

Lecture Notes in Computer Science 4249
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Louis Goubin Mitsuru Matsui (Eds.)

Cryptographic Hardware
and Embedded Systems –
CHES 2006

8th International Workshop
Yokohama, Japan, October 10-13, 2006
Proceedings

13

Volume Editors

Louis Goubin
PRiSM Laboratory, Versailles St.-Quentin-en-Yvelines University
45 avenue des États-Unis, 78035 Versailles, France
E-mail: louis.goubin@prism.uvsq.fr

Mitsuru Matsui
Mitsubishi Electric Corporation, Information Technology R&D Center
5-1-1 Ofuna Kamakura, Kanagawa 247-8501, Japan
E-mail: matsui.mitsuru@ab.mitsubishielectric.co.jp

Library of Congress Control Number: 2006933431

CR Subject Classification (1998): E.3, C.2, C.3, B.7, G.2.1, D.4.6, K.6.5, F.2.1, J.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-46559-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46559-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11894063 06/3142 5 4 3 2 1 0

Preface

These are the proceedings of the Eighth Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2006) held in Yokohama, Japan, October 10-13,
2006. The CHES workshop has been sponsored by the International Association
for Cryptographic Research (IACR) since 2004. The first and the second CHES
workshops were held in Worcester in 1999 and 2000, respectively, followed by
Paris in 2001, San Francisco Bay Area in 2002, Cologne in 2003, Boston in 2004
and Edinburgh in 2005. This is the first CHES workshop held in Asia.

This year, a total of 112 paper submissions were received. The review process
was therefore a delicate and challenging task for the Program Committee mem-
bers. Each paper was carefully read by at least three reviewers, and submissions
with a Program Committee member as a (co-)author by at least five reviewers.
The review process concluded with a two week Web discussion process which
resulted in 32 papers being selected for presentation. Unfortunately, there were
a number of good papers that could not be included in the program due to a
lack of space. We would like to thank all the authors who submitted papers to
CHES 2006.

In addition to regular presentations, we were very fortunate to have in the
program three excellent invited talks given by Kazumaro Aoki (NTT) on “Integer
Factoring Utilizing PC Cluster,” Ari Juels (RSA Labs) on “The Outer Limits of
RFID Security” and Ahmad Sadeghi (Ruhr University Bochum) on “Challenges
for Trusted Computing.” The program also included a rump session, chaired by
Christof Paar, featuring informal presentations on recent results.

We are very grateful to the Program Committee members and to the exter-
nal reviewers for their hard work. Special thanks are also due to the members
of the Local Committee: Akashi Satoh (Secretary - IBM Japan Ltd.), Toru Ak-
ishita (Sony Corporation), Tetsuya Izu (Fujitsu Laboratories Ltd.), Masanobu
Koike (Toshiba Solutions Corporation), Natsume Matsuzaki (Matsushita Elec-
tric Industrial Co., Ltd.), Shiho Moriai (Sony Computer Entertainment Inc.),
Sumio Morioka (NEC Corporation), Hanae Nozaki (Toshiba Corporation), Kenji
Ohkuma (IPA), Katsuyuki Okeya (Hitachi Ltd.), Shunsuke Ota (Hitachi Ltd.),
Yasuyuki Sakai (Mitsubishi Electric Corporation), Junji Shikata (Yokohama Na-
tional University), Daisuke Suzuki (Mitsubishi Electric Corporation), Yukiyasu
Tsunoo (NEC Corporation), Takanari Ueno (IPA), Takashi Watanabe (Hitachi
Ltd.) and Atsuhiro Yamagishi (IPA), for their strong support.

Special thanks go to Tsutomu Matsumoto, the General Chair and local or-
ganizer for his extensive efforts to bring the workshop to the beautiful historic
city of Yokohama, Japan. The Publicity Chair Çetin Kaya Koç was always very
helpful and patient at all stages of the organization. Jens-Peter Kaps helped us
as our dedicated webmaster for maintaining the Web review system.

VI Preface

We would also thank the corporate financial supporters, Cryptography Re-
search, Inc., RSA Security Japan Ltd., Fujitsu Limited, IBM Corporation, Infor-
mation Technology Promotion Agency, Japan (IPA), Initiative for Research on
Information Security, Mitsubishi Electric Corporation, NTT Corporation, Rene-
sas Technology Corp., Toshiba Corporation and Yokohama National University.
Obviously CHES2006 was not possible without these supporters.

Lastly we would like to thank the CHES Steering Committee members for
their hearty support and for giving us the honor of serving at such a prestigious
conference.

October 2006 Louis Goubin
Mitsuru Matsui

8th Workshop on Cryptographic Hardware
and Embedded Systems

October 10 – 13, 2006, Yokohama, Japan
http://www.chesworkshop.org/

Organizing Committee

– Tsutomu Matsumoto (General Chair), Yokohama National University, Japan
– Çetin Kaya Koç (Publicity Chair), Oregon State University, USA
– Louis Goubin (Program Co-chair), Versailles St-Quentin-en-Yvelines

University, France
– Mitsuru Matsui (Program Co-chair), Mitsubishi Electric Corporation, Japan

Program Committee

– Mehdi-Laurent Akkar, Texas Instruments, France
– Jean-Sébastien Coron, University of Luxembourg, Luxembourg
– Nicolas T. Courtois, Gemalto, France
– Joan Daemen, ST Microelectronics, Belgium
– Pierre-Alain Fouque, ENS, Paris, France
– Jim Goodman, ATI Technologies, Canada
– Helena Handschuh, Spansion, France
– Tetsuya Izu, Fujitsu Laboratories Ltd., Japan
– Marc Joye, Thomson R&D, France
– Seungjoo Kim, Sungkyunkwan University, South Korea
– Çetin Kaya Koç, Oregon State University, USA
– Pil Joong Lee, Postech, South Korea
– Frédéric Muller, HSBC, France
– Katsuyuki Okeya, Hitachi, Japan
– Elisabeth Oswald, Graz University of Technology, Austria
– Christof Paar, Ruhr-Universität Bochum, Germany
– Josyula R. Rao, IBM T.J. Watson Research Center, USA
– Erkay Savaş, Sabanci University, Turkey
– Werner Schindler, Bundesamt für Sicherheit in der Informationstechnik,

Germany
– Nigel Smart, University of Bristol, UK
– François-Xavier Standaert, Université Catholique de Louvain-la-Neuve,

Belgium
– Berk Sunar, Worcester Polytechnic Institute, USA
– Frédéric Valette, DGA/CELAR, France
– Ingrid Verbauwhede, Katholieke Universiteit Leuven, Belgium
– Colin Walter, Comodo CA, UK
– Sung-Ming Yen, National Central University, Taiwan

