathology) P

In this case, the variable P is used to identify the Pathology object, in order to
avoid to refer to it repeating all the expression, as for example:

SELECT Patient.Diagnosis(Pathology).P_name(Name) as Path_name
FROM Patient.Diagnosis(Pathology)

The variables inside the path allow for retrieving (and for naming) the needed
objects, without the need of repeating the common portions of the path for each
expression we want to name, as in the following example.

SELECT P.Diagnosis(Pathology)<T>.P_name(Name)<N>
FROM Patient P
WHERE T.P_Severity(Severity)="high" AND N="CAD"

This query allows one to retrieve the objects T and N, without specifying two
similar expressions in the FROM clause; at the same time T and N are used as
names for the corresponding objects.

The query without using Intra-path variables should be

SELECT P.Diagnosis(Pathology) as T,
P.Diagnosis(Pathology).P_name(Name) as N

FROM Patient P, P.Diagnosis(Pathology) T,
P.Diagnosis(Pathology).P_name(Name) N

WHERE T.P_Severity(Severity)="high" AND N="CAD"

Variables in the path expressions can be used to force two expressions to be
distinct. For example, the query

SELECT P.Demo(Name)
FROM Patient P
WHERE P.Diagnosis(Pathology).P_name(Name) = "CAD" AND

P.Diagnosis(Pathology).P_name(Name) = "Pneumonia"

cannot be used to extract the patients who suffer of CAD and Pneumonia, because
the two paths in the WHERE clause have a common prefix (in this case the complete
path expression) and thus they are instantiated on the same objects. For this
reason the previous query does not retrieve the desired result.

It is possible to assign two distinct variables to the two desired results, thus
they are instantiated separately on the two paths of the graph, related to two
(possibly) different nodes with label Name (if they exist), in the following way:

SELECT P.Demo(Name)
FROM Patient P
WHERE P.Diagnosis(Pathology)<X1>.P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>.P_name(Name) = "Pneumonia"

In this way, the two paths P.Diagnosis(Pathology).P name(Name), which are
considered as distinct by the user, are not forced to be the same path.
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The variables can be used also to identify a constraint expressing the fact
that an object must be reachable on several paths. Indeed a GEM database, as
the one in Figure 1, is not expressed as a tree, but as a DAG (Directed Acyclic
Graph): in our case, for example, edges Possible Pathology and Diagnosis
are directed to the same node Pathology. In this case, we can use variables to
define queries on objects with several ingoing edges:

SELECT Patient.Demo(Name)
FROM Patient.Diagnosis(Pathology)<X>,
Patient.P_Situation(Symptom).Possible_Pathology(Pathology)<X>

The previous query asks for the name of patients having a diagnosed pathology
and presenting also a connected symptom.

4.4 Wildcards

The path expression power, with respect to objects and paths representation,
can be increased by using wildcards.

The simplest type of wildcard comes directly from SQL, and is represented
by the special characters ‘#’2 and ‘%’.

As in SQL, these characters can be considered “special” in the pattern match-
ing between the query strings and the labels of GEM graph elements, as they
can be used for comparisons with string literals and also, differently from SQL,
as wildcards for the edge labels.

The ‘#’ character represents any character. The ‘%’ character represents a
sequence of characters with an arbitrary length. These wildcards can be used
in the node and edge names contained in the path expressions, or instead of
their names. Moreover, in a path expression, specifying an edge/node, having
label “%”, means “an edge/node with any label”. For example, the path expres-
sion Patient.%(Pathology) means that we are looking for a node with label
Patient, linked by means of any edge, to a node with label Pathology. In the
same way, the path expression Patient.%(%).P name(Name) means that we are
looking for a node with label Patient linked by means of any edge to any node,
which has an outgoing edge with label P name ending in a node with label Name.
Since in the path expressions, nodes and edges are represented in different ways,
when a node or an edge is only represented by the wildcard ‘%’ we can abbreviate
it with an empty string.

Another kind of wildcard allows one to specify some properties of each element
in the path expression by using some simple regular expression.

It is possible to specify how many times a given edge has to appear in a
sequence, and to give a choice between different possible labels. For example the
path expression A.[(B)]?.(C) means that between the nodes A and C, either 0
or 1 nodes B can exist.
2 The choice of the character ‘#’ instead of the traditional SQL ‘ ’ to mean any char-

acter, is based on the fact that ‘ ’ is often used as word separator in labels for nodes
and edges, and thus it is too used to be protected by escape sequences.
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The | character, used between two or more elements, allows one the choice
of any element in the set. This operator is particularly effective when it is
used together with the previous one, in the characters [ and ]. For example
A.[(B)|(C)]*.(D) means that between the nodes A and D, a sequence exists,
and is either empty or each element of it is B or C

These regular expressions can be combined with the string wildcards to obtain
a powerful and flexible query system. As an example, the following query

SELECT S.%(Name)
FROM Symptom S
WHERE S.[Possible_Pathology(Pathology)]+.P_name(Name) = "Hepatitis"

extracts the Name of the Symptom (connected by any edge to the node) which is
related (to a degree) to Hepatitis. The WHERE clause actually requires the node
S to be connected by a path made of Possible Pathology edges and Pathology
nodes to the simple node labeled Hepatitis. The length of the path must be
greater than 0, so a path Symptom.p name(Name) would not make the clause
true, while a path Symptom.Possible Pathology (Pathology).P name(Name)
would do.

The following query

SELECT P.Demo(Name)
FROM Patient P
WHERE P.[P_situation(Symptom)|Diagnosis(Pathology)].%(%)="Hemicrania"

extracts the name of a Patient for which the symptom or the pathology is con-
nected to any node labeled Hemicrania. In this case what is required is the
existence, starting from a Patient node, of the edge P situation and the node
Symptom, or of the edge Diagnosis and the node Pathology. When this condi-
tion is met, any edge connected to any simple node labeled Hemicrania would
make the clause true.

4.5 Temporal Aspects

Nodes and edges of a GEM graph have in the label a time interval representing
their validity with respect to a considered time dimension (see Section 3). In
particular, in this work, we focus on the valid time dimension, i.e., the time
when the fact represented by the object is true in the considered reality.

Temporal Clauses
In the WHERE clause, conditions expressing constraints that must be satisfied
by the requested objects are specified. To consider temporal aspects, we in-
troduce the new clauses TIME-SLICE and MOVING WINDOW. Moreover, temporal
constraints can be specified in the WHERE clause.

The TIME-SLICE clause allows the user to query along the temporal dimension
of nodes and edges, by considering only those nodes and edges having a valid
time interval intersecting the specified interval. In general, the result of the query
will be composed by nodes (edges), requested in the SELECT clause, satisfying
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general constraints expressed in the WHERE clause, and having a time interval
intersecting the time interval specified in the TIME-SLICE clause.

In the TIME-SLICE clause, the considered time interval can be specified in
different ways:

– by the FROM ... TO ... keywords it is possible to require objects inter-
secting an interval starting at a given instant, and ending at a second given
instant. For example, the query requiring the name of the patients consider-
ing only the period from 08:00 of 01/02/03 to 08:00 of 01/03/03 is:
SELECT Patient.Demo(Name)
FROM Patient
TIME-SLICE FROM 01/02/03;08:00 TO 01/03/03;08:00

– by the FROM keyword it is possible to require objects having an interval
ending after a given instant. In this case, the ending time is not specified.
For example, the query requiring the name of the patients after 08:00 of
01/02/03 is:
SELECT Patient.Demo(Name)
FROM Patient
TIME-SLICE FROM 01/02/03;08:00

– by the TO keyword it is possible to require objects having an interval starting
before a given instant. For example, the query requiring the name of the
patients before 08:00 of 01/03/03 is:
SELECT Patient.Demo(Name)
FROM Patient
TIME-SLICE TO 01/03/03;08:00

The interval constraint expressed by the TIME-SLICE clause can be forced
to be either a strict containment, or a left strict containment, or a right strict
containment. For example, in the first case, the objects satisfy the requested
constraints only if they have a time interval strictly contained in the specified
time interval. This kind of containment is expressed by means of the keyword
STRICT.

SELECT Patient.Demo(Name)
FROM Patient
STRICT TIME-SLICE FROM 01/02/03;08:00 TO 01/03/03;08:00

In Figure 2 we suppose that [ti, tj ] is the time interval of a node (edge) and
[th, tk] is the time interval specified in the TIME-SLICE clause, and report ex-
amples of time intervals satisfying the temporal constraints expressed in the
TIME-SLICE clause with respect to the specified keywords.

The MOVING WINDOW clause allows the user to consider nodes and edges
through a (moving) temporal window. The window is specified in the clause and
moves along the temporal axis. The general constraints expressed in the other
clauses are checked only on the nodes and edges visible through the window,
i.e., only on the nodes and edges having a time interval satisfying the temporal
constraints expressed in the MOVING WINDOW clause. For example, the following
query requires the name of the patients having had both CAD and pneumonia
within a period of 40 days:
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th tk th tk th tk

tjti
tjtitjtj

STRICT STRICT LEFT STRICT RIGHT

Fig. 2. Examples of time intervals satisfying constraints in the TIME-SLICE clauses

SELECT P.Demo(Name)
FROM Patient P
WHERE P.Diagnosis(Pathology)<X1>.P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>.P_name(Name) = "Pneumonia"
MOVING WINDOW 40 days

Temporal Predicates
To compare valid times of different nodes and edges, GEL provides the support
of standard comparison predicates both for intervals, instants, and for comparing
intervals and instants.

Variables can be suitably assigned both to the overall valid time and to the
starting and ending instants of the valid time. The syntax is based on the symbol
@, and is used as in the following example:

Patient.Diagnosis@[X1,X2](Pathology).P_name(Name)@[Y1,Y2]

This path expression identifies a graph element and extracts the values of the
start and end times of the element itself. In particular, it identifies the edge
Diagnosis and extracts its start and end times, and the node Name and extracts
its start and end times.

To assign a single variable to the overall valid time, the previous symbol @
must be used as in the following example:

Patient.Diagnosis@[X](Pathology).P_name(Name)@[Y]

This path expression identifies a graph element and extracts the interval values of
the valid time of the element itself. In particular, it identifies the edge Diagnosis
and extracts its time interval, and the node Name and extracts its time interval.

The variables used to extract the times could be used as selection for the
query, as in the following case:

SELECT N as PatientName, X1 as DiagStart, X2 as DiagEnd
FROM Patient.Diagnosis@[X1,X2](Pathology).P_name(Name)<N>

The result of this query is a set of tuples; each tuple is composed by the string
representing the name of the patient, the start time and the end time of the
diagnosis related to the patient itself.
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This is a case, where the query evaluation considers all the nodes/edges and
not only the current ones, with the application of a non-sequenced temporal
semantics [12]: the condition in the query may involve the explicit comparison
of nodes/edges at different times.

GEL also offers the way to compose temporal predicates on time instants
and intervals in the WHERE clause. The temporal predicates can be point-point
predicates, which compare two time instants, point-interval predicates, which
compare a time instant with a time interval, and interval-interval predicates,
which compare two time intervals.

A point-point predicate is composed by a variable, a temporal comparison
operator, and a time instant, which can be either a variable or a constant. The
temporal comparison operators are: =, <>, <, <=, >, >=.

Point-interval predicates verify whether a time instant belongs to a time inter-
val. This time interval is represented with the GEL syntax by means of a couple
of time instants separated from a comma, and contained in “[” and “]”. One or
both of these instants can be replaced by a variable, which can be extracted from
another element. Thus, a point-interval predicate is composed by a variable, an
interval operator, and an interval (variable or constant). The interval operators
are in (the instant belongs to the interval) and out of (the instant does not
belong to the interval).

Interval-interval predicates verify whether two time intervals satisfy the well
known Allen’s relations (before, meets, overlaps, ...) [3].

As a final example, let us consider the following query requiring the name of
the patients having had CAD either starting or ending during pneumonia and
pneumonia holding on an interval overlapping the period from May 23, 2003 8:00
a.m. to July 21, 2003 8:00 a.m.

SELECT P.Demo(Name)
FROM Patient P
WHERE P.Diagnosis(Pathology)<X1>@[I1,I2].P_name(Name) = "CAD" AND

P.Diagnosis(Pathology)<X2>@[T].P_name(Name) = "Pneumonia" AND
(I1 in T OR I2 in T) AND
T overlaps [23/05/03;08:00,21/07/03;08:00]

5 Conclusions

In this work, we proposed the temporal query language GEL for semistructured
data, which explicitly considers the temporal dimensions of data and their com-
parison as well as specific temporal clauses and keywords. As for future work, we
plan to focus on some main topics, such as allowing the specification of a (tem-
poral) graph structure for the query result, i.e., providing the language with the
closure property, supporting several time semantics for graph-based data mod-
els, and extending the query language to deal with both valid and transaction
times, to obtain a fully fledged bitemporal query language.
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Abstract. One missing point in the current research about p2p XML
databases is the definition of a proper query algebra that addresses p2p-
specific issues, such as the dissemination and replication of data, the
dynamic nature of the system, and the transient nature of data and
replicas.

This paper describes a query algebra for queries over XML p2p data-
bases that provides explicit mechanisms for modeling data dissemination
and replication constraints.

1 Introduction

Peer-to-peer (p2p) database systems are usually composed by a dynamic, open-
ended network of autonomous or semi-autonomous peers, which contribute data
to the system and query data exported by other peers. These systems affirmed
as an interesting evolution of distributed and integration systems as well as an
attempt to overcome their limitations, namely the heavy administration load,
the need for centralization points, and their quite limited scalability, as they
blur the distinction between clients and servers, each peer being able to submit
service requests and (simultaneously) support other peer requests.

Several ongoing projects focus on the the design and the implementation of
p2p database systems, mostly for XML data and for supporting Semantic Web
applications [1,2,3]. One missing point in the current research about p2p XML
databases is the definition of a proper query logical algebra. In this context, a
query algebra can be profitably used in the following tasks.

Query distribution. Algebraic expressions are a convenient form into which
queries and sub-queries can be translated and packaged, so to be distributed
across the network; since algebraic expressions are independent from the ac-
tual implementation of the query engine in local nodes and from the local data
organization (e.g., indexes, etc), they can be locally translated into highly op-
timized physical query plans, hence allowing for the best exploitation of local
data structures and computational capabilities.
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Distributed query rewriting. As in distributed database systems, algebraic ex-
pressions can be manipulated to perform global-scale optimizations, such as
query unnesting and replica selections, while pushing most of the optimization
load to the local peers.

Existing query algebras for XML data, most notably the official algebra by
W3C [4], have been defined in the context of static and centralized database
systems, and cover issues ranging from query result analysis and query type-
checking to the rigorous definition of the statical and dynamic semantics of
XML query languages. As a consequence, they lack support for three key issues
in p2p database systems:

– data are disseminated in multiple peers, which may appear and disappear
unpredictably;

– data are usually replicated into multiple peers, and, due to the dynamic
nature of the system, the replicas have a limited time validity;

– data distribution and replication may change during query execution.

Our contribution. This paper describes a logical query algebra for queries over
XML p2p databases. The relevance of the contribution is twofold. First, the
algebra provides an abstraction from physical or system-specific issues, hence
it can be used for reasoning about p2p query processing (p2p distributed opti-
mization, in particular) without worrying about the peculiar issues of a given
system. Second, it provides explicit mechanisms for modeling data dissemination
and replication constraints: in particular, the algebra data model incorporates
the notion of locations, which model peer content, as well as the notion of data
freshness; moreover, the algebra provides operators for manipulating locations,
and for expressing replication constraints, together with the related rewriting
rules.

The proposed query algebra supports a relevant fragment of the XQuery
query language [5] (FLWR queries with free nesting), and provides corresponding
rewriting rules.

Paper outline. The paper is organized as follows. Section 2 identifies some re-
quirements for a p2p logical query algebra. Section 3, then, describes the algebra
data model and operators. Next, Section 4 discusses rewriting rules that can be
applied to algebraic expressions. Section 5, then, illustrates some related works.
Section 6 concludes.

2 Requirements for a p2p Query Algebra

The design of the proposed query algebra has been guided by three main require-
ments that emerge in XML p2p databases (in addition to the obvious require-
ment of supporting queries on XML data). These requirements are discussed
below.
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Data dissemination. Since data are dispersed on multiple peers, the algebra
should model the notion of peer as well as the distribution of data into peers.
Hence, the data model should not be limited to represent XML trees, but also
peers with their content. A clear benefit of having explicit peer information inside
algebraic expressions is the ability to support routing decisions taken at both
the global and the local level.

Data replication. To increase the robustness of p2p systems as well as their
performance, data are usually replicated in high-speed/high-capacity peers. As
a consequence, information about replicas (who is replicating what) should be
part of the algebraic vision of the database, i.e., the data model should record
both the data provenance and the data replication. Moreover, since replicas in
a p2p context are usually not up-to-date (2PL/2PC synchronization protocols
are too restrictive for this setting), replica information should be enhanced with
details about the validity of these replicas, e.g., the period of time during which
a replica can be safely used in place of the original data.

Data freshness. Peer-to-peer database systems are chaotic systems, where some
data are very frequently updated and others remain untouched for a long period
of time. This chaotic nature, together with the presence of loosely synchronized
replicas, makes important the explicit representation of data freshness informa-
tion into algebraic expressions. This allows for the support of queries where the
user can choose between fresh data, at the price of a potentially higher evaluation
cost, and older data, potentially not up-to-date, retrieved much more quickly.

3 Query Algebra

The proposed algebra is based on that of [6]. The most important extensions
concern the representation of peer contents and replicas, the introduction of a
data freshness notion, as well as algebraic operators for manipulating them.

For reasons of space, we focus here on the description of new operators and
refer the reader to [6] for more detail about the others.

3.1 Data Model and Term Language

The query algebra represents XML data as unordered forests of node-labeled
trees. According to the term grammar shown in Fig. 1, each tree node (n) has a
unique object identifier (oid) that can be accessed by the special-purpose function
oid; an algebraic support operator ν is used to generate new oids and to refresh
existing ones. Furthermore, each node is augmented with the indication of the
hosting peer (location in the following) as well as with a freshness parameter fr,
which indicates when the last update on the node was performed (⊥ indicates
that the freshness is undefined, and it is necessary to ensure the closeness of the
model).

The label, the location, and the freshness of a node can be accessed by means
of the auxiliary functions label, loc, and freshness, which are used thorough
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t ::= t1, . . . , tn | n[t] | n trees
n ::= (oid, loc, fr)label nodes
loc : (dbname → t, (dbname, loc) → t) locations
where label ∈ Σ∗, fr ∈ N ∪ {⊥}, and
loc1 and loc2 are partial functions.

Fig. 1. Term grammar

the whole algebra. For the sake of simplicity, we assume that peers perform leaf
updates only (deletions, insertions, and value changes), hence the model satisfies
the following parent/child freshness constraint.

Property 1 (Structural freshness constraint). Given a data tree t, it holds that:

t = n[t1] ⇒ freshness(n) � freshness(t1)

t = n[t1, . . . , tk] ⇒ freshness(n) � minifreshness(ti)

Locations model the content of peers, hence they are represented as a pair of
partial functions: the first function (loc1) returns, for each database identifier,
the trees contributed to the database by the given peer, if any; the second func-
tion (loc2), instead, describes the replication services offered by a given peer,
i.e., it returns, for each database identifier and location, the replicated trees for
such database and location, if any. Replicas are further described by a (distrib-
uted) set replicas, which contains dynamic replication constraints. A replication
constraint has the form (loc1, loc2, db, δ1, δ2), and it states that loc2 replicates
the content of loc1 for the database db from time δ1 to time δ2 (δ2 may assume
the special value ∞, which indicates that the replica is always kept up to date);
given the dynamic nature of the system, we expect replication constraints to
evolve over time.

Location content can be accessed through the function content, as shown
below:

content(loc) =
⋃

id loc1(id)
AllLocs(id) = {loc | loc1(id) �= ∅}

The set of locations containing data relevant for a given database db is re-
turned by the function AllLocs. The way AllLocs is computed and updated
goes far beyond the scope of this paper, as it depends on the physical organiza-
tion of the system; we only assume that the system will provide a set supposed
to comprise an exhaustive list of locations containing relevant data. As usual
in p2p systems, we also expect this set to be incomplete or even incorrect. The
same considerations apply to replicas.

3.2 Global Time

For the sake of supporting freshness parameters, the data model has a universal
constant τ , which denotes the current global time in the system. The hypoth-
esis of the existence of a global time, shared by all peers in the network, even
though unrealistic, is not restrictive and does not affect the well-foundness of
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the algebra. Indeed, as shown in [2], query results are usually incomplete in p2p
systems, and their incompleteness implies, in many cases, their incorrectness, so
the assumption of the existence of a universal shared time does not significantly
affect the quality of query results.

To support dynamic replication constraints, we assume that each query has
two time parameters: the query issuing time τ ′, and the maximum replica time
δτ ′ , which indicates that replication constraints of the form (loc1, loc2, db, δ1, δ2)
with δ2 	 τ ′ − δτ ′ can be considered during query compilation.

3.3 Env Structures

Most algebraic operators manipulate unordered sequences of tuples, each tu-
ple containing the variable bindings collected during query evaluation. These
sequences (called Env structures as they mimic an environment) allow one to
define algebraic operators that manipulate sequences of tuples, instead of trees;
hence, common optimization and execution strategies (which are based on tuples
rather than trees) can be easily adapted to XML.

Tuples in a given Env structure are flat, hence they cannot be nested one
another. Each variable binding associates a variable to a collection, possibly a
singleton, of node identifiers.

To ensure the closure of the algebra, intermediate structures are themselves
represented as node-labeled trees conforming to the algebra data model; this
kind of representation also allows one to apply useful optimization properties to
border operators.

3.4 path and return

path and return represent the interface between XML data and intermediate
Env structures. They allow for creating Env structures from XML trees (path)
and for creating new documents from existing Env structures.

path. The main task of the path operator is to extract information from the
database, and to build variable bindings. The way information is extracted is
described by an input filter ; a filter is a tree, describing the paths to follow into
the database (and the way to traverse these paths), the variables to bind and
the binding style, as well as the way to combine results coming from different
paths. Input filters, hence, are just a way to describe query twigs, according to
the grammar shown in Table 3.1.

A simple filter (op, var, binder)label[F ] tells the path operator a) to traverse
the current context by using the navigational operator op, b) to select those
elements or attributes having label label, c) to perform the binding expressed by
var and binder, and d) to continue the evaluation by using the nested filter F .

An input filter fully describes the behavior of its enclosing path operator. In
addition to an input filter, the path takes as input a data model instance, that
is browsed according to the specification given by the input filter; hence, a path
operator has the syntax pathF (t), where F is the input filter and t the data
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Table 3.1. Input filters grammar

F ::= F1, . . . , Fn conjunctive filters op ∈ {/, //, } navigational axes
| F1 ∨ . . . ∨ Fn disjunctive filters var ∈ String ∪ { } variable names
| (op, var, binder)label[F ] simple input filter binder ∈ { , in, =} binders
| ∅ empty filter

model instance. The result of the evaluation of a path operator is a sequence
of tuples containing the variable bindings described in the filter. The following
examples show the behavior of path.

Example 1. Consider a real-estate p2p market database, and consider the fol-
lowing query fragment.

for $b in input()//building,
$d in $b/desc,

This clause retrieves descriptions for buildings at any level in the database.
Assuming that the query plan generation layer found only one relevant location
loc1, the clause can be translated into the following path operation:

path(//,$b,in)building[(/,$d,in)desc[∅]](loc1
1(db1))

which returns the following Env structure:

$b : o1 $d : o11

$b : o1 $d : o12

$b : o3 $d : o24

. . . . . .

Example 2. Consider the following XQuery fragment:

for $b in input()//building
let $d list := $b/desc,

This query retrieves buildings and building descriptions in the database; unlike
the previous example, descriptions of the same building are grouped together in
$d list. This query fragment can be expressed by the following path operation:

path(//,$b,in)building[(/,$d list,=)desc[∅]](loc1
1(db1))

which returns the following Env structure:

$b : o1 $d list : {o11, o12, . . .}
$b : o3 $d list : {o24, . . .}

As shown by the filter grammar, multiple input filters can be combined to form
more complex filters. The algebra allows filters to be combined in a conjunctive
way, or in a disjunctive way. In the first case, the Env structures built by sim-
ple filters are joined together, hence imposing a product semantics; in the second



A Query Algebra for XML P2P Databases 643

case, partial results are combined by using an outer union operation. Therefore,
disjunctive filters can be used to map occurrences of op : union inside paths into
input filters, as well as more sophisticated queries; the use of outer union ensures
that the resulting Env has a uniform structure, i.e., all binding tuples have the
same fields.

return. While the path operator extracts information from existing XML docu-
ments, the return operator uses the variable bindings of an Env to produce new
XML documents. return takes as input an Env structure and an output filter,
i.e., a skeleton of the XML document being produced, and returns a data model
instance (i.e., a well-formed XML document) conforming to the filter. This in-
stance is built up by filling the XML skeleton with variable values taken from
the Env structure: this substitution is performed once per each tuple contained
in the Env, hence producing one skeleton instance per tuple.

Output filters satisfy the following grammar:

(1) OF ::= OF1, . . . , OFn | n[OF ] | val
(2) val ::= n | var | νvar

An output filter may be an element constructor (n[OF ]), which produces an
element tagged n and whose content is given by OF , a value constructor (n), or a
combination of output filters (OF1, . . . , OFn). The production describing values
(val) needs further comments. The algebra offers two ways to publish information
contained in an Env structure: by copy (νvar) and by reference (var). Referenced
elements are published as they are in query results; in particular, their object
ids are not changed, as well as their location and freshness information. Copied
elements, instead, are published with fresh oids, while their location and freshness
information remains untouched. Finally, newly created elements (OF ::= n[OF ])
and values (val ::= n) are managed as copied nodes with undefined freshness, so
they have fresh oids, empty location, and are marked with the undefined time
information (⊥).1

The following example shows the use of the return operator.

Example 3. Consider the following XQuery query:

for $b in input()//building,
$d in $b/desc,
$p in $b/price

return <entry> {$d, $p} </entry>

This query returns the description and the price of each building in the market,
and it can be represented by the following algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

loc1
1(db1)))

1 Any freshness comparison w.r.t ⊥ is true, so the freshness structural constraint still
holds.
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3.5 Operators on Locations

Operators on locations are crucial for retrieving data coming from multiple peers,
and for exploiting, if necessary, replicas of the content of some location. The
query algebra offers two location operators: LocUnion and Choice.

LocUnion (•) takes as input two locations loc1 and loc2, and it returns a
new location obtained by uniting the content and the replica functions of the
arguments, as shown in Table 3.2.

Table 3.2. Formal definition of LocUnion

loc1 • loc2 = ((loc1
1 ⊕ loc1

2), (loc2
1 ∪ loc2

2))
loc1

1 ⊕ loc1
2 = {(dbname, t) | (dbname, t) ∈ loc1

1 ∧ �t′ : (dbname, t′) ∈ loc1
2}∪

{(dbname, t) | (dbname, t) ∈ loc1
2 ∧ �t′ : (dbname, t′) ∈ loc1

1}∪
{(dbname, (t1, t2)) | (dbname, t1) ∈ loc1

1 ∧ (dbname, t2) ∈ loc1
2}

LocUnion is primarily used for expressing queries retrieving data from mul-
tiple peers. The following example shows the use of LocUnion.

Example 4. Consider our real-estate market database, and assume that new lo-
cations (loc11, loc13, and loc17) contribute data about buildings. Then, the query
of Example 3 can be expressed by the following algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(•i=1,11,13,17loci)1(db1)))

As shown in Section 4.1, LocUnion operations can be extruded from path
operators, hence the previous expression can be rewritten as follows:

returnentry[ν$d,ν$p](∪i=1,11,13,17
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

loc1
i (db1)))

The Choice (|δdb) operator is a convenient way to encapsulate replication con-
straints into query plans. loc1 |δdb loc2 indicates that loc2 replicates loc1

1(db) until
time δ, so, if permitted, it can serve requests for data in loc1

1(db). As a conse-
quence, loc1 |δdb loc2 can be rewritten (in path operations concerning db) as loc1
or as loc2

2(loc1).
The following example shows the use of Choice.

Example 5. Consider the query of the previous example, and assume that
loc11(db1) is replicated at loc17 till time δ; furthermore, assume that the query
was submitted at time τ ′ so that τ ′ < δ. Then, the query can be expressed by
the following algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(loc1 • (loc11 |δdb1 loc17) • loc13 • loc17)1(db1)))
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4 Optimization Properties

Four main classes of algebraic rewriting rules can be applied to the query algebra.
The first class contains classical equivalences inherited from relational and OO
algebras (e.g., push-down of Selection operations and commutativity of joins);
the second class consists of path decomposition rules, which allows the query
optimizer to break complex input filters into simpler ones; the third class contains
equivalences used for unnesting nested queries; the last class, finally, contains
rewriting rules for location operators. For the sake of brevity, we focus here on
location rewritings (the reader can see [6] for a detailed list of equivalence rules
for the core of this algebra).

4.1 Location Rewriting Rules

Operators on locations represent a crucial fragment of a query algebra for p2p
databases; as a consequence, rules for simplifying location operators as well as
for splitting complex location unions are a must. The algebra offers three main
rewriting rules for location operators: extrusion of LocUnion operations from
path operations; simplification of Choice operators; and introduction of Choice
operations.

Proposition 1 (Extrusion of LocUnion operations)
Given a database db disseminated on loc1 and loc2, it holds that:

pathf((loc1 • loc2)1(db)) = pathf ((loc1)1(db)) ∪
pathf ((loc2)1(db))

This property states that LocUnion operations inside path operations can be
split and distributed across the query; this, in turn, allows the system to more
easily decompose a query in single-location subqueries.

Proposition 2 (Rewriting of location choices)
Given a database db hosted at loc1 and replicated at loc2, it holds that:

pathf ((loc1 |δdb loc2)1(db)) = pathf(loc1
1(db))

pathf ((loc1 |δdb loc2)1(db)) = pathf(loc2
2(loc1)(db))

This property shows how a Choice operation inside a path operation can be
rewritten; we expect that this rewriting will be guided by additional information
about network conditions, peer computing power, etc.

Proposition 3 (Choice introduction)
Given a database db, if (loc1, loc2, db, δ1, δ2) ∈ replicas, and δ2 	 τ ′ − δτ ′ , then
loc1

1(db) → (loc1 |δ2
db loc2)1(db)

Corollary 1 (Guarded choice introduction). Given a database db dissem-
inated on loc1, . . . , locm, if (loci, locj, db, δ1, δ2) ∈ replicas, and δ2 	 τ ′ − δτ ′ ,
then

pathf ((loc1 • loci)1(db)) → pathf ((loc1 • (loci |δ2
db locj))1(db))

These properties back the introduction of Choice operations in query plans.
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The following example illustrates how these properties can be used during
query compilation.

Example 6. Consider the real-estate database of Section 3, and assume that peer
pi submits the query of Example 4 to the system (we report it below for the sake
of clarity).

for $b in input()//building,
$d in $b/desc,
$p in $b/price

return <entry> {$d, $p} </entry>

Assuming, as in Example 4, that relevant data for the query are hosted at loca-
tions loc1, loc11, loc13, and loc17, then the system compiles this query into the
following algebraic expression.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(•i=1,11,13,17loci)1(db1)))

In the case that no suitable replicas are available, the system can just apply
Proposition 1, so to push down path operations and to maximize the query
fragments to be delivered to remote peers, as shown below.

returnentry[ν$d,ν$p](∪i=1,11,13,17
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

loc1
i (db1)))

Assume now that replicas contains two relevant replication constraints for
the query: (loc11, loc1, db1, τ1, τ2) and (loc11, loc24, db1, τ3, τ4). If loc24 models a
very reliable and fast peer, the system may decide to apply Corollary 1 and
Proposition 2, so to speed up query execution, as shown below.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

1(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc2

24(loc11)(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

13(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

17(db1)))

Alternatively, the system may decide, on the basis of network traffic conditions
and other parameters, to exploit the first replication constraint, so to concentrate
the query load to the peer corresponding to loc1. In this case, the application of
Corollary 1 and Proposition 2 leads to the following algebraic expression.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

1(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc2

1(loc11)(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

13(db1))∪
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1

17(db1)))

It should be noted that, unlike Proposition 1, which is always applicable, the
application of Corollary 1 and Proposition 2 is subject to conditions that may
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change over time, hence, after a certain period of time, the algebraic expressions
reported above may become invalid.

5 Related Works

Current research about the algebraic treatment of queries in p2p database sys-
tems mostly focuses on physical query algebras for relational databases. [7]
presents a physical query algebra for a DHT-based relational p2p database sys-
tem. This algebra provides low-level operators for supporting relational queries
on a DHT, which cannot be generalized to other contexts. In particular, no ab-
stract notions of locations and replicas are provided, and all operators strictly
depend on the presence of a DHT.

In [8] a more sophisticated approach is described. Queries are posed against
virtual tables by means of a standard relational algebra, and are then trans-
lated into relational concrete queries over local and distributed tables; concrete
queries are expressed through a concrete query algebra, which contains operators
inspired by traditional distributed systems. Distributed tables are attached to
peers, so they can be used to implicitly denote locations. While this approach
is more general than that of [7], the lack of explicit modeling of locations and
replicas is a significant difference with our algebra.

The explicit modeling of locations is not new. For instance, [9] contains a
formalization of static p2p systems in terms π-calculus expressions. The main
limitation of the work is the lack of support for dynamic topologies.

6 Conclusions

This paper describes a query algebra for XML p2p database systems. The al-
gebra features mechanisms for dealing with p2p-specific issues, namely the dis-
semination and replication of data across an unstable network, as well as for
incorporating replication constraints into query plans.

Even though designed for a specific class of systems (XML databases), the key
ideas of the proposed algebra can be generalized to p2p systems with different
data models.

The proposed algebra is now being used in the XPeer [10] p2p system: XPeer
is a scalable and self-organizing p2p system for XML data designed for resource
discovery applications.

The proposed algebra represents the first step in the development of a p2p query
optimization systems. Its definition will be the starting point for the further inves-
tigation of suitable rewriting rules and for the design of a proper query optimizer.
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mento, M.A., Özsu, M.T., Zäıane, O., eds.: Proceedings of the 6th International
Database Engineering and Applications Symposium (IDEAS 2002), Edmonton,
Canada, July 17-19, 2002. (2002)
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Abstract. Database clusters provide a cost-effective solutionn for high 
performance query processing. By using either inter- or intra-query parallelism 
on replicated data, they can accelerate individual queries and increase 
throughput. However, there is no database cluster that combines inter- and 
intra-query parallelism while supporting intensive update transactions. C-JDBC 
is a successful database cluster that offers inter-query parallelism and controls 
database replica consistency but cannot accelerate individual heavy-weight 
queries, typical of OLAP. In this paper, we propose the Apuama Engine, which 
adds intra-query parallelism to C-JDBC. The result is an open-source package 
that supports both OLTP and OLAP applications. We validated Apuama on a 
32-node cluster running OLAP queries of the TPC-H benchmark on top of 
PostgreSQL. Our tests show that the Apuama Engine yields super-linear 
speedup and scale-up in read-only environments. Furthermore, it yields 
excellent performance under data update operations.  

1   Introduction 

Competitive organizations typically optimize their business processes using decision 
support systems (DSS) [9]. A DSS includes On-Line Analytical Processing (OLAP) 
tools and a data warehouse (DW) capable of efficiently handling large amounts of 
data [3]. Due to the important role played by DSS, much research has been devoted to 
provide high performance for OLAP queries. 

High performance query processing on data warehouses can be achieved using a 
relational database management system (DBMS) running on top of a PC cluster. PC 
clusters can scale to very large configurations [8]. Examples of cluster-aware DBMSs 
are Oracle RAC 10g [5] and DB2 ICE [6]. However, software licensing, hardware 
specific requirements or database migration costs may prevent their use by many 
applications. An alternative approach for high-performance data warehousing using 
PC clusters is a database cluster [1, 2, 14, 18]. A database cluster (DBC) consists of a 
set of independent DBMSs (not cluster-aware) distributed over a set of cluster nodes, 
                                                           
* Work partially funded by CNPq, Finep, Capes, Cofecub and ACI “Massive Data” in France. 
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and orchestrated by a middleware, responsible for offering a single external view of 
the whole system, like a virtual DBMS. Applications need not be modified when 
database servers are replaced by their cluster counterparts. Their queries are sent to 
the middleware which provides data distribution transparency. Previous work as 
PowerDB [1], Leg@net [4], C-JDBC [2] and SmaQ [13] have shown the 
effectiveness of the DBC approach.  

Two kinds of parallelism can be exploited in a DBC for query processing: inter-
query parallelism and intra-query parallelism. Inter-query parallelism consists of 
executing many queries at the same time, each at a different node. Inter-query works 
fine for On-Line Transactional Processing (OLTP) application support, where queries 
are usually light-weight. However, OLAP applications typically have heavy-weight 
queries, i.e., queries that access large amounts of data and perform complex 
operations, thus taking a long time to be processed. Using only inter-query parallelism 
is not appropriate for heavy-weight query processing as it does not reduce the 
processing time of individual queries. In such case, intra-query parallelism is the most 
adequate solution as shown in [14].  

Intra-query parallelism consists of using many nodes to process each single query. 
In this case, each node addresses only a subset of query data and/or query operations. 
The main goal is to reduce the execution time of individual heavy-weight queries 
while improving the overall throughput.  

Inter- and intra-query parallelisms can be combined in a DBC implementation. 
Moreover, a DBC with both kinds of parallelism and support for concurrent data 
updates can be used in both OLAP and OLTP applications. However, current DBC 
solutions [1], [4], [2] and [14], exclusively support inter-query for OLTP or intra-
query for OLAP applications. First, because current DBC solutions for OLAP 
applications usually consider that database refresh operations are not controlled by 
them and takes place on a specific predefined time which the DSS is offline. The 
second reason is that combining inter- with intra-query parallelism can be conflicting. 
Intra-query parallelism requires the presence of data subsets which are typically 
produced by physical database design. When the data is physically partitioned among 
cluster nodes, inter-query parallel processing becomes very limited, since most 
queries need to scan all partitions in parallel. Depending on the data partitioning 
design, a simple OLTP query must be processed by intra-query parallelism and 
becomes very inefficient. On the other hand, OLAP queries without data partitioning 
cannot be performed efficiently. 

Our goal is to provide a high-performance and low-cost DBC solution that supports 
OLTP and OLAP workloads. To avoid the problems with physical database 
partitioning, we adopt dynamic virtual partitioning to a replicated database. We use 
C-JDBC, an industrial quality open-source DBC solution that offers support for inter-
query parallelism and database replica consistency. C-JDBC provides excellent 
performance for OLTP applications [2] but does not support intra-query parallelism. 
Thus, we extend C-JDBC with a non-intrusive intra-query solution. 

In this paper, we present the Apuama1 Engine as an extension of C-JDBC. The 
main goal is to provide an environment to process OLAP queries using intra-query 
parallelism while keeping the effectiveness of C-JDBC to support OLTP transactions. 

                                                           
1 Apuama means fast in Tupi-Guarani, a primitive language of South America. 
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No source code was changed in C-JDBC. Apuama acts as a connection proxy 
between C-JDBC and the DBMSs. It does not interfere with the C-JDBC query 
processing and is only used for OLAP query processing. Unlike all other DBC intra-
query solutions, Apuama also provides for database replica consistency during intra-
query processing.  

To evaluate Apuama, we ran experiments based on the TPC-H benchmark [19] 
(specific for OLAP applications) on a 32-node cluster using PostgreSQL [16]. Query 
processing speedup and throughput scalability were measured on experiments with 
read-only queries and a mix of read-only queries and concurrent data updates. In most 
cases, Apuama achieves super-linear speedup and scale-up. Since there has been no 
change to C-JDBC inter-query processing, successful OLTP results are sustained. 

The paper is organized as follows. Section 2 introduces the basic concepts for 
intra-query parallelism in DBC. Section 3 explains intra-query support in Apuama. 
Section 4 presents the architecture of Apuama as an extension to C-JDBC. Section 5 
describes experimental results. Section 6 discusses related work. Section 7 concludes. 

2   Intra-query Parallel Processing in DBC 

Intra-query parallelism consists of having each query being processed by many nodes 
in parallel. This can be achieved in different ways. The most frequent solutions are 
through data parallelism, where the same query is executed against different parts of a 
partitioned database in parallel. A DBMS that has parallel capabilities usually offers 
several data partitioning techniques that are used during physical database design. 
Such DBMS provides transparent access to the partitioned database and has full 
control over the parallel query execution plan. This is not the case for DBC. 

In DBC, independent DBMSs are used by a middleware as “black-box” 
components. It is up to the middleware to implement and coordinate parallel 
execution. This means that query execution plans generated by such DBMSs are not 
parallel. Furthermore, as “black-boxes”, they cannot be modified to become aware of 
the other DBMS and generate parallel plans.  

When the database is replicated at all nodes of the DBC, inter-query parallelism is 
almost straightforward. Any read query can be sent to any node and execute in 
parallel. On the other hand, to implement intra-query in a DBC, the application 
database must be partitioned and distributed among the DBC nodes. The use of a 
replicated database or a partitioned database can also impact on the way the update 
transactions are processed. For replicated databases, the DBC must send a notification 
to all replicas in order to complete an update transaction. Using a partitioned database, 
the update transaction processing is faster because the DBC has to notify a smaller 
number of nodes. The notification is sent just to the owners of updated tuples. 
However, physical data partitioning can be complex to design, hard to maintain, and 
can cause severe data skew. In addition, automatically generating a parallel query 
execution plan can be quite complex.  

An interesting solution to combine inter- and intra-query parallelism is to keep the 
database replicated and design partitions using virtual partitioning (VP) [1]. VP is 
based on replication and dynamically designs partitions. The basic principle of VP is 
to take one query, rewrite it as a set of sub-queries “forcing” the execution of each 
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one over a different subset of the table. In the PowerDB DBC [1], this is implemented 
in a simple way called Simple Virtual Partitioning (SVP) that works as follows. First, 
the database is fully replicated over all cluster nodes. Then, when a query Q is 
submitted to a DBC with n nodes, a set of sub-queries Qi=1..n is produced. Each Qi is 
formed by the addition of a different range predicate to Q at the where clause. The 
goal is to make each sub-query to run over a different subset of the data that must be 
accessed by Q. Then, each sub-query is sent to a different node, where it is executed 
by the local DBMS. After sub-query execution, the DBC produces the final result 
based on the partial results of each node. Let us take the following query Q to be 
executed in a DBC with four nodes: 

Q: select sum(l_extendedprice) from lineitem  (1) 
  
According to SVP, Q would be rewritten as follows: 

Qi: select sum(l_extendedprice) from lineitem  (2) 
 where l_orderkey >= :v1 and l_orderkey < :v2 
 
The difference between Q and Qi is the range predicate “l_orderkey > :v1 and 

l_orderkey <= :v2”. We call virtual partitioning attribute (VPA) the attribute chosen 
to virtually partition the table. The values used for parameters v1 and v2 vary from 
node to node and are computed according to the total range of the VPA values and the 
number of nodes. Assuming that the interval of values of l_orderkey is [1; 6,000,000] 
and we have 4 nodes, then, 4 sub-queries must be generated. The intervals covered by 
each sub-query are the following: Q1: v1=1 and v2=1,500,001; Q2: v1=1,500,001 and 
v2=3,000,001; and so on. Although all nodes have a replica of lineitem, VP forces 
each Qi to process a different and disjoint subset of lineitem's tuples.  

However, this approach does not guarantee that different physical parts of lineitem 
will be scanned. If the tuples of the added range are scattered along the table storage, 
all disk pages occupied by the table might be accessed. For SVP to be effective, the 
tuples of the virtual partition must be physically clustered according to the VPA and 
there must be an index associated to this attribute, i.e., there must exist a clustered 
ordered index on lineitem based on l_orderkey. Furthermore, the DBMS optimizer 
must choose the clustered index to be used in the execution plan.  

Query re-writing is not trivial. We base our transformations on some typical query 
templates from OLAP queries, adopting some hints from [1]. To leverage this 
complexity we only apply VP on fact tables, which makes it easier to re-write queries 
with complex joins. Some SQL functions require a more complex query modification. 
For example, the avg() function of a query must be rewritten in the sub-queries as a 
sum() function followed by a count() function to address a global average. Still some 
queries, such as complex nested queries, cannot be transformed. In those cases, intra-
query is not explored.   

3   Query Processing with Apuama  

Apuama is an extension of C-JDBC responsible for providing intra-query parallelism. 
It is implemented as an external component, without changing C-JDBC. OLTP 
transactions are processed by C-JDBC without any change. In this section we explain 
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how OLAP queries are handled by Apuama through intra-query processing, result 
composition and update transactions. 

Apuama implements intra-query parallelism based on SVP. Query speedup with 
SVP is DBMS-dependent since the partitioned table must be accessed through a 
clustered index associated to the partitioning attribute. If, for any reason, the DBMS 
optimizer chooses a full table scan to execute a sub-query, the virtual partition is 
ignored and the performance of SVP can be severely hurt. Even though a full table 
scan can be more efficient for an isolated query execution, in Apuama it is also 
important trying to keep most of the virtual partition data at the cache. Thus, in order 
to guarantee effective exclusive access to the virtual partition tuples, Apuama directly 
interferes in DBMS optimizer choices in order to force index usage. This is done by 
asking the DBMS to disable full table scans during heavy-weight intra-query 
processing. This can be done in many popular open-source DBMSs, e.g. MySQL [7] 
and PostgreSQL.  

Apuama disables full scans only before starting to process a query using intra-
query parallelism. When the query processing is finished, the original DBMS settings 
are reestablished. This strategy is not DBMS-independent because the command used 
to do that is not standard, although it is common knowledge for the most of DBAs. 
Thus, Apuama must detect which DBMS driver is being used to make DBMS-specific 
changes on the query execution plan. This information is part of Apuama’s metadata 
and it is set during software installation. 

Sub-queries produced by SVP in Apuama are independently processed by each 
node and their partial results must be combined in order to form the final query result. 
Apuama uses HSQLDB [10], a fast in-memory DBMS, to perform result 
composition. This method proved to be very efficient during our experiments. In 
many experiments, aggregations performed by HSQLDB took no more than one 
second to be processed even with large partial results involving several columns. 

Updates in Apuama are propagated to all nodes in the same order to guarantee 
consistency among different replicas. The time needed to broadcast updates over all 
nodes increases according to the number of nodes in the cluster. With full replication, 
this can impact performance in update-intensive situations. Fortunately, this is not the 
case for most decision-making environments. Although C-JDBC does not require full 
replication, we adopted it to maximize speedup through intra-query parallelism. 
Solutions using the replica freshness techniques [15] are out of the scope of this work.  

In order to produce consistent results for heavy-weight queries, Apuama must 
guarantee that, before beginning to process a query using intra-query parallelism, all 
node replicas are consistent with each other. Distributed updates are performed by 
C-JDBC, which is not aware of the existence of sub-queries generated by SVP. With 
C-JDBC only, we can assure that updates are executed in the same order in all nodes 
but we cannot assure that updates and SVP sub-queries are executed in the same 
order. Different execution threads, executing update and read-only operations, may be 
scheduled in different orders by the operating systems of different nodes. Therefore, 
Apuama provides a blocking mechanism to avoid performing updates along SVP sub-
queries of the same query. Apuama has a transaction counter for each node. When a 
query must be processed with SVP, Apuama waits until a consistent state is reached 
by all nodes. This happens when all transaction counters are equal. If new update 
transactions arrive, they are blocked. Then, Apuama starts executing SVP, 
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dispatching all sub-queries to their respective nodes. When all sub-queries are sent 
and started by the DBMSs, update transactions are unblocked and can be executed. 
The transaction isolation provided by the DBMS makes it possible to have the updates 
executed before each sub-query finishes, thereby improving throughput.  

4   Apuama Architecture 

This section describes the Apuama architecture and its integration within C-JDBC. 
Fig. 1(a) shows our architecture that contains only C-JDBC components relevant to 
our explanation and the Apuama Engine extension. The main purpose of C-JDBC is 
to offer transparent access to a cluster of databases without any modification on the 
client application. The unique requirement is to use a JDBC driver [11]. Instead of 
having the application directly connected to the DBMS, it is connected to C-JDBC 
controller using a C-JDBC JDBC driver.  

 

Fig. 1. Apuama architecture 

The C-JDBC controller is a Java process that manages all database resources. It 
has a Database Backend component that manages a pool of connections to running 
DBMSs. Each request received by C-JDBC is submitted to the Scheduler component 
that controls concurrent request executions and makes sure that update requests are 
executed in the same order by all DBMSs. The Scheduler can be configured to 
enforce different parallel levels of concurrency. In our experiments, it was set to 
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concurrently execute read and write requests. After a request is scheduled to run, the 
Load Balancer component chooses which Database Backend will execute it. If it is a 
write request, the same query is executed in every Database Backend to maintain 
consistency. But if it is a read request, the Load Balancer chooses the best node to 
execute it. This choice is based on a previously established policy. We configured the 
Load Balancer to select the node with the least number of pending requests. 

Apuama does not require any changes in C-JDBC source code. Fig. 1(a) shows that 
Apuama is a layer between C-JDBC and the DBMSs. C-JDBC no longer makes any 
direct connection to DBMSs. Each Database Backend connects to Apuama through a 
JDBC driver. It is Apuama that connects to the DBMSs. 

Fig. 1(b) shows a detailed architecture of Apuama. It has two kinds of components: 
one that manages intra-query parallel executions, called Cluster Administrator, and a 
set of Node Processor components. For each connection established by C-JDBC 
using Apuama, a Node Processor is created and is responsible for mediating and 
monitoring requests sent to its corresponding DBMS. To be able to process multiple 
requests, the Node Processor creates a pool of connections.  

The Cluster Administrator has a Query Parser component capable of determining 
which tables are referenced by a query and a Data Catalog that contains information 
about tables that can be virtually partitioned. They are used to determine if a current 
OLAP query can be processed using intra-query parallelism or not. If not, the Node 
Processor simply redirects the request to the corresponding DBMS. Otherwise, the 
Cluster Administrator takes the query and processes it through the Intra-Query 
Executor (IQE) component. When all sub-queries are ready to be processed, they are 
sent in parallel to the Query Executor of each Node Processor. The Query Executor is 
responsible for sending the sub-query to its corresponding DBMS and waiting for 
results, which are sent to the IQE that forwards it to the Result Composer. It uses 
HSQLDB to store the partial results and perform final result composition. When all 
partial results are collected, the Result Composer produces the final result that is sent 
back to the client application.  

5   Experiments 

In this section, we evaluate the intra-query parallel processing capabilities added to C-
JDBC by Apuama in different scenarios. We ran experiments based on the TPC-H 
benchmark. We stress Apuama in situations of high concurrency levels, even while 
executing database refresh operations.  

All tables are replicated, but only the fact tables are virtually partitioned (orders 
and lineitem). Typically, fact tables have the highest cardinality in the database and 
they are frequently involved in OLAP queries, particularly in heavy joins. Thus, their 
reduced number of tuples can improve IO and CPU processing. Dimension tables are 
not virtually partitioned because they are small tables and represent 14% of total 
database size. We employ virtual partitioning on orders, based on its primary key 
(o_orderkey). The first attribute of the primary key of lineitem (l_orderkey) is a 
foreign key to orders. So, by choosing l_orderkey we generate a derived partitioning 
on lineitem. Tuples of the fact tables are physically ordered according to their 
partitioning attributes and indexes were built over them. Also, indexes are built for all 
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foreign keys of all tables. As TPC-H assumes ad-hoc queries, we perform no other 
optimization, as determined by the benchmark. 

The TPC-H queries that involve a fact table can benefit from the virtual 
partitioning. Exceptionally, some queries that contain subqueries involving fact tables 
cannot be rewritten using virtual derived partitioning. We use a subset of 8 queries 
from TPC-H. As in the specification, we identify queries by their numbers:  Q1, Q3, 
Q4, Q5, Q6, Q12, Q14 and Q21. We chose such queries because they represent OLAP 
queries of different complexities. Q1 accesses only the lineitem table and performs 
many aggregate operations. The “where” predicate of Q1 is not very selective since 
around 99% of tuples are retrieved. This is a very costly query. Q3 joins lineitem, 
orders and a dimension table. Differently from other queries, its result contains a large 
number of rows. Q4 contains a reference to lineitem table and a sub-query with 
another reference to lineitem. Q5 joins lineitem, orders and four dimension tables. It 
performs only one aggregate operation. As Q1, Q6 accesses just the lineitem table. 
The main differences between them are that Q6 has only one aggregate operation and 
its “where” predicate is much more selective, retrieving only 1.5% of tuples. Q12 
joins lineitem and orders tables and has two aggregation operations. Q14 joins 
lineitem table and a dimension table. Q21 contains three references to lineitem table. 
Two of those references are part of two sub-queries, respectively. 

There are three kinds of experiments: first, we analyze speedup obtained with 
Apuama when processing isolated individual queries. Then, we evaluate the system 
overall throughput with sequences of read-only queries. Finally, we evaluate 
throughput obtained while simultaneously processing read-only and update queries. 

We ran experiments on top of a 32-node shared-nothing cluster system from the 
Paris Team at INRIA [17]. Each node has two 2.2 GHz Opteron processors with 2 GB 
RAM and 30 GB HD. The network is a Gigabit ethernet. An instance of PostgreSQL 
8 was running at each node. The total database size on disk, including all tables and 
indexes, is about 11 GB, for a TPC-H database with a scale factor of 5. We use 
HSQLDB to compute the final results.  

In the following, we present results that show query execution times and 
throughput rates for an increasing number of nodes (from 1 to 32). Every execution 
was repeated five times and the final metric is the mean value obtained in such runs, 
not considering the first one. In some cases, metrics were also normalized by dividing 
their value by the value obtained during the same kind of experiment with one node. 
In order to ease reading and analysis, values are presented in logarithmic scale to give 
a clear notion of linearity [14]. 

The first experiment (Fig. 2) evaluates the speedup obtained with Apuama when 
executing isolated queries in different cluster configurations. With 2 nodes, query 
execution time for all queries is reduced by almost 50%, when compared to the 
sequential execution. With 4 nodes, query execution time is decreased from 45% to 
20% for all queries, except for Q4 and Q6 that were decreased to 1.2% and 6.8% of 
the original time, respectively. As Q4 and Q6 are highly selective queries, fragments 
obtained by virtual partitioning are small enough to fit in main memory with just four 
nodes, resulting in super-linear speedup. For such configurations, we could observe 
that, after the first query execution, no page faults occur, thus avoiding disk accesses. 
However, we continue to see a linear speedup with 8, 16 and 32 nodes showing the 
effectiveness of virtual partitioning even for in-memory databases. Because Q1 and 
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Q21 are CPU-bound queries, they do not benefit from IO improvement. Still their 
speed-up is always near linear. 

In the next experiment, read-only query sequences are executed in parallel against 
the DBC. All sequences are composed by the same 8 queries, sorted in different ways, 
according to TPC-H specification. Each sequence submits the next query after the 
completion of the current query. This is how TPC-H simulates a decision-making user 
formulating new queries based on previous query results. Queries from different 
sequences are submitted in parallel.  

 

Fig. 2. Speedup experiments - normalized query execution times  

Fig. 3(a) shows the throughput rate (in queries per minute) obtained during the 
execution of three concurrent query sequences in different cluster configurations. It 
also shows the throughput that would be achieved if linear scale-up throughput was 
obtained. The number of query sequences was defined according to TPC-H, which 
recommends this level of concurrency for OLAP databases with a scale factor of 5. 
For all configurations, the throughput rises super-linearly. With 2 nodes, it is near 
linear. With 4 nodes, the throughput is almost 2 times higher than if a linear gain was 
obtained. From 8 to 32 nodes, the throughput is constantly about 6 times higher than 
linear gain showing excellent performance.  

Fig. 3(b) shows the scale-up throughput rate when Apuama is processing 
sequences of read-only queries. In this experiment, the number of concurrent query 
sequences is equal to the number of nodes being used. Therefore, the ideal situation is 
that the execution time would be the same for all cluster configurations, as the 
“Linear” curve shows. As in the previous experiment, the performance obtained with 
2 nodes is better than expected. With 4 nodes, the performance is more than two times 
better than expected. From 8 to 32 nodes, the performance is always about 3 times 
better than expected, showing very good scalability with respect to query load. 



658 B. Miranda et al. 

Therefore, Apuama can be used to successfully reduce OLAP individual query 
execution time and increase system throughput in a typical OLAP scenario and even 
in the presence of high-concurrency.  

 

Fig. 3. Read-only query sequences experiment - (a) throughput with 3 concurrent sequences, 
(b) execution time with n concurrent sequences, where n is equal to the number of nodes 

In the following experiment, we mix read-only query sequences with an update 
query sequence. The update operations consist of 52,500 transactions for all cluster 
configurations. First, the update queries insert an amount of data on the lineitem and 
orders tables. In a second step, the updates remove all inserted tuples from lineitem 
and orders tables. 

Fig. 4(a) shows throughput (in queries per minute) obtained while concurrently 
processing 3 read-only query sequences and an update query sequence. Again, it 
shows the throughput that would be achieved if linear gain was obtained. From 2 to 8 
nodes, performance of Apuama is near linear. For 16 and 32 nodes, the consistency 
protocol makes the update propagation delay hurt performance. There is almost no 
performance gain from 16 to 32 nodes. Fig. 4(b) shows scalability in Apuama with a 
concurrent updates. Here, the number of read-only sequences equals the number of 
nodes while there is always one update sequence. There is a performance gain up to 
 

 

 

Fig. 4. Mixed workload experiment - (a) throughput with 3 read-only and 1 update sequence (b) 
execution time with 1 update and n read-only queries, where n is equal to the number of nodes 
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16 nodes. However, for 32 nodes, the performance is almost the same as with 4 nodes. 
This is due to the replica synchronization when using a large number of nodes. 

In summary, these experiments show that Apuama provides excellent performance 
in processing read-only query workloads. This is true for typical OLAP scenarios and 
for those with a high degree of concurrency. With mixed workloads (consisting of 
read-only and update queries), reasonable performance can still be obtained and the 
system does not need to be unavailable for end-users while data refresh operations are 
carried out. Thus, in typical OLAP scenarios, where such operations occur only from 
time to time, we can conclude that Apuama is a good solution for DSS. 

6   Related Work 

The main DBC projects that can be found in the literature are C-JDBC [2], PowerDB 
[1], PowerDB-FAS [18], SmaQ [13] and Leg@net [4]. C-JDBC, PowerDB-FAS and 
Leg@net only support inter-query parallelism. Apuama was developed as an 
extension to C-JDBC to support OLAP applications through intra-query parallelism.  

PowerDB provides intra-query parallelism, but does not guarantee query speedup 
because it depends on a DBMS-specific query execution optimization. Thus their 
results are unstable. Furthermore, in contrast with our motivation to offer a low-cost 
solution, PowerDB software is not freely available. 

SmaQ is also focused on OLAP. It uses a technique called “adaptive virtual 
partitioning” (AVP) [14] that reduces query execution time and allows for dynamic 
load balancing during query execution. Although SmaQ can support both inter- and 
intra-query parallelism, it does not support update transactions. The main difference 
between SmaQ and Apuama is the existence of a replica consistency management. 
Besides, experiments showed that execution of OLAP queries in environments with 
high levels of concurrency can lead to poor performance. Apuama uses a simpler 
virtual partition technique than AVP that allows for better concurrent queries support. 
Since AVP locally subdivides the local sub-query it increases the level of concurrency 
while inducing a bad memory cache use. 

7   Conclusion 

We proposed the Apuama Engine as an extension to C-JDBC, a successful open-
source DBC. Apuama adds intra-query parallel processing capabilities. The result is a 
low-cost powerful and unique DBC that can simultaneously support OLTP and OLAP 
applications. We implemented intra-query parallelism using SVP, an efficient 
technique that can be used with different DBMSs requiring standard, non-intrusive 
techniques and almost “black-box” DBMS components. 

To validate our solution, we implemented Apuama on a 32-node cluster system 
and ran experiments with typical queries of the TPC-H benchmark. By varying the 
number of nodes in our experiments, it was possible to examine the query processing 
performance in cases that the virtual partition size is larger or smaller than the amount 
of available memory in a node. Although the performance improvement is better 
when the virtual partition fits in memory, the query super-linear speedup occurs in 
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both cases. When processing isolated queries, super-linear speedup was obtained in 
most situations. When processing parallel sequences of read-only queries, the 
performance gain of Apuama is super-linear for all cluster configurations, even in 
scenarios with high levels of concurrency. With mixed workloads that combine 
parallel sequences of read-only queries and large amounts of data updates, the 
performance gain is also very good.  The performance gain is near-linear for most 
experiments of speed-up test and super-linear for throughput scale-up test. Thus, 
Apuama is a good solution for high-performance DSS. In the presence of updates, 
Apuama presented performance deterioration when a large number of nodes were 
employed due to the replica consistency protocol. As a future work we plan to focus 
on this limitation using an alternative replication policy that relaxes consistency. The 
tradeoff between OLAP query result correctness and update transaction performance 
would be analyzed. 

Apuama is released as an open source software protected under the terms of LGPL 
[12] license. It can be downloaded from http://www.cos.ufrj.br/~bmiranda/apuama. 
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Abstract. This paper summarizes the situation about using XLink for
connecting XML instances. We discuss applications where XLink func-
tionality can be useful, and derive requirements how the basic XLink
technology should be supported in these scenarios. We compare several
proposals dealing with interlinked XML data with our dbxlink approach
which is a minimal extension to XLink and XPath, and we show how its
semantics can be added to arbitrary XPath-based query engines.

1 Introduction

We start the presentation with a short introduction to XLink and the current,
unsatisfying state of the art of dealing with XLinks in XQuery. Section 2 then
points out tasks where XLinks can be applied successfully and show what fea-
tures would be nice to be supported. We describe our dbxlink proposal and corre-
late it with existing proposals in Section 3. We give a high-level description here
since the formal details of dbxlink can be found in [BFM06], and then report
our experiences with extending a “common” XML database system with this
functionality in Section 4 before closing with some concluding remarks.

XML and XLink. XML has been designed and accepted as the framework
for semi-structured data. XML data is not required to be self-contained on an
individual server, but may include links to XML data on other servers. Such
references inside XML data can be expressed by the XML Linking Language
(XLink) [XLi01, XLi06]. XLink provides special tags in the xlink namespace
that tell an application that an element is equipped with link semantics. The
well-known HTML <a href=”. . . ”> construct is a simple XLink element whose
href attribute references a document. XLink defines general functionality of such
references: (i) arbitrary elements can be distinguished as XLink elements, (ii)
the allowed values of the href attribute are enhanced for addressing XML data,
and (iii) the behavior of the link can further be specified.

The essential step in (ii) is to allow to specify the remote resource not only as
usual in HTML by a URL optionally extended with an anchor (e.g., http://www.
example.org#foo), but, suitable for the XML data model, for addressing nodes.
The extended addressing functionality is provided by the XPointer Framework
[XPt03] and the XPointer addressing scheme [XPt02]. XPointer in turn is based
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on XPath expressions: An XPointer expression of the form url#xpointer(xpointer-
expr) (where the syntax of xpointer-expr is a slight extension of XPath) identifies
a fragment inside the XML document located at url . E.g., the following XPointer
(see also Figure 1 and Example 1 below)

http://www.foo.de/countries.xml#xpointer(//country[@car code=”D”])

addresses the node that represents Germany in http://www.foo.de/countries.xml.
XLink defines several types of links, i.e., simple links that provide referencing

functionality similar to the HTML <a> element, and extended links that allow
for connecting sources by arcs. In this paper, the focus of our interest is on
simple links, where one XLink element with an XPath expression in place of the
xpointer-expr references one or more nodes from a remote document. A simple
link has the following form:

<qname xlink:type=“simple” xlink:href=“xpointer” further-xlink-attributes>

content
</qname>

Example 1 (Simple XLinks). The document countries.xml in Figure 1 con-
tains basic data about countries, and for each country, cities-XX.xml (where XX
is the country’s car code) contains information about the cities in this country.

Query Support for XLink References. How can the instance be queried –
e.g., for finding out how many inhabitants the capital of Belgium has? Although
the W3C’s XML Query (XQuery) Requirements [XMQ05, Sec. 3.3.4/3.4.12 (Ref-
erences)] explicitly state that

“the XML Query Data Model MUST include support for references,
including both references within an XML document and references from
one XML document to another”,

and XLink is a well-established W3C Recommendation, neither XPath nor
XQuery support navigation along XLink references. While for intra-document
references, the id(...) function does this task, and the doc(...) function allows for
accessing remote documents, there is not yet complete support for XPointer in
XPath/XQuery: users can select the pointer with

for $pointer in
doc(”http://.../countries.xml”)//country[@car code=”B”]/capital/@xlink:href

but XQuery cannot be told to resolve it.
The crucial point of handling XLink references is the evaluation of a data item

(i.e., the value of the href attribute) as a query. This is currently not possible in
XPath/XQuery, neither in the base language, nor by the functions and operators
given in XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ05].
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<!-- http://www.foo.de/countries.xml -->

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#
xpointer(/cities/city[name=’Brussels’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’D’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#xpointer(//city)” />

:
</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#
xpointer(/cities/city[name=’Berlin’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’B’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#xpointer(//city)” />

:
</country>

:
</countries>

<!-- http://www.bar.de/cities-B.xml -->

<cities>

<city>

<name>Brussels</name>

<population>951580</population>

:
</city>

<city>

<name>Antwerp</name>

<population>459072</population>

:
</city>

:
</cities>

<!-- http://www.bar.de/cities-D.xml -->

<cities>

<city>

<name>Berlin</name>

<population>3472009</population>

:
</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

:
</city>

:
</cities>

Fig. 1. Excerpt of the Distributed Mondial XML Database [May01b]

Simple XPointers. Simple XPointers actually consisting of an fn:id() function
application of the form url#xpointer(id(string)) (equivalent to the “shorthand
pointers” like http://.../country.xml#D in [XPt03]) can be resolved by combining
the doc() and id() functions. In [LS04, Section 7.4.2], a solution by an XQuery
user-defined function is given which is restricted to such simple XPointers:

declare namespace fu = ”http://www.example.org/functions”;
declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $x := fn:substring-after($href,”#xpointer(id(’”)
let $idValue := fn:substring-before($x,”’)”)
return fn:doc($docValue)/fn:id($idValue) };

XPath Expressions in XPointers. In the general case, instead of fn:id($idValue),
any XPointer expression must be allowed:
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declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $path := fn:substring-before(fn:substring-after($href,”#xpointer(”),”)”)
return fn:doc($docValue)/ $path };

Such functionality must evaluate a dynamically constructed XPath expression.
This is not yet available in XQuery (and can also not be programmed by the
current XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ05]; note that
the function given in [LS04, Section 7.4.2] explicitly returns a message “XPointer
Syntax nicht unterstützt/XPointer syntax not supported” in this case).

The required functionality is available in Saxon [saxon] as an extension func-
tion saxon:evaluate(string) where the above function can be expressed as

declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $path := fn:replace($href, “^.*#xpointer.(.*).$”,“$1”)
return fn:doc($docValue)/saxon:evaluate($path) };

[RBHS04] proposes anotherXQuery extensionas “execute aturl xquery{xquery}”.
Then, queries use –similar to the id function– an explicit dereferencing, e.g.

doc(”http://.../countries.xml”)//country[@car code=”B”]/
capital/ fu:follow-xlink(@xlink:href) /population .

With respect to the applications where XLink references are used, we argue that
implicit dereferencing is preferable, seeing XLink elements as embedded views, like
doc(”http://.../countries.xml”)//country[@car code=”B”]/capital/population.

2 Applications

Data Integration. An integrated view over distributed, autonomous data can
be defined according to a given target DTD or XML Schema. In this case, the
integration approach is realized by the Global as View (GAV) [Len02] approach,
i.e., queries are answered by view unfolding which in this case amounts to evalu-
ating the XPointer and integrating its result into the surrounding structure. By
this, also calls to Web Services can be integrated via XLink.

Example 2. Consider a similar structure as in Example 1, but instead of the
parts of the distributed Mondial database, not the “own” city data is referenced,
but remote, autonomous city data residing at http://www.geohive.com/. Here,
referencing remote data (e.g., http://www.geohive.com/cy/c de.xml for German
cities) guarantees that in case that this data is updated, subsequent queries always
return the most up-to-date results.
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Data Integration Process. Not only the final result of an integrated view can
be expressed by XLink references: we have shown in [May05] how to carry out
the integration process by partial materialization of an integrated XML instance.
Nodes that are only referenced from the so far integrated fragment are integrated
by suitable XLinks. When the integration process proceeds, the materialized
fragment is minimally extended just by the structure that is generated by the
integration, still referencing as much as possible the remote data-carrying nodes.
Queries are actually evaluated against (i) the partially materialized integrated
database, and (ii) remaining parts that reside in the original sources. This has
the advantage that in case that remote data is modified, any query against the
integrated model uses the up-to-date modified data.

Data Reorganization and Splitting. When XML documents grow, it is
sometimes preferable or necessary to split them over several documents or even
servers. In this case, the original schema should be kept, seeing the integrated
document as a GAV view over the –now distributed– data. Then, the same
queries that were stated against the original instance can also be used against
the split-up instance.

Requirements. The above list shows that XLinks can be applied as a ba-
sic mechanism for syntactical representation of references in several scenarios.
This basic mechanism has to be equipped with a semantics that supports the
application and defines how actually to deal with the references:

1. modeling: how to integrate the referenced nodes with the referencing docu-
ment in a logical model,

2. querying: how to express and evaluate queries against this model.

It is preferable that the result of (1) is a standard XML document according to
a given target DTD or XML Schema. Then, the semantics of (2) is obvious since
common XML query concepts (i.e., XPath, XQuery, XSLT) can be immediately
used without the need for explicit dereferencing.

In contrast, the proposals described in Section 1 are directly based on the
original XML structure (the XML Infoset [XML99]) and do not use any logical
model of the XLink elements. All of them require that the query expressions
include explicit dereferencing operations. The use of an explicit navigation op-
erator requires non-semantic navigation steps along the xlink:href attribute. The
above applications for data integration and splitting with obtaining/retaining
an original DTD or XML schema are not possible with them.

Thus, a transparent modeling as an XML-to-XML transformation where the
XLink elements are present only on the syntactical level, but queries navigate in
a logical model along semantic notions is desirable.

3 Proposed Solutions

Several solutions have been proposed up to now that deal with distributed and/or
linked XML documents. We start with our dbxlink approach as described in
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detail in [BFM06], which keeps close to XML and XPath, and then discuss other
approaches that cover similar topics and can be used for such issues.

3.1 The DBXLink Approach

In [BFM06], we presented the dbxlink approach for handling distributed XML
data where XLink elements are extended with attributes in the dbxlink name-
space that specify the modeling, evaluation strategies, and caching of remote
query results of the links. Here, links are transparent, i.e., we define a logical,
transparent model for mapping distributed, XLinked XML documents virtually
to an integrated XML instance: The XLink elements are seen as view definitions
that integrate the referenced data within the referencing XML instance where
the XLink element contains the following attributes (see [BFM06] for details):

– specification of the referenced nodes by xlink:href,
– how they are mapped into the surrounding instance by dbxlink:transparent,
– when (at parsing time or at query answering time) the XPointer is actually

evaluated by dbxlink:actuate,
– where (query shipping, data shipping or hybrid shipping) the evaluation

takes place by dbxlink:eval, and
– whether intermediate results are cached by dbxlink:cache.

This virtual instance can then be processed by standard languages like XPath,
XQuery, or XSLT. The variety of modeling variants (e.g., replacing the link
element by the referenced nodes, or keeping the link element and inserting the
contents of the referenced nodes into it, or attaching the referenced nodes as
reference attributes to the element that surrounds the XLink element) is formally
discussed in [BFM06]. There, also implementation aspects and pitfalls (ancestor
axis, cycles) are discussed.
Concerning the above scenarios, this modeling flexibility allows

– to define an integrated view over remote data sources according to a given
target DTD or XML Schema, and

– splitting an existing XML instance at arbitrary edges (i.e., subelement edges
and also reference attributes)while keeping the originalDTD orXML Schema.

Since the logical model is an XML instance, XPath, XQuery and XSLT can be
applied to it as usual. dbxlink allows for controlling when, and whether, the vir-
tual instance is actually materialized; usually, it is not materialized, but queries
are just evaluated against the logical model via appropriate algorithms.
XPath vs. XQuery and XSLT. Note that the actual work is only concerned with
extending XPath for smoothly dereferencing of XLinks according to the logical
model: The addressing of nodes is done completely within XPath. Thus, extend-
ing the XPath module of an XQuery and/or XSLT system makes this functional-
ity also available for XQuery and XSLT. The approach has been implemented as
an extension to the eXist [exi] XML database system, an open-source implemen-
tation of the common languages of the XML area, supporting XPath/XQuery
as query languages.

We will discuss the general applicability of this approach in Section 4.
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3.2 Comparison with Related Approaches

XLink for Browsing. Up to now, the XLink approach is primarily interpreted for
browsing, as it is mirrored by the W3C XLink Recommendation [XLi01] where
several attributes for link elements are defined that specify the behavior of the
link element during browsing. The show=’embed’ behavior of XLink can be seen
as one special case of the above approach, specified by transparent=“drop-element
insert-nodes” replacing the XLink by the referenced contents. In this case, also a
logical model is defined that is directly materialized and presented as XHTML.

XInclude. A restricted approach for distributed documents is proposed with XIn-
clude [XIn04]: the <xi:include href=“uri” xpointer=“xpointer”> element provides
also a uri and an xpointer . XInclude defines a fixed XML-to-XML transformation
where the xi:include elements are replaced by the corresponding included items.
In fact, this model generalizes XLink’s browsing behavior for show=’embed’,
replacing the XLink by the referenced contents. The specification of XInclude
also corresponds to the dbxlink specification transparent=“drop-element insert-
nodes” and actuate=“parse”, i.e., the target is included when the document is
loaded/parsed, materializing the model completely.

General Investigations on Distributed Semistructured Data. In [Suc02], distri-
buted query evaluation for general semistructured data graphs is investigated.
Queries are split into decomposed queries, then, their parts are evaluated in-
dependently at each site, and the result fragments are reassembled. The logical
modeling of [Suc02] is similar to XInclude. In [BG03], distribution of XML repos-
itories is investigated, focussing on index structures for answering queries.

Other approaches to distributed XML data apply a schema-based distribution.
There are no explicit references in the data, but schema components are asso-
ciated with databases and identified by their types and key attributes. During
query answering the different databases are queried (here, a database dictionary
is needed which tells where the data to certain schema components can be found)
and the fragments are put together in the answer.

Example 3 (Schema-based Distribution). Consider a similar structure as
in Example 1. For a schema-based distribution, all country data is still in one
database, but also all city data is together in one database.

In contrast, by using XLinks, the city data for each country can reside in an
individual database, or even on different hosts. Explicit references in the data
here allow for full flexibility without need for a central database dictionary.

Active XML. A general approach for integrating intensional data generated by
Web Services into XML documents is proposed by Active XML [ABM+02]. With
this technology, calls to Web Services are embedded into XML documents by
<axml:call> elements.

Active XML on the one hand and XInclude or dbxlink on the other hand
differ significantly wrt. generality (Active XML) and specialization (XInclude
and dbxlink) and in the degree of integration with the database functionality.
While XInclude and dbxlink are incremental extensions to the existing concepts
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of XLink and XPointer, targeting to provide a transparent data model and sup-
port XPath/XQuery for them from the database point of view, Active XML is
a generic extension of functionality towards Web Services. Nevertheless, dbxlink
and Active XML can be used to implement each other: on one hand, an Active
XML service that implements the dbxlink modeling and takes a dbxlink-extended
XLink element as input could return the appropriate XML fragment. On the
other hand, XLink elements with dbxlink evaluation that refer to Web Services
can be used for implementing functionality like Active XML, providing higher
modeling flexibility (which is the main focus of the approach), but less opera-
tional alternatives (i.e., no active functionality).

4 Enabling XPath/XQuery Engines for Handling XLinks

Between XInclude on the one side and Active XML on the other side, the dbxlink
approach is specialized to XLink, and provides functionality that we think is
necessary and sufficient for using XLink for references between XML instances,
and for querying these. In this section, we discuss how query engines have to be
modified in order to handle queries on distributed, interlinked XML instances
according to the dbxlink model. Recall that the queries are stated wrt. the DTD of
the integrated GAV view and must be evaluated based on the original documents.

Naive Approach. An intuitive, naive approach to achieve this would consist of
two steps. First, materialize the whole virtual instance induced by all interlinked
XML instances wrt. the contained XLinks and their dbxlink directives. Then, tell
the query engine to evaluate the given XPath expression on this new instance.
This approach is not suitable for two reasons. In case of many distributed docu-
ments, it might be time-consuming to fetch all partaking XML documents and
to compute the virtual instance, and usually, not the whole instance is needed to
answer the given query. Even worse, the materialized view might contain cycles
and thus the straightforward materialization process might not terminate.

4.1 Dynamic Query Evaluation

Given an XPath expression, we assume that it has the following form

doc(url)/step1/step2/. . . /stepn.

In our distributed setting, we require XPath queries to start with the doc()
function for specifying an XML document which shall serve as a starting point
for evaluating the query. The query itself consists of n location steps.

There are several possibilities how XPath query engines evaluate XPath
queries. We discuss different approaches and show how the navigation across
XLinks can be integrated accordingly.

Stepwise Result Set Evaluation. The most common and intuitive method
(which is also induced by the semantics definition by the W3C in [XPa99] or
other sources, e.g., [Wad99]) for evaluating XPath queries is to subsequently
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apply all location steps. In every step, the set of nodes selected by the previous
step is called the current context ; in the first step, the document node is the
initial context. Then, for each node of the current context, the current step
is evaluated, selecting a sequence of matching items, i.e. attribute or element
nodes, or atomic values that form the context for recursively applying the next
step. Note that not complete intermediate results are materialized, but only local
contexts on the way to the next step. Most XPath engines like Saxon, Xalan,
and eXist, the native XML database system we chose for an implementation,
use this strategy.

Extension of the Stepwise Evaluation. In order to implicitly replace all
relevant link elements during navigation in an XML tree, thus making the navi-
gation transparent, all subelements of every node belonging to the context have
to be analyzed: any XLink subelement of the current context node can poten-
tially be replaced by one or more nodes that are relevant for the next step. Thus,
a kind of lookahead evaluation in order to make the required nodes available for
the next step has been implemented, temporarily materializing fragments of the
virtual instance on-demand.

4.2 Example Evaluation

In the general case, the navigation across XLinks takes place as follows. Consider
an expression xpath-expr1/xpath-expr2, where a result node of xpath-expr1 con-
tains a simple XLink element with an XPointer url#xpointer(xpath-exprx). For
the most “intuitive” case, assume that the remote server is capable of answering
XPath queries. The query xpath-exprx is thus submitted to the server at url that
transfers the result which is then mapped into the current context. Then, the
local query evaluation continues with (the first step of) xpath-expr2.

Consider again the example “capital” query whose evaluation is illustrated in
Figure 2: /countries/country[@car code=”B”]/id(@capital)/population (note that
we chose the modeling dbxlink:transparent=“make-attribute insert-nodes” which
turns the capital into a reference attribute to adhere to a “given” target DTD). In
the distributed Mondial database (cf. Figure 1), after evaluating xpath-expr1 :=
/countries/country[@car code=”B”], the capital XLink subelement is a child node
of the context element that represents Belgium and it has to be expanded. The
rest of the query is then xpath-expr2 := id(@capital)/population, and
xpath-exprx := “http://dbis05/cities-B.xml#xpointer(//city[name=’Brussels’])” is
the XPointer expression.

As illustrated in Figure 2, xpath-exprx is sent to the remote server which
returns the city node for Brussels. The screenshot in Figure 3 illustrates the
communication between two servers when resolving the XPointer in the cap-
ital XLink subelement of Belgium traced by the Apache Axis TCPMonitor.
On the left hand side, the corresponding GET request for http://dbis05/cities-
B.xml//city[name=“Brussels”] from the country server (ap34) to the city server
(dbis05) can be seen, whose result, i.e., the XML fragment representing Brussels,
is shown on the right hand side.
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Fig. 2. Querying the Distributed Mondial Database

Once the local server has received the XML data for Brussels, it maps it into
a reference attribute of its parent element Belgium (as required by the model-
ing dbxlink:transparent=“make-attribute insert-nodes”): The new, local Brussels
node is extended with a (local) ID attribute with value brus-id . Additionally,
an IDREF attribute node capital=“brus-id” is added to the Belgium element
in the currently materialized context. Then, the remaining part of the original
query, xpath-expr2 = id(@capital)/population is evaluated locally (using the new
IDREF/ID attributes to navigate from the Belgium element to Brussels).

4.3 Extending Alternative Evaluation Strategies

Iterator-based Evaluation. Relational database systems usually do not mate-
rialize intermediate results except when needed for aggregations; instead combi-
nations of iterators are used that implement the algebra tree. Here, the lookahead
evaluation can be covered inside the iterators that smoothly return the actual
sequence of children or attributes in the logical model. Such an evaluation has
been used in first experiments when extending the LoPiX system [May01a].

[GKP05] present an algorithm that reduces the worst-case complexity of
XPath from exponential (in the size of the query) to polynomial time. For
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Fig. 3. Communication: Answer Shipping

this, the proposed algorithm uses a kind of tabling via dynamic programming
where earlier results are stored for later lookup. These context-value-tables
contain combinations of contexts (given as node, position in the context and
size of the context), expressions and the resulting node set. This approach can
easily be combined with the caching of the results of XPointers in the dbxlink
approach.

Non-XPath-based Query Languages. Since the core of the dbxlink approach
is only concerned with defining an XML-to-XML mapping, its usage is not re-
stricted to XPath-based, or navigation-based at all, environments. For exam-
ple, the Xcerpt language [BS02] uses positional query terms that are matched
against an underlying XML instance via unification simulation. Since in fact
individual bisimulation paths are again navigational, integrating the expansion
of XLinks into these navigation steps (using the same basic functionality and
mappings as in our eXist reference implementation) would provide the required
functionality.

Distributed Query Evaluation. In the above example, the actual evaluation
of the XPointer took place at the referenced host and evaluating the remaining
query locally (hybrid shipping). Other evaluation strategies allow to fetch the
whole referenced document (data shipping) and evaluate the remaining query
locally, or to rewrite the remaining query with the XPointer and evaluate both
remote (query shipping). Intermediate results can be cached. The above func-
tionality has been implemented in the eXist-based system.

Approaches that focus on distributed XML query evaluation in general like
[Suc02, BG03] are orthogonal to ours (where the focus is on the modeling and
handling of the interplay of links seen as views) and could probably be applied
for a more efficient implementation.
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5 Conclusion and Perspectives

We discussed the situation of employing the XLink mechanism for express-
ing references between XML instances. We have shown how the support for
querying along XLinks given by the dbxlink approach can be integrated into
XPath/XQuery evaluation algorithms and engines, providing a proof-of-concept
implementation. The more elaborate and efficient handling of distributed queries
poses a lot of questions that call for combinations with results of other work.

Projecting XML Fragments. For reducing the amount of data transmit-
ted from one server to another, the techniques of projecting XML documents
proposed in [MS03] can be applied. Given the remaining part xpath-expr2, the
referenced XML fragment can be reduced significantly to the projection relevant
wrt. the query before transmitting it.

XPointer Containment. When an XML document containing XLinks is
parsed and stored, the static set of links can be detected. XPath query contain-
ment algorithms as suggested e.g. in [MS04] can be used for the corresponding
XPointer expressions. Then, assuming hybrid shipping and caching, queries that
are subsumed by other links that are already cached, can be answered using the
cached knowledge.

Further relevant work that might be worthwhile to be incorporated into our
framework comprise parallel evaluation of remote queries, refined caching strate-
gies, optimization strategies for local evaluation of XPath queries and stream
processing of the results of XPointers, as well as strategies based on metadata,
schema reasoning, and path indexes for finding out which XLinks will contribute
to the result of a given query. In a global scale, such strategies require a sophis-
ticated P2P-based infrastructure with appropriate communication. Hence more
specialized research results, some of which are mentioned above, can be applied.
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1 DI, University of Verona, Italy
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Abstract. In recent times, the proliferation of spatial data on the Inter-
net is beginning to allow a much larger audience to access and share data
currently available in various Geographic Information Systems (GISs).
Unfortunately, even if the user can potentially access a huge amount of
data, often, she has not enough knowledge about the spatial domain she
wants to query, resulting in a reduction of the quality of the query results.
This aspect is even more relevant in integration architectures, where the
user often specifies a global query over a global schema, without having
knowledge about the specific local schemas over which the query has to
be executed. In order to overcome such problem, a possible solution is to
introduce some mechanism of query relaxation, by which approximated
answers are returned to the user. In this paper, we consider the relax-
ation problem for spatial topological queries. In particular, we present
some relaxed topological predicates and we show in which application
contexts they can be significantly used. In order to make such predicates
effectively usable, we discuss how GQuery, an XML-based spatial query
language, can be extended to support similarity-based queries through
the proposed operators.

1 Introduction

The proliferation of spatial data on the Internet is beginning to allow a much
larger audience to access and share data currently available in various Geographic
Information Systems (GISs). As spatial data increase in importance, many public
and private organizations need to disseminate and have access to the latest data
at a minimum (right) cost and as fast as possible. One of the main problems
in making this objective feasible is due to the gap existing between the data
made available on the Web and the user’s knowledge of such data during query
specification. Indeed, the user may not exactly know the spatial domain she
wants to query, in terms of properties, available features, and geometric types
used to represent such features. This aspect is even more relevant in integration
architectures, where a global query is expressed over a global schema, without
having knowledge about the specific local schemas over which the query has to
be executed. Differences in data sources may depend on how each single data
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source models spatial objects in terms of their descriptive attributes (length of
a river, population in a town), their type (region, line, point), their geometric
type, and their topology. For example, one dataset M1 may represent roads
and bridges as regions, another dataset M2 may represent roads as regions and
bridges as lines, a third dataset M3 may represent both as lines.

The gap between stored data and user knowledge may impact the quality of
the results obtained by a query execution, reducing user satisfaction in using a
given application. The main cause of this unsatisfaction relies on the usage of
equality-based queries, by which the user specifies in an exact way the constraints
that data to be retrieved must satisfy. In order to overcome such problems,
similarly to what has been done in the multimedia context, a possible solution
is to introduce some mechanism of query relaxation, by which approximated
answers are returned to the user, possibly introducing some false hits, but at the
same time making query answers more satisfactory from the user point of view.

In this paper, we consider a specific sub-problem of the one cited above,
concerning the relaxation problem for spatial topological queries, representing
one of the most important classes of queries in spatial applications. In particular:
(i) we present some relaxed topological predicates, that we call weak; (ii) we show
in which application contexts they can be significantly used; (iii) we extend
an existing spatial query language to cope with weak topological operations,
discussing implementation issues.

Weak topological predicates are obtained from the usual one, that we call
strong, by specifying an error threshold. Such threshold is used by the query
processor to relax the topological predicate into a set of predicates, whose se-
mantic distance from the given one is lower than or equal to the specified thresh-
old. The definition of weak topological predicates thus relies on the usage of a
similarity function between topological predicates. To this purpose, in this paper
we consider the function presented in [1]. Such function extends other previously
defined functions by considering pairs of topological predicates applied over pairs
of objects with possibly different dimension. We then show how weak topologi-
cal predicates can be used in the Web and other integration contexts and, since
XML is becoming the de-facto standard for data representation and processing
in such environments, we discuss how weak topological predicates can be repre-
sented using XML-like standards. In the GIS context, the OpenGIS consortium
(OGC) has adopted GML (Geography Markup Language) for the XML repre-
sentation and transport of geographic data [14]. GML data can be manipulated
through Web Feature Services (WFSs), by which it is possible to describe or get
features from a spatial data source on the Web. However, WFS is not a real query
language and cannot be used to join data from different sources or to perform
spatial analysis. Based on these limitations and the large diffusion of XQuery as
query language for XML data, GQuery has been recently defined to overcome
some of these limitations, by extending XQuery with the ability of using GML
geometric types and specifying functions manipulating such types [7]. Due to its
characteristics, in this paper we show how GQuery can be extended to deal with
weak topological predicates, from a syntax and implementation point of view.
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We remark that, even if several similarity functions for topological predicates
have been defined (see for example [4,8,10]), the only work we are aware of dealing
with similarity-based processing for spatial data is presented in [11], addressing
spatial similarity for queries with multiple constraints. A methodology is pro-
posed for spatial similarity retrieval in response to complex queries formed by
combinations of logical or relational operators, in presence of null values. Spatial
similarity is however considered from a conceptual rather than implementation
point of view. On the other hand, here we consider a specific sub-problem of
what considered in [11] and we provide concrete and easily implementable solu-
tions. The approximation concept we consider in this paper is also different from
that presented in [5], where uncertainty on object representation, due to broad
boundaries, leads to the definition of approximated topological relationships.

The remainder of the paper is organized as follows. The reference model and
topological distance are introduced in Section 2. Section 3 presents some scenar-
ios of possible usage of weak topological predicates and formally introduce them.
The proposed similarity-based language is then presented in Section 4, together
with the discussion of some implementation issues. Finally, Section 5 presents
some conclusions and outlines future work.

2 The Reference Spatial Data Model

The spatial model. We define a map schema as a set of feature types, object
classes representing real word entities (such as lakes, rivers, etc.). Each feature
type has some descriptive attributes, including a feature identifier and a spa-
tial attribute, having a given dimension. We assume that values for the spatial
attribute are modeled according to the OGC (Open GeoSpatial Consortium)
simple feature geometric model [13]. In such a model, the geometry of an object
can be of type: point, describing a single location in the coordinate space (di-
mension 0, also denoted with P ); line, representing a linear interpolation of an
ordered sequence of points (dimension 1, also denoted with L); polygon - more
generally called region -, defined as an ordered sequence of closed lines defining
the exterior and interior boundaries (holes) of an area(dimension 2, also denoted
by R); recursively, a collection of disjoint geometries. We assume that the same
feature type may belong to one or more map schemas, possibly with different
dimensions. The instance of a map schema is called map and is a set of features,
instances of the feature types belonging to the map schema. The same feature
may belong to one or more maps, associated with possibly different geometries
and dimensions according to the map schemas.

Topological relationships. Features inside a map are related by topological
relationships. Topological relationships can be formally defined by using the
9-intersection model [9]. In the 9-intersection model, each spatial object A is
represented by 3 point-sets: its interior A◦, its exterior A−, and its boundary ∂A.
A topological relation can be represented as a 3x3-matrix, called 9-intersection
matrix, defined as follows:
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Table 1. Definition of the reference set of topological relationships

Name Definition Object type
Disjoint (d) f1 ∩ f2 = ∅ All

Touch (t) (f◦
1 ∩ f◦

2 = ∅) ∧ (f1 ∩ f2) �= ∅) R/R, R/L, R/P,
L/L, L/P

In (i) (f1 ∩ f2 = f1) ∧ (f◦
1 ∩ f◦

2 ) �= ∅) R/R, L/L, L/R,
P/R, P/L

Contains (c) (f1 ∩ f2 = f2) ∧ (f◦
1 ∩ f◦

2 ) �= ∅) R/R, R/L, R/P,
L/L, L/P

Equal (e) f1 = f2 R/R, L/L, P/P
Cross (r) dim(f◦

1 ∩ f◦
2 ) = (max(dim(f◦

1 ), dim(f◦
2 )) − 1) ∧ L/R

(f1 ∩ f2) �= f1 ∧ (f1 ∩ f2) �= f2 L/L
Overlap (o) dim(f◦

1 ) = dim(f◦
2 ) = dim(f◦

1 ∩ f◦
2 ) ∧ R/R

(f1 ∩ f2) �= f1 ∧ (f1 ∩ f2) �= f2 L/L

Covers (v) (f2∩f1 = f2)∧(f◦
2 ∩f◦

1 ) �= ∅)∧(f1−f◦
1 )∩(f2−f◦

2 ) �= ∅ R/R, R/L, R/P,
L/L, L/P

CoveredBy
(vb)

(f1∩f2 = f1)∧(f◦
1 ∩f◦

2 ) �= ∅)∧(f1−f◦
1 )∩(f2−f◦

2 ) �= ∅ R/R, L/L, L/R,
P/R, P/L

R(A,B) =

�
�

A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−

�
�

The obtained relations are mutually exclusive and represent a complete cov-
erage. In [6], this model has been extended by considering for each 9 intersection
its dimension, obtaining the extended 9-intersection model. Since the number
of such relationships is quite high, a partition of extended 9-intersection ma-
trices has been proposed, grouping together similar matrices and assigning a
name to each group. The result is the definition of the following set of bi-
nary, mutually exclusive topological relationships, refining those presented in
[6]: TREL = {Disjoint, Touch, In, Contains, Equal, Cross, Overlap, Covers,
CoveredBy}.1 The semantics of such topological relationships is presented in Ta-
ble 1. It is easy to show that not all relationships can be defined for any pair
of dimensions. In the following, we use the notation θd1,d2 to denote the topo-
logical relation θ applied to pairs of objects having dimension d1 and d2 and
REL(d1, d2) to denote the set of topological relationships defined over pairs of
objects having dimension d1 and d2.

Topological distance. In this paper, we consider the topological distance pre-
sented in [1], defined over topological relationships represented according to the
9-intersection model. Since each topological relationship in TREL corresponds
to a set of 9-intersection matrices, topological distance is a total function de-
fined in two steps: first a distance function between two 9-intersection matrices
is defined, then such function is used in computing the final result.

1 Covers and CoveredBy have been defined as refinements of relations Contains and
In and are not considered in [6].
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Fig. 1. Distance values (times 9) for the OverlapR,R topological relationship

The distance between two 9-intersection matrices ψ1 and ψ2 has been first
defined in [8] as the number of different cells in the two matrices. Two cells are
considered different if one corresponds to a non-empty intersection (whatever is
its dimension) and the other to an empty intersection. Here, we normalize such
distance by dividing it by the total number of cells (9).

Since each relationship in TREL corresponds to a set of 9-intersection ma-
trices, we can then compute the distance between two topological relationships
θ1

d1,d2
and θ2

d3,d4
as the minimum distance between any 9-intersection matrix

defining θ1
d1,d2

and any 9-intersection matrix defining θ2
d3,d4

. We denote this dis-
tance by d(θ1

d1,d2
, θ2

d3,d4
).

Based on the topological distance, given a topological relationship θ1
d1,d2

, all
topological relationships θ2

d3,d4
can be ordered with respect to θ1

d1,d2
depending

on the distance value. All values for d(θ1
d1,d2

, θ2
d3,d4

) can be found in [1]. Figure 1
just presents distances d(OverlapR,R, θ2

d3,d4
).

3 Weak Topological Predicates

In the following, we present two contexts in which similarity-based topological
predicates can be useful. The first scenario concerns query specification in a
Web context, the second scenario concerns query execution under a mediator
architecture. Then, we formally introduce weak topological predicates.2

In the following scenarios, we use three distinct maps M1, M2, and M3,
sketched in Figure 2. They represent roads (identified by ri) and bridges (iden-
tified by bi) with different dimensions: (2, 2) in M1, (2, 1) in M2, and (1, 1)
in M3. We also assume that the following topological relationships holds:3 (i)
Overlap(r1, b1), Overlap(r2, b2), Cover(r6, b6) in M1; (ii) Cross(r1, b1),
Cross(r2, b2), Cross(r3, b3), Cover(r6, b6) in M2; (iii) Overlap(r1, b1),
Cross(r2, b2), Cross(r7, b7), Overlap(r5, b5) in M3.

2 In the following, the term ‘topological predicate’ is used to denote the predicate
induced by a topological relation and both notations aθb and θ(a, b) θ ∈ TREL are
used.

3 For the sake of simplicity, we do not list relationships based on Disjoint.
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r5

b1

b5

r7
b7

Fig. 2. Sketch of the content of the map examples

3.1 Scenario 1

Consider a user that wants to query some spatial data available on the Web,
without having a detailed knowledge about such data. When the user specifies
the query, she may not know the resolution of the underlying database, there-
fore she may not be able to specify the query in an exact way since topological
predicates are not always defined when changing object dimensions. As a conse-
quence, the quality of the obtained result may be reduced since interesting pairs
may not be returned.

For example, suppose she wants to determine which pairs of roads and bridges
Overlap, i.e., intersect and the intersection has the same type of the input ob-
jects. This query can be specified as follows: GQ = {(r, b)| r is a road, b is a
bridge, r Overlap b}. If roads and bridges are represented as regions, as in map
M1, the correct predicate would be Overlap. However, if roads and bridges are
represented as lines, as in map M3, besides Overlap, also predicate Cross, check-
ing for intersections having dimension lower than those of input spatial objects,
could be relevant for the user. If roads are represented as regions and bridges
as lines, as in map M2, Overlap is not defined and, based on the topological
distance, Cross, which is the most similar predicate to Overlap, could be used.

In this context, a similarity-based approach could be very useful. The user
could specify the query by: (i) assuming data have the maximal dimension, i.e.,
all polygons (in order to made available to the user the larger set of available
topological predicates); (ii) providing a threshold value. Such value can be used
to increase the quality of the generated result, e.g., to return more information
even if not necessarily significant for the user.

For example, suppose the user wants to execute query GQ up to an error ε.
Actually, this error depends on the user’s application and needs. Let us suppose,
for instance, that ε = 22%. If the dimension of roads and bridges in the map
where the query has to be executed are d3 and d4, the query processor can
use the topological distance introduced in Section 2 to rewrite the topological
predicate Overlap into a set of topological predicates θ1

d3,d4
, ..., θn

d3,d4
such that

d(OverlapR,R, θi
d3,d4

) ≤ 0.22, i = 1, ..., n. The union of the result sets is then
returned to the user. According to Figure 1, we have that:

d(OverlapR,R, θR,R) ≤ 0.22 for θ ∈ {Overlap}
d(OverlapR,R, θR,L) ≤ 0.22 for θ ∈ {Cross, Cover, T ouch}
d(OverlapR,R, θL,L) ≤ 0.22 for θ ∈ {Overlap, Cross, T ouch}

Thus, the query processor rewrites GQ as follows:
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– M1: GQ1 = {(r, b)| r is a road, b is a bridge, r Overlap b }
– M2: GQ2 = {(r, b)| r is a road, b is a bridge, rθb, θ ∈ {Cross, Cover, T ouch}}
– M3:GQ3 = {(r, b)| r is a road, b is a bridge, rθb, θ ∈ {Overlap, Cross, T ouch}}

We notice that the user may initially not know what is the right threshold
to be used in the query. However, as usual in similarity-based approaches, she
may refine the threshold value, depending on the results obtained in previously
executed queries, in the context of the same querying session.

3.2 Scenario 2

The second scenario deals with mediation systems. Mediation systems provide
users with a uniform access to a multitude of data sources, without duplicating
such data, via a common model. The user poses her query against a virtual
global schema and the query is in turn rewritten into queries against the real
local sources, taking into account differences in the models and query languages.
The basic architecture of a mediation system is based on two main components:
the mediator and the wrappers. The mediator allows “semantic translations” by
rewriting the user’s query into queries over data sources expressed in a common
query language, which is specific to the mediator. Each data source is accessed
through a wrapper. When a query is posed against a data source, the corre-
sponding wrapper translates it according to the data source query language.

In the context of GIS data, VirGIS is a mediation system based on OpenGIS
standards that addresses the issue of integrating GIS data and tools [2,3]. In the
VirGIS system, adding a new data source is easy thanks to two main things: (i)
wrappers are replaced by WFS servers and there is no need to define new ones
when adding a new source; (ii) VirGIS uses a mediation approach in which adding
a new data source consists only in declaring its capabilities to the mediator and
describing its schema (mappings) according to the global one. VirGIS supports
topological operators, which are executed at the mediator level.

In general, mediator systems, including VirGIS, take into account differences
concerning feature representation in local sources. However, mediators usually
do not usually consider the impact of topological information on query rewriting.
The problem here is that different topological predicates should be considered
for execution at the local level, in order to return results that are consistent with
the global request.

As an example, assume that the maps in Figure 2 represent three local sources
to be integrated. Suppose that at the global level features are represented with
the maximum dimension by which they appear in the local sources, in order to
made available to the user the larger set of available topological predicates. In
our example, this means that at the global level, road and bridges will be both
represented as regions. Actually, in more general cases, the features represen-
tation, in terms of dimensions, depend on users and their applications. Specific
interfaces to the users’ applications can be used and may impose their own fea-
tures representations. That is, for each application, we can assume that such an
interface generates queries according to predefined features dimensions that are
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suitable for the application. Assume now that the user, at the global level, wants
to execute the query GQ = {(r, b)| r is a road, b is a bridge, r Overlap b}.

Under this scenario, a reasonable approach for query execution at the local
level would be that of rewriting the global predicate into the most similar ones
(i.e., into those having the minimum distance from the global predicate) in each
local source. According to Figure 1, GQ will be rewritten in the following three
queries and the obtained results integrated using ad hoc merge operators:

– M1: GQ1 = {(r, b)| r is a road, b is a bridge, r Overlap b}.
– M2: GQ2 = {(r, b)| r is a road, b is a bridge, r Cross b}.
– M3: GQ3 = {(r, b)| r is a road, b is a bridge, r θ b, θ ∈ {Overlap, Cross}}
We notice that in M3 two predicates are considered since, according to the

distance function, they have the same (minimum) distance with respect to the
global predicate.

3.3 Weak Topological Predicates

In order to formally support the queries introduced above, spatial query lan-
guages should be extended with the ability of specifying similarity-based topo-
logical predicates. Such predicates relax the usual ones by allowing a certain
distance between the specified predicate and those really executed. For this rea-
son, we call them weak topological predicates, to distinguish them from the usual
predicates, that we call strong. Strong predicates correspond to partial functions,
on the other hand weak predicates are always defined. Given a topological rela-
tion θd3,d4 , we also define its Nearest Neighbor relations in REL(d1, d2) as the
topological relations in REL(d1, d2) at the minimum distance from θd3,d4 .

Definition 1 (Strong and Weak topological predicates). Let SO be the
set of spatial objects. Let dim be a function that, given an object o ∈ SO, returns
its dimension (i.e., R, L, or P). Let d1, d2, d3, d4 ∈ {R, L, P}. Let θ ∈ TREL.

– The strong topological predicate for θ is defined as θ : SO× SO → Bool and
θ(o1, o2) = true if and only if θ ∈ REL(dim(o1), dim(o2)) and the conditions
pointed out in Table 1 are true for o1 and o2. If θ �∈ REL(dim(o1), dim(o2)),
θ(o1, o2) is undefined.

– The weak topological predicate for θ with respect to d3 and d4 is defined
as θw:d3,d4 : SO × SO × [0...1] → Bool and θw:d3,d4(o1, o2, ρ) = true if
there exists θ ∈ {ψ|ψ ∈ REL(dim(o1), dim(o2)), d(ψ, θd3,d4) ≤ ρ} such that
θ(o1, o2) is true.

– A Nearest Neighbor topological relation in REL(d1, d2) for θd3,d4 is a topolog-
ical relation θ ∈ REL(d1, d2) such that d(θ, θd3,d4) = min{d(ψ, θd3,d4)|ψ ∈
REL(d1, d2)}. This set of relations is denoted by NNd3,d4

d1,d2
(θ). �

Example 1. Consider Scenario 1. If the user queries are specified over objects
with the maximum resolution, GQ can be specified as follows: GQ = {(r, b)| r is
a road, b is a bridge, Overlapw:R,R(r, b, 0.22)}. In Scenario 2, the global query
GQ = {(r, b)| r is a road, b is a bridge, Overlap(r, b)} can be locally re-written
as follows:
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– M1: GQ1 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
R,R (Overlap), r θ b}.

In this case, NNR,R
R,R (Overlap) = {Overlap}.

– M2: GQ2 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
R,L (Overlap), r θ b}.

In this case, NNR,R
R,L (Overlap) = {Cross}.

– M3: GQ3 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
L,L (Overlap), r θ b}.

In this case, NNR,R
L,L (Overlap) = {Overlap, Cross}. �

4 GQuerys: A Similarity-Based Spatial Query Language

Weak topological predicates can be used to extend existing spatial query lan-
guages, in order to directly support similarity-based computations. Since motiva-
tions for the usage of weak topological predicates come from distributed
architectures where XML is becoming the de-facto standard for data represen-
tation and processing, we discuss how weak topological predicates can be repre-
sented using XML-like standards. To this purpose, we consider GQuery [7,2], an
XML-like spatial data query language based on XQuery, for query specification,
and GML, for data representation.

GML is an XML-like language for representing spatial data, proposed by the
OpenGIS consortium. The basic concept is the Feature, i.e., an (object) ab-
straction of the real world phenomena, with spatial and non-spatial attributes.
Spatial attributes may be points, lines, or polygons, as defined in Section 2. Fig-
ure 3 reports an example of GML representation for a road feature, represented
as a polygon, and a bridge feature, represented as a line. Note that a polygon
is defined as a (set of) LineRing, i.e., lines where the first and the last point
coincide. In the following, we first present the proposed extension of GQuery,
called GQuerys, and then we discuss a possible approach for its implementation.

4.1 GQuerys: The Syntax

A GQuery query is composed of expressions. Each expression is made up of built-
in or user-defined functions. An expression is either a function call, a value, or
generates an error. The result of an expression can be the input of a new one.
A value is an ordered sequence of items. An item is a node or an atomic value.
There is no distinction between an item and a sequence containing one value.
Nodes are those defined for XQuery: document, element, attribute, text, com-
ment, processing-instruction and namespace nodes. Writing a query consists in
combining simple expression (like atomic values), path expressions (from XPath
[18]), FLOWER expression (For-Let-Where-Return), test expressions (if-then-
return-else-return), or (pre- or user defined) functions. Non spatial operators
are arithmetic operators (+,-,×,/,mod), operators over sequences (concatena-
tion, union, difference), comparison operators (between atomic values, nodes,
and sequences), and boolean operators.

Spatial operators are applied to sequences. We have three types of spatial
operators. The first two categories perform spatial analysis, the third implements
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<Road name = ’A12’>
<geometry>

<gml:Polygon gid=’98217’
srsName=’http://www.opengis.net/gml/srs/epsg.xml#4326’>

<gml:LinearRing>
<gml:coordinates> ... </gml:coordinates>

</gml:LinearRing>
</gml:Polygon>

</geometry>
</Road>

<Bridge name = ’main_bridge’>
<geometry>

<gml:LineString gid=’45234’
srsName=’http://www.opengis.net/gml/srs/epsg.xml#4326’>

<gml:coordinates>....</gml:coordinates>
</gml:LineString>

</geometry>
</Bridge>

Fig. 3. An example of GML data representation

strong topological predicates (in the following node is a GML data node having
a geometric type):

– operators which perform spatial analysis and return numeric values:
area, length : (node) → numeric value
distance : (node, node) → numeric value

– operators which perform spatial analysis and return GML values:
convexhull, centroid : (node) → node

– strong topological operators:
θ : (node, node) → boolean where θ ∈ TREL.

GQuerys is obtained from GQuery by introducing weak topological operators
and a Nearest Neighbor operator is NN , checking the Nearest Neighbor relation
between two topological predicates, according to Definition 1:

– Weak topological operators are defined as follows:
θw : (node, node, dim, dim, numeric value) → boolean
where θ ∈ TREL, dim ∈ {R, L, P}, numeric value = [0, 1].
θw(n1, n2, d3, d4, ε) returns true if and only if θw:d3,d4(o1, o2, ε) = true and
oi is the spatial object corresponding to ni.

– The is NN operator is defined as follows:
is NN : (TREL, dim, dim, TREL, dim, dim)→ boolean
where dim ∈ {R, L, P}.
is NN(r1, d1, d2, r2, d3, d4) returns true if and only if r1 ∈ NNd3,d4

d1,d2
(r2).

The result of a GQuery expression is another GML document, thus GQuery
is closed. Errors are raised when input parameters have not the right geometric
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Determine all roads overlapping some bridge.
for $x in document(bridge.xml), $y in document(road.xml)
where overlap($x/geometry, $y/geometry) = true
return $x

Determine all roads overlapping some bridge, up to a 22% error.
for $x in document(bridge.xml), $y in document(road.xml)
where overlapw($x/geometry, $y/geometry,R,L,0.22) = true
return $x

Fig. 4. GQuerys examples

type. For example, the function call overlap(node1, node2) returns a boolean
value if and only if node1 and node2 are both polygons or lines, otherwise it
raises an error. Figure 4 presents some examples of GQuerys queries.

4.2 GQuerys Query Processing

The GQuerys model extends the XQuery model to deal with spatial and topo-
logical operators. This means that the GQuerys implementation must rely on
the usage of external functions. The main steps to process a query that requires
a spatial processing are the following:

1. translate GML documents representing the input of the GQuery query into
the right format of the input of external functions involved in the spatial
computation;

2. use external spatial functions to perform the spatial computation;
3. translate the result into GML format.

GQuerys uses as external functions the Java Topology Suite (JTS) [12], an
Open Source API providing spatial object model and fundamental geometry
function and strong topological relations. However, such API does not support
weak topological and Nearest Neighbor operators and do not provide methods
for converting JTS results into GML format. As a first step, JTS has therefore
been extended in two ways, obtaining the JTSs API:

– a new method ConvertT oGML is added to JTS, converting JTS Geometry
Objects into GML;

– one new method is added for any weak topological predicates and one for
computing the is NN predicate. Such methods rely on Definition 1 and on
the JTS implementation of strong topological predicates.

5 Conclusions and Future Work

In this paper we have presented an approach for similarity-based specification
and execution of topological queries. The proposed solution relies on the de-
finition of weak topological predicates, relaxing the traditional ones with the
specification of the maximal error allowed in executing such predicates. Topo-
logical distance between topological predicates is computed according to the
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function defined in [1]. In order to show the usability of the proposed concepts,
we have also presented some reference application scenarios. We have finally dis-
cussed how such operators can be implemented in the context of GQuery, an
XQuery-based spatial query language that can be effectively used in the iden-
tified applications. We are currently extending the VirGIS architecture [3] to
deal with weak topological predicates. Future works include the extension of
the proposed approach to other spatial relations, such as directional ones, the
definition of a weak algebra and the analysis of its properties, the definition of
query processing strategies for weak topological predicates, and an exhaustive
experimentation, based on real and synthetic data.
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Abstract. Most of the recent work on adaptive processing and continu-
ous querying of data streams assume that data objects come in the form
of tuples, thus relying on the relational data model and traditional rela-
tional operators as basis for query processing techniques. Complex types
of objects, such as multidimensional data sets or the vast amounts of
raster image data continuously streaming down to Earth from satellites
have not been considered.

In this paper, we introduce a data and query model as a comprehen-
sive and practically relevant basis for managing and querying streams of
remotely-sensed geospatial image data. Borrowing basic concepts from
Image Algebra, we detail a data model that reflects basic properties of
such streams of imagery. We present a query model that includes stream
restrictions, transforms, and compositions, and provides a sound basis
for formulating expressive and practically relevant queries over streams
of image data. Finally, we outline how the data and query model is cur-
rently realized in a data stream management system for geospatial image
data that supports geographic applications.

1 Introduction

Data products generated from remotely-sensed (satellite) imagery and used in
emerging applications areas such as global climatology, environmental monitor-
ing, land use, and disaster management currently require costly and time con-
suming efforts in processing data [12,13,25]. For geographic applications, data
is typically replicated using file-based approaches and has to undergo several
batch-oriented processing steps before it eventually can be processed to obtain
a data product. These processes are often duplicated at many sites for different
and even the same type of applications.

Many satellite instruments transmit data in continuous streams to receiving
stations. Multi- and hyper-spectral imagery for different wavebands that describe
radiometric reflectance from the Earth’s surface is typically transmitted in the
form of raster images. Existing systems for processing the data, however, neither
utilize the stream nature of the imagery nor do they expose database like concepts
and architectures that provide users and applications with expressive and efficient
operators to retrieve and manipulate streams of geospatial image data.
� This work is in part supported by the NSF under award IIS-0326517.
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On the other hand, there have recently been considerable advancements in
data stream management systems (DSMS), where data arrives in continuous
and time-varying data streams and does not take the form of persistent rela-
tions [1,5,7]. Most of the proposed techniques, such as adaptive query processing,
operator scheduling, and load shedding, exclusively concentrate on simple struc-
tured, usually relational data. Query operators and query processing techniques
are based on those known and studied in the context of relational databases.

The above observations suggest that there is a strong potential benefit in adopt-
ing techniques developed for relational DSMS to the management of streaming
remotely-sensed image data. However, the complexity and heterogeneity as well
as various non-traditional (compared to relational) operations on geospatial image
data pose several challenges. First, remotely-sensed imagery exhibits characteris-
tics of spatio-temporal data. That is, image data taken at a particular point in time
describes some properties of a spatial extent on the Earth’s surface. In addition,
remotely-sensed data is geo-referenced, i.e., image data (pixels) can be mapped
to locations on the Earth based on some coordinate system. Second, image data
is transmitted at a very high rate; well-known satellites such as GOES [8], Land-
sat [15] or Aqua/Terra [20] each continuously stream about 20-60GB of remotely-
sensed image data to receiving stations every day. Third, operators on geospatial
image data are more complex than traditional (relational) operators and have to
take characteristics of the remotely-sensed data into account, in particular their
geographic and stream organization properties.

In this paper, we present a data and query model as basis to formulate (contin-
uous) queries over streaming geospatial image data. Our focus is on the character-
istics of remotely-sensed data originating from satellites and used in geographic
applications. We formulate a data model that takes both the spatio-temporal
and geo-referenced nature of image data into account. We describe three classes
of operators: stream restrictions, transforms, and compositions. These allow the
formulation of queries to (1) select image data of interest based on its spatio-
temporal properties, such as spatial regions of interest and time intervals, (2)
perform different types of neighborhood operations and spatial transforms on im-
age data, and (3) combine image data from different streams (corresponding to
different spectral channels). We also study some properties of the operators in
terms of space and time complexity, as these heavily depend on the organization
of the image data in a stream. Overall, our goal is to establish a framework to
build a stream management system particularly designed to operate on stream-
ing remotely-sensed data and to stream data products to clients and geographic
applications in real-time.

The rest of the paper is organized as follows. In Section 2, we present the
data model underlying streaming geospatial image data. Section 3 introduces
the query model and presents different types of operators, including stream re-
strictions, transforms, and compositions. In Section 4, we give an overview of
our prototypical query processing infrastructure. After a review of related work
in Section 5, we conclude the paper with a summary and outlook in Section 6.
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2 Data Model

The primary types of objects in our stream processing framework are images
and streams. Although an image has a fairly intuitive description, such as a
(rectangular) set of pixels together with their pixel values, some more formal
definitions are necessary to establish a sound framework for describing operations
on individual images and in particular streams of images. In the following, we
first give some basic definitions adopted from Image Algebra [23] and then extend
these definitions to account for fundamental properties of (streaming) geospatial
image data.

Roughly speaking, in Image Algebra, an image consists of two things, a set of
points in some n-dimensional space and a set of values associated with points.

Definition 1 (Point Set). A point set is some topological space, consisting of
points and a topology that provides for notions such as distance between two
points and neighborhood of a point.

Typical point sets are discrete subsets of the n-dimensional Euclidean space �n,
together with a discrete topology that provides for a metric space. With points,
values from a value set can be associated.

Definition 2 (Value Set). A value set � is an instance of a homogeneous
algebra, that is, a set of values together with a set of operands.

In Image Algebra there is no application specific semantics associated with points
sets, components of points, or point values. For the processing of streaming
geospatial image data, however, such a semantics is crucial to build an expressive
query model and processing framework. For this, we consider point sets of the
form X = S×T, where S is the spatial domain, e.g., S = �2 or S = �3, and T
is the temporal domain of the point set, typically T = �.

Each point x in a point set X is of the form x = 〈s, t〉, where s ∈ S describes
the spatial location of the point, and t ∈ T is a timestamp. The timestamp t
specifies a logical point in time when the value of that point has been obtained.
This can be the point in time when the value actually has been measured or the
identifier of a satellite scan sector to which the point x belongs.

Moreover, we only consider point sets X whose spatial domain is a regularly-
spaced lattice in �n, thus providing a spatial resolution pertinent to X. For
brevity, throughout the paper we will use the term point lattice to indicate a point
set with the above restrictions. Point lattices exhibit fundamental characteristics
of spatio-temporal data and allow for standard vector space and point operations.
In particular, they provide a basis for a formal definition of a stream.

Definition 3 (Stream). Given a point lattice X and a value set �, a �-valued
stream G is a function G : X → � that maps points from the point lattice X to
values from the value set �.

Let �X denote the set of all functions from a point lattice X to a value set �.
Besides the functional notation of a stream G ∈ �X, in the following we also use
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the set notation G = {(x,G(x)) : x ∈ X}, where x denotes the spatio-temporal
point location and G(x) denotes the value at location x.

Definition 4 (Image). An image of a stream G is a subset i ⊂ G whose points
all have the same timestamp.

A raster image consisting of a rectangular grid of pixels is a typical instance
of an image. In a raster image all points (pixels) in the point lattice have the
same timestamp value, and point values are taken from, e.g., � (for grey-scale
images), �3 (for color images), or �n, n > 3, for multi-spectral images.

To support geographic applications, there is one important property of streams
and images that needs to be recognized. With every point lattice X, or more pre-
cisely its spatial component S, a coordinate system must be associated. A coordi-
nate system, such as latitude/longitude or Universal TransverseMercator (UTM),
provides the basis for mapping points to pairs of numbers and vice versa. As we
will see in Section 3, one precondition for applying operations on pairs of image
data is that their point lattices are based on the same coordinate system. Note that
the spatial resolution of two point lattices still can be different, although they are
based on the same coordinate system.

Based on the above notions, we define the concept of streaming geospatial
image data, called a GeoStream, as follows.

Definition 5 (GeoStream). A stream G ∈ �X,X = S×T, is a GeoStream
if a coordinate system is associated with the spatial component S.

In general, a GeoStream G is homogeneous in the sense that all points are
based on the same coordinate system and that all points have the same spatial
resolution. Yet there is no restriction on the shape or orderliness that points in a
GeoStream can take. For the definition of operations on one or more GeoStreams,
however, it is important to recognize typical point organizations that result from
different remote-sensing instruments. Figure 1 illustrates this aspect.

Airborne cameras typically obtain data in an image-by-image fashion, as
shown in Fig. 1(a). That is, there are several consecutive frames that cover pos-
sibly different spatial regions. Most satellite instruments obtain data in a row-
by-row fashion where strips of image data arrive at a time, shown in Fig. 1(b).
In this case, a single line of neighboring points constitutes a frame. Some in-
struments, such as LIDAR [16], have non-uniform point lattice structures, and
points are only ordered by time, as shown in the Fig. 1(c).

An important feature of the GeoStreams data model that does not have a
counterpart in traditional (relational) stream processing frameworks is that con-
secutive points in a GeoStream have a close spatial proximity. This is true except
for the case where the last point of one frame is followed by the first point of a
new frame (as shown in in Fig. 1(a)) that covers a different spatial region. In this
case there is only a close temporal proximity between points. This feature has a
significant impact on how operators are realized on one or more GeoStreams, as
we will show in the following section.
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Fig. 1. Point set organization in a GeoStream for different remote-sensing instruments:
(a) image-by-image (left); (b) row-by-row (middle); (c) point-by-point (right)

3 Query Model

In the following, we present a set of operators that, together with the concept
of GeoStreams, build a basic algebraic model for querying streaming geospatial
image data. Our primary focus is on operators that are used in typical geographic
applications to derive different data products from geospatial image data. We
put less emphasis on image processing operators, such as linear image transforms
(e.g., Fourier and Wavelet transforms) or shape and pattern detection (see, e.g.,
[23]), which are often applied as post-processing steps to individual frames and
images rather than streams of geospatial image data.

An important feature of our query algebra is that it is closed. That is, the
result of applying an operator to one or two GeoStreams is again a GeoStream.
This allows the formulation of complex queries over streaming geospatial image
data, and it also provides a basis for query optimization techniques, such as
query rewriting. In the following section, we present three classes of stream
restriction operators, followed by stream transform operators in Section 3.2.
Both types of operators operate on a single GeoStream. In Section 3.3, we then
discuss stream composition operators. For the operators introduced, we also
discuss their cost and practical realization. In Section 3.4, we briefly illustrate
formulation techniques for complex queries and query rewriting.

3.1 Stream Restrictions

Assume a GeoStream G ∈ �X, X = S × T. A restriction operator can be
thought of as a filter that only selects points from a stream that satisfy a certain
condition on the spatial, temporal, or point value component. For a point x ∈ X,
we denote these components x.s, x.t, and G(x), respectively.

The most important type of restriction and frequently used operator in typical
queries is a spatial restriction.

Definition 6 (Spatial Restriction). Given a point lattice R ⊂ S, the spatial
restriction of G to R, denoted G|R, is defined as G|R := {(x,G(x)) : x ∈ G ∧
x.s ∈ R}.

Although many remote-sensing instruments may cover large regions, users and
applications are often only concerned with particular regions of interest. A spatial
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restriction allows to filter only those incoming point data that are spatially
located in the region R of interest. Conceptually, there are several ways in which
R can be specified: (1) as an enumeration of all x, y value pairs in R ⊂ S
(assuming a 2-dimensional space), (2) expressions of a constraint data model,
i.e., polynomials on variables x, y [22, Chap. 4], or (3) by specifying two corner
points of a rectangle that describes the bounding box of the points of interest.
In practice, approach (3) is commonly used in graphical user interfaces.

A temporal restriction operator is defined as follows.

Definition 7 (Temporal Restriction). Let T ⊂ � be a set of timestamps.
The temporal restriction of G to T, denoted G|T, is defined as

G|T := {(x,G(x)) : x ∈ G ∧ x.t ∈ T}

For this operator, too, there are several ways in which T can be described: as
a collection of points in time, as an open interval or as a set of (re-occurring)
intervals, e.g., if an application requires only data during a specific time period
every day. Finally, a value restriction operator, denoted G|V, over a set V ⊆ �
of point values is defined as G|V ≡ {(x,G(x)) : G(x) ∈ V}.

It is obvious that all three restriction operators can process incoming image
data on a point-by-point basis and thus can be evaluated without storage for
any intermediate point data. That is, all restriction operators are non-blocking
and have constant cost per point, independent of the size of the input stream.

3.2 Stream Transforms

Assume again a GeoStream G over point lattice X and value set�. Conceptually,
a transform operator maps the point or value set associated with G to a new
point and value set. There are two types of transforms: value transforms and
spatial transform. We start with the simpler one, the value transform.

Definition 8 (Value Transform). Given a function fval : �→�, with �,�
being value sets, a value transform, denoted fval ◦G, changes a stream over �X

to a stream over �X, and is defined as fval ◦G := {(x, fval(G(x))) : x ∈ X}.

A simple form of a value transform operator is one that transforms color point
values with � ⊂ �3 to gray-scale point values with � ⊂ �. Clearly, such an
operator allows for processing on a point-by-point basis. However, not all value
transform operators show such a behavior. For example, in order to fully utilize
the complete range of values in�, point values can be scaled. Typical approaches
include linear contrast stretch, histogram equalization, and Gaussian stretch [19].
In order to perform a respective value transform on a point, information about
previous point values needs to be maintained, in particular the minimum and
maximum point values seen so far. In the context of streaming image data, this
is typically done on individual frames of the stream G, and not the complete
stream. If a frame has a large number of points, all points of that frame need
to be stored before they can be output with new point values. Thus, the cost
of a “stretch” transform operator is determined by the size of the largest frame
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that can occur in G. For most satellites and satellite imagery, such frame sizes
are known (e.g., for GOES, the maximum frame size is about 20,840 by 10,820
points for the visible band at 1km resolution, requiring approx. 280MB storage).

An important type of operator for processing streaming geospatial image data
is a spatial transforms. They allow for magnification (zooming), rotation, and
general affine transformations. For geographic point lattices with associated co-
ordinate system, re-projection of points into a new coordinate system is also a
transformation.

Definition 9 (Spatial Transform). Given a function fspat : Y → 2X, with
X,Y being point lattices. A spatial transform, denoted G ◦ fspat, changes a
stream over �X to a stream over �Y, and is defined as

G ◦ fspat := {(y,G(fspat(y))) : y ∈ Y}.

How does a spatial transform operator actually work on a GeoStream? Assume
a scenario where image data from G is coming in and one wants to change
the spatial resolution associated with the point lattice X. An operator that
increases the spatial resolution would take an incoming point x and produce
a rectangular lattice of k × k (k being the magnification factor) of points in
Y, all with the point value G(x). No neighboring points for x are required to
accomplish this transform, and thus the spatial transform actually would be
of the form fspat : Y → X. However, neighboring points are needed in case one
wants to decrease the resolution. For a point x ∈ X, a rectangular lattice of k×k
neighboring points “surrounding” x is needed to compute the value G(fspat(y))
of a point y ∈ Y (see Fig. 2(a)). Thus, the operator has to buffer a sufficient
number of points in X in order to compute the value of a point y ∈ Y.

X

Y

X

Y

Fig. 2. Spatial transform operators: (a) decreasing the spatial resolution by 1
3 (left);

(b) re-projection to a new coordinate system (right)

Without any knowledge about the point lattice organization in G, such an
operator could potentially block forever, e.g., when the rightmost lower point
in a frame has been received and no suitable neighboring points follow. In an
implementation, such a scenario (which in general can occur for any point in a
frame) can be avoided by utilizing auxiliary information about the spatial re-
gion currently scanned by an instrument and added as metadata to the stream of
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image data. The operator then can use such metadata and execute appropriate
boundary point interpolations.

From a geographic application point of view, an important functionality is to
re-project geospatial data from one coordinate system to another one [11,26]. One
can think of a re-projection as a mathematical framework that specifies for every
point y ∈ Y what points in X are necessary to compute y and its point value.
Often, the transformation strives for an approximate one-to-one correspondence
between points in point lattices X and Y, and a regular lattice corresponding
in size and aspect to the lattice of the original point set X is overlayed over the
spatial extent of the new point lattice. In traditional GIS applications, for a point
y ∈ Y, either the nearest point in the original point lattice is chosen to supply the
point value, or a function is applied to a neighborhood of pixels of x to provide
the point value. Respective functions fspat include linear interpolations or higher-
order fitting routines. In general, there is no single best solution, considering the
multitude of coordinate systems and types of re-projections.

From a query processing point of view, it is important to note that such types
of spatial transform operators may block for a considerable amount of time,
as the computation of the value of a point y ∈ Y may require any number
of points from X. An implementation of individual operators corresponding to
specific spatial transform and re-projections, however, can be again tailored by
utilizing metadata about the spatial extent of the current scan sector and the
spatial resolution associated with X and Y.

3.3 Stream Compositions

Geographic applications often derive data products by combining information
from different spectral bands. For example, the normalized difference vegeta-
tion index (NDVI) describing the health of vegetation combines pixel data from
the near-infrared and visible band to compute a single NDVI value for a spa-
tial location. In our model, combining image data from different spectral bands
is realized through a generic stream composition operator where each stream
represents a single spectral band.

Definition 10 (Stream composition). Let G1,G2 be two streams over a
point lattice X and value set �. A stream composition operator γ over G1,G2,
denoted G1 γ G2 is a binary operator defined as

G1 γ G2 ≡ {(x,G1(x) γ G2(x)) : x ∈ X}.

Typical stream composition operators include addition, difference, division, supre-
mum and infimum, i.e., γ ∈ {+,−,÷,∨,∧}. There are several important obser-
vations regarding the behavior of these operators. First, although both streams
are based on the same point lattice X, it can happen that there is no single point
that occurs in both streams. This obviously is the case when the two streams cover
different spatial regions.

Second, and more important for practical applications, note that in order to
apply γ to two point values G1(x) and G2(x), the points must match in the spa-
tial dimension and in the timestamp. This has considerable consequences on how
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timestamping for points is realized and, consequently, how much intermediate
image data an operator needs to store in order to output new image data.

For example, assume a satellite that scans a spatial region first for the visible
band and then for the near-infrared band. If incoming points are timestamped
based on when the points were measured, a stream composition operator would
never produce new image data as respective timestamps would never match.
That is why in practice, point data is timestamped using scan-sector identi-
fiers: a satellite scans a spatial region for different spectral bands, each band
resulting in a single GeoStream. A point in each of the imagery obtained for
the spectral bands for the scan sector is assigned the scan-sector identifier as
timestamp, facilitating the comparison of point data from different bands and
streams, respectively.

Finally, although for a single scan, all point data from the different streams
have the same timestamp, the space complexity of a stream composition operator
depends on the point organization in which the image data is transmitted (see
also Fig.1). If the data is transmitted on an image-by-image basis, the operator
has to buffer a complete image whereas for a row-by-row organization, it only
has to buffer a single row of one stream before it can combine it with a matching
row from another stream.

In summary, the realization of a stream composition operator, which concep-
tually might seem straightforward, very much depends on the scan characteristics
of the remote-sensing instrument that generates the image data streams.

3.4 Complex Queries and Query Rewriting

In geographic applications, data products are typically obtained by applying a
sequence of operators to imagery. Our query model and the closure property of
operators in particular naturally facilitate the formulation of complex queries.
However, unlike queries in a relational database context where queries can have
complex nested subqueries, continuous queries over streams of remotely-sensed
image data typically tend to be less complex; in fact, they are often “sequential”.

Due to space constraints we cannot describe all query composition and rewrit-
ing techniques for the previously presented operators, but we illustrate a few key
aspects of our query model by means of an example. Assume two GeoStreams
G1 and G2 corresponding to the near-infrared and visible band of a satellite
instrument. Consider the following query

((fval ◦ ((G1 −G2)÷ (G2 + G1))) ◦ fUTM )|R

which can be read as follows: (1) compute the NDVI over streams G1,G as
stream composition ((G1 − G2) ÷ (G2 + G1)), (2) perform a value transform
fval on the result point lattice, (3) re-project to the UTM coordinate system
(fUTM ), and finally (4) select only point data for the region R of interest. Assume
G1 and G2 are based on a coordinate system C. Rather than performing the
composition of all point data from the two streams, followed by a value and
spatial transform on all the resulting points, the final spatial restriction |R can
be pushed “inwards” and applied first to G1 and G2 before any composition.



696 M. Gertz et al.

However, because in the query R is based on the UTM coordinate system, R
needs to be mapped to the coordinate system C. The query optimizer has to
identify such rewrites in particular for spatial selections, as these result in the
most significantly space and time gains for query evaluation.

4 Query Processing Framework

Some of the operators introduced in Section 3 have been realized in the context
of the GeoStreams project [6]. In the following, we give a brief overview of the
prototypical system being developed in this project to illustrate the data flow
and stream processing components.

Remotely-sensed imagery from the GOES satellites [8] is received by the Data
Stream Management System (DSMS) server, and the raw data is converted by
the stream generator into GeoStream point lattices that have a row-by-row or-
ganization. The streams correspond to the different spectral channels that are
generated by the imager instrument on-board the GOES satellite. In the DSMS
server, a spatial transform operator converts the GeoStream point sets, which
come in a satellite specific coordinate system (called GOES Variable Format),
into point lattices based on latitude/longitude. Multiple users can connect to
the DSMS server and formulate queries over the GOES data streams gener-
ated within the DSMS. Users use a Web-based graphical interface to specify
spectral channels (streams) of interest, regions of interest, and certain spatial
transforms (e.g., zooming). The coordinate system used in this interface is lati-
tude/longitude.

connect
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Stream
Generator

Optimization
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DSMS Server
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Fig. 3. Architecture of the Stream Management System for Geospatial Image Data

User queries, which are converted by the interface to specialized HTTP re-
quests, are transmitted to the server, parsed, and registered. Multiple queries
against a single GeoStream are optimized using a dynamic cascade tree struc-
ture [10], which acts as a single spatial restriction operator and efficiently streams
only the point data of interest to current continuous queries to subsequent oper-
ators. As indicated in Section 3.4, optimizing queries with respect to regions of
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interest has the greatest benefit. This spatial restriction operator then streams
the point data to a specialized stream delivery operator that ships stream re-
sults back to clients using the PNG image format. Other operators that are
currently being implemented and integrated with the query execution engine
include different types of re-projections (using extensions to PROJ.4 [21]) and
specialized macro operators that compute specific data products, such as NDVI.
Such data products can be directly selected in the user interface, without the
need to compose otherwise complex queries.

5 Related Work

Our work borrows several fundamental concepts from Ritter and Wilson’s Image
Algebra [23], in particular the functional representation of images and some
operations on images. Our data and query model provides an extension of these
concepts in that we (1) consider streams of image data instead of (static) images
and (2) explicitly introduce the notion of spatio-temporal data, which is geo-
referenced, and specialized operations on geo-referenced data.

Query processing techniques for multi-dimensional arrays have been studied
by Marathe and Salem [18] and Libkin et al. [14]. General types of operations
on raster image data, which can be considered as a specialized form of arrays,
have been proposed by Baumann [2,3,4]. While these works study frameworks
for operations and query processing on array data and raster images, they do
not consider the aspect of streaming geospatial image data. The operators are
not specific to streaming spatio-temporal data and in particular do not consider
the specifics of typical computations performed on remotely-sensed imagery. As
we have illustrated in Section 3, knowing about point lattice organizations in a
stream of image data and properties of satellite scan sectors can have a significant
impact on how image data is processed.

A work closely related to ours is the one by Mokbel et al. [17] on continu-
ous query processing of spatio-temporal data streams in the context of perva-
sive location-aware computing environments. In their work, they primarily focus
on object-based spatio-tempporal data (moving objects), whereas our approach
exclusively focuses on field-based spatio-temporal data, in particular satellite
imagery and its specific operators.

The large body of work on spatial and spatio-temporal data (for an overview,
see, e.g., [22,24]) in general neither considers streaming geospatial image data
nor remotely-sensed data.

6 Conclusions and Outlook

Remotely-sensed imagery from the numerous satellites orbiting the Earthprovides
a great opportunity to develop novel data stream management and processing sys-
tems, leveraging techniques and models developed for relational data streams to
improve processing streaming geospatial image data. In this paper, we have pre-
sented the foundation of a data and query model that allows the formulation and
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processing of continuous queries over streams of such image data. In particular,
we have discussed the specifics of stream restriction, transform, and composition
operators with a focus on the properties of remotely-sensed data and processing
techniques relevant for typical geographic applications.

We are currently extending the set of operators, with a particular focus on
spatial transforms, because they represent the most demanding types of oper-
ators in terms of space and time complexity. We are also investigating the full
integration of a spatio-temporal aggregate operator for streaming image data.
This operator has been proposed in [27], and will provide an important addition
to the functionality of our stream management system.

References

1. A. Arasu, S. Babu, J. Widom: The CQL Continuous Query Language: Semantic
Foundations and Query Execution. The VLDB Journal 15(2):121–142, 2006.

2. P. Baumann: Management of Multidimensional Discrete Data. The VLDB Journal
3(4):401–444, 1994.

3. P. Baumann: Database Array Algebra for Spatio-Temporal Data and Beyond. In
Next Generation Information Technologies and Systems, 4th International Work-
shop (NGITS’99), LNCS 1649, Springer, 76–93, 1999.

4. P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: Spatio-Temporal
Retrieval with RasDaMan. In Proceedings of 25th International Conference on
Very Large Data Bases, 746–749, 1999.

5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom: Models and Issues in
Data Stream Systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 2002), 1–16, 2002.

6. GeoStreams: Adaptive Query Processing Architectures for Streaming Geospatial
Image Data. University of California at Davis, http://geostreams.ucdavis.edu.
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Abstract. Regular path queries are the basic navigational component of
virtually all the mechanisms for querying semistructured data commonly
found in information integration applications, Web and communication
networks, biological data management etc. We start by proposing weight-
enhanced regular path queries with semantics that allow user-assigned
preference (query) weights to be naturally combined with quantitative
database link-information for driving the navigation.

Motivated by the fact that the main applications of semistructured
data involve distributed data sources, we focus next on the distributed
evaluation of the weight-enhanced path queries. We present a distributed
algorithm for evaluating our proposed queries in a multi-source setting.
Our algorithm is general in the sense that it does not assume a known
topology of the network and it can work using asynchronous communi-
cation. This algorithm can also be used to solve multi-source shortest
path problems for which the full graph is not known in advance. To the
best of our knowledge our algorithm is the first to address this problem
in such a setting.

1 Introduction

Nowadays, modeling and/or representing the data as labeled graphs has become
very common in many areas such as communication and traffic networks, Web
information systems, data integration, biological data management, cartography,
etc (see e.g. [8,7,13]). As it has been recognized by seminal works (see [1,12]),
the basic querying mechanism for such data are (regular) path queries, which
are formulated using regular expressions, that provide to the user a recursive
way of navigating (partially unknown) graph data.

As an example from airline networks, imagine a user who wants to find all
the pairs of cities that can be reached from each other by taking Air Canada.
Notably, this can easily be captured by using a path query such as aircanada∗,
which has to be evaluated starting from each city Air Canada flies from.

In order to evaluate our example path query, a query processor would try
to find all the paths consisting of aircanada-labeled edges. However, there are
two problems associated with path queries like the above. First, a selective query
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(such as aircanada∗) may return too few answers. For example, two cities such as
Vancouver (YVR) and San Diego (SAN) might not have an all-aircanada labeled
route1 and thus, the pair (YVR, SAN) will not be in the returned answer for
the query. On the other hand, partnerships between airlines are a well known
fact, and clearly the system should be able to return the pair (YVR, SAN)
even in the absence of an Air Canada route from Vancouver to San Diego. In
the particular example there is a jointly operated route with Air Canada flying
from Vancouver to Los Angeles and continuing with United Airlines from Los
Angeles to San Diego. It might seem that this is a simple matter of specifying
the disjunctive path query aircanada + united instead. However, this second
query does not differentiate between purely Air Canada routes (that the user
might prefer) and the joint partnership routes. Hence, the system should allow
the user to specify alternative choices, which can be weighted by her preferences.
Furthermore, the system should also be able to present a ranking of the returned
answers with respect to the expressed user preferences.

In this paper, we address this problem by proposing weight-enhanced path
queries (WEPQ’s). Intuitively, we allow the user to specify weighted edge al-
ternatives in path queries. For example, instead of aircanada∗, the user could
specify the weighted path query

(aircanada:0+united:1+usairways:3)∗+(aircanada:0)∗ ·(alaska:0)·(aircanada:0)∗

to express her preferences, which in plain language are: “I would like to take Air
Canada routes (paths with weight 0), or United Airlines routes but with lower
preference (weight 1), or US Airways but with even lower preference (weight 3).
Furthermore, I can accept at no cost a single Alaska segment connecting two Air
Canada routes.”

The second problem with simple path queries is that their semantics do not
take into consideration other properties of the traversed links other than the
mere link label. To illustrate with the above example, a query such as aircanada∗,
would return all the pairs of cities connected through an aircanada route without
any indication of the length of the path used to compute the answers. This is just
an example of what other information might be present at the database links,
and clearly, there are other examples of useful information such as frequency of
flights for a particular link, time of the day, special service offered, etc. Notably,
it is easy to map such information into (virtual) link weights as we navigate the
database.

After introducing an “edge importance aware” generalization of graph data-
bases, we formally define the notion of weighted answers to WEPQ’s on such
databases. The computed weights of the answers enable their ranking according
to the user preference for following certain database paths. Moreover, we propose
query semantics in which the weight of an automaton transition is further scaled
up or down by the importance of the traversed database edge. Thus, in our
spatial example, the edge importance could simply be the edge-length, and so,
traversing a 1000 miles united-edge would be less preferable than traversing a
1 A route may contain intermediate cities.
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300 miles usairlines-edge, even though initially in the query, flying with United
Airlines was more preferable than flying with US Airways.2

Analogous to the airline example, we can also describe our semantics in a
Web scenario. Here, the database edges are hyperlinks, and the values assigned
to each edge could be based on the inverse of the page-rank of the linked page,
using an algorithm similar to the one used to rank pages in a search engine.

In almost every scenario where the data is represented in a graph based fash-
ion, prime examples of which are information integration, Web based informa-
tion systems, airline reservation systems etc, the data is distributed among many
different sources. Clearly, it is imperative to not only show how a query can be
evaluated in a centralized way, but also to devise truly distributed algorithms for
this purpose. With “truly” in this context we want to say that the data shipping
paradigm, commonly used by the today’s XQuery processors, is not to be consid-
ered as a viable distributed solution. Instead, a query shipping paradigm should
be used, where the queries are appropriately decomposed, and where each source
works towards accomplishing specific tasks related to the local data only. Hence,
we turn our attention to devising a distributed algorithm for the evaluation of
our proposed WEPQ’s. Our assumption is that the database graph is partitioned
into several autonomous processors which do not share memory. Communication
between these processors is achieved exclusively through message passing.

In our setting, we tackle the more challenging problem of evaluating a query
starting from multiple database nodes. Clearly, multi-source path queries impose
a much higher load on the system, since we need to find all the possible paths
spelling words in the query language, as opposed to finding paths starting from
some root only. Moreover, the database paths that one has to follow starting
from different nodes might have a great amount of overlap and a naive processing
would do extensive redundant work. To see this, imagine we want to evaluate
aircanada:0 + united:1, starting from Vancouver and Toronto. Such routes will
have many intersections such as for example in Los Angeles. An intelligent query
processing would not follow more than once sub-paths starting from Los Angeles.

We present a distributed algorithm that completely avoids traversing data-
base paths multiple times. Through an iterative weight-correcting process, our
algorithm computes and ranks the query answers. A nice feature of our algo-
rithm is that any snapshot of the query answer at any point in time will be a
partial answer to the user query. The practical consequence of this is that the
user would very soon see some partial answers to her query, and along the time
that she is willing to wait, new answers will show up, while the existing answers
will possibly be improved.

Related Work. Similar queries have been also introduced in [2] in the context of
Web data. However, our query semantics are more general, and furthemore we ex-
plore indetaildifferentaspectsofhandling, generating, andevaluating suchqueries.

2 We assume that the user is not interested in optimizing the distance traveled. Thus,
our problem is not about multi-feature ranking. Rather we assume that the user is
interested in optimizing her preferences, which she can tolerate to be weighted by
the cost of satisfying them.
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Interestingly, our expression syntax is similar with the one used in [4,5]. Syn-
tactically, the difference is that in [4,5], the expressions were on symbol-weight-
symbol triples as opposed to symbol-weight pairs that we use. Semantically,
the expressions of [4,5] were used for capturing knowledge or constraints about
databases.

We also want to mention here the work of [3] and [9] on how to produce
ranked XPath answers in XML information retrieval (IR) systems. In [3] and
[9], the focus is on ranking the node answers according to the text contents of
the selected (by XPath) XML nodes. Namely, the node texts are ranked using
IR relevance criteria. We want to stress here that our approach is very different
from [3] and [9]. We rank the node answers according to the “quality” (based
on user preferences) of the paths used for reaching the nodes. Thus, we present
a graph structural approach to ranking the query answers, which is inherently
different from IR text approaches of [3] and [9].

Surprisingly, to the best of our knowledge only very few works have dealt
with a distributed evaluation of path queries. The most important works in this
direction are [1], [11], and [10]. In [1], the architecture is similar with ours but the
queries are simple path queries without weights, and furthermore the evaluation
is considered starting from some root node only. The single root assumption is
also made in [10], focusing in a generalization of path queries that is different
from the one in the present paper. Similarly with [1] and [10] , [11] also studies
the single root scenario for simple (unweighed) path queries. However, in [11],
the main objective is to minimize the number of communication messages and
for achieving this [11] suggests an approach, which distributes the load unevenly
among processors.

Our distributed query evaluation algorithm is inherently different from the al-
gorithms in [1,11,10] because here we solve the more difficult problem of evaluat-
ing the query starting from multiple database objects (or all objects).3 Moreover,
our queries are semantically different from those considered in [1,11,10].

The rest of the paper is organized as follows. In Section 2, we introduce
weight-enhanced path queries (WEPQ’s) and their semantics. Section 3 provides
a short review of the evaluation of classical path queries and the intuition behind
the algorithm for evaluating WEPQ’s. In Section 4, we present our distributed
algorithm and discuss its message complexity.

2 Databases and Weight-Enhanced Path Queries

We consider a database to be an edge-labeled graph with real values assigned
to the edges. Intuitively, the nodes of the database graph represent objects and
the edges represent relationships (and their importance) between the objects.

Formally, let ∆ be an alphabet. Elements of ∆ will be denoted R, S, . . .. As
usual, ∆∗ denotes the set of all finite words over ∆. Words will be denoted by
3 Even for simple shortest path problems, the algorithms for multi-source variants are

inherently different from the algorithms for single-source variants. Usually, the former
are dynamic programming approaches, while the latter are greedy approaches.
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u, w, . . .. We also assume that we have a universe of objects, and objects will be
denoted a, b, c, . . . ,. A database DB is then a weighted graph (V, E), where V is
a finite set of objects and E ⊆ V ×∆×R× V is a set of directed edges labeled
with symbols from ∆ and weighted with numbers from R.