VIII Organization

Steering Committee

– Marc Joye, Thomson R&D, France
– Çetin Kaya Koç, Oregon State University, USA
– Christof Paar, Ruhr-Universität Bochum, Germany
– Jean-Jacques Quisquater, Université Catholique de Louvain, Belgium
– Josyula R. Rao, IBM T.J. Watson Research Center, USA
– Berk Sunar, Worcester Polytechnic Institute, USA
– Colin D. Walter, Comodo Research Lab, UK

External Referees

– Onur Acıiçmez
– Manfred Aigner
– Toru Akishita
– Frédéric Amiel
– Cédric Archambeau
– Lejla Batina
– Kamel Bentahar
– Guido Bertoni
– Régis Bévan
– Arnaud Boscher
– Donald R. Brown
– Cécile Canovas
– Chien-Ning Chen
– Benôıt

Chevallier-Mames
– Jessy Clédière
– Eric Dahmen
– Yasin Demirbas
– Löıc Duflot
– Takashi Endo
– Pooya Farshim
– Benôıt Feix
– Kris Gaj
– Christophe Giraud
– Aline Gouget
– Rob Granger
– Johann Großschädl
– Jorge Guajardo
– Frank Guerkaynak
– Tim Güneysu
– Adnan Gutub
– DongGuk Han
– Christoph Herbst

– Yong Ho Hwang
– Kouichi Itoh
– Tetsuya Izu
– Charanjit Jutla
– Jin Ho Kim
– Tae Hyun Kim
– Young Hwan Kim
– Thorsten Kleinjung
– Sandeep Kumar
– Noboru Kunihiro
– Sébastien

Kunz-Jacques
– Eun Jeong Kwon
– Soonhak Kwon
– Kerstin Lemke-Rust
– Wei-Chih Lien
– Manfred Lochter
– François Macé
– Pascal Manet
– Stefan Mangard
– Marian Margraf
– Gwenaëlle Martinet
– John McNeill
– Nele Mentens
– Guerric Meurice de

Dormale
– Andrew Moss
– Francis Olivier
– Berna Örs
– Dan Page
– Jung Hyung Park
– Fabrice Pautot
– Eric Peeters

– Jan Pelzl
– Thomas Peyrin
– Thomas Popp
– Axel Poschmann
– Emmanuel Prouff
– Jean-Luc Rainard
– Arash

Reyhani-Masoleh
– Francisco

Rodriguez-Henriquez
– Kazuo Sakiyama
– Gökay Saldamlı
– Akashi Satoh
– Sven Schäge
– Daniel Schepers
– Kai Schramm
– Jae Woo Seo
– Jong Hoon Shin
– Alexei Tchoulkine
– Alexandre F. Tenca
– Stefan Tillich
– Elena Trichina
– Pim Tuyls
– François Vacherand
– Camille Vuillaume
– Takashi Watanabe
– Jun Yajima
– Yeon Hyeong Yang
– Hirotaka Yoshida
– Masayuki Yoshino
– Dae Hyun Yum

Organization IX

Previous CHES Workshop Proceedings

– CHES 1999: Çetin K. Koç and Christof Paar (Editors). Cryptographic
Hardware and Embedded Systems, vol. 1717 of Lecture Notes in Computer
Science, Springer, 1999.

– CHES 2000: Çetin K. Koç and Christof Paar (Editors). Cryptographic
Hardware and Embedded Systems, vol. 1965 of Lecture Notes in Computer
Science, Springer, 2000.

– CHES 2001: Çetin K. Koç, David Naccache, and Christof Paar (Editors).
Cryptographic Hardware and Embedded Systems, vol. 2162 of Lecture Notes
in Computer Science, Springer, 2001.

– CHES 2002: Burton S. Kaliski, Çetin K. Koç, and Christof Paar (Editors).
Cryptographic Hardware and Embedded Systems, vol. 2523 of Lecture Notes
in Computer Science, Springer, 2002.

– CHES 2003: Colin D. Walter, Çetin K. Koç, and Christof Paar (Editors).
Cryptographic Hardware and Embedded Systems, vol. 2779 of Lecture Notes
in Computer Science, Springer, 2003.

– CHES 2004: Marc Joye and Jean-Jacques Quisquater (Editors). Crypto-
graphic Hardware and Embedded Systems, vol. 3156 of Lecture Notes in
Computer Science, Springer, 2004.

– CHES 2005: Josyula R. Rao and Berk Sunar (Editors). Cryptographic
Hardware and Embedded Systems, vol. 3659 of Lecture Notes in Computer
Science, Springer, 2005.

Table of Contents

Side Channels I

Template Attacks in Principal Subspaces . 1
C. Archambeau, E. Peeters, F.-X. Standaert, J.-J. Quisquater

Templates vs. Stochastic Methods . 15
Benedikt Gierlichs, Kerstin Lemke-Rust, Christof Paar

Towards Security Limits in Side-Channel Attacks . 30
F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater

Low Resources

HIGHT: A New Block Cipher Suitable for Low-Resource Device 46
Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee,
Bon-Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee,
Kitae Jeong, Hyun Kim, Jongsung Kim, Seongtaek Chee

Invited Talk I

Integer Factoring Utilizing PC Cluster . 60
Kazumaro Aoki

Hardware Attacks and Countermeasures I

Optically Enhanced Position-Locked Power Analysis 61
Sergei Skorobogatov

Pinpointing the Side-Channel Leakage of Masked AES Hardware
Implementations . 76

Stefan Mangard, Kai Schramm

A Generalized Method of Differential Fault Attack Against AES
Cryptosystem . 91

Amir Moradi, Mohammad T. Manzuri Shalmani,
Mahmoud Salmasizadeh

XII Table of Contents

Special Purpose Hardware

Breaking Ciphers with COPACOBANA – A Cost-Optimized Parallel
Code Breaker . 101

Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer,
Manfred Schimmler

Implementing the Elliptic Curve Method of Factoring
in Reconfigurable Hardware . 119

Kris Gaj, Soonhak Kwon, Patrick Baier, Paul Kohlbrenner,
Hoang Le, Mohammed Khaleeluddin, Ramakrishna Bachimanchi

Efficient Algorithms for Embedded Processors

Implementing Cryptographic Pairings on Smartcards 134
Michael Scott, Neil Costigan, Wesam Abdulwahab

SPA-Resistant Scalar Multiplication on Hyperelliptic Curve
Cryptosystems Combining Divisor Decomposition Technique
and Joint Regular Form . 148