Before introducing weighted preference path queries, it will help to first review
the classical path queries.

A path query (PQ) is a regular language over ∆. For the ease of notation, we
will blur the distinction between regular languages and regular expressions that
represent them. Let Q be a PQ and DB = (V, E) a database. Then, the answer
to Q on DB is defined as

Ans(Q,DB) = {(a, b) ∈ V : a
w−→ b in DB for some w ∈ Q},

where −→ denotes a path in the database.
Now, let N = {0, 1, 2, . . .}. A weight enhanced path query (WEPQ) is a regular

language over ∆×N. The “words” of such a language are in fact pairs in ∆∗×N.
Observe that, given a WEPQ Q, and a word w on ∆, w can be weighted in Q
by different real numbers. As an example, it could be that there exist r1, r2 ∈ R
(there can many more such numbers) such that both (w, r1), and (w, r2) are in
Q. In order to capture the best preference that query Q gives to the word w, we
define the Q-preference of w, denoted with prefQ(w), to be the smallest of the
values associated with with w in Q.

Next, we define the weighted answer (WAns) to a WEPQ Q on DB starting
from some object o as

WAns(Q,DB) = {(a, b, k) ∈ V × V × N : k = inf {prefQ(w) : a
w−→ b in DB}}

Naturally, WEPQ’s can be represented by “weighted automata.” Formally, a
weighted automaton A = (P, ∆, τ, p0, F ) consists of a finite set of states P , an
input alphabet ∆, an initial state p0, a set of final states F , and a transition
relation τ ⊆ P ×∆ ∪ {ε} × N× P .

Given a weighted automatonA = (P, ∆, τ, p0, F ), we say that a word w ∈ ∆∗ is
accepted through a k-weighted transition path if there exists a sequence
(p0, w1, k1, p1), . . . , (pn−1, wn, kn, pn) of state transitions of τ (where {w1, . . . , wn}
⊆ ∆∪ {ε}), such that pn ∈ F , w = w1 . . . wn, and k = k1 + · · ·+ kn. When refer-
ring to a transition path as the above, we could also say that it is a “(k1, . . . , kn)-
weighted transition path” in order to concisely specify that such a path consists of
n transitions with respective weights k1, . . . , kn. We denote the set of all accepted
words of A (regardless of transition path followed) by A(L).

Now, we can equivalently define prefQ(w) using weighted automata. Thus, let
AQ be an arbitrary weighted automaton for Q. For w on ∆, the Q-preference of
w is

prefQ(w) =
{

inf {k : w is accepted though a k-weighted transition path in AQ}
∞, if w �∈ AQ(L).

In our definition of WAns(Q,DB), we do not use the real values that could
possibly be assigned to the edges of the database graph. As mentioned in the
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Introduction, such values can be used to scale up or down the transitions during
the query evaluation.

In order to take into consideration the edge values, we define the scaled Q-
preference of a word w (of length n) through a scaling vector scale = (r1, . . . , rn)
∈ Rn, as

prefQ(w, scale) =

⎧⎨⎩
inf {r : w is accepted though a (k1, . . . , kn)-weighted

transition path in AQ, and r = k1r1 + · · ·+ knrn}
∞, if w �∈ AQ(L).

For a path π in DB , we define scaleπ to be the scaling vector obtained in the
natural way from the values of each edge along π. We are ready now to define
the path scaled weighted answer (SWAns) of a WEPQ Q on DB as

SWAns(Q,DB) = {(a, b, r) ∈ V × V × R :
k = inf {prefQ(w, scaleπ) :

π is a path a
w−→ b in DB}}.

Next, we show how to efficiently transform a weighted automaton A, into
one with ε-free transitions, in such a way that the essential features of A are
preserved. The ε-freeness is essential in properly computing the answer of a
WEPQ.

From the automatonA we will construct another “weight equivalent” automa-
ton B. We will use ε-closure(p), similarly to [6], to denote the set of all states q,
such that there is path π, from p to q in A, spelling ε.

Obviously, we will keep all the non-ε transitions of A in the automaton B,
that we are constructing.

Now, we will insert an R-transition (R �= ε) in B from a state p to a state q
whenever there is in A a path π, spelling ε, from p to an intermediate state r and
there is an R-transition, from that state r to the state q. We take special care
here for computing the weight of these transitions. Formally, ifA = (P, ∆, τA, p0,
F ), then B = (P, ∆, τB, p0, G), where G = F ∪ {p0 : if ε-closureA(p0)∩ F �= ∅}
and

τB = {(p, R, n, q) : (p, R, n, q) ∈ τA} ∪
{(p, S, m + n, q) : ∃r ∈ ε-closureA(p),
such that (r, S, n, q) ∈ τ},

where the weight m is the weight of the cheapest path from p to r in A spelling ε,
and (r, S, n, q) is the cheapest S-transition from r to q.

It is easy to verify about the above constructed automaton B that

Theorem 1. For a given word w, there is k-weighted transition path spelling w
in B if and only if there is such a path in A.

Also observe that in the above construction, although there can be exponentially
many ε-paths from state p to state r, we insert only one transition from p to
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q for each symbol labeling a transition from r to q. Hence, we have that the
size of B is polynomial on the size of A. Moreover, note that there can be many
transitions from r to s labeled with the same symbol but having different weight.
However, we only consider the cheapest of them.

3 Path Queries, Reachability, and Shortest Paths

Before presenting the distributed (weighted) query evaluation, we will review
the classical method of query evaluation. In essence, the evaluation proceeds
by creating state-object pairs from the query automaton and the database. For
this, let A be an NFA that accepts a query Q. Starting from some object a of
a database DB , we first create the pair (p0, a), where p0 is the initial state in
A. Then, we create all the pairs (p, b) such that there exist a transition from p0
to p in A, and an edge from a to b in DB , and furthermore the labels of the
transition and the edge match. In the same way, we continue to create new pairs
from the existing ones, until we are not anymore able to do so. At that point,
we produce as the answer to the query the set of object pairs (a, b), such that b
has been associated with some final state of the query automaton A.

It is worth mentioning here that the state-object pairs induce an (implicit)
edge labeled graph with these pairs as its nodes. Regarding the edges, let (q, b)
be obtained by another pair, say (p, a), through a database edge and automaton
transition both labeled by R. Then, we consider an R-labeled edge from (p, a)
to (q, b) in the induced graph.

Now, when having a weighted query automaton, we can modify the classical
matching algorithm to build instead a weighted state-object graph. This can be
achieved by assigning to the edges of this graph the corresponding automaton
transition weights scaled by the corresponding database edge-values.

It is not difficult to see that, in order to find the weighted answers to the
query, we have to find, in the state-object graph, the shortest paths from the
“sources” (p0, a) to all the nodes (p, b), where p is a final state in the query
automaton A.

However, the challenge is that when the database is very large and distributed,
we cannot afford to construct the above graph, and then use some centralized
shortest path algorithm on it.

In the next section, we present a distributed algorithm which computes the
multi-source shortest paths in the state-object graph, while constructing it on
the fly and achieving all the possible overlap in the computations starting from
each source.

4 Distributed Evaluation of Path Queries

Our algorithm has two interwoven components: the computation of query an-
swers and its termination detection. In this paper, we focus on the computation
of query answers. The termination detection will be discussed in a companion
paper.
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The central idea of our algorithm is to overlap computations starting from
different objects. We assume that each database object, say a, is being serviced
by a dedicated process for that object Pa.

Each process starts by creating an initial task for itself. The tasks are “keyed”
by the automaton states, with the initial tasks being keyed by the initial state,
say p0. Each task 〈p, . . .〉 corresponding to some object a (serviced by Pa), is
eventually selected for “expansion,” which is the creation and sending of new
tasks to other processes whenever there is an automaton transition originating at
state p that matches a database edge originating at the object a. Let (p, R, q, k)
be such a transition matching a database edge (a, R, b, t). Then the process Pa

will send the task 〈q, . . .〉 to the process Pb servicing the object b. The process Pb,
upon receival of the task 〈q, . . .〉, will establish a virtual communication channel
with the process Pa for the originating task 〈p, . . .〉. This channel is weighted by
kt. In a sense, the completion of the task 〈p, . . .〉 in Pa depends on the completion
of the task 〈q, . . .〉 in Pb.

Notably, overlapping of computations happens when a process receives the
same task multiple times from different neighboring processes. In such a case
the receiving process does not accept the “new” task, but instead it creates only
a virtual communication channel with the sending process as explained above.
The overlapping of computations is reminiscent of view-based optimization of
queries.

Whenever a process receives (the first time) a task keyed by a final state,
it sends as an answer, through the backward communication channels, the id
of the object that it services. The receiving processes will back-propagate such
answers, through their appropriate backward communication channels, satisfying
along the way the p0 keyed tasks. The meaning of “appropriate” will become
clear in the detailed algorithm that follows. The back-propagated answers will
be weighted by the cost of traversing the communication channel paths. Recall
that the cost of a communication channel is the product of the corresponding
automaton transition and database edge weights. At the joint points, i.e. at the
tasks receiving the same answer from different paths, we “relax” the weight of
the answer by setting it equal to the smallest received weight.

Now, we formally present our algorithm, which, as we mentioned earlier, em-
phasizes the distributed computation of query answers ignoring (for the moment)
the termination detection of the computation.

Algorithm 1

Input:
1. A database DB . For simplicity we assume that each database object, say

a, is being serviced by a dedicated process for that object Pa.
2. A weighted automaton A = (P, ∆, τ, p0, F ) for a WEPQ Q. This au-

tomaton is sent first to all the processes.4

4 This does no harm to the true distribution of computation. Instead of transferring
whole parts of the data (as in the XQuery paradigm), we simply send (once only)
the query automaton, which is polynomial in the size of the regular expression given
by the (human) user.
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Output: The weighted answers to the query Q evaluated on the database DB .
Method: Each process Pa creates a task 〈p0, {}, unexpanded〉 for itself. If p0

is also a final state, insert (a, 0) in the pair-set of the above p0-task, which
would become 〈p0, {(a, 0)}, unexpanded〉.
1. Repeat 2, 3, and 4 at each process Pa in parallel, until termination is

detected.
2. For each unprocessed yet task 〈p, {. . .}, unexpanded〉

(a) if there is a t-weighted R-edge, from object a to some object b in
DB , and there is a k-weighted R-transition from state p to some
state q in automaton A

then (Pa will expand the task to Pb)
Pa creates a message 〈a, p, q, u〉, where u = kt, and sends it to
process Pb.

else Pa is “stuck” with respect to this task, and sends an empty
message 〈〉 through each communication channel (see step 3)
〈(a, p), ( , ), x〉, to the processes at the other end of the channels.

(b) Task 〈p, {}, unexpanded〉 will change to expanded.
3. Upon receival of a message 〈c, r, p, v〉 (due to expansion of an r-keyed

task of Pc)
(a) if Pa does not have yet a task 〈p, {. . .}, 〉

then Pa creates a corresponding task 〈p, {}, unexpanded〉 for itself,
and establishes a virtual communication channel 〈(a, p), (c, r), v〉
between this task and the r-keyed task of Pc.
if p is a final state
then Pa inserts (a, 0) in the pair set of 〈p, {}, unexpanded〉,

which becomes 〈p, {(a, 0)}, unexpanded〉.
else (Pa has already a task 〈p, {. . .}, 〉)

If there is not already a communication channel 〈(a, p), (c, r), v〉,
create one as above.

(b) Next, for each object-weight pair (d, y) in the p-task pair-set, Pa

sends a message 〈d, y + v〉 through the communication channel
〈(a, p), (c, r), v〉.

4. Upon receival of amessage 〈e, z〉 throughsomechannel, say 〈( , ), (a, p), y〉:
(a) Pa checkswhether there exists a pair (e, ) in the p-task pair-set. If there

exists such a pair, say (e, w), update (relax) it with (e, min{z, w}); oth-
erwise insert (e, z).

(b) if in step (a) a change, which is an update or insertion, did happen
(say we got (e, z) in the above pair-set)

then Pa propagates the change upwards by sending through each
channel 〈(a, p), ( , ), v〉 the message 〈e, z + v〉.

else (when in step (a) there was no change) Pa does nothing. It has
already good object weights for the p-keyed task, which have
been (or will be soon) propagated upwards.

Finally upon termination, which happens when there are no more messages
sent but not yet received, set

eval(A,DB) = {(a, b, r) : (b, r) is in the pair-set of the p0-task of process Pa}.
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It is easy to verify that the following theorem is true.

Theorem 2. Upon termination of the above algorithm, we have that

eval(A,DB) = SWAns(Q, DB).

Now, we illustrate the Algorithm 1 by the following example. Consider the data-
base and the query automaton in Figure 1, left and right respectively. Due to space
constraints, we have abbreviated unexpanded by u, and expanded by e. A pos-
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Fig. 1. A database and a query automaton

sible sequence of actions for Algorithm 1 is given in Table 1. In the first column
labeled “T ” we number the hypothetical time (break)points in which we observe
the system. An explanation for the (possible) actions at each time point follows.

1. All the processes create a task 〈p0, {}, u〉 for themselves.
2. Pa expands the tasks 〈p0, {}, u〉 and sends the task 〈p1, {}, u〉 to both Pc

and Pd. Pc and Pd observe that p1 is a final state and insert (c, 0) and (d, 0)
respectively in their p1-task pair-set. Next, Pc and Pd send 〈c, 1〉 and 〈d, 3〉
respectively to Pa through the appropriate virtual channels.

3. Pb expands the tasks 〈p0, {}, u〉 and sends a p1-task to Pc. Since Pc has
already received such a task before (from Pa), it does not create a new task,
but only establishes a virtual channel with Pb for the originating p0-task.
Also, Pc sends 〈c, 2〉 to Pb.

4. Pc expands the tasks 〈p0, {}, u〉. It gets stuck.
5. Pc expands the tasks 〈p1, {}, u〉 and sends a p1-task to Pd. Since Pd has

already received such a task before, it does not create a new task, but only
establishes a virtual channel with Pc for the originating p1-task. Also, Pd

sends 〈d, 1〉 to Pc. Pc in turn sends 〈d, 2〉 to Pa, and 〈d, 3〉 to Pb. Pa will
update(relax) the weight for d from 3 to 2.

6. Pd expands the task 〈p0, {}, u〉. It gets stuck.
7. Pd expands the tasks 〈p1, {(d, 0)}, u〉 and sends a p1-task to Pb. Pb observes

that p1 is a final state inserts (b, 0) in its p1-task pair-set. Also, Pb sends
〈b, 1〉 to Pd through the appropriate virtual channel. Pd propagates this new
answer by sending 〈b, 4〉 to Pa, and 〈b, 2〉 to Pc.

8. Further computation occurs leading, upon termination, to this final snapshot.
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Table 1. A possible sequence of snapshots for Algorithm 1

T Pa Pb Pc Pd

1 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉
2 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {}, u〉 〈p0, {}, u〉 〈p0, {}, u〉

〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉
3 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {(c, 2)}, e〉 〈p0, {}, u〉 〈p0, {}, u〉

〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉
4 〈p0, {(c, 1), (d, 3)}, e〉 〈p0, {(c, 2)}, e〉 〈p0, {}, e〉 〈p0, {}, u〉

〈p1, {(c, 0)}, u〉 〈p1, {(d, 0)}, u〉
5 〈p0, {(c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, u〉

〈p1, {(c, 0), (d, 1)}, e〉 〈p1, {(d, 0)}, u〉
6 〈p0, {(c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉

〈p1, {(c, 0), (d, 1)}, e〉 〈p1, {(d, 0)}, u〉
7 〈p0, {(b, 4), (c, 1), (d, 2)}, e〉 〈p0, {(c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉

〈p1, {(b, 0)}, u〉 〈p1, {(b, 2), (c, 0), (d, 1)}, e〉 〈p1, {(d, 0), (b, 1)}, e〉
8 〈p0, {(b, 3), (c, 1), (d, 2)}, e〉 〈p0, {(b, 4), (c, 2), (d, 3)}, e〉 〈p0, {}, e〉 〈p0, {}, e〉

〈p1, {(b, 0), (c, 1), (d, 2)}, e〉 〈p1, {(b, 2), (c, 0), (d, 1)}, e〉 〈p1, {(b, 1), (c, 2), (d, 0)}, e〉

It is worth mentioning that any snapshot of eval(A, DB) at any time during
the execution of the above algorithm is a partial answer to the query. The answer
would be partial because: (a) there could still be objects to be discovered during
the navigation, and (b) the weights of the already discovered objects could be
further improved, i.e. lowered, should we wait further for the algorithm to con-
tinue. However, depending on the application a “quicker” partial answer could
be more desirable than the complete answer.

Complexity. Here we are interested in the number of messages since to send
a message is an order of magnitude more expensive than to perform a main
memory operation. We show the following.

Theorem 3. The number of messages in Algorithm 1 is bounded by (E · |τ |)2,
where E is the number of edges in DB, and |τ | is the cardinality of the transition
relation of A.

Proof Sketch. Each physical database edge can “accommodate” in the worst
case |τ | virtual communication channels. To set up a communication channel
one “forward” message is needed. Now the question is how many times a com-
munication channel is traversed “backward,” by the update 〈d, y〉 messages. It
is not difficult to see that a new wave of possible update messages can be propa-
gated backwards for each forward message 〈c, r, p, v〉 in step 3 of the algorithm.
As a wave of updates could have in the worst case up to E · |τ | backward mes-
sages, we get the claimed upper bound. #$

We can make a tradeoff between the time the nodes wait before initiating an
update-wave, and the query response time. If each process waits a certain time
before back-propagating query answers (as opposed to immediately sending all
the answers that the process knows), then it is possible that better weighted
answers will arrive to the processes, and many back-propagation messages will
be cancelled. Not sending right away might be good for “throughtput” when
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we have a big number of executing queries. Such a strategy might significantly
reduce the stress to the system making it possible to execute faster a set of
queries.

As mentioned before, (due to space constraints) we do not present here the
termination detection algorithm. It will be found in a future companion paper.

References

1. S. Abiteboul, V. Vianu. Regular Path Queries with Constraints. Journal of Com-
puting and System Sciences 58(3) 1999, pp. 428-452.

2. Flesca, S., Furfaro, F., and Greco, S. Weighted path queries on web data.
In Proceedings of the 4th International Workshop on the Web and Databases
(WebDB ’01). Informal Proceedings, pp. 7–12.
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Abstract. Scientific workflows facilitate automation, reuse, and reproducibility
of scientific data management and analysis tasks. Scientific workflows are often
modeled as dataflow networks, chaining together processing components (called
actors) that query, transform, analyse, and visualize scientific datasets. Seman-
tic annotations relate data and actor schemas with conceptual information from
a shared ontology, to support scientific workflow design, discovery, reuse, and
validation in the presence of thousands of potentially useful actors and datasets.
However, the creation of semantic annotations is complex and time-consuming.
We present a calculus and two inference algorithms to automatically propagate
semantic annotations through workflow actors described by relational queries.
Given an input annotation α and a query q, forward propagation computes an
output annotation α′; conversely, backward propagation infers α from q and α′.

1 Introduction

Scientific workflows aim at automating repetitive scientific data management, analysis,
and visualization tasks and provide scientists with a mechanism to seamlessly “glue”
together different local and/or remote applications and (web) services into complex data
analysis pipelines. Fig. 1 shows a simple ecology analysis workflow for computing two
biodiversity quantities called Richness and Productivity using the KEPLER scientific
workflow system [17]. As can be seen from the figure, scientific workflows are often
modeled as networks of computational steps (called actors) that query, transform, and
analyse input datasets (here, two datasets containing measurement data) via intermedi-
ate steps and derived datasets, resulting in a number of data products (here, containing
the desired Richness and Productivity information). Scientific workflow systems (e.g.,
KEPLER, TAVERNA [21], TRIANA [19] and many others [24]) are emerging as flex-
ible and extensible problem-solving environments for designing, documenting, shar-
ing, and executing scientific workflows [18]. In contrast to the use of shell scripts or
spreadsheets, scientific workflows offer a versatile and controlled mechanism for au-
tomating data analysis pipelines, tracing data provenance [7,23], reproducing results,
etc. As more and more workflow components and datasets become available, however,
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Fig. 1. Simple scientific workflow for computing species richness and productivity [9]

users face the problem of selecting from thousands of possibly relevant workflow com-
ponents (e.g., given as web service operations, command-line tools, functions from sta-
tistics packages such as R, or native application components), and an even larger set of
possible datasets. Similarly, once candidate actor components and datasets have been
identified, there is the problem of whether it is possible to “chain” them together in
the desired form. Generic programming language data types (such as string or ar-
rays of integers) do not provide any guidance as to whether it is meaningful to chain
together the output(s) of one actor with the input(s) of another actor. While the use of
WSDL or XML Schema types can guide workflow composition, this requires that a sin-
gle common schema is adopted, which is often impractical. To at least partially capture
information about a dataset or analysis component, informal metadata annotations are
often used in practice.

Example 1 (Informal Annotation). Consider a dataset D with the relational schema
S = {R(Obs, La, Lo, T, V)}. D might be given as a csv (comma-separated values) file,
with an accompanying documentation saying that R.Obs identifies an observation at
time R.T, conducted at a point having latitude and longitude R.La and R.Lo, respectively,
and having as value V, which is a temperature measurement in degrees celsius. �

While such informal annotations are useful for the scientist when manually inspecting
and interpreting data, a scientific workflow system cannot make use of this information,
e.g., to check whether the annotation of a dataset D is compatible with the annotation of
a workflow actor A that consumes or produces D, or whether the output annotation of

A1 is compatible with the input annotation of A2 in a chain of actors (· · ·A1
D−→ A2· · ·).

To address these problems, formal semantic annotations have been proposed [4,5]. A
semantic annotation α: S → O associates elements of a data schema S with concepts
and relationships of an ontologyO. 1 Thus, α can be seen as a “hybrid type” [5], linking
structural information given by S with conceptual level (“semantic”) information from
a shared community ontology (or controlled vocabulary) O.

1 We consider ontologies expressed in description logic, e.g., OWL-DL.



714 S. Bowers and B. Ludäscher
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Fig. 2. Forward propagation α, q � α′ and backward propagation α′, q � α

Example 2 (Semantic Annotation). Let O be an ontology defining relevant concepts
of a particular community or domain (e.g., Observation and Time) and relationships
(e.g., hasUnit and hasLatitude) between concepts. The informal annotation above can
be formalized by logic rules (constraints) of the form α: S → O:

R(o, x, y, t, v)︸ ︷︷ ︸
query over schema S

−→ Observation(o) ∧ hasUnit(o, celsius) ∧ hasVal(o, v) ∧ Time(t)︸ ︷︷ ︸
assertion over ontology O

This rule states that R.o identifies an Observation, having a unit celsius, and a value R.v,
and that R.t is a Time. Similar rules α are used to map other columns or subsets of R to
concepts and relationships in O. �

By capturing semantic annotations as sets of logic rules α, a scientific workflow or
data integration system can exploit these constraints, e.g., for checking semantic type
correctness of data-to-actor and actor-to-actor connections, and for suggesting seman-
tically type-correct connections during workflow design [5].

In this paper we study the problem of automatically propagating a set of semantic
annotations α “through” workflow actors which are described by relational queries q.2

We consider the forward propagation problem α, q � α′ of deriving from an input
annotation α: S → O and a query q: S → S′ an output annotation α′: S′ → O.
Similarly, the backward propagation problem α′, q � α is to derive from knowledge of
an output annotation α′ and query q an input annotation α. The forward and backward
propagation problems are summarized in Fig. 2.

Example 3 (Forward Propagation). Consider a simple actor A that selects from the
above dataset R (input schema) only those observations with temperature measurements
below 0◦C and locations that fall into a particular region of interest Rroi(x, y) resulting
in a dataset R′ (output schema). We can describe A with a query q as follows:

R′(o, v) :- R(o, x, y, t, v), Rroi(x, y), v < 0. (q)

Given the semantic annotation α of the actor input R in Example 2, the forward problem
is to automatically derive an output annotation α′ for R′. Here, we obtain

R′(o, v) −→ Observation(o) ∧ hasUnit(o, celsius) ∧ hasVal(o, v) (α′)

2 The actor may not be implemented as a relational query q. Instead, q is another form of meta-
data, a query annotation, which describes or approximates an actor’s workflow function.
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since we “know” from α and q that v is the value of an observation o with unit celsius.
Note that to infer this α′, we use the “only if” direction qhead → qbody of the (Datalog)
rule qhead :- qbody defining the query q above.3 Since annotations α and α′ have a par-
ticular form (source-to-ontology constraints in a language Lα

S�O), α′ may not include
all deducible information: e.g., here we omit in the consequent of α′ the fact that v < 0
and possibly other information about R and Rroi (as these are not O expressions). �

The manual creation of semantic annotations can be a complex and time-consuming
task. Thus providing automated solutions for deriving annotations is desirable for sup-
porting scalable frameworks of “semantics-aware” scientific workflows. In addition,
solving the propagation problem also provides new opportunities for semantic type
checking: if both an input annotation α and an output annotation α′ for an actor are
given, then employing forward and backward propagation allows us to check the con-
sistency of the given annotations relative to the inferred ones.

Contributions and Previous Work. We first present a formal framework for semantic
annotations α and define the associated forward and backward propagation problems.
We then present inference rules of our annotation propagation calculus (APC) and two
general propagation algorithms f-APC and b-APC for forward and backward propa-
gation, respectively. These algorithms proceed by structural induction on the operator
tree corresponding to a relational query q. We use such queries q to represent individual
actors of a workflow. An advantage of the APC approach is that it can be “scaled” to dif-
ferent query languages Lq , i.e., for certain query classes we obtain the exact (i.e., most
specific) annotation as the propagation result, but we also obtain results (not necessarily
most specific) for more expressive classes Lq for which no exact solution exists.

We introduced semantic annotations in [4,5] to facilitate scientific data integration
and workflow design and composition, and proposed to automatically propagate such
annotations through workflows [6]. This paper extends our previous work [6] in several
ways: (i) by considering both forward and backward propagation, (ii) by introducing
the f-APC and b-APC algorithms for annotation propagation, and (iii) by considering
propagation challenges in terms of the annotation and query languages used.

The f-APC and b-APC algorithms employ a specific goal-directed resolution strat-
egy for annotation propagation. Similary, goal directed resultion strategies are also used
for solving schema mapping composition problems [13,20] as well as query rewriting
problems in data integration/exchange settings, where the corresponding rewriting tech-
niques can be understood as specialized versions of resolution [3], but for which certain
termination and efficiency guarantees can be given (unlike for general resolution).

Other Related Work. Annotation mechanisms in other related work are generally
more restricted than our approach in that they consider only single attribute or value
annotations. In [2], annotations are stored in a special attribute, and the user must spec-
ify how to propagate such value-based annotations through SQL queries, while we are
able to capture more expressive schema-based annotations, and also propagate them
automatically. Our approach also does not require a special semantics for interpret-
ing relational algebra queries. [14] present an approach to scientific annotations which

3 This is correct, since the symbol ‘:-’ stands for an equivalence qhead ↔ qbody , corresponding
to a sound and complete definition of the query answer (a.k.a. “Clark’s completion” [10]).
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allows value associations (as opposed to annotations to individual values only [2]).
Such associations between different schema columns can be easily expressed in our
approach as conjunctive conditions in the body of α.

Propagating annotations is also related to the issue of (why and where) data prove-
nance [7]. For example, [8] present an approach to propagate annotations through views,
but consider again simple text-based instance (i.e., value) annotations. In contrast, our
annotations are applied at the schema level, but can also specify subsets of the input
data (through the “query part”, i.e., the body of α), including individual values just like
previous approaches. In [11] methods are presented for lineage tracing of data (within
the context of data warehouses), which take advantage of known structure or proper-
ties of transformations, similar to our queries q. The lineage problem and propagation
methods considered in [11] are related but different from our approach. For example,
in their case, for first-order (relational) queries, an exact data lineage can be computed.
Conversely, in general, the problem of propagating a semantic annotation through a
first-order query may not have a solution in the desired annotation language. This in-
dicates that propagating semantic annotations is in general harder than computing data
lineage. The problem of propagation is also related to type inference in programming
languages, where types are generally given in less expressive langauges (e.g., compared
to dependency constraints) but programs are written in more expressive languages (e.g.,
compared to relational algebra queries).

2 Formalization of the Annotation Propagation Problem

Here we present our framework for semantic annotations and show how the propagation
problem can be formalized and reduced to a constraint implication problem.

Scientific Workflows. These are often modeled as dataflow process networks [15,16],4

consisting of a set of computational components called actors, which can run as inde-
pendent processes or threads, and which exchange data tokens (e.g., scalars, vectors,
files, XML fragments, etc.) through unidirectional, buffered FIFO channels. Channels
connect output ports of source actors with input ports of target actors (cf. Fig. 1).

Mappings. A schema mapping is a binary relation5 on instances DS , DS′ of disjoint
schemas S (input) and S′ (output). Given S, S′, and a set of (logic) constraints Σ, we
associate with (S, S′, Σ) the mapping m = { 〈DS , DS′〉 | (DS ∪ DS′) |= Σ }, i.e.,
the set of pairs 〈DS , DS′〉 of instances of S and S′ for which the combined instance
DS ∪ DS′ satisfies Σ. For example, a query q corresponds to a (functional) mapping
mq: (S, S′, Σq). We write q: S → S′ to emphasize the input/output signature of q.

Actor Schemas and Semantic Annotations. With the input and output ports of an
actor A, we associate two disjoint relational schemas, S and S′, describing the input and

4 Many scientific workflow systems (e.g., INFORSENSE, KEPLER, PIPELINEPILOT, TAVERNA,
TRIANA), scientific problem-solving environments (e.g., SCIRUN), and commercial LIMS
systems (e.g., LABVIEW) are based on this dataflow process network model.

5 We follow the convention to call such relations “mappings” [1,13,20], although they are not
(functional) mappings in the traditional sense: e.g., unlike conventional mappings, a (non-
functional) “mapping” 〈DS , DS′〉 always has an inverse “mapping” 〈DS′ , DS〉.
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output data structures of A, respectively. The input/output behavior of A is described
(or approximated) via a query q: S → S′, mapping instances of the input schema S to
instances of the output schema S′ (see Fig. 2). An instance DS of a schema S is called a
dataset. A semantic annotation α: S → O is a mapping from instances of a (concrete)
data schema S to instances of an (abstract, virtual) ontology O. Here, an ontology is a
(finite) first-order structure. Given a query q: S → S′ for an actor A, we call α: S → O
an input annotation, and α′: S′ → O an output annotation of A (Fig. 2). Using the
above notation, a semantic annotation α corresponds to a mapping mα: (S,O, Σα),
where Σα is a set of logic constraints capturing α.

Annotation Propagation as Composition of Mappings. The forward propagation
problem α, q � α′ can be seen as a mapping composition problem [13,20]. The given
signatures α: S → O, q: S → S′, and α′: S′ → O suggest the definition

α′ := α(q−) (f-prop)

i.e., obtain the propagated annotations as the composition α′: (S′,O, Σα′) of α and q−.
Here q−: (S′, S, Σq) is the inverse mapping of q, which is exactly like q but with the
roles of inputs and outputs reversed. Similarly, for the backward propagation:

α := α′(q) (b-prop)

one could apply α′: (S′,O, Σα′) on top of q: (S, S′, Σq), resulting in α: (S,O, Σα).
To view annotation propagation in this way as mapping composition helps to under-

stand some aspects of the subsequent annotation propagation calculus (APC) rules and
inference algorithm: e.g., in the foward case we are looking for a constraint α′: S′ → O.
Given α: S → O and q: S → S′, we can “go” from S′ to O by first applying q in the
inverse direction q′: S′ → S, then applying α: S → O to the result (cf. Fig. 2), hence
we can think of the propagated result as α′ = α(q−). By similar reasoning, we obtain
α = α′(q) for the backward propagation.

The Annotation Propagation Problem. We now formally define the annotation prop-
agation problem by relating it to constraint implication as follows:

Definition 1. Consider a semantic annotation α: (S,O, Σα) expressed in an annotation
language Lα, and a query q: (S, S′, Σq). Let q−: (S′, S, Σq−) be the inverse of q.

We say that α′: (S′, S, Σα′) is a forward Lα-propagation of α through q, if Σα′ is
the most specific annotation in Lα that is implied by Σα and Σq− , denoted Σα∪Σq− |=
Σα′ . We say α1 is more specific than α2, if Σα1 |= Σα2 . The backwardLα-propagation
is defined analogously: Find the most specific Σα ⊆ Lα with Σα′ ∪Σq |= Σα. �

This formalization has several advantages: First, under this propagation semantics, a
result annotation may exist even in cases where the mapping composition semantics
cannot be expressed in the constraint language of choice. Second, this formalization
naturally applies to inference-based (logic) approaches like the APC below.

3 Annotation Propagation Calculus (APC)

We first present the basic annotation propagation calculus (APC), then present two goal-
directed inference algorithms f-APC and b-APC for forward and backward propagation.
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(σ) ∀x R(x) ∧ ψ(x) → S′(x)
(π) ∀x∀y R(x,y) → S′(x)
(×) ∀x∀y R1(x) ∧ R2(y) → S′(x,y)
(\) ∀x R1(x) ∧ ¬R2(x) → S′(x)
(∪) ∀x R1(x) ∨ R2(x) → S′(x)

(σ−) ∀x S′(x) → R(x) ∧ ψ(x)
(π−) ∀x S′(x) → ∃y R(x,y)
(×−) ∀x∀y S′(x,y) → R1(x) ∧ R2(y)
(\−) ∀x S′(x) → R1(x) ∧ ¬R2(x)
(∪−) ∀x S′(x) → R1(x) ∨ R2(x)

a) q: S → S′ direction for b-APC b) q−: S′ → S direction for f-APC

Fig. 3. Relational algebra operators (atomic queries) expressed as logic constraints

Query Operators as Logic Constraints. The core idea of APC is the observation that
annotation propagation is easy for primitive (atomic) query operators. Therefore, we
start by representing a complex (first-order) query qc in the form of a relational alge-
bra expression, or equivalently, as an operator tree, consisting of atomic query opera-
tors q ∈ {σ, π,×, \,∪}. Each relational operator q defines a mapping q: (S, S′, Σq)
for the “standard” (i.e., forward) direction S → S′ of q, and an inverse mapping
q−: (S′, S, Σq−) for the opposite (i.e., backward) direction S′ → S. Here, Σq and
Σq− are as defined in Fig. 3(a) and Fig. 3(b), respectively.

3.1 Inference Rules of APC

The formalization of annotation propagation using logic constraints (see Definition 1),
suggests a natural inference procedure for the forward problem α, q � α′, i.e., by
“applying” the constraints Σα to Σq− , thus obtaining Σα′ . Similarly, one can combine
Σq and Σα′ to obtain Σα to solve the backward problem. This is the core idea behind
the APC inference rules.

Fig. 4 shows the rules for backward propagation, which take an output annotation α′

and an atomic query operator q and infer the input annotation α. Similary, Fig. 5 shows
how forward propagation is solved by applying the input annotation α on the inverse
query q− to obtain the output annotation α′. The inference rules in both figures are de-
picted with their premises above the horizontal line, and their consequent(s) below the
line. Each inference rule corresponds to an algebra operator q: S → S′ or its inverse
q−: S′ → S. Moreover, with every rule for q (in b-APC) and q− (in f-APC), we asso-
ciate at least one goal atom, marked as �A� in the head of q (Figure 4) or the head of
q− (Figure 5). The basic idea of annotation propagation is to “resolve” the goal atom in
q (or in q−) with some literal of the given semantic annotation α′ (or α), to obtain the
desired propagated annotation.

Applying Substitutions. To simplify the exposition of the rules in Fig. 4 and Fig. 5,
the application of unifiers is not shown but implicit. More precisely, let θ be an mgu
(most-general-unifier) of a goal atom �R(u)� in q (or q−) with a corresponding atom
R(x) on the left-hand side of an annotation α′ (or α). The unifier θ is a (most general)
substitution under which both atoms become identical, i.e., θ(R(u)) = θ(R(x)). In
the figures, with the b-APC and f-APC rules, we assume that this θ is applied to the
consequent rule (below the line) to obtain the propagated annotation.

Additional Remarks for f-APC. For f-APC we assume that annotations α and the
constraint q−π , capturing the inverse of relational projection π, have been “skolemized”
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Bσ

α′: S′(x), ϕ(x) → ∃z ω(x,z)
q: R(u), ψ(u) → �S′(u)�
α: R(u), ψ(u), ϕ(x) → ∃z ω(x,z)

Bπ

α′: S′(x), ϕ(x) → ∃z ω(x,z)
q: R(u,v) → �S′(u)�
α: R(u,v),ϕ(x) → ∃z ω(x,z)

B×
α′: S′(x,y), ϕ(x,y) → ∃z ω(x,y, z)
q: R1(u), R2(v) → �S′(u,v)�
α: R1(u), R2(v), ϕ(x,y) → ∃z ω(x,y, z)

B∪

α′: S′(x), ϕ(x) → ∃z ω(x,z)
q: R1(u) → �S′(u)�

R2(u) → �S′(u)�
α: R1(u), ϕ(x) → ∃z ω(x,z)

B\
α′: S′(x), ϕ(x) → ∃z ω(x,z)
q: R1(u), ¬R2(u) → �S′(u)�
α: R1(u), ¬R2(u), ϕ(x) → ∃z ω(x, z)

Fig. 4. Backward propagation (b-APC) rules for α′, q � α

(replacing ∃-quantified variables by symbolic identifiers while keeping track of the ∀-
variables they depend on). In the rule Fσ , we denote by (ϕ(x) ∧ ¬ψ(u))∗ that ϕ has ψ
“factored out”, i.e., we simplify ϕ ∧ ¬ψ.

3.2 Operator-Driven Annotation Propagation in APC

The above APC rules for forward and backward propagation based on atomic query
operators induce two natural inference algorithms for complex queries, i.e., consisting
of nested expressions of operators. The approach is to drive the application of infer-
ence rules by the structure of the operator tree of a given complex query q. To illustrate
this structural induction over the operator tree, consider first the backward problem
α′, q � α. Let q: S → S′ be a complex query, expressed as a nested relational alge-
bra expression of unary or binary operators qi: q = qn(qn−1(· · · q1 · · · ) where qn

corresponds to the top-most (root) node of the operator tree, and leaf nodes (such as
q1) are applied to the input relations of q (cf. Fig. 6). Recall the “composition solution”
α := α′(q) to the backward problem (see (b-prop) on page 717). Applying α′ to the
nested expression for q yields α = α′(q) = α′(qn(qn−1(· · · ))). As mapping composi-
tion is associative, we can first apply α′ to qn (the root node), obtaining an intermediate
annotation α1, which is applied to qn−1, yielding α2, which is further propagated down-
ward in the tree, etc. This process is repeated until the leaf nodes are reached. Fig. 6 (a)
illustrates this top-down process for b-APC.

Similarly, for the forward problem α, q � α′, we have the “composition solution”
(f-prop) of the form α′ := α(q−). First note that the “inverse reading” of the operator
tree can be seen as an expression q− = q−1 (q−2 (· · · )) in which the root node qn becomes
an innermost node. Applying α to this expression, and again exploiting associativity, we
obtain a bottom-up annotation propagation for f-APC: Fig. 6 (b) depicts this process.

Strictly speaking, the notation (nested expressions) used for q and q− above were
based on unary operators. However, it should be clear how the top-down approach for
b-APC and the bottom-up approach for f-APC work in the case of binary operators.
For the case of b-APC we perform a preorder traversal of the operator tree. At each
operator node we propagate (1) each source annotation given as input to the operator
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Fσ

α: R(x), ϕ(x) → ω(x, f(x))
q−: S′(u) → �R(u)�, ψ(u)
α′: S′(u), (ϕ(x) ∧ ¬ψ(u))∗ → ω(x, f(x))

Fπ

α: R(x), ϕ(x) → ω(x, f(x))
q−: S′(u) → �R(u,g(u))�
α′: S′(u), ϕ(x) → ω(x, f(x))

F×
α: R1(x), ϕ(x) → ω(x, f(x))

q−: S′(u,v) → �R1(u)�, R2(v)
α′: S′(u,v), ϕ(x) → ω(x, f(x))

F\
α: R1(x), ϕ(x) → ω(x, f(x))

q−: S′(u) → �R1(u)�, ¬R2(u)
α′: S′(u), ϕ(x) → ω(x, f(x))

F∪

α1: R1(x), ϕ1(x) → ω1(x, f(x))
α2: R2(y), ϕ2(y) → ω2(y,g(y))
q−: S′(u) → �R1(u)� ∨ �R2(u)�
α′: S′(u), ϕ1(x), ϕ2(y) → ω1(x, f(x)) ∨ ω2(y,g(y))

Fig. 5. Forward propagation (f-APC) rules for α, q− � α′

propagation step, and (2) all unique annotations that can be derived (including those
that contain intermediate relation symbols) by repeatedly applying the corresponding
inference rule of the operator. Once all nodes of the operator tree have been visited,
the subset of source-to-target annotations (not mentioning intermediate relations) are
propagated through the query. We apply a similar procedure for f-APC, but instead use
a postorder traversal (i.e., bottom up), as shown in Fig. 6 (b). The following example
illustrates the inference steps of b-APC:

Example 4. Let R1(o, x, y, t, v), R2(u, p) be input schemas, S′(o, x, y, v, u, p) the out-
put schema (Fig. 6), where S′ is the given output annotation

α′: S′(o, x, y, v, u, p) → Observation(o), hasVal(o, v), Species(p)
Also consider the query shown in the figure, which combines all R1 observations, made
at a particular time c, with species observed at a location d (e.g., assuming the spatial
extent of R1 is d, the query extends R1 with its corresponding species). We follow the
navigation path given in Fig. 6 (a) to compute the backward propagation. The first step
derives α1 := α′(q4) by applying B× to α′ and q4 (the goal atom is in double brackets):

q4: R′′1(o, x, y, v), R′2(u, p) → �S′(o, x, y, v, u, p)�
The resulting annotation α1 = α′(q4) is propagated downwards the operator tree:

α1: R′′1(o, x, y, v), R′2(u, p) → Observation(o), hasVal(o, v), Species(p)
The next step is α2 = α1(q3) via rule Bπ, i.e., applying α1 to q3 (= πoxyv(R′1)):

q3: R′1(o, x, y, t, v) → �R′′1(o, x, y, v)�
which results in

α2: R′1(o, x, y, t, v), R′2(u, p) → Observation(o), hasVal(o, v), Species(p)
Next we apply α2 to q2 (= σt=c(R1))

q2: R1(o, x, y, t, v), t=c→ �R′1(o, x, y, t, v)�
and using rule Bσ we obtain α3 = α2(q2):

α3: R1(o, x, y, t, v), t=c, R′2(u, p) → Observation(o), hasVal(o, v), Species(p)
Finally, on the second, parallel branch we have a selection q1 (= σu=d(R2)):

q1: R2(u, p), u=d→ �R′2(u, p)�
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We obtain the final result α4 := α1(q1) via Bσ:

α4: R1(o, x, y, t, v), t=c, R2(u, p), u=d → Observation(o), hasVal(o, v),
Species(p) �

The forward algorithm f-APC proceeds similarly but bottom-up instead of top-down:

Example 5. Consider two relations R1 and R2 with semantic annotations αa and αb:

αa: R1(o, x, y, t, v) → Observation(o), hasVal(o, v)
αb: R2(u, p) → Site(u), Species(p), observedIn(p, u)

and the same query q as in the previous example. We follow the navigation path given
in Fig. 6 (b) to compute the forward propagation. The first step derives α1 := α(q−2 ) by
applying Fσ to αa and the inverse q−2 of the operator σt=c(R1)

q−2 : R′1(o, x, y, t, v) → �R1(o, x, y, t, v)�, t = c

α1: R′1(o, x, y, t, v) → Observation(o), hasVal(o, v)
The next step derives α2 ← α1, q

−
3 by applying Fπ to α1 and operator πo,x,y,v (q−3 )

q−3 : R′′1(o, x, y, v) → �R′1(o, x, y, g(o, x, y, v), v)�
α2: R′′1(o, x, y, v) → Observation(o), hasVal(o, v)

The next step derives α3 ← αb, q
−
1 by applying Fσ to αb and the operator σu=d (q−1 )

q−1 : R′2(u, p) → �R2(u, p)�, u = d

α3: R′2(u, p) → Site(u), Species(p), observedIn(p, u)
The last step derives α′ (denoted α′

a and α′
b below) by applying F× twice, once to α2

and the operator × (q−4 ) and then to α3 and q−4 .

q−4 : S′(o, x, y, v, u, p) → �R′′1(o, x, y, v)�, R′2(u, p)
α′

a: S′(o, x, y, v, u, p) → Observation(o), hasVal(o, v)

q−4 : S′(o, x, y, v, u, p) → R′′1(o, x, y, v), �R′2(u, p)�
α′

b: S′(o, x, y, v, u, p) → Site(u), Species(p), observedIn(p, u)

Soundness and Termination of APC Rules and Algorithms. Applications of APC
inference rules correspond to one or more first-order resolution steps [22,3]. Thus, from
the soundness of resolution, the soundness of f-APC and b-APC is immediate.

Proposition 1 (Soundness of b-APC and f-APC). For Σ′
α and Σq as in Fig. 4:

If Σα′ ∪Σq �b-APC Σα then Σα′ ∪Σq |= Σα

Similarly, for Σα and Σq− as in Fig. 5:
If Σα ∪Σq− �f-APC Σα′ then Σα ∪Σq− |= Σα′

Annotation propagation in both the forward and backward versions of APC proceeds
by structural induction on the operator tree of q. Since there are only finitely many
rule applications per node in the tree, and since each node in the tree is visited once,
termination follows. Note however, that we assume here that annotations and query
operators are strictly source-to-target (e.g., for recursive (Datalog) queries, termination
is not guaranteed).

Proposition 2 (Termination of b-APC and f-APC). For any relational query q and
any finite set of annotations, the algorithms b-APC and f-APC terminate.



722 S. Bowers and B. Ludäscher
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Fig. 6. Structural inductions on operator trees for queries q, where (a) shows a preorder navigation
for b-APC and (b) a postorder navigation for f-APC

4 Discussion

Semantic annotations are a promising approach for ensuring compatibility and reuse
of actors in scientific workflows. However, the current manual process of generating
semantic annotations limits their utility. We have proposed a method for automatically
propagating semantic annotations forward and/or backward through a dataflow process
networks of actors, described by relational queries. We have shown how the problem of
propagation can be recast as one of constraint implication, and presented a calculus of
annotation propagation (APC) and developed two algorithms (b-APC and f-APC), cor-
responding to a top-down and bottom-up propagation of annotations through a query’s
operator tree. Both algorithms have been implemented in Prolog. Despite the initial re-
sults presented here, several interesting problems remain. The presented approach can
be seen as a specialized first-order resolution procedure which is guided by the operator
structure of a query. In general, resolution methods, including specialized versions such
as the Chase (see e.g. [12]), may not terminate, e.g., due to recursive rules and Skolem
symbols. In contrast, our approach terminates, because we guide and limit the inference
steps using the structure of the operator tree. However, we cannot always guarantee to
obtain the most specific annotation via our propagation algorithm. In future work we
plan to identify classes of queries and annotations where most specific annotations can
be effectively computed. Similarly, we are interested in deriving approximate solutions
even in cases where a most specific annotation does not exist. relationship between the
formalization of annotation propagation as mapping composition (only sketched in this
paper) and the one as constraint implication (used in this paper as the basis for APC).
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Abstract. The rise of the Internet has introduced dramatic changes in
managing and sharing digital resources among widely dispersed groups.
This paper presents a policy-driven access management approach for
ad-hoc collaboration to enable secure information sharing in heteroge-
neous network environments. In particular, we attempt to incorporate
the features of distributed role-based access control, delegation and dis-
semination control to meet the fundamental access control requirements
associated with resource originators. These features are realized in a set
of XACML-based Role-based Originator Authorization policies (ROA).
We propose a security architecture, called ShareEnabler, to achieve effec-
tive authorization and enforcement mechanisms in the context of Peer-
to-Peer (P2P) networking oriented file sharing. We briefly discuss our
proof-of-concept prototype implementation based on an existing P2P file
sharing toolkit developed by Lawrence Berkeley National Laboratory.

1 Introduction

The rise of Internet has led collaborators to face dramatic changes in manag-
ing and sharing their resources. Subsequently, it has extremely influenced to the
traditional information sharing fashion. Firstly, collaborative information shar-
ing has increasingly turned outward to connect distributed participants across
enterprises and research institutes. By removing the barriers of the time and geo-
graphical distance from research collaborations, people are able to work together
regardless of their locations. And new terms such as virtual organization, virtual
laboratory, and collaboratorium have been introduced consequently. Also, the
heterogeneous network environments demand more open and flexible infrastruc-
tures as well as system architectures to enable collaborative sharing. In addition,
there is a need for ad-hoc collaborative sharing systems to support autonomous
and spontaneous collaboration among diverse participants, minimizing adminis-
trative complexity.

Traditionally, collaborative information sharing heavily relies on client-server
based approach or email systems. By recognizing the inherent deficiencies such
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as a central point of failure and scalability issue, several alternatives have been
proposed to support collaborative sharing of resources, including Grid computing
[1] and Peer-to-Peer (P2P) networking [2]. While Grid suits for highly structured
collaborations with centralized infrastructures, P2P works well on heterogeneous
network environments and promises to be more flexible and reliable for smaller ad-
hoc collaborative interactions [3]. Especially, with the decentralized structure and
load balancing feature, P2P based file sharing system offers better scalability and
robustness. As demonstrated in the newly proposed SciShare system [3,4] from
Lawrence Berkeley National Laboratory (LBNL), P2P file sharing has great po-
tentials to support collaborative sharing. However, most P2P technologies mainly
focus on sharing services such as availability and scalability. Ad-hoc collaborative
sharing requires the resource sharing be highly controlled and the confidentiality
and integrity be properly protected during sharing sessions. On one hand, sys-
tematic techniques such as secure group communication protocols are needed to
protect the communication traffic for each sharing session. On the other hand, ac-
cess control mechanisms should be in place to allow resource owners, also called
originators, to define and enforce access control policies for participating peers.
Although some researchers have investigated secure group communication proto-
cols and technologies [5,6,7], there are few attempts in exploring practical access
control models and mechanisms for such environments. Our immediate motiva-
tion of this paper is to provide effective and practical policy-driven access man-
agement mechanisms for fulfilling access control requirements associated with ad-
hoc collaborative sharing environments. Our approach emphasizes the originator
as the principal source of policy to determine the collaboration control space and
delegate fine-grained access capabilities to collaborators. The policy framework
incorporates the features of distributed role-based access control, delegation and
dissemination control. The policy enforcement system is then proposed to guar-
antee the policies being propagated and enforced appropriately.

The rest of the paper is organized as follows. In Section 2, we give an overview
of motivation and background technologies. Section 3 introduces our access man-
agement framework, including the originator-initiated approach and role-based
management framework followed by the underlying policy specification frame-
work. We then realize the proposed policy framework in a concrete collaborative
sharing example and show the detailed policy evaluation procedures. Our pro-
posed ShareEnabler system and implementation issues are also discussed in this
section. Section 4 concludes the paper.

2 Problem Statements and Background Technologies

To better understand the ad-hoc collaborative sharing environments, we pro-
ceed with a typical example of collaborative sharing [8], from which we identify
the key concepts involved in the environment and derive generic access control
requirements for our approach:

NIH sponsored large-scale biomedical science collaborations involve a consor-
tium of universities and research groups participating in several testbed projects
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related to the brain imaging of human neurological disease and associated animal
models. Researchers from any of the groups may contribute their research results
and data to be shared by other members in the collaboration group. Suppose Re-
gional Medical Center (RMC), jointly initiated with Bioinformatics Department
at University of XYZ, administers a local magnetic resonance imaging (MRI)
data repository and would like to share the data with other collaborators for test-
ing new hypotheses on human neurological diseases.

RMC needs to protect and control the data access and dissemination during
the collaborative sharing. Due to the large group of collaborators, RMC would
like to have a flexible and easy way to define the sharing collaborators as well as
the access privileges for them. For faster and more convenient sharing, instead of
contacting all the researchers in collaborating labs, RMC may need to notify the
director or the coordinator of each collaborator’s lab. The data are then shared
with all other lab members through them. Furthermore, to protect the patentable
data, any dissemination of the data should be under RMC’s agreement. Mean-
while, Bioinformatics Department at University of XYZ as a co-owner of the
data also would like to have the control on the data.

From the example above, we first identify several key concepts in an ad-hoc
collaborative sharing environment that are used through the rest of this paper:

– Originator: In collaborative sharing environments, we refer the resource
owner or the initial information provider as an originator. An originator
plays a critical role in providing the resource to be shared and in controlling
how the resource is shared among collaboration participants. The originator
could be an individual principal or an organizational entity. For a particular
resource, there may be one or multiple joint originators. In our scenario,
RMC and XYZ University, both as organizational entities, act as joint orig-
inators for the MRI data repository.

– Collaborative sharing space: In general, collaborative sharing space
refers to the control domain of the collaborative sharing. An originator needs
to define her collaborative sharing space by including a collection of, mostly
distributed, people or organizations and granting fine-grained access privi-
leges to them. In our example, the whole NIH sponsored biomedical science
consortium or a subgroup of consortium could be considered as the collabo-
ration space. This should be determined at the originator’s discretion.

– Collaborator: Each entity that is included inside the collaborative sharing
space is referred as a collaborator. These collaborators are the actual recip-
ients or consumers of the shared resource(s). Similar to the originator, a
collaborator could be an individual principal such as independent researcher
or an organizational research lab.

– Disseminator: We define two types of disseminators, namely, the root dis-
seminator and the designated disseminator. The root disseminator refers to
the originator since the originator triggers the initial sharing process with
other ad-hoc collaborators.Designated disseminator, on the other hand, refers
to a group of collaborators, with the consent of originator, to further distri-
bute the resource. This can be achieved through the notion of delegation.
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Indeed, designated disseminator is a subgroup of ad-hoc collaborator. In our
case, the directors/coordinators of collaboration laboratories are the desig-
nated disseminators.

2.1 Access Control Requirements

From the above-mentioned example, we derive several generic access manage-
ment requirements for ad-hoc collaborative sharing:

– Flexible and manageable access control: Collaborative sharing may
involve a large amount of distributed collaborators across domains. The di-
versity and unpredictability of the involved participants determine that the
authorization cannot be established on per-individual basis like the way ACL
does. The access control system needs to provide appropriate abstraction of
collaborators and privileges to achieve the flexibility and reduce the com-
plexity of security administration.

– Flexible delegation/revocation: The nature of distributed resource shar-
ing requires delegation in place to allow the access privileges as well as admin-
istrative responsibilities of an originator to be distributed among different
collaboration parties. Especially, it should also allow an originator to dele-
gate not only all of the privileges, but also partial privileges. In addition,
revocation as the counterpart of delegation should be supported as well.

– Effective originator-controlled dissemination: As the shared informa-
tion leaves the originator’s domain, it is hard for the originator to have
control on such information. With the originator-initiated control, origi-
nators should be able to control and track down the re-dissemination of
their resources to make sure the dissemination happens within the collabo-
rative sharing space, and only the legitimate collaborators could share the
resources.

2.2 Background Technologies

Role-based Access Control (RBAC): RBAC is a proven technology for man-
aging and enforcing security in large-scale and enterprise-wide systems [9,10].
The essential idea of RBAC is that permissions are associated with roles, and
users acquire permissions by being members of appropriate roles. With the
abstraction between users and permissions, RBAC could tremendously reduce
the complexities of security management for system administrators. Meanwhile,
many role-based delegation models [11,12,13] have been proposed as a com-
plementary to RBAC in leveraging an effective way of propagating authorities
as well as responsibilities among various distributed entities. Our framework is
built on existing role-based delegation models by applying decentralized user
assignments.

ORCON, UCON and DCON: Originator control (ORCON) is a special ac-
cess control policy defined by a resource originator to control the dissemination
of restricted resources [14,15]. ORCON policy requires that resource recipients
obtain an originator’s permission to re-disseminate protected resources to users
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who are not originally designated as authorized recipients by the originator. Tra-
ditional ORCON solutions used a non-discretionary access control list, which
limits the ability to enforce ORCON policies in a closed centralized control envi-
ronment [16]. The concept of Usage Control (UCON) is introduced in [16,17] for
controlling access and usage of digital information objects. The re-dissemination
control in ORCON is also one of the key concerns in UCON. By introducing
license and ticket [16], UCON has the potential to support and enforce ORCON
policies in more versatile and flexible ways for distributed environments. Most
recently, the notion of dissemination control (DCON) has been proposed in [18].
DCON involves a much richer and broader concept than ORCON and UCON
concerning with controlling information during the dissemination activities.

SciShare File Sharing Infrastructure: Traditional P2P sharing applications,
such as Gnutella [19], allow end users to search and download information from
other peers, and make their own information available to other peers. The search
component often broadcasts a query to all known peers, while sending response
and downloading information are unicast communications. LBNL’s framework,
called Scishare [4], is a security enhanced version of P2P file sharing system.
SciShare leverages X.509 public key certificate as the central security compo-
nent. The certificate can be either self-signed or signed by a trusted organiza-
tional certification authority (CA). To facilitate new peers joining the community
quickly, the system allows the new peers (called pseudo user) to create self-signed
X.509 certificates. However, the pseudo user cannot gain higher level of trust or
privileges in the system. The instantiation of secure and reliable multicast com-
munication is provided by Secure Group Layer (SGL) [5], while TLS [20] is used
to achieve confidentiality and integrity in unicast communication when peers
play traditional role of client in some cases and the traditional role of a server
in others. SciShare also supports access control that is primitive and limited to
group-based discretionary access control approach.

3 Policy-Driven Access Management Framework

In this section, we describe a policy-driven access management framework to
provide a means of comprehensive access management model beyond SciShare.
The framework emphasizes originator-initiated role-based access control and del-
egation. Originators dynamically create and include roles in their collaborative
sharing space while delegating fine-grained access and dissemination capabili-
ties to the roles. Distributed role-assignment is achieved through Delegation of
Delegation Authority. These features are expressed in a set of Role-based Orig-
inator Authorization policies (ROA). ROA policies serve as the foundation of
our framework and are further evaluated and enforced in our proposed security
architecture for P2P based file sharing.

3.1 Supporting Originator Control and Role-Based Approach

An originator, as the resource owner, is responsible for initiating the controls to
secure her respective resources over sharing and dissemination activities among
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other peer collaborators. To accommodate the originator-initiated control ap-
proach, it is essential for an originator to define her collaborative sharing space in
a set of access management policies and delegate fine-grained privileges through
these policies. The specified policies should be propagated and enforced properly
by the underlying security system during the resource re-dissemination.

RBAC provides an effective way to abstract privileges using roles. Instead of
including every individual ad-hoc collaborator, the originator could simply define
the collaborative sharing space in a collection of specific roles, such as “engineer”
and “investigator”. And each peer collaborator is dynamically included in the
sharing space to gain access privileges by claiming their role. Therefore, bringing
“role” in our framework becomes a natural choice to achieve the manageability
in the ad-hoc collaboration environments. In addition, we introduce role-based
delegation as another layer of privilege and authority decentralization to accom-
modate the needs of distributed role assignment and fine-grained privilege propa-
gation in collaborative sharing environments. In particular, our framework incor-
porates the following types of delegation relationships for ad-hoc collaboration:

– Delegation of access capabilities: The permission-role assignment in tra-
ditional RBAC usually deals with the abstraction of privileges in a closed
organizational domain. In a distributed collaborative sharing environment,
an originator delegates fine-grained access capabilities to certain roles in the
collaboration space so that the privileges are propagated and distributed
across various participating entities through these roles.

– Constrained dissemination delegation: To achieve better resource avail-
ability and continuous resource dissemination, besides the normal access
privileges, the resource dissemination privilege can be delegated by an orig-
inator to a certain set of roles, so that the collaborators who are assigned to
these roles are allowed to further disseminate the pre-obtained resources on
the originator’s behalf. These collaborators, in another words, are the des-
ignated disseminators. As “constrained” delegation, the scope of delegation
should be within the originators and the designated disseminators.

– Delegation of delegation authority: This is a special form of adminis-
trative delegation that enables an originator to partially delegate the role
assignment privilege to trusted third parties. In our example, the origina-
tor defines a set of roles in her collaborative sharing space and delegates the
role assignment authority to the directors/coordinators of each collaboration
group so that these directors/coordinators may assign roles to their members
on the originator’s behalf.

3.2 Designing Policies

In our policy framework, an originator defines her access management policies in
a set of authorization policies using XACML (eXtensible Access Control Markup
Language) [21]. We introduce two major types of policies, Root Meta PolicySet
(RMPS) and Role-based Originator Authorization PolicySet (ROA).

Root Meta Policy Set (RMPS) is the starting point of the originator’s au-
thorization policies for the shared resources. Since the shared resources may
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have single or multiple distributed originators, their authorization policies may
be maintained in multiple administrative domains. We need a policy to identify
these originators and locate their policies so that the underlying enforcement sys-
tem could retrieve and enforce these distributed policies. RMPS is designed for
this purpose. In RMPS policy schema, the Target element specifies the resource
to which ROA authorization policies are applied. The resource is represented as
a URI that conforms to RFC2396 standard format [22]. The PolicySet contains
one ownership Policy and one or more PolicySetIdReference elements to specify
ROA policy locations in the format of LDAP URLs. In the ownership Policy,
originators are identified as Subject attributes in their X.500 DNs. The owner-
ship is specified as “own” in Action element. Figure 1(a) illustrates the schema
of RMPS.

ROA policy sets are the real role-based authorization policies where an origina-
tor defines her collaborative sharing space and delegates fine-grained capabilities.
We extend OASIS RBAC profile [23] to support the delegation and distributed
role assignment in our framework. ROA contains four major sub-components:
role specification policy (RPS), capability specification/role-capability assign-
ment policy (CPS), user-role assignment policy (RAPS), and delegation of del-
egation authority policy (DoDPS).

– Role PolicySet (RPS) is a role specification PolicySet. The originator defines
the collaborative sharing space in a set of RPSs, and associates each role RPS
with a Capability PolicySet (CPS) that actually contains capabilities of the
given role. The role is specified as a Subject attribute, the corresponding CPS
is referenced through PolicySetReference. Figure 1(b) shows the schema of
RPS.

– Capability PolicySet (CPS) specifies the actual capabilities assigned to the
given role. CPS contains Policy and Rule elements that describe the del-
egated capabilities as the resources and actions. By granting the “dissem-
inate” action to a specific role, the originator delegates her dissemination
privilege to the role. The collaborator who is assigned to that role then be-
comes a designated disseminator to re-disseminate the resources. The CPS
may also contain references to the CPSs associated with other roles that are
junior to the given role, thereby achieving the role hierarchies through the
capability aggregation. Figure 1(c) shows the schema of CPS.

– Role Assignment PolicySet (RAPS) is specified by an originator or a del-
egated third party authority to define which roles are assigned to which
collaborators. In RAPS, the principals are specified in their X.500 DNs as
Subject attributes. The assigned role is specified as Resource attribute. And
the term“enable” is used as Action attribute to indicate the assignment re-
lationship. Figure 1(d) shows the schema of RAPS.

– Delegations of Delegation Authority PolicySet (DoDPS) reflects the type of
“delegation of delegation authority” with originators specifying which role as-
signments are delegated to which specific trusted authorities. The construc-
tion of DoDPS is similar to RAPS, except that the Subjects are the trusted



ShareEnabler: Policy-Driven Access Management 731

Root Meta PolicySet 
for particular resource 

Resource is represented in URI 
conform to [RFC2396] 

Originator’s identity is 
represented in X500 DN 

Put “own” to indicate 
the ownership 

Default effect is “Permit”

Ownership policy 

Originator’s ROA policy LDAP URLs 

(a) RMPS Policy Schema

Role PolicySet 

Define the specific “xx” role 

Refer to the PolicySetId of associated 
Capability PolicySet or CPS 

(b) RPS Policy Schema

Capability PolicySet for 
the specific role 

Refer to CPS IDs of Junior roles to achieve 
implicit role inheritance 

Each specific capability is 
encoded in one Rule 

(c) CPS Policy Schema

Collaborator’s identity in 
X.500 DN 

Role assignment 
PolicySet Each role assignment is 

encoded in one policy  

Specific role name  

Put “enable” to indicate 
the assignment  

Default effect is “Permit” 

(d) RAPS Policy Schema

DoD PolicySet  

Delegatee’s Role assignment PolicySet locations 

Default effect is “Permit” 

Put “delegated_assign” to 
indicate the delegation 
relationship 

Specific role name 

Delegatee identity 
in X.500 DN 

(e) DoDPS Policy Schema

Fig. 1. Policy Set Schemas



732 J. Jin, G.-J. Ahn, and M. Singhal

delegatees and the delegation relationship is indicated as “delegated assign”
in Action. Figure 1(e) shows the schema of DoDPS.

3.3 Policy Framework Realization and Policy Evaluation

In this section, we extend the earlier discussed collaborative sharing scenario
into a concrete example and proceed implementing a set of access management
policies to realize our proposed policy framework. We then show how the autho-
rization system evaluate these policies and make decisions.

Inside the NIH biomedical science research community, a team of biologists
from LIISP research lab, with John as the team leader and Dave as one of the
team members, is conducting research tasks related to animal modeling compar-
isons and analysis. John’s team needs to collaborate with RMC and use RMC’s
data to verify a new hypothesis drawn from their research.

As discussed earlier, both RMC and XYZ University are joint originators for
the MRI data resource. For simplicity, we focus on how RMC develops the ROA
policies and omit the control from the XYZ University. End each individual
member in LIISP lab, John and Dave, is considered as an ad-hoc collaborator
that needs to be authorized individually in RMC ’s collaborative sharing space.
To authorize accesses to the members in LIISP lab, RMC defines two roles
such as Coordinator role and Investigator role, where the Coordinator role is
senior to the Investigator role. RMC delegates the capabilities of “query” and
“acquire” to the Investigator role, and further delegates the capability of “re-
disseminate” to the Coordinator role. RMC then assigns the team leader John
to the Coordinator role and delegates John to perform the user-Investigator
role assignment through the delegation of delegation authority, so that John is
able to assign his other team members (i.e. Dave) to the Investigator role and
re-disseminate the resource to them as a designated disseminator.

Figure 2(a) shows the overall structure of our policy framework and the rela-
tionships among the individual policy components. In particular, RMPS specifies
the resource with the originator(s) who “own” the resource, and locates the orig-
inators’ ROA policy sets. In the example scenario, RMC and XYZ University,
both represented as Subject attributes in their X.509 DNs, are joint originators
of the “MRI data” resource. Since we focus on the control of RMC, only the URL
location of RMC ’s ROA policy sets is referenced through the PolicySetIdRefer-
ence element. In RMC’s ROA policies, there is a set of RPSs and CPSs, a RAPS
and a DoDPS. As shown in Figure 2(b), RPSs define two roles in RMC’s col-
laborative sharing space, namely the Coordinator role and the Investigator role.
CPSs specify the corresponding capabilities associated with these two roles. The
reference link between each pair of RPS and CPS reflects the permission-role
assignment relation where the originator delegates the fine-grained access and
dissemination capabilities to the role. By referencing to the CPS of the Inves-
tigator role, the Coordinator role inherits all the capabilities that are assigned
to the Investigator role. In this context, the role hierarchy is achieved indirectly
through capabilities aggregation. As shown in Figure 2(c), the RAPS specifies
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the user-role assignment relation that RMC assigns John to the Coordinator
role. By being assigned to the role, John is included in RMC’s collaborative
sharing space, and thus obtains the delegated capabilities. DoDPS realizes the
delegation of delegation authority where RMC delegates the user-Investigator
role assignment to John. And John’s RAPS policy is finally referenced in the
DoDPS where John assigns his team member Dave to the Investigator role.

As our policy framework conforms to the XACML standard, the policy eval-
uation and authorization decision making can be done as specified in [21]. The
typical setup is that the Policy Enforcement Point (PEP) forms an access request
based on the requester’s attributes (X.509 identities, roles, etc.), the resource in
question, and the action towards the resource. The request is sent to a Policy
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Decision Point (PDP) for policy retrieval and policy evaluation. Basically, the
PDP first finds the top-level policy elements that the Target elements match
the attributes specified in the access requests, and then evaluates the boolean
expressions included in each Rule elements and finally combines the results using
the specified policy combination algorithms. A response with an access Decision
element of value “Permit”, “Deny”, “Indeterminate” or “NotApplicable” will be
made and returned to the PEP for further authorization enforcement. In our
system, we introduce the Context Handler as a subcomponent of the PDP to
conduct a series of query-generation and decision-making process for a single
access query sent by the PEP. In this section, we focus on how the PEP, Con-
text Handler and PDP interact with each other and how the PDP evaluates an
access request against the originator’s ROA policies. The detailed system design
and implementation will be discussed shortly in next section.

Figure 3 shows the detailed sequence diagram of the policy retrieval and pol-
icy evaluation. The PEP formulates an access request with the requester’s X.509
identity and the action towards the requested resource. For instance, the PEP
may generate an access request for the PDP to evaluate whether a requester
Dave (CN=Dave...) is allowed to “acquire” the “MRI data” resource. Along
with the associated RMPS for the “MRI data”, the request is sent to the PDP.
The Context Handler parses the RMPS and locates RMC ’s policy directory.
The role attributes that are assigned to the user’s identity are retrieved from
the originator’s policy repository. In our case, the Investigator role is assigned
to Dave by John. Since the attribute is assigned by an entity other than the
originator, the Context Handler will prompt to formulate a DoD request for the
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PDP to evaluate whether the role attribute issuer (CN=John...) is a legitimate
delegated authority to conduct the user-Investigator role assignment. The PDP
Engine conducts the DoD Evaluation based on DoDPS and confirms the dele-
gation of delegation authority relationship. The Context Handler then formulates
the role assignment request for the PDP Engine to check whether the requester
(CN=Dave...) is “enabled” with the Investigator role attribute that is retrieved
earlier. The PDP Engine conducts the Role Assignment Evaluation against
the retrieved RAPSs defined by the originator and/or the DoD RAPSs defined
by the DoD delegatee (in our case, only the DoD RAPS is evaluated). Finally,
the Context Handler formulates the role access request for the PDP Engine to
check whether the assigned Investigator role is able to perform the “acquire” ac-
tion towards the “MRI data” resource as specified in the PEP’s access request.
The PDP Engine conducts the Role Access Evaluation against the RMPS,
RPSs and CPSs. Based on the authorization decisions of these three evaluations,
the Context Handler generates the final user access decision and sends back to
the PEP for further decision enforcement process.

3.4 ShareEnabler System Architecture and Discussions

In this section, we give an overview of our system architecture, called ShareEn-
abler. ShareEnabler casts our proposed framework as detailed authorization ser-
vices and mechanisms which are bound to specific communication infrastructure
from LBNL’s SciShare toolkit [4].

In our collaborative sharing system, each participant is represented by a Sha-
reEnabler (SE) agent that executes sharing services on the collaborator’s behalf.
Similar to most of existing P2P file sharing systems, the resource discovery
involves broadcasting a query to all known peers. As shown in Figure 4, Sha-
reEnabler Agent 1 sends a broadcasting query message to all known peers in the
collaborative sharing group. Upon receiving the query message, SE Agents 2 -
5 look up their own posted contents. SE Agent 2 finds the matched content(s),
evaluates the originator’s ROA policies and sends a unicast query response with
the metadata of the authorized content(s) to SE Agent 1, while SE Agents 3 -
5 are not necessary to respond to the requester. We call this process as meta-
data sharing. SE Agent 1 then can send out the download request, while the SE
Agent 2 will further check with the originator’s ROA policies and initiate the
data transferring process if the requester is authorized to download to resource.

Figure 4 also shows the detailed components inside the ShareEnabler Agent
and their interactions in the process of metadata sharing between the SE Agent
1 (as the requester) and the SE Agent 2 (as the responder). Each ShareEnabler
agent is composed of five components: Graphical User Interface (GUI), Execu-
tive Services, Access Management/Enforcement, SGL/IG and TLS/TCP. GUI is
the interface through which the user operates and executes the sharing services.
Executive Services are the real services required by collaborative sharing behav-
iors, which include Search, Download and Share Services. All these services are
based on the underlying Data Management Service, which provides data stor-
age and cache functionalities. The Data Management Service also serves as the
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Fig. 4. ShareEnabler System Architecture

background database in the system. The Access management/enforcement is the
central component for the core access and dissemination control. The PEP is re-
sponsible for the request processing and access decision enforcement. The PDP,
which consists of the Context Handler and the PDP Engine, is designed for the
policy retrieval and authorization decision making. Secure Group Layer (SGL)
and the underlying InterGroup protocol provide the secure group communica-
tion services. Similarly, Transport Layer Security (TLS) and the underlying TCP
protocol provide the secure communication between two ShareEnabler agents,
which in the category of unicast communication. The functionalities for both
SGL/IG and TLS/TCP are adopted from SciShare [4].