Toru Akishita, Masanobu Katagi, Izuru Kitamura

Fast Generation of Prime Numbers on Portable Devices: An Update 160
Marc Joye, Pascal Paillier

Side Channels II

A Proposition for Correlation Power Analysis Enhancement 174
Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson,
Christine Servière, Jean-Louis Lacoume

High-Resolution Side-Channel Attack Using Phase-Based Waveform
Matching . 187

Naofumi Homma, Sei Nagashima, Yuichi Imai, Takafumi Aoki,
Akashi Satoh

Cache-Collision Timing Attacks Against AES . 201
Joseph Bonneau, Ilya Mironov

Provably Secure S-Box Implementation Based on Fourier Transform 216
Emmanuel Prouff, Christophe Giraud, Sébastien Aumônier

Invited Talk II

The Outer Limits of RFID Security . 231
Ari Juels

Table of Contents XIII

Hardware Attacks and Countermeasures II

Three-Phase Dual-Rail Pre-charge Logic . 232
Marco Bucci, Luca Giancane, Raimondo Luzzi, Alessandro Trifiletti

Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side
Channel Leakage . 242

Zhimin Chen, Yujie Zhou

Security Evaluation of DPA Countermeasures Using Dual-Rail
Pre-charge Logic Style . 255

Daisuke Suzuki, Minoru Saeki

Efficient Hardware I

Instruction Set Extensions for Efficient AES Implementation on 32-bit
Processors . 270

Stefan Tillich, Johann Großschädl

NanoCMOS-Molecular Realization of Rijndael . 285
Massoud Masoumi, Farshid Raissi, Mahmoud Ahmadian

Improving SHA-2 Hardware Implementations . 298
Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa,
Stamatis Vassiliadis

Trusted Computing

Offline Hardware/Software Authentication for Reconfigurable
Platforms . 311

Eric Simpson, Patrick Schaumont

Side Channels III

Why One Should Also Secure RSA Public Key Elements 324
Eric Brier, Benôıt Chevallier-Mames, Mathieu Ciet,
Christophe Clavier

Power Attack on Small RSA Public Exponent . 339
Pierre-Alain Fouque, Sébastien Kunz-Jacques, Gwenaëlle Martinet,
Frédéric Muller, Frédéric Valette

Unified Point Addition Formulæ and Side-Channel Attacks 354
Douglas Stebila, Nicolas Thériault

XIV Table of Contents

Hardware Attacks and Countermeasures III

Read-Proof Hardware from Protective Coatings . 369
Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven,
Nynke Verhaegh, Rob Wolters

Path Swapping Method to Improve DPA Resistance of Quasi Delay
Insensitive Asynchronous Circuits . 384

Fraidy Bouesse, Gilles Sicard, Marc Renaudin

Automated Design of Cryptographic Devices Resistant to Multiple
Side-Channel Attacks . 399

Konrad Kulikowski, Alexander Smirnov, Alexander Taubin

Invited Talk III

Challenges for Trusted Computing . 414
Ahmad-Reza Sadeghi

Efficient Hardware II

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 415
K. Sakiyama, L. Batina, B. Preneel, I. Verbauwhede

Hardware/Software Co-design of Elliptic Curve Cryptography
on an 8051 Microcontroller . 430

Manuel Koschuch, Joachim Lechner, Andreas Weitzer,
Johann Großschädl, Alexander Szekely, Stefan Tillich,
Johannes Wolkerstorfer

FPGA Implementation of Point Multiplication on Koblitz Curves
Using Kleinian Integers . 445

V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson Jr., W.F. Chan,
Z. Huang

Author Index . 461

Template Attacks in Principal Subspaces

C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater

UCL Crypto Group - Université catholique de Louvain
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

{archambeau, peeters, standaert, jjq}@dice.ucl.ac.be

Abstract. Side-channel attacks are a serious threat to implementations
of cryptographic algorithms. Secret information is recovered based on
power consumption, electromagnetic emanations or any other form of
physical information leakage. Template attacks are probabilistic side-
channel attacks, which assume a Gaussian noise model. Using the max-
imum likelihood principle enables us to reveal (part of) the secret for
each set of recordings (i.e., leakage trace). In practice, however, the ma-
jor concerns are (i) how to select the points of interest of the traces, (ii)
how to choose the minimal distance between these points, and (iii) how
many points of interest are needed for attacking. So far, only heuristics
were provided. In this work, we propose to perform template attacks in
the principal subspace of the traces. This new type of attack addresses
all practical issues in principled way and automatically. The approach is
validated by attacking stream ciphers such as RC4. We also report analy-
sis results of template style attacks against an FPGA implementation of
AES Rijndael. Roughly, the template attack we carried out requires five
time less encrypted messages than the best reported correlation attack
against similar block cipher implementations.

1 Introduction

Since their first public appearance in 1996 [6], side-channel attacks have been
intensively studied by the cryptographic community. The basic principle is to
monitor one (or more) unintentional channels that leak from a device such as a
smart card and to match these observations with a key-dependent leakage pre-
diction. This channel is usually monitored thanks to an oscilloscope that samples
a continuous analog signal and turns it into a discrete digitalized sequence. This
sequence is often referred to as a trace.

Recently, a probabilistic side-channel attack, called the Template Attack (TA),
was introduced [2]. This attack was originally mounted to target stream ciphers
implementation. In this context, the attacker can only observe a single use of
the key, usually during the initialization step of the cipher. As it is not possible
to generate different leakages from the same secret key (e.g., corresponding to
different plaintexts), TAs were purposed for a more efficient way of retrieving
information from side-channel traces.

There are three main reasons that make TAs more efficient than previous
approaches to exploit side-channel leakages. First, TAs usually require a pro-
filing step, in order to build a (probabilistic) noise model of the side-channel

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 1–14, 2006.
c© International Association for Cryptologic Research 2006

2 C. Archambeau et al.

that can be used to capture the secret information leaked by a running device.
Second, TAs usually exploit multivariate statistics to characterize the dependen-
cies between the different time instant in the traces. Finally, TAs use maximum
likelihood as similarity measure, that can capture any type of dependency (if
the probabilistic model is found to be adequate), whereas, for example correla-
tion analysis only captures linear dependencies [1]. In general, the cost of these
improvements is a reduction of the adversarial flexibility. For example, Ham-
ming weight leakage models can generally be used for any CMOS devices while
template attacks profile the leakage function for one particular device.

TA relies on the hypothesis that leakage information is located in the vari-
ability of the leakage traces. In order to recover the secret, one has thus to focus
at the time instants where the variability is maximal. However, in practice it
is not clear how many and which moments exactly are important. The attacks
are therefore based on heuristics, which specify these quantities according to
some prior belief. For example, it is common to force the successive, relevant
time instants to be one clock cycle distant.

The main contribution of this work is that we take TA a step further. Instead
of applying TA directly, we first transform the leakage traces such that we are
able to select the relevant features (i.e. transformed time instants) and their num-
ber automatically. Meanwhile, we do not need to determine a specific feature in-
terdistance. Of course, when performing TA after transformation, we still take
the correlations between the features into account. Now, in order to find a suit-
able transformation consider again ordinary TA. It is assumed that the secret
information leakage is mainly hidden in the local variability of the mean traces.
If this hypothesis is valid, it would be more appropriate to take the optimal lin-
ear combination of the relevant time samples and perform TA in the principal
subspace of the mean traces. We call this approach principal subspace-based TA
(PSTA). A principal subspace can be viewed as a lower dimensional subspace
embedded in the data space1 where each coordinate axis successively indicates
the direction in which the data have maximal variability (or variance).

A standard statistical tool for finding the principal subspace of a data set is
principal component analysis (PCA) [5]. PCA performs an eigendecomposition
of the empirical data covariance matrix in order to identify, both, the principal
directions (eigenvectors) and the variance (eigenvalues) associated to each one
of them. However, practical issues may arise in the context of PSTA, as the
dimension of the traces is much larger, (typically O(105)) than the number of
traces (typically O(103)). Therefore, we propose to use a variant of PCA that is
more suitable in this situation (see Section 3.1 for further details).

An attractive feature of PSTA is that the projected traces are aligned with the
directions of maximal variance. These directions are nothing else than a weighted
sum of all the time instants, the weights being determined such that the data
variability is preserved after projection. So, in contrast to TA, which selects a
relevant subset of time instants according to a heuristic, PSTA determines first
the optimal (in terms of maximal variance) linear combination of these time

1 Here, the data space is the space in which the leakage traces live.

Template Attacks in Principal Subspaces 3

instants. In other words, there is no need to determine an interdistance between
the time samples anymore as the irrelevant ones will be assigned a small weight.
Furthermore, based on the value of the eigenvalues, one can determine which (the
largest) and how many directions are relevant. In order to validate our approach,
we finally apply the described techniques to two implementation cases. First we
target an implementation of RC4, similar to the one in [3] as a typical context
where template attacks are necessary. The, we target an FPGA implementation
of the AES Rijndael. For this purpose, we suggest an adaptation of template
attacks that allow characterizing the leakage traces of block ciphers. We finally
compare the obtained results with previously reported and observe a significant
improvement of the attacks efficiency (which is, again, to be traded with less
flexibility than previous attacks).

2 Template Attacks

In this section, the underlying principle of Template Attacks (TA) is first pre-
sented. Next, we introduce principal subspace TA (PSTA). In this approach,
(linear) dimensionality reduction techniques [5,4] are used to select automati-
cally the most relevant features and their number. In this context, features can
be understood as weighted sums of the most relevant trace samples. In addition,
both the computational requirements as well as the prohibitive memory usage
of standard TA are reduced in a principled way.

2.1 Templates

Suppose that Pk traces of a given operation Ok were recorded. The traces
{tpk

}Pk
pk=1 are N -dimensional time vectors. In TA a Gaussian noise model is

considered [2], meaning that {tpk
}Pk

pk=1 are assumed to be drawn from the mul-
tivariate Gaussian distribution N (·|µk, Σk), which is defined as follows:

N (t|µk, Σk) = (2π)− N
2 |Σk|− 1

2 exp
{

−1
2
(t − µk)TΣ−1

k (t − µk)
}

. (1)

Note that the mean µk and the covariance matrix Σk specify completely the
noise distribution associated to the operation Ok. Constructing the templates
consists then in estimating the sets of parameters {µk}K

k=1 and {Σk}K
k=1.

A standard approach is to use the maximum likelihood principle. In this ap-
proach, we seek for the parameters that maximize the likelihood of the ob-
servations (traces) under the chosen noise model. Maximizing the likelihood is
equivalent to maximizing the log-likelihood, which is given by

log Lk ≡ log
Pk∏

p=1

p(tpk |Ok) =
Pk∑

pk=1

log N (tpk |µk, Σk) (2)

where p(tpk
|Ok) is the probability of observing trace tpk

if we assume that op-
eration Ok was performed on the device. Direct maximization of (2) is straight-
forward and leads to the following estimates:

4 C. Archambeau et al.

µ̂k =
1
Pk

Pk∑
pk=1

tpk , Σ̂k =
1
Pk

Pk∑
pk=1

(tpk − µ̂k)(tpk − µ̂k)T. (3)

Note that these quantities correspond respectively to the empirical mean and
the empirical covariance matrix associated to the observations {tpk

}Pk
pk=1.

2.2 Attack

Assume that the set of possible operations that can be performed on the device
is {Ok}K

k=1. In order to determine to which operation a new trace tnew (for
example measured on a different device than the one on which the templates
were constructed) corresponds, we apply Bayes’ rule. This leads to the following
classification rule:

Ôk = argmax
Ok

P̂ (Ok|tnew) = argmax
Ok

p̂(tnew|Ok)P (Ok), (4)

where p̂(tnew|Ok) = N (tnew|µ̂k, Σ̂k) and P (Ok) is the prior probability that
operation Ok was performed. Thus, the classification rule assigns tnew to the op-
eration Ok with the highest posterior probability. Note that when the operations
are equiprobable P (Ok) equals 1/K.

3 Template Attacks in Principal Subspaces

In practice, the number of samples N per trace is very large, typically O(105) as
it depends on the sampling rate of the recording device. A high sampling rate is
usually mandatory in order to retain the frequency content of the side-channel.
This leads to excessive computational loads and a prohibitively large memory
usage. Furthermore, it is expected that only a limited number of time samples
are relevant for TA.

Several attempts were made to address these practical issues. Chari, et al.
[2] select time samples showing the largest difference between the mean traces
{µk}K

k=1. Rechberger and Oswald [8] used a similar method; their selection rule
is based on the cumulative difference between the mean traces. In addition,
the traces are pre-processed by a Fast Fourier Transform (FFT) in order to
remove high frequency noise. Another, simple rule is to select the points (af-
ter pre-processing) where the the largest variance of the mean traces occur. All
these approaches assume that the relevant samples are the ones with the high-
est variability. However, they only provide heuristics and are therefore by no
means optimal. Furthermore, they require to chose an arbitrary minimum dis-
tance between successive points (for example the clock cycle) in order to avoid
redundancy and there is no satisfactory rule to determine how many such sam-
ples are needed to attack optimally.