In the context of metadata sharing, on the requester agent side (ShareEnabler
Agent 1), a user interacts with the GUI to specify the keywords and search
criteria (step 1). GUI invokes the Search Service to formulate the query message
and broadcast to all known peers in the collaborative sharing group through the
SGL/IG protocol (step 2 - 4). Upon receiving responses from other peers, the
TLS/TCP module notices the Search Service with the response messages (step 5
- 6), and these responses are parsed and then shown in the GUI (step 7), through
which the user may further interact to download the data resource. The search
results are finally cached through the Data Management Service (step 8).

On the responder agent side (ShareEnabler Agent 2), the SGL/IG module
notices the Sharing Service (step 1’ - 2’) upon receiving the request. The Sharing
Service then invokes the Data Management Service to find matched resources
against the query (step 3’). When a list of matched resources is returned back to
the Sharing Service, the Access Management/Enforcement component is invoked
for access checking (step 4’ - 6’). The PEP enforces the decision by removing
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unauthorized resources from the list and returns the updated list back to the
Sharing Service (step 7’). Finally, the Sharing Service formulates the response
message with the metadata of a list of matched and authorized resources, and
sends back to the requester through the TLS/TCP module (step 8’ - 9’). The
metadata sharing result is shown in the GUI and cached in the Data Management
Service (step 10’ - 11’).

As also shown in Figure 4, ROA policies are deployed separately from the
major ShareEnabler application and its enforcement components. These ROA
policies will be retrieved and enforced at run time whenever the ShareEnabler
agent needs to respond to other peer’s requests. In doing so, an originator can
easily maintain and change the policies without requiring changes to sharing
service systems. We decide to apply X.509 attribute certificates to encapsulate
access management policies. X.509 attribute certificate (AC) is a basic data
structure in Privilege Management Infrastructure (PMI) [24] to bind a set of
attributes to its holder. With its portability and flexibility, AC is considered
as an ideal container of subject attributes as well as authorization policies in
ShareEnabler. We also developed a Policy Administration Facility application
to provide the utility modules for originator to create and maintain ROA policies.
Especially, originators use the Policy Engine to create their ROA policy sets.
Attribute Certificate Engine is then invoked to generate the ROA policy ACs
and store them in distributed LDAP policy repositories.

The goal of access and dissemination control of ShareEnabler is to guaran-
tee the resource is shared within the collaborative sharing space defined by
ROA policies. Our system applies a distributed policy propagation and enforce-
ment scheme with decentralized, self-enforcing, and self-monitoring features at
each ShareEnabler agent level. Especially, each disseminator ShareEnabler agent
should ensure that ROA policies are enforced locally by the Access Manage-
ment/Enforcement component, and these ROA policies are propagated to other
ShareEnabler agents while those agents may further act as disseminators to re-
spond to other peers’ requests. Since the Root Meta Policy Set (RMPS) plays
an important role for the ShareEnabler Agent to locate and enforce originator’s
policies. It is essential to make sure the RMPS is propagated along with the data
dissemination and the confidentiality and integrity are properly protected . In
achieving these goals, we design a new data structure that strongly encapsulates
the data resource together with the associated RMPS policy. As the originator
initiates the sharing process, instead of sending out the original data resource,
originator’s ShareEnabler agent disseminates the encapsulated data structure
to other agents, which can only be decrypted at runtime by the ShareEnabler
Agent. By doing this, we leave the ShareEnabler Agent with full enforcement
power and make it extensible for more advanced dissemination tracking mecha-
nisms.

In our prototype, we use JDK1.4 core packages as well as other necessary
libraries to develop the components specified in the system architecture. Espe-
cially, we adopt SciShare’s Reliable and Secure Group Communication (RSGC)
package for the implementation of SGL/TLS communication protocol as well
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(a) New Search and Search Results (b) Post New Resource

(c) Policy Creation (d) Attribute Certificate Generation

Fig. 5. ShareEnabler User Interfaces

as the basic authentication mechanisms. We extend Sun’s XACML implemen-
tation to accommodate the functionalities in PDP and PEP. IAIK’s java crypto
library is used to implement the major components of cryptography and at-
tribute certificate. And IPlanet Directory Server serves as the back-end LDAP
policy repository. The beta version of ShareEnabler system implementation has
been completed for further testing and evaluation. Figure 5(a) shows a user
interface of an SE Agent for searching for specific file resource and display-
ing search results based on the responses from other peers. Figure 5(b) shows
an originator posts new resource to be shared with other collaborator peers.
The Figure 5(c) shows the user interface of the policy creation that allows an
originator to create new roles in her collaborative sharing space and delegate
fine-grained capabilities to the roles. The ROA policies will then be generated
automatically based on the originator’s input. Finally, Figure 5(d) shows the
interface of policy attribute certificate generation with the originator specifying
the validity period of the attribute certificate and using her private key (encap-
sulated in an X.509 Personal Information Exchange Certificate [25]) to sign the
attribute certificate.
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4 Conclusion

In this paper, we have presented a policy-driven access control framework for
ad-hoc collaborative sharing. Especially, we articulated distinctive access control
requirements in ad-hoc collaborative sharing and proposed a family of XACML-
based policy schemas that are comprehensive and flexible enough to meet the
identified requirements. In addition, we briefly described the enforcement mech-
anisms as well as a proof-of-concept prototype of P2P based file sharing system,
called ShareEnabler. An important contribution of this work includes special fea-
tures of originator control, delegation and dissemination control. Our approach
allows originators to authorize distributed collaborators and control over the re-
sources being shared. The delegation of delegation authority was introduced to
systematically achieve user-role assignments in distributed environments.

Our future works are geared towards several directions. We would investigate
and apply more advanced system-level dissemination control enforcement mech-
anisms. In collaborative sharing environment, the resources are stored and up-
dated in distributed places. This causes another control issue of how to maintain
the originator-initiated control of data usage and modification after the dissemi-
nation, which in turn, relates to the enforcement mechanisms. Furthermore, the
inconsistency of data representation and instances needs to be dealt with while
the resources are shared and updated. Developing an integrated infrastructure
would be another research direction as well.
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Abstract. Inconsistent contexts are death-wounds which usually result in
context-aware applications’ incongruous behaviors and users’ perplexed feelings,
therefore the benefits of context-aware computing will become less believed. This
problem occurs in most sensor based applications due to the intrinsic drawbacks
of fallible physical sensors which can only detect some evidence of real world’s
situations rather than global views of them. In this paper, we extend ontology
based context modeling approach with some descriptive information added to
contexts, modify reasoners to support time information, bring in a context life-
cycle management strategy, establish a context exploitation mechanism, and pro-
pose an inconsistency resolution algorithm, fostering timely, exact and conflict-
free contexts. Besides, evaluations and a case study are carried out to attest our
design principles.

1 Introduction

Context-awareness which aims at decreasing people’s attentions to various computa-
tional devices is an attractive feature of pervasive computing paradigms. Context in-
forms both recognition and mapping by providing a structured, unified view of the
world in which the system operates [1]. However, context is different from knowledge
in traditional views because of its dynamic, transient, and fallible characteristics.

It is widely acknowledged that a good context model can lead to well designed and
easily understood context-aware applications. Recently emerging ontology based con-
text modeling approach [2][3][4] is an elegant solution towards context sharing, rea-
soning and reusing. However, in practice, context-aware applications are so fragile that
their behaviors often make users bewildered, due to mismatching between contexts in
computer systems and contexts in real world. Concretely speaking, inconsistent con-
texts often appear in context-aware systems on account of failures from either physical
sensors or software infrastructures. For example, contexts like “Tom is giving a lecture”
and “Tom is talking to Jim on the Aisle” may appear at the same time. How do we know
which context is correct? Our previous work [5][6] focuses on context model and fu-
sion infrastructure design, but context management and conflict resolution are simply
considered so that applications based on the infrastructure are not so robust.

� This work is funded by NSFC (60233010, 60273034, 60403014), 973 Program of China
(2002CB312002), 863 Program of China (2005AA113160) and NSF of Jiangsu Province
(BK2002203, BK2002409).

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 741–755, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Nevertheless, we find ontology based context model can largely facilitate inconsis-
tency detection and resolution. In this work, we first extend ontology based context
model by adding some descriptive information such as time, frequency and state to
contexts. Based on the context model, a context management device is established,
which not only aims at timely and accurate contexts but also facilitates inconsistency
resolution. Then, we design an inconsistency resolution algorithm to provide correct
and consistent contexts. Through experiments and an application case study, we find
that our modified approach is rather acceptable for fetching up those disadvantages in
previous work and the quality of contexts is largely improved.

The rest of this paper is organized as follows. In Section 2, we discuss some related
work. The extended context model is presented in Section 3. Our context management
mechanism is proposed in Section 4. Section 5 introduces our context inconsistency
resolution algorithm CIR. The evaluations are given in Section 6. Section 7 presents a
case study to verify our design principles. Finally, we conclude in Section 8.

2 Related Work

In the past decade, many context-aware systems are developed both in research commu-
nities and industrial companies which all contribute a lot to context-aware computing.

Active Badge [7] is the earliest context-aware applications that redirects phone calls
based on people’s locations. Salber developed Context-Toolkit [8] which is a well de-
signed object-oriented framework supporting context-aware computing. Context Fabric
[9] is an infrastructure for building context-aware applications, which provides a con-
text specification language. Solar [10] is a middleware system that consists of various
information sources such as sensors, gathering physical or virtual context information,
together with filters, transformers and aggregators modifying context to offer the ap-
plication usable context information. CoBrA [11] is an agent-based architecture em-
ploying ontology based context model for smart room environments. SOCAM [4][3]
proposed an ontology based context model addressing context sharing, reasoning and
knowledge reusing, and built a service oriented middleware infrastructure for applica-
tions in a smart home. Cooltown [12] is a web based context-aware system. The COR-
TEX [13] project has built a context-aware middleware based on the Sentient Object
Model, in which there is an event-based communication mechanism supporting loose
coupling between sensors, actuators and application components. CASS [14] enables
developers to overcome the memory and processor constraints of small mobile com-
puter platforms with supporting a large number of low-level sensor and other context
inputs, and opens the way for context-aware applications configurable by users. Con-
text Cube [15] gives a good context management mechanism based on the techniques of
data warehousing and data mining. Siren [16] is a good real-time context-aware system
used in fire fighting domain. Sparkle [17] is a flexible platform to support context-aware
services with migrations on difference type of devices.

In previous systems and researches, many context modeling approaches are pro-
posed, either formal or informal, including key-value, object, XML, ER-UML, ontol-
ogy and so on [18]. Ontology based context model and reasoning mechanism proposed
in [2][4][3] displays its potential value for most non-time-critical applications. Kalyan
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[19] presented a hybrid context model based on multilevel situation theory and ontology
to handle complex user’s queries by creating simple entity specific situations and enable
efficient context reasoning. Strimpakou [20] built a well designed context management
architecture in distributed environments.

But none of the works above concern context conflict resolution in one computational
node nor introduce their conflict resolution algorithm. Dey [21] gave a novel solution
for ambiguity resolution by user mediation, while Xu established a context consistency
management mechanism by providing a sophisticated architecture for inconsistency de-
tection and resolution [22], and using a well-designed incremental consistency check-
ing approach [23]. But differently, our intention is to resolve context ambiguity auto-
matically in software infrastructure layer. Although Myllymaki [24] proposed a good
solution for resolving conflicts in location information, the strategy is difficult to be
extended for inconsistency detection and resolution of various contexts.

In addition, our modifications of ontology based context model is totally different
from temporal databases [25] because we deal with time constraints during context
fusions upon ontology based model, and those time constraints are used in inconsistency
resolution .

3 pvCM−The Extended Context Model

3.1 Conceptual Model

Our modeling approach is still ontology based, but for convenient context management
and inconsistency resolution, some extensions are brought in. The extended context
model called pvCM consists of 2 parts: ontology and its instances(including both per-
sistent contexts and dynamic contexts). The ontology is a set of shared vocabularies
of concepts and the interrelationships among these concepts. Persistent contexts are
instances of the ontology and they can be combined with dynamic contexts during in-
ferences. Triples described as (subject, predicate, object) are used to model persistent
contexts which can last a long period. For example, the context “Tim is a student” is
modeled as (Tim, type, Student). Dynamic contexts with transient characteristics only
have a short life in the system, such as “Jimmy in NJU”. Octuples (subject, predicate,
object, ttl, starttime, updatetime, frequency, state) are used to represent them. Ttl means
the life period of the context. “Starttime” is the UNIX time when the context begins
existing in the system while “updatetime” denotes the UNIX time when the context
is lately updated. A more important element of dynamic contexts is the “frequency”
value which indicates how many times the context is updated from its first appearance.
The “state” value describes contexts’ life status: “Beginning”, “Updated”, “Inert”, or
“Disappearing”, the details of which will be explained in Section 4.

3.2 Implementations

The ontology of pvCM is constructed by OWL-Lite1. Fig. 1 shows part of our ontol-
ogy for laboratory office domain. Persistent contexts are serialized in RDF2 files. For

1 OWL reference: http://www.w3.org/TR/owl-ref
2 RDF reference: http://www.w3.org/TR/rdf-ref
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Fig. 1. Part of Our Ontology

example, persistent context triple (Tom, type, Teacher) is a piece of RDF file like Fig. 2.
Dynamic contexts are messages containing both RDF messages and other descriptive in-
formation. Dynamic context octuple (Tom, giveLecture, Room305, 15s, 116943354000,
116943388123, 2, Updated) is implemented like Fig. 3. This means context “Tom gives
a lecture in Room305” is updated for the 2nd time at the UNIX time 116943588123,
and if it doesn’t be updated in the next 15 seconds, its state will become “Inert”.

Fig. 2. The Serialized Format of A Persistent
Context

Fig. 3. The Serialized Format of A Dynamic
Context

4 Context Management Mechanism

4.1 Context Reasoning

For reasoning high-level semantic contexts, we apply rule based reasoning and ontology
based reasoning orderly on low-level contexts. The rules for reasoning are just horn
clauses for the consideration of system performance. Whereas the process is similar to
[3], some significant improvements are brought in.
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Firstly, time information is added to high-level contexts during inferences because
this information is obviously important toward timely and accurate contexts. But how
do we know exactly the starttime, updatetime and ttl value of each high-level inferred
context? There are only intersection operations among a horn clause formed rule’s an-
tecedents without negation and union operations so that if a premise context become
demoded, the inferred context should also correspondingly disappear from the sys-
tem. Therefore, an approximate approach is implemented. When a high-level context
contexti is inferred by raw contexts and a rule, we select the earliest dying one which
has the smallest value of ttl plus updatetime from contexti’s premises corresponding
with the rule, and finally set the contexti’s ttl and updatetime the same as the selected
one. The default starttime, state and frequency of contexti are respectively set as its
updatetime, “Beginning” and 1.

Secondly, the two reasoners are configured as traceable. Because derivation informa-
tion is often needed for both judging which contexts will be discarded during inconsis-
tency resolution and preventing future conflicts, the reasoning process is stored in the
memory until a inconsistency resolution algorithm is performed.

Rule Reasoner

R

Ontology Reasoner
R

Dynamic low-level contexts

(Tom,behaveWith, Jim, 20, 1116943567510,
1116943567510, 1, Beginning ) OR4

produced by R1,O1

(Room311,type,MeetingRoom)P5
Produced by O4,P4

(lectureDesk31, type, LectureDesk)P3

(Tom, type, Student)P2

(Room311, locateIn, BuildingM)P1

Ontology
(talkWith, subPropertyOf, behaveWith)O1

(talkWith, range, Person)O3

(locateIn, type, TransitiveProperty)O2

(Jim,type, Person, 20, 1116943567510,
1116943567510, 1, Beginning )  OR3 

produced by R1,O3

(Jim,locateIn,BuildingM,20, 1116943567590,
1116943567590, 1, Beginning ) OR2

produced by D2,O2,P2

(Tom,locateIn,BuildingM,20,1116943567510,
1116943567510, 30, Updated ) OR1

produced by D1,O2,P2

(Tom, talkWith, Jim,  20, 1116943567510,
1116943567510, 1, Beginning )  R1
produced by TalkRule,D1,D2,D3

(Tom,giveLecture,Room311, 20, 1116943567510,
1116943567510, 1, Beginning ) R2

produced by LectureRule,D4,P3,P4,R1

 (MeetingRoom, subClassOf, Room)O4

(Room311, type, MeetingRoom)P4

(Tom,locateIn,Room311,20,111694000700,
1116943567510, 30, Updated )  D1

(Tom, sound,high,30, 11169435600340,
1116943567540, 2, Updated )  D3

(Jim, locateIn, Room311,20, 1116943567590,
1116943567590, 1, Beginning ) D2

(Tom, near, lectureDesk31, 40, 1116943357430,
1116943567550, 5, Updated ) D4

Contexts Reasoned by ontology reasoner

Contexts Reasoned by rule reasoner
Persistent contexts

Fig. 4. Context Reasoning Example

An example of our modified reasoning flow is shown in Fig. 4. According to the first
modification, inferred context R1,R2,OR1, OR3, OR4’s ttl and updatetime are set the
same as D1, the similar processes are applied on high-level contexts OR2.

4.2 Context Lifecycle Management

In our prototype, an enhanced context lifecycle management strategy is carried out for
every dynamic context. As described in Section 3, dynamic contexts have 4 life states:
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“Beginning”, “Updated”, “Inert”, and “Disappearing”. “Beginning” denotes the context
is newly generated and no other replicas already exist in the system. “Updated” means
the context has been refreshed recently. The design consideration for state “Inert” is to
have those contexts which are existing in the real world but delayed in computer sys-
tems accidently due to either weakening of sensors’ physical signals or bottlenecks of
software infrastructures live for a little while. “Disappearing” means the context dis-
appears in computer’s view and will be discarded after a short period. It is obvious
that using lifecycle states can make computers’ contexts more timely and accurate so
as to largely approximate real world contexts. Another intention for employing context
lifecycle is that applications needs contexts depending on not only their contents but
also their life status, for example, an application may open slides at the beginning of
a seminar(exploiting beginning contexts) while close the slide at the end of the semi-
nar(requiring disappearing contexts).

The 9 context life state transitions in the system are shown in Fig. 5. Transition 0, 1,
3, 5 and 8 are invoked for the reason that there are new contexts generated, either low-
level ones from sensors or high-level ones from reasoning. The pseudocode for those
transitions is shown as follow.

a new context contextnew is generated.
if ∃ contexte in memory, contexte has the same S-P-O triple with contextnew

if contexte.state == “Disappearing”
contextnew substitute contexte
(Transition 8 is performed)

else
contexte.state =“Updated”,
contexte.updatetime = contextnew.updatetime
contexte.frequency = contexte.frequecny + 1
discard contextnew

(Transition 1 or 3 or 5 is performed)
else

add contextnew into memory,
(Transition 0 is performed)

A background thread runs periodically to tick the life period for every live context.
When a “Beginning” or “Updated” context contexti’s ttl is no more than zero, its state
turns to “Inert” (transition 2 or 4). After a fixed time, if contexti is still not refreshed, it
will become “Disappearing” and removed to historical context storage (transition 6 and
7). We store demoded contexts in persistent storage rather than discard them because
historical contexts may be useful for various applications.

In practice, we found that using this lifecycle management can greatly abridge the
gap between computers’ contexts and real world’s . Besides, context exploitation will
become easier and more unambiguous.
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Fig. 5. State Transitions of Dynamic Contexts

4.3 Context Exploitation

Context Query. In our prototype system, we use RDQL3 as context query language.
But we extend RDQL for the particular features of contexts. Applications can query
contexts by specifying a RDQL sentence with a state of contexts. For instance, we can
use sentence “select ?x where (?x giveLecture Room311)(?x Type Teacher), Beginning”
to search if there is a teacher who begins giving a lecture in Room311. Also, we can
look up historical contexts conveniently by attaching time ranges to RDQL sentence.

Context Callback. Applications can exploit contexts not only by querying but also by
registering callbacks. However, context callback mechanism should be much different
from conventional event-callback mechanisms due to particularity of contexts. Contexts
are varied with time and callbacks must exactly match to real world’s requirements.
For example, if a context-aware application’s function is to open slides for lecturers
automatically, with a badly designed callback mechanism, the application may open the
slides more than once so that users are confused. Focusing on this, we invokes callbacks
after every inferences and time tick, and use a replica pool to store consumed context for
every applications respectively. When the callback is being invoked, the system check
each replica pool and do not call those stored consumed contexts’ callback function.
Unless those consumed contexts have some changes, they will not be cleared out of
every replica pool. This device embraces the particularity of contexts and leads to jarless
applications in practice. The view of callback architecture is shown in Fig. 6.

5 Context Inconsistency Resolution

5.1 Conflict Detection

For inconsistency resolution, the first step is to detect conflicts. Ontology based context
model can largely facilitate conflict detection. For example, if there are 2 dynamic con-
texts: d1(Tom, giveLecture, Room311, 15s,1116943120489, 1116943567511, 10, Up-
dated) and d2(Tom, giveLecture, Aisle3, 25s, 1116943111897, 1116943567599, 1, Be-
ginning), 2 persistent contexts: p1(Room311, type, Room) and p2(Aisle3, type, Aisle),

3 RDQL tutorial: http://jena.sourceforge.net/tutorial/RDQL/index.html
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app5app4app3app2

Fig. 6. The Callback Architecture

and 2 assertions in ontology: o1(Room, disjointWith, Aisle) and o2(giveLecture, type,
FunctionalProperty), a conflict will be detected in ontology model because there is an
instance of both Room and Aisle. However, d1’s derivations and d2’s usually implicitly
conflict, therefore we need to find their derivations and resolve them completely in or-
der to prevent future conflicts. Most semantic web APIs support conflict detection like
that, and a validity report which indicate all first-hand conflicting pairs such as (d1, d2)
will be easily obtained.

5.2 Several Definitions

Conflict pair set. A set consisting of pairs such as (contexta,contextb) that contexta
conflicts with contextb is a conflict pair set.

Conflict set. Imaging a context set ContextSet, if its members are conflicting with
each other, we call ContextSet a Conflict set.

Derivation. If contexta is a premise of high-level contextb, then we call contexta is
one of contextb’s Derivation. Furthermore, the relationship of Derivation is transitive
and reflexive.

Derivation set. All of contextc’s Derivations compose a set called contextc’s
Derivation Set.

Relative frequency−rf . A formula that calculates the rf value of a context contexti
is shown as follow.

contexti.rf =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

contexti.ttl · contexti.frequency

currenttime− contexti.starttime
(for dynamic contexts)

inf inite
(for persistent contexts)
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5.3 CIR−Context Inconsistency Resolution Algorithm

The CIR(Context Inconsistency Resolution) algorithm is shown below.

1. Initialize
1). obtain a firsthand conflict pair set CFS from conflict detection results.
2). for every pair (a,b) ∈ CFS

add both a and b into set allContext
3). for every contexti ∈ allContext

a. Construct its derivation set derivationsi

b. Construct dynamicderivationsi which only contains dynamic contexts
in derivationsi

2. Discard Contexts
while there are conflicts in allContext

1). partition allContext into several maximum
conflict sets.

2). for every conflict set conf licts
select a context contextmax with largest rf .
for every contexti ∈ conf licts (i �= max)

for every contextj ∈ dynamicderivationi

if ∃k,i �= k, contextj ∈ dynamicderivationk

reserve contextj
else

discard contextj
delete dynamicderivationi

Our design principle is that more frequent dynamic contexts are prior. However,
different sorts of contexts are hard to compare their frequencies. For example, voice
contexts may be inherently varied more frequently than temperature contexts, but we
can’t say that voice contexts have more priorities. Due to this reason, we use the rf
value to measure each context’s relative frequency because ttl value may often imply
the context is inherently frequent or infrequent. We believe that those contexts with
larger rf value emerge more relatively frequently recently, therefore they are more
possible to be correct contexts. Also, persistent contexts are ensured to be consistent
when they are been deployed to the platform so that they are always reserved.

It is ensured that after the algorithm, there is no conflict existing in the context repos-
itory. The step of partitioning allContext uses a greedy algorithm, in which we begin
to search from a random element, and form a maximum conflict set circularly until
the partition is completely formed. Although the worst case time complexity of CIR is
polynomial with the number of total contexts, we found in experiments that it is still
such an expensive task that we can only run it periodically.

5.4 Example

Fig. 7 shows an example of the inconsistency resolution algorithm. In the example, we
have two conflict sets: conflict set A and conflict set B. We first resolve conflicts for
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Fig. 7. An Example of the Inconsistency Resolution

A, and then for B. Assume that in A, context1, context2, context3 and context4 are
ordered by their rf value increasingly. After A is resolved by the algorithm, there are 3
contexts−context4, contextD4, contextD6 left.

6 Evaluations

During implementations, the semantic web API we choose is Jena2.24, the rules are in
the form of Jena Generic Rules, and the ontology reasoner we used is entailed by OWL-
Lite. We have modified Jena source code by adding time information to triples during
reasoning, as described in section 4. The performance and effect of CIR algorithm are
evaluated by 2 experiments.

First, we test the performance of CIR on a Linux Workstation with 4G RAM and 2
Xeon CPUs, and find that the efficiency is decreasing proportionally to the increasing
of total contexts in memory. At the level of 1000−2000 contexts, the time used is 1.5
seconds−2.0 seconds, but at the level of 3000-4000, about 6 seconds are needed.

Second, for evaluating the effect of CIR, another experiment is designed. There are
3 computers involved, one Linux workstation with 4G RAM and 2 Xeon CPUs and two
PC clients, connecting through LAN. The meeting room and aisle for the experiment
are equipped with mica sensors5 to detect noise and cricket sensors6 to find persons’
locations. One of the clients plays the role of raw context provider while the other
acts as context consumer. In the experiment, a person adorning a cricket beacon stands
in a meeting room to act as giving a lecture, and during this, he/she goes out to the
aisle with immediately coming back to the meeting room at different frequencies which
vary from 10s once to 40s once at the step of 5s (horizontal axis in Fig. 8), and main-
tains each frequency for 10 minutes. This activity can lead to many context conflicts
among high-level contexts in the system because two raw context triples: (personx,
locateIn, MeetingRoomx) and (personx, locateIn, Aislex) are obtained. Meanwhile,
the context consumer client continues querying contexts 10 times a minute to see the

4 Jena2 Semantic Web Toolkit: http://www.hpl.hp.com/semweb/jena2.htm
5 The Mica Sensor: http://www.xbow.com
6 The Cricket indoor location system: http://cricket.csail.mit.edu/
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probability of context correctness(vertical axis in Fig. 8). In this way, for every going
out frequency, 100 samples about context quality can be gained. It is apparent that with
the decreasing of the person’s going out frequency, the incorrectness and inconsistency
of contexts will decline. For comparing the effect with other solutions, 3 configurations
of the context fusion infrastructure are carried out respectively: without any inconsis-
tency resolution(without IR), with a simplistic resolution strategy that later updated and
persistent contexts are prior(with SIR), with our proposed algorithm CIR(with CIR).
The results are shown in Fig. 8.

Fig. 8. Effect Analysis of the Inconsistency Resolution

Hence, although CIR is a computational intensive task, it is still necessary to run pe-
riodically. Although there are only 2 types of sensors used in the experiments, our archi-
tecture and algorithm can suit to more sensor types without modifications because they
are designed for semantic contexts rather than physical sensors. And the only thing we
need to do is to add specific raw context providers when new sensor types are brought in.

7 Application Case Study

7.1 Scenario

In research groups, seminars are often held. When someone gives a lecture, he/she
should copy the slides to his/her flash disk, carry it to the meeting room, copy the
slides to the computer in the meeting room, and then open them. The work is dull and
trivial, and many of people’s attentions are consumed. In our context-aware computing
environment, the lecturer needs to do nothing other than edit his/her lecture notes. When
he/she enters the meeting room, and stands near the lectern, his/her slides will be opened
automatically. During the seminar, if some strangers come in, a warning balloon will
pop up on the screen. At the end of the seminar, the slides will be closed automatically.
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Fig. 9. The Runtime Effect of Seminar Assistant

7.2 Implementation

We implement two versions of the scenario, one of which is based on our context man-
agement mechanism(with CIR), the other of which is based on an earlier version which
employs a simplistic inconsistency resolution strategy that later updated and persistent
contexts are prior(with SIR).

The application called Seminar Assistant has two parts. One called User Assistant
runs at all users’ computers while the other called Meeting Assistant runs at the com-
puter in the meeting room. When the User Assistant detects the context that the user it
serves will give a lecture in the next few days, it will upload the slides he has edited re-
cently, the name of which matches the lecture to an http server. When the lecturer starts
to give the lecture in the meeting room, the Meeting Assistant will obtain the right
context, and then download and open the previous uploaded slides. Then the Meeting
Assistant starts detecting if strangers come in. When the Meeting Assistant detects the
context that the lecturer leaves the room, it will close the slides. In this application,
we’ve used the in-door location sensor Cricket to detect a person’s location in a room,
and also the Mica sensor to detect the noise in a room. Fig. 9 shows the runtime action
of Seminar Assistant when a stranger comes into the meeting room during a seminar(a
warning balloon is popped up). Part of the context reasoning process for this example
is already shown in Fig. 4.

7.3 Application Error Rate Comparison

We compare the two versions of “Seminar Assistant” by investigating their average er-
ror rates. Since both of the applications are very small, they are debugged exhaustively
before our error rate comparison so that most errors occurring in the comparison should
attribute to context mismatching. For the comparison, we run the two applications re-
spectively for 20 days, use them according to the scenario for 400 times(20 times each



Context Consistency Management Using Ontology Based Model 753

Fig. 10. Error Rate Comparison of The Two Versions

day), and record the error rates of each day. In the experiments, all the errors recorded
are application’s incongruous behaviors such as opening the slides before the reporter
entering the meeting room, and system failures such as out of memory error are not
included. Fig. 10 shows the results, in which the horizontal axis denotes the day while
the vertical axis denotes the error rate. It can be concluded from the experiment results
that our context consistency management mechanism(with CIR) has largely improved
context-aware applications’ robustness since over 50 percent incongruous behaviors are
reduced(from 33 errors of 400 to 16 errors of 400).

8 Conclusions and Future Work

With experiences of developing context-aware applications, we find that the inconsis-
tency of contexts is a serious problem which can threaten the prevalence of context-
aware computing. Aiming at this problem, we propose an extended ontology based
context model called pvCM, establish a context management mechanism and design an
inconsistency resolution algorithm. Through the evaluations and case study, the ne-
cessity and feasibility of our design principles are verified. The work of this paper
is part of our ongoing research project−FollowMe [6] which is designed towards a
workflow-driven, service-oriented, pluggable and programmable software infrastruc-
ture for context-awareness.

In the near future, we plan to explore novel approaches to improve runtime per-
formances of context reasoning, using technologies such as distributed context fusion
and so on. Also, we are working towards a better inconsistency resolution approach in
which context conflicts are resolved during the reasoning process, with sophisticated
reasoning technologies.
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Abstract. Service discovery is an essential technique to provide applications 
with appropriate resources. However, user mobility and heterogeneous envi-
ronments make the discovery of appropriate resources difficult. The execution 
environments will be rapidly changed, so developers cannot predict available 
resources exactly in design time. Thus, service discovery frameworks for perva-
sive computing must guarantee transparent development environments to appli-
cation developers. In this paper, we introduce how to semantically describe and 
discover a variety of services in different environments. This approach helps 
applications to find appropriate services even though the required ones are not 
available or not found. For this, we propose a fine-grained effect ontology 
which is used to reasonably evaluate functional similarity among different ser-
vices, and a policy-based query coordination which is used to dynamically ap-
ply different resource constraints according to human activities. Finally, we 
show with a feasible scenario how to find appropriate services in different envi-
ronments. Our approach helps applications to seamlessly perform their tasks 
across a dynamic range of environments. 

1   Introduction 

Pervasive computing environments are surrounded by a variety of computing devices, 
software services, and information sources. Applications must adapt to dynamically 
changing environments to seamlessly perform their tasks [1, 2]. However, different 
environments have different resources, and their capabilities are also different. Even 
though developers specify in design time all the resources required by applications, 
appropriate resources may not always be available across a dynamic range of envi-
ronments [1, 8]. Suppose that there are some real instances such as “AlarmClock,” 
“TV,” “Audio,” and “Light” in a home environment. A developer would like to use an 
instance “AlarmClock” to wake a user out of a deep sleep. Unfortunately, if the in-
stance was not available or not found in real time, which instances could be found and 
used instead of the “AlarmClock”? 

Traditional service discovery systems (i.e., Jini, UPnP, SLP, and Salutation) are 
not proper for pervasive computing since syntactic matching is mainly used [3, 4]. 
They do not support alternative representations of semantically similar services. In 
contrast, context-aware service discovery systems [3-7] take advantage of contextual 
information (i.e. location) syntactically or semantically to provide appropriate  
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services in pervasive computing environments. Similarly, semantic service discovery 
systems [1, 2, 7, 8, 9] make use of abstract representations in various aspects of ser-
vices to transparently provide appropriate services despite different environments. 
Nevertheless, these approaches do not seem to deal with yet systematically the seman-
tics in various aspects of services: data semantics (requirement), functional semantics 
(capability), QoS semantics (effect), and execution semantics (execution pattern) [15]. 
In this point, Semantic Web [16] which semantically describes and discovers Web 
services in the IOPE (Input, Output, Precondition, Effect) level gives us a noble idea 
to reasonably provide substitutable services which are functionally similar to the re-
quired ones when they are not available or not found. 

In the earlier “AlarmClock” example, some sophisticated inference processes are 
required to semantically evaluate functional similarity among other available candi-
dates such as “TV,” “Audio,” and “Light.”  Note that “AlarmClock” has a sound ef-
fect, and “TV” and “Audio” also have another type of sound effects. In this paper, we 
define an effect as a process to change the state of the world to other state. Each sound 
effect has its own properties as follows: impact factor (alarm volume, TV volume, and 
audio volume), behavior pattern (sound delivery, multimedia delivery, and music de-
livery), and human perceptibility (auditory sense). The enumerated properties are con-
structed in some semantic hierarchies. That is, TV volume and audio volume have 
equivalent semantics to alarm volume with intensity beyond a certain level. Similarly, 
multimedia delivery and music delivery have equivalent semantics in the aspect of 
sound delivery. These semantic associations play an important role in evaluating 
which service can substitute the originally required service. 

In this paper, we propose a fine-grained effect ontology which is used to reasona-
bly evaluate functional similarity among different services, and a policy-based query 
coordination which is used to dynamically apply different resource constraints ac-
cording to human activities. The goal of our approach aims at enabling applications to 
take full advantage of local resources across a dynamic range of environments. 

The remainder of this paper is as follows. In Section 2, we describe existing efforts 
on service discovery for pervasive computing. Section 3 covers design considerations, 
and we introduce our approach in detail in Section 4. The implementation details of 
the proposed scheme are addressed in Section 5. Finally, we describe our conclusions 
and suggest future work in Section 6. 

2   Related Works 

Several research efforts have been done on a high level of abstract representations to 
solve the problems of mobility and heterogeneity. Gaia [1] introduces an application 
as a set of structural components , MPACC(model, presentation, adaptor, controller, 
and coordinator). To make applications polymorphic, such a component is repre-
sented as abstract functionalities in ontologies. The actual components are dynami-
cally bound in a given environment. And yet, Gaia does not mention how systemati-
cally the ontologies are constructed. The ontologies are predefined by rule of thumb 
and made by hand. Aura [2] introduces a service as one of abstract semantics of 
coarse-grained functionalities required to perform a user task. It proposes an idea to 
be automatically able to bring up all the resources associated with a given task. It 
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works on a higher level of abstractions such as tasks as coalitions of abstract services. 
In other words, Aura does not tell what properties of a service are equivalent to those 
of its similar service(s). 

On the other hand, several approaches use some policies to find appropriate re-
sources. Olympus [10] proposes the separation of class and instance discovery to al-
low alternative services to be found, which is based on the functionality required by 
an original service. When resolving virtual entities into actual ones, it considers de-
veloper-specific constraints, space-level policies, class-/instance-level context-
awareness, and utility function. Olympus insists that even entities of classes that are 
highly different from the class specified by the developer can be discovered and used. 
In this aspect, Olympus is very similar to the proposed scheme. CARISMA [22] uses 
application-specific policies to enable mobile applications to behave according to 
contexts such as bandwidth, CPU performance, and even other applications’ behav-
iors. CARMEN [23] uses declarative management policies for migration, binding, ac-
cess control, user preferences, device capabilities, and service component characteris-
tics. However, these approaches do not consider that the semantics of exact or abstract 
representations might be dynamically changed in different situations. 

3   Design Considerations 

Service discovery for pervasive computing has to deal with a user’s mobility and en-
vironment heterogeneity. This leads to the issue of how to formally describe a diver-
sity of services and transparently discover appropriate services despite different envi-
ronments. Thus, we consider two key issues in this paper: transparent accessibility 
and high availability. 

3.1   Transparent Accessibility 

Figure 1 illustrates some processes to discover the Alarm service in pervasive comput-
ing environments. In the developer’s point of view, the Alarm service keeps an abstract 
representation level. However, in the system’s point of view, the real semantics of the 
required Alarm service can be dynamically changed as SoundAlarm, VibrationAlarm, 
or DisplayAlarm according to users’ current location. It means that the Alarm service 
can be bound with some real instances in the current execution environments which 
have sound effects, vibration effect, or display effect. The binding to real instances is 
determined in real time, so the Alarm service is transparently kept in abstract level. In 
conclusion, service discovery should work on abstract representations to describe and 
discover all of the services in pervasive computing environments. 

3.2   High Availability 

Figure 1 shows a need to find substitutable services when the best matching instance 
“AlarmClock” is not available or not found in a given environment. Suppose that a 
user sleeps late in the morning. An application should find the Alarm service to wake 
him up. But there is no available instance “AlarmClock.” Which instance can be used 
instead of the “AlarmClock”? 
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In the user’s point of view, a certain function such as StartAlarming of “Alarm-
Clock” is supposed to be somewhat equivalent to other functions such as TVTurnOn 
function of “TV,” AudioPlayCD function of “Audio,” or even LightTurnOn function 
of “Light.” To take full advantage of local resources, consequently, service discovery 
frameworks for pervasive computing must provide applications with other substitut-
able instances which are functionally similar to the best matching instance “Alarm-
Clock.” 

 

Fig. 1. The Discovery of the Alarm Service in Pervasive Computing Environments 

4   Proposed Approach 

Task-based computing [11, 12] and activity-based computing [8] focus on a higher 
level of abstraction level such as tasks or activities to enable computing environments 
to be aware of users’ intents or requirements. In this paper, we especially pay our at-
tentions to a high level of context model, human activity which means anything that 
users intend to do in a specific region by using some resources. The model is for rep-
resenting what a user intends to do, what resources can be utilized for an activity, and 
where services can be performed. Thus, we use the activity policy which describes 
different resource constraints according to locations, humans, and activities. Further-
more, we use the IOPE model of Semantic Web [16] to describe the capabilities of 
services in a fine-grained level, and provide upper ontologies to reasonably evaluate 
functional similarity among different services. 

4.1   Activity Policy-Based Query Coordination 

To describe different resource constraints according to human activities, Figure 2 
shows how to define activity policies and how the user query is coordinated with the 
appropriate resource constraints in service discovery processes. 

At first, some policies, the notation “P := An(Ac, H, L, O)” is described. An appli-
cation sends queries (Q) for services and the name of the next activity(An). Our ser-
vice discovery framework receives the contextual information such as the name of the 
current activity (Ac), target user (H) for the activity to influence, target place (L) for 
the activity to be performed in, and other contexts (O). In this point, an appropriate 
policy is selected, and then some resource constraints (C) are extracted according to 
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the current contexts. The given queries and the selected resource constraints are ad-
justed in the query coordination part. Thus, the proposed scheme can reflect the dy-
namic changes of real semantics between abstraction (queries) and context-awareness 
(policies). 

 

 

Fig. 2. Activity Policy and Query Coordination 

Suppose that Alice should receive business-related messages. Location sensors 
recognize her current position, and deliver the sensed values of (x, y, z) coordinates or 
logical/physical space names to ContextManager. Here, ContextManager [21] is a 
part of context-aware middleware to aggregate contexts and interpret their semantics. 
Authentication sensors could also deliver the ID number of Alice to ContextManager. 
If ContextManager could recognize even human activities, our service discovery 
framework would infer appropriate resource constraints according to Alice’s activities 
as Figure 3. In this point, the context model of Gaia [14] based on first order logic 
would be useful for such a context fusion. 

 

 

Fig. 3. An Example of Activity Policy-based Query Coordination 

The application intends to find some local resources to present the messages to Al-
ice as the query, Input=Message and Effect=PresentEffect. Our service discovery 
framework knows that Alice works with a computer at the office and the application 
wants to deliver some messages to her. Thus, the framework selects an appropriate  
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resource constraint, Effect=DisplayEffect, and start coordinating it with the given 
query, Input=Message and Effect=PresentEffect. In this point, the effect parts  
between the query and the constraint trigger a conflict in the coordination part. To re-
solve this conflict, simple coordination rules are used with some subsumption  
relations such as the parent, the child, and the sibling relation in our ontologies as  
following. 

 

− If A is a parent of B, then we select B; 
− If A is a child of B, then we select A; 
− If A is a sibling of B, then we select B; 
 (A is a part of resource constraints, B is a part of queries) 

 

Finally, the new coordinated query, Input=Message and Effect=DisplayEffect, en-
ables Alice to receive the messages through “WindowsPopupMessage,” when Alice 
works at the office not to distract other co-workers. 

4.2   IOPE-Based Semantic Matching 

To maximize high availability of services in heterogeneous environments, it is very 
important to define how to semantically describe and discover services by using on-
tologies [15]. In this paper, we use the IOPE model to formally describe the capabili-
ties of services in a fine-grained level. This enables services to be richly represented 
in data semantics, functional semantics, and QoS semantics. 

 

 

Fig. 4. Upper Ontologies to Formally Describe Various Resources 

Figure 4 shows two upper ontologies designed by OWL [18] to describe the diver-
sity of services and effects in pervasive computing environments. Ovals represent 
classes (or concepts), black arrows represent characterized properties (or roles), white 
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arrows represent inverse properties, and dotted lines represent subsumption (parent 
and child) relations among some classes. In Figure 4 (b), the rectangle means some 
value instances of the parent class. That is, the parent class Intensity can be instanti-
ated to one of the instance values such as Any, Level1, Level2, Level3, Level4, and 
Level5. Specific intensities can be defined in this way. In case of the volume of “TV” 
or “Audio,” as an instance of the class Impact, a specific instance SmallVolume can be 
defined with the instance Level1 as the value of the property hasIntensity. Similarly, 
another specific instance LargeVolume can be defined with the instance Level5 as the 
value of the hasIntensity. In case of the brightness of “Light,” some specific instances 
such as WeakBrightness, ModerateBrightness, and StrongBrightness can be respec-
tively defined with some value instances of the Intensity. Therefore, we can make use 
of such a specific instance to evaluate functional similarity among some services. 

At first, we define effect as a process to change the states of the world to other 
states. According to this definition, we consider three main properties: perceivedBy, 
hasImpact, and hasPattern. We understand some effects of services in human-centric 
aspects, so the effects which we deal with in this paper are those which can be per-
ceived by the five senses of human beings. Moreover, the effects give some impacts 
on the states of the world, and those kinds of changes are achieved in the specific be-
havior patterns. Figure 4 (b) illustrate how to define the effects with the classes such 
as FiveSenses, Impact, and BehaviorPattern. To more easily explain, the following 
BNF format is used. 

 
<HumanPerceivableEffect> := <perceivedBy> | <perceivedBy> <op> <HumanPerceivableEffect> 
<perceivedBy> := <FiveSenses> ( <hasImpact>, <hasPattern> ) 
<op> := and | or 
<FiveSenses> := Sight | Auditory | Touch | Olfactory | Taste | … 
<hasImpact> :=  Volume | Brightness | Temperature | Vibration | FontSize | Color  

| Message | Music | Document | Multimedia | Image | … 
<hasPattern> := Appear | Disappear | Increase | Decrease | Maximize | Minimize | FadeIn  

| FadeOut | ZoomIn | ZoomOut | Deliver | Reserve | KeepInLimitTime | … 
 
For example, the effect of “TVVolumeUP” action is to increase the volume of TV 

to a certain level. The effect is perceived by the auditory sense of human beings. Its 
impact factor is the volume of TV, and its behavior pattern is to increase. That is, the 
effect can be described as TVVolumeIncreaseEffect := Auditory(TVVolume, Increase). 
Similarly, the effect of “AudioVolumeUP” action is to increase the volume of Audio, 
so it can be described as AudioVolumeIncreaseEffect := Auditory(AudioVolume, In-
crease). In this way, we define a diversity of effects, and the effects are associated 
with some semantic hierarchies. Consequently, the effect of “TVVolumeUP” is simi-
lar to the effect of “AudioVolumeUP.” Thus, both of them have the effect to make the 
volume of sound increased in a specific region. It is quite an interesting feature in per-
vasive computing environments since it shows that the different functions, 
“TVVolumeUP” and “AudioVolumeUP,” can trigger some equivalent effects in a 
specific region. Such a feasible example is shown in Figure 5. 

When Alice sleeps late in the morning, an intelligent application checks her sched-
ule and recognizes that she has an important business meeting today. Suppose that the 
application tries to find “AlarmClock” in the bedroom, but fails to find it. In this case, 
it knows that some substitutable services such as “LotteAudio” or “SamsungTV” can 
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Fig. 5. Substitutability of “AlarmClock,” “SamsungTV,” “LotteAudio” in the Effect Ontology 

be used instead of “AlarmClock.” To make it possible, “AlarmClock,” “LotteAudio,” 
and “SamsungTV” are described as Figure 5. “AlarmClock” service has a function 
“StartAlarming.” The function gives the effect AlarmClockSoundDeliverEffect on a 
target user. Similarly, “AudioPlayCD” function of “LotteAudio” has AudioMusicDe-
liverEffect, and “TVTurnOn” function of “SamsungTV” has TVMultimediaDeliverEf-
fect. All the effects can be perceived by the auditory sense of human beings. More-
over, they have the behavior patterns to deliver some impact factors with different 
levels of intensities. Through the common properties, we have an inferred hierarchy 
in the effect ontology as shown in Figure 5. AlarmClockSoundDeliverEffect is an in-
stance of SoundDeliverEffect, and MultimediaDeliverEffect and MusicDeliverEffect 
are inferred as subclasses of the SoundDeliverEffect. Each subclass has the instance 
TVMultimediaDeliverEffect and AudioMusicDeliverEffect, respectively. In conclu-
sion, we can see that the different effects have a semantic hierarchy in the effect on-
tology by dynamically inferring the relative relations of the properties such as 
FiveSenses, Impact, and BehaviorPattern. 

In the earlier part, we have already shown how to define some specific semantics 
related to Intensity and Impact. In Figure 5, each service was described with these 
specific instances. Initially, AlarmClockSoundDeliverEffect would be different from 
AudioMusicDeliverEffect and TVMultimediaDeliverEffect in the aspect of Intensity. 
Later, AudioMusicDeliverEffect and TVMultimediaDeliverEffect would have volume 
intensities beyond a certain level, which might be corresponded to that of Alarm-
ClockSoundDeliverEffect. Through these processes, we can finally make sense that 
the effects of “TVTurnOn” function and “AudioPlayCD” function can be provided in-
stead of that of “StartAlarming” function. 
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5   Implementation  

We implemented the proposed scheme as the service discovery part in Active Sur-
roundings [21], which is a middleware for pervasive computing environments. Figure 
6 shows home appliances, location sensors, and IR (Infrared Rays) transceiver de-
ployed in our prototype smart home environment. Especially, the IR transceiver is 
used to convey an IR signal corresponding to a user command to a target device. 

 

Fig. 6. Home Appliances, Location Sensors, and IR Transceiver in the Prototyped Home 

Each agent program corresponding to the devices is extended from the basic class 
ServiceProxy which has the fundamental interfaces such as discovery, registry, and 
invocation. The agent automatically registers its description file to the proposed ser-
vice discovery server, which uses soft-state mechanism to maintain the state informa-
tion of each service. Our communications are implemented on HTTP protocols. 
Therefore, end-users can use local services in familiar ways. In addition, each service 
works as a server to allow other applications to invoke its service in peer-to-peer 
ways. Our framework manages all of the services in our ontologies, which are devel-
oped by using OWL [18] and Protégé [19]. Activity policies will be also managed in 
the ontologies, and inferred by Racer [20]. 

5.1   Activity Policy-Based Service Discovery Framework 

Figure 7 shows a hierarchical architecture of the proposed service discovery frame-
work. ServiceProxy includes some operations to register, discover, and invoke ser-
vices. Communications between ServiceProxy and ServiceDiscoveryServer are 
achieved on HTTP protocols. That is, the operations such as WWWRegister, 
WWWDiscover, WWWShow, and WWWCall are implemented as GET or POST 
methods of HTTP servers. ServiceProxy hides complex protocols required for the op-
erations. Applications just use the given functions such as register(), discover(), and 
invoke(). In addition, general users can use the proposed scheme by using Web 
browsers such as Internet Explorer because we provide the operations as GET or 
POST methods of HTTP protocols. 

On the other hand, all of the services must be extended from ServiceProxy to peri-
odically register the service description files to ServiceDiscoveryServer. When the 
register() function is executed in each service, ServiceProxy creates a thread to auto-
matically register the specific description file. The thread sleeps and wakes with the 
given lifetime which is described in the description file. The descriptions are stored in 
description repository and ontologies. Furthermore, ServiceProxy provides functional-
ities of micro-HTTP server to the services to support remote invocations. When  
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applications invoke some functions in remote services, ServiceDiscoveryServer pro-
vides the reference to the desired services such as IP address, port number, class 
name, and method name, and then the ServiceProxy in the side of applications in-
vokes the remote calls to the micro-HTTP server of the target services. ServiceMan-
ager governs most of the operations which are occurred in ServiceDiscoveryServer. It 
closely interacts with the reasoning engine, RacerPro [20]. Activity policies and on-
tologies are operated with the reasoning engine. ServiceManager uses JRacer and 
nRQL [17] to perform policy-based query coordination and IOPE-based semantic 
matching. 

 

 

Fig. 7. Activity Policy-based Service Discovery Framework 

5.2   Message Delivery Example 

To illustrate the effectiveness of the proposed scheme, we use the activity Receiv-
ingMessage introduced in Figure 3. We compare two types of service discovery ap-
proaches. Type 1 does not use policies, but use IOPE-based queries, while Type 2 
uses policies with IOPE-based queries.  

Table 1 present the experiment results of the ReceivingMessage activity. Note that 
the queries are not changed according to different environments in the developer’s as-
pect. However, in the system’s aspect, the queries are dynamically coordinated in the 
QueryPolicyCoordinator component. When working on a computer in the office, Al-
ice would like to receive message through “WindowsPopupMessage” not to distract 
other people. When driving a car, she wants to use “NateTTS” function for the sake of 
safety. In result, Type 1 might provide inappropriate services, while Type 2 provides 
appropriate services according to context aware resource constraints. Furthermore, 
our approach can take full advantage of local resources although mobile users move 
from one to another place. In this case, Alice can use a variety of local resources such 
as VoiceSpeech, WindowsPopupMessage, NateCarNavigation, FreeTTS, and Cap-
tionMaker to receive messages. 
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Table 1. Experiment Results of the Activity Policy, ReceivingMessage 

 

6   Conclusions and Future Work 

We introduce a service discovery framework using activity policies. Existing research 
efforts on service discovery have focused on context-awareness and semantics sup-
port. However, due to the dynamic changes of semantics according to different con-
texts, the instances acquired in real environments might not be permitted or not exer-
cise great influence on target users in certain situations. In order to resolve these 
problems, activity policies provide flexible and reusable resource constraints accord-
ing to dynamically changing contexts. Thus, our approach enables developers to 
transparently make use of appropriate services despite heterogeneous environments. 

In the future, we must refine activity policies into a dynamic range of environments 
as well as a home environment. Human activities will be divided to domain-
independent and domain-specific activities. The predefined policies can be reused or 
customized by users, developers, or policy designers. Therefore, we need to provide 
them with some manners to simply manage the policies. 
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Abstract. Recent research efforts in the fields of data stream process-
ing and data stream management systems (DSMSs) show the increasing
importance of processing data streams, e. g., in the e-science domain.
Together with the advent of peer-to-peer (P2P) networks and grid com-
puting, this leads to the necessity of developing new techniques for dis-
tributing and processing continuous queries over data streams in such
networks. In this paper, we present a novel approach for optimizing the
integration, distribution, and execution of newly registered continuous
queries over data streams in grid-based P2P networks. We intro-
duce Windowed XQuery (WXQuery), our XQuery-based subscription
language for continuous queries over XML data streams supporting
window-based operators. Concentrating on filtering and window-based
aggregation, we present our stream sharing algorithms as well as exper-
imental evaluation results from the astrophysics application domain to
assess our approach.

1 Introduction

Over the past few years, data stream processing and data stream management
systems (DSMSs) have been very active research areas. This trend is promoted
by the increasing need to process streaming data on-the-fly whenever possible,
instead of storing intermediate results or buffering whole input data sets before
processing. Newly upcoming and evolving fields, such as e-science applications
in physics and astronomy, deal with huge volumes of data and render storing
all of the delivered data increasingly impractical. Also, transmitting all the data
over physically limited and therefore eventually congested network connections
is a problem. This is especially true if only small subsets of the data or some
processing results—which usually constitute a much smaller data volume than
the input data—are actually needed.

We propose data stream sharing as a new optimization technique addressing
these issues. Data stream sharing is based on two main optimization approaches.
These are (1) in-network query processing for distributing and executing newly
registered continuous queries in the network and (2) multi-subscription opti-
mization for enabling the reuse of existing (parts of) data streams that were
generated to satisfy previously registered subscriptions.1

� This research is supported by the German Federal Ministry of Education and Re-
search within the D-Grid initiative under contract 01AK804F and by Microsoft Re-
search Cambridge under contract 2005-041.

1 The terms query, continuous query, and subscription are treated as synonyms
throughout this paper.
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Fig. 1. No stream sharing Fig. 2. Stream sharing

These optimizations are an integral part of our StreamGlobe system [1,2]. To
enable them, we use peer-to-peer (P2P) networking techniques. In contrast to the
conventional use of P2P networks for file sharing, StreamGlobe uses P2P-based
networks for data stream sharing. The system architecture is based on a P2P
overlay backbone network that is organized as a super-peer network [3], i. e., peers
are classified into super-peers and thin-peers. Super-peers are powerful servers
which form a stationary super-peer backbone network. Thin-peers—often simply
called peers in the following—are less powerful devices that can be registered at
a super-peer and deliver data streams or register queries in the network. The
StreamGlobe implementation adheres to established grid computing standards
(OGSA) and therefore fits seamlessly into existing e-science platforms.

As a motivating example, we introduce an astrophysical e-science application.
Consider Figures 1 and 2 which both illustrate the same exemplary network.
Here, SP0 to SP7 are the super-peers that constitute the super-peer backbone
network and P0 to P4 are thin-peers. Peer P0 is a satellite-bound telescope that
detects photons and registers a data stream called photons at super-peer SP4.
This data stream contains real astrophysical data collected during the ROSAT
All-Sky Survey (RASS) which we obtained through our cooperation partners
from the Max Planck Institute for Extraterrestrial Physics (MPE).

In our scenario, we deal with streams of XML data. The data items in stream
photons comply to a DTD with the tree structure shown below. As its name
implies, the data stream delivers a stream of photons detected by the telescope’s
photon detector. Each photon contains its celestial and detector pixel coordi-
nates, its detector pulse, its energy, and its detection time.

ra dec

cel

dx dy

det

coord phc en det time

photon

We assume that peers P1 to P4 in the example network are devices of astro-
physicists used to register subscriptions in the network referencing the available
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data stream as input. Subscriptions are registered using WXQuery, our XQuery-
based subscription language that will be introduced in detail in Section 2. We
will only consider Queries 1 and 2 of Figures 1 and 2 here. Queries 3 and 4 will be
presented in Section 2. All queries reference data stream photons as their single
input. Query 1 (Q1) is shown below.

Q1: <photons>
{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0 and $p/coord/cel/ra <= 138.0
and $p/coord/cel/dec >= -49.0 and $p/coord/cel/dec <= -40.0

return <vela> { $p/coord/cel/ra } { $p/coord/cel/dec }
{ $p/phc } { $p/en } { $p/det_time } </vela> }

</photons>

This query selects the area of the vela supernova remnant. The stream function
was newly introduced by us and indicates a possibly infinite data stream used
as input to the query. Query 2 (Q2) below filters a smaller section of the sky.

Q2: <photons>
{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3
and $p/coord/cel/ra >= 130.5 and $p/coord/cel/ra <= 135.5
and $p/coord/cel/dec >= -48.0 and $p/coord/cel/dec <= -45.0

return <rxj> { $p/coord/cel/ra } { $p/coord/cel/dec }
{ $p/en } { $p/det_time } </rxj> }

</photons>

This query selects the area of the RXJ0852.0-4622 supernova remnant which
is situated within the area of vela. Note that the section of the sky selected
by Query 2 is completely contained in the section selected by Query 1. Also,
Query 2 is only interested in photons having an energy value of at least 1.3 keV.

We first consider Figure 1 which shows the traditional scenario of data ship-
ping. The thickness of the arrows associated with the various network connec-
tions indicates the size of the data streams transmitted over these connections.
Each of the four queries in the system only needs a certain part of the original
data stream. However, in each case, the whole stream gets transmitted from the
data source to the data sink leading to the transmission of unnecessary data.
Since query execution for each subscription takes place at the super-peer that
the subscribing peer is connected to, queries that perform the same operations
on the same input data streams cause redundant execution of operators.

Figure 2 shows the benefits of using our stream sharing approach which
answers newly registered subscriptions using (parts of) data streams already
present in the network. This includes data streams which have been generated
earlier for satisfying previously registered continuous queries. We assume that
Queries 1 to 4 have been registered one after another in ascending order in our
example. Obviously, network traffic and processing overhead can be significantly
reduced by avoiding redundant transmissions and computations through shar-
ing previously generated data streams. For example, when Query 1 is registered,
its execution can be pushed into the network and computed at SP4 instead of
SP1. The result is then routed to P1 via SP5 and SP1. When Query 2 is reg-
istered afterwards, it can reuse the stream constituting the answer for Query 1



772 R. Kuntschke and A. Kemper

at SP5 because the result of Query 2 is completely contained in the answer for
Query 1. The result data stream of Query 1 is duplicated at SP5, yielding two
identical streams. One is used to answer Query 1, the other is filtered using the
selection and projection specified by Query 2. This results in a new stream that
constitutes the result of Query 2 which is subsequently routed to P2 via SP7.

The contributions presented in this paper are as follows. First, we introduce
Windowed XQuery (WXQuery), our XQuery-based subscription language for
continuous queries over XML data streams enabling the formulation of queries
including window-based aggregation operators. Second, we present a proper-
ties representation of data streams and subscriptions, a cost model, and algo-
rithms for optimizing the evaluation of newly registered continuous queries in a
data stream management system by sharing possibly preprocessed data streams.
Eventually, we show experimental evaluation results to assess our approach.

The paper is organized as follows. In Section 2, we introduce WXQuery. Our
new data stream sharing approach is presented in Section 3. Section 4 shows
some evaluation results. Related work is presented in Section 5. Finally, Section 6
concludes and states ongoing and future work.

2 Subscription Language

In StreamGlobe, subscriptions over XML data streams are registered using Win-
dowed XQuery (WXQuery). WXQuery is a fragment of XQuery [4] that has been
augmented with support for window-based operators.

In Definition 2.1 below, α and β are WXQuery expressions and χ denotes a
condition. A tag name is denoted by t. Further, $x and $y are variables repre-
senting XML trees, where $y can also start with a function call to reference a
document node or the stream node of a data stream like stream("photons") in
the example subscriptions. A variable representing the result of a window-based
aggregation operation is denoted by $a. The variable $z can represent any of
the three kinds of variables $x, $y, or $a as described above. We use π to de-
note a relative path that only employs the child axis (“/”). It does not include
wildcards (“*”), conditions (“[p]”), or other axes (e. g., “//”). A relative path
π differs from π in that it can also contain conditions. An aggregation operator
is denoted by Φ, i. e., Φ ∈ {min,max,sum,count,avg}.

Expressions enclosed in [[ ]]?, [[ ]]∗, or [[ ]]+ in the definition are optional, can
occur zero or more times, or can occur one or more times, respectively. A vertical
bar (|) indicates an alternation. An expression of the form αi1,...,in represents
a WXQuery expression from a restricted set of expressions. For example, α1,2
stands for any one of the two element constructor expressions numbered 1 and
2 in the definition below and α3,4,5,6,7 stands for any one of the remaining ex-
pressions numbered 3 to 7.

Definition 2.1 (WXQuery). The WXQuery subscription language comprises
all subscriptions that consist only of the following expressions:

1. <t/> (empty direct element constructor)
2. <t> [[α1,2 | {α3,4,5,6,7}]]∗ </t> (direct element constructor)



Data Stream Sharing 773

3. [[for $x in $y[[/π]]?[[|count ∆ [[step µ]]?| | |π diff ∆ [[step µ]]?|]]? |
let $a := Φ($y[[/π]]?)]]+ [[where χ]]? return α (FLWR expression)

4. if χ then α else β (conditional expression)
5. $y/π (output of subtrees reachable from node $y through path π)
6. $z (output of subtree rooted at node $z)
7. ([[α[[,β]]∗]]?) (sequence)

The FLWR expression in the WXQuery definition introduces our new syntax for
expressing data windows, e. g., for use with window-based aggregation operators.
Query 3 (Q3) in the network of Figures 1 and 2 is an example for the use of such
an operator.

Q3: <photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0
and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|det_time diff 20 step 10|
let $a := avg($w/en)
return <avg_en> { $a } </avg_en> }

</photons>

Query 4 (Q4) employs a different window.

Q4: <photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0
and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|det_time diff 60 step 40|
let $a := avg($w/en)
where $a >= 1.3
return <avg_en> { $a } </avg_en> }

</photons>

The definition of a data window is enclosed in “|” characters. Item-based
windows—indicated by the keyword count—contain a fixed number of items
given by the numeric value of ∆. Optionally, a step size µ determining the up-
date interval of the data window can be specified. For example, the window
|count 20 step 10| defines a data window that always contains 20 data items
and, during each update, removes the 10 oldest entries from the window while
adding the next 10 new data items arriving in the stream. If omitted, the step
size defaults to the value of ∆, meaning the contents of the window are com-
pletely replaced by new ones during each update. The situation is analogous
for time-based windows, except that ∆ indicates the size of the window in time
units and the step size indicates the time interval between two successive data
windows. Again, the step size defaults to ∆ if omitted. Time-based windows can
only be applied on data streams that are sorted according to the values of a par-
ticular reference element that is used to control the window. This premise could
be somewhat relaxed to a fuzzy order by requiring that a fixed sized buffer is
sufficient to derive the total order. The value of the reference element of a time-
based data window can either be a real or an abstract timestamp. An example
for a time-based window is |det time diff 60 step 40| in Query 4. Note that
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the path inside the window is not meant to be evaluated yielding a sequence as
defined by the conventional XPath semantics. Rather, it specifies the reference
element controlling the window.

Conditions in our context, whether they appear in a where clause (“χ”) or
within a path (“[p]”), are conjunctions of atomic predicates. Atomic predicates
are of the form $v θ c or $v θ $w+c, where $v and $w represent paths of the form
π, c represents a constant value, and θ ∈ {=, <,≤, >,≥}. Constant values can
be negative and are either integer values or decimal values with a finite number
of decimal places.

Restructuring (introducing new elements, reordering or renaming output ele-
ments, etc.) is done in a post-processing step at the super-peer that is connected
to the peer that registered the subscription. The result of the post-processing
is delivered to the final destination and is not considered for reuse in the net-
work. Since attributes in XML data can always be converted into corresponding
elements, we restrict ourselves to dealing with elements.

3 Data Stream Sharing

This section introduces our properties-based approach for representing subscrip-
tions and data streams, our cost model, and the algorithms for searching, iden-
tifying, and choosing appropriate streams for satisfying new subscriptions.

3.1 Properties

Subscriptions and data streams are treated symmetrically in our context. This
is due to the fact that a subscription can always be seen as producing a result
data stream and a data stream can always be seen as the result of a subscrip-
tion. Therefore, subscriptions and data streams are also represented by the same
properties data structure.

The properties of subscriptions and data streams consist of three parts and
describe how the associated (result) data stream was generated. An abstract
schematic illustration of the properties of Query 1 from Section 1 is shown in
Figure 3. A subscription or data stream is described by a set of original input
data streams, a set of operators for each input data stream used to transform the
respective input data stream into the represented (result) data stream and, for
each operator, a set of conditions specifying the operator, i. e., selection predi-
cates, projection elements, data window specifications, or aggregation operators
together with the identifier of the corresponding aggregated element. Predicates,
e. g., selection predicates, are stored using a graph representation as shown in
Figure 3. Data window specifications are also stored in a specific format that con-
tains the ordered reference element (only for time-based windows), the window
type (count or diff), the window size (∆) and the step size (µ). This approach
supports flat WXQueries without nesting. An advanced approach supporting
nested queries is part of future work.

Note that the properties as described above serve two purposes. First, they
represent the parts of the originally queried input data streams that are needed
by the corresponding subscription. Second, they describe the contents—relative
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Fig. 3. Abstract properties of Query 1

to the contents of the input data streams—of the data stream produced as a
result of that subscription. Also note that properties do not need to represent
transformation details like the exact structure of query results as stated in a
query’s return clause.

3.2 Cost Model

We now introduce the cost model used in our optimizations. The cost function
C focuses on the amount of additional network traffic and peer load caused
by answering a new subscription. Other parameters, e. g., latency of network
connections, could easily be added. To define C, we need to introduce some
notation. Let p be the properties of a new continuous query q that is to be
registered in the network. Then size(p) denotes the average size of one data
stream item (e. g., one photon) of the stream represented by p. Let Pq be the
set of properties of all input data streams of q, occ(ns) the average occurrence
and size(ns) the average size of element ns in the input stream represented by
properties s, and Πps the set of projection elements of p concerning the input
stream represented by s. Then, for a subscription that only contains selection
and projection operators, size(p) is calculated using the following formula:

size(p) :=
∑
s∈Pq

⎛⎝size(s)−
∑

ns /∈Πps

(
occ(ns) · size(ns)

)⎞⎠
Note that, in the above formula, size(p) denotes the average size of one data
stream item in the stream represented by p, e. g., one photon element in stream
photons, whereas size(ns) denotes the average size of one subelement ns, e. g.,
the phc subelement of a photon. For aggregate queries, the result data stream
is a stream of aggregate result values. The average result data stream size is
therefore independent of the input stream size in this case and is computed as
the sum of the sizes of the aggregate values and their surrounding element tags.
For queries returning the contents of data windows, the average size of a data
window needs to be determined. For item-based data windows this can be done
by multiplying the window size with the average size of the items contained in
the window and adding the sizes of the enclosing window tags. For time-based
data windows this works analogously except that the average number of data
items contained in the window must be estimated as the product of the input
stream frequency and the window size.
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The average frequency of data items in the stream represented by p is denoted
by freq(p). With sel(σp) denoting the selectivity of the subscription represented
by p, freq(p) can be computed as follows:

freq(p) := sel(σp) ·
∑
s∈Pq

freq(s)

Note that the expression
∑

s∈Pq
freq(s) in this formula depends on the semantics

of the employed operators in q. The above formula is valid for selection opera-
tors. Projection operators do not influence freq(p). For window-based queries,
freq(p) depends on the step size defined for the data window and the average
frequency of the input data stream. For item-based data windows, freq(p) cor-
responds to the frequency of the respective input data stream divided by the
step size µ of the data window. For time-based data windows, freq(p) depends
on the distribution of the values of the reference element. To be able to estimate
the frequency of the result data stream in such a case, we keep track of the aver-
age increment of the reference element value between two successive data items
arriving in the stream. Dividing the step size µ of the time-based data window
by this average increment yields the average number of data items that need to
be read from the stream before the window update is complete. Then, as with
item-based data windows, the frequency of the input data stream is divided by
this estimated number of data items to obtain the estimated average frequency
of the result data stream.

Introducing b(e) as the maximum bandwith of a network connection e, we can
characterize the relative amount ub(e) of bandwith of e used by the additional
data streams routed over e for answering q using the following formula:

ub(e) :=

∑
p∈Pe

(
size(p) · freq(p)

)
b(e)

Here, Pe denotes the set of properties of all additional data streams added over
e to answer q.

The average computational load caused by an operator o on a peer v with a
set of input stream properties Po is denoted load(o, v, Po). The maximum load of
a peer v is represented by l(v). The relative amount ul(v) of computational load
on a peer v caused by the additional operators in Ov installed at v for answering
a new subscription can be computed as follows:

ul(v) :=

∑
o∈Ov

load(o, v, Po)
l(v)

Cost function inputs like average frequencies of data stream items, average
sizes and occurences of elements, and selectivities of operators are obtained from
statistics and selectivity estimations. The average load load(o, v, Po) of an opera-
tor o on a peer v with a set of input stream properties Po depends on the perfor-
mance of the executing peer, expressed by a performance index (pindex(v)), and
the characteristics of the operator itself. For example, assuming a linear depen-
dency of the load caused by a selection operator σ from the frequency freq(s) of
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its only input stream represented by properties s, the average load caused by σ
on a peer v can be defined as load(σ, v, s) := bload(σ) ·pindex(v) ·freq(s). Here,
bload(σ) represents a base load factor for the selection operator. Factors like base
loads of operators and performance indices of peers as well as formulas for com-
bining these factors yielding realistic load estimations have to be determined,
e. g., on the basis of reference values.

The cost function C is then defined as follows:

C(P) := γ ·
( ∑

e∈EP

(
ub(e) + max(0, (ub(e)− ab(e))) · e(ub(e)−ab(e))

))
+

(1− γ) ·
( ∑

v∈VP

(
ul(v) + max(0, (ul(v)− al(v))) · e(ul(v)−al(v))

))

In this function, P denotes the evaluation plan of the new subscription, i. e., the
operators that have to be installed, the peers on which they have to be installed,
and the additional data streams that are generated and routed through the
network. Furthermore, EP is the set of network connections and VP is the set
of peers affected by plan P . A weighting factor γ ∈ [0, 1] determines, which part
of the cost function should be more dominant—network traffic or peer load.
An exponential penalty is given for overload situations on peers and network
connections. The relative amount of available bandwith on network connection
e and of available computational load on peer v is represented by ab(e) and al(v),
respectively. A plan P is better than another plan P ′ according to cost function
C, expressed by P ≺C P ′, if and only if C(P) < C(P ′).

3.3 Stream Sharing Algorithms

We now describe our stream sharing algorithms for registering and efficiently
satisfying new continuous queries in P2P data stream management systems.
The algorithms search for shareable data streams in the network, compare the
properties of new subscriptions with those of existing data streams, and decide
which streams to reuse at which peers.

Query Registration. The algorithm for continuous query registration searches
for shareable data streams in the network and decides if a certain available data
stream can actually be shared for answering a new query by comparing the
corresponding properties. Further, it decides whether a newly found evaluation
plan for the new query is better than the previously best plan.

The algorithm is divided into four parts. The Subscribe algorithm shown
in Algorithm 1 describes the discovery of shareable data streams and the gen-
eration of corresponding query evaluation plans. The MatchProperties and
MatchPredicates algorithms which are detailed in Algorithms 2 and 3 handle
the matching of properties and predicates, respectively. Finally, the matching of
aggregation operators is dealt with in the MatchAggregations algorithm.
Beginning with Algorithm 1, the inputs pq and vq are the properties of the new
subscription q and the network node where q is registered, respectively. The out-
put of the algorithm is the evaluation plan P , describing how the network has
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to be changed in terms of installed operators and routed data streams in order
to satisfy q. Note that there will always be at least one plan that is suitable for
answering q—provided that q refers to existing inputs—namely the plan using
the originally registered versions of q’s input streams. The goal of our approach
is to find possibly transformed versions of these streams—generated by projec-
tion, selection, or aggregation operators in the network for answering previously
registered continuous queries—that can also be used to answer q, possibly by
applying some further transformations.