Another, more systematic approach, which also relies on the data variability,
is to select the relevant points based on principal component analysis (PCA)
(see for example [5,4]). PCA is a standard statistical tool for dimensionality
reduction. It looks for a linear transformation that projects high-dimensional

Template Attacks in Principal Subspaces 5

data into a low-dimensional subspace while preserving the data variance (i.e., it
minimizes the mean squared reconstruction error). In order to minimize the loss
of relevant information, PCA works in two steps. First, it looks for a rotation of
the original axes such that the new coordinate system indicates the successive
directions in which the data have maximal variance. Second, it only retains the
M most important directions in order to reduce the dimensionality. It assumes
therefore that the variability in the discarded directions corresponds to noise.
An example is shown in Appendix A.

3.1 Trace Principal Subspaces

Consider a set N -dimensional observations {tk}K
k=1, which are the empirical

mean traces associated to the set of operation {Ok}K
k=1. PCA looks for the first

principal directions {wm}M
m=1 such that N ≥M and which form an orthonormal

basis of the M -dimensional subspace capturing maximal variance of {tk}K
k=1. It

can be shown [5] that the principal directions are the eigenvectors of the empirical
covariance matrix, which is given by

S̄ =
1
K

K∑
k=1

(tk − t̄)(tk − t̄)T. (5)

The quantity t̄ =
∑K

k=1 tk is the average of the mean traces.
In TA, N is typicallyO(105), meaning that S̄ ∈ IRN×N is beyond computation

capabilities. Furthermore, the total number of mean traces K is much smaller
than N . Matrix S̄ is of rank K − 1 (or less) and has therefore only K − 1
eigenvectors. Fortunately, one can compute the first K − 1 eigenvectors without
having to compute the complete covariance matrix S̄ [4].

Let T = (t1 − t̄, . . . , tK − t̄) ∈ IRN×K be the matrix of the centered mean
traces. By definition the empirical covariance matrix is given by 1

K TTT. Let us
denote the matrix of eigenvectors and eigenvalues of 1

K TTT by respectively U
and ∆, the latter being diagonal. We have (1

K TTT)U = U∆. Left multiplying
both sides by T and rearranging leads to

S̄(TU) = (TU)∆. (6)

From this expression, we see that TU is the matrix of the K eigenvectors of S̄. In
order to form an orthonormal basis, they need to be normalized. The normalized
principal directions are given by

V =
1√
K

(TU)∆− 1
2 . (7)

The principal directions {wm}M
m=1 are the columns of V corresponding to the

M largest eigenvalues of ∆. Subsequently, we will denote these eigenvalues by
the diagonal matrix Λ ∈ IRM×M and the corresponding matrix of principal
directions by W ∈ IRN×M .

As discussed above, PCA can be performed when the number of data vectors is
(much) lower than their dimension. Still, one may question the pertinence of the

6 C. Archambeau et al.

solution, as a subspace of dimensionality K − 1 goes exactly through K points.
However, the solution found by PCA makes sense if the intrinsic dimension of
the data manifold is much lower than number of observations. In other words,
the solution is valid if most of the relevant information can be summarized
in very few principal directions. Fortunately, this is the case in the context of
Template Attacks (see Section 4). Note that the same problematic arises in
Computer Vision in the context of automatic face recognition. Here, the very
high dimensional vectors are the face images. The principal characteristics are
then found by following a similar approach, which is known as eigenfaces [12].

3.2 Principal Subspace Based Templates

In the previous section, we showed how standard PCA can be modified in order
to be used with very high-dimensional vectors such as traces. This provides us
with the projection matrix W, which identifies successively the directions with
maximal variance. Now, in order to build PSTA, we assume a Gaussian noise
model after projection. So we need to estimate the projected means {νk}K

k=1 and
the covariance matrices of the projected traces along the (retained) principal
directions {Λk}K

k=1. These parameters are respectively given by

νk = WTµ̂k, Λk = WTΣ̂kW. (8)

As in standard TA, the noise model is here given by a multivariate Gaussian
distribution. However, it is expected that the number of principal directions M
is much smaller than N . Note that a direction can be considered as not being
principal when the associated eigenvalue is small compared to the largest one.
This will be further discussed in Section 4.

Next, in order to classify a new trace tnew, we apply Bayes’ rule. This leads
to the following classification rule (or attack):

Ôk = argmax
Ok

p̂(WTtnew|Ok)P (Ok), (9)

where the distribution in projection space is given by p̂(WTtnew|Ok) =
N (WTtnew|νk, Λk).

4 Experimental Results

In the experiments, the recorded traces are power leakages. We validate PSTA
both on stream ciphers (RC4) and block ciphers (AES Rijndael). Two examples
of leakage traces for each encryption algorithm are shown in the Figures of
Appendix B.

From a practical point of view, considering a very small number K of different
operations/keys can lead to a degenerate solution as only very few principal
directions can be identified. This in turn may lead to poorly performing attacks.
Therefore, it is convenient to augment the number of mean traces artificially in
this case. For example, one can compute for each operation a pre-defined number
of mean traces by picking several traces at random in the training set. Another
approach is to use resampling techniques from statistics (see for example [3]).

Template Attacks in Principal Subspaces 7

4.1 RC4

The first experiments were carried out on a PIC 16F877 8-bit RISC-based mi-
croprocessor [7]. The microchip was clocked at a frequency around 4 MHz. This
microprocessor requires four clock cycles to process an instruction. Each instruc-
tion is divided into four steps: (i) fetch (update of the address bus), (ii) decode
and operands fetch (driven by the bus), (iii) execute and (iv) write back. We
monitored the power consumption of a device by inserting a small resistor at
its ground pin or power pin. The resistor value is chosen such that it disrupts
the voltage supply by at most 5% from its reference2. The 1-Ohm method3 was
used to attack the device at the ground pin and a differential probe in the case
of targeting the power pin.

RC4 is a stream cipher working on a 256-byte state table denoted S hereafter.
It generates a pseudo-random stream of bits which is mixed with the plaintext
using a XOR function to yield a ciphertext. The state S is initialized with a
variable key length (typically between 40 and 256 bytes) using the following
key-scheduling algorithm:

for i from 0 to 255
S[i] := i

j := 0
for i from 0 to 255
j := (j + S[i] + key[i mod keylength]) mod 256
swap(S[i],S[j])

The power consumption of the first iteration was monitored; the dependence
on the first byte of the key is here obvious. The 256-byte state was placed in
the data memory by allocating 64 bytes per bank. Therefore, it is expected to
be easier to distinguish the keys located in different banks even if they have the
same Hamming weight.

In the RC4 experiments, 10 keys that are believed to be “close” are considered.
For each one, 500 traces are used to construct the models and 300 to validate
them. In other words, 500 traces are used to estimate the parameters and 300 to
assess the performance. For each trace, there are 300,000 time samples. Figure 1
shows the eigenvalues in decreasing order. Clearly, most of the variance is located
in very few components. In practice, 7 components are sufficient to ensure an
average rate of correct classification of 93.3% (see Figure 2), meaning that most
of the test traces are correctly classified at once.

By contrast, in [2] 42 test samples were selected according to some heuris-
tic. The noise model was chosen to be multivariate Gaussian as in (1). When
considering a diagonal covariance matrix (i.e., the time samples are considered
2 This is advised in IEC 61967-3: Integrated circuits - Measurement of electromagnetic

emissions, 150kHz to 1GHz Part 3: Measurement of radiated emissions, surface scan
method (10kHz to 3GHz), 47A/620/NP, New Work Item Proposal (July 2001).

3 See IEC 61967-4: Integrated circuits - Measurement of electromagnetic emissions,
150 kHz to 1 GHz - Part 4: Measurement of conducted emissions 1Ω / 150Ω. Direct
coupling method, 47A/636/FDIS, Final Draft International Standard, Distributed
on 2002-01-18.

8 C. Archambeau et al.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

i

∆ ii

(a) Eigenvalues.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

i

∆ ii

(b) Largest eigenvalues.

Fig. 1. Eigenvalues in descending order for RC4

independent) the classification errors reported by [2] were up to 35% for simi-
lar keys. Since the power of the attack strongly depends on the implementation
and the measurement noise, we also reproduced the experiments for a fully mul-
tivariate Gaussian noise model (i.e., for full covariance matrices) for compari-
son purposes. The samples were selected as the ones where maximal variance
occurred. The minimal distance between successive samples was chosen to be
equal to the clock cycle. For 42 time samples , the average classification suc-
cess was 91.8%, which is already considerable. However, note that this approach
requires to choose a particular distance between the samples a priori, which af-
fects the performances considerably. For example here, a distance of half the
clock cycle leeds to an average classification error of only 80.5%. A similar loss
of performance is observed when choosing to few samples to construct the multi-
variate noise model, but when too many samples are taken, the model reliability
might be questionable. Indeed, when the dimension of the data space increases,
the number of observations to reliability estimate the parameters needs to in-
crease as well. In the case of standard TA with a 42 points of interest, estimating
the mean and the covariance matrix of the multivariate Gaussian noise model
requires to fit M(M + 3)/2 = 945 parameters. However, there is only a limited
number of measurements (or traces), typically few hundreds. The number of
constraints increases linearly with the dimension M . There are thus only very
few measurements to estimate each model parameter.

An important advantage of PSTA over TA is that the number of relevant
features can be inferred from the eigenvalues. Only the significant ones need
to be retained; the remaining ones are thought of as being noise. Clearly, from
Figure 1, it can be observed that only the first two components are important,
and indeed, the average correct classification rate for two components is already
88.7% (see Figure 2). The next few components only slightly increase the power
of the attack. Furthermore, in the 7-dimensional principal subspace of the traces
only 70 parameters need to be estimated (as opposed to 945), while the number
of data is the same. The model parameters are thus expected to be more reliably
estimated. Note also that a minimal distance between the features needs not to be

Template Attacks in Principal Subspaces 9

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of components

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
ra

te

Fig. 2. Average correct classification rate for RC4 as a function of the number of
components

chosen in the case of subspace TA. As a matter of fact, the principal components
are a weighted sum of many time samples, the weights being determined as the
ones minimizing the loss of variance in the data.

4.2 AES Rijndael

Template attacks are usually applied to stream ciphers, key scheduling algo-
rithms and pseudo-random number generators. This is motivated by the fact
that such primitives are difficult to target with standard side-channel attacks
like the DPA, since the attacker can only observe a single use of the key. How-
ever, in general, one could apply template attacks to any kind of cryptographic
primitive in order to take advantage of a more efficient information extraction
from side-channel observations. For example, in this section we show that an
adaptation of subspace based TA can be applied to FPGA implementations of
block ciphers. Such a context is practically interesting since it allows to eval-
uate how the construction of templates may be affected by (large) amounts of
algorithmic noise. It also yields particular constraints since the objective is to
characterize only a part of the implemented design.

For illustration purposes, let us observe the simplified block cipher of Figure 3,
where only one round is represented. In this picture, let us also assume that we
want to build templates for the key bits entering the first (upper) substitution
box s. Clearly, if we only want to identify the power consumption patterns of
this s-box (more specifically, we want to identify the dark grey computations
in the scheme, before the application of a diffusion layer), it is important to
randomize all the other points in the implementation. They will then contribute
to the overall leakage as random noise source. That is, all the inputs to the
other s-boxes should be feed with a random number generator. Therefore, we
will construct our templates according to the following procedure:

1. Select the target key bits in the implementation.
2. For each key candidate:

10 C. Archambeau et al.

K

ROUND

S
D

S
S
S

S
S

counter

PRNG

Fig. 3. Simplified view of one round in AES Rijndael. The counter feeds a particular
sequence of messages to the device. PRNG is a pseudo-random generator producing
arbitraty message sequences. K is the encryption key, S denotes an s-box and D is the
diffusion layer of the round.

– Feed the s-box corresponding to these target key bits with a deterministic
sequence of plaintexts (e.g., a counter).

– Feed the other s-boxes in the scheme with random inputs4.
– Build the templates from the measurement of these computations.

An important feature of this process is that each key candidate will be character-
ized by a number of encryptions. This is because every value in the counter will
give rise to a computation that identifies these candidates. As a matter of fact,
this will allow us to evaluate the efficiency of our template attack, by checking the
number of encryptions required to reach a successful classification and therefore
to compare our results with previous attacks against similar implementations.

In practice, we targeted an FPGA implementation of the AES Rijndael [11].
Basically, we selected a loop architecture with only one round implemented in
the circuit. The key scheduling was not implemented on-the-fly, but executed
once, before the execution of our encryptions. However, note that the possible
implementation of an on-the-fly key scheduling would not affect the construction
of the templates as long as the key is fixed and therefore, once initialized, the
key scheduling does not lead to any switching activity anymore.