The Subscribe algorithm starts with an empty evaluation plan P (line 1 in
Algorithm 1) and iterates over the properties of all input data streams of q (line
2). For each such input data stream, the algorithm performs some initialization
tasks (lines 3–6). First, a FIFO queue LV for network nodes (peers) and another
queue LP for properties are initialized. Then, the properties ps of the currently
considered input data stream s and the network node where this input data
stream is registered are stored in pb and vb, respectively. The variables pb and
vb represent the properties of the currently best solution for the data stream
chosen as input for satisfying q and the network node where to find and reuse
that stream. Installing the whole new subscription at the super-peer at which
it is registered and using the original input streams, routed to the subscription
via shortest paths in the network, is set as the initial evaluation plan. Therefore,
the part of the query evaluation plan that deals with input stream s, called Ps,
is initially set to routing s from the peer where it is registered to the peer where
q is registered via the shortest path in the network and performing any query
evaluation tasks on data stream s at the target peer. This plan is generated by
means of the generateP lan function that takes as inputs the properties pb of
the data stream chosen for reuse, the node vb where to reuse that stream, and
the node vq where the query to be answered is registered and where the query
result is needed. At each time during the remaining execution of the algorithm,
the current best plan for input data stream s is represented by Ps. Finally, the
start node vb of the search is added as first node to LV .

If a subscription references more than one input stream, each stream is han-
dled individually by the subscription algorithm. The algorithm assures that at
least the relevant parts of each input stream are delivered to the super-peer con-
nected to the peer that registered q. Any combination of input data streams as
demanded by the subscription is performed at this peer during the final post-
processing step and the result of this combination is not considered for reuse in
the network. This is the same as with any restructuring of the query result as
described in Section 2.

After the initialization, the algorithm performs a breadth-first search in the
network graph for each input stream, starting at the node that corresponds to the
super-peer at which the corresponding original input stream of q is registered.
Using LIFO queues for LV and LP instead of FIFO queues would cause the
algorithm to perform depth-first search which would be equally possible. The
peers in LV are dequeued one after another (line 8). Each peer in LV is marked
in order to handle circles in the network graph, i. e., consider each node at most
once. For each dequeued peer, all properties of data streams that are available at
the currently handled peer and that are variants of ps are subsequently inserted
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Algorithm 1. Subscribe
Input: The properties pq of the subscription q to be registered and the node vq where

q is to be registered.
Output: A query evaluation plan P .

1: P ← ∅;
2: for all ps ∈ getInputDS(pq) do
3: LV ← ∅; LP ← ∅;
4: pb ← ps; vb ← getTNode(pb);
5: Ps ← generateP lan(pb, vb, vq);
6: add(LV , vb);
7: while LV �= ∅ do
8: v ← dequeue(LV ); mark(v);
9: for all data streams available at v that are variants of ps do

10: enqueue all associated properties in LP ;
11: end for
12: while LP �= ∅ do
13: p ← dequeue(LP );
14: if MatchProperties(p, ps) then
15: n ← getTNode(p);
16: if (¬(isMarked(n)) ∧ (n /∈ LV )) then
17: add(LV , n);
18: end if
19: P ′

s ← generateP lan(p,v, vq);
20: if P ′

s ≺C Ps then
21: pb ← p; vb ← v; Ps ← P ′

s;
22: end if
23: end if
24: end while
25: end while
26: unmark all nodes;
27: add(P ,Ps);
28: end for
29: return P ;

into LP (lines 9–11). These properties are then consecutively taken out of the
queue and matched against the properties pq of q using Algorithm 2 (lines 12–
14). This will be described in detail below. Network connections that do not have
any associated properties because they do not carry any data streams are ignored
during the breadth-first search. Also, non-matching properties do not add any
peers to LV since following these paths cannot yield a reusable data stream.
Pruning the search in this way leads to the breadth-first search traversing only
the relevant part of the network instead of the whole network.

If a property p has been successfully matched, its corresponding stream can
be reused for answering q. If the target peer of p, i. e., the peer to which the
stream corresponding to p is delivered, is still unmarked, it is added to LV to be
processed later on during the breadth-first search (lines 15–18). For any found
solution, a new plan P ′

s is generated, again using the generateP lan function
(line 19). Then, the value of the cost function C for the plan reusing the found
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data stream is computed and compared against the current best solution (line
20). Only if the new solution is better according to C, it replaces the current best
solution and is stored along with its cost function value for future comparisons
(lines 20–22). When there are no properties left in queue LP , the next node of
LV is considered. If there are no more nodes left in LV , the best plan Ps found
for input stream s is added to the overall plan P for evaluating q (line 27).
When all input streams of q have been considered, the algorithm terminates and
returns the current best solution for plan P as the final result.

Matching Properties. Next, we explain how Algorithm 2 matches properties.
For each input data stream of a subscription, the properties of the subscription
reflect which operators and operator conditions are employed to transform the
respective input stream into the subscription result. These properties have to be
matched with the properties of data streams already present in the network to
find shareable streams for each input stream of the new subscription. The inputs
for the properties matching algorithm are the properties p of the data stream that
is considered for reuse and the properties p′ of the newly registered subscription.
The algorithm returns true if these properties match and false otherwise.

If the input streams of both properties match—checked in lines 1–4 of Algo-
rithm 2—the sets of operators used to transform the inputs are fetched from the
properties data structures (line 5) and assigned to O and O′, respectively. For
each operator in O there must be a corresponding operator in O′. For example,
if O contains a selection operator, the data stream represented by p is only con-
sidered for sharing if p′ also contains a corresponding selection. Otherwise, the
stream represented by p would not contain all the necessary data for the query
represented by p′. If a corresponding operator is found in O′, it has to be assured
that the conditions of the two operators, which are fetched from the properties
data structures in line 10 of the algorithm, are compatible. We distinguish four
cases (lines 11–30), i. e., selection, projection, window-based aggregation, and
unknown operators. If the corresponding operators are selection operators (lines
11–15), the algorithm retrieves the graphs representing the selection predicates
(line 12) and tries to match them using Algorithm 3. In case of a projection
(lines 16–20), the set R of projection elements of p that are actually returned in
the result data stream of the query represented by p—these are the projection
elements marked with bullets in the properties of Query 1 in Figure 3—has to
be a superset of the set R′ of all the elements referenced by the query, marked
as well as unmarked, in order for the stream represented by p to be reusable. If
o and o′ are one of the window-based aggregation operators min, max, sum, count,
or avg, it has to be assured that the conditions and data windows are compatible
(lines 21–24). This is done by the MatchAggregations algorithm described
further below. All other operators are handled in the fourth and final case (lines
25–30). These are unknown operators, in particular user defined functions. Noth-
ing is known about the semantics of these operators. We only require them to
be deterministic, meaning that the same operator applied to the same inputs
must always yield the same result. The algorithm then demands that not only
the operators but also their input vectors, i. e., their parameter lists retrieved in
line 26 of the algorithm, are the same for shareability. More sophisticated tech-
niques for identifying shareable user defined operators involve the development
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Algorithm 2. MatchProperties
Input: The properties p of a data stream considered for sharing and p′ of a subscription

to be registered.
Output: true if p and p′ match, false otherwise.

1: s ← getDS(p); s′ ← getDS(p′);
2: if s �= s′ then
3: return false;
4: end if
5: O ← getOps(s); O′ ← getOps(s′);
6: for all o ∈ O do
7: match ← false;
8: for all o′ ∈ O′ do
9: if o = o′ then

10: C ← getConds(o); C′ ← getConds(o′);
11: if o = σ then
12: G ← getPGraph(C); G′ ← getPGraph(C′);
13: if MatchPredicates(G, G′) then
14: match ← true; break;
15: end if
16: else if o = Π then
17: R ← getOutElems(C); R′ ← getRefElems(C′);
18: if R ⊇ R′ then
19: match ← true; break;
20: end if
21: else if o ∈ {min,max,sum,count,avg} then
22: if MatchAggregations(C, C′); then
23: match ← true; break;
24: end if
25: else
26: 
i ← getParams(C); 
i′ ← getParams(C′);
27: if 
i = 
i′ then
28: match ← true; break;
29: end if
30: end if
31: end if
32: end for
33: if match = false then
34: return false;
35: end if
36: end for
37: return true;

of suitable operator descriptions providing the necessary meta data. Developing
such techniques and operator descriptions is part of future work.
Matching Predicates. A predicate is represented by a weighted directed graph
G = (V, E) within the corresponding properties. The construction and represen-
tation of predicate graphs are an extension of related work on the processing
of conjunctive predicates [5]. In addition to integer valued variables and con-
stants, we also allow decimal values with a finite number of decimal places. First,
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Algorithm 3. MatchPredicates
Input: The predicate graphs G = (V, E) of a data stream considered for sharing and

G′ = (V ′, E′) of a subscription to be registered.
Output: true if the predicates represented by G match the predicates represented by

G′, false otherwise.

1: for all v ∈ V do
2: vmatch ← false;
3: for all v′ ∈ V ′ do
4: if v =̂ v′ then
5: vmatch ← true;
6: for all x ∈ {e ∈ E|e connected to v} do
7: ematch ← false;
8: for all y ∈ {e′ ∈ E′|e′ connected to v′} do
9: if ζ(x) ⇐ ζ(y) then

10: ematch ← true; break;
11: end if
12: end for
13: if ematch = false then
14: return false;
15: end if
16: end for
17: break;
18: end if
19: end for
20: if vmatch = false then
21: return false;
22: end if
23: end for
24: return true;

predicates are normalized to contain only comparisons of the form $v ≥ c, $v ≤ c
and $v ≤ $w+c where $v and $w represent variables and c represents a constant
integer or decimal value. Each variable in the predicate becomes a node in V
and an atomic predicate of the form $v ≤ $w + c is represented by a weighted
directed edge in E from node $v to node $w with weight c. Further, V contains a
node for the constant zero. An atomic predicate of the form $v ≤ c is represented
by an edge from node $v to node zero with weight c and an atomic predicate of
the form $v ≥ c, which can be expressed as 0 ≤ $v − c, by an edge from node
zero to node $v with weight −c. As an illustrating example, consider Figure 3
which contains the predicate graph of the selection in Query 1. After the con-
struction of G, the predicate can be checked for satisfiability and is minimized
using techniques introduced in earlier related work [5]. If an operator’s predicate
is unsatisfiable, the corresponding subscription can be rejected. A minimized
predicate does not contain any redundant atomic predicates. Note that the con-
struction of the properties together with all the steps described in this paragraph
is performed only once for each new subscription during the registration process.

Algorithm 3 can match any predicates in the described graph representation,
e. g., selection and join predicates. In this paper, it is used to match the predicates
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Fig. 4. Matching predicates

of selection operators. The algorithm takes the data structures G and G′ of the
weighted directed graphs representing the selection predicates of the existing
data stream and the new subscription which are to be compared and returns
true if the predicates of G′ imply those of G, i. e., reusability of the data stream
is not prevented by the predicates. One prerequisite for the possibility of data
stream sharing is that, for each node v in the node set V of G, there exists
an equivalent node v′ in the node set V ′ of G′, denoted by v =̂ v′ in line 4 of
Algorithm 3. Nodes are equivalent if the variables represented by them refer to
the same element. Furthermore, if two equivalent nodes v and v′ have been found,
for each edge x connected to v there must be an edge y connected to v′ such
that the atomic predicate represented by x, denoted by ζ(x), is compatible with
the atomic predicate represented by y, denoted by ζ(y). In our algorithm, this is
the case if ζ(x) ⇐ ζ(y) in line 9. An example matching for the predicate graphs
of Queries 1 and 2 is shown in Figure 4. For brevity, only the variable names
instead of the full paths are shown as node labels in the figure. The definition of
ζ(e) for any edge e in a predicate graph G can be formally expressed as

ζ(e) := (sourcelabel(e) ≤ targetlabel(e) + weight(e))

where sourcelabel(e) and targetlabel(e) denote the absolute path to the vari-
able represented by the source and the target node of edge e, respectively, and
weight(e) denotes the weight of edge e.

Window-Based Aggregation. Sharing results of window-based aggregation
operators has been studied before [6]. Our approach differs from this previous
solution in two ways. First, we introduce a step size in our windows which al-
lows us to explicitly specify when a new aggregate value shall be computed.
Second, we consider existing results of other subscriptions for sharing instead of
precomputing aggregation results that might never be used. As usual, we cat-
egorize aggregation operators using three classes. These classes are distributive
(e. g., min, max, sum, count), algebraic (e. g., avg), and holistic aggregates (e. g.,
quantile). We concentrate on the above mentioned distributive and algebraic
aggregation operators here.

The MatchAggregations operation is used in Algorithm 2 to compare the
conditions of window-based aggregation operators. Such operators are compared
by examining their input data, their results, and their data windows as follows.
First, MatchAggregations checks whether the aggregate considered for reuse
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and the new aggregate employ the same aggregation operator, are based on the
same input data, and aggregate the same element. Furthermore, selections in
aggregate subscriptions have to be handled more strictly than in other subscrip-
tions. It has to be assured that any selection performed on the aggregated data
stream prior to the aggregation is the same in both the reused and the new ag-
gregate subscription. Second, it is checked whether the aggregation result which
is considered for sharing has been filtered in any way. As an example consider
Query 4 which filters its aggregation result $a using the predicate $a > 1.3.
Reusing such aggregate values for computing more coarse-grained window ag-
gregates is not possible in general since a part of the necessary data might have
been filtered out. However, they can still be reused for aggregates that apply the
same or a more restrictive filter on the aggregation result as long as all other
prerequisites for reusability are fulfilled.

Eventually, the data windows of both operators are examined. For time-based
windows, reuse is only possible if both windows have the same ordered reference
element, e. g., det time in Queries 3 and 4. For both, time-based and item-based
windows, we require the window size and the step size of the windows to be
compatible for being able to reuse existing aggregate values without any further
complex optimizations or transformations. One requirement for this is that the
window size of the new subscription is a multiple of the window size of the data
stream considered for reuse. This guarantees that a fixed number of reused win-
dows fits into one new window. Furthermore, the size of a reused aggregate’s
data window must be a multiple of its step size. This assures that a sequence of
non-overlapping windows, i. e., aggregate values, covering the whole input data
can be obtained—possibly by ignoring some windows. Note that ignored aggre-
gate values might have to be temporarily buffered to be reused for computing
subsequent values of the new aggregate. The situation for the step sizes of both
windows is analogous to their window sizes as described above, guaranteeing
that the reused aggregate delivers an aggregate value at least each time the new
aggregate has to produce one. These three conditions for data window share-
ability can be expressed as ∆′ mod ∆ = 0, ∆ mod µ = 0, and µ′ mod µ = 0.
The sharing of result data streams of window-based aggregation operators is
illustrated in Figure 5, using Queries 3 and 4 of Section 2 as examples.

Note that for the values of avg aggregates to be shareable, we internally rep-
resent such aggregates by their appropriate sum and count values. These values
are actually transmitted in the super-peer network. The final aggregate value is
computed at the super-peer at which the corresponding subscription is registered
by evaluating (sum/count). The described internal representation of avg aggre-
gates also enables their reuse for computing sum and count aggregates, i. e., the
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requirement of equal aggregate operators for shareability as introduced above
can be relaxed.

4 Evaluation

This section presents the results of some performance evaluations that we con-
ducted using our prototype implementation in the StreamGlobe system. For the
evaluation, the system was installed on a blade server. Each super-peer ran on
one blade. The blades had a 2.8GHz Xeon Processor and 1 GB of main memory
each. They were interconnected by a 100MBit/s LAN. We report on two scenar-
ios here. The first one is based on the network topology of the example scenario
of Section 1 and involves 8 super-peers, 1 data stream, and 25 queries. The sec-
ond scenario uses a 4 × 4 grid topology with 16 super-peers, 2 data streams,
and 100 queries. All data streams and queries are based on real astrophysical
data. The queries were generated using query templates for selection, projection,
and aggregation queries. Constant values, e. g., in selection predicates or data
window definitions, were chosen uniformely from a predefined set of values to
enable a certain degree of shareability.

For each scenario, we compare three strategies. Data shipping simply trans-
mits the whole input data stream for each query from the data source to the
target super-peer using a shortest path in the network. The whole query evalu-
ation takes place at the target super-peer. Query shipping evaluates each query
completely at the super-peer that the data source is registered at. The query re-
sult is transmitted to the target peer again using a shortest path in the network.
This of course only works for queries that reference a single input data stream,
which is the case in our example queries used here. Finally, stream sharing uses
our previously described optimization algorithms.

Benchmark results in terms of average CPU load in percent and average net-
work traffic on network connections in kbps are shown in Figure 6 for the first
scenario. As can be clearly seen from the diagrams, query shipping leads to
massive peaks of CPU load at data stream source peers since all computation
on the respective stream is executed there. On the other hand, network traffic
caused by this strategy is comparatively low. Data shipping, as expected, causes
much more network traffic but also relatively high CPU load over the whole
range of super-peers in the network since all the data needs to be forwarded
over many peers and network connections, often even multiple times. Stream
sharing distributes computational load much better over the peers in the net-
work than query shipping and causes less overall CPU load than data shipping.
Furthermore, network traffic is also greatly reduced compared to the other two
strategies due to the effects of reusing streams for multiple queries.

The results for the second scenario in terms of average CPU load in percent
and accumulated network traffic in MBit including both, incoming and outgoing
traffic for each super-peer are shown in Figure 7. The results clearly indicate, that
our approach significantly reduces network traffic at single peers as well as overall
in the network. Note that, while data shipping transmits the whole original
data stream through the network multiple times, once for each subscription
referencing the stream as input, query shipping already significantly reduces
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Fig. 6. Extended example scenario: 8 super-peers, 1 data stream, 25 queries
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Fig. 7. 4 × 4 grid scenario: 16 super-peers, 2 data streams, 100 queries

network traffic by means of early filtering at the data stream source. However,
like data shipping, query shipping still transmits one data stream per query in
the network. Stream sharing is able to further reduce network traffic greatly
by using multi-subscription optimization, i. e., transmitting data streams in the
network only once and sharing them for satisfying multiple similar or equal
queries. CPU load is comparable to the other approaches on most peers in this
scenario, except for the peak at the data stream source node for query shipping.

We expect our approach to distribute load better over peers in larger scenarios
than the other two approaches. This expectation is confirmed by the results of
an additional test where we limited the maximum CPU load of peers to 10%
of their actual capacity and the maximum bandwith of network connections
between peers to 1MBit/s. We then used the second scenario and determined
how many queries had to be rejected by the system because no query evaluation
plan without causing overload on peers or network connections could be found.
While data shipping had to reject 47 and query shipping had to reject 35 out
of the 100 queries that we tried to register, our stream sharing approach only
rejected 2 queries in this scenario.

Of course, stream sharing does not come for free. Table 1 shows the times in
milliseconds a query took from the beginning of its registration until it was suc-
cessfully installed and executed in the network in the two benchmark scenarios.
The stream sharing approach stays within a factor of 3 of the other two much
simpler approaches. This is acceptable, since we are dealing with continuous
queries that usually remain registered over long periods of time.
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Table 1. Query registration times

Time (ms) Average Minimum Maximum
Scenario 1 2 1 2 1 2
Data Shipping 931 1363 390 265 2078 4953
Query Shipping 890 1287 284 250 2032 4802
Stream Sharing 2153 3558 509 672 5025 11855

5 Related Work

Numerous DSMSs have been proposed in recent years [7,8,9,10,11,12]. The con-
tributions presented in this paper can be used to augment existing DSMSs to
support the efficient integration of incrementally subscribed continuous queries.

The approach of optimizing query execution by computing identical or similar
parts of queries only once and reusing them multiple times for various queries
is similar to multi-query optimization [13]. However, instead of optimizing a
set of queries all at once, we incrementally optimize queries one after another
when they are registered in the network, based on the current network state.
Sharing of work between queries over streams has also been addressed in previous
work [14,15]. Our solution differs from these approaches in that we can adaptively
distribute subscription evaluation among peers in a network.

Of further interest is the problem of query containment, which has also been
discussed in the context of XML queries with nesting [16]. Query containment,
especially for XML queries, is a difficult problem. We were able to make it
manageable by exploiting the properties of our distributed system architecture.

Finally, for more details on data stream sharing, we refer to an extended
version of this paper [17].

6 Conclusion

In this paper, we have presented a subscription language, a properties approach,
a cost model, and algorithms for registering continuous queries over data streams
in P2P networks using data stream sharing. Our approach takes three steps.
First, the properties of a newly registered subscription are constructed. Second,
shareable data streams generated for answering previously registered subscrip-
tions in the network are identified by matching properties. An appropriate stream
for answering the new subscription is chosen according to a cost model that fo-
cuses on the reduction of network traffic and peer load. Finally, operators are
placed in the network to execute the new subscription. An experimental evalu-
ation confirms the effectiveness of our approach.

We are currently working on an enhanced version of the approach presented
in this paper that is able to handle nested queries and to widen data streams.
This enables the system to consider data streams for sharing that initially do
not contain all the necessary data for a new query but can be altered to do so by
changing some operators in the network. Apart from that, there are numerous



788 R. Kuntschke and A. Kemper

opportunities for future work. One is to address the issue of scalability by intro-
ducing a hierarchical network organization with several interconnected subnets
where each subnet is optimized separately.

References

1. Stegmaier, B., Kuntschke, R., Kemper, A.: StreamGlobe: Adaptive Query Process-
ing and Optimization in Streaming P2P Environments. In: Proc. of the Intl. Work-
shop on Data Management for Sensor Networks, Toronto, Canada (2004) 88–97

2. Kuntschke, R., Stegmaier, B., Kemper, A., Reiser, A.: StreamGlobe: Processing
and Sharing Data Streams in Grid-Based P2P Infrastructures. In: Proc. of the
Intl. Conf. on Very Large Data Bases, Trondheim, Norway (2005) 1259–1262

3. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the
IEEE Intl. Conf. on Data Engineering, Bangalore, India (2003) 49–60

4. W3C: XQuery 1.0: An XML Query Language (W3C Candidate Recommendation,
November 3rd, 2005) (2005) http://www.w3.org/TR/xquery/ .

5. Rosenkrantz, D.J., Hunt, H.B.: Processing Conjunctive Predicates and Queries. In:
Proc. of the Intl. Conf. on Very Large Data Bases, Montreal, Canada (1980) 64–72

6. Arasu, A., Widom, J.: Resource Sharing in Continuous Sliding-Window Aggre-
gates. [18] 336–347

7. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,
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Abstract. Patterns are concise, but rich in semantic, representation
of data. The approaches proposed in the literature and by commercial
systems for pattern management usually deal with few types of knowl-
edge artifacts and mainly concern pattern extraction issues. Little ef-
fort has been posed in designing an overall framework dedicated to the
management of different types of patterns, possibly user-defined, in an
homogeneous way. PSYCHO (Pattern based SYstem arCHitecture prO-
totype) is a recently developed tool, built on top of Oracle technologies,
for generating, representing, and manipulating heterogeneous patterns,
possibly user-defined. The aim of this paper is to present the PSYCHO
system, by discussing the underlying theory, the reference architecture,
and providing concrete examples of its usage.

1 Introduction

A pattern can be defined as a compact and rich in semantics representation
of raw data. Clusters, association rules, frequent itemsets, symptom-diagnosis
correlation, and moving object trajectories are common examples of patterns.
Pattern management is an important issue in many different contexts, such as
data mining, information retrieval, image processing, and clickstream analysis.

The specific characteristics of patterns make traditional DBMSs unsuitable
for pattern representation and management. In particular, patterns can be gen-
erated from different application contexts resulting in very heterogeneous struc-
tures. Moreover, patterns can be mined (a-posteriori patterns) but also known
by the users and used for example to check how well some data source is repre-
sented by them (a-priori patterns). To maintain the semantic alignment between
patterns and raw data it is also important to determine whether existing pat-
terns, after a certain time, still represent the data source from which they have
been generated, possibly being able to update pattern information. Finally, all
kinds of patterns should be manipulated (e.g. extracted, synchronized, deleted)
and queried through dedicated languages. All the previous reasons motivate the
need for ad hoc Pattern Management Systems (PBMSs), i.e., systems for han-
dling (storing/processing/retrieving) patterns defined over raw data [10].

Recently, several approaches have been provided for pattern management.
Scientific community efforts mainly deal with the definition of a pattern man-
agement framework providing a full support for heterogeneous patterns. In the
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3W Model [5] and in the PANDA framework [10], raw data are stored and man-
aged in a traditional way by using a DBMS whereas patterns are stored and
managed by a dedicated PBMS. In the inductive databases approach, mainly
investigated in the context of the CINQ project [6], raw data and patterns are
stored together, by using the same data model, and managed in the same way.
On the other hand, industrial proposals mainly deal with standard represen-
tation purposes for patterns resulting from data mining, in order to support
their exchange between different architectures. Examples of such approaches
are the Predictive Model Markup Language (PMML) [11] and the Java Data
Mining API (JDM) [8]. PMML simply deals with pattern representation is-
sues, providing an XML-based format to represent data mining results and the
used mining algorithm. JDM represents patterns within the Java environment
and provides manipulation support through JAVA primitives. In all these cases,
no user-defined patterns can be specified. Concerning commercial systems, the
most important DBMSs (e.g., Oracle and MS-SQL Server) provide an applica-
tional layer offering features for representing and managing typical data mining
patterns.

Even if several approaches have been proposed, an integrated environment
satisfying the requirements introduced above is still missing. Starting from these
limitations and relying on the results achieved in the context of the PANDA
Project [10], we have designed and implemented PSYCHO (Pattern based Sys-
tem arCHitecture prOtotype) [4,12], a system built on top of Oracle technologies,
for generating, representing, and manipulating heterogeneous patterns, possibly
user-defined. According to our knowledge, PSYCHO is the first proposal of a
PBMS system coping with most of the features cited above. Differently from
existing proposals, that are mainly focused on common data mining patterns
(e.g. association rules, frequent itemsets, and clusters), PSYCHO allows the de-
sign of user-defined pattern types and the management of both a-posteriori and
a-priori patterns. Moreover, by exploiting the logical model proposed in [3], it
allows the representation of pattern validity information and pattern hierar-
chies. Besides basic manipulation operations, PSYCHO supports synchroniza-
tion between patterns and raw data. Concerning query capabilities, PSYCHO, by
exploiting the power of the logical model, supports interesting queries com-
bining both data and patterns in order to get a deeper knowledge of their
correlations.

This paper is organized as follows. In Section 2, the model underlying the
PSYCHO development is briefly discussed. Details about the PSYCHO archi-
tecture are presented in Section 3, while Section 4 is focused on PSYCHO usage.
Finally, Section 5 presents some concluding remarks and outlines future work.

2 PSYCHO: The Model

PSYCHO is a prototype of a Pattern Based Management System (PBMS) ex-
ploiting the logical framework for pattern management proposed in the context
of the PANDA Project [10]. In particular, it relies on the logical model and the
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languages for pattern generation, manipulation, and querying introduced in [2,3,4].
The PSYCHO logical model used to represent patterns is based on three basic
concepts: pattern type, pattern, and class (see [3,10] for further details).

A pattern type gives a formal description of the pattern structure of each of
its instances. It is characterized by six components: (i) the pattern name n; (ii)
the structure schema ss, which defines the structure of the patterns instances of
the pattern type; (iii) the source schema ds, which describes the dataset from
which patterns, instances of the pattern type being defined, are constructed;
(iv) the measure schema ms, which is a tuple describing the measures which
quantify the quality of the source data representation achieved by the pattern;
(v) the formula f , carrying the semantics of the pattern. f is a constraint-based
formula describing, possibly in an approximate way, the relation between data
represented by the pattern and the pattern structure; (vi) the validity period
schema vs, defining the schema of the temporal validity interval associated with
each instance of the pattern type.

Patterns are instances of a specific pattern type, containing the proper in-
stantiation of the corresponding schema components in the pattern type. In
particular, the formula component of a pattern is obtained from the one in the
corresponding pattern type pt by instantiating each attribute appearing in ss
with the corresponding value, and letting the attributes appearing in ds range
over the source space.

We remark that the data source represents the overall dataset over which the
pattern has been extracted (in case of a-posteriori patterns). On the other hand,
the formula represents, in an intensional and possibly approximated way, the
specific subset of data represented by the pattern.

A class is a set of semantically related patterns and constitutes the key concept
in defining a pattern query language. A class is defined for a given pattern type
and contains only patterns of that type. A pattern may belong to any number
of classes. If it does not belong to any class, it cannot be queried.

In the context of the PANDA Project [10], some interesting relationships
supporting hierarchical pattern definition have also been proposed. Among them,
we recall: the composition relationship - between a pattern and those used to
define its structure - and the refinement relationship - between a pattern and
those belonging to its data source. PSYCHO supports the definition of complex
patterns based on refinement and composition hierarchy notions.

Based on the considered pattern model, PSYCHO provides three languages
for the management of both a-priori and a-posteriori patterns: (i) the Pattern
Definition Language (PSY-PDL), used for defining new pattern types, classes,
and mining functions, used for pattern generation; (ii) the Pattern Manipulation
Language (PSY-PML), used to perform operations such as insertion, extraction,
deletion, update, synchronization of patterns, as well as insertion or removal of
patterns into or from a class defined for the proper pattern type; (iii) the Pattern
Query Language (PSY-PQL), used to retrieve patterns and correlate them with
data they represent (cross-over queries). For all these languages, an SQL-like
syntax has been provided.
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3 PSYCHO: The Architecture

The PSYCHO [4] architecture relies on Oracle and Java technologies and it is
composed of three distinct layers as depicted in Fig.1: (i) the physical layer,
containing both patterns and data (possibly residing at different sites); (ii) the
middle layer, coinciding with the kernel of the system and supporting all func-
tionalities for pattern manipulation and retrieval; (iii) the external layer, corre-
sponding to a set of user interfaces from which the user can send requests to the
engine and import/export data in other formats. Due to design and implemen-
tation choices, the current version of PSYCHO is tightly coupled with Oracle
technology and, when possible, it allows the user to exploit the Oracle Data
Mining (ODM) server functionalities [9].

In the following, we describe each one of the PSYCHO layer (Sections 3.1,
3.2, and 3.3); then, in Section 3.4, we discuss the technology adopted for the
communication between layers.

3.1 Physical Layer

The Physical Layer contains both the Pattern Base and the Data Source.
The Pattern Base component contains pattern types, a-priori and a-posteriori

patterns, and classes. PSYCHO relies on the object-relational model of Oracle
10g [9] for pattern storage. Concerning the pattern formula, we consider two
distinct representations: an operational one, by which the formula is indeed a
predicate over data source elements implemented as an Oracle PL/SQL stored
function; a declarative one, by which the formula is just a representation of a
linear constraint formula (see the Formula Handler). Since the provided imple-
mentation of the Pattern Base exploits the Oracle logical model, the PSY-PML
and PSY-PQL interfaces are realized using PL/SQL functions and procedures
which are invoked by the Java application implementing the PBMS Engine.

Pattern

Query Processor

PML

PDL

PBMS Engine

Data Source
PBMS

GUI Import / Export

Base

Interpreter

Interpreter

PML/PDL/PQL Requests

Formula
Handler

...

Pattern Types,
Patterns,
Classes

Raw
Data

Raw
DataClasses

Pattern Types,

Mining Functions

Mining Functions

Classes,

Physical Layer

Middle Layer

External Layer

Fig. 1. The 3 layers architecture of PSYCHO
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The Data Source is a distributed repository containing raw data from which
patterns have been extracted (in case of a-posteriori patterns). Various tech-
nology can be used to store the source datasets: relational or object-relational
DBMSs, XML dataset, streams, etc. In the current PSYCHO version, raw data
are stored in Oracle 10g DBMS.

3.2 Middle Layer

The Middle Layer consists of the PBMS Engine component, which supports
all functionalities for pattern manipulation and retrieval, by adequately using
the Pattern Base and Data Sources when required. The PBMS Engine and the
Pattern Base represent the core of the PSYCHO prototype. The PBMS Engine
has been implemented in Java and is logically divided into three main sub-
modules, each of which is dedicated to parse, interpret, and execute PSY-PQL,
PSY-PML, and PSY-PDL requests, respectively, that are sent to the physical
layer components. There is also a dedicated component to handle intensional
pattern-data mapping, i.e. the pattern formula component.

The PDL Interpreter takes as input, from the higher layer, a PSY-PDL request
for a pattern type or class definition and translates it into calls to the right
functions and procedures defined in the Pattern Base.

The PML Interpreter takes as input a PSY-PML request and translates it into
calls to the right functions/procedures of the Pattern Base. Some manipulation
operations, such as, for instance, pattern extraction and synchronization, require
an interaction with the Data Source to get the data from which patterns have
to be generated. In the current release, pattern extraction is performed by using
either mining functions provided by ODM server (i.e., a variant of the A-priori
algorithm for association rules or the K-means or the proprietary O-cluster al-
gorithm for clusters) or other mining functions (possibly defined by the user)
stored in the PBMS. We outline that the Query Processor has to be invoked by
the PML Interpreter in case patterns have to be filtered (e.g. only patterns with
specific measures have to be generated, synchronized, deleted, or inserted in a
given class).

The Query Processor translates an input PSY-PQL query into calls to the
right functions and procedures defined in the Pattern Base. For non cross-over
queries, only the Pattern Base and, eventually, the Formula Handler are involved
in the query process. On the other side, to execute cross-over queries, the Data
Source may also be required. We point out that queries can also use formulas for
pattern comparison and selection. When formulas are used under the operational
semantics, the queries are executed directly by the Query Processor. On the other
hand, when they are used under the declarative semantics, the Formula Handler
module is required to execute the query. As already said, some query requests can
be generated by the PML Interpreter; in this case the Query Processor computes
the answer and sends it directly to the PML Interpreter.

The Formula Handler deals with the declarative management of formulas, i.e.,
with constraints. It is usedby thePSY-PMLandPSY-PQL interpreterswhen com-
putations over formula constraints are required. Within PSYCHO, the Formula
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Handler is implemented as a Java module, using the Jasper package [7] for inter-
acting with SICStus Prolog environment [13]. Computations over formulas con-
cern comparisons (equivalence, containment) between the specific sets of data from
which patterns have been extracted and are implemented by the Formula Handler
through typical logical operations such as equivalence or subsumption.

3.3 External Layer

The External Layer corresponds to a set of user interfaces from which the user
can send requests to the engine and import/export data in other formats. User
requests can be specified through a GUI, providing a visual environment (in the
current release, it is a simple shell), where the user can specify his/her request
using an SQL-like syntax. The Import/Export module supports the import and
the export in the PBMS of patterns already represented in standard formats
(e.g. PMML models [11]).

3.4 Communication Between Layers

As already stated, the Pattern Base is integrated within the Oracle DBMS man-
aging the Data Source. The PBMS Engine is placed immediately above the Pat-
tern Base. It creates and manages the connection with the Oracle DBMS and
the calls to the stored functions and procedures defined in the Pattern Base. The
communication between the Pattern Base and the PBMS Engine is, therefore,
the classical communication between a Java application and a DBMS, through
a JDBC driver. On the other hand, the communication between the PSYCHO
Engine and the external layer is established using the mechanism of sockets.
In this way the whole system is more flexible and a completely distributed ar-
chitecture can be realized, where the different PSYCHO components - i.e., the
pattern base, the data sources, the PBMS engine, and the external modules -
can be placed on different hosts. In details, the PBMS Engine opens a socket on
a fixed port and waits for connections from the outside. Whenever an external
module needs to communicate with the engine, it makes a connection, creates
a serializable object that encapsulate the request, and sends it to the PBMS
Engine.

4 PSYCHO: Usage

In the following, PSYCHO usage and its peculiarities in pattern management are
highlighted by considering a typical data mining scenario dealing with market-
basket association rules. Additional examples can be found at [12]. Association
rules are a well-known data mining pattern type, therefore they are managed
by any commercial system dealing with data mining [9,8]. However, PSYCHO
allows one to perform several operations that are not directly supported by other
existing tools.

We assume source data is stored in a table with schema (DSid, Item1, ...,
Itemn), where each tuple represents a sale transaction identified by DSid; Itemi
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n: AssociationRule
ss: TUPLE(head: SET(String),

body: SET(String))
ds: BAG(transaction: SET(String))
ms: TUPLE(confidence: REAL,

support: REAL)
f: ∀x(x ∈ head ∨ x ∈ body ⇒

x ∈ transaction)
vs: [start : DAY, end : DAY)

(a)

pid: 512
s: < head={’Boots’},

body={’Socks’,’Hat’} >
d: ’SELECT SETOF(article) AS transaction

FROM sales
GROUP BY transactionId’

m: < confidence=0.75, support=0.55 >
f: {transaction : ∀x(

x ∈ {′Boots′, ′Socks′, ′Hat′}
⇒ x ∈ transaction)}

v: [1-DEC-2005,31-MAR-2006)

(b)

Fig. 2. Association Rules modeling: (a) the pattern type AssociationRule and (b) one
of its pattern instance

is either 1 or 0, and Itemi = 1 means that the corresponding transaction con-
tains Itemi. According to the PANDA model, the pattern type for modeling
association rules and one of its pattern instances are shown in Fig.2(a) and 2(b).

Besides the structure - i.e., head and body in the case of association rules -
and the measures - i.e., support and confidence in the case of association rules -
in PSYCHO each pattern type is associated with three additional components:
the extensional formula, the intensional formula, and the validity period. The
extensional formula is just a PL/SQL function that takes a source dataset and
returns the subset of such dataset (possibly approximatively) represented by the
pattern. The intensional formula has the same meaning, but it is intensionally
represented through a Prolog predicate, defined by a set of linear constraints.
Note that the two formulas used by PSYCHO (i.e., the extensional one and
the intensional one) implement the formula component of the underlying logical
model under an operational and a declarative perspective, respectively. The va-
lidity period is just a temporal interval inside which we assume the information
represented by the pattern is reliable. The PSY-PDL command to create the
pattern type AssociationRule is sketched in Fig.3(a).

In the following, we show a concrete example of PSYCHO usage by describing
typical steps of a data mining process concerning pattern generation and system
population, pattern analysis and querying, and pattern maintenance.

PBMS Population and Class Management. In this step, we show how
PSYCHO can be used to: (i) use various mining functions to extract a-posteriori
patterns; (ii) directly insert a-priori patterns; (iii) create new patterns by recom-
puting existing ones; (iv) handle pattern classes.

Pattern extraction. Given a pattern type, several mining functions can be
used to extract patterns of that type from a given dataset. For example,
to mine association rules, we can use a PSYCHO proprietary Java mining
function apriori implementing the well-known Apriori algorithm. [1]. We
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CREATE PATTERN TYPE AssociationRule
STRUCTURE head CharArray, body CharArray /* CharArray is an already
defined type*/
...
MEASURE support REAL, confidence REAL
...
FORMULA EXTENSIONAL ON varDS ...
/* retrieve items in the source dataset effectively represented by a
pattern of type AssociationRule*/
FORMULA INTENSIONAL ARFormula INT; /* ARFormula INT is an existing
Prolog predicate */

(a)

CREATE PATTERN TYPE ClusterOfAR
STRUCTURE ruleset ARSET
/*ARSET is an already defined type modeling arrays of AssociationRule
references*/
...
MEASURE Svalidity REAL
...
FORMULA EXTENSIONAL ON varDS ...
/* retrieve items in the source dataset effectively represented by a
pattern of this type*/

(b)

Fig. 3. (a) PSY-PDL definition of the pattern type AssociationRules and (b) PSY-
PDL definition of the pattern type ClusterOfAR

may specify that the support of the extracted rules must be higher than 0.4
and the confidence higher than 0.7; the validity period of the extracted rules
is set from 01-jul-2005 to 10-aug-2005. Before extracting patterns, it may be
useful to create a class, called AR PSY , where extracted patterns are stored
(if no class is used, patterns are stored in the system but they cannot be used
in queries) (see Fig. 4(a)). Moreover, it is also possible to mine association
rules by using different mining functions. For instance, other association rules
can be extracted by using the mining function Apriori ODM calling the one
available in ODM [9] within a PSY-PML command similar to the previous
one.

Direct insertion. Single association rules can also be directly inserted in PSY-
CHO by using the ‘DIRECT INSERT’ PSY-PML command (see Fig.4(b)).

Recomputation. New patterns can also be generated by recomputing mea-
sures of existing ones over a new data source. Various functions recomputing
measure values for instances of a given pattern type, upon a given dataset
can be defined. For association rules, PSYCHO provides a measure func-
tion for computing confidence and support over a given data source, named
AR mf . Fig. 4(c) reports an example of pattern recomputation using this
measure function.
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CREATE CLASS AR PSY OF
AssociationRule;

EXTRACT PATTERNS OF
AssociationRule ar
FROM itemsDS 30
USING Apriori(0.4,0.7)
VALID FROM ’01-jul-2005’

TO ’10-aug-2005’
INTO CLASS AR PSY;

(a)

DIRECT INSERT PATTERN
OF AssociationRule ar
FROM itemsDS 30
STRUCTURE (
chararray(’BREAD’,’MILK’),
chararray(’JAM’,’BUTTER’,’WINE’)
)
MEASURE (0.5,0.7)
VALID FROM ’01-aug-2005’

TO ’15-aug-2005’
INTO CLASS AR PSY;

(b)

RECOMPUTE PATTERNS
OF AssociationRule ar
ON itemsDS 5
USING AR mf;

(c)

CREATE CLASS AR high support
OF AssociationRule;

INSERT INTO CLASS
AR high support ar
WHERE ar.m.support >= 0.5;

(d)

Fig. 4. Manipulation operations over AssociationRules: (a) Extraction of association
rules using the apriori mining function; (b) Direct insertion of association rules into
class AR PSY ; (c) Recomputation of association rules over dataset itemsDS 5 by
using function AR mf ; (d) Definition and population of class AR high support

Class Management. Suppose the user wants to define a class containing all as-
sociation rules having support greater than 0.5%. Such class, named
AR high support, can be created and association rules satisfying the previ-
ous condition can be inserted in it (see Fig.4(d)). The class can then be used
for query purposes.

Querying. PSY-PQL supports the following querying features: (i) simple
queries involving predicates dealing with pattern components; (ii) pattern com-
position; (iii) nested queries; (iv) pattern-data reasoning (cross-over queries). In
the following, we discuss each class of queries.

Simple queries. Simple queries allow one to select patterns from a given class,
according to a variety of predicates. In particular, PSYCHO supports selec-
tion based on two validity notions: temporal validity and semantic validity. A
pattern is temporally valid with respect to a certain date if its validity period
contains the specified date. A pattern is semantically valid with respect to a
certain dataset and a set of thresholds if the pattern measures computed over
the input datasets are better than those provided as input. Several examples
of queries checking temporal and semantic validity are shown in Table 1 (e.g.
Q2,Q4,Q7).

Pattern composition. Within PSYCHO, different types of joins are available.
In the actual release, two types of join are provided: a general one (CJOIN)
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Table 1. Several PSY-PQL queries over class AR PSY

QID Query PSY-PQL statement

Q1
Retrieve all association rules from
AR PSY with confidence greater
than or equal to 0.75

SELECT *
FROM AR PSY ar
WHERE ar.m.confidence >= 0.75;

Q2 Retrieve all association rules that are
valid on July 20, 2005

SELECT *
FROM AR PSY ar
WHERE isTvalid(ar,’20-jul-2005’)=1;

Q3
Retrieve all association rules valid
during the period August,1 - Au-
gust,10 2005

SELECT *
FROM AR PSY ar
WHERE during(ar.v,

valPeriod(’01-aug-2005’,’10-aug-2005’) )=1;

Q4

Retrieve all semantically valid rules
(with respect to their data source),
with support and confidence greater
than or equal to 0.4

SELECT *
FROM AR PSY ar
WHERE isSvalid(ar,ar.d,’AR mf’,

AssociationRuleMeasure(null,0.4,0.4))=1;

Q5

Determine all association rules with
confidence greater or equal to 0.75
or which are temporally valid in Au-
gust,15 2005

SELECT *
FROM AR PSY ar
WHERE ar.m.confidence >= 0.75

OR isTvalid(ar,’15-aug-2005’)=1;

Q6

Determine all association rules, ob-
tained as the transitive closure of two
existing association rules, having at
least two items in the body

SELECT *
FROM AR PSY ar1 CJOIN AR PSY ar2
WITH Trans closure ar
WHERE ar2.s.body.count >= 2;

Q7

Select among rules with at least con-
fidence value equal to 0.7 the ones
which are temporally valid in 15-aug-
2005

SELECT *
FROM (SELECT *

FROM AR PSY ar
WHERE ar.m.confidence >= 0.7) rule

WHERE isTvalid(rule,’15-aug-2005’) = 1;

Q8
Which data are represented by asso-
ciation rules with confidence greater
than 0.75?

DRILL THROUGH (
SELECT *
FROM AR PSY ar
WHERE ar.m.confidence > 0.75) rule;

Q9

Determine whether the association
rule with PID=1001348 is suitable
for representing a certain dataset
itemsDS 30

DATA COVERING (
SELECT *
FROM AR PSY pr
WHERE pr.PID = 1001348) ar

FOR itemsDS 30;

Q10

Determine which patterns, belong-
ing to class AR PSY and having a
confidence higher than 0.8, represent
dataset itemsDS 30

PATTERN COVERING itemsDS 30
FOR AR PSY ar
WHERE ar.m.confidence >= 0.8;

and a specific one (INTERSECT IONJOIN). The CJOIN takes two
classes and, for each pair of patterns, the first belonging to the first class, the
second belonging to the second one, it applies a specified composition func-
tion, specifying the structure of the resulting patterns. On the other hand,
the INTERSECT IONJOIN takes two classes and returns new patterns,
whose structure is a combination of the input structures and whose inten-
sional formula is the conjunction of input intensional formulas. For instance,
the user may be interested in calculating an association rule obtained as
the transitive closure of two existing association rules A ← B and B ← C
extracted from data sources D1 and D2, respectively. The new association
rule A ← C can be obtained by applying function Trans closure ar, which



Flexible Pattern Management Within PSYCHO 799

generates such a new rule by computing also a new data source, which is the
union of D1 and D2, and a new validity period, which is the intersection of
the validity periods of the two input rules. PSY-PDL supports the specifi-
cation of such composition function (see [12] for more details). Query Q6 in
Table 1 is an example of PSY-PQL CJOIN query.

Nested queries. PSY-PQL queries can also be nested. In the current version,
nesting is provided in the FROM clause (see Q7 in Table 1).

Cross-over queries. PSY-PQL supports pattern-data reasoning, i.e., it allows
the user to specify queries involving both data and patterns. Such kind of
queries are quite important in pattern management, since they allow the
user to discover interesting (possibly new) correlations between patterns and
data. Some examples of such queries are reported in Table 1 (Q8,Q9,Q10).

Advanced manipulation operations. Differently from most existing systems
and standards, PSYCHO supports various types of update operations (see Ta-
ble 2): (i) synchronization, (ii) set validity, and (iii) validate.

Synchronization. It allows the user to synchronize pattern measures with the
current data source, that may be changed with respect to its status at ex-
traction time, using a specific measure function. In order to perform this
operation a measure function defined for the pattern type of the patterns
you want to synchronize has to be used.

Validate. Validating a pattern means synchronizing it, using a certain measure
function, if the new measures are better then the original ones, or recomput-
ing it, if this condition is not satisfied.

Set Validity. Since PSYCHO supports a time validity associated with pat-
terns, a manipulation operation to update the validity period of a pattern is
provided.

Pattern Hierarchies. PSYCHO supports hierarchies of patterns, by imple-
menting refinement and composition relationships (see Section 2). Suppose we
are interested in clusters of association rules describing correlations among sold
products based on some grouping criteria (for instance, a simple clustering cri-
teria could just divide a set of association rules into two clusters based on their

Table 2. PSY-PML update operations over class AR PSY

Update Operation PSY-PML statement

Synchronize all association rules using
measure function AR mf

UPDATE PATTERNS OF AssociationRule ar
SYNCHRONIZE
USING AR mf
WHERE INCLASS(ar,’AR PSY’)=1;

Validate rules in class AR PSY

UPDATE PATTERNS OF AssociationRule ar
VALIDATE USING AR mf
WHERE inclass(ar, ’AR PSY’)=1
INTO CLASS AR PSY;

Set the validity period of all association
rules starting at 10-jun-2005 and ending
at 31-aug-2005

UPDATE PATTERNS OF AssociationRule ar
SET VALIDITY FROM ’10-jun-2005’ TO ’31-aug-2005’
WHERE INCLASS(ar,’AR PSY’)=1;
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semantic validity with respect to a certain dataset). By using PSY-PDL, a new
pattern type ClusterOfAR can be defined exploiting the refinement relation-
ship, i.e., classes of association rules previously created can be considered the
data source (see Fig.3(b)). As in the case of non-hierarchical patterns, PSYCHO
supports the manipulation and querying of hierarchical patterns.

5 Concluding Remarks

In this paper, we have presented PSYCHO, a prototype system for pattern man-
agement developed on top of Oracle. After briefly presenting the underlying data
model and architecture, we have presented an example of PSYCHO usage, based
on a common market-basket scenario. The current PSYCHO version can be ex-
tended in several ways. For example, in the current PSYCHO release, the user
interacts with the system through a simple textual shell. As a future work, we
plan to extend PSYCHO with a user-friendly GUI. Another important issue un-
der investigation consists in defining an open-source version of PSYCHO, relying
on open-source technologies. To this purpose, we are currently investigating the
opportunity of using the WEKA library [14], a collection of machine learning
algorithms for data mining tasks written in Java, as part of the PSYCHO back-
end. Finally, we plan to investigate the relationships between our manipulation
operations and adaptive/incremental mining solutions, with the aim of designing
an incremental mining environment based on database solutions.
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Abstract. Portal Catalogs is a popular means of searching for infor-
mation on the Web. They provide querying and browsing capabilities
on data organized in a hierarchy, on a category/subcategory basis. This
paper presents mining techniques on user navigational patterns in the
hierarchies of portal catalogs. Specifically, we study and implement navi-
gation retrieval methods and clustering tasks based on navigational pat-
terns. The above mining tasks are quite useful for portal administra-
tors, since they can be used to observe users’ behavior, extract personal
preferences and re-organize the structure of the portal to satisfy better
user needs and navigational habits. These mining tasks have been im-
plemented in the NaviMoz, a prototype system for mining navigational
patterns in portal catalogs.

1 Introduction

Portal catalogs provide querying and browsing capabilities on data organized in
a hierarchy on a category/subcategory basis. Users can navigate these hierarchies
to identify data of their preference. Examples of such catalogs can be found in
all popular search engines, e.g. in Google, Yahoo, OpenDirectory Project. Also,
portal catalogs of a specific subject or domain (e.g. e-marketplaces for hardware,
portals for cultural information) are provided by user communities on the Web.
Such catalogs, known as vertical portals, is a valuable collection of resources for
anyone who needs to search for information relevant to the interests of those
communities. Portal catalogs maintain large volumes of information resources
which is not possible for a single user to classify and exploit. For this reason,
they are quite popular as a means for searching information on the Web.

A key point for maintaining portal catalogs is to observe users’ behavior and
extract personal preferences in order to re-organize the structure of the portal
to satisfy better user needs. To support such tasks, current approaches [8,10,1]
examine the pages that users visit by investigating the web logs of proxy servers.
However, observing visited pages, without also paying attention to the categories
in which these pages have been classified, cannot give an indication of the user
navigational habits.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 801–813, 2006.
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Navigational habits are related with how users search and browse in the paths
of a hierarchy in a portal catalog. Paths in hierarchies provide a conceptual clus-
tering of Web pages in groups sharing common properties. During a Web page
search and browsing in a portal catalog, users may visit categories, go forward
in subcategories if they look for pages with specific content or go backwards in
more general categories if they look for Web pages with general content. We
call navigational patterns the paths that users follow in the hierarchy of a portal
catalog during a Web page search and browsing. Observing navigational patterns
can give an indication of the concepts that users are interested in, and their nav-
igational habits, and better support the maintenance of the portal catalog. For
example, knowing that the navigational pattern /gadgets/sound/mp3-players
is quite popular among users, the portal administrator may decide to put a
link for the category mp3-players in the first level of the portal hierarchy to
provide users with instant access to the list of mp3 players available. Also, dis-
covering that many users go back and forth several times within a navigational
pattern, might be an indication that the specific part of portal hierarchy is not
well-designed and users cannot easily determine which category to follow. In this
case, the administrator may decide to change that part, providing new categories
or eliminating some of the old ones.

This paper develops mining techniques on user navigational patterns in the
hierarchies of portal catalogs. Specifically, the work studies and implements nav-
igation retrieval capabilities and clustering tasks based on common navigational
patterns. The above mining tasks are quite useful for portal administrators for
customizing the structure of portal catalog according to user and navigational
habits. We next summarize the contributions of our work:

1. We introduce navigational patterns for hierarchies of portal catalogs.
2. We suggest a metric to capture the structure and content similarity between

two navigational patterns.
3. We study and implement mining tasks for user navigational patterns in the

hierarchies of portal catalogs. We develop navigation retrieval methods, and
clustering tasks based on navigational patterns. In navigation retrieval meth-
ods, given navigational patterns as input, we determine users that follow
navigational patterns which have common characteristics compared to those
input patterns. In clustering tasks, we determine user groups that share
common navigational habits.

4. The above tasks are implemented in the NaviMoz, a prototype system for
mining navigational patterns in portal catalogs.

1.1 Related Work

Bioinformatics is one of the research fields where mining patterns (similar to
navigational patterns that we study here) is a popular research issue. Biological
entities, such as proteins and molecules, consist of sequences of elements, in the
same way that the navigational patterns consist of sequences of categories of the
portal hierarchy [7,9,5]. However, in this field, user requirements are different
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and, thus, mining tasks needed are different, too (e.g. one can ask for the co-
factors of a reaction) [7].

Also, there are many approaches that exploit Web logs of proxy servers to
observe users behavior in Internet sites [4,8,10,11,17]. They are based on the
words related to the hyper-links that users click and on the keywords related
to the target Web pages. Some of those approaches [2,10] assist the creation of
user communities, that is groups of users with similar interests. In [17], a new al-
gorithm is presented, which supports sequence discovery from multidimensional
data, allowing the detection of sequences across monitored attributes, such as
URLs and http referees. As noted in the introduction, observing visited pages,
without also paying attention to the categories in which these pages have been
classified, cannot give an indication of the user navigational habits, as studied in
this paper. Thus, we believe that our work is complementary to the approaches
that exploit Web logs. For a detailed discussion on web mining techniques for
web personalization see [1].

The shape definition language (SLD) presented in [18] is also related to our
work. The SDL language is used to retrieve objects based on shapes contained
in the histories associated with these objects. The notion of shapes is close to
the notion of navigational patterns.

The rest of the paper is organized as follows. Section 2 introduces navigational
patterns in the hierarchies of portal catalog, and defines a similarity metric for
navigational patterns. Section 3 presents the mining tasks developed. Section 4
describes our prototype system, and finally, Section 5 concludes the paper.

2 Hierarchies and Navigational Patterns in Portal
Catalogs

Portal catalogs classify information resources in a semantically meaningful way.
Their purpose is to develop and maintain specific communities of interests on the
Web. Portal catalogs maintain large volumes of information resources, organized
in thematic categories. The overall structure of a portal catalog is actually a
hierarchy on a category/subcategory basis.

We can represent a hierarchy of a portal catalog as a graph structure G =
(V, E). V is the set of nodes representing categories included in the hierarchy,
and E is the set of edges representing category/subcategory relationship. Since
we represent a hierarchy of a portal catalog as a graph structure, a user can
reach a category following different paths. For example, one reaches the cat-
egory History through either Science/Social Science/History or through
Society/History.

A user, during a Web page search and browsing in a portal catalog, may visit
several categories. We call the sequence of categories in those visits navigational
patterns. We note that such patterns may include multiple occurrences of cat-
egories. This might be the result of users going back and forth several times
within a path in the graph of hierarchy.
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A key issue for developing mining tasks for navigational patterns is to be able
to estimate how similar two navigational patterns are. In the next subsection
we present a similarity metric to estimate the similarity degree between two
navigational patterns in terms of structure and content.

2.1 A Similarity Metric for Navigational Patterns

We design a similarity metric for navigational patterns in hierarchies of portal
catalogs that takes into consideration both the structure of the pattern and the
keywords used as labels for the categories.

1. To estimate the structure similarity between two navigational patterns, we
consider the elements of navigational patterns as character sequences and
we exploit the metric suggested in [12]. Such a metric is based on the mini-
mum cost sequence of edit operations needed to change one string to become
identical to another string. The set of edit operations include deletion of a
character, insertion of a character and replacement of a character with an-
other one. The calculation of the metric is based on a dynamic programming
algorithm. The final result is the sum of the costs of the considered oper-
ations divided by the sum of the lengths of the navigational patterns. The
result expresses a distance d. Thus, in order to have the similarity we should
calculate 1− d.

2. To estimate the content similarity between two navigational patterns, we
calculate the ratio of the number of occurrence of the common categories in
both patterns to the total number of categories in both patterns.

The similarity metric is calculated as the average of structure and content simi-
larity.

Let for example A =/Health/Medicine/Fitness and B=/Health/Fitness/
Running/Training/Coaching/Training be two navigational patterns. Their
structural distance is 0.55 (delete Medicine from A and insert /Running/
Training/Coaching/Training : 5 operations, total length=9). Thus, their
structural similarity is 0.45. The ratio of the number of occurrence of the common
categories in both patterns to the total number of categories in both patterns
is 4/9 = 0.44. Thus, the similarity between these two navigational patterns is
0.445.

3 Mining Tasks

We study and implement mining tasks for user navigational patterns in the
hierarchies of portal catalogs. Specifically, we develop navigation retrieval tasks
and clustering tasks based on navigational patterns.

3.1 Navigation Retrieval Tasks

In all navigational retrieval tasks, a navigational pattern is given as input. Based
on this input pattern, we can determine users that follow navigational patterns
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with common characteristics compared to the input pattern. All tasks can be
performed for a certain time period provided by the user. Specifically, we have
developed the following navigation retrieval tasks:

– Retrieval of navigations which are supersets of the input pattern. This task
identifies users whose navigational patterns contain all the categories from
the input pattern (but these are not the only ones in the user pattern),
keeping their ordering. For example, given that /Arts/Radio is an input
pattern, the following navigational patterns will be part of the answer:
• /Arts/Radio/Personalities/Henrie Phil/Personalities/Radio/
Personalities/Programs/Voice Actors

• /Arts/Radio/Guides/Directories/Directories
– Retrieval of navigations which are subsets of the input pattern. This task

identifies users whose navigational patterns contain only categories from the
input pattern (but these are not the only ones in the user pattern), keeping
their ordering. For example, given that /Arts/Radio/Guides is an input
pattern, the following navigational patterns will be part of the answer:
• /Arts/Radio
• /Arts/Guides

– Retrieval of navigations which are identical to the input pattern. This task
identifies users whose navigational patterns contain all the categories from
the input pattern (and these are the only ones in the user pattern), keeping
their ordering.

– Retrieval of the navigations which are similar to the input pattern. This task
identifies users whose navigational patterns are similar to the input pat-
tern, given a similarity threshold. The threshold is provided by the user.
A navigational pattern is retrieved as part of the answer if the similarity
metric (introduced in the previous section) between itself and the input pat-
tern gives a value that exceeds the threshold provided. We note that the
suggested similarity metric takes into consideration both the structure of
the pattern and the keywords used as labels for the categories. For exam-
ple, given that /Arts/Music is an input pattern, and the threshold is 0.70,
the pattern /Arts/Radio/Music will be retrieved (similarity=0.81), but the
pattern /Arts/Radio will not (similarity=0.62).

3.2 Clustering Tasks

In clustering tasks, we can determine user groups that share common naviga-
tional habits. All tasks can be performed for a certain time period provided by
the user. Specifically, we have developed the following tasks:

– Grouping users that follow similar navigational patterns. To support this task
we have implemented two clustering algorithms: the K-means and the single
link hierarchical clustering algorithm [13,14]. For both clustering algorithms
we exploit the similarity metric suggested in the previous section.

– Retrieval of the most popular navigations. This task identifies the naviga-
tional patterns which have been followed by the majority of users. We con-
sider such patterns as popular patterns.
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– Retrieval of the most undecided users. This task identifies users whose nav-
igational habits indicate that they are undecided during their search and
browse in the portal hierarchy. Also, it ranks the users according to how much
undecided they are. We suppose that when a user goes back and forth during
searching and browsing, he/she is an undecided user. An example of a naviga-
tional pattern which shows that the respective user is undecided is the follow-
ing: /Arts/Music/Pop/Music/Pop/Concerts/Pop/Music/Rock/Concerts.
A user whose navigational pattern is /Arts/Music/Rock/Music/Rock/
Concerts is less undecided than the former, due to lower number of back
and forth (B&F ) movements.

Next, we give an overview of clustering techniques and we discuss in detail
the single link implementation. The key point of our implementation is that
the estimation of the clustering level for single link is performed exploiting the
C-index method [16].

Clustering Algorithms. Clustering methods are usually divided into two
broad categories. Non-hierarchical methods group a data set into a number of
clusters. Hierarchical methods produce nested sets of data (hierarchies), in which
pairs of elements or clusters are successively linked until every element in the
data set becomes connected. Non-hierarchical methods have low computational
requirements, (O(kn), if for example n documents need to be grouped into k
clusters), but certain parameters like the number of formed clusters must be
known a priori. Hierarchical methods are computationally expensive, with time
requirements of O(n2), if n documents need to be clustered. However, hierarchi-
cal methods have been used extensively as a means of increasing the effectiveness
and efficiency of retrieval [20,21,22]. For a wide ranging overview of clustering
methods one can refer to [13,14]. Single link, complete link and group average
link are known as hierarchical clustering methods. All these methods are based
on a similar idea:

1. Each element of the data set to be clustered is considered to be a single
cluster.

2. The clusters with the minimum distance (i.e. maximum similarity) are
merged and the distance between the remaining clusters and the new, merged
one is recalculated.

3. While there are more than one clusters, go again to step 2.

In single link (complete link), the distance between two non-single clusters
is defined as the minimum (maximum) of the distances between all pairs of
elements so that one element is in the first cluster and the other element is in
the second cluster. In group average link, the distance between two non-single
clusters is defined as the mean of the distances between all pairs of elements
so that one element is in the one cluster and the other element is in the other
cluster.

We implemented a single link clustering algorithm using Prim’s algorithm [23]
for computing the minimum spanning tree (MST) of a graph. Given a graph G
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with a set of weighted edges E and a set of vertices V , a MST is an acyclic subset
T ⊆ E that links all the vertices and whose total weight W (T ) (the sum of the
weights for the edges in T ) is minimized. It has been shown [24] that a MST
contains all the information needed in order to perform single link clustering.

Given n navigational patterns, we form a fully connected graph G with n ver-
tices ∈ V and n(n−1)/2 weighted edges ∈ E. The weight of an edge corresponds
to the similarity distance between the vertices (trees) that this edge connects.
The single link clusters for a clustering level l1 can be identified by deleting all
the edges with weight w ≥ l1 from the MST of G. The connected components of
the remaining graph are the single link clusters. Figure 1(a) shows a graph with
7 nodes that correspond to 7 navigational patterns, and 10 edges. The weight
of an edge is the similarity distance between the involved navigational patterns.
For example the similarity distance between patterns 1 and 2 is 0.2. The missing
edges, that is the extra edges that make the graph fully connected, are those that
have weight 1. Figure 1(b) shows the minimum spanning tree of (a). Figure 1(c)
presents the graph remaining after deleting all edges with weight ≥ 0.4. There
are 2 connected components that include nodes (1, 2, 3, 6) and nodes (7, 5), re-
spectively. This indicates the presence of 2 clusters: cluster 1 with (1, 2, 3, 6) as
members and cluster 2 with (7, 5) as members. Nodes which are not connected
to other nodes will be considered as single-node clusters.
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Fig. 1. Minimum Spanning Tree (MST) detection and single link clustering at level
0.6

A stopping rule is necessary to determine the most appropriate clustering
level for the single link hierarchies. Milligan et al. present 30 such rules [25].
Among these rules, C−index [16] exhibits excellent performance (found in the
top 3 stopping rules). We next present the way we adopt the C−index in a
hierarchical clustering procedure for navigational patterns.

C−index for Hierarchical Clustering. C−index is a vector of pairs ((i1, n1),
(i2, n2), . . . , (ip, np)), where i1, i2, . . . , ip are the values of the index and n1,
n2, . . . , np the number of clusters in each clustering arrangement produced by
varying the clustering level of a hierarchical clustering procedure in p different
steps. Let l1 be the first selected clustering level, which produces an arrangement
of N1 clusters (that is n1 = N1): C1 with c1 elements, C2 with c2 elements, . . . ,
CN1 with cN1 elements. We can calculate i1 in order to have the first pair (i1, n1)
of C-index vector:
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i1 = (dw −min(dw))/(max(dw)−min(dw))

where:

1. dw = Sum(dw1) + Sum(dw2) + . . . + Sum(dwN1
), with Sum(dwi) to be the

sum of pairwise similaritites of all members of cluster Ci, 1 ≤ i ≤ n1,
2. max(dw) : the sum of the nd highest pairwise similaritites in the whole set

of data (that is, sort distances, highest first, and take the Top-nd sum),
3. min(dw) : the sum of the nd lowest pairwise similaritites in the whole set of

data (that is, sort distances, highest first, and take the Bottom-nd sum),

with nd = c1 ∗ (c1 − 1)/2 + c2 ∗ (c2 − 1)/2 + . . . + cN1 ∗ (cN1 − 1)/2 (that is
the number of all within cluster pairwise similaritites). Similarly we calculate
all values of C−index for all different p clustering levels, getting the vector
((i1, n1), (i2, n2), . . . , (ip, np)). We point out that:

– Although all pairwise similaritites are needed to compute the C-Index, this
doesn’t require any additional computation because these similaritites need
to be computed anyway for the hierarchical clustering procedure itself.

– Since multiple successive clustering levels can generate the same number of
clusters, we compute the C−Index not for each level but for each number of
clusters generated by different levels.

– The number of clusters with the lowest C−Index is chosen as the correct
clustering, as [25] suggests.

We next present the algorithm exploited to retrieve the most undecided users.

Undecided Users. To support this task, we have implemented an algorithm
which counts how many B&F movements a user has made. The term B&F refers
to a pair of categories in the hierarchy of a portal catalog. A pair of categories
(A, B) is B&F if:

– Both A and B belong to the same navigational pattern P .
– label(A) = label(B): the categories are the same.
– There is an odd number of categories (different than A and B) between A

and B in pattern P .
– label(af ter(A)) = label(before(B)) (after(A) gives the category which is

after A in the examined navigational pattern, while before(A) gives the cat-
egory which is before A in the examined navigational pattern).

According to the above, a B&F pair appears in the primitive navigational pat-
tern A/B/A. We call such B&F pairs as basic B&F s, since the patterns in which
can appear are of minimum length. The algorithm first detects the basic B&F s,
and then the others.

Input: navigational pattern
Output: number of the B&F pairs in the pattern.
Algorithm:
array BF: For every category of the input pattern, it contains its B&F partner
(i.e., the category with which it constitutes a B&F ).
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Vector P: Contains all category pairs (A, B) which are candidates for B&F s,
and the number of categories that exist between A and B.
Vectors valueVector: One vector for each category, having the place where the
category occurs in the navigational pattern.
int counter: Contains the number of B&F .

/∗Find basic B&F ∗/
for all categories

if the size of the current category valueVector >1
Check whether there are two successive occurrences in
places i and j of the category in the pattern, such that
no other category exists between places i and j.
If there are not such successive occurrences then

if one category exists between places i and j.
B&F exists for category in i and category in j
Add B&F to array BF

else
if N categories exist between places i and j,
with N odd

candidate B&F exists for category in i and
category in j

add this category pair to Vector P

Sort Vector P according to the number of categories that exist
between categories which constitute a candidate B&F.

/∗Find the rest B&F ∗/
for every pair (A,B) of the sorted Vector P

Check if the categories after(A) and before(B) form a pair in
array BF, and if so, the pair (A,B) is B&F.

Update array BF
else

Find the category in array BF that constitutes a B&F pair
together with after(A)

If that category is before(B)
Add the B&F pair to array BF

else
Find the category in array BF that constitutes a B&F pair

together with BF[after(A)]

/∗Computation of the total number of B&F ∗/
For every non-zero element of array BF, increase counter by 1.
Return counter.

An example is given in case the input to the algorithm is the navigational pattern:
r/s/m/d/m/o/m/s/f/s/f/w/f/w. The algorithm first detects the basic B&F s,
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which are the category pairs (2, 4)1 (i.e., m and m), (4, 6), (11, 13), (7, 9), (8, 10)
and (10, 12) (i.e., f and f), and updates the array BF . Vector P keeps the category
pair (1, 7) as a candidate B&F . The algorithm examines the category pair (2, 6)
and finds that there exist B&F pairs (1, 4) and (4, 6). Thus, the pair (1, 7) is
B&F .

3.3 User Identification Tasks

These tasks provide useful information regarding user identification. Specifically,
the system provides (a) user navigation retrieval for a given time period, and
(b) user session retrieval for a given time period.

4 System Description

The above tasks are implemented in the NaviMoz, a prototype system for mining
navigational patterns in portal catalogs. NaviMoz system consists of three basic
modules:

1. User Manager Module. This module provides user login operations and main-
tains the user access to the portal catalog. The users’ navigations are stored
in the database and they are further explored by the system’s manager.

2. Mining Module. This module provides all the mining tasks for navigational
patterns described in this paper.

3. Storage Module. This module is responsible for maintaining an RDBMS used
for storing users information and their navigational patterns.

NP similarity
calculation
submodule

Navigational
retrieval submodule

-K-means clustering
-Single link hierarchical
clustering

NP sim. retrieval
submodule

(NP: Navigational pattern)

User identification
submodule

NaviMoz
presentation

module

Clustering
submodule

-Login operations
-User access
-User navigation
storageUser manager

module

Mining module

Storage
module

Fig. 2. Architecture of NaviMoz

1 Numbers denote places in the navigational pattern.
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4. Presentation Module. This module supports the graphical interface of Nav-
iMoz.

The architecture of NaviMoz is presented in Figure 2, while a screen dump
showing a clustering task running is illustrated in Figure 3. Clustering has iden-
tified a cluster involving three users (Christodoulou Eleni, Kalimerh Maria and
Kanellakopoulos Haralampos) whose navigational habits are similar.

Fig. 3. Clustering task in NaviMoz

5 Conclusions

Observing user behavior and extracting personal preferences is crucial for main-
taining portal catalogs. Certain navigational habits can indicate the need to
re-organize the structure of the portal to satisfy better user needs. Observing
visited pages in a portal catalog, without also paying attention to the categories
in which these pages have been classified, cannot give an indication of the user
navigational habits.

This paper suggests a set of mining tasks on user navigational patterns in
the hierarchies of portal catalogs. Those mining tasks can help portal admin-
istrators for customizing the structure of portal catalog according to user and
navigational habits. In our work, we introduced navigational patterns for hierar-
chies of portal catalogs, and we designed a metric to capture their structure and
content similarity. Based on this metric, we implemented several mining tasks,
like navigation retrieval methods and clustering methods, for user navigational
patterns in the hierarchies of portal catalogs.

The navigational patterns can be considered as simplified Xpath queries [19].
We will extend our work to employ complex navigational patterns (e.g., branch-
ing path expressions), expressed as Xpath pattern queries. Our future plan for
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NaviMoz is to become a full-fledged generic portal management system that will
provide editing operations fully supported by the mining tasks described in this
paper.

References

1. M. Eirinaki, M. Vazirgiannis, Web mining for web personalization. ACM Transac-
tions on Internet Technology (TOIT), 3(1), 2003.

2. C. R. Anderson, E. Horvitz. A Dynamic Personalized Start Page. In Proceedings
of the 11th WWW Conference 2002.

3. A. Ajijth, V. Ramos. Web Usage Mining Using Artificial Ant Colony Clustering
and Genetic Programming. Congress on Evolutionary Computation, IEEE Press
ISBN 078-0378-04-0 pp 1384-1391, Canberra, Australia, Dec 2003.

4. X. Fang, O. R. Liu Sheng. Designing a Better Web Portal for Digital Gov-
ernment: A Web-Mining Based Approach, http://diggov.org/library/library/
dgo2005/demosb/fang designing.pdf

5. Y. Kaneta, M. Md. Munna Ahaduzzaman, T. Ohkawa. A Method of Extracting
Sentences Related to Protein Interaction from Literature using a Structure Data-
base. In Proceedings of the 2nd European Workshop on Data Mining and Text
Mining for Bioinformatics (ECML/PKDD’04), Italy, September 2004.

6. T. Kamdar. A. Joshi. On Creating Adaptive Web Sites using Web Log Mining, TR-
CS-00-05. Department of Computer Science and Electrical Engineering University
of Maryland, Baltimore Country, (2000).

7. L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu, G. Schaeffer, M. Tasan,
W. Xu . Pathways Database System: An integrated set of tools for biological path-
ways. Bioinformatics 19(8) 2003.

8. B. Mobasher, H. Dai, T. Luo, Y. Sung, J. Zhu.: Integrating Web Usage and Con-
tent Mining for More Effective Personalization. In Proceedings of the International
Conference on E-Commerce and Web Technologies, Greenwich, UK, 165-176, 2000.

9. R. G. Pensa, C. Leschi, J. Besson and J. Boulicaut. Assessment of discretization
techniques for relevant pattern discovery from gene expression data. In Proceedings
of the 2nd Workshop on Data Mining in Bioinformatics, Seattle, USA, August 2004.

10. D. Pierrakos, G. Paliouras, C. Papatheodorou, V. Karakaletsis and M. Dikaiakos.
Web community directories: A new approach to web personalization. In Lecture
Notes in Artificial Intelligence (LNAI), 3209, Springer-Verlag, 2004.

11. F. Toolan, N. Kusmerick. Mining web logs for personalized site maps. In Proceed-
ings of the 3rd International Conference on Web Information Systems Engineering
(WISE’02), 2002.

12. R. A. Wagner, M. J. Fischer, The String to String Correction Problem, Journal of
the Association for the Computer Machinery, Vol 21, No.1, pp.168-173, January
1974.

13. E. Rasmussen, Clustering algorithms, in: W. Frakes, R. Baeza-Yates (Eds.), Infor-
mation Retrieval: Data Structures and Algorithms, Prentice Hall, 1992.

14. M. Halkidi, Y. Batistakis, M. Vazirgiannis, Clustering algorithms and validity mea-
sures. In Proceedings of the SSDBM Conference, Virginia, USA, 2001.

15. T. Dalamagas, T. Cheng, K.J. Winkel, T. Sellis, A Methodology for Clustering
XML Documents by Structure, Information Systems, Elsevier, 2004.

16. L. J. Hubert, J. R. Levin, A general statistical framework for accessing categorical
clustering in free recall, Psychological Bulletin 83 (1976) 1072–1082.



NaviMoz: Mining Navigational Patterns in Portal Catalogs 813

17. Matthias Baumgarten, Alex G. Buchner, Sarabjot S. Anand, Maurice D. Mulvenna,
John G. Hughes: User-Driven Navigation Pattern Discovery from Internet Data.
74-91

18. Agrawal, R., Psaila, G., Wimmers, E.L., Zat, M.: Querying shapes of histories. In:
Proceedings of 21st International Conference on Very Large Data Bases, Morgan
Kaufmann (1995) 502–514

19. XML path language (XPath: www.w3.org/TR/xpath)
20. N. Jardine, C. J. van Rijsbergen, The use of hierarchical clustering in information

retrieval, Information storage and retrieval 7 (1971) 217–240.
21. E. Voorhees, The effectiveness and efficiency of agglomerative hierarchic clustering

in document retrieval, Ph.D. thesis, Cornell University, Ithaca, New York (Oct.
1985).

22. M. Hearst, J. O. Pedersen, Reexamining the cluster hypothesis: Scatter/gather on
retrieval results, in: Proceedings of the ACM SIGIR Conference, Zurich, Switzer-
land, 1996, pp. 76–84.

23. T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, MIT Press, 1990.
24. J. C. Gower, G. J. S. Ross, Minimum spanning trees and single linkage cluster

analysis, Applied Statistics 18 (1969) 54–64.
25. G. W. Milligan, M. C. Cooper, An examination of procedures for determining the

number of clusters in a data set, Psychometrika 50 (1985) 159–179.



An XML-Based Database for Knowledge
Discovery

Rosa Meo1 and Giuseppe Psaila2
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Abstract. Pattern Management Systems and Inductive Databases, are
proposed as a new generation of general purpose databases with the aim
to manage data mining patterns and work as knowledge bases in sup-
port to the deployment of the KDD process. One of the main problems
to be solved is the integration between data and patterns and pattern
maintenance when data update. Unfortunately, the heterogeneity of the
patterns that represent the extracted knowledge and of the different con-
ceptual tools used to find the patterns make difficult this integration in
a unique framework.

In this paper, we explore the feasibility of using XML as the unifying
framework for inductive databases, and present a model, named XDM
(XML for Data Mining). We will show the basic features of the model,
such as the storage in the same database of both data and patterns. To
store patterns, we consider determinant for their interpretation the stor-
age of the pattern derivation process which is described by the concept
of statement, based on data mining operators. Some of the statements
are automatically generated by the system while maintaining consistence
between source and derived data. Furthermore, we show how the use of
XML namespaces allows the effective coexistence of different data mining
operators and provides extensibility to new operators. Finally, we show
that with the use of XML-Schema we are able to define the schema, the
state and the integrity constraints of an inductive database.

1 Introduction

Data mining applications are called to extract descriptive and predictive pat-
terns, typically used for decision making, from the data contained in traditional
databases and from other unconventional information systems such as the web.

Inductive Databases (IDB) have been launched in [8] as general-purpose data-
bases in which both the data and the patterns can be represented, retrieved
and manipulated with the goal to assist the deployment of the Knowledge Dis-
covery Process (KDD). Thus, KDD becomes a querying sequence in a query
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language designed for a specific data mining problem. Pattern Management Sys-
tems (PMS) [12] have been proposed instead with the main concern of repre-
senting and managing in a unique system a collection of heterogeneous patterns.
Consequently, both of them should integrate several heterogeneous data mining
patterns that deal with very different, and complex data models. For example,
classification tools usually adopt a data model that is a classification tree or
rules, while basket analysis usually represent patterns by means of set enumer-
ation models. In [12] a logic-based model of a pattern management system is
studied which satisfies the basic requirements of generality, extensibility and
reusability. In [5] object oriented modeling techniques have been applied to ob-
tain a uniform model of a pattern management database. In [11] UML has been
applied, instead.

In this paper, we present a semi-structured data model specifically designed
for inductive databases and, more generally, for Knowledge Discovery Systems.
This model is called XDM (XML for Data Mining). It is based on XML and
is devised to cope with several distinctive features at the same time. At first,
it is semi-structured, in order to be able to represent an apriori infinite set of
data models. Second, it is based on two simple and clear concepts, named Data
Item (Section 2) and Statement (Section 3): a data item is a container of data
and/or patterns; a statement is a description of an operator application. Third,
with XDM the inductive database state is defined (Section 5) as the collection of
data items and statements, and the knowledge discovery process is represented
as a set of relationships between data items and statements. Fourth, with the
aid of XML-Schema1 (see the official documents [13,2] for detailed descriptions)
we define (Section 5) the concept of database schema which provides the set
of integrity constraints over the operators’ inputs and outputs and constitutes
part of the meta-data of the KDD process. The above detailed features of the
model set the foundations for the interoperability of the operators inside a unique
framework. Finally, the adoption of XML as syntactic format provides several
benefits; in particular, the concept of namespace opens the way to the integration
of several data formats and operators inside the same framework. Throughout
the paper we demonstrate the feasibility of the model to support KDD processes
presenting a sample process (Section 4).

A similar set of functionalities, i.e. the application of XML to the deployment
of the KDD process, is available also in [1] while [3] provides a framework for
extracting knowledge from XML documents. XDM, however, provides a set of
features that is peculiar to the integration of different patterns and models in
inductive databases. At first, source data and patterns are represented at the
same time in the model. Patterns may be stored either extensionally or inten-
sionally, i.e. by storing only the statements that generate the patterns. Second,
the pattern derivation process is stored in the database: this is determinant in
many situations, such as for the maintenance of the patterns (that are a kind of

1 XML-Schema specifications constrain the structure of XML documents and over-
come the limitations of classical DTDs by adding the concept of data type for at-
tributes.
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derived data) when the original data is updated, in the phase of pattern inter-
pretation and allows pattern reuse. Furthermore, the framework can be easily
extended with new data mining operators (thanks to the embedding provided by
namespaces). Thus IDB based on XDM really become open systems and a uni-
fying framework in which various KDD data transformation phases take place.
Finally, the use of XML allows the inclusion in IDB of semi-structured data.

To conclude, we want to highlight an important difference of XDM w.r.t.
other XML formats for data mining and knowledge discovery, such as PMML
[6]. PMML is a format to exchange patterns among different systems, thus it is
focused on the description of patterns. XDM is not focused on the description
of specific patterns; it is a framework for knowledge discovery activities, and
the XML structure is the suitable format to host in a flexible way different
representations for data and patterns, included PMML documents.

2 XDM Data Items

Tree Model. An XML document or fragment is represented as a tree of nodes,
called ElementNodes. An ElementNode n has a possibly empty set of at-
tributes, denoted as n.Attributes, i.e. pairs (Name : String, V alue : String)
(they are the attributes defined by the XML syntax within tags). Further-
more, an ElementNode has the following properties: the element name n.Name
and the prefix associated to the name space n.Pref ix (that, with the nota-
tion Pref ix:Name, we will use to refer to ElementNodes); the name space
r.NameSpace specifying the name space URI. Finally, an element node has a
content n.Content, which is a possibly empty sequence of ElementNode.

Definition 1: An XDM Data Item is a tree fragment defined as follows.
• The root r is an ElementNode XDM:DATA-ITEM, belonging to the stan-
dard XDM name space whose prefix is XDM. In the content r.Content, only
XDM:DERIVATION and XDM:CONTENT nodes are allowed (defined hereafter).
• The root node r has a set of attributes, r.Attributes, denoting the data item
features: Name, Date and Version. Virtual denotes if the data item is materal-
ized. �

Definition 2: The XDM:CONTENT node is an ElementNode (defined in the XDM
name space), denoted as c. The XDM:CONTENT node has no attributes, and only
one child ElementNode n in c.Content. �

Example 1: Consider the following XDM data item.
<XDM:DATA-ITEM Name="Purchases" Version="1"

Date="..." Virtual="NO" xmlns:XDM="http://.../NS/XDM">
<XDM:CONTENT>
<TRANSACTIONS>
<PRODUCT TID="1" CUST="c1" ITEM="A" PRICE="25"/>
<PRODUCT TID="1" CUST="c1" ITEM="B" PRICE="12"/>
<PRODUCT TID="2" CUST="c3" ITEM="C" PRICE="30"/>
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. . .
</TRANSACTIONS>

</XDM:CONTENT>
</XDM:DATA-ITEM>

The start tag XDM:DATA-ITEM defines the attributes for the XDM data item
named Purchases. Notice the name space definition xmlns:XDM="http://.../
NS/XDM", which says that all element nodes prefixed as XDM belong to the name
space identified by the specified URI.
This data item is materialized (Virtual="NO"); therefore the content of the
Purchases data item consists of the actual set of purchase transactions, with
the details of each purchase. �

Definition 3: A XDM:DERIVATION node is an ElementNode (defined on the
standard XDM name space), here denoted as d. In this case, d.Attributes con-
tains only one mandatory attribute, statement, which contains the identifier
of the XDM statement that generated the data item (see next sections for a
detailed discussion on derivation). This is the statement that defines how the
derived data item is generated and can be used later to recover the definition of
that data item (for instance for documentation purposes or when original data
is updated and the system needs to maintain consistency between the derived
data item and the original data).

In addition, in derived data items d.Content could be empty. This is a case
of a virtual data item (with Virtual=”YES”) that is very useful in the man-
agement and derivation of large data volumes. In fact, a virtual data item is not
materialized, but only the statement that will be used to generate the data item
is stored. This statement could be executed later, at the most convenient time
for load-balancing of the system. �

Note that the XDM:DERIVATION node is required for derived data items (it stores
the derivation process of the data item). On the contrary, a non-derived data
item contains the XDM:CONTENT node only.

Example 2: The following XDM code shows the first version of a derived XDM
data item, named Rules, containing the association rules extracted from the
source data given in input, and materialized in the database. These data items
are shown in the left hand side of Figure 1 that shows a sample KDD process.
<XDM:DATA-ITEM Name="Rules" Version="1" Date="..." Virtual="NO"
xmlns:XDM="http://.../NS/XDM">
<XDM:DERIVATION Statement="00128"/>
<XDM:CONTENT>
<AR:ASSOCIATION-RULE-SET xmlns:AR="http://...NS/DATA/AssRules">

<AR:RULE>
<AR:BODY>

<AR:ELEMENT Name="ITEM">A</AR:ELEMENT>
<AR:ELEMENT Name="ITEM">B</AR:ELEMENT>

</AR:BODY>
<AR:HEAD>
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<AR:ELEMENT Name="ITEM">C</AR:ELEMENT>
</AR:HEAD>
<AR:MEASURES>

<AR:SUPPORT VALUE="0.5">
<AR:CONFIDENCE VALUE="0.8">
<AR:AVG-PRICE VALUE="22.33">

</AR:MEASURES>
</AR:ASSOCIATION-RULE>
Other association rules

</AR:ASSOCIATION-RULE-SET>
</XDM:CONTENT>
</XDM:DATA-ITEM>

The XDM:DERIVATION node specifies (attribute Statement) the statement
whose execution generated the item (statements will be described in Section 3).
In particular, this item is generated by a statement based on the MR:MINE-RULE
operator (see Section 3) which extracts association rules from a data item.
The generated set of association rules is included in the XDM:CONTENT element.
The description of association rules included here can be in PMML or XML-
compliant. The version presented is an extension of PMML for the presence of
the ELEMENT and MEASURES nodes. ELEMENT describes (by means of Name) the
schema of the antecedent and consequent itemsets (named BODY and HEAD) in
terms of their constituting elements, as defined in the data mining statement
that generated them (generally speaking, BODY and HEAD schemas could be dif-
ferent). MEASURES helps the introduction by the users of new evaluation measures
that define the validity of association rules and that can satisfy the different re-
quirements of the various applications.

This XML fragment is based on a specific name space (with prefix AR: and its
own URI) defined for association rule sets descriptions. Note that this difference
w.r.t. the standard XDM name space is due to the fact that XDM is independent
of the operators, that can be added to the XDM-based system when necessary. In
the example, the association rule {A,B} ⇒{C} with the values of three evaluation
measures (support, confidence and an aggregate value, average of the items price
involved in the rule). �

Schema for XDM Data Items. The XML syntactic structure of XDM data items
is very rich. However, Behind this structure, we can identify the concept of
Schema. Given an XDM data item di, the schema of di, denoted as Schema(di),
is a four-tuple Schema(di) = 〈NameSpace, Pref ix, Root, xsd〉 where
NameSpace is the namespace URI on which the content of the XDM data item
is defined, Pref ix is the namespace prefix associated to the namespace URI,
root is the root node element of the XML fragment within the XDM:CONTENT
element in the data item; finally, xsd is the name of the file containing the XML-
Schema definition that defines the XML structure for documents belonging to
the specified namespace URI. For example, the schema of item in Example 2 is
〈"http://...NS/DATA/AssRules","AR","ASSOCIATION-RULE-SET","ar.xsd"〉
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3 XDM Statements

The XDM model is devised to capture the KDD process and therefore it provides
also the concept of statement. This one specifies the application of an operator
(for data manipulation and analysis tasks) whose execution causes the generation
of a new, derived data item.

Definition 4: An XDM statement s is specified by an XML fragment, whose
structure is the following.

• The root of the fragment is an element node XDM:STATEMENT denoted as s. s
has the attribute ID, which is the statement identifier.

• The Content of XDM:STATEMENT is a non empty list of XDM:SOURCE-ITEM nodes
(where each of them specifies an operator input), followed by an XDM:OPERATOR
node (describing the application of the operator), followed by a non empty list
of XDM:OUTPUT-ITEM nodes (that specify the operator output). �

Example 3: The following example shows the main features of a statement of
MR:MINE-RULE (see [9] for a complete description).

<XDM:STATEMENT ID="00128" xmlns:MR="http://.../NS/XDM">
<XDM:SOURCE-ITEM Role="RawData" Name="Purchases" Version="1"/>
<XDM:OPERATOR>
<MR:MINE-RULE xmlns:MR="http://.../NS/MINE-RULE">
<MR:GROUPING select="TRANSACTIONS/PRODUCT"common-value="@TID"/>
<MR:RULE-ELEMENT name="ITEM" select="@ITEM"/>
<MR:MEASURES>
<MR:SUPPORT threshold="0.4"/>
<MR:CONFIDENCE threshold="0.75"/>
</MR:MEASURES>

</MR:MINE-RULE>
</XDM:OPERATOR>
<XDM:OUTPUT-ITEM Name="Rules" Role="AssociationRules"
Root="MR:RULE-SET" NS="http://.../NS/DATA/Rules"/>

</XDM:STATEMENT>

The operator and its specific element nodes are defined in the name space
prefix MR. SOURCE-ITEM specifies the input of the operator providing Name and
Version number of the XDM data item while OUTPUT-ITEM identifies the output
node by means of the Name and the Root node of its tree fragment, as well as
the name space in which the output format is defined (attribute NS). The Role
attribute is exploited by the operator to distinguish the role of each data item
w.r.t. the operator application.

The MINE-RULE operator analyzes the source item named Purchases (shown
in Example 2) looking for association rules which associate values of attribute
ITEM (see MR:RULE-ELEMENT); items are selected from elements TRANSACTIONS/
PRODUCT logically grouped by the value of attribute TID, (see MR:GROUPING) since
association rules must denote regularities w.r.t. single transactions. Finally, rules
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are extracted if their evaluation measures (support and confidence) are greater
than the respective thresholds (see MR:MEASURES). �

Schema for XDM Statements. Statements are based on the XML Syntactic
structure and, as well as XDM data items, it is possible to identify the concept
of schema. Given an XDM statement s, the schema of s, denoted as Schema(s), is
a four-tuple Schema(s) = 〈NameSpace, Pref ix, Root, xsd〉 where NameSpace
is the namespace URI associated to the operator application described in
XDM:STATEMENT, Pref ix is the namespace prefix associated to the namespace
URI, root is the root element of the XML fragment describing the operator ap-
plication, xsd is the XML-Schema definition that defines the XML structure for
the operator application belonging to the specified namespace URI. For example,
the schema of the MINE-RULE statement of Example 3 is
〈"http://.../NS/MINE-RULE","MR","MINE-RULE","mr.xsd" 〉

It is important to note that data items and statements have the same concept
of schema. This is important, because it shows that they are dual: data items
and statements are really two faces of the same coin, i.e. the KDD process.

4 A Sample KDD Process

In the following we present a sample instance of a knowledge discovery process
that involves the presented XDM data items and is instantiated by the excution
of data management and data mining operators. This example will show how
XML, and XDM in particular, is suitable for the inductive database framework
and to provide effective support to the deployment of the KDD process. Figure 1
shows the sample KDD process: data items are rectangles; statements are circles
labeled with operator name and ID; edges are labeled with input/output roles
(written in italic).

In the figure, we find the application of the MINE-RULE operator on market
basket data that produces the data item Rules. Then, another operator, namely
EVALUATE-RULE, computes cross-references between rules and original data. It
is discussed in detail in the Example 4, where it retrieves the list of customers
that satisfy each association rule. Customers are then selected by a data ma-
nipulation operator, SELECT-DATA-ITEM, that performs selection on customers,
according to the association rules they satisfy. Later selected customers are joined
by operator JOIN-DATA-ITEM with the data item containing customers’ details
(named Customers). Finally, a clustering operator analyzes better the selected
customers by clustering them on their detailed data. In the following examples
we will discuss the operators and the data items generated.

Example 4: The operator EVALUATE-RULE retrieves the original data (stored in
XDM data items) for which already extracted association rules (in other XDM
data items) are satisfied. A complete description of this operator, in an SQL
version for relational databases, can be found in [10].

The application of an EVALUATE-RULE statement is shown in Figure 1. This
instance of the operator (identified by ID="00133" and reported in the following)
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RawData

Name="Cust−Clusters"

Name="Select−Cust"

Version="1"
Name="Customers"

Version="1"

ID="00136"
Clustered−Data
<CLU:CLUSTER>

RawData

Joined

<XDM:JOIN−DATA−ITEM> Input2

ID="00135"

Input1
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RawData
<MR:MINE RULE>
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Name="Rules"

Version="1"
Name="Purchases"

Version="1"
Name="My−Cust"

Fig. 1. A sample knowledge discovery process based on XDM

takes in input two XDM data items: with the role of RawData it takes the first ver-
sion of the data item named Purchases, and with the role of AssociationRules
the first version of the data item named Rules. It gives in output the first version
of a new data item, named Rules-&-Cust containing for each association rule
the list of customers for which it holds; this data item has the role Evaluated
Rules. For lack of space we omit the details of the clauses in the operators.
<XDM:STATEMENT ID="00133" xmlns:ER="http://.../NS/XDM">
<XDM:SOURCE-ITEM Role="RawData" Name="Purchases" Version="1"/>
<XDM:SOURCE-ITEM Role="AssociationRules" Name="Rules" Version="1"/>
<XDM:OPERATOR>
<ER:EVALUATE-RULE xmlns:ER="http:.../NS/EVALUATE-RULE">
. . . tags with operator clauses . . .

</ER:EVALUATE-RULE>
</XDM:OPERATOR>
<XDM:OUTPUT-ITEM Name="Rules-&-Cust" Version=’1’
Virtual="NO" Role="EvaluatedRules" Root="DATA-AND-RULE-SET"
NS="http://xdm.unito.it/NS/DATA/Data-With-Rules"/>

</XDM:STATEMENT>

Notice that the specific element nodes of the operator are defined in the
namespace ER:, corresponding to the URI "http:.../NS/EVALUATE-RULE", out-
side the standard XDM namespace.

The first SOURCE-ITEM node specifies the data item with the role of RawData;
it is the data set over which rules are evaluated. The second SOURCE-ITEM node
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specifies the data item with the role of AssociationRules, i.e. the set of asso-
ciation rules to evaluate.

The operator produces a new data item, which contains the same rules ex-
tended with the list of customers for which each rule holds. The output data
item is specified by the XDM:OUTPUT-ITEM. Evaluated association rules have a
specific role (EvaluatedRules) and in the case of this statement will be mate-
rialized (attribute Virtual=NO). The name of the output node is defined by the
Root attribute and its namespace (ERD) is defined by a NS specification. �

The data item produced by the previous statement is the following.

<XDM:DATA-ITEM Name="Rules-&-Cust" Version="1" Virtual="NO"
Date="..." xmlns:XDM="http://.../NS/XDM">

<XDM:DERIVATION Statement="00133"/>
<XDM:CONTENT>

<EAR:EVALUATED-ASSOCIATION-RULE-SET
xmlns:AR="http://.../NS/DATA/EvAssRules">
<EAR:RULE>

<EAR:BODY>
<EAR:ELEMENT Name="ITEM"> A </EAR:ELEMENT>
<EAR:ELEMENT Name="ITEM"> B </EAR:ELEMENT>

</EAR:BODY>
<EAR:HEAD>
<EAR:ELEMENT Name="ITEM"> C </EAR:ELEMENT>

</EAR:HEAD>
<EAR:SUPPORT value="0.5"/>
<EAR:CONFIDENCE value="0.8"/>
<EAR:EVALUATED-FOR>
<EAR:ELEMENT Name="CUST"> c1 </EAR:ELEMENT>
<EAR:ELEMENT Name="CUST"> c3 </EAR:ELEMENT>

</EAR:EVALUATED-FOR>
</EAR:RULE>

</EAR:EVALUATED-ASSOCIATION-RULE-SET>
</XDM:CONTENT>
</XDM:DATA-ITEM>

Notice that this data item is structurally similar to the one shown in Ex-
ample 2, named Rules. In particular, it is defined on a different namespace
associated with the prefix EAR; furthermore, for each rule an element named
EAR:EVALUATED-FOR is added, which contains the set of customers for which the
rule holds (notice that each customer is described by an occurrence of element
EAR:ELEMENT, whose attribute Name specifies the feature whose value is reported
in the content).

Example 5: We want to select now the customer identifiers that satisfy a par-
ticular association rule of interest, such as {A, B}⇒ {C}, shown in Example 2.
We perform a selection operation on Rules-&-Cust data item. The operator
SELECT-DATA-ITEM, in the XDM namespace, makes use of the SOURCE-ITEM
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and OUTPUT-ITEM nodes for the specification of the input and output, while the
OPERATOR node introduces the kind of operator. Notice the roles for the input
and output data items. The SELECT-DATA-ITEM statement follows, for which we
omitted the details for lack of space.

<XDM:STATEMENT ID="00134" xmlns:XDM="http://.../NS/XDM">
<XDM:SOURCE-ITEM Role="Input" Name="Rules-&-Cust" Version="1"/>
<XDM:OPERATOR>

<XDM:SELECT-DATA-ITEM>
. . . tags with operator clauses . . .
</XDM:SELECT-DATA-ITEM>

</XDM:OPERATOR>
<XDM:OUTPUT-ITEM Name="Select-Cust" Role="Selected" Version=’1’
Virtual="NO" Root="CONTENT"
NS="http://xdm.unito.it/NS/XDM"/>

</XDM:STATEMENT>

The output of this SELECT-DATA-ITEM statement is the first version of the
data item named Select-Cust. It will be materialized and will contain the list
of customer identifiers in EAR:ELEMENT nodes under the root node CONTENT. The
role of the data item puts in evidence that this object is a selected version of the
input. �

Example 6: Consider the XDM data item storing the details of customers.

<XDM:DATA-ITEM Name="Customers" Version="1"
Date="..." Virtual="NO" xmlns:XDM="http://.../NS/XDM">

<XDM:CONTENT>
<CUST ID="c1" SALARY="53.000" AGE="56" SEX="M" COUNTRY="FL"/>
<CUST ID="c2" SALARY="46.500" AGE="32" SEX="M" COUNTRY="VA"/>
<CUST ID="c3" SALARY="60.000" AGE="44" SEX="F" COUNTRY="CA"/>

. . . Other customers . . .
</XDM:CONTENT>
</XDM:DATA-ITEM>

Now we would like to better analyze the customers that satisfy the association
rule of interest and whose identifiers are listed in Select-Cust. In particular we
would like to perform a clusterization step that groups similar customers accord-
ing to their details. Therefore, we retrieve the details of selected customers by
joining Select-Cust with the data-item Customers. We use a data manipula-
tion operator named JOIN-DATA-ITEM, shown in the following, which combines
the element nodes in the first source data item with the element nodes in the
second data item specified by the SOURCE-ITEM nodes. The element nodes from
the first and second source items are retrieved according to a select condition
that consists in an XPath expression. Its application results in a set of valid node
pairs included under the first version of the output data item named My-Cust
under the root node CONTENT. In the following the details of the condition are
omitted for lack of space.
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<XDM:STATEMENT ID="00135" xmlns:XDM="http://.../NS/XDM">
<XDM:SOURCE-ITEM Role="Input1" Name="Select-Cust" Version="1"/>
<XDM:SOURCE-ITEM Role="Input2" Name="Customers" Version="1"/>
<XDM:OPERATOR>

<XDM:JOIN-DATA-ITEM>
. . . tags with operator clauses . . .
</XDM:JOIN-DATA-ITEM>

</XDM:OPERATOR>
<XDM:OUTPUT-ITEM Name="My-Cust" Role="Joined"
Version=’1’ Virtual="NO" Root="CONTENT"
NS="http://xdm.unito.it/NS/XDM"/>

</XDM:STATEMENT>

The ouput of this JOIN-DATA-ITEM statement, under the XDM namespace, has
role Joined that puts in evidence the nature of the output whose content is
determined by the operator inputs. Follows the new data item, named My-Cust:

<XDM:DATA-ITEM Name="My-Cust" Version="1"
Date="..." Virtual="NO" xmlns:XDM="http://.../NS/XDM">

<XDM:DERIVATION Statement="00135"/>
<XDM:CONTENT>
<EAR:ELEMENT Name="CUST"
xmlns:AR="http://.../NS/DATA/EvAssRules> c1 </ELEMENT>

<CUST ID="c1" SALARY="53.000" AGE="56" SEX="M" COUNTRY="FL"/>
<EAR:ELEMENT Name="CUST"
xmlns:AR="http://.../NS/DATA/EvAssRules> c3 </ELEMENT>

<CUST ID="c3" SALARY="60.000" AGE="44" SEX="F" COUNTRY="CA"/>
. . . Other customers . . .

</XDM:CONTENT>
</XDM:DATA-ITEM>

Notice the DERIVATION node referring to the statement that generated this
derived data item. Notice also the customer identifier in EAR:ELEMENT that comes
from evaluated rules generated by EVALUATE-RULE. It is still in the namespace
EAR of that operator, since it could still be checked and modified by that
operator. �

Example 7: Finally, to conclude our sample knowledge discovery process by
XDM, we would like to perform a clusterization step that groups similar cus-
tomers according to their details. A clustering operator is called:

<XDM:STATEMENT ID="00136" xmlns:CLU="http://.../NS/CLU">
<XDM:SOURCE-ITEM Role="RawData" Name="My-Cust" Version="1"]"/>
<XDM:OPERATOR>

<CLU:CLUSTER>
. . . tags with operator clauses . . .
</CLU:CLUSTER>

</XDM:OPERATOR>
<XDM:OUTPUT-ITEM Name="Cust-Clusters" Role="Clustered-Data"



An XML-Based Database for Knowledge Discovery 825

Version=’1’ Virtual="NO" Root="CONTENT" NS="http://.../XDM"/>
</XDM:STATEMENT>

This operator has the namespace CLU for clustering. It specifies the source
data item with the role RawData and the ouput one with a specific role. �

5 XDM Database Schema and State

Defined the two basic XDM concepts, we can formally define the concepts of
XDM database schema and XDM database state. They help us to define some
integrity constraints over the possible inputs and outputs of a given statement,
or, dually, over the possible statements that can be applied to a given data item.
These are meta data on the KDD process that can be exploited by querying the
schema of the XDM database to check (automatically by the system or explicitly
by the user) the consistence among the operations performed over the data.

Definition 5: The schema of an XDM database is a 4-tuple 〈S, I, In, Out〉,
where S is a set of statement schemas, and I is a set of data item schemas.

In is a set of tuples 〈Operator, InputRole, InputFormat〉, where Operator is
an operator whose schema is described by a tuple in S (in the form pref ix : root);
InputRole is the role expected by the operator for the input data; InputFormat
is a data item content root (whose schema is described by a tuple in I) allowed
for the role (if the operator does not require any particular data format for the
specified role, InputFormat is *).

Out is a set of tuples 〈Operator,OutputRole, OutputFormat〉 where
Operator, OutputRole and OutputFormat are analogously defined. �

Example 8: With reference to the KDD scenario described in previous exam-
ples, this is the schema of our database.
In={〈MR:MINE-RULE, RawData,*〉, 〈ER:EVALUATE-RULE, RawData,*〉,

〈ER:EVALUATE-RULE, AssociationRules, AR:ASSOCIATION-RULE-SET〉,
〈XDM:SELECT-DATA-ITEM, Input,*〉,〈XDM:JOIN-DATA-ITEM, Input1,*〉,
〈XDM:JOIN-DATA-ITEM, Input2,*〉,〈CLU:CLUSTER, RawData,*〉}

Out={〈MR:MINE-RULE, AssociationRules,AR:ASSOCIATION-RULE-SET〉,
〈ER:EVALUATE-RULE, EvaluatedRules,ERD:DATA-AND-RULE-SET〉,
〈XDM:SELECT-DATA-ITEM,Selected,*〉,〈XDM:JOIN-DATA-ITEM,Joined,*〉,
〈CLU:CLUSTER, Clustered-Data, CLU:CLUSTERS〉} �

Definition 6: The state of an XDM database is represented as a pair
〈DI : Set Of(DataItem), ST : Set Of(Statement)〉

where DI is a set of XDM data items (see Definition 1), and ST is a set of XDM
statements (see Definition 4). The following constraints hold.
• Data Item Identity. Given a data item d and its mandatory attributes Name,
and Version, the pair 〈Name, Version〉 uniquely identifies the data item d in the
database state.
• Statement Identity. Given a statement s and its mandatory attribute ID, its
value uniquely identifies the statement s in the database state.
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Table 1. Database states for the example of Figure 1

State DI ST
S0 {〈Purchases,1〉},〈Customers,1〉} ∅
S1 {〈Purchases,1〉,〈Customers,1〉,〈Rules,1〉} {00128}
S2 {〈Purchases,1〉,〈Customers,1〉,〈Rules,1〉,〈Rules-&-Cust,1〉} {00128,00133}
S3 {〈Purchases,1〉,〈Customers,1〉,〈Rules,1〉,〈Rules-&-Cust,1〉, {00128,00133,

〈Select-Cust,1〉} 00134}
S4 {〈Purchases,1〉,〈Customers,1〉,〈Rules,1〉,〈Rules-&-Cust,1〉, {00128,00133,

〈Select-Cust,1〉,〈My-Cust,1〉} 00134,00135}
S5 {〈Purchases,1〉,〈Customers,1〉,〈Rules,1〉,〈Rules-&-Cust,1〉, {00128,00133,

〈Select-Cust,1〉,〈My-Cust,1〉, 00134,00135,
〈Cust-Clusters,1〉} 00136}

• Relationship between statements and source data items. Consider an XDM
statement s. The attributes Name and Version of each XDM:SOURCE-ITEM ap-
pearing in s must denote one and only one XDM data item.
• Relationship between derived data items and statements. Consider a
derived XDM data item d. The value specified by the Statement attribute
of the XDM:DERIVATION element must identify one and only one XDM data
item. �

Example 9: With reference to the KDD process described in Figure 1 the data-
base has moved between five states that are reached after the application of each
statement, to some of the data items in DI. After each statement execution, the
statement identifier is added to ST and the output data items are added to DI. �

Observe that an XDM database is both a data item base and a statement base.
When a new statement is executed, the new database state is obtained by adding
both the executed statement and the new data item. This structure represents
the two-fold nature of the knowledge discovery process: data and patterns are not
meaningful if considered in isolation; in contrast, patterns are significant if the
overall process is described, because their meaning is clarified by the data mining
operators that generated them. Considering this, the patterns representation
provided by PMS [12] does not seem to be so specifically defined.

6 Implementation of a Prototype of the XDM System

We implemented a prototype based on the XDM framework. This prototype
demonstrated the feasibility of the approach and gave us useful indications to
study practical problems related with extensibility issues and performance issues.

The XDM System is fully realized in Java, and is based on open source com-
ponents only. The architecture of the XDM System (Figure 2) is organized in
four overlapped layers, each of them hiding the lower layers to the upper ones.

The top-most components are The User Interface and the XDM API allow
to interact with the XDM System: the XDM API is used by applications; the
User Interface is used in interactive sessions with the system.
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XDM Manager

Fig. 2. XDM System Architecture

The second layer is constituted by the XDM Manager, and by Operators,
i.e. components which implement data management or data mining operators.
XDM Manager interprets statements coming from interfaces, activates execution
of tools, exploits DB Manager to access and store both meta data and data
items. Operators, are responsible to implement the actual semantics given to
the operators; they can interact with the system through an API provided by
XDM Manager. This embedding is beneficial because it provides an inner and
immediate compatibility and security check on which operations are allowed by
operators. This is a fundamental feature of an open system where new operators
are allowed to be added freely by users at any time.

XDM Manager exploits components in the third layer: these are DB Manager,
XML Parser and XPath API components; in particular, since both XML Parser
and XPath API might be used by Operators for reading data items, XDM Man-
ager provides a controlled access to these components (in the sense that these
latter components can be exploited by various tools in Operators). For both
XML Parser and XPath API we adopted xerces XML Parser and the XPath
API library available in the xalan XSLT processor (open source implementations
developed by the Apache Software Foundation).

DB Manager encapsulates all data management operations. In particular, it
currently exploits POSTGRESQL DBMS to manage the meta-schema of the XDM
framework, and the file system to store unstructured and semi-structured data
items. This latter choice is motivated by efficiency reasons. However, we plan to
study the integration of an XML DBMS in DB Manager.

In the current version, operators read XDM items by a SAX parser, which
has the advantage of avoiding the construction and storage of the DOM tree
corresponding to their XML structure. For the future, we also plan the develop-
ment of a fast XPath interpreter on top of the parser so that only the relevant
XML fragments are identified and sent through the channel (avoiding to send
the entire XML document). Another possible solution is the usage of XML com-
pressors. Furthermore, we also plan to investigate the problem of getting data
items from different data sources, such as relational databases or native XML
database. Finally, we plan to evolve XDM system into a distributed, grid like, sys-
tem, where both distributed data sources and distributed computational sources
are connected through the Internet.
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7 Conclusions

In this paper we presented an XML-based data model, named XDM. It is de-
signed to be adopted inside the framework of inductive databases. XDM allows
the management of semi-structured and complex patterns thanks to the semi-
structured nature of the data that can be represented by XML.

In XDM the pattern definition is represented together with data. This al-
lows the reuse of patterns by the inductive database management system. In
particular, XDM explicitly represents the statements that were executed in the
derivation process of the pattern. The flexibility of the XDM representation al-
lows extensibility to new pattern models and new mining operators: this makes
the framework suitable to build an open system, easily customized by the an-
alyst. We experimented the XDM idea by means of a system prototype that
resulted to be easily and quickly extendible to new operators.
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Abstract. Users without knowledge of schemas or structured query languages 
have difficulties in accessing information stored in databases. Commercial and 
research efforts have focused on keyword-based searches. Among them, précis 
queries generate entire multi-relation databases, which are logical subsets of 
existing ones, instead of individual relations. A logical database subset contains 
not only items directly related to the query selections but also items implicitly 
related to them in various ways. Existing approaches to précis query answering 
assume that a database is pre-annotated with a set of weights, and when a query 
is issued, an ad-hoc logical subset is constructed on the fly. This approach has 
several limitations, such as dependence on users for providing appropriate 
weights and constraints for answering précis queries, and difficulty to capture 
different query semantics and user preferences. In this paper, we propose a 
pattern-based approach to logical database subset generation. Patterns of logical 
subsets corresponding to different queries or user preferences may be 
recognized and stored in the system. Each time a user poses a question, the 
system searches in a repository of précis patterns to extract an appropriate one. 
Then, this is enriched with tuples extracted from the database, in order to 
produce the logical database subset. 

1   Introduction 

The need for facilitating access in information stored in a database for users with no 
specific knowledge of schemas or structured query languages has been acknowledged, 
especially in the context of web accessible databases, as libraries, museums, and other 
organizations publish their electronic contents on the Web. Towards this direction, 
current commercial and research efforts have focused on keyword-based searches. 
Among them, précis queries are free-form queries that generate entire multi-relation 
databases, which are logical subsets of existing ones, instead of individual relations 
[10]. The logical subset of a database generated by a précis query contains not only 
items directly related to the query selections but also items implicitly related to them 
in various ways. This subset is useful in many cases and provides to the user much 
greater insight into the original data.  
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For instance, a user asking about “Woody Allen” would probably like to know a 
little bit more than that “Woody Allen is a director”. A more meaningful response 
would be in the form of the following précis: 

 “Woody Allen was born on December 1, 1935 in Brooklyn, New York, 
USA. As a director, Woody Allen’s work includes Match Point (2005), 
Melinda and Melinda (2004), Anything Else (2003). As an actor, Woody 
Allen’s work includes Hollywood Ending (2002), The Curse of the Jade 
Scorpion (2001).”  

This response provides sufficient information to help someone learn about Allen 
and identify new keywords for further searching. For example, the user may decide to 
explicitly issue a new query about “Anything Else” or implicitly by following 
underlined topics (hyperlinks) to pages containing more relevant information. On the 
other hand, given large databases, enterprises often need smaller subsets that conform 
to the original schema and satisfy all of its constraints in order to perform realistic 
tests of new applications before deploying them to production. Likewise, software 
vendors need such smaller but correct databases to demonstrate new software product 
functionality. Based on the above, support of précis queries over databases and 
generation of logical database subsets comprises an advanced searching paradigm 
helping users to gain insight into the contents of a database. 

Given a précis query, a system would first determine the schema of the logical 
database subset, i.e. the database part that contains information related to the query, 
and then extract tuples from the database with the use of appropriate SQL queries in 
order to populate this subset. The schema of the subset that should be extracted from a 
database given a précis query may vary depending on the type of the query issued and 
the user issuing the query. For instance, the logical subset corresponding to a query 
about movies would probably contain the title, year and duration of movies along 
with the names of directors and actors; whereas the logical subset corresponding to a 
query about actors would most likely contain detailed information about actors such 
as name, date and location of birth, and nationality and only titles of movies an actor 
has starred in. Furthermore, different users or groups of users, e.g., movie reviewers 
vs. filmgoers, would be interested in different logical subsets for the same query.  

Existing approaches to précis query answering assume that each entity and 
relationship of a database is pre-annotated with a weight determining its significance 
for a certain user [10]. When a query is issued, the appropriate logical subset is 
constructed on the fly based on syntactic criteria issued by the user at query time or 
pre-stored in the system. This approach has several drawbacks: dependence on users 
for providing appropriate weights and criteria for answering précis queries, difficulty 
to capture different query semantics and user preferences in the same time, and 
inefficient execution since a logical subset is generated from scratch each time a 
query is issued.  

However, as the examples above illustrate, patterns of logical subsets corres-
ponding to different queries or groups of users may be recognized and stored in the 
system. For instance, different patterns would be used to capture preferences of movie 
reviewers and filmgoers. In this context, each time a user poses a question, the system 
searches in a repository of précis patterns to extract an appropriate one. Then, this 
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précis pattern is enriched with tuples extracted from the database according to the 
query keywords, in order to produce the logical database subset. 

Furthermore, apart from the benefit of getting a pre-stored schema for a logical 
subset of a database instead of creating from scratch a new one, we exploit the 
presence of précis patterns in our framework in a two-fold manner: (a) incremental 
population of a logical database subset, and (b) pre-storing answers for the most 
frequent précis queries. 

 

Contributions. In brief, the contributions of our paper are the following. 

− We propose a pattern-based approach to logical database subset generation. Précis 
patterns may capture semantics of different précis queries or preferences of 
different user groups and improve the efficiency of generation of logical database 
subsets from précis queries.    

− We present the architecture of a system that produces logical database subsets 
according to précis queries posed by individuals using précis patterns extracted 
from the repository and describe methods that implement the required 
functionality. 

− We discuss two optimization techniques that are used to further improve the 
efficiency and effectiveness of the system: incremental population of a logical 
database subset and use of pre-stored answers. 
 

Outline. The rest of the paper is structured as follows. In Section 2, we present 
related work. In Section 3, we describe the general framework of précis queries and 
introduce précis patterns. In Section 4, we describe our approach of answering queries 
using précis patterns and we sketch the techniques used for incremental population of 
a logical database subset and pre-storing answers in the system. Finally, in Section 5, 
we conclude our results with a prospect to the future. 

2   Related Work 

The need for free-form queries has been early recognized in the context of databases. 
Motro [14] described the idea of using tokens, i.e. value of either data or metadata, 
when accessing information instead of structured queries, and proposed an interface 
that understands such utterances by interpreting them in a unique way, i.e. complete 
them to proper queries. With the advent of the World Wide Web, the idea has been 
revisited. In particular, recent approaches on keyword searches in databases [1, 2, 3, 
6, 7, 11] extended the idea of tokens to values that may be part of attribute values. An 
answer to a keyword search is a set of ranked tuples. Oracle 9i Text [15], Microsoft 
SQL Server [12] and IBM DB2 Text Information Extender [9] create full text indexes 
on text attributes of relations and then perform keyword queries. Keyword search over 
XML databases has also attracted interest recently [4, 5, 8]. 

Existing keyword searching approaches focus on finding and possibly 
interconnecting tuples in relations that contain the query terms. For example, the 
answer for “Woody Allen” would be in the form of relation-attribute pair, such as 
(Director, Name). In many cases, this answer may suffice, but in many practical 
scenarios it conveys little information about “Woody Allen”. A more complete 
answer containing, for instance, information about this director's movies and awards 
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would be more meaningful and useful instead. In the spirit of the above, recently, 
précis queries have been proposed [10] that instead of simply locating and connecting 
values in tables, they also consider information around these values that may be 
related to them. Therefore, the answer to a précis query might also contain 
information found in other parts of the database, e.g., movies directed by Woody 
Allen. This information needs to be “assembled” -in perhaps unforeseen ways- by 
joining tuples from multiple relations. Consequently, the answer to a précis query is a 
whole new database, a logical database subset, derived from the original database 
compared to flatten out results returned by other approaches. Additionally, a 
complementary research effort provides a method towards the translation of a précis 
query answer into a narrative form, in order to return results such the one in the 
introduction about “Woody Allen” [19].  

In this paper, we built upon the approach suggested in [10] and we revisit the idea 
of a logical database subset generated by a précis query by recognizing the existence 
of précis patterns, i.e. patterns of logical database subsets that capture semantics of 
different précis queries or preferences of different user groups and improve the 
efficiency of a précis query answering system.  

3   The Précis Query Framework 

3.1   Preliminaries 

We consider the database schema graph G(V, E) as a directed graph corresponding to 
a database schema D. There are two types of nodes in V:  

− relation nodes, R, one for each relation in the schema;  
− attribute nodes, A, one for each attribute of each relation in the schema.  

Likewise, edges in E are the following:  

− projection edges, , each one connects an attribute node with its container relation 
node, representing the possible projection of the attribute in the system’s answer;  

− join edges, J, from a relation node to another relation node, representing a potential 
join between these relations. These could be joins that arise naturally due to foreign 
key constraints, but could also be other joins that are meaningful to a domain 
expert. Joins are directed for reasons explained later. For simplicity in presentation, 
we assume (a) that primary keys are not composite; thus, an attribute from a 
relation joins to an attribute from another relation, and (b) that these attributes have 
the same name. For convenience, we do not depict the joining attributes in both 
relations; instead, the common name of the joining attributes is tagged on the 
respective join edge between the two relations. 

Therefore, a database graph is formally defined as a directed graph G(V, E), where: 
V = R∪A, and E = ∪J. The notation for the graphical representation of a database 
schema graph is depicted in Fig. 1. 

A weight, w, is assigned to each edge of the graph G. This is a real number in the 
range [0, 1], and represents the significance of the bond between the corresponding 
nodes. Weight equal to 1 expresses strong relationship; in other words, if one node of 
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the edge appears in an answer, then the edge should be taken into account making the 
other node appear as well. If a weight equals to 0, occurrence of one node of the edge 
in an answer does not imply occurrence of the other node. 

 

 

Fig. 1. Representation of graph elements 

Based on the above, two relation nodes could be connected through two different 
join edges, in the two possible directions, between the same pair of attributes, but 
carrying different weights. A directed join edge expresses the dependence of the 
source relation of the join on the target one. The source relation indicates the relation 
already considered for the answer and the target corresponds to the relation that may 
be included, if the join is taken into account. For simplicity, we assume that there is at 
most one edge from one node to the same destination node. 

A directed path between two relation nodes, comprising adjacent join edges, 
represents the “implicit” join between these relations. Similarly, a directed path 
between a relation node and an attribute node, comprising a set of adjacent join edges 
and a projection edge represents the “implicit” projection of the attribute on this 
relation. The weight of a path is a function of the weight of constituent edges. In 
principle, one may imagine several functions. All of them, however, should satisfy the 
condition that the weight decreases as the length of the path increases, based on 
human intuition and cognitive evidence [17].  

Consider a database D properly annotated with a set of weights and a précis query 
Q, which is a set of tokens, i.e. Q={k1,k2,…,km}. We define as initial relation any 
database relation that contains at least one tuple in which one or more query tokens 
have been found. A tuple containing at least one query token is called initial tuple. 

A logical database subset D’ of D satisfies the following: 

− The set of relation names in D’ is a subset of that in the original database D. 
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set 

of attributes in D.  
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of 

tuples in the original relation Ri in D (when projected on the set of attributes that 
are present in the result). 

The result of applying query Q on a database D given a set of constraints C is a 
logical database subset D’ of D, such that D’ contains initial tuples for Q and any other 
tuple in D that can be transitively reached by (foreign-key) joins on D starting from 
some initial tuple, subject to the constraints in C [10]. Possible constraints in C could 
include the maximum number of attributes in D , the minimum weight of paths in the 
database schema graph, the maximum number of joins, the maximum number of 
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tuples in D  and so forth. Using different constraints and weights on the edges of the 
database schema allows generating different answers for the same query.  

Weights and constraints may be provided in different ways. They may be set by the 
user at query time using an appropriate user interface. This option is attractive in 
many cases since it enables interactive exploration of the contents of a database. This 
bears a resemblance to query refinement in keyword searches. In case of précis 
queries, the user may explore different regions of the database starting, for example, 
from those containing objects closely related to the topic of a query and progressively 
expanding to parts of the database containing objects more loosely related to it. 
Although this approach is quite elegant, there is a major disadvantage: apart of the 
difficulty of browsing efficiently a database schema, per se, the user should spend 
some time with a procedure that does not seem relevant to his/her need for a certain 
answer. Weights and criteria may be pre-specified by a designer, or may be stored as 
part of a profile corresponding to a user or a group of users. 

However, finding an appropriate set of weights to annotate a database is difficult as 
we explain below. Depending on users for providing appropriate weights for 
producing meaningful answers to précis queries is not acceptable, at least for the 
majority of them. Furthermore, weights may depend on the query and the user issuing 
the query, thus finding a unique set of weights for a database capturing different query 
semantics and user preferences altogether may not be possible. Finally, in the case of 
a system serving a large number of users, generating a logical subset from scratch 
each time a query is issued turns to be time consuming. 

Therefore, in this paper, we propose a different approach. Patterns of logical 
subsets corresponding to different queries or groups of users may be recognized and 
stored in the system. For instance, different patterns would be used to capture 
preferences of movie reviewers and filmgoers. 

3.2   Précis Patterns 

Formally, given the database schema graph G of a database D, a précis pattern is a 
directed rooted tree P(V,E) on top of G annotated with a set of weights. Given a 
query Q over database D, a précis pattern P(V,E) is applicable to Q, if its root relation 
coincides with an initial relation for Q.  

The result of applying query Q on a database D given an applicable pattern P is a 
logical database subset D’ of D, such that: 

− The set of relation names in D’ is a subset of that in P. 
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set 

of attributes in P.  
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of 

tuples in the original relation Ri in D (when projected on the set of attributes that 
are present in the result). 

In order to produce the logical database subset D’, a pattern P  is enriched with 
tuples derived from the database based on constraints in C. Possible constraints can be 
the maximum number of attributes, the maximum number of tuples, and so forth.  
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DIRECTOR(did,dname,blocation, 
         bdate) 
THEATRE(tid,name,phone,region)  
PLAY (tid,mid,date),  
GENRE(mid,genre) 
MOVIE(mid,title,year,did) 
CAST (mid,aid,role) 
ACTOR(aid,aname,blocation,bdate) 
 

Fig. 2. An example database graph 

P1 P2

(a) group of filmgoers 
P3 P4

(b) group of movie reviewers  

Fig. 3. Example précis patterns 

3.3   An Example Database  

Consider a movies database [16] described by the schema presented in Fig. 2; primary 
keys are underlined. The corresponding database graph is depicted in Fig. 2 too. On 
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top of this graph, précis patterns may be recognized and stored in the system. Patterns 
may correspond to different queries. In Fig. 3, P1 and P2 are patterns corresponding to 
different types of queries, i.e. regarding movies and directors, respectively (as 
indicated by the initial relations colored grey in each pattern). Different précis 
patterns may be also used to capture preferences of different groups of users. For 
instance, P3 and P4 are different patterns regarding movies and directors, respectively. 
P1 and P2 might capture preferences of filmgoers whereas P3 and P4 might correspond 
to movie reviewers. Assume that, P1 captures the fact that a filmgoer would be 
interested in information about theatres playing specific movies, while a movie-
reviewer would not, as expressed in P3.  

From the discussion above, it becomes apparent that there is an n-to-m 
correspondence between (group/user) profiles and patterns. As Fig. 4 shows, a pattern 
Pi  may be used by more than one profile and a profile Gj may involve more than one 
pattern.  

 

Fig. 4. Correspondence between patterns and profiles 

Although an extensive analysis of précis patterns creation procedures is out of the 
scope of this paper, as an example, we refer two typical ways:  

Manual creation. Pre-specified patterns may be created by a designer targeting 
different groups of users and different types of queries for a specific domain.  

Semi-automatic creation. The system is trained using logs of queries that domain 
users have issued in the past. No matter how précis patterns are initially created, the 
system may adapt those associated with a specific user by learning from the queries 
this user submits to the system. In this way, the system may provide personalized 
answers to précis queries. 

4   Answering Queries Using Précis Patterns 

In this section, we describe a framework that generalizes the usage of précis queries 
based on patterns.  

System Architecture. The system architecture of our approach is depicted in Fig. 5. 
Each time a user poses a question, the system finds the initial relations that match this 
query, i.e. database relations containing at least one tuple in which one or more query 
tokens have been found (Keyword Locator). Then, it searches in a repository of précis 
patterns to extract an appropriate one (Précis Manager). If an appropriate pattern is 
not found, then a new one is created and registered in the repository. Next, this précis 
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pattern is enriched with tuples extracted from the database according to the query 
keywords, in order to produce the logical database subset (Database Generator). 

 

Fig. 5. System architecture 

In more details, first, the user submits a précis query Q={k1,k2,…,km}. A set of 
constraints C may be additionally provided to determine tuples extracted from the 
database, in order to produce the logical database subset.  The following steps are 
performed. 

Keyword Locator. An inverted index associates each keyword that appears in the 
database with a list of occurrences of the keyword. Modern RDBMS’ provide 
facilities for constructing full text indices on single attributes of relations (e.g., 
Oracle9i Text). However, in our approach, we chose to create our own inverted index 
(technical details are out of the scope of this paper, but can be found in [18]), 
basically due to the following reasons: (a) a keyword may be found in more than one 
tuple and attribute of a single relation and in more than one relation; and (b) we 
consider tokens of other data types as well, such as date and number. Based on this 
inverted index, Keyword Locator returns for each term ki in Q, a list of all initial 
relations, i.e. ki→ {Rj}, ∀ki in Q. (If no tuples contain the query tokens, the following 
steps are not executed.) 

Précis Manager. Next, instead of creating an ad-hoc logical subset for the particular 
query and user, Précis Manager searches into the repository of précis patterns to 
extract those that are appropriate for the situation. If users are categorized into groups, 
then this module examines only patterns assigned to the group the active user belongs 
to. Based on the initial relations identified for query Q, one or more applicable 
patterns may be identified.  

Précis patterns are directed rooted trees P(V,E) that are stored in a graph database 
depicted as Précis Patterns in Fig. 5. An indexing mechanism Index is needed for the 
search in the graph database. For this purpose, we adopt GraphGrep presented by 
Shasha et al. [20]. Recall that a précis pattern P(V,E) is applicable to Q, if its root 
relation coincides with an initial relation for Q. Thus, given the initial relations and a 
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group of users, the index outputs the appropriate patterns. If none is returned for a 
certain initial relation, then the request is propagated to the Schema Generator. This 
module is responsible for finding which part of the database schema may contain 
information related to Q. The output of this step is the schema D  of a logical database 
subset comprised of: (a) relations that contain the tokens of Q; (b) relations 
transitively joining to the former, and (c) a subset of their attributes that should be 
present in the result, according to the preferences registered for the user that poses the 
query. (For more details, we refer the interested reader to [18].) After its creation, the 
schema of the logical database subset is stored in the graph database as a pattern 
associated with the group that the user submitting the query belongs to. Moreover, it 
is further propagated to the Database Generator through the Précis Manager module. 
The whole procedure is formally described by the algorithm EP depicted in Fig. 6. 

Algorithm Extraction of a Précis Pattern (EP)
Input: a set of initial relations R, a group of users U, a set of stored patterns P
Output: a set of logical database subsets D’
Begin
  D’={};
  For each initial relation R R

If (Index(R,U)!=null) {
      P = Index(R,U); 

else
      P = Schema_Generator(R,U); 

P = P  P;
}

    D’ = D’  P; 
  End for 

Return D’;
End.

 

Fig. 6. The algorithm EP 

For instance, a user belonging to the group of filmgoers of Fig. 3 issues the query 
“1960”. Keyword Locator returns two initial relations, DIRECTOR and MOVIE, 
because this token is found in the field BDATE of the former and in the field YEAR of 
the latter. Then, Précis Manager identifies two applicable patterns, P1 and P2. 

Database Generator. Subsequently, Database Generator enriches patterns with 
tuples extracted from the database. On each pattern, it starts from the initial relation 
where tokens in Q appear. Then, more tuples from other relations are retrieved by 
(foreign-key) join queries starting from the initial relation and transitively expanding 
on the database schema graph following edges of the pattern. Joins on a précis pattern 
are executed in order of decreasing weight. In this way, relations that are most related 
to a query are populated first. Any relations that may not be eventually populated due 
to constraints in C would be the ones most weakly connected to the query. In other 
words, a précis pattern comprises a kind of a “plan” for collecting tuples matching the 
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query and others related to them. At the end of this phase, the logical database subset 
has been produced. 

Formally, given are a database D, a pattern P, and optionally a set of constraints C 
(e.g., maximum total number of tuples, maximum number of tuples per relation and 
so forth). For the initial relation of P, the list of tuples containing query tokens is 
considered. This is an initial logical database subset Do corresponding to pattern P. 
The set of possible logical database subsets corresponding to P in order of increasing 
cardinality is defined as follows:  

D1 ← Do   R1   ,   D2 ← D1   R2   ,   …   ,   Dnj ← Dnj-1   Rnj 

At any point, a relation Ri is joined to Di-1 if there is a join edge in P  between this 
relation and a relation already populated in Di-1. If more than one join may be 
executed, these are considered in order of decreasing weight. In this way, relations in 
D that are most related to the query are populated first. Any relations that may not be 
eventually populated due to the constraints would be the ones most weakly connected 
to the query. A logical database subset Di contains all tuples also contained in Di-1 
plus any tuples from D that join to those through the corresponding join. According to 
the constraints, the result database D  is a database Dc, such that: 

c = max( { t | t∈[0,nJ]: constraints in Dt hold } ) 

For each relation Ri, a subset of its tuples, Ri , is found in the result D , projected 
on the set of attributes that are present in the result. 

Optimization Issues. Apart from the benefit of getting a pre-stored schema for a 
logical subset of a database instead of creating from scratch a new one, we further 
exploit the presence of précis patterns in our framework in a two-fold manner: (a) 
incremental population of a logical database subset, and (b) pre-stored answers to the 
most frequent précis queries.  

Consider the following scenario: a user submits a query, and the system returns an 
answer, similar to the one presented in the introduction, in which certain keywords are 
hyperlinks. Clicking one of them fires a new query involving the corresponding 
keywords. The latter query is executed by the system and returns a new subset of 
information. The interesting problem is that this new query may specify results that 
have already been part of the initial system answer. We discriminate two possible 
cases: these results may be either presented to the user or not. However, in both cases, 
it would be desired to avoid re-computing them again.   

For instance, assume that the initial query contained a keyword that identifies a 
director. Then, a possible system answer would contain, among others, a set of several 
movies, along with the names of their star actors, which could be transformed to 
hyperlinks. If the search continues with one of the actors, then the movies that he/she 
has participated in are a superset of the movies presented in the precedent answer. In 
such case our system incrementally populates the respective pattern for the new 
query. 

Moreover, as practice shows, several keywords are more often posed than some 
others. According to this, we can keep track of the search history and maintain in the 
inverted index an extra attribute that stores for each keyword the frequency of its 
occurrences in queries submitted in the past. In our approach, we take into account the 
most frequently used keywords along with other parameters, such as the complexity 
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of a pattern, in order to decide which patterns should be populated in advance. The 
threshold that determines which logical subsets should be populated is subject of 
further experimentation and tuning, inasmuch as the extent to which each database 
differs from another.  

At this point, it is noteworthy to underline the difference between the notion of a 
précis pattern and the classical definition of a view. A view returns a single relation, 
whereas a précis pattern represents the schema of a full-fledged database, which is the 
logical subset of another database, thus, containing multiple relations along with their 
relationships and constraints. 

5   Conclusions 

In this paper, we revisit the idea of a logical database subset generated by a précis 
query by recognizing the existence of précis patterns, i.e. patterns of logical database 
subsets that capture semantics of different précis queries or preferences of different 
user groups and improve the efficiency of a précis query answering system. In this 
context, each time a user poses a question, the system searches in a repository of 
précis patterns to extract an appropriate one. Then, this précis pattern is enriched with 
tuples extracted from the database according to the query keywords, in order to 
produce the logical database subset. Further optimization techniques are discussed. 

Future work includes extension of the aforementioned methods toward the efficient 
capture and maintenance of précis patterns, the treatment of précis queries with 
complex semantics, e.g., involving multiple keywords as input combined with several 
operators, and the tuning of Database Generator. Another challenging issue is the 
extension of précis queries to provide ranked or top-k results. 
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Abstract. Reactivity, the ability to detect and react to events, is an
essential functionality in many information systems. In particular, Web
systems such as online marketplaces, adaptive (e.g., recommender) sys-
tems, and Web services, react to events such as Web page updates or
data posted to a server.

This article investigates issues of relevance in designing high-level
programming languages dedicated to reactivity on the Web. It presents
twelve theses on features desirable for a language of reactive rules tuned
to programming Web and Semantic Web applications.

1 Introduction

A common perception of the Web is that of a distributed repository of hyper-
media documents with clients (in general browsers) that download documents,
and servers that store and update documents. Although reflecting a widespread
use of the Web, this perception is not completely accurate.

In fact, many Web applications build upon servers or clients updating data
in reaction to events or to messages exchanged on the Web. Examples are on-
line marketplaces, adaptive (e.g., recommender) systems, and Web services. The
Web’s communication protocol, HTTP, provides an infrastructure for exchang-
ing events or messages. In addition, SOAP provides conventions for exchanging
structured and typed information on the Web as XML messages. For transport
of messages between Web nodes, SOAP can use HTTP (or other protocols).

This article first argues that complementing HTTP and SOAP with high-
level languages for updates and reactivity is needed for both standard Web and
Semantic Web applications. It then presents twelve theses on features desirable
for a language of reactive rules tuned to programming Web applications.

After providing motivation and background (Section 2), this article succes-
sively addresses the need for ECA rules on the Web (Section 3), paradigms
for communicating events between Web sites (Section 4), specifying composite
events (Section 5), specifying conditions as Web queries (Section 6), specifying
state-changing actions (Section 7), structuring constructs for rules and programs
(Section 8), and additional issues (Section 9). The views reported about in this
article have emerged during the design of the Web and Semantic Web query
language Xcerpt [1,2] and of the reactive Web language XChange [3,4], as well
as from experiences with programming in Xcerpt and XChange [5,6].

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 842–854, 2006.
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2 Motivation and Background

Updates on the Web Many Web applications build upon servers that update
data according to client requests or actions. This is the case in online market-
places that receive and process orders, e-learning systems that select and deliver
teaching materials depending on a student’s test performances, recommender
systems that select goods or services depending on a customer’s previous orders
or expressed preferences, and communication platforms such as Wikis, where
several users modify the same documents. Conversely, some Web applications
also build upon clients that update data according to server requests: a server
can request a client to store information in a cookie. Typically a cookie is used to
store information such as user identification or the contents of a user’s shopping
basket on the client-side. The server can then later retrieve this information,
thus freeing the client-side user from reentering this information.

Reactivity on the Web. Many Web applications not only build upon the updating
of data, but also upon complex reactions to messages or events exchanged not
only between clients and servers but also (via servers) between clients. This is the
case when contributors to a Web-based communication platform are informed
of other contributors joining or leaving a session. It is the case for Web-based
business management systems, e.g., for business travel applications, planning,
and reimbursement in large companies, that rely upon complex workflows of
actions and messages, possibly realized using Web services. It is also the case
for Web-based systems offering context-dependent services, e.g., a time- and
location-dependent car park directory that adapts the information it delivers
and reacts to changes.

Updates and Reactivity on the Semantic Web. Updates and reactivity are as
much a Semantic Web issue as they are a standard Web issues. The application
scenarios stressed above might involve both standard Web and Semantic Web
data and techniques, such as HTML, XML, RDF, Topic Maps, and OWL data,
as well as inference from RDF triples. For example, e-commerce offers might be
described by RDF meta-data and an e-learning system might refer to inference
rules expressed in terms of RDF triples, RDF Schema, and OWL.

Infrastructure. The basis for updates and reactivity is that Web sites inform each
other about update requests and events by exchanging messages. The Hypertext
Transfer Protocol (HTTP) [7], the Web’s communication protocol, allows Web
sites to send data to each other. The important commands are GET, which is
primarily used to retrieve data identified by a URI, and POST, which is pri-
marily used to send data to some Web resource (again identified by a URI).1

A framework for message exchange on the Web is given by SOAP [8].2 SOAP’s
1 Data can also be sent from the client to the server using GET. Though against the

original philosophy of HTTP (GET should not have side-effects), this use is quite
common.

2 “SOAP” was originally an acronym for “Simple Object Access Protocol,” but this
name has been dropped with SOAP 1.2 as the concern is rather object inter-
operability than object access.
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main components are (1) message envelope and (2) transport binding. The en-
velope defines an XML format for representing message content and processing
information. It consist of the header, which provides information about the mes-
sage (e.g., date when sent), and the body, which carries application-dependent
data (the “payload”). The transport binding specifies the method used to com-
municate a message from one node to the other via some lower-level protocol
such as HTTP or SMTP (Simple Mail Transfer Protocol [9]).

High-level Languages. Cost-efficient development of Web applications such as
those mentioned above requires high-level languages tailored to updates and
reactivity. Although HTTP and SOAP help implement updates and reactivity
on the Web, more abstract and higher-level languages are needed that

– abstract away network communication and system issues,
– ease the specification of complex updates of Web resources (e.g., XML, RDF,

and OWL data),
– are convenient for specifying complex flows of actions and reactions on the

Web.

The need for high-level Web update and reactive languages is similar to the
need for high-level (Semantic) Web query languages (see [10] for a survey). High-
level reactive languages will complement, not replace, HTTP and SOAP.

3 The Need for ECA Rules on the Web

Thesis 1: High-level reactive languages are needed on the Web.
Event-Condition-Action rules are well-suited to specify reactivity on
the Web. In particular, they are better suited than production rules
for a large class of Web applications.

High-level reactive languages are needed on the Web. Programming reactive
behavior using the primitives of the Hypertext Transfer Protocol, HTTP, (such
as POST and GET) is rather cumbersome and distracts from the principal task.
Efforts like the Common Gateway Interface (CGI) or Application Programming
Interfaces to access Web Services and exchange SOAP messages such as the Java
API for XML Web Services (JAX-WS) seek to overcome this burden of low-
level programming. These efforts are based on general purpose programming
languages not specifically tailored for the Web and for reactivity.

Rules are very convenient for a high-level expression of reactive behavior. This
is amply demonstrated by the intensive use of reactive, also called “dynamic,”
rules among other kinds of “business rules.”

A rule-based approach to reactivity on the Web provides the following benefits
over the conventional approach using (imperative or object-oriented) general
purpose programming languages:

– Rules are easy to understand for humans. Requirements specification often
already comes in the form of rules expressed either in a natural or formal
language.
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– Rule-based specifications are flexible, therefore easy to adapt, alter, and
maintain as requirements change, which is quite frequently the case with
business rules.

– Rules are well-suited for processing and analyzing by machines. Methods for
automatic optimization, verification, and transformation into other types
of rules (e.g., derive ECA rules from integrity constraints) have been well-
studied and applied successfully in the past.

– Rules can be managed in a single rule base as well as in several rule bases
possibly distributed over the Web.

Common reactive rules are production rules, also called Condition-Action
(CA) rules, and Event-Condition-Action (ECA) rules.3 Production rules have
the form “if condition do action” and specify to execute the action automatically
when the condition (typically expressed as a query to data in some fact base)
becomes true (in general due to previous actions). In contrast, ECA rules have
the form “on event if condition do action” and specify to execute the action
automatically when the event happens, provided the condition holds.

On the Web, reactive rules explicitly referring to events, i.e., Event-Condition-
Action (ECA) rules, are more appropriate than production rules without explicit
reference to events for the following reasons:

– “Real-world reactive rules” often come with an explicit specification of an
event, for example: “a credit card application (event) will be granted (action)
if the applicant has a monthly income of more than EUR 1 500 and no
outstanding debts (condition).”

– Events exchanged as messages between Web nodes are a natural, high-level
communication paradigm, also exploited in Service-Oriented and Event-
Driven Architecture.

– Events can carry data between Web nodes that is relevant for the condition
and action part of a rule.

– ECA rules allow an easy handling of errors and exceptional situations that
can conveniently be expressed as (special) events.

Finally, in situations where production rules are more appropriate, it is often
possible to derive ECA rules automatically or semi-automatically from produc-
tion rules4 and provide an efficient implementation mechanism this way.
3 In some works, the term production rules is used to mean both ECA and CA rules.

We use it here in the more customary sense meaning only CA rules.
4 It is tempting to claim that the production rule “if C do A” can be trivially ex-

pressed as the ECA rule “on true if C do A”, where true matches any event. In
general, this is however not the case: the production rule fires only once, when the
condition becomes true. The ECA rules fires every time an event happens, as long
as the condition holds. Only with further assumptions, such as that the action is
idempotent (executing it a second time has no further effects, e.g., insertion into a
set) and not undone by some other action while the condition holds (e.g., once the
insertion of an item is made, it will not be deleted), the above production rule and
ECA rule are equivalent.
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Thesis 2: Reactive Web rules should be processed locally and act
globally through event-based communication and access to persistent
Web data.

Reactive Web rules should be processed locally at each Web site. In particular,
each Web site manages its own rule base and determines locally which of the rules
fire. Approaches assuming a central rule processing entity are not suitable for
the Web’s highly distributed and loosely coupled architecture. Even distributed
approaches that assume collaboration and cooperation between different Web
sites for rule processing are too tightly coupled for the Web.

Observe that requiring rules to run locally does not make any restrictions on
their source: rule interchange formats such as the one developed at W3C [11]
allow a Web site to incorporate rules from documents anywhere on the Web or
receive rules as messages from other Web sites. An example where rule exchange
by messages is necessary will be given in Thesis 11.

Global behavior can be achieved by using event-based communication. Local
reactive rules can generate new events which are sent to remote Web sites, where
they in turn trigger other (remote) reactive rules. This also enables Web sites to
coordinate and synchronize activities in a choreography-based manner without
a central coordinator. Further, reactive rules should be able to access data from
anywhere on the Web, for example, query a (remote) RDF document identified
by its URI. (See Thesis 4 for the distinction of event data and persistent Web
data.)

4 Event Communication Paradigms

Thesis 3: Events are best exchanged directly between Web sites in
a push manner.

Because of the Web’s decentralized architecture, events must be exchanged
directly, point-to-point, between Web sites without the involvement of central
servers, super-peers, and the like.

Events are best sent in a push manner from the Web sites where the event
happens or originates to other interested Web sites. Periodical polling, where
interested Web sites retrieve remote Web resources periodically to check if an
event has happened, is less favorable since it causes more network traffic, in-
creases reaction time, and requires more local resources.

5 Specifying Composite Events: Towards High-Level
Event Query Languages

Thesis 4: Events are volatile data and should be kept distinct from
persistent data.

On a reactive Web, there are two kinds of data: “normal” data from Web
resources such as XML or RDF documents (“persistent data”) and data from
events (“volatile data”). “Normal” Web data is retrieved upon request in a pull
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manner, persistent, and can be modified. It typically signifies a state of (an ab-
straction of) the world. Event data is communicated between Web nodes (typi-
cally in a push manner), volatile, and not modifiable. It is typically used to signal
changes in state.

The distinction of persistent data and volatile data can be illustrated with a
metaphor. Persistent data is like (computer-)written text. Once produced, it is
available permanently for anyone to read (or rather anyone who is allowed to
do so). Later, the text can be modified directly by editing it. Volatile data is
like spoken words. Once a sentence is spoken, its information is available only to
the listeners and only as long as they remember. A spoken sentence cannot be
changed; the only way to correct, complete, or invalidate its information then is
through speaking new sentences.

Due to their different nature, there should be a clean separation of persistent
Web data and volatile event data in a reactive language. It should be ensured
that volatile data stays volatile, i.e., is disposed of after finite time. This avoids
growing storage requirements for event data. If some data from an event must
be stored indefinitely, it should explicitly be made persistent in a Web resource.
Most importantly, not having a clean separation of Web data and event data
could lead to a “shadow Web,” a hidden collection of (then non-volatile) event
data that lives in parallel to the normal Web with its persistent Web resources.

Thesis 5: Recognizing composite events is essential for a reactive
Web language. Composite events are conveniently specified by (event)
queries. There are (at least) four complementary dimensions to event
queries: data extraction, event composition, temporal conditions, and
event accumulation.