In the experiments, 10 different keys were considered. For each one, 500 traces
were used to estimate the model parameters and 500 to validate the resulting
models. The number of samples per trace is equal to 500, 000. Figure 4 shows
the eigenvalues for AES Rijndael. Again, it can be observed that most of the
variance in the data can be summarized with relatively few components. For
example, with 20 components and for 128 encrypted messages the average clas-
sification success is equal to 86.7% (see Figure 5). Compared to the results with

4 Random inputs are used not only when constructing the templates, but also when
evaluating the performance of the attack. Therefore, this set up mimics a device
with unknown inputs for the other s-boxes as desired. Note that a convenient way to
generate these random inputs is to use the feedback from the block cipher outputs.

Template Attacks in Principal Subspaces 11

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

−3

i

∆ ii

(a) Eigenvalues.

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−3

i

∆ ii

(b) Largest eigenvalues.

Fig. 4. Eigenvalues in descending order for AES Rijndael

0

50

100

150

0

10

20

30
0

0.2

0.4

0.6

0.8

1

Number of messages

Average correct classification rate

Number of components

Fig. 5. Average correct classification rate for AES, as a function of the number of
encrypted messages and the number of retained components

RC4, a higher number of components is necessary for a comparable classification
accuracy. This result can be explained by the fact that the power traces are here
much noisier (due to the parallel hardware implementation).

Although, there are relatively few significant components needed with respect
to the number of encrypted messages, it is important to realize that it does not
mean that the information in most of them is discarded. Indeed, in PSTA, the
PCA-step seeks of the optimal projection in the feature space. Each component
corresponds thus to a weighted sum of a possibly high number of time samples.
Therefore, the information leakage due to a possibly high number of encrypted
messages is summarized in a single component.

Figure 5 shows the average correct classification rate as a function of the num-
ber of retained components and the number of messages. As expected, when the
number of encryptions decreases, the performances drops. This is due to the fact
that there is less information leakage available. Similarly, when the number of

12 C. Archambeau et al.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

t
1

t 2

V

V 1

2

Fig. 6. Illustration of principal component analysis (PCA)

components is small, there is only a poor capacity to classify correctly, as too
many relevant features have been discarded. However, when the number of mes-
sages and the number of components increases the average correct classification
rate rapidly increases.

Compared to recent correlation-based power analysis attacks of AES Rijndael
(also on FPGA), the number of message required to recover the correct key bytes
is much smaller. The factor of proportionality ranges from 2 to 5 depending on
the fact that the attack uses trace averaging [10] or not [9]. Note also that corre-
lation attacks require in general to carefully preprocess the traces, for example
using several filters. By contrast, PSTA is much more practical as it exploits the
information in the raw data directly and does not require to adjust any tuning
parameters, but the number of components to retain.

5 Conclusion

In this work, we introduced principal subspace template attacks and showed that
they can be successfully applied to both stream and block ciphers. Preprocessing
the leakage traces beforehand by PCA allows avoiding the practical issues of
ordinary template attacks. Principal subspace template attacks are motivated
by the fact that template attacks consider the time instants having a great
variability as being important to discriminate. If this assumption is correct, then
PCA is the optimal (linear) transformation to identify the most relevant features.
Besides, the eigenvalues provide a systematic rule for determining how many and
which features should be selected to mount a powerful attack. Finally, it is also
important to realize that the main difference between both attacks resides in
the way they extract information from traces. In template attacks M of the
N samples are used to mount the noise model, the selection being based on
heuristics, while in principal subspace template attacks M linear combinations
(preserving maximal variance) of these N samples are used.

Template Attacks in Principal Subspaces 13

References

1. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

2. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, 4th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of
Lecture Notes in Computer Science, 13–28. Springer, 2002.

3. B. Efron and R.J. Tibshirani. An introduction to the Bootstrap. Chapman and
Hall, London, 1993.

4. K. Fukunaga. Introduction to Statistical Pattern Recognition. Elsevier, New York,
1990.

5. I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
6. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In Neal Koblitz, editor, 16th Annual International Cryptol-
ogy Conference (CRYPTO), volume 1109 of Lecture Notes in Computer Science,
104–113. Springer, 1996.

7. Microship. PIC16F877 datasheet. url: ww1.microchip.com/downloads/en/ Device-
Doc/30292c.pdf, 2001.

8. Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, 5th International Workshop on Infor-
mation Security Applications (WISA), volume 3325 of Lecture Notes in Computer
Science, 440–456. Springer, 2004.

9. F.-X. Standaert, S.B. Ors, and B. Preneel. Power analysis of an FPGA implemen-
tation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-
Jacques Quisquater, editors, 6th International Workshop Cryptographic Hardware
and Embedded Systems (CHES), volume 3156 of Lecture Notes in Computer Sci-
ence, 30–44. Springer, 2004.

10. F.-X. Standaert, E. Peeters, F. Macé, and J.-J. Quisquater. Updates on the security
of FPGAs against power analysis attacks. In proceedings of ARC 2006, LNCS 3985,
pp. 335-346, 2006.

11. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient imple-
mentation of Rijndael encryption in reconfigurable hardware: Improvements and
design tradeoffs. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, edi-
tors, 5th International Workshop Cryptographic Hardware and Embedded Systems
(CHES), volume 2779 of Lecture Notes in Computer Science, 334–350. Springer,
2003.

12. M. Turk and A.Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

A Appendix

An illustration of PCA is shown Figure 6. The data is drawn from a 2-dimensional
Gaussian distribution. The two principal directions v1 and v2 are shown by the
solid lines. The length of the lines is proportional to the variance of the projected
data onto the corresponding direction. If we remove the second dimension (after
rotation) and describe the data only by the first one, then we will minimize the
loss of information (i.e., loss of variance) due to this new representation.

14 C. Archambeau et al.

B Appendix

The examples of the recorded RC4 and AES Rijndael power traces are shown
respectively in Figure 7 and 8.