Often, a situation that requires a reaction cannot be detected from a single
incoming event (called atomic event henceforth). For example, the cancellation
of a flight (atomic event) might not by itself require a reaction by a passenger.
However, if a flight has been canceled, and there is no notification within the
next two hours that the passenger is put onto another flight, this might well
require a reaction.

Such situations are called composite events (as opposed to single atomic
events), and they are especially important on the Web: In a carefully developed
application, atomic events might suffice as designers have the freedom to choose
events according to their goal. On the Web, however, many different applications
are integrated and have to cooperate. Situations which have not been considered
in an application’s design must then be inferred from several atomic events.

Composite events as patterns of events do not exists explicitly “by them-
selves” in the stream of incoming atomic events. Rather they are implicit and
the patterns are conveniently specified by event queries.

There are at least the following four complementary dimensions that need to
be considered for an event query language:

– Data extraction: Event messages contain data that is relevant to whether and
how to react. The data must be provided (typically as bindings for variables)
to the condition and action part of an ECA rule.



848 F. Bry and M. Eckert

– Event composition: To support composite events, event queries must support
composition constructs such as the conjunction, disjunction, and negation
of events (or more precisely of event queries).

– Temporal conditions: Time plays an important role in many reactive Web
applications. Event queries must be able to express temporal conditions such
as “events A and B happen within 1 hour and A happens before B.”

– Event accumulation: Event queries must be able to accumulate events of
the same type to aggregate data or detect repetitions. For example, a stock
market application might require notification if “the average over the last 5
reported stock prices raises by 5%,” or a service level agreement might require
a reaction when “3 server outages have been reported within 1 hour.”

Some applications might also require features not mentioned above such as
event instance selection (choose only one out of several available answers to an
event query) or event instance consumption (“use-up” atomic events so they are
not available for generating future answers) [12].

Thesis 6: A data-driven, incremental evaluation of event queries is
the approach of choice.

A data-driven evaluation of (composite) event queries is the best-suited ap-
proach. It can work incrementally and is thus preferable for efficiency reasons:
work done in one evaluation step of an event query should not be redone in future
evaluation. For example, the composite event query “events A and B happen”
requires to check every incoming event if it is A or B and thus multiple evalua-
tion steps. When event A is detected, we want to remember this for later when B
is detected to signal the composite event. In contrast, a non-incremental, query-
driven (backward-chaining) evaluation would have to check the entire history of
events for an A when a B is detected.

6 Specifying Conditions: Embedding a Web Query
Language

Thesis 7: Data from persistent Web resources plays an essential role
for Web reactivity. A reactive language thus should embed or build
upon a Web query language.

A reactive Web language has to integrate in the current Web of retrievable,
persistent data sources. Programmers must be able to easily access and query
persistent Web data. Querying XML, RDF, and other Web data is well-studied
and a multitude of query languages have been devised [10]. Instead of reinventing
the wheel, a reactive language should thus embed or build upon an existing Web
query language.

Data from Web resources is usually persistent and reflects a state (see The-
sis 4). The natural place to deploy a Web query language in ECA rules is thus
the condition part. However, the Web query language should also be used to
query data in atomic events in the event part of ECA rules — after all, the same



Twelve Theses on Reactive Rules for the Web 849

data models (XML, RDF, etc.) are used. This gives language coherency [13] and
makes learning the new reactive language much faster. The language coherency
can be even further increased if an update language based on the query language
is available for the action part.

Criteria to be considered for a Web query language include:

– What is the query language’s notion of answers (variable bindings, newly
constructed data)?

– How are answers delivered, can they be used to “parameterize” further
queries or the action? Can, for example, a variable bound in an event query
be a parameter in a condition query, i.e., the value delivered by the event
query be accessed and used in the condition query?

– What evaluation methods for queries are possible (backward chaining, for-
ward chaining)?

– Which data models are supported (XML, RDF, OWL)? Is it possible to
access data in different data models within one query?

– How does the query language deal with identity (see Thesis 10)?
– Which reasoning or deductive capabilites does the query language provide

(views, deductive rules; see also Thesis 9)?

The choice of a Web query language has significant influence on the design of
a reactive language and should thus be made carefully.

7 Specifying State-Changing Actions

Thesis 8: The Web is a dynamic, state-changing system. Reactions
to state changes (events) through reactive rules are state-changing
actions such as updates to persistent data. Reactive rules are needed
where compound actions can be constructed from primitive actions.

The Web is a dynamic, state-changing system. To act in this world, reactive
rules need the ability to perform state-changing actions such as updates to per-
sistent data. The drawback that this makes reactive languages less declarative
than pure (side-effect free) logic or functional programming languages is inher-
ent to the task and should not withhold efforts to make reactive languages as
declarative as possible.

The most important actions are updating persistent data on the Web and
communicating with other Web sites (through raising new events). Complex
reactions can conveniently be built as compounds of primitive actions such as
insertions, deletions, or modifications of XML elements, RDF triples, or OWL
facts. The most common compound is a sequence of actions, but other com-
pounds such as a the specification of alternative actions are needed, too.

8 Structuring Rules and Rule Programs

Thesis 9: Development and maintenance of reactive rule programs
can be considerably supported by structuring mechanisms such as:
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branching in rules, deductive rules for event queries and Web queries,
procedural abstractions for actions, and grouping of rules.

Like in any other programming language, development and maintenance of
reactive rule programs can be considerably supported by a language’s structuring
mechanisms. In particular, we propose that reactive rule languages have the
following structuring mechanisms:

– Branching in rules: it is more convenient to write one rule “on E if C do
A1 else A2” than writing two rules “on E if C do A1” and “on E if
¬C do A2”. Rules of this kind are sometimes called ECAA rules (since they
specify an action and an alternative action), and there are also more general
forms such as ECnAn rules [14], which specify several condition-action pairs.
Rules of this kind are not only more convenient to write, but also are easier
to maintain because replication (of C in this example) is avoided. Avoiding
replication is also good for execution efficiency: the condition C is only tested
once in an ECAA rule.5

– Deductive rules for event queries and Web queries: deductive rules can be
compared to views in relational databases and their advantages for Web
data (XML documents, RDF sources, etc.) are well understood. They avoid
replication of complicated queries, allow to derive intensional data from ex-
tensional data, and can be used to mediate data in different schemas. The
same advantages apply for querying and reasoning with event data, and we
propose to also have deductive rules for events. However, since event queries
have to be evaluated very frequently, a reactive language can be made more
restrictive about rules for events for efficiency reasons (e.g., reject recursive
rules and rule sets).

– Procedural abstractions for actions: often several rules will share the same
action. For example, an electronic shop will have rules for different forms
of payment, all having the same reaction (e.g., ship item). The reaction can
be rather complicated and composed of many smaller actions (e.g., update
the customer database and the warehouse database, e-mail the customer the
expected date of delivery and the tracking number). A procedure mechanism,
where the action is specified once and given a name, is clearly a better
approach than writing the same code in several rules.

– Grouping of rules: a flat, unstructured set or list of rules offers no guid-
ance where a certain functionality is to be found and which rules interact.
Virtually all wide-spread programming languages offer modules, packages,
or similar constructs to structure programs. Grouping rules into separate,
named rule sets and possibly also building hierarchies of rule sets exposes the
structure of a rule program and eases considerably human understanding.
Also, rule sets could introduce scopes for identifiers, alleviating the danger
of unwanted interaction of rules due to name-clashes of identifiers.

These structuring mechanisms aim primarily at avoiding redundancy, i.e.,
write code needed in several places only once, and at exposing the organization
5 Testing C only once for the two ECA rules with C and ¬C is of course possible, but

requires optimization techniques detecting and exploiting similarities in rules.
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of a program, i.e., keep related pieces code together and unrelated code separate
in the program layout. This not only eases authoring and maintenance for human
programmers; it is also good for the execution of the rules on a machine: recog-
nizing redundancy becomes less important for query optimization and division
of programs allows to execute smaller units.

9 Miscellanea

Thesis 10: Identity of data items is an issue for reactive languages
due to their ability to react to changes of data objects on the Web.

Reactive languages with the ability to monitor data items (or objects) and
react to their changes need to deal with identity of the data items. Consider
monitoring a news Web site for updates to a particular article: for this task, it
is necessary to (uniquely) identify the article of interest.

There are basically two approaches to identity: extensional identity and sur-
rogate identity.

Extensional identity defines identity based on an object’s structure or value
(its extension). Objects which are equal in structure and value are thus treated as
identical. Examples of this are relational databases (forgetting multi-set seman-
tics for the moment), logic programming, and functional programming. When an
object’s value changes, it looses its identity. To alleviate this, objects are often
given an auxiliary attribute such as a primary key having a unique value for
each object. Of course, with a change of the value of the key, identity is lost.

Surrogate identity (also called object identity) defines identity independent
from an object’s extension as an external surrogate (e.g., the object’s address
in memory). It is thus possible for objects to be non-identical, even though
they have the same structure and value, leading to a distinction of identity
and equality. Examples of this are object-oriented databases and object-oriented
programming languages. An important advantage of surrogate identity is that
it allows an object to keep its identity when its value changes.

For monitoring changes of objects, surrogate identity is advantageous. How-
ever, to communicate with remote Web sites, surrogate identity has to become
part of the data, i.e., made extensional. Even worse, Web resources such as XML
or RDF documents usually do not provide a surrogate identity for their data at
all and only rarely provide auxiliary identity-defining attributes (keys such as
xml:id attributes) as part of the extension.

Thesis 11: Meta-programming and meta-circularity, that is, the
ability to use rules to exchange and evaluate (other) rules, are needed
in some important cases.

Certain important reactive Web applications require a mutual exchange and
evaluation of rules. An example are (automatic) policy-based trust negotiations
[15]. Consider the following scenario of online-shopping. Customer and (elec-
tronic) shop do not know (or trust) each other in advance and are thus sensitive
about giving out certain information (e.g., credit card number) or committing
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to certain actions (e.g., shipping without prior payment). Using policy-based
negotiation they establish a basis of trust sufficient to make a deal.

1. Customer Franz requests to buy ten soccer balls from fussbaelle.biz, an
online shop which he has found with a Web search and not heard of before.

2. In reply, the shop sends its policy governing sales and payment, that is, a
set of rules describing, e.g., what identification the customer has to provide
and which methods of payment (credit card, check, money transfer, etc.) are
acceptable under what conditions.

3. Franz determines that paying by credit card satisfies the shop’s policy as
well as his own preferences. However, he is not willing to provide sensitive
information such as his credit card number to some untrusted shop. Instead
he sends back to the shop a policy stating conditions under which he is
willing to disclose it.

4. fussbaelle.biz evaluates the customer’s policy, determines that its mem-
bership in the Better Business Bureau of Internet satisfies the customer’s
conditions, and sends its membership certificate.

5. Franz checks the certificate, reveals his credit card information, and closes
the deal.

Observe that in this example, customer and shop do not give out all their
policies at once. Instead they exchange policies reactively during the course of
the trust negotiation. Which policies are actually exchanged depends on the pre-
vious course of action. Such a reactive approach has several advantages: (1) it is
more efficient since only small sets of relevant rules are exchanged, (2) policies
themselves can be sensitive information and thus only given out when a certain
stage in the negotiation (e.g., trust level) has been reached, (3) it allows poli-
cies to be determined dynamically (e.g., using game-theoretic approaches in the
fashion of [16]).

Realizing the above exchange of rules and rule sets (policies) with reactive
rules leads to a requirement for meta-programming or meta-circularity in re-
active, rule-based languages. In meta-programming, programs can “have other
programs as data and exploit their semantics”[17]. A particular form of meta-
programming is meta-circularity, where the same language is used on both levels
(i.e., the rules realizing the exchange and the rules being exchanged are written
in the same language).

Thesis 12: Reactivity in the Web’s open and uncontrolled world
requires language support for authentication, authorization, and ac-
counting.

The Web is an open, uncontrolled system allowing for anyone to retrieve data
from anywhere on the Web in an anonymous way. For reactive Web applications
this is usually not acceptable; services such as electronic shops or on-demand
computing require controlled access, in particular:

– authentication to establish that users of the service really are who they claim
to be,
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– authorization to control access to sensitive information or services, and
– accounting to monitor and log service accesses and resource consumption for

management, planning, and billing (the latter in particular when pay-per-use
pricing is employed).

These “three As” are non-functional requirements;6 a reactive language should
thus come to the programmers aid and provide easy-to-use support for them, so
programmer can concentrate on the functional requirements.

We discuss only accounting in more detail since it is maybe the most interest-
ing issue, as far as reactivity is concerned. Authentication and authorization are
relatively static issues which can be treated, e.g., as simple conditions in ECA
rules (though they can be negotiated dynamically, see the previous thesis) and
also exist for pure information access on the non-reactive Web.

Accounting in contrast is a dynamic issue: it reacts to incoming service request
to monitor and log them. This leads to a “double reactivity”: on the one hand
there is the reactive service itself, on the other hand the accounting service,
which in turn reacts to uses of the reactive service. Note, however, that these
are orthogonal axes of reactivity and no meta-programming (see previous thesis)
has to be employed: the accounting service does not contain the reactive service
or have to reason about its interiors.

10 Conclusion

In this article we have presented twelve theses on reactive rules for the Web. We
have argued that reactivity in the Web needs reactive rules, in particular ECA
rules, and established a list of desiderata for reactive, ECA-rule-based languages.

The theses reflect our experiences from designing the reactive language
XChange [4,18,3,19] and programming in it. An initial design and a prototype
implementation of XChange are complete, and we hope for the positions pre-
sented in this paper to provide directions in the future development of XChange.

Many of the desiderata postulated in this article are very general. They apply
not only to reactive languages based on ECA rules, but also to other rule-based
reactive languages (e.g., based on production rules) and even languages, frame-
works, and program libraries not based on rules at all.
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Abstract. The Semantic Web is based on XML and RDF as standards
for exchanging and storing information on the World Wide Web. Event-
Condition-Action rules are a possible candidate technology for distrib-
uted web-based applications that require timely notification and prop-
agation of events and information between different sites. This paper
discusses the provision of ECA rules for XML and RDF data, and high-
lights some of the challenges that arise.

1 Introduction

XML and RDF are becoming dominant standards for storing and exchanging
information on the World Wide Web, and are being increasingly used in dis-
tributed web-based applications in areas such as e-business, e-science, e-learning
and e-government. Such applications may need to be reactive, i.e. to be able to
detect the occurrence of specific events or changes within information reposi-
tories, and to respond by automatically executing the appropriate application
logic. Event-condition-action (ECA) rules are one way of providing this kind of
functionality. An ECA rule is of the form on event if condition do actions. The
event part specifies when the rule is triggered. The condition part is a query
which determines if the information system is in a particular state, in which
case the rule fires. The action part states the actions to be performed if the rule
fires. These actions may in turn cause further events to occur, which may in turn
cause more ECA rules to fire1.

References [24,20] discuss ECA rules (triggers) in databases. More broadly,
ECA rules are used in workflow management, network management, personali-
sation, publish/subscribe technology, and specifying and implementing business
processes. In the distributed web-based applications that we envisage, rules are
likely not to be hand-crafted but automatically generated by higher-level pre-
sentation and application services.

For some applications, content-based publish/subscribe [9] may be an alter-
native or complementary technology to ECA rules. Publish/subscribe systems
1 Non-termination of rule execution is generally a possibility and thus much research

has focussed on the development of static and dynamic analysis techniques for de-
tecting possibly non-terminating ECA rule sets. There has also been considerable
research into techniques for verifying the confluence of ECA rules.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 855–864, 2006.
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such as [7,23] support more sophisticated distributed event definition and de-
tection than ECA rules. On the other hand, ECA rules allow the definition and
execution of more complex actions than just simple notifications.

This paper discusses the provision of ECA rules for XML and RDF data,
and highlights some of the issues that arise in the context of such data. This
work has been motivated by our participation in the EU FP5 “SeLeNe: Self
e-Learning Networks” project (see http://www.dcs.bbk.ac.uk/selene/). The
aim of this project was to investigate techniques for managing evolving distrib-
uted repositories of educational metadata and for providing a variety of services
over such repositories, including syndication, notification and personalisation
services. Peers in a SeLeNe (self e-learning network) store metadata relating to
learning objects (LOs) registered with the SeLeNe, and also metadata relating
to users of the SeLeNe. SeLeNe’s reactive functionality includes features such
as propagating changes in the description of a LO to those of composite LOs
dependent on it; propagating changes in a learner’s history of accesses to LOs
to the learner’s personal profile; notifying users of the registration of new LOs
of interest to them; and notifying users of changes in the description of LOs of
interest to them. We investigated the provision of this kind of reactive function-
ality by means of ECA rules over SeLeNe’s metadata, considering first XML and
then RDF encodings of the metadata.

2 ECA Rules for XML

In [4,5] we introduced a language for defining ECA rules on XML data, based on
XPath and XQuery. This language uses a fragment of XPath for selecting and
matching sub-documents of XML documents within the event and condition
parts of ECA rules, while a fragment of XQuery is used within insertion actions
where there is a need to be able to construct new XML sub-documents. We also
developed techniques for analysing the triggering and activation relationships
between such rules2 which can be ‘plugged into’ existing generic frameworks for
ECA rule analysis and optimisation.

The semistructured nature of XML data gives rise to a number of issues in
the context of ECA rules:

– Event semantics: For relational data, the semantics of data manipulation
events is straightforward, since insert, delete or update events occur when
a relation is inserted into, deleted from, or updated. With XML, specifying
where data has been inserted or deleted within an XML document is more
complex, and path expressions that identify locations within the document
are necessary.

2 A rule ri may trigger a rule rj if execution of the action of ri may generate an event
which triggers rj . A rule ri may activate another rule rj if rj ’s condition may be
changed from False to True after the execution of ri’s action. A rule ri may activate
itself if its condition may be True after the execution of its action.
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– Action semantics: Again for relational data, the effect of data manipulation
actions is straightforward, since an insert, delete or update action can only
affect tuples in a single relation. With XML, actions now manipulate entire
subdocuments, and the insertion or deletion of subdocuments can trigger a
set of different events.

– Rule analysis: The determination of triggering and activation relationships
between ECA rules is more complex for XML data than for relational data.
The associations between actions and events/conditions are more implicit,
and more sophisticated semantic comparisons between sets of path expres-
sions are required.

Details of the syntax and rule execution semantics of our XML ECA rule
language can be found in [5]. Reference [3] describes a prototype implementation
the language: A Parser component parses and checks the syntactic validity of
new ECA rules. Valid rules are stored in a Rule Base. An Execution Engine
encapsulates the rule processing functionality, comprising an Event Dispatcher, a
Condition Evaluator and an Action Scheduler. All of these components interface
with a Wrapper which sends/receives data to/from the underlying XML files.
The Action Scheduler places the updates resulting from rules that have fired at
the head of an Execution Schedule. If multiple rules have fired, then the updates
that result from their actions are prefixed to the schedule in order of the rules’
specified priorities3.

A number of other ECA rule languages for XML have also been proposed,
although none of this other work has focussed on analysing rule behaviour. Most
notably, Active XQuery [6] is an ECA rule language for XML based on the SQL3
triggers standard [13]. This language is more complex than ours as it allows full
XPath in the event parts of rules, and full XQuery in the condition and action
parts. However, analysing the behaviour of ECA rules expressed in this more
complex language has not been considered. The rule execution model is also
different to ours: we treat insertions or deletions of XML fragments as atomic
updates and ECA rule execution is invoked only after the completion of such an
update, whereas in Active XQuery such updates are broken up into a sequence
of finer granularity requests each of which may invoke the ECA rule execution.
In general, these semantics may produce different results for the same initial
update.

ARML [8] provides an XML-based rule description for rule sharing among
different heterogeneous ECA rule processing systems. In contrast to our language
and Active XQuery, conditions and actions are defined abstractly as XML-RPC
methods which are later matched with system-specific methods. Active XML [1]
provides similar functionality to that provided by XML ECA rules by embedding
calls to web services within XML documents via special tags, aiming to integrate
distributed data and distributed computation in P2P architectures.

3 This prefixing to the schedule is Immediate rule scheduling, and other rule scheduling
alternatives would also be possible e.g. Deferred and Detached, where updates are
appended to the transaction or are executed as a separate transaction, respectively.
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In the commercial arena, triggers on XML data are now supported by all
the major relational DBMS vendors and also by some native XML repository
vendors. However, this is confined to document-level triggering and only events
concerning the insertion, deletion or update of an XML document can be caught.
In relational DBMS it is however possible to decompose XML documents into
a set of relational tables, potentially allowing developers to exploit existing re-
lational triggering functionality in order to define finer-grain triggers over XML
data.

3 ECA Rules for RDF

XML ECA rule languages can be used for RDF data which has been serialised
as XML. However, we have also developed an RDF ECA rule language, RDFTL,
that will operate directly on a graph/triple representation [17,18]. To our knowl-
edge, this is the first ECA rule language developed specifically for RDF.

Languages for updating RDF descriptions have been considered in [15,14]. The
Modification Exhange Language (MEL) of [15] is based on an RDF representa-
tion of Datalog and is used for updating RDF in the distributed environment of
Edutella [16] while RUL (RDF Update Language) [14] is based on the RQL [12]
query language.

RDFTL operates over RDF graphs and it is assumed that these RDF graphs
conform to one or more RDFS schemas, in the sense that (a) every resource
in the RDF graph belongs to an RDFS class (in addition to belonging to the
default rdfs:Resource class); (b) every property in the RDF graph is declared
in the RDFS schema, along with domain and range constraints; (c) the subject
and object of every property in the RDF graph are of the declared subject and
object type of the property in the RDFS schema.

RDFTL uses a path-based query sublanguage, syntactically similar to XPath,
for defining queries over an RDF graph. Each RDFTL rule has an optional
preamble consisting of one or more namespace definition clauses and a set of
let-expressions of the form let variable := e associating a variable with a query.

The event part of an RDFTL rule describes updates whose occurrence will
cause the rule to trigger, and is an expression of one of the following three forms:

1. (INSERT | DELETE) e [AS INSTANCE OF class]
2. (INSERT | DELETE) triple
3. UPDATE upd triple

Form 1 detects insertions or deletions of resources specified by the expression
e. e is a query, which evaluates to a set of nodes. Optionally, class is the name
of the RDFS schema class to which at least one of the nodes identified by e
must belong in order for the rule to trigger. The rule is triggered if the set of
nodes returned by e includes any new node (in the case of an insertion) or any
deleted node (in the case of a deletion) that is an instance of class, if specified.
The system-defined variable $delta is available for use within the condition and
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actions parts of the rule, and its set of instantiations is the set of new or deleted
nodes that have triggered the rule.

Form 2 detects insertions or deletions of arcs specified by triple, which has the
form (source node, arc name, target node) where source node and target node
may be expressions of the form e or variables defined in the rule’s preamble.
The wildcard ‘ ’ is allowed in the place of any of a triple’s components. The
rule is triggered if an arc labelled arc name from source node to target node is
inserted/deleted. The variable $delta has as its set of instantiations the triples
which have triggered the rule; the individual components of these triples are
identified by $delta.source, $delta.arc name or $delta.target.

Form 3 similarly detects updates to the target nodes of arcs, specified by
upd triple which has the form (source, arc name, old target → new target). The
wildcard ‘ ’ is allowed in the place of any of these components. The rule is
triggered if an arc labelled arc from source changes its target from old target to
new target. The variable $delta has as its set of instantiations the triples which
have triggered the rule and the components of these triples can be obtained by
$delta.source,$delta.arc name, $delta.old target or $delta.new target.

The condition part of rule is a boolean-valued expression which may consist
of conjunctions, disjunctions and negations of queries.

The actions part of a rule is a sequence of one or more actions. Actions can
INSERT or DELETE a resource — specified by its URI — and INSERT, DELETE or
UPDATE an arc. The actions language has the following form for each one of these
cases, where triples in the actions part have a similar form as in the event part:

1. INSERT e AS INSTANCE OF class
DELETE e [AS INSTANCE OF class]
for expressing insertion or deletion of a resource, where the AS INSTANCE OF
keyword classifies the resource to be deleted or inserted.

2. (INSERT | DELETE) triple (’,’ triple)*
for expressing insertion or deletion of the arcs(s) specified.

3. UPDATE upd triple (’,’ upd triple)*
for updating arc(s) by changing their target node.

The condition and action parts of a rule may contain occurrences of the $delta
variable in place of a named resource in a query, or a component of a triple. If
neither the condition nor the action part contain occurrences of $delta, then the
rule is a set-oriented rule, otherwise it is an instance-oriented rule. A set-oriented
rule fires if it is triggered and its condition evaluates to true. A copy of the rule’s
action part is executed as a new transaction (i.e. Detached rule coupling). An
instance-oriented rule fires if it is triggered and its condition evaluates to true
for some instantiation of $delta. A copy of the rule’s action part is executed
as a new transaction for each value of $delta for which the rule’s condition
evaluates to true, in each case substituting all occurrences of $delta within the
action part by one specific instantiation for $delta.

We refer the reader to [18] for full details of the syntax and execution semantics
of RDFTL, and that paper also discusses conservative tests for determining the
termination and confluence of sets of RDFTL rules.
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3.1 RDFTL Rules in P2P Environments

We have developed a system for processing RDFTL rules in P2P environments.
The rule processing functionality is provided by a set of services that consti-
tute the RDFTL ECA Engine. This acts as a wrapper over a distributed set of
RDF/S repositories, exploiting their query, storage and update functionality. In
the current version of our system we are using ICS-FORTH RSSDB [2] as the
RDF repository. For the future we plan also to support Jena2 [11].

Our system architecture is similar to the superpeer-based architecture of
Edutella [16]. Each peer in the network is supervised by a superpeer (each su-
perpeer supervises itself). The set of peers supervised by a superpeer is termed
its peergroup. At each superpeer there is an ECA Engine installed. Each peer or
superpeer hosts a fragment of an overall global RDFS schema. As in Edutella,
the metadata distribution in RDFTL allows hybrid fragmentation, with possi-
ble replication between peers. The fragment of the global RDFS schema stored
at a peer may change as a result of changes in the peer’s RDF/S descrip-
tions. Peers notify their supervising superpeer of any updates to their local
RDF/S repository. Peers may dynamically join or leave the network at any
time.

Each superpeer’s RDFS schema is a superset of its peergroup’s individual
RDFS schemas. Each superpeer defines access privileges over the classes and
properties in its RDFS schema describing the corresponding access level to the
instances of each class and property. More fine-grained access privileges are also
allowed on specific RDF resources and triples. These facilities allow a superpeer
to specify which information can be shared with other superpeers outside its
peergroup.

An ECA rule generated at one site of the network might be replicated,
triggered, evaluated, and executed at different sites. Within the event, condi-
tion and action parts of ECA rules there might be references to specific RDF
resources.

Whenever a new ECA rule r is generated at a peer P , it is sent to P ’s su-
perpeer for syntax validation, translation into the local repository’s query and
update language, and storage. From there, r will also be forwarded to all other
superpeers, and a replica of it will be stored at those superpeers where an event
may occur that may trigger r’s event part, i.e. those superpeers that are e-
relevant to r (see below). A rule r has a globally unique identifier of the form
SPi.j, where SPi is the originating superpeer identifier and j a locally unique
identifier for the rule in SPi’s rule base.

At run-time rules are triggered by events occurring within a single peer’s local
RDF repository, i.e. there is no distributed event detection. Also, each particular
copy of a rule’s action part executes within a single peer’s RDF repository,
i.e. there is no distributed update execution. If there is a need to distribute a
sequence of updates across a number of peers in reaction to some event, then
rather than specifying one rule of the form on e if c do a1; . . . ; an instead, n
rules r1, . . . , rn can be specified, where each ri is on e if c do ai and r1 has a
higher precedence than r2, which has a higher precedence than r3 etc.
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There are three types of relevance of a rule r to an RDF schema S:

– r is e-relevant to S if each of the queries that either appear in the event
part of r or are used by the event part through variable references, can be
evaluated on S, i.e., each step in each path expression exists in S.

– r is c-relevant to S if some step in one of the queries referenced by the con-
dition part of r can be evaluated on S (unlike events and actions, conditions
may be evaluated at multiple sites).

– r is a-relevant to S if all actions in the action part of r are a-relevant to S.
An individual action is a-relevant to S if it satisfies one of the following:
• If it is a deletion or insertion of resources that uses AS INSTANCE OF
class, then class must be in S.

• If it is a deletion of resources that does not use AS INSTANCE OF class,
then the most specific class of resources that the path expression in the
deletion would return must be in S.

• If it is an action over triples that uses a property p, then p must be in S.
If it is a deletion of triples that uses the wildcard ‘ ’ instead of a property
(the only action allowed to do this), then the classes of resources returned
by the path expressions involved in the deletion must exist in S.

A peer or superpeer is e-relevant, c-relevant or a-relevant to a rule r if r is e-,
c- or a-relevant, respectively, to the peer or superpeer’s RDFS schema.

At each superpeer, each rule is annotated with the IDs of local peers that are e-
relevant, c-relevant and a-relevant to it. These annotations are kept synchronised
with changes in peers’ and superpeers’ schemas.

3.2 P2P Rule Execution

The RDF graph is fragmented, and possibly replicated, amongst the peers, and
each superpeer manages its own local rule execution schedule. Each execution
schedule at a superpeer is a sequence of updates which are to be executed on
the fragment of the global RDF graph which is stored at the superpeer or its
local peergroup. Each superpeer coordinates the execution of transactions that
are initiated by that superpeer, or by any peer in its local peergroup.

Whenever an update u is executed at a peer P , P notifies its supervising
superpeer SP . SP determines whether u may trigger any ECA rule whose event
part is annotated with P ’s ID. If a rule r may have been triggered, then SP will
send r’s event query to P to evaluate.

If r has indeed been triggered, its condition will need to be evaluated, after
generating an instantiation of it for each value of the $delta variable if this
is present in the condition. If a condition evaluates to true, SP will send each
instance of r’s action part (one instance if r is a set-oriented rule, and one or more
instances if r is an instance-oriented rule) to the local peers that are a-relevant to
it. All instances of r’s actions part will also be sent to all other superpeers of the
network. All superpeers that are a-relevant to r will consult their schemas and
access privileges in order to determine whether the updates they have received
can be scheduled and executed on their local peergroup.
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In summary therefore, local execution of the update at the head of a local
schedule may cause events to occur. These events may cause rules to fire, mod-
ifying the local schedule or remote schedules with new updates to be executed.
We refer the reader to [18] for full details of the P2P implementation of RDFTL.

Our current RDFTL implementation does not yet support any concurrency
control or recovery mechanisms. In principle, any distributed concurrency con-
trol protocol could be adapted to a P2P environment. For example, the AMOR
system adopts optimistic concurrency control [10]. The serialisation graph is dis-
tributed amongst those peers responsible for transaction coordination (analogous
to our superpeers). The AMOR system assumes that conflicts are only possible
between those transactions that are accessing a particular ‘region’ of resources
(analogous to our peers) and thus subgraphs of the global serialisation graph
are stored and replicated amongst those coordinators which service a particular
region. The regions are not static and these subgraphs are dynamically merged
and replicated as transactions execute and regions evolve.

In the classical approach to distributed transactions, global transactions hold
on to the resources necessary to achieve their ACID properties until such time as
the whole transaction commits or aborts. In a P2P environment this may not be
feasible: the resources available at peers may be limited, peers may not wish to
cooperate in the execution of global transactions, and peers may disconnect at
any time from the network, including during the execution of a global transaction
in which they are participating. The cascaded triggering and execution of ECA
rules will cause longer-running transactions which may further exacerbate these
problems. It is therefore necessary to relax the Atomicity and Isolation properties
of transactions.

In particular, subtransactions executing at different peers may be allowed
to commit or abort independently of their parent transaction committing or
aborting, and parent transactions may be able to commit even if some of their
subtransactions have failed. Subtransactions that have committed ahead of their
parent transaction committing can be reversed, if necessary, by executing com-
pensating subtransactions. These can be generated as transactions execute and
they reverse the effects of a transaction by compensating each of the trans-
action’s updates in reverse order of their execution. Generating compensating
updates is straight-forward for RDFTL updates: the insertion of a triple is re-
versed by deletion of the triple, the deletion of a triple by an insertion, and an
update by the restoration of the original value. If transactions have read from
committed (sub)transactions which are subsequently reversed, then a cascade of
compensations will result.

3.3 Performance

We have developed an analytical performance model for our P2P RDFTL rule
processing system, which is described in [19]. We use as the main performance
criterion the update response time i.e. the mean time required to complete all
rule processing resulting from a top-level update submitted to one of the peers
in the network. In [19] we examine how the update response time varies with
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the network topology, number of peers, number of rules, and degree of data
replication between peers. We also describe a simulation of the system, and
present the results of similar performance and scalability experiments with the
simulator.

The two sets of experimental results show good agreement. Both sets of exper-
iments show that the system performance is significantly reliant on the network
topology between superpeers. In particular, if a Hypercup topology [22] is used
for interconnecting the superpeers, then rule processing shows good scalability,
pointing to its practical usefulness as a technology for real applications. For the
future we would like to conduct large-scale experiments with the actual RDFTL
system itself, possibly using the PlanetLab [21] infrastructure. As well as giving
insight into the actual system behaviour in a real P2P environment, this will
allow measurements on actual system workloads and rule sets, which can then
be fed into the analytical performance model and the simulator to allow more
accurate predictions from these.

4 Concluding Remarks

In this paper we have discussed the provision of ECA rules for XML and RDF
data, and have highlighted some of the new issues that arise in the context
of such data. We have described a language for ECA rules over XML data, a
language for ECA rules over RDF data, implementations of these languages, and
the results of a study into the performance and scalability of our RDF ECA rule
processing system in P2P environments.

Although conducted in the context of ECA rules operating on RDF, we expect
that similar behaviour would occur for P2P ECA rules operating on other types
of data e.g. XML and relational, and this is an area of planned future work. Also
planned for the future is a distributed version of our XML ECA rule system,
and a deeper study into expressiveness of our languages, in terms of their update
and constraint enforcement capabilities.
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Abstract. While XQuery is becoming a standard, the W3C is cur-
rently discussing the features of an update language for XML, and its
requirements. Therefore, time is ripe for designing and defining the lan-
guage features and extensions that are usually needed when updates are
supported: reaction policies to constraint violations, business rules, and
more. In the past years, several languages have been proposed for updates
as well as for triggers in XML, such as XUpdate and Active XQuery.

In this paper, we propose a visual approach to the formulation of
active rules building on XQBE, a graphical query language for XML
data. Our approach is motivated by the need to provide unskilled users
with the ability to express business rules in an intuitive fashion. Visual
triggers are then translated into statements that can be interpreted by
query engines.

1 Introduction

According to a well-known classification [6], data semantics can be represented
declaratively under the form of normative rules, constructive (or passive) rules,
and reactive (or active) rules.

Normative rules, also known as integrity constraints in the terminology of
databases, are properties that the data must always satisfy. In the context of
XML data, some forms of integrity constraints can be expressed through schema
definition languages, such as DTDs and XML Schema. Although some attempts
exist (e.g., [3]), a universally accepted paradigm for specifying general constraints
(in the sense of SQL assertions) still seems to be missing for XML.

Constructive rules (views in databases) allow one to specify how to derive new
data from data already available. Integrity constraints can also be expressed in
this form and, thus, evaluated as constructive rules. Again, there is no standard
for the specification of constructive rules in XML, although some support to
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views is intrinsically available in XQuery. The issues concerning the materializa-
tion and maintenance of views in XML are discussed, for instance, in [1].

Finally, reactive rules specify how data should change depending on the cur-
rent state of the store and, possibly, on events.

The above rules eventually serve the purpose of formally specifying process
flows or business level requirements of the system to be described. According to
good design principles, these so-called business rules should be expressed as part
of the schema, so that the knowledge they carry is decoupled from the rest of the
application. Business rules are used to describe the operations and constraints
that apply to organizations. As such, they should be business owned and oriented
and should be specified in the easiest and most intuitive way, so as to appeal to
the broadest audience. Ideally, it should be possible to allow users to maintain
the rules without the intervention of an IT professional. In this regard, an intu-
itive visual paradigm can simplify the specification, via user-friendly interfaces,
of essential data management features and policies, such as queries and updates,
of requirements of compliance with data constraints, and of consistency repair-
ing actions that ought to take place upon violations of constraints. Complex
rules are best specified by domain experts, who, however, may lack knowledge
in data definition and manipulation languages. A number of applications can be
envisaged, where XML is already established as the de facto data representa-
tion model, e.g., in the medical domain, where health care professionals sharing
information stored in clinical records may need to impose constraints, say, on
treatments and compatibility between medicines and patients’ profiles.

The ActiveXQBE paradigm presented in this paper stands out from previous
attempts for incorporating a visual approach with an emphasis on usability and
intuitiveness, yet without heavily sacrificing generality and expressiveness. In
particular, to achieve these goals, we designed and propose the visual tool Ac-
tiveXQBE for the specification of active rules, building on XQBE [5], a graphical
query language for XML. XQBE as well as ActiveXQBE are based on annotated
trees, so as to adhere to the hierarchical nature of the XML data model. Both
XQBE and ActiveXQBE have a quite steep learning curve; although no formal
tests were performed, our experience with under-graduated students has shown
that a couple of lessons are enough to get acquainted with the visual paradigm.

Visual ActiveXQBE triggers can be translated into textual representations to
be executed by external rule engines. To this end, we provide an algorithm for
translating visual triggers into Active XQuery rules [4].

2 XQBE: A Visual XML Query Language

XQBE (XQuery By Example) [5] is a graphical query language for XML de-
signed to be intuitive and capable of running on top of XQuery engines. XQBE
includes most of the expressive power of XPath, allows for arbitrarily deep nest-
ing of XQuery FLWOR expressions, supports the construction of new XML el-
ements, and permits to restructure existing documents. Figure 1 shows a query
reading “List books published by Addison-Wesley after 1991, including their year



ActiveXQBE: A Visual Paradigm for Triggers over XML Data 867

year

title

bib

book

www.bn.com/bib.xml

bib

book

year

> 1991

publisher

Addison−Wesley

S  { for  $b inC

</bib>

<bib>

    and $b/@year>1991

    doc("www.bn.com/bib.xml")/
bib/book

   where $b/publisher=
"Addison−Wesley"

   return

    <book year="{ $b/@year }">

     { $b/title }

    </book> }

Fig. 1. XQBE and XQuery versions of the same query

and title”. All XQBE queries have a vertical line in the middle, separating the
source part (on the left) from the construct part (on the right); both parts con-
tain labeled graphs that represent XML fragments and express properties of
such fragments: the source part specifies the properties of the XML data to be
included in the result, while the Construct Part describes the structure of the
result in terms of newly generated XML items, together with the projection of
the elements extracted from the source documents. The correspondence between
the components of the two parts is expressed by means of explicit binding edges
across the vertical line; these edges connect the nodes of the Source Part to the
nodes that will take their place in the output document. The paths that branch
out of a bound node in the Construct Part indicate which of its sub-items are
to be retained, thus “projecting” the node. All the XML elements in the Source
Part of the target documents are represented as labeled rectangles; attributes
are represented as black circles, with the attribute name on the arc between the
rectangle and the circle; PCDATA content is represented as an empty circle. At-
tribute and PCDATA nodes in the Source Part may be labeled, so as to express
conditions on the values they represent.

In Figure 1 the Source Part matches all the book elements with a year attribute
whose value is greater than 1991 and a publisher sub-element whose PCDATA
content equals “Addison-Wesley”. By means of a binding edge, the selected books
are sent to the Construct Part, where only the title and publication year are
retained. Note the use of the triangular node to project the entire fragment
rooted in the title element. The binding edge between the book nodes states
that the query result shall contain as many book elements as those matched in the
Source Part. Rectangular nodes in the Construct Part represent XML elements in
direct correspondence with some XML data extracted from the source documents
(either by a direct binding or by projection and renaming). Elements with no
counterpart in the source documents are rendered by means of trapezoidal nodes,
such as the bib node in the Construct Part of the example.

Other nodes allow one to express more complex queries with joins, aggregates,
sorting, negation and more. Figure 2 shows all the defined constructs. For a full
and formal description of the language, refer to [5].
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somedoc.xml

label

b)

Root elements

label

Elements

a)

label label

Newly generated
elements

c)

relationship
[transitive

Containment

 closure]

[   ]+
d)

Binding
edges

h)

[ label ]

content
PCDATA

f)

fragments
Entire

labele)

Join

i)

[ label ]

name

Attributes

g)

Fig. 2. Summary of the core XQBE constructs

3 ActiveXQBE

ActiveXQBE extends XQBE: while XQBE uses two regions to extract data and
construct results, ActiveXQBE uses three regions (Figure 3a):
S: the region on the left is the Source Part (S); the graphs in this region

locate the XML nodes on which the triggering events are defined, as well as
the conditions that apply to such nodes for the rules to be triggered. Any valid
XQBE source graph is allowed in S; besides, one (and only one) node in this
region must be tagged as the node on which the event occurs (the event node).
One action arrow can go out of a node and point to an element in the action
part A, described below.
C: the region on the right is the Construct Part (C); the trees contained in

this region, when present, define the constructed data structures to be inserted
into suitable documents (as defined by the third region A); such insertions may
implement the actions of the active rules. If C is not empty, an action arrow
must connect the root of the tree in C and a node in A. Any regular XQBE
construction tree is allowed in C.
A: a new region, the Action Part (A) is placed below S and C, where the

action of the trigger is represented. ActiveXQBE supports different kinds of
actions: insertions, updates, deletions and denials. If the action is a denial of
the operation, a stop sign is placed in this region (Figure 3e). For the other
three kinds of action, a tree in A expresses the selection of the XML fragments
which must be affected. Such tree can be either rooted in a Root Element, or
in a Rectangular Element bound to a node in S. If the action of the rule is an
update or an insertion, then the target of the action is the node reached by the

StopDelete element

c)b)a)S C

A

d) e)

X

Event target
(tagged with event type)

Action arrow

(tagged with operation type)

Fig. 3. Summary of the ActiveXQBE constructs
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<dept> <!ELEMENT dept
<budget>1000000</budget> (budget, manager, emp*)>
<manager> <!ELEMENT manager
<name>Smith</name> (name, salary, numOfEmps)>
<salary>10000</salary> <!ELEMENT emp (name, salary)>
<numOfEmps>9</numOfEmps> <!ELEMENT name (#PCDATA)>

</manager> <!ELEMENT numOfEmps (#PCDATA)>
<emp> <name>Jones</name> <!ELEMENT salary (#PCDATA)>

<salary>8000</salary> </emp>
</dept>

Fig. 4. An XML document and its DTD schema

action arrow (described below), which is tagged with the type of operation. If
the action is a deletion, then a red cross identifies the element to be deleted.
ActiveXQBE triggers can only perform one action, so at most one action arrow
can reach A, either originating from S or C.

Figure 3b shows the syntax for specifying the target of the event: a blue oval
surrounds the target node (which can be either an Element, an attribute or a
PCDATA node), and a tag specifies the type of event.

The syntax for actions is shown in Figure 3c, d, and e: an action arrow is used
to insert or update an element with data extracted from the original document,
or built on purpose. The arrow starts from the element to be inserted and reaches
the element that will be updated (or below which the new item will be inserted).
The tag on the arrow specifies the kind of action to be performed (insert-before,
insert-after1, update). A red cross is used to mark a node that must be deleted.
A stop sign is used to indicate that the event should be prevented. In other
words, if the trigger is evaluated before the event, then the action is stopped so
that the update that activates the trigger is not even executed; if the trigger is
evaluated after the event, then a rollback is performed that cancels the effect of
the event itself.

In order to describe our approach, we show some triggers that apply to an
XML data set exemplified in Figure 4.

Example 1 (Rollback).
As a first example, consider the trigger of Figure 5(a), which blocks insertion

of salaries greater than 40000$ to an employee. In this example the Construct
Part is empty, since there is no need to build any new elements; the symbol in
the action part states that the insertion is to be undone.

The salary node is the subject of the event: as stated by the label attached to
the oval surrounding it, the trigger is evaluated after a salary node is inserted
as a child of emp. Then, the action (in this case, a rollback of the insertion) is
performed only when all the conditions of the source graph apply, i.e., only when
the value of the salary is greater than 40000$. Note that the trigger would also
be evaluated after the insertion, for instance, of an emp element, because a salary

sub-element would be inserted too.
1 As in the XML update language proposal XUpdate [16], the “-before” and “-after”

suffixes are to be interpreted with respect to the position of the pointed node.
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insert

salary
after

dept

> 40000

S C

A

emp

www.company.com/deps

(a)

insert

salary
after

emp

> 40000

www.company.com/deps

< 100000

budget

dept

A

CS

200000

budget
update

(b)

Fig. 5. (a) Trigger 1: denying too high salaries (b) Trigger 2: updating budget

Example 2 (Update).
The example of Figure 5(b) extends the previous one with the addition of

a condition and an action; in particular, when a salary greater than 40000$ is
inserted for an employee belonging to a department with low budget (say, less
than 100000$), this budget is updated to 200000$.

Note that the dept element in the action part is bound to the dept element
in S: the binding edge toward the action part transfers the context from S, so,
when a high salary is set to an employee, only the budget of his department
is updated. The Construct Part of this trigger is used to build a new constant
value of 200000$, that is used to update the budget of the department by means
of an action arrow.

Example 3 (Adding complexity).
In Figure 6 we compare the newly inserted salary of an employee with the

manager’s salary. If the manager’s salary is lower, then the employee’s salary is
updated to be the same as the manager’s. The peculiarities of this trigger are

insert

salary

salary

salary
after

dept

www.company.com/deps

emp

A

manager

S C

>
update

Fig. 6. Trigger 3: updating salary
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the join node used to compare salaries (the small rhombus in Figure 6) and the
action arrow, which comes from the Source Part. The Construct Part is unused.

Note that the action updates the newly inserted salary (i.e., the salary is
removed and inserted again). This causes the trigger to be evaluated again,
but the second time the comparison between salaries definitely fails, since the
contents of the elements selected by the paths emp/salary and manager/salary

are equal.

4 Graph Translation Algorithm

ActiveXQBE triggers are not interpreted by a specific engine; rather, they are
translated into Active XQuery triggers and evaluated by existing rule engines.

As with many declarative languages, there are many ways to express the same
operation in Active XQuery. Here we first define a canonical Active XQuery form
and then show how to translate an ActiveXQBE graph into such form. Note that
every well-formed ActiveXQBE graph can be translated into canonical Active
XQuery, while nothing can be stated about the contrary.

Active XQuery triggers comply with the following syntax:

1. CREATE TRIGGER Trigger-Name [WITH PRIORITY Signed-Integer-Number]
2. (BEFORE|AFTER) (INSERT|DELETE|REPLACE|RENAME) OF

XPathExpression (,XPathExpression)*
3. [FOR EACH (NODE|STATEMENT)]
4. [XQuery-Let-Clauses]
5. [WHEN XQuery-Where-Clause]
6. DO XUpdate-UpdateOp

The trigger can be divided into five main blocks: lines 1 and 3 are a sort of
header, where the name and priority2 of the trigger are defined, as well as its
granularity3; line 2 describes the triggering event ; in line 4 the variables useful
to express conditions and actions can be defined; line 5 contains the trigger
conditions ; line 6 describes the action to be performed when the rule is triggered,
which can either be an update statement written in XUpdate.

We say that a trigger is in canonical form when (a) the triggering event is
monitored for target nodes which are identified by a single path expression and
(b) the triggering conditions are expressed by stating the non-emptiness of node
sequences, defined by means of XQuery let-clauses. Any trigger can be expressed
in canonical form. We define the semantics (and perform the translation) of Ac-
tiveXQBE graphs in terms of canonical Active XQuery triggers. The translation
algorithm operates with the steps described below.
2 When the same event fires multiple rules, their actions are executed in priority order;

within the same priority level, an implicit creation order is followed. This behavior is
independent of ActiveXQBE, since it is enforced by the Active XQuery rule engine.

3 I.e., whether the trigger must react on a per-statement basis, or once for each node
affected by the event. In the latter case, the corresponding $new and $old variables
will be available.
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Source Graph Reduction. The first step is to locate and mark some nodes in
the source graph which are said to be relevant. These nodes are the event target
(the node on which the event occurs); the nodes with binding edges, both
towards the construct and the action part; the nodes involved in an action. A
variable will be generated for each such relevant node in the textual counterpart
of the trigger.

Variable Generation. The event target represents the node on which the event
occurs and is implicitly associated to a variable named $new or $old, according
to the type of the event; this straightforwardly corresponds to the notion of
“transition data” in SQL triggers. This variable, available for use in any part of
the trigger, implicitly and automatically fixes the context of evaluation for other
expressions.

All the other relevant nodes will be associated to a variable by means of
suitable let clauses, which in turn can be used within other let-clauses, when-
conditions, and during action specification (see below). The construction of such
let clauses relies on topological analysis of the nodes surrounding the relevant
ones.

As the Source Part of an XQBE query is always a directed acyclic graph, a
partial order is implicitly defined over the set of relevant nodes. The nodes are
considered in an order which is compliant with such partial order (namely, as
encountered in a left-pre-ordered traversal that starts from the initial nodes,
considered in left-to-right order). Each relevant node is associated to a path ex-
pression which corresponds to a path in the graph. For the first nodes considered,
such path expression is rooted in one of the initial nodes (those corresponding to
root nodes in the XML documents). For the other nodes such paths are rooted
in the nearest ancestor chosen between the already considered relevant nodes
(which are all already bound to a variable). The selection conditions of the
XQuery statement that constitutes the body of the let clause associated to each
variable (namely: the conjuncts of a where clause) are generated considering all
the nodes reachable from the node currently under consideration, up to the not
yet visited relevant nodes. In other words, starting from each relevant node, a
set of conditions is generated, considering a subgraph that contains the current
relevant node and is limited by the other relevant nodes. Some of the considered
branches may have bifurcations at some point; in this case, an internal variable
is generated for the node with the bifurcation, which is local to one specific let
clause. Nodes with bifurcations, though, are not considered as relevant, and they
are not involved in any separated let-clauses.

WHEN Clauses. All the conditions on the triggering of the rule, as represented
by the query structures, have already been considered in the variable generation
process; therefore, the WHEN clause can be reduced to a conjunction of non-
emptiness statements over the node sequences returned by the previously defined
let-clauses. Note that only the conjunction of all these statements ensures that
all the conditions expressed in the Source Part will be correctly evaluated.
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Action Specification. The last part of the trigger is the action to be performed.
The Active XQuery language allows for any update language inside the DO block.
Here, we choose XUpdate.

If the action part of ActiveXQBE contains special directives, such as a ROLL-
BACK, the corresponding textual command is simply generated within the ac-
tion block. In general, when the action part contains a graph, an XUpdate vari-
able is generated to select the target elements; moreover, if the action is not a
deletion, another variable is generated to describe the elements to be inserted or
updated. These elements are obtained either from the source or the Construct
Part, based on the origin of the action arrow.

Figure 7 shows the trigger of figure 5(b) and its translation into Active
XQuery.

salary

  not(empty($budget_s))
  not(empty($new_s)) AND
  not(empty($dept_s)) AND
WHEN
  return $budget )
  where $budget/text() < 100000
  for $budget in $dept_s/budget
let $budget_s := (
  return $new )
  where $new/text() > 40000
  for $new in $new
let $new_s := (
  return $dept )
  where $dept/emp/salary = $new
  for $dept in doc("...")/dept
let $dept_s := (
FOR EACH NODE
  doc("...")/dept/emp/salary
AFTER INSERT OF
CREATE TRIGGER t

  </XUpdate:update>  )

emp

> 40000

www.company.com/deps

dept

< 100000

budget

budget
  <XUpdate:update select="$budget_s">
DO (

CS

200000

    200000A

update

insert
after

Fig. 7. An ActiveXQBE trigger and its Active XQuery translation

5 Related Work

Querying XML documents content has been extensively studied within the
database and semi-structured data communities and, ultimately, within the
W3C. Once established, query languages have a natural extension in supporting
content-based updates or in extracting views of XML documents. XQuery has
been extended to support updates as a result of a research work [20], and the
first working draft on the XQuery Update Facility has been recently published4.
XQuery update operations include deletion, insertion, replacement and renam-
ing of XML data. The XUpdate language is described in [16]. An XQuery-based
XML update language is described in [19].

4 http://www.w3.org/TR/2006/WD-xqupdate-20060127/
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Active rules to enforce correctness of update operations and to automatically
maintain views over data have been extensively studied in database systems [9].
Several research projects have provided substantial contributions to the field of
active databases (e.g., Starburst [21], Hipac [15], Reach [8], Sentinel [10]).

Active XQuery [4], our target language, aims at emulating the trigger defi-
nition and execution model of SQL3 with respect to the XML data model. It
builds on the XML update language and model defined in [20]. Other XML
trigger languages are XChange [7] and ECA rules for XML [2]. None of these
languages offers a graphical approach.

XQBE[5] comes after a long stream of research on visual and graph-based
languages, started many years ago with QBE [22]. The first graphical query
languages were G and G+ [13,14]. Graphlog [12] is a direct descendant of G+. A
uniform notation for object databases where nodes represent objects and edges
represent relationships was used in Good [17]. A Good-like notation was used
by G-Log [18], a logic-based graphical language that allows one to represent and
query complex objects by means of directed labeled graphs. An evolution of this
language is XML-GL [11]. XQBE can be considered a successor of XML-GL,
albeit with several new features.

6 Conclusion

In this paper we presented a framework for the visual specification of active
rules for XML data. We showed that ActiveXQBE is a suitable tool for visually
designing triggers in an intuitive fashion, as was demonstrated through a number
of examples. These triggers can then be translated to Active XQuery and, thus,
executed by implemented engines.

Among the possible future directions of research, we are studying the creation
of an XQBE-based tool, to be integrated with ActiveXQBE, for the automatic
or semi-automatic generation of optimized versions of the visual triggers that
respond to given events and integrity constraints. Such tool would be designed
along the lines of optimization frameworks for integrity constraints in deductive
databases, but based on graph grammars to define rewrite rules for graphs.
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Abstract. In our previous research we have proposed a new high-level
model for the specification of Web applications that takes into account
the way in which users interact with the application in order to actively
react and supply appropriate contents or gather profile data. In this con-
text, we have realized a proper execution framework to develop ReActive
Web applications specified by means of the novel modeling paradigm.
In this paper we discuss an e-learning case study implemented using
our framework and introduce the visual design tools we have extended
and developed in order to support the development of ReActive Web
applications.

1 Introduction

Reactivity on the Web is becoming a hot topic, and aims at addressing new issues
within emerging e-business and e-learning Web applications, where retrieval and
update of data plays an essential role. In this context, monitoring the behaviors
of users may enable Web applications to react to such behaviors and to improve
the users navigation comfort and interactivity with the application. This paper
is based on our previous research on ReActive Web applications [1,2]; the result
of this research is a visual Event-Condition-Action (ECA) paradigm to describe
reactivity triggered by a user’s interactions with the Web application.

The ECA rule paradigm was first implemented in active database systems in
the early nineties [3] to improve the robustness and maintainability of database
applications. Recently, it has also been exploited in other contexts, such as XML
[4] to incorporate reactive functionality in XML documents, Semantic Web [5]
to allow reactive behaviors in ontology evolution, Web applications [6] to realize
reactive behaviors involving distributed applications on the Web.

In our framework it is possible to specify arbitrary composite and timed be-
haviors depending on a user’s navigations and to react by adapting the Web
application and the application’s data. A composite behavior is a behavior in-
cluding different user interactions with the Web application, i.e., user’s inspec-
tions of different portions of the Web application and data instances; a timed
behavior is a behavior where the time gaps between the the users’ actions are
specified by time constrain. In this paper we highlight the potentialities of our
framework by presenting an e-learning case study and by introducing the visual
design tools we used to automatically generate the application presented in the
case study.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 876–886, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This paper is organized as follows: Section 2 introduces the two background
models that we adopt for modeling ReActive Web applications: WebML and
WBM. Section 3 combines WebML and WBM for defining proper ECA rules.
Section 4 illustrates an applicative example, and Section 5 introduces some de-
tails on the framework used to develop ReActive Web applications. Finally, in
Section 6 we address future research efforts and draw some conclusions.

2 Background Models

Our ReActive framework is based on two models, WebML [7] and WBM [2],
which are properly combined to obtain a visual paradigm for ECA rules, enabling
the specification of reactivity of user behaviors.

2.1 Web Modeling Language

The Web Modeling Language, WebML, is a conceptual model for the design of
Web applications [7], supported by a proper CASE tool [8]. The WebML method
fosters a strong separation of concerns, by separating the information content
from its composition into hypertext, navigation, and presentation, which can
be defined and evolved independently. The modeling language offers a set of
visual primitives for defining structural schemas that represent the organization
and navigation of hypertext interfaces on top of the application data, while for
specifying the organization of data the well known Entity-Relationship model is
adopted. Also, primitives for specifying data manipulation operations for updat-
ing the site content or interacting with arbitrary external services are provided.

For further details on WebML, the reader is referred to [7].

2.2 Web Behavior Model

The Web Behavior Model, WBM, is a timed state-transition automaton for rep-
resenting classes of user behaviors on the Web. Graphically, WBM models are
expressed as labeled graphs, allowing for an easy to understand syntax (cf. Fig-
ure 1). A state represents the user’s inspection of a specific portion of hypertext
(i.e., a page or a collection of pages). State labels are mandatory and correspond
to names of pages or page collections. A transition represents a navigation from
one such portion to another and, thus, the evolving from one state to another.
Each WBM specification, called script, has at least an initial state, indicated
by an incoming unlabeled arc, and at least one accepting state, highlighted by
double border lines. Initial states cannot also be accepting states. Each tran-
sition from a source to a target state may be labeled with a pair [tmin, tmax],
expressing a time interval within which the transition must occur in order to
cause a state transition.

Finally, the expressive power of WBM has been augmented to better describe
WebML-based applications: state constraints – referring to data contained within
a page – and link constraints – referring to a particular incoming or outgoing link
– have been introduced. For further details on the WBM model and its tailoring
to WebML, the reader is referred to [2].
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Page1 Page2

Page3

[tmin,tmax]

Initial state
indicator

Transition

State

Accepting
page states

Time constraint

Page4

Fig. 1. Example of WBM script with state, link, and time constraints and multiple
exiting transitions from one state

3 Reacting to User Behaviors

In order to be able to react to observed behaviors and to adapt the running ap-
plication to novel requirements, we combined WebML and WBM. In our frame-
work possible reactions comprise: (i) adaptivity of contents published by specific
pages; (ii) automatic execution of navigation actions toward other pages; (iii)
automatic execution of operations or services; (iv) adaptivity of the overall hy-
pertext structure.

Although independent from one another, expressing adaptation as a com-
bination of WBM scripts and WebML adaptivity constructs intrinsically leads
to a high-level ECA paradigm for specifying adaptivity. Commonly, ECA rules
respect the general syntax: on event if condition do action, where the event part
specifies when the rule should be triggered, the condition part assesses whether
given constraints are satisfied, and the action part states the actions to be
automatically performed if the condition holds. When specifying behavior-aware
Web applications, the event consists of a page or operation request, the condition
checks the state of the WBM scripts associated with the current page, and the ac-
tion part specifies some actions to be forced on the Web application which are ex-
pressed as a WebML operations chain, i.e., a sequence of WebML operation units.
The condition is satisfied and, thus, actions are performed, only when the page’s
scripts reaches an accepting state. Actions are executed only when pages asso-
ciated with the respective rules are accessed. ReActive pages are labeled in the
WebML hypertext model with A, standing for “Active”. To avoid multiple rule
activation conflicts a priority can be associated with each rule, thus if the condi-
tion holds for two ore more rules, only the one with the highest priority is fired.

Figure 2 graphically summarizes the outlined rule construct: The rule reacts
to a user’s visit to Page1 followed by a visit to Page2 at some stage after his/her
visit to Page1. The expressed rule condition only holds when the script reaches
the accepting state Page2. In this case the operations associated to that page
(abstracted as the cloud in Figure 2) are executed and possible reactions may
be performed.
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Event Condition

Page1 Page1Page2

Action

Page
A

Parameters

Chain of adaptation 

operations 

Page request WBM script WebML hypertext model

Fig. 2. High-level ECA rule components

For further details on WebML operations chain and adaptivity in WebML,
the reader is referred to [9].

4 An E-Learning Case Study

This section provides an e-learning reference scenario modelled in WebML. Later
we will enrich the scenario with proper reactivity constructs by means of visual
ECA rules as shown in Section 3. This way of presenting the Web application
fully reflects our development method.

The non-adaptive application allows users to browse courses according to
their personal expertise level on the topic of the course and to test the acquired
knowledge by answering related questions, thus possibly enhancing their knowl-
edge level on a topic. Figure 3 depicts the E/R schema underlying the e-learning
application: each user has a set of favorite topics and an associated level of ex-
pertise for each topic. Each course is related to one or more levels of expertise
and to one topic. For each level of expertise and each topic there is a set of
questions; each question is associated to a set of possible answers and to one
correct answer. Results achieved by users and their answers to each question are
stored. To simplify the diagram, derived relationship are not shown.

A simplified WebML model for the Student siteview of the e-learning appli-
cation is depicted in Figure 4. The Home page contains User Data, a list of

User

Unit Course Topic

Level

Question Answer

QuestionSet

TestResult

Course2Unit Course2Topic

Course2Level

User2LevTop User2TestResult

Question2Answer

QuestionSet2Question

Question2CorrectAns

TestResult2QuestionSet

Level2QuestionSet

Topic2QuestionSet

User2CompletedUnit

User2FavTopic

UserAnswer

TestResult2UserAns

UserAns2Ans

1:1 0:N

1:1

0:N

0:N

0:N 0:1

0:1

0:N

1:N

1:N

1:N 1:1

1:1 1:1

1:N

LevelTopic

LevTop2Topic

Level2LevTop

0:N1:1

1:1

1:1

0:N

0:N

1:N

1:N

0:N

0:N

1:1 1:N

0:1

0:N

1:1

1:1

0:N 1:1

Fig. 3. Entity-Relationship schema for the ReActive e-learning application



880 F.M. Facca and F. Daniel

Student SiteView
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Topic
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Topic

[User2FavTopic]

NEST Course

[User2LevTop2Course]

QuestionSet

[Topic2QuestionSet]

[UserLev2QuestSet]

Set of Question

L

Fig. 4. The WebML model of the proposed educational Web site

Suggested Courses, grouped by topic and selected according to the user’s knowl-
edge level on the topic1 and a list of the Test Results scored. The Get Unit allows
accessing the user’s identifier, while the selector conditions below the units allow
binding a unit to a data entity and personalizing the displayed items by applying
filter conditions. From the Home page the user can ask for the Courses page or
the Test Result page. L-labeled pages – Home, Test and Courses – are landmark
pages and can be accessed from any page within the hypertext. The Test page
presents a list of Topic and for each of them a Set of Question is selected accord-
ing to the individual knowledge on the selected topic. Once the user has selected
a topic on which he/she wants to test his/her knowledge, he/she can start a
test. Hence a Question is presented with the relative set of possible Answers.
Submitting an answer, its correctness is evaluated and a score is associated to
the the user by the Compute Result operation unit. Then, this unit sends the
1 When a new student registers for the first time to the Web application, his/her level

of knowledge is assumed to be 0 for each topic.
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Course

x:=Display

(Course,OID)

Course

y:=Display

(Course,OID)

x!=y

Course

z:=Display

(Course,OID)

z!=x && z!=y

[180,*][180,*] [180,*]

Course
A

Get Unit

CurrentUser

z.value

Get WBM var

z

Get Data

QuestionSet

[Course2Topic2QuestionSet]

[UserLev2QuestionSet]

Start Test

Fig. 5. An ECA rule to trigger the evaluation of a student’s knowledge level. The event
part (user click) is omitted for simplicity.
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Fig. 6. An ECA rule to profile user preferences

user to the next question, or, finally, computes the new expertise level of the
user on the topic he/she wanted to test and redirects the user to the Test Result
page. In this page, the Test Result scored is reported to the user together with
the set of answers he/she selected during the test. In the Courses page, Suitable
Courses according to the user’s knowledge level are presented. From here, the
user can browse a (Course page) where each Course is organized into a set of
smaller contents that can be scrolled.

In the sequel we describe some examples that add a ReActive layer to the
Web application.

Example 1. Evolving the Level of User Expertise. Figure 5 models an
ECA rule to redirect the user to the Test page for the next experience level after
having visited 3 courses (i.e., 3 different instances of Course pages), spending
at least 3 minutes over each different Course page. The ∗ in the final state of
the WBM script specifies the acceptance of any arbitrary page. The WebML
operation chain for adaptation is thus performed when the user asks again for
a Course page. When the chain is activated, the appropriate question set is
retrieved by the Get Data unit using parameters passed by the Get unit and the
Get WBM Variable unit, hence the test starts.

Example 2. Student Profiling. Suppose we want to personalize the appli-
cation according to the user’s preferences traceable from his/her navigational
choices (cf. Figure 6). The script detects that a user is interested in a certain
topic, whenever he/she navigates at least three different Course pages presenting
three courses belonging to the same topic. The identified topic is stored within
the variable x. In response to this behavior, the WebML operation chain stores
the derived preference: the value of the variable x is retrieved by the Get WBM
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Fig. 7. An ECA rule to oblige student to spend enough time on a course unit

[180,*] Test

Result

A
Test

“Repeat

the Test”

Invalidate Test

[0,180]

Test End

Message

DefaultMsg=null

Fig. 8. An ECA rule to invalidate too long tests

Variable unit and the identified topic is associated to the current user. Now,
when the user enters the Home page, courses belonging to the same topic are
automatically presented by means of the Suggested Courses unit (cf. Figure 4).

Example 3. Imposing time of page browsing. Figure 7 depicts an ECA
rule to oblige students to spend enough time on a course unit before accessing
the next one: the WBM script tracks users that access a course Unit within the
Course page and then ask for the next course Unit of the same course in less
than 2 minutes. In such case, we suppose the user has not carefully read the
unit, and hence the action part of the rule forces him to stay on the same course
Unit.

Example 4. Invalidating a Test. Suppose it is not enough for us that a
student successfully passes a test to improve his/her level, but we also want
him/her to pass it within a certain amount of time (cf. Figure 8). The WBM
script reaches a success state only if the user starts a test and reaches the Test
Result page in more than 180 seconds, in such case he/she is redirected to the
Test page where the Message unit asks him/her to repeat the test.

Further ECA rules that can be applied to the e-learning Web application may
include: dynamical increase/decrease of the difficulty level of the question ac-
cording to the answer time of a user to each single question; forcing students
to browse the same contents as the teacher (a sort of “collaborative” reaction);
monitoring of effectively active students on the Web application (not only logged
into the application but also actively interacting with it); determination of ef-
fectively completed course units (units where the student spent at least the
minimum required time).
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Fig. 9. The WebRatio modeling tool, extended with the new reactivity-supporting
units and the WBM CASE tool

5 A Framework for Building ReActive Web Applications

In our framework, Web application code generation is based on WebRatio [8], a
CASE tool for WebML that supports the visual design of the application schema
and the automatic code generation, starting from WebML schemas and using a
proprietary, extensible runtime engine. Automatic code generation is based on
parametric code components corresponding to WebML units. Parametric com-
ponents are configured at runtime using XML descriptors that contain SQL
queries and parameters for retrieving contents from the application data source.
The implementation of the extension introduced in this paper exploits WebRa-
tios native extension mechanisms that allow adding new features by means of
so-called custom units, a mechanism that has already demonstrated its power
when extending the CASE tool to support other functions. The so achieved
extension fully reflects the proposed (visual) design method, and supports the
automatic generation and deployment of ReActive Web applications. We imple-
mented the ReActive pages as described in Section 3 and introduced a new unit
to retrieve WBM variables (Get WBM Variable). The implementation of ReAc-
tive pages required an extension of the page logic, yielding a further new unit
(called Active unit), to be used in place of the A-label associated to reactive
pages. This unit triggers the operation chains, indicated by the outgoing links
from the A-label, when a WBM script associated to a page and to the current
user terminates successfully (cf. Figure 9).
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Fig. 10. Functional architecture of the overall behavior-aware system

To support WBM script’s modeling based on WebML schemas, we developed
a visual tool that can import the XML representation of a WebML schema and
use retrieved data to design WBM script (see Figure 9).

Executing Web applications reacting to users’ behaviors – in addition to the
standard WebML runtime environment – requires proper runtime support for
WBM scripts. The implementation of rule engines for active databases is a well
known and studied topic in the literature on database systems. Our problem of
handling user sessions and WBM scripts resembles to the problem of handling
transactions and rules in active databases. For more details on the implementa-
tion of the WBM engine refer to [2].

5.1 ReActive Architecture

Figure 10 reports the architecture of our framework: HTTP requests toward the
Web application are automatically forwarded to the WBM engine by the WebML
runtime environment, which hosts the actual application. Users interact only
with the Web application itself and are not aware of the WBM engine behind it.

The WBM engine collects and evaluates tracked, user-generated HTTP re-
quests for (i) instantiating new scripts at runtime, and (ii) enhancing the states
of possible running WBM scripts, as well as (iii) communicating possible script
terminations. Script instantiation is managed by a proper Script loader module
and the set of scripts that can be instantiated for a particular application is
retrieved from a Script Repository. Finally a dedicated WBM Execution Envi-
ronment, is in charge of progressing instantiated, running scripts. Once a script
reaches its accepting state, the execution environment communicates the suc-
cessful termination to the Web application by modifying suitable data structures
within the shared database.

After the successful termination of a WBM script, the Web application
possesses all the necessary data for executing the possibly associated actions. As
soon as a user requests one of the pages within the scope of the high-level rule
whose condition is satisfied by the terminated WBM script, the Web application
executes the operations associated to the requested page. For this purpose, page
computation starts by checking whether scripts connected to the page have
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terminated or not, before proceeding with the actual rendering of the page. If
there are terminated scripts for that page, one or more rules could be executed.
Thus, computation proceeds with the determined adaptation operations, produc-
ing effects as described in Section 3. Only afterward, if no automatic navigation
actions are triggered, computation continues with the actual page, and a suitable
HTTP response is produced.

6 Conclusion and Future Work

In this paper we introduced a practical case study showing a potential applica-
tion of the general purpose approach for building ReActive Web applications.
Furthermore, we presented our current implementation of the WBM engine and
the CASE tools we used to design advanced ReActive Web sites. The adopted
CASE tools prove that combining WebML and WBM yields a very powerful
visual ECA model, with adequate expressive power for capturing highly sophis-
ticated Web dynamics and providing suitable reactivity mechanisms.

In our future work, we are planning to enrich the proposed ECA paradigm,
including not only events related to user behaviors but also data events and
other Web events. We also intend to better integrate the two CASE tools pre-
sented for providing a unique and complete tool to easily design and deploy Web
applications reacting to user behaviors.
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Abstract. We describe a generic ECA service for implementing behav-
ior using heterogeneous languages in the Semantic Web. The module
details and implements our recent work on an ontology and language
concept for a modular approach to ECA rules in the Semantic Web. The
ECA level provides generic functionality independent from the actual
languages and semantics of event detection, queries, and actions.

1 Introduction

In [MAA05b], we presented an ontology-based approach for specifying (reactive)
behavior of the Web and evolution of the Web that follows the Event-Condition-
Action (ECA) paradigm. The approach provides a modular framework for com-
posing languages for event detection, queries, conditions, and actions by sepa-
rating the ECA semantics from the underlying semantics of events, queries, and
actions. We deal with the heterogeneity of the components (i.e., event, query
and action languages) by associating every rule component with a language. The
language descriptions (as resource descriptions) provide pointers to appropriate
Web Services that implement the respective languages in a service-oriented ar-
chitecture. An accompanying proposal for a rule markup language has been given
in [MAA05a]. In the present paper, we describe a prototypical implementation
(in Java) of an ECA engine for this framework: Section 2 shortly reviews the un-
derlying ontology and language model of the general framework for ECA rules.
Section 3 describes the global semantics of the rules, focusing on the handling
of variables. Section 4 then describes the actual evaluation and communication
with the component language services and illustrates it by a running example.
Section 5 concludes the paper.

2 Language Heterogeneity: Rule Components and
Languages

For dealing with the different languages for events, queries and tests, and ac-
tions, we prefer a declarative approach with a clean, modular design as a “Normal
Form”: First detect just the dynamic part of a situation (event), then optionally
obtain additional information by queries (that can be stated using different lan-
guages), evaluate a boolean test, and, if “yes”, then actually do something – as

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 887–898, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 2. Hierarchy of Languages (simplified from [MAA05a])

shown in Figure 1. Thus, every rule uses an event language, one or more query
languages, a test language, and one or more action languages for the respective
components. Rules and their components are objects of the Semantic Web, i.e.,
subject to a generic rule ontology as shown in the UML model. Every component
is associated with its language (seen as a resource), identified by a URI. With
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this URI, further information is associated that allows to address a suitable
Web Service that implements the language; details about the service-oriented
architecture can be found in [MAA05b].

The framework defines a hierarchical structure of language families (wrt. em-
bedding of language expressions) as shown in Figure 2: the ECA language embeds
event, query, test, and action languages. Rules combine one or more languages
of each of the families. In general, each such language consists of an application-
independent syntax and semantics (e.g., event algebras, query languages, boolean
tests, process algebras) which is then applied to a domain (e.g. travelling). The
domain ontologies define the static and dynamic notions of the application do-
main, i.e., predicates or literals (for queries and conditions), and events and
actions (e.g. events of delayed flights, actions of reserving tickets).

3 Semantics of ECA Rules and Variables

For classical deductive rules, there is a bottom-up evaluation where the body
is evaluated and produces a set of tuples of variable bindings. Then, the rule
head is “executed” by iterating over all bindings, for each binding instantiating
the structure described in the head (in some languages also executing actions
in the head). We define the semantics of ECA rules as close as possible to this
semantics, adapted to the temporal aspect of an event:

ON event AND additional knowledge, IF condition THEN DO something.
Logical variables are used in the same way as in Logic Programming for com-
munication between the different components of a rule: the semantics of rules
is based on sets of tuples of (answer) variable bindings. In case that a variable
occurs more than once in a rule, it is handled as a join variable. While in Logic
Programming rules, variables must be bound by a positive literal in the body
to serve as join variables in the body and to be used in the head, in ECA rules
we have four components: A variable must be bound in the rule, in an “ear-
lier” (Event<Query<Test<Action) or at least the same component as where it
is used. Usage can be as a join variable in case of the Event, Query, or Test
component, or to execute (“derive”) an action in the Action component (that
corresponds to the rule head). Variables can be bound to values/literals, refer-
ences (URIs), XML or RDF fragments, or events (marked up as XML or RDF
fragments).

While the semantics of the ECA rules provides the infrastructure and global
semantics, the component languages provide the local semantics. For dealing
with heterogeneous languages, the ECA level does only minimally constrain the
component languages. Communication between the ECA engine and the Event,
Query, Test, and Action components is done by exchanging variable bindings.
Component languages use variables in two different ways: Logic Programming-
style languages match free variables, e.g. query languages like Datalog, F-Logic
[KL89], XPathLog [May04], or Xcerpt [BS02]; similar techniques can also be ap-
plied to design languages for the event component. Functional-style languages act
as functions over a database or an event stream, and some input/environment
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variables. In the XML world, such languages return an XML fragment (e.g.
XQuery). In most classical approaches for event languages (e.g., as in SNOOP
[CKAK94]), the “result” of an expression is often considered to be the sequence
of detected events that “matched” the event expression in an event stream. Vari-
ables can be bound on the rule level for binding results of functional expressions
by borrowing from XSLT as <eca:variable name=“name”>content</eca:variable>

where content can be any expression whose value is then bound to the variable
(i.e., an event specification or a query). Similar constructs are recommended to
use in the component languages. We will focus here on the ECA level, keeping
the component expressions as simple as possible.

4 The ECA Engine

4.1 Architecture

The architecture is shown in Figure 3. The ECA engine controls the evaluation
of a rule, i.e., when to evaluate which rule component, and keeps the state
information during the evaluation. The communication with the autonomous
remote component language processors is done via the Generic Request Handler
(GRH), using an XML markup for requests and answers. Using the namespace
declaration of the components, the GRH determines an appropriate language
processor and sends the request and the relevant variable bindings to it in an
appropriate form. After receiving the answer, the obtained variable bindings are
communicated back to the ECA engine.

ECA Engine:
<rule>

<event xmlns:ev=“. . . ”/>. . . </event>

<query xmlns:ql=“. . . ”/>. . . </query>

<test xmlns:tst=“. . . ”/>. . . </test>

<action xmlns:act=“. . . ”/>. . . </action>

</rule>

Generic
Request
Handler

• •· · · Component Language Services· · · •

→
component,
input var.bdgs

←
resulting
var.bdgs

Fig. 3. Global Service-Oriented Architecture

This process is described below and illustrated by an exemplary ECA rule of
a car-rental company: when a customer books a flight, cars similar in size to his
own cars are offered at the given destination (see Figure 4).

4.2 Firing ECA Rules: The Event Component

Upon registration of a rule in the ECA engine, its event component is submitted
to the GRH. The GRH inspects the namespace of the event language and submits
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<eca:rule xmlns:eca=”http://www.semwebtech.org/06/eca-ml”>
<eca:event><!-- detect a booking by a person --></eca:event>
<eca:variable name=”OwnCar”>

<eca:query><!-- query the person’s cars --></eca:query>
</eca:variable>
<eca:variable name=”Class”>

<eca:query><!-- map the cars to the appropriate classes --></eca:query>
</eca:variable>
<eca:query>

<!-- query cars that are available at the destination. -->
</eca:query>
<eca:action><!-- inform the customer about suitable cars --></eca:action>

</eca:rule>

Fig. 4. Outline of the Sample Rule

the event component to an appropriate event detection service (see Figure 5).
In our simple example, the event component consists only of an atomic event
pattern. The event pattern is thus sent directly to an Atomic Event Matcher
that is aware of relevant events.

Fig. 5. Registration of the Event Component

The event detection service evaluates the event specification against the
stream of events. When an (atomic) event that matches the specification, e.g.,

<travel:booking person=“John Doe” from=“Munich” to=“Paris”/>

occurs, the detection of the event component pattern is signalled from the event
detection service to the GRH (containing the identification of the rule, the event
sequence that matched the pattern and the collected variable bindings). The
GRH forwards it to the ECA engine as shown in Fig. 6(1), using an XML markup
for answers and tuples of variable bindings. The arrival of the event detection
message marks the starting point of the rule evaluation at the ECA engine. The
ECA engine creates one or more instances of the rule with appropriate variable
bindings according to the number of answer elements in the message (Fig. 6(2)).

Languages for Composite Events. The event component can also use arbitrary
language for specifying composite events – as far as a service that actually does
the event detection is provided. In this case, the event component is of the form
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Fig. 6. Detection of the Event Component

<eca:event xmlns:evt=“uri of the event language”>

<evt:operator> nested expression in the event language </evt:operator>

</eca:event>

and the component is then registered and processed at an appropriate service
associated with the language’s URI [MAA05b].

Possible languages here are e.g. an extension of SNOOP [CKAK94] with logi-
cal variables where a framework-aware service has been implemented in [Spa06]
(with input in XML markup), or XChange [BP05]. Both languages return the
event sequence as functional result and bind/use logical (join) variables.

4.3 The Query Components

The query components serve for obtaining static information from Web resources
based on the information contained in the event. The query component is very
similar to the evaluation of rule bodies in Logic Programming, extending the
set of tuples of variable bindings (and also probably restricting it via join condi-
tions). Since we also allow answers of functional query languages, the semantics
is adapted accordingly: when bound to a variable at the rule level, each answer
yields a separate variable binding.

In our example, at this time, the following facts are known: the name of the
person who booked the flight and the destination city (Fig. 6(2)). The name is
used to ask for the cars that this person owns at home. Note that here, the query
is stated as an “opaque” XQuery code fragment (against an XML document on
the Web) without markup. The query code together with the values of the input
variables is communicated to the GRH as shown in Figure 7.
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Fig. 7. Sending the First Query Component to the GRH: Own Cars

Languages for the Query Component. In contrast to the event component, many
query languages for SQL, XML and RDF data are around, and many Web nodes
already support interfaces for them. Thus, for current applications, opaque query
components where the query is just given as a string and submitted to such a
service (using e.g. HTTP, or calling a saxon-based [saxon] wrapper for XQuery)
are expected to be frequently used:

<eca:query>

<eca:opaque (language= “name of the language”|url= “URL of WebService)”>

query
</eca:opaque>

</eca:query>

4.4 The Generic Request Handler

The Generic Request Handler acts as a mediator for dealing with remote ser-
vices. It inspects the namespace declaration of the components (or the language
attribute in case of opaque fragments) for determining an appropriate language
processor and forwards the request to it in an appropriate form. For framework-
aware services, the incoming requests can just be forwarded. To integrate non-
framework-aware services, the GRH uses information about the communication
protocol and method in addition to the processor’s capabilities wrt. the handling
of variable bindings (cf. the second query discussed later).

The first query is forwarded together with the input variable bindings from
the GRH to a framework-aware wrapped Saxon [saxon] XQuery processor node.
The node evaluates the query and returns one <log:answer> for each result to
the GRH as shown in Figure 8(1). For such processors that return a functional
result (in an <log:result> element), the query component is surrounded by a
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<eca:variable> element (as in our example, see Figure 4). The GRH extends the
input bindings with binding the functional result(s) to the given variable. It
generates an appropriate <log:answers> message and sends it back to the ECA
engine as shown in Figure 8(2) where it is then joined with the existing variable
bindings. Note that since John Doe owns two cars at home, a Golf and a Passat,
there are now two tuples of variable bindings (Figure 8(3)).

Fig. 8. Answer to the First Query Component: Own Cars
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Fig. 9. Evaluation of the 2nd Query against a Framework-Unaware Service

In the next query, another database is queried for the classes (sizes) of the
respective cars as shown in Figure 9(1). The <eca:opaque> element specifies to
contact an unwrapped, framework-unaware XQuery node (an eXist database) via
HTTP GET. Variables in the query string are replaced by their values and the
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Fig. 10. Query Against Available Cars, Generating a <log:answers> Structure

query is submitted. In the example, the GRH executes the request for every tuple
of the input variable bindings, once for “Golf” and once for “Passat” (Fig. 9(2)),
and binds the results to the variable Class. The resulting variable bindings are
then sent as the content of an <log:answers> message back to the ECA engine
(Fig. 9(3)) where they are joined with the existing tuples (Fig. 9(4)).

Next, another query retrieves all cars that are available at the destination
city (see Figure 10). Here an XQuery engine is addressed directly with a query
that generates the required <log:answers> structure to “fake” a framework-aware
service. The available cars (of classes B and D) are compared to the classes of
the cars owned by the customer (B and C) as shown in Figure 11. The join
semantics (natural join over class) eliminates tuples containing a car either of
class “C” or of class “D”, and only those with class “B” remain.

4.5 The Test and Action Components

These two components follow the same principle. The test component (which
corresponds to the WHERE clause in SQL and is empty in our example) con-
tains a condition over the bound variables which discards those tuples that do
not satisfy the condition. In general, it is evaluated locally, using only simple
comparison predicates. The action component then is the one where actually
something is done: for each tuple of variable bindings, the action component is
executed, again via the GRH. This can include commands on the database level,
explicit message sending, or actions on the domain ontology level.
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Fig. 11. Evaluation of the Available Cars

5 Conclusion

The above ECA engine and Generic Request Handler implement the upper level
of the generic ECA framework proposed in [MAA05a, MAA05b]. They can be
used for combining arbitrary event detection, query and action languages and
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respective engines. A variety of such engines, including sample domain services
are currently being developed.
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Abstract. Prova is a language for rule-based Java scripting to support informa-
tion integration and agent programming on the web. Prova integrates Java with
derivation and reaction rules supporting message exchange with various com-
minication frameworks. Prova supports transparent access to databases, retrieval
of URLs, access to web services, and querying of XML documents. We briefly
illustrate Prova and show how to implement a distributed bioinformatics applica-
tion, which includes access to an ontology stored in a database and to XML data
for protein structures. Finally, we compare Prova to other event-condition-action
rule systems.

1 Introduction

Prova is a language for rule based Java scripting for information integration, and agent
programming [6,3]. Prova is suitable for use as a rule-based backbone for distributed
web applications in biomedical data integration. It has been designed to meet the fol-
lowing goals:

– Combine the benefits of declarative and object-oriented programming;
– Combine the syntaxes of Prolog and Java to appeal to programmers in both worlds;
– Expose logic and agent behaviour as rules;
– Access data sources via wrappers written in Java or command-line shells like Perl;
– Make all Java APIs from available packages directly accessible from rules;
– Run within the Java runtime environment;
– Enable rapid prototyping of applications;
– Offer a rule-based platform for distributed agent programming with common mes-

saging protocols.

These design goals are especially important for integration tasks where location
and format transparency are important. The latter means that the language should sup-
port the work with databases, RDF, HTML, XML, and flat file formats. Prova’s rule-
based approach is particularly important for two applications: derivation rules to reason
over ontologies and reaction rules to specify reactive behaviour of possibly distributed
agents.

T. Grust et al. (Eds.): EDBT 2006 Workshops, LNCS 4254, pp. 899–908, 2006.
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Let us consider examples to illustrate these two types of rules. As a declarative lan-
guage with derivation rules Prova follows a Prolog-style syntax as the next example
shows:

Example 1. (Declarative programming)
Graph traversal is a typical example for declarative programming. A standard example
is the same generation problem, in which all nodes in a tree are returned, which belong
to the same generation. Two nodes are in the same generation if they are siblings or if
their parents are in the same generation. The corresponding Prova programme is identi-
cal to standard Prolog, the execution semantics of Prova follow the usual top-down, left
to right resolution.

Listing 1.1. Prova example
1 parent(anna, gerda).
2 parent(anna, fritz).
3 parent(asif, anna).
4 parent(asif, yanju).
5 parent(yanju, anja).
6

7 sg(X,Y) :- parent(Z,X), parent(Z,Y).
8 sg(X,Y) :- parent(Z1,X), parent(Z2,Y), sg(Z1,Z2).

The query :- solve(sg(gerda,X)). will return X=gerda, X=fritz, and
X=anja.

Thus, Prova follows classical Prolog closely by declaratively specifying relationships
with facts and rules. Now let us consider two examples, where access to Java methods
is directly integrated into rules.

Example 2. (Object-oriented programming)
The code below represents a rule whose body consists of three Java method calls: the
first to construct a String object, the second to append something to the string, and the
third to print the string to the screen.

Listing 1.2. Prova example
1 hello(Name):-
2 S = java.lang.String("Hello "),
3 S.append(Name),
4 java.lang.System.out.println(S).

2 Prova and Reactivity

Prova’s reaction rules can comprise events, conditions, and actions in any order, as both
events and actions are raised by built-in predicates for receiving and sending messages.
Both allow for various communication frameworks such as the agent messaging lan-
guage Jade, the Java messaging system JMS 1 or even Java events generated by Swing
components. Due to the natural integration of Prova with Java, Prova’s reaction rules

1 java.sun.com/products/jms/
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offer a syntactically economic and compact way of specifying agents behaviour while
allowing for efficient Java-based extensions to improve performance of critical oper-
ations. JMS in general has the advantage of being a guaranteed delivery messaging
platform. Intuitively it means that when computer A sends a message to computer B
the latter is not required to be operational. Once B goes online the messages will be
delivered.

2.1 Main Features of Prova’s Reaction Rules

Prova provides three main constructs for enabling agent communication:

– sendMsg predicates, which can be used as actions anywhere in the body of a deriva-
tion or reaction rule,

– reaction rules, which have a blocking rcvMsg in the head and which fire upon
receipt of a corresponding event, and

– inline reactions, which are encoded by blocking receipt of messages using rcvMsg
or rcvMult anywhere in the body of derivation or reaction rules.

Communication actions with sendMsg. The sendMsg predicate can be embedded into
the body of an arbitrary derivation or reaction rule. It can fail only if the parameters are
incorrect and the message could not be sent due to various other reasons including the
dropped connection (note that in the JMS case, the message may be sent anyway even
if the network is down).

The format of the predicate is:

sendMsg(Protocol,Agent,Performative,[Predicate|Args]|Context)

or

sendMsg(Protocol,Agent,Performative,Predicate(Args)|Context)

where Protocol can currently be either jade, jms, self, or queue. Jade and JMS use
the corresponding communication layers, while self and queue send the message to the
agent itself or to another agent running locally in the same process but in another thread.
Agent denotes the target of the message. For the self, jade, and jms methods, Agent is
the name of the target agent. For the queue option, Agent is the object representing the
message queue of the target agent. For Jade messages, the agent name takes the form
agent@machine while for jms messages the agent locations are read from configuration
files and are not specified in the Agent parameter. Performative corresponds to the se-
mantic instruction the broad characterisation of the message. A standard nomenclature
of performatives is FIPA Agents Communication Language ACL (www.fipa.org).

[Predicate|Args] corresponds to the bracketed form and Predicate(Args) corresponds
to functional form of the message content sent in the message envelope. The first form
can be useful to match any literal including arity-0 predicates (in which case, query()
is the represented as [query]) or arity-1 predicates (in which case, query(arg1) is repre-
sented as [query,arg1]). The problem with the functional form is that it is impossible to
specify a general pattern accommodating predicates of arbitrary arity while the brack-
eted version is compatible with any arity. Context includes an arbitrary length list of
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comma-separated parameters that can be used to identify the message or to distinguish
the replies to this particular message from other messages. In particular, it can be useful
to include the protocol as part of context for the recipient of the message to be able to
reply by using the same protocol.

The following code shows a complete rule that sends a code base (a fragment of
Prova code) from an external File to the agent Remote that will then assimilate the rules
being sent. The rules are encapsulated in a serializable Java StringBuffer object and sent
with the literal for the built-in predicate consult. The particular version of consult will
then read on the Remote machine the Prova statements from a StringBuffer (in contrast
to the standard version of consult that reads statements from the specified file provided
as an input string).

Listing 1.3. sendMsg Example
1

2 % Upload a r u l e base read from F i l e to the host a t address Remote
3

4 upload_mobile_code(Remote,File) :-
5 % Opening a f i l e re tu rns an ins tance of java . i o . BufferedReader i n Reader
6 fopen(File,Reader),
7 Writer = java.io.StringWriter(),
8 copy(Reader,Writer),
9 Text = Writer.toString(),

10 % SB w i l l encapsulate the whole content o f F i l e
11 SB = StringBuffer(Text),
12 sendMsg(jade,Remote,eval,consult(SB)).

Reaction rules with rcvMsg. In Prova, reaction rules are implemented as rules whose
head consists of a rcvMsg predicate, which has the same syntax as the sendMsg predi-
cate:

rcvMsg(Protocol,To,Performative,[Predicate|Args]|Context)

The agent reacts to the message based on its pattern including the protocol, sender,
performative, message content, and context. The following code shows a general pur-
pose but simplified reaction rule for the FIPA queryref performative. The first rule trig-
gers a non-deterministic derivation of the literal [Pred|Args] sent as the message con-
tent. Based on the agent’s knowledge-base derive will instantiate Pred|Args and send
corresponding replies. The second rule sends a special end of transmission message to
inform the querying agent of the completion of the query. The Protocol parameter avail-
able as the first parameter allows the recipient of queryref to know the protocol (jade,
jms etc.) that should be used for replies.

Listing 1.4. rcvMsg Example
1 % Reaction r u l e to general query re f
2 rcvMsg(Protocol,From,queryref,[Pred|Args]|Context) :-
3 derive([Pred|Args]),
4 sendMsg(Protocol,From,reply,[Pred|Args]|Context).
5 rcvMsg(Protocol,From,queryref,[Pred|Args],Protocol) :-
6 sendMsg(Protocol,From,end_of_transmission,[Pred|Args]|Context).

Now we will show how to deploy Prova’s derivation and reaction rules to implement
a distributed web-based bioinformatics application.
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Fig. 1. Sketch of the GoProtein tool workflow: The user interacts locally with a GUI on a client
machine. Queries for all proteins annotated with a given term from the ontology are sent to the
server. The server can access a database server to obtain protein IDs, which are annotated with
the given term. The remote protein database returns an entry for protein as XML file given the
protein ID. The protein database is used to display relevant information to the user.

3 The GoProtein Tool

Biological databases are growing rapidly. Currently there is much effort spent on an-
notating these databases with terms from controlled, hierarchical vocabularies such as
the GeneOntology [5]. It is often useful to be able to retrieve all entries from a data-
base, which are annotated with a given term from the ontology. We want to build such a
query engine according to the scheme shown in Fig. 1. The application consists of four
agents, whose interaction is driven by reaction rules. The agents are a thin client, which
contains nothing but a GUI to interact with the user, a server, which handles queries of
the client, a database server, which contains the ontology and the protein IDs annotated
with the ontology terms, and a protein database which contains detailed information on
the protein in XML format. The client’s GUI displays the ontology. If the user selects a
term from the ontology, an event is fired, which triggers a request being sent to the Go-
Protein server. The server in turn queries the GeneOntology database server for protein
IDs, which have been annotated with the ontology term. If the user selects a specific
protein on the GUI, a query is sent to the server, which reacts by retrieving an XML file
from the remote protein database and by extracting relevant information from the file
and returning it to the client.

For this specific implementation of the GoProtein workflow we want to use the Ge-
neOntology [5] as annotation vocabulary and the Protein Databank PDB [1] as pro-
tein database. The Gene ontology (GO) contains over 19.000 terms organised in three
sub-ontologies relating to biological processes, molecular functions, and cellular com-
ponents. GeneOntology is available in XML, OWL, or database dump. Here we use
the database dump of the GeneOntology. The protein databank PDB is a database with
over 25.000 3D protein structures. Entries contain protein names, species, literature
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Fig. 2. Screenshot of GoProtein: The left panel shows the ontology including the term ”protein
kinase inhibitor” and on the right the PDB entries annotated with the term

references, and most important the 3D coordinates of all the atoms of the protein. PDB
is available as flat file format and XML.

4 Prova Code for GoProtein

The client agent comprises the GUI and therefore makes heavy use of Java’s Swing
methods. For example, the MutableTreeNode class is used to display the GeneOntol-
ogy tree as shown on Fig. 2.

Listing 1.5. Client agent
1 gui() :-
2 println(["==========Window Loading=========="]),
3 % create the t ree and a p laceho lder f o r the IDs
4 Node1 = javax.swing.tree.DefaultMutableTreeNode("all"),
5 TreeModel = javax.swing.tree.DefaultTreeModel(Node1),
6 Tree = javax.swing.JTree(Node1),
7 Panel1 = javax.swing.JScrollPane(Tree),
8 IdList = javax.swing.JList(),
9 Panel2 = javax.swing.JScrollPane(IdList),

10 ...

For large knowledge bases such as the 19.000 GeneOntology terms it is important
to keep data on disc and load it into main memory only as needed. For this purpose,
the code snippet below defines the location of the database and uses built-in predicates
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such as dbopen to open a database connection and sql select to issue database queries.
The concat statements are used to assemble the query string.

Listing 1.6. The Server Agent
1

2 :- eval(consult("utils.prova")).
3

4 % Define database l o c a t i o n
5 location(database,"GO","jdbc:mysql://myserver","guest","guest").
6

7 % get d e s c r i p t i o n o f term
8 desc(Term, Desc) :-
9 dbopen("GO",DB),

10 unescape("\’", Quote),
11 concat(["term_definition.term_id = term.id AND term.name =", Quote, ...

...Term, Quote],A),
12 concat(["term, term_definition"],From),
13 sql_select(DB,From,[’term_definition.term_definition’,Desc],[where,A]).

The user can also issue a request to extract specified fields from URLs of XML en-
tries for a selected term. The code below shows the ability of Prova to connect to dif-
ferent URLs, process their XML contents and retrieve the requested fields using the
built-in predicate descendantValue.

Listing 1.7. XML Handler
1

2 searchPDB("http://pdbbeta.rcsb.org/pdb/displayFile.do?structureId=").
3

4 % get the xml f i l e
5 searchPDB(Query,XML):-
6 print(["Query for ",Query," at PDB"]),
7 searchPDB(BaseURL),
8 concat([BaseURL,Query, "&fileFormat=xml"],URLString),
9 retrieveXML(URLString,XML),

10 println(["done"]).
11

12 % search f o r ” sequence leng th ” values i n the xml f i l e o f a PDB ID
13 doSearchPDB(Term, Lst):-
14 searchPDB(Term,XML),
15 PDB = "PDBx:",
16 concat([PDB,"length_a"],La),
17 descendantValue(XML,La,A),!,
18 concat([PDB,"length_b"],Lb),
19 descendantValue(XML,Lb,B),!,
20 concat([PDB,"length_c"],Lc),
21 descendantValue(XML,Lc,C),!,
22 Lst = [A,B,C].
23

24 %%%%%%%%%%%%%%%% UTILITIY pred ica tes %%%%%%%%%%%%%%%%%%%%%%
25

26 retrieveXML(URLString,Root):-
27 URL = java.net.URL(URLString),
28 print(["."]),
29 Stream = URL.openStream(),
30 print(["."]),
31 ISR = java.io.InputStreamReader(Stream),
32 XMLResult = XML(ISR),
33 Root = XMLResult.getDocumentElement(),
34 print(["."]).
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The communication between the client and server agents is performed by using the
Prova massaging and reaction rules to specify behaviour of the two agents. The predi-
cate remote in line 1 takes as an argument the specification of the target machine we are
communicating with. The reaction rule in line 5, 8, 10 are triggered by an event from
the GUI’s Swing component, while the one on line 15 is triggered by a message sent by
the server. One of the actions triggered by the reaction rule in line 5 is a message sent
to the server (last line).

Listing 1.8. The Client Agent
1 remote("ils_assign_server@servername").
2

3 % message t r a n s f e r f o r the l i s t e n e r s :
4 % Reaction to but ton ac t ions
5 rcvMsg(XID,Protocol,From,swing,[action,Cmd,Source|Extra]) :-
6 process_button(Source,Cmd).
7 % Reaction to incoming swing mouse c l i c k e d messages .
8 rcvMsg(XID,Protocol,From,swing,[mouse,clicked,Src|Extra]) :-
9 process_mouse(clicked,Src|Extra).

10 rcvMsg(XID,Protocol,From,swing,[mouse,entered,Src|Extra]) :-
11 process_mouse(entered,Src|Extra).
12

13 % message t r a n s f e r w i th the server
14 % act ions a f t e r r e c e i v i n g the r e s u l t s o f a query
15 rcvMsg(XID,Protocol,From,reply_qry,[IDs]|Context) :-
16 mainlist(List),
17 buildList(List, IDs).
18

19 % process executed when the ” Load Unipro t IDs ” but ton i s c l i c k e d
20 % i t f i n d s the se lec ted node , f i n d s a l l i t s assoc iated Un ip ro t IDs , and loads . . .

. . . them i n the L i s t
21 process_button(Button, "Load Uniprot IDs") :-
22 Tree = Button.getTree(),
23 Path = Tree.getSelectionPath(),
24 Node = Path.getLastPathComponent(),
25 Term = Node.toString(),
26 List = Button.getList(),
27 buildList(List, ["contacting server...","please wait"]),
28 % ask f o r the l i s t o f associated uniprod IDs
29 remote(Remote),
30 sendMsg(XID,jade,Remote,uniprot,[Term],"context").

5 Comparison and Conclusion

The World Wide Web is a rich heterogenous media following a pattern of growth that
is uncentralized, directed by trends, and resistant to initiatives to enforce strong con-
formance to standards. A language for reactivity on the Web should be simple, offer
‘out of the box’ ability to handle most current de facto standards and offer specification
robustness through clear declarative semantics. The many recent efforts that have been
initiated to bring proper semantics to the Web - the Semantic Web - must also be kept in
mind, as they delineate what the Web could eventually become. One can thus enumerate
some ‘must have’ features for a Reactive Web Language:

– Ability to read and write XML, RDF, OWL, RSS and their variants;
– Possibility to interface to systems written in Java and/or embed java code;
– Connectivity to public/private databases, through different media (direct, web or

web-services);
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– Simple access to URL-based resources: Web page, XML file, RSS feed;
– Reactivity through the listening, processing and sending of events and actions;
– Declarative semantics and Event-Condition-Action paradigm.

In the following, we briefly compare Prova with other languages to address the prob-
lem of reactivity on the web: JESS, a java based rule engine, XChange based on the
Xcerpt web query language, and ruleCore, an XML-based active rule engine.

5.1 JESS

Jess is a forward-chaining rule engine based on the Rete algorithm for the Java platform
[4]. Jess supports the development of rule-based systems which can be tightly coupled
to code written in the Java language. The syntax of the Jess language is Lisp-based.
Java functions can be called from Jess, and Jess can be extended by writing Java code.
Jess rules can be embedded in Java applications. Jess inherits from Java all the XML
libraries to read, process and write XML data. However, it does not provide rule-based
wrappers that provide these facilities in a transparent manner. The same holds for con-
nectivity to databases: it is possible through Java libraries but not truly integrated in the
system. This is one of the main differences between Prova and Jess, Prova has special-
ized predicates that allow easy and transparent access to databases, XML data, message
exchange frameworks, and even events from Swing components. The fact that Jess is
essentially a rule engine, provides a very natural setup to write Event-Condition-Action
rules in the context of event propagation in the Web. Thus Business rules can be stated
in a declarative and transparent manner.

5.2 XChange

XChange is a declarative language built upon the declarative web query language
Xcerpt [2]. It provides Web-specific capabilities such as propagation of changes on
the Web and event-based communications between Web sites. XChange is a re-
search project and has a prototype implementation as proof-of-concept implementation.
Among the interesting characteristics of XChange is its use of explicit temporal con-
structs to describe sequences of events, their overlapping and composition. Reactivity is
achieved by having Event-Condition-Action rules at the core of the language. The main
difference between Prova and XChange is that Prova is a full featured programming
language built-upon the robustness and richness of Java, whereas XChange is geared
towards XML and HTML contents.

5.3 ruleCore

Of proved industrial strength, the ruleCore Engine (www.rulecore.com/) is a ro-
bust implementation of an active rule engine server. The ruleCore Engine implements
Event-Condition-Action rules that are organised in situation trees. The goal of ruleCore
is to detect situations that arise as the temporal and logical composition of events. The
rule engine itself does not rely on a generic programming language as in the case of
Prova and Jess, but instead on the definition of situations as event detector trees. Con-
nectivity to other media and systems is achieved through the use of event and action
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wrappers, most of which are provided ‘out of the box’ for databases and standard indus-
trial messaging frameworks like XML-RPC, Web Services, TIBCO Rendezvous, plain
sockets or IBM WebSphere MQ. The main difference between Prova and the ruleCore
engine is, as in the case of XChange, that Prova is a generic rule language extending
Java, whereas ruleCore is a language-independent rule engine.

Prova is the choice of a Java programmer with Prolog experience who aims to de-
velop a system which needs a possibly thin layer of rules for reasoning with backward
chaining and for defining business rules and workflows with agent communication.
Prova is available at www.prova.ws.
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Abstract. Interactive computer systems, that is, systems in which users cycli-
cally interact by getting and providing information, have already a widespread
and increasing use in all areas of our society. One characteristic of such sys-
tems is that the user behavior affects the system behavior and vice-versa. There
is strong evidence that much of the user behavior is reactive, that is, the user
reacts to the instantaneous conditions at the action time. This paper presents the
reactivity concept and describes a framework to model it in interactive systems, in
particular Internet-based systems. We analyze an online auction within the frame-
work. Based on eBay data, we identify attributes that affect the winner bidders’
behavior, such as the auction time to finish. This paper presents the first find-
ings towards the formal description and understanding of reactivity patterns in an
e-commerce application, which will be useful in improving the application and
building novel mechanisms.

1 Introduction

Interactive computer systems, that is, systems in which users cyclically interact by get-
ting and providing information, have become very useful in our society. From bank
transactions to cell phones, we are continuously interacting with systems and even with
other users through these systems. A significant part of the interactions is synchronous,
that is, users submit information to the system and wait for a response, then submit
more information and so on. The Web is an example of such a rich environment for
interaction pattern.

User-system interactions are usually complex and intriguing. It is quite hard to deter-
mine exactly the factors that lead a user to behave as we may observe. The information
we have about users is sparse and variable, in terms of both the instantaneous conditions
surrounding the observed behavior and the users’ background. It is important to note
that the interactions are not isolated, but successive interactions become a loop feedback
mechanism, where the user behavior affects the system behavior and vice-versa.

There is strong evidence that a significant part of the user behavior is reactive, that is,
the user reacts to the instantaneous conditions. As a consequence, user behavior varies
according to some factors related to the server and the application.
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This work presents the reactivity concept, describing how to model it in interactive
systems, in particular Internet-based systems. We propose a framework to model reac-
tivity in interactive systems and present a case study of applying it to online auctions,
based on eBay data.

The paper is organized as follows. Section 2 provides an overview of related work in
the realm of online auctions. Section 3 explains the concept of reactivity, discussing how
it may be modeled. Section 4 presents our case study showing the reactivity modeling
online auctions. Finally, Section 5 presents the conclusions and outlines ongoing work.

2 Related Work

An auction is the process of buying and selling goods by offering them up for bid, tak-
ing bids, and selling the item to the highest bidder. In economic theory, an auction is
a method for determining the value of a commodity that has an undetermined or vari-
able price. Online auctions present several aspects that violate the common assumptions
made by the traditional economic auction theory. The auction duration is typically much
longer than in traditional auctions; bidders can come and exit at any time; bidders are
geographically dispersed all over the world; they have very distinct backgrounds and it
is hard to predict how many bidders will end up participating in the auction. Instanta-
neous reactivity in such environments plays an important role, which we plan to address
in our research.

Online auctions have been studied extensively lately. Many studies focus on testing
results from the classic economic theory of auctions in the online environment. For
example, Lucking-Reiley [1] tests the well-known results of revenue equivalence. Bajari
and Hortacsu [2] address how the starting bid set by the seller affects the winner’s
course. Gilkeson and Reynolds [3] show the importance of a proper starting bid price
to attract more bidders and make an auction successful.

The widespread use of reputation and feedback systems and their impact on the out-
come of online auctions has also received considerable attention. Resnick and Zeck-
hauser [4] and Ba and Pavlou [5] examine the effects of bidder and seller reputations on
auction outcomes, concluding that seller reputations are correlated with auction success
on eBay.

In addressing the issue of reactivity in online auctions, it is important to consider
the work that has been done on analyzing bidders’ and sellers’ behavior in online envi-
ronments. Roth and Ockenfels [6] study the timing of bids, and the impact of different
methods of specifying auction deadlines. Comparing eBay and Amazon auctions, they
find evidence that auctions held with a “soft” ending time discourage late bidding or
“sniping”, common on eBay. Using data from ubid.com, Bapna et al. [7] develops a
cluster analysis approach to classify online bidders into four categories: participators,
evaluators, opportunists and sip-and-dippers. In another paper, Bapna et al. [8] develop
a simulation model emulating bidders’ behavior to analyze their impact in the outcome
of the auctions.

Looking at sellers’ strategies, Anderson et al. [9] find that various types of sellers
have diversified strategies for PDAs listed in eBay. They also show that sellers with
higher feedback scores are more likely to release more information about the items for
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sale. Kauffman and Wood [10] model opportunistic sellers’ behavior in coin auctions
in eBay because of information asymmetry.

Although there are several detailed studies of online auctions, none of them deals
with reactivity. We believe that this concept will allow a better characterization of online
auctions and other distributed applications, qualifying and quantifying, for instance,
temporal aspects. We have already studied reactivity in system’s performance. In [11]
we model reactivity in this context and [12] quantifies its impact on the performance of
Internet services.

Reactivity has been widely studied in the database context [13,14], and more recently
has been applied also in Web semantic research [15]. Also, event-condiction action
(ECA) paradigm [16,17] is an interesting topic in this context.

Our reactivity concept can be considered in any Web-based systems characterized by
user-system interactions. The reactivity concept we are presenting in this paper has a
novel semantic, once its objective is to model the dynamics of e-business applications,
like online auctions. In this context, there are not specific related works.

3 Reactivity Modeling

This section introduces our concept of reactivity. Reactivity emerges naturally whenever
there is the possibility of a feedback on the user-system interaction. Our approach is
based on the concepts of action and perception. Actions are all activities performed
by users while interacting with the systems. On the other hand, perceptions are the
set of criteria through which the user evaluates the service being provided.The goal of
our analysis is to correlate actions and perceptions, as a means of identifying the user
behaviors.

We define reactivity as the set of pairs perception-action associated with each user,
that is, we model how the user acts as a function of his/her perception of some criterion.
We classify reactivity according to two dimensions: (1) Performance: in this case, the
user action considers performance measures, such as response time; (2) Business Rules:
in this case, the user action considers business rules, such as the negotiation parameters
of an e-business application.

Our approach may be divided into three steps: (1) the framework is instantiated for
an application and reactivity dimension; (2) application-related data is translated into
framework elements; and (3) behaviors are characterized in terms of action-perception
pairs.

In this paper we focus on Internet-based services where the business-rules dimen-
sion is important. One example of such service is an auction, where the negotiation
characteristics may affect directly the bidder’s behavior.

We model the reactivity as a tuple < App, SesApp, S, E, Ac, P, PC >, where App
is the application, SesApp is an application session (an instance of the application by
a user), S is the set of states that the application may assume, E represents the set of
entities that participate, Ac is the set of actions that may be executed by the entities, P
is the application protocol, and PC is the set of perception criteria that characterize the
reactivity.
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App describes the service or object being provided. The SesApp is adopted once it
describes the set of actions performed by the entities that will define the interaction
process. P represents the protocol, that is, the application functioning - rules that define
which actions can be executed by the entities according to the application states. Each

rule has the form: Source State
Entity−−−−→
Action

Target State. The protocol rules define the state

transition graph.
Once we have a reactivity model, we can try to identify some correlation between

the perception criteria (PC) and the set of actions that an entity may execute. This
function will be used to add the reactivity concept to the traditional interactivity model.
Once we instantiate the framework, we translate observations in terms of the framework
components, so that we may analyze them.

4 Case Study: On Line Auction

In an auction there are two entities, the buyer and the seller. The English auction [18,19]
is an ascending-price auction. Each auction instance is a session of the auction engine,
that is, the sequence of bids related to the sell of a given item. Thus, the seller putting
an item for sale is the start of a session. The last bid delimits the end. There are many
states in which an auction session may be: Active, Active with Bids, Active with Buy-
it-now Option, Active with Bids and Buy-it-now Option, Cancelled, Ended with Buy-
it-now Option, Ended with Sale, and Ended without Sale. The seller may create an
auction session, cancel it, and set the “Buy it now” option. The buyer may bid, the most
common action, or perform a “Buy it now” offer. During the auction, the “Buy it now”
option permits an immediate purchase. There are many attributes that may affect the
buyer’s action, such as: the number of bids, the current price, the seller’s feedback, and
the payment method. It is important to stand out that we are interested in this work in
business rules as reactivity dimension, that is, we analyse how the business rules tailor
user actions. Instantiating the reactivity framework to this scenario we get the result
presented in Table 1.

eBay [20] was founded in 1995. eBay boosters claim that, in terms of revenue
growth, eBay [9,2,4] is among the fastest-growing companies of all time. It has rev-
olutionized the collectible market by bringing together buyers and sellers world-wide
in a huge, never-ending yard sale and auction. As of June 2005, there were over 15,000
members in the eBay Developers Program, comprising a broad range companies creat-
ing software applications to support eBay buyers and sellers as well as eBay affiliates.

This case study is based on eBay data. The data consists of auction data of three
different products: Nintendo GameCube, Sony PlayStation 2, and Microsoft Xbox Sys-
tem. The data was collected from 05/25/2005 to 08/15/2005, almost three months.
Table 2 presents basic information about the auction data, where we can see that there
is a significative number of auctions and bids to analyze.

Table 3 presents general statistics, concerning the number of buyers and sellers that
participate in the auctions, the auction pricing, the average number of bids per auction,
and the average number of unique bidders per auction. STD represents the standard de-
viation. As can be observed, the STDs are big, showing there are significant variations
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Table 1. Reactivity Model - Auction

App Auction Engine
SesApp Each Auction Instance
S Created , Active, Active with Bids, Active with Buy-it-now (BIN) Option, Active with

Bids and Buy-it-now (BIN) Option, Cancelled, Ended with Buy-it-now (BIN) Option,
Ended with Sale, Ended without Sale

E Buyer, Seller
Ac Buyer: MakeBid, MakeBuyItNowOffer

Seller: Cancel, SetBuyItNow

P Created
Seller−−−−→
Cancel

Cancelled

Active
Buyer−−−−−−→

MakeBid
Active with Bids

Active
Seller−−−−−−−−−→

SetBuyItNow
Active with BIN Option

Active with Bids
Buyer−−−−−−→

MakeBid
Active with Bids

Active with Bids
Seller−−−−−−−−−→

SetBuyItNow
Active with Bids and BIN Option

Active with BIN Option
Buyer−−−−−−→

MakeBid
Active with Bids and BIN Option

Active with BIN Option
Buyer−−−−−−−−−−−−−−−→

MakeBuyItNowOffer
Ended with BIN Option

Active with BIN Option
Seller−−−−→
Cancel

Cancelled

Active with Bids and BIN Option
Buyer−−−−−−→

MakeBid
Active with Bids and BIN Option

Active with Bids and BIN Option
Buyer−−−−−−−−−−−−−−−→

MakeBuyItNowOffer
Ended with BIN Option

Active with Bids and BIN Option
Seller−−−−→
Cancel

Cancelled

PC Number of Bids, Current Price, Seller’s Feedback, Starting Bid, Seller Location, Item’s
Condition, Shipment Fee, Item’s Pictures, Shipment Insurance, Payment Method

over the data. This aspect motivates even more the reactivity analysis, once it can be
used to explain them. A first analysis on these statistics shows that:

– The number of successful auctions varies from 63% to 69%.
– The number of distinct sellers is high, showing that auctions are not concentrated

among a small number of sellers. The top seller has created 186 Nintendo, 223
Sony, and 116 Xbox auctions for each product.

– The number of distinct buyers is also high, guaranteeing high level of competition
in this e-market. On the other hand, from this set of buyers, just very few of them
become winners.

– The mean variation of price between new and used products is small, however the
standard deviation of the prices is very high.

– There is a significant number of bids per auctions, which indicates the level of
competition during the negotiation. This information is confirmed by the average
number of unique bidders per auction being greater than 5.

The following two aspects are important to reactivity in online auctions, once they
are related to dynamic aspects of the auction bids: (1) The inter-bidding time (IBT), i.e.,
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Table 2. Basic information about the eBay dataset

Product
Information Nintendo Sony Xbox Total

# Auctions 8855 17234 9928 36017
# Bids 85803 179057 120021 384881

Table 3. General statistics about the eBay dataset

Product
Statistics Nintendo Sony Xbox

Number of auctions with winner 6103 10884 6466
Number of unique sellers 5453 9340 6466
Number of unique buyers that win 735 795 548
Number of unique buyers 18073 39026 26358
Average winner price (overall) US$ 32.04 US$ 44.21 US$ 49.63
STD winner price (overall) 37.04 51.36 58.87
Average winner price (new) US$ 35.32 US$ 48.71 US$ 52.97
STD winner price (new) 37.53 60.26 66.10
Average winner price (used) US$ 31.90 US$ 41.71 US$ 50.34
STD winner price (used) 38.14 49.09 58.12
Average number of bids per auction 11.59 12.38 14.13
STD number of bids per auction 9.43 10.82 11.27
Average number of unique bidders per auction 5.39 5.71 6.48
STD number of unique bidders per auction 3.58 4.23 4.57

the time between two consecutive bids; and (2) The price difference, i.e., the difference
of price between two consecutive bids.

Due to space constraints, only the characterization of Nintendo auctions is presented
here. Figure 1 shows the difference of price and time between each consecutive bid
for Nintendo. As can be seen, there exists a huge concentration of points where the
IBT and the difference of price have small values. However the variation of these two
metrics shows that there exists a significant variation over them. In the case of IBT, this
variation is very high. Moreover it is not possible to identify a clear correlation between
these two metrics. This observation holds for the three different auction products.

We analyze the histogram of auction duration for Nintendo, Sony and Xbox. The
three sets of auctions present similar duration behavior. Nintendo has more than 40%
of auctions during a week and around 15% of them during one day. For Sony and
Xbox, the number of auctions with 7-day duration is 40% and 1-day is 20%. The other
durations are similar: 20% of three days long and 15% of five days long. Around 5%
of the auctions has durations of 2, 4, 6 and 10 days. As can be noted, duration of odd
number of days predominate.

In order to analyze the bidders’ behavior, we classify them isolating the winner at-
tribute to evaluate how some attributes affect the result of the auction. Initially, we
identify the most relevant attributes using an attribute selection algorithm. From 31
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attributes, all of them related to business-rules dimension, we select the following at-
tributes to apply the classification technique: BIDDER BIDS REL (Relative Quantity
of Bidder Bids), ACTIVE TIME REL (Relative Time between the First and Last Bid-
der’s Bid), BID ENTRANCE REL (Relative First Bid Date), BID LEFT REL (Relative
Last Bid Date), AVG DELTA TIME REL (Relative average time difference between
two bids of the same bidder in an auction), and AVG DELTA PRICE REL (Relative
average price difference between two bids of the same bidder in an auction).

Figure 2 presents the classification tree for the Nintendo auctions dataset. This deci-
sion tree is a simple structure where non-terminal nodes represent tests on one or more
attributes and terminal nodes reflect decision outcomes. From its analysis it is possible
to identify some interesting results:

– 43% of winning bidders make the last bid almost at the end of the auction, their
bids represent less than 90% of auction bids, and their average relative delta price
consists of small values.

– 34% of winning bidders have made more than 90% of the bids of the auction.
– 9.3% of winning bidders present a small average relative price difference between

bids (less or equal than 0.02), a small average relative delta time between bids (less
or equal than 0.0145), make less bids than 38.5% of the total number of the auction
bids, and make the last bid almost at the end of the auction (BID LEFT REL >
0.9993).

– 8.5% of winners present an average relative delta time between bids greater or equal
than 0.0145, make less bids than 38.5% of the total number of the auction bids, and
make the last bid almost at the end of the auction (BID LEFT REL > 0.9996).

– 4.5% of winners present a small average relative price difference between bids (less
or equal than 0.0227), make 38.5% to 89.5% of the total number of the auction bids,
and make the last bid almost at the end of the auction (BID LEFT REL > 0.9993).
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Fig. 2. Classification Tree - Nintendo

From the results of this case study it is possible to identify that there are some aspects
that affect the winning bidders’ behavior, such as the auction time to finish. Another
interesting aspect is that most of the winning bidders make a large amount of bids
and/or present a small inter-bidding time. As an expected result, the winning bid has
been made near the end of the auction.

The results of the classification for Sony and Xbox auctions are similar to Nintendo.
From this analysis, we conclude that is of interest to divide the auction duration in
periods to analyze separately. These will help us to understand which factors directly
affect the result of the auction, such as the correlation between inter-bidding time and
bidding price difference. It will also help in identifying reactivity determinants that
explain bidders’ behaviors at different stages of the auction.

5 Conclusions and Ongoing Work

This work presents the reactivity concept, describing how to model it in interactive
systems, in particular Internet-based systems. We present a case study of an online
auction, based on eBay data. Although there are some related works of online auctions,
none of them models reactivity.

The case study shows some aspects that affect the winner bidders’ behavior, such as
the auction time to finish and the number of bids of each bidder according to the total
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amount of auction bids. We identify that winners make a large amount of bids and/or
presents a small inter-bidding time.

As ongoing work we divide the auction duration in periods and analyze them sep-
arately. These will help us understand which factors directly affect the result of the
auction, such as the correlation between inter-bidding time and bidding price differ-
ence. This case study motivates us to continue working on improving the reactivity
characterization of e-commerce environment.

Modeling reactivity in online auction can contribute to understand the business dy-
namics and to design more complete automatic agents. We are also confident that by
understanding the reactivity patterns in relation to the negotiation features and specific
business rules that govern the auction environment we will be able to conceptualize and
design a comprehensive framework to model reactivity. Also, studying reactivity can
benefit the economic analysis of Web-based environments, such as marketplaces.
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Abstract. Event processing will play an increasingly important role in construct-
ing distributed applications that can immediately react to critical events.  In this 
paper we describe the CEDR language for expressing complex event queries 
that filter and correlate events to match specific patterns, and transform the rele-
vant events into new composite events for the use of monitoring applications.  
Stream-based execution of these standing queries offers instant insight for users 
to see what is occurring in their systems and to take time-critical actions. 

1   Introduction 

“By 2008 event processing will be mainstream, with most new business systems in large 
companies set up to emit vast amounts of event information.  Applications are going to 
start to get very chatty...”                                           David McCoy, Gartner Group 2005 

A vendor receives a purchase order from a customer, a physician orders a medication 
change for a patient, an investor executes a trade, a new employee joins a company, a 
retail outlet makes a sale. Every kind of business is driven by a myriad of such events 
that occur in its environment. It is not an exaggeration to say that business events are 
the real drivers of business processes because events represent changes in the state of 
the business. This is not to say that enterprise web services are not key participants in 
business processes—they are, but as providers of data and function not as drivers of 
the process state. Events are also central to creating views of business processes, 
whether automated or not. 

Over the last few years a great deal of attention has been focused on making ser-
vice level interactions uniform across the industry, such as those based on the WS-* 
standards, and much progress has been made. Far less attention has been paid to the 
variety of ways in which events are defined, handled and propagated. Major platform 
vendors offer event brokers as a feature of their message oriented middleware, and 
also offer business activity monitoring (BAM) as a feature of their business process 
stack.  But, as in the case of data management in pre-database days, every usage area 
of events today tends to build its own special purpose infrastructure for defining, 
handling and propagating events.  We see the need for a common event fabric running 
across web services.  Such fabric should allow event sources to fire events “into the 
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event cloud”, without caring who consumes them, the subscribers to events can regis-
ter “standing queries” describing what they are interested in. The queries can be as 
simple as simply filtering events or require that events be filtered and correlated for 
pattern detection, and that these events are then transformed to composite events that 
reach a semantic level appropriate for end applications.  These requirements consti-
tute a unique class of queries that perform real-time transformation of events describ-
ing a physical world into information more useful to end applications and users. 

2   Events, Messages and Data 

An event is a record of some occurrence in the physical or digital world.  Each event 
explicitly (as part of its data) or implicitly (interpretation rule) has a type that indi-
cates what happened, and schematized data that describes the details.  A message is a 
means of transmitting data from a source to one or more targets. A message also typi-
cally has a type and schematized data.  It is thus natural to ask if the two are different. 
The difference between them is not in form but in semantics.  Unlike a message, an 
event has neither a targeted receiver nor an interaction pattern—there is no such thing 
as a reply to an event.  Instead, the important part of the semantics of an event is cau-
sality – what events caused this to occur and what will be the consequences of the 
current event. This causality is not in the event itself – it can only be inferred interpre-
tation of the payload of multiple events, possibly from different sources.  

Of course, events can be caused by messages and messages are used to transmit 
events to interested observers and processors.  We illustrate the message/event relation-
ship and idea of causality with an example.  A purchasing subsystem receives a ship-
ment status message.  The status code and details inform the recipient that a shipment is 
delayed by 3 weeks.  The purchasing subsystem is configured to generate a specific type 
of event when processing shipment delay messages.  There are event transformation 
services installed in the “event fabric” to process events of this type based on the refer-
ence numbers in the content by fetching relevant application data to transform the event 
into a more meaningful event such as “delivery for Intel processor parts order 72134 
delayed by 3 weeks”.  This same type of “parts delivery delayed” event can also occur 
as a result of manual action by a purchasing agent receiving a phone call or FAX, illus-
trating that different occurrences of the same type of event may have different causality 
chains.  Through a further chain of rule-based event transformations, an event “PC pro-
duction-line 4 in Memphis at risk of closure in 3 weeks” is generated. The “Memphis 
PC Production-line Managers” group has an alert subscription for this type of, and the 
final event generates an alert message sent to the group. 

3   Complex Event Queries over Event Streams 

In this section we outline the event correlation and pattern detection language for 
CEDR, short for Complex Event Detection and Response, an event processing system 
currently under development at MSR. 



 Event Correlation and Pattern Detection in CEDR 921 

3.1   From Web Service Message Streams to Event Streams for Query Processing 

This discussion outlines how we go from a physical message stream flowing over an 
event bus or WS-Event channel, to a logical event stream for processing against a set 
of standing queries.  Our raw input stream consists of messages with an arbitrary but 
known schema for each message type that provides the necessary metadata informa-
tion about the message payload.  Input to our processing system is an infinite  
sequence of events, referred to as an event stream.  An event represents an instantane-
ous and atomic occurrence of interest at a point in time.  Similar to the distinction 
between types and instances in programming languages, our model includes event 
types that describe a set of attributes that a class of events must contain.  Each event 
instance, denoted by a lower-case letter (e.g., ‘e’), consists of the name of its type, 
denoted by an upper-case letter (e.g., ‘E’), and a set of values corresponding to the 
attributes defined in the event type which we refer to as the payload.  In order to 
transform a message into an event for processing we augment the record with the 
following fields:  

• Start_Valid_Time: the time at which the event instance can be considered for 
query processing.  If an operator in our system is processing an event instance 
at a time before (less than) this timestamp, this event instance can not yet be 
considered (seen) by the operator. 

• End_Valid_Time:  the time at which an event instance can no longer be con-
sidered for query processing.  This value can be set by a time-to-live (ttl)  
attribute or sliding window specification, expressed in the query, or by a cor-
responding delete (retraction) of the event coming into the system.  

So, the schema of an event instance for processing is a union of message schemas 
or possibly some mapping of incoming message type to its associated event type, and 
temporal schema: <start valid time, end valid time>.  Most messages will already 
have a timestamp from a discrete ordered time domain.  We assume timestamps are 
assigned by a separate mechanism before events enter our system and reflect the true 
occurrence time of these events in the “real world”, so we use this timestamp as start 
valid time – if an incoming event does not have a timestamp, we assign the value of 
the system clock.  The corresponding end valid time value is set to infinity by default 
– we assume the fact this event represents will stand true forever, but will adjust de-
pending on the semantics of the query.  It is important to note the transformation from 
a raw message to logical input event preserves the arrival order of event instances. 

3.2   CEDR Language 

In this section, we present the CEDR language for expressing queries over event 
streams.  The language is declarative and based on three independent aspects: 1) an 
event pattern expression that identifies event types and order, using operators and 
constructs that specify how event instances are filtered, and how multiple events are 
correlated via time-based and value-based constraints to detect patterns; 2) an op-
tional lifetime during which the pattern may be detected; 3) an optional selection ex-
pression that specifies how complex events are constructed from correlated events. 
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The overall structure of the CEDR language is:  

       EVENT_NAME <string> 
       EVENT_PATTERN <event type and order expression>  
       WHERE < temporal and data qualification predicates>  
       [LIFETIME <window>] 
       NOTIFY <selection conditions for the construction of a complex event> 

To introduce the constructs in our language, we use examples drawn from systems 
monitoring in which operations management monitors events stemming from network 
servers, database servers and network devices across the company.  The first query 
(Q1) looks for events that indicate a software upgrade is being installed on a machine.   

 Q1: UPDATE_MACHINE  
 EVENT_PATTERN  INSTALL  
 WHERE (software_type = ‘SP’ AND version_id = ‘2’) 

In Q1, the EVENT PATTERN clause contains a filter for event type “INSTALL” that 
retrieves only event instances of the INSTALL type from the input stream. The 
WHERE clause further filters these event instances by evaluating two predicates 
applied to their attributes: the first predicate requires the value of attribute soft-
ware_type to be ‘SP’ and the second predicate requires the value of attribute ver-
sion_id to be ‘2’.  In general, the WHERE clause is responsible for filtering event 
instances and can be a boolean combination, using logical connectives ��� and ��, of 
predicates that use one of the six comparison operators (=, , >, <, , ).  

Our second example, Q2 detects a failed software upgrade by filtering the event 
stream to retrieve only those events that report an upgrade was installed on a machine, 
followed by a shutdown without the occurence of a subsequent restart.  The EVENT 
clause of this query contains a SEQUENCE construct that specifies events must occur 
in a particular order; the components of the sequence are the occurrences and non-
occurrences of events of interest.  In this query, the SEQUENCE construct specifies 
the occurrence of an INSTALL event followed by a SHUTDOWN event, and the non-
occurrence of a RESTART within a fixed window of time.  Non-occurrences of events 
are expressed using the NOT operator and bounded by a time interval, expressed by 
the WITHIN operator.  For the use of subsequent clauses, the SEQUENCE construct 
also includes a variable in each component to refer to the corresponding event.  

    Q2:  FAILED_UPGRADE  
    EVENT_PATTERN SEQUENCE(INSTALL x, SHUTDOWN y,  
                           NOT (RESTART z, WITHIN 5 minutes)) 
    WHERE ((x.machine_id = y.machine_id) AND (y.machine_id = z.machine_id)) 
     /*            shorthand for this test is CorrelationKey(machine_id, Equal)            */ 

The WHERE clause in Q2 uses variables defined previously to form predicates that 
compare attributes across different events.  One of the more powerful aspects of any 
language for event pattern detection is correlation, the ability of an event instance to 
be linked to specific instances of other events through payload values.  To distinguish 
this from simple predicates that compare to a constant, such as those in the first ex-
ample, we refer to such predicates as parameterized predicates.  The parameterized 
predicates in Q2 compare the machine_id attributes of all three events in the 
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SEQUENCE construct for equality.  Since this is such a common comparison, we 
introduce shorthand to simplify writing such parameterized predicates. 

Equality comparisons on a common payload attribute across entire event sequences 
are typical in distributed monitoring applications.  For ease of use, we refer to the 
common attribute used for this purpose as a correlation key, and the set of compari-
sons on this attribute as the similarity test that checks for equality or inequality.  Our 
language offers simple shorthand for an equivalence test on common attributes, spe-
cifically CorrelationKey(attribute, Equal | Unique).  In addition, we offer predefined 
operators for temporal correlation, such “BEFORE”, “AFTER”, “EQUAL”, 
“WITHIN” which automatically extract the timestamp field from all event instances. 

In CEDR an optional LIFESPAN clause is used to define a temporal interval dur-
ing which a query is active or “of interest” and may be detected.  In our model, a 
lifespan is either Active or Inactive and is controlled by two events, referred to as 
initiator and terminator. An occurrence of an initiator event activates the lifespan, 
while the occurrence of a terminator event deactivates the lifespan. A lifespan can 
also expire, as defined by its maximal duration. While active, any query associated 
with the lifespan is also active and CEDR will attempt to detect the pattern in the 
event stream. 

Lifespan Pattern 
Name – name of the lifespan pattern 
Initiator – conditions for lifespan initiation 

Event: identifies the initiating event; 
Condition: optional conditions the event must satisfy; 

Terminator – describes conditions for lifespan termination 
Event: identifies the initiating event; 
Condition: optional conditions the event must satisfy; 
Duration: max duration the lifespan will remain active; 

A lifespan can be used to implement state based pattern detection – when the system 
is in a particular state, as indicated by the activation of a lifespan, a select set of que-
ries is activated.  Each state can define a unique set of queries (events to watch for) 
and filters to eliminate (drop) redundant events.  In short, LIFESPAN enables a sys-
tem to compartmentalize functionality and provide context for event processing.  
CEDR is not the only system to include lifetimes – the concept is identified in [2] and 
implemented in AMIT [22] and Rapide [1]. 

Given a sequence of event instances as input, the output of a standing query in 
CEDR is also a sequence of event instances, where each output event instance repre-
sents a unique match or detection.  The NOTIFY clause allows a programmer to spec-
ify exactly how the complex event that signifies detection is composed.  Using query 
Q2 for example, a resulting event can be created to indicate an upgrade has failed to 
install on the machine.  Unlike previous work that focuses only on the detection of 
standing queries, but not reporting how the query was actually satisfied, we provide 
the means to explicitly report the events used to match the query. This significantly 
increases the complexity of the underlying runtime, since it must accurately track 
event instances. 

In CEDR, the NOTIFY clause can specify for each event type in the pattern ex-
pressing which individual instances of this event type are to be chosen.  CEDR  
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supports four options, which can be specified for each operand in the pattern expres-
sion: First, Last, Each and Cond; the default is First.  First and Last are minimum-
oriented selection strategies [2].  First (Last) selects from the event collection  
instances with the oldest (youngest) timestamps.  Each selects all permissible event 
instances associated with the operand, possibly resulting in the creation of multiple 
complex events after pattern detection.  The final option, Cond, is a user supplied 
predicate that is applied to each event instance associated with the operand – only if 
the condition is satisfied will the instance be selected.  

In example Q2, the pattern expression includes a sequence operator and two oper-
ands (event types) to detect an INSTALL event followed by a SHUTDOWN event.  
There may be several instances of the install event, each indicating installation of a 
different patch, before a shutdown is detected.  If the pattern indicating a flawed up-
grade is detected, the user may wish to raise a complex event identifying all software 
patches installed, which can be easily accomplished using the selection condition 
Each.  We hasten to note, typically NOTIFY creates an instance of an event type and 
selection conditions are used to bind variables for composing this new event instance 
(marshaling the payload for the new event instance) but we omit this discussion for 
brevity.  

      Q2:  FAILED_UPGRADE  
      EVENT_PATTERN SEQUENCE(INSTALL x, SHUTDOWN y,  
                                 NOT (RESTART z, WITHIN 5 minutes)) 
      WHERE CorrelationKey(machine_id, Equal) 
      NOTIFY Each x, First y 

The simple examples presented in this section were intended to highlight constructs of 
CEDR.  Our language builds on event languages [20, 16, 2] originally developed for 
active databases, triggers [17] and continual queries [19].  In addition to event con-
structs such as sequence, CEDR offers additional features, such as i) the use of nega-
tion in event sequences, ii) parameterized predicates in the WHERE clause for corre-
lating events via value-based constraints and iii) time to live (TTL) and various sliding 
windows for event instances in the LIFETIME clause for expressing additional tempo-
ral constraints for pattern detection.  Finally, CEDR enables event composition, which 
allows the output of one query to be used as input to another.  The fact that a CEDR 
query can take a sequence of input events and produce a sequence of composite 
(complex) events as output enables full compositionality.  Together these features 
provide rich functionality and control over event pattern specification and detection. 

3.3   Semantics of the Language 

In this section, we present the semantics of CEDR by translating selected language 
constructs to algebraic query expressions.  Each event type Ei is a query expression.  
An event operator connects query expressions to form a new expression.  Semantics is 
added to a query expression by treating it as a function mapping the underlying dis-
crete time domain onto the boolean values True or False.  For example, the semantics 
of a base expression Ei, represented as Ei(t), is that at a given point t in time, Ei(t) is 
True if an Ei type event occurred at t, and is False otherwise. Below, we describe the 
set of operators that CEDR supports and the semantics of expressions that they form.  
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Event Sequencing (Order) – The ability to synthesize events based upon the order-
ing of previous events is a basic and powerful event language construct. 

Operator Description 

ALL [E1 . . . ,Ek] 

A conjunction of events E1. . .Ek with no order impor-
tance.  It takes a set of event types as input and evaluates 
to True if instances of each event type occur.  Formally, 
defined as: ALL(E1, E2, …, En)(t)  ∀ 1 i  n Ei(t).  It 
outputs all instances that occurred at time t as a result. 

ANY [E1...,Ek] It takes a set of event types as input and evaluates to 
True if an event of any of these types occurs. Formally, 
it is defined as follows: ANY(E1, E2, …, Ek)(t)     
∃ 1  i  k Ei(t).  It outputs the event that occurred at 
time t as a result.  

SEQUENCE [E1… Ek] 

SEQUENCE takes a list of n (n>1) event types as its 
parameters – these parameters specify a particular order 
in which events must occur.  Arbitrary events may ap-
pear between any two events in the sequence. The 
formal definition is: SEQUENCE(E1, E2, …, En)(t)  ∃ 
t1<t2<…<tn . E1(t1)^E2(t2)^…^En(tn).  The operators 
ANY and ALL can be used inside a SEQUENCE, e.g., 
SEQUENCE(E1, ANY(E21, …, E2m), …). The semantics 
of the resulting expressions are defined by combining 
semantics of SEQUENCE along with ANY (or ALL). 

Counting – Counting operators reduce the number of events flowing to the applica-
tion, thus reducing the amount of state required in the process.  State is maintained by 
CEDR and there is value in this separation.  For example, a “valuable customer”  
pattern may be triggered after three consecutive purchases. To change it to four  
purchases requires simply changing the event pattern definition – not the business 
application. 

Operator Description 

ATLEAST [n, E1...Ek] 

A minimal conjunction of n events out of E1. . .Ek with 
no order importance.  ATLEAST takes a list of k (k>1) 
event types as its parameter, along with an integer n, and 
evaluates to True if n or more of these k events occur.  
ATLEAST (n, E1, E2,…, Ek)(t)  Σ 1 i  k Ei(t)  n.  It 
outputs all event instances true at time t as a result. 

ATMOST [n, E1...Ek] 

A maximal conjunction of n events out of E1. . .Ek with 
no order importance.  While the definition of ATMOST 
follows directly from the definition of ATLEAST, an 
important difference is that some temporal expression 
must be supplied to cancel the accumulation of state for 
patterns that use this operator. 
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Absence – The event service can track the non-occurrence of an expected event, such 
as a customer not answering an email within a specified time.  So-called non-events 
have great utility in business processes.  Further, set operations apply to non-events: 
for example, events indicating that none of a group of customers has responded, or all 
or some threshold number of customers has answered are valid and useful events.  

Operator Description 

NOT [E1,…,Ek, scope] 

None of the events E1…Ek has occurred within the 
detection lifespan.  The NOT operator requires an ex-
plicit bound on the detection window, which can be 
specified using an optional SCOPE clause, which speci-
fies the amount of time in the detection lifespan. 

UNLESS [E1, E2] 
Designates the occurrence of the first operand and non-
occurrence of the second within the detection lifespan. 

Constraints and Event Cancellation – Event patterns normally do not “pend” 
indefinitely; conditions or constraints may be used to cancel the accumulation of state 
for a pattern (which would otherwise remain to aggregate with future events to 
generate a composite event). Such temporal constraints limit event generation to 
within a particular time window.  The CANCEL-WHEN operator is used to describe 
such constraints. CANCEL-WHEN may be followed either by a temporal expression 
time-expr, and is commonly used with a timer event but may use any other base or 
pattern event, including patterns that mix timer events with other events (e.g., 
Approval & T [Approval.t + 20hours]). 

Operator Description 

E CANCEL-WHEN 
EXPR 

Used to cancel or invalidate specific event instances or a 
complete sub-expression in a pattern query.  This effec-
tively removes the event instances being held in the 
event collection for this pattern.  

Use of CANCEL-WHEN has a number of interesting applications, which we 
touch on only briefly.  Since multi-term patterns rely upon the asynchronous delivery 
of multiple events, it is possible that one required event will arrive but the others will 
not.  To avoid the unbounded accumulation of event instances (state) temporal con-
straints are used to remove them; normally this is thought of as a form of garbage 
collection.  In this case the CANCEL-WHEN predicate is used to bound the valid 
time of an event pattern. As an example:  ((E & F) CANCEL-WHEN time-expr). In 
this case event E and event F must occur before the value in time-expr is reached. 

The use of CANCEL-WHEN can be generalized to include other sorts of pattern 
cancellation; for example: (E & F CANCEL-WHEN G).  In this case if event G 
arrives before both E and F then event pattern detection is aborted.  

4   Pattern Detection and Event Processing  

In this section, we illustrate the functionality of components in CEDR by walking thru 
the processing of events and pattern detection.  The initial stage is event filtering.  For 
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each incoming event, the CEDR filter manager will determine if it has the potential to 
impact an active pattern.  While at any given time the total number of active pattern 
instances can be quite large, typically the number affected by an incoming event in-
stance is orders of magnitude lower.  We leverage this to construct a restrictive filter 
on event instances and fine tune filtering by pushing event instance conditions into the 
filter.  In the system monitoring application, for example, we filter event instances 
using event type = install with context (instance condition) = SP2.  Once detected, the 
filter is updated to include event type = shutdown with context = MachineID, where the 
value of MachineID is extracted from the install event instance.  We also use indexes 
to efficiently identify pattern instances affected by the incoming event.   

The decision process in CEDR to determine whether or not an event pattern has ac-
tually been detected is divided into three separate stages, where each stage is based on 
a separate aspect of the pattern language definition. 

Stage 1: Event Collection – An event collection designates the event instances that 
are considered for pattern detection, if they occur while the pattern is active.  In this 
stage all event instances that may contribute to an active pattern are collected.  An 
instance contributes to a pattern if the event type matches an operand type in the pat-
tern expression, and satisfies all conditions defined for the operand.  Each candidate 
in the event collection is associated with the operand to which it matches and forms a 
candidate list for the operand.  An event instance may contribute to more than one 
active patterns, so to avoid storing multiple copies CEDR maintains a shared collec-
tion of event instances and stores only a reference to the instance in the candidate list; 
reference counting is used to manage (clean up) this shared collection.  To decide if 
the pattern is satisfied it is sufficient to base detection on these event instances only.   

Stage 2: Detection – The decision about whether a pattern occurred is based on a 
combination of operators and event instance conditions.  It is possible that multiple 
event instances of the same event type satisfy the detection conditions.   

Stage 3 Selection – When a pattern is detected, instances that contributed to detection 
are selected from the event collection following the pattern’s selection policy and 
used to create the composite event.  This new event is then published (broadcast).  
Finally, the event instances that triggered the detection are removed from the candi-
date list of that operand.  CEDR actually supports a range of consumption policies [2] 
to update the event instance collection, but this is outside the scope of this paper.  
To summarize, filtering permits only select event types to pass into the detection 
engine.  While a standing query is active, all event instances that may contribute to a 
pattern are collected (step 1).  If all conditions that define the standing query have 
been met (step 2), the event instances in the collection that triggered detection are 
selected to generate a new complex event and removed from the collection (step 3).   

5   Related Work 

Throughout the paper we have attempted to point out closely related work, so in this 
section we briefly discuss other related work in a broader set of areas.  

A number of event processing systems have been recently developed.  HiFi [7] ag-
gregates events in a tree-structured network on various temporal and geographic 
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scales and offers limited support for complete event processing [9].  Siemens RFID 
middleware [10] offers a temporal data model and declarative rules for managing 
RFID data but no solid implementation is described.  Overall, these systems lack the 
expressiveness to support our target applications, which is distributed monitoring. 

Conventional publish/subscribe systems [4][6] support predicate-based filtering of 
individual events.  CEDR extends this approach with the ability to handle both tempo-
ral and data value correlations among events and transform primitive events into a 
new composite event.  More recent work on enhanced publish/subscribe [5] provides 
expressive language support to specify subscriptions spanning multiple events, similar 
to the language in CEDR.  However, it supports the absence of events, or negation, in 
a rather limited way.  Moreover, Cayuga does not address issues related to creating 
composite events as a result of detection and managing event instance state, whereas 
CEDR exposes commands and techniques to compose complex events after detection. 

In a broader context, our system is related to sequence databases [17] since raw in-
put streams are a temporally ordered sequence of records.  However, the semantics of 
SQL-style sequence languages includes one-time, but not continuous queries.  The 
chronicle data model [16] provides operators over relations and chronicles, which can 
be considered as a raw input stream, but focuses on the space complexity of an incre-
mental maintenance of materialized views over chronicles; it does not include con-
tinuous queries or aspects of data-driven processing.  None of these offer the flexible 
use of negation.  In the context of continuous queries over streams, there has also 
been considerable research. Tribeca [18] introduces fixed and moving window queries 
over single network streams.  TelegraphCQ [14] defines a declarative language to 
express a sequence of windows over a stream.  Aurora [11, 13] builds a query graph 
of stream operators parameterized by functions and predicates while abstracting from 
a certain query language.  The Tapestry system [19] transforms a continuous query 
into an incremental query that is run periodically, which ensures snapshot-reducibility 
but can not detect patterns (sequences) in the event stream.  We refer the interested 
reader to [12, 15] for a broader overview on data stream processing. 

6   Conclusion 

Event processing will play an increasingly important role in constructing distributed 
enterprise applications over web services that can immediately react to critical events.  
In this paper we have illustrated the need for a common event fabric across web ser-
vices. This fabric will allow any event source to contribute its events into the “event 
cloud”.  Subscribers can register their interest in receiving both the raw events from 
sources and the result of complex standing queries against events streaming through 
the cloud.  In this paper we introduced CEDR, a runtime service for event correlation 
and pattern detection.  Our presentation outlined CEDR’s language for defining event 
patterns, along with its event processing and detection model.  CEDR builds on and 
extends previous work on event processing in several directions.  It introduces a de-
clarative language for specifying patterns that includes high level event operators, 
support for detection lifetime and flexible instance selection and consumption condi-
tions.  Our detection model, currently built using nondeterministic finite automata 
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(NFA) supports a time model to manage temporal correlations across event instances 
and timeouts, and can efficiently handle predicates in patterns.  This paper represents 
a current snapshot of our design and language development. 
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Staworko, Slawomir 164, 318
Stefanescu, Dan 700
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