2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

N

t p k

Fig. 7. Example of a RC4 power trace

0 2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N

t p k

Fig. 8. Example of an AES Rijndael power trace

Templates vs. Stochastic Methods
A Performance Analysis for Side Channel Cryptanalysis

Benedikt Gierlichs1,2,�, Kerstin Lemke-Rust2,��, and Christof Paar2

1 K.U. Leuven, ESAT/COSIC
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
benedikt.gierlichs@esat.kuleuven.be
2 Horst Görtz Institute for IT Security

Ruhr University Bochum
44780 Bochum, Germany

{gierlichs, lemke, cpaar}@crypto.rub.de

Abstract. Template Attacks and the Stochastic Model provide advanced
methods for side channel cryptanalysis that make use of ‘a-priori’ know-
ledge gained fromaprofiling step.For a systematic comparison ofTemplate
Attacks and the Stochastic Model, we use two sets of measurement data
that originate from two different microcontrollers and setups. Our main
contribution is to capture performance aspects against crucial parameters
such as the number of measurements available during profiling and classi-
fication. Moreover, optimization techniques are evaluated for both meth-
ods under consideration. Especially for a low number of measurements and
noisy samples, the use of a T-Test based algorithm for the choice of rele-
vant instants can lead to significant performance gains. As a main result,
T-Test based Templates are the method of choice if a high number of sam-
ples is available for profiling. However, in case of a low number of samples
for profiling, stochastic methods are an alternative and can reach superior
efficiency both in terms of profiling and classification.

Keywords: Template Attack, Stochastic Model, Performance Analysis,
Side Channel Cryptanalysis, High-Order Attacks, Power Analysis.

1 Introduction

Side channel cryptanalysis makes use of physical leakage of a cryptographic im-
plementation as an additional source of information for mathematical cryptanal-
ysis. An adversary is successful, if side channel cryptanalysis yields a (sufficient)
entropy loss of a secret key used in a cryptographic implementation.

The underlying working hypothesis for side channel cryptanalysis assumes
that computations of a cryptographic device have an impact on instantaneous
� The research was done in cooperation with gemalto.

�� Supported by the European Commission through the IST Contract IST-2002-507932
ECRYPT, the European Network of Excellence in Cryptology.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 15–29, 2006.
c© International Association for Cryptologic Research 2006

16 B. Gierlichs, K. Lemke-Rust, and C. Paar

physical observables in the (immediate) vicinity of the device, e.g., power con-
sumption or electromagnetic radiation [6,5]. The dependency of the measurable
observables on the internal state of a cryptographic algorithm is specific for
each implementation and represents the side channel. This relationship can be
predicted, e.g., by applying a (standard) power consumption model of the im-
plementation such as the Hamming weight or Hamming distance model [2]. Al-
ternatively, the probability density of the observables can be profiled in advance
for every key dependent internal state of the implementation.

The methods under consideration are the Template Attack [3] and the Stochas-
tic Model [7]. Both methods include a profiling step for the estimation of a key
dependent multivariate probability density of the physical observable. Our work is
driven by the demand for an objective and systematic performance comparison in
identical physical conditions since the quality of side channel measurements is one
of the most crucial factors in terms of attack efficiency. Both methods are applied
to measurements from two setups using two different microcontrollers running an
AES implementation in software. Moreover, we apply and evaluate optimization
strategies, especially with respect to the selection of time instants for the multi-
variate density.

This work is organized as follows. In Section 2 we give an introduction to
Template Attacks and the Stochastic Model, i.e., the two methods under con-
sideration. Our testing framework used for performance analysis is presented
in Section 3. Section 4 presents results that were obtained by using the known
approach for both methods, whereas Section 5 evaluates optimizations. Our con-
tribution is summarized in Section 6.

2 Side Channel Cryptanalysis

Methods used for side channel cryptanalysis can be distinguished into one-stage
methods without any prior knowledge about the expected side channel leakage
that are directly used for key extraction and two-stage methods that make use of
a profiling step to obtain ‘a priori’ knowledge on the side channel leakage that can
be used for extracting keys later on. Both, Templates and the Stochastic Model
are two-stage attacks. For profiling, two-stage methods require a cryptographic
device which is identical to the device used at key extraction. While in case of
attacks against stream ciphers, a further requirement is that the profiling device
must allow to load keys (cp. [3]), our attacks against AES do not require this,
which weakens the assumptions on the adversary’s power.

2.1 Template Attack

Templates were introduced as the strongest side channel attack possible from
an information theoretic point of view [3]. For each (sub)key-dependency, a
Template, i.e., a multivariate characterization of the noise in the instantaneous
leakage signal, is produced during profiling. Let us assume K different (sub)key-
dependent operations Oi with 1 ≤ i ≤ K. During profiling, Templates Ti, one

Templates vs. Stochastic Methods 17

for each key dependency Oi, are generated from a large number N1 of samples.
The first part in a Template estimates the data-dependent portion of the side
channel for each time instant, i.e., it is the average mi

2 of all available samples
representing the same key-dependency Oi. The second part in a Template esti-
mates the probability density of the noise in the side channel. Before starting
to characterize the noise, it is highly advisable to identify and select those time
instants where the averages mi differ significantly in order to reduce computa-
tional and storage efforts. Reference [3] proposes to compute the sum of pairwise
differences between the averages,

∑K
j,l=1 mj−ml for l ≥ j, and to choose p points

(P1, . . . , Pp) along the peaks of the resulting difference curve. It is assumed that
the noise in the side channel approximately has a multivariate normal distribu-
tion with respect to the selected instants. A p-dimensional noise vector ni(L)
is extracted from each sample L representing the Template’s key dependency
Oi as ni(L) = (L[P1]−mi[P1], . . . , L[Pp]−mi[Pp]). One computes the (p × p)
covariance matrix Ci from these noise vectors. The probability density of the
noise occurring under key dependency Oi is then given by the p-dimensional
multivariate normal distribution probCi(·) where the probability of observing a
noise vector z is

probCi
(z) =

1√
(2π)p|Ci|

exp
(
−1

2
zT C−1

i z

)
, z ∈ IRp, (1)

|Ci| denotes the determinant of Ci, and C−1
i its inverse.

The strategy to classify a single sample S is a maximum likelihood hypothesis
test. For each hypothetical key dependency Oi, one extracts the noise in S by
subtracting the average mi at the p selected instants yielding a noise vector ni(S)
and computes the probability probCi(ni(S)) to observe such a noise vector using
(1). The hypothesis Oi maximizing (1) is then the best candidate for the observed
key dependency.

Use of Template Attacks against AES. In [3] an “expand and prune”
strategy is described that is particularly useful when attacking stream ciphers.
Applying this strategy, profiling and classification build a recurring cycle for
sieving key candidates which means in particular that the vast effort of the pro-
filing step cannot be precomputed. In contrast, if the attacked key is known to
be sufficiently small or assailable in such blocks3, profiling can be done indepen-
dently before or after obtaining S from the device under attack. For example,
to recover an 128-bit AES key one can precompute 28 · 16 instead of (infeasible)
2128 templates and - after obtaining S - immediately start the classification step
which may take only a few seconds.

Improvement 1 (concerning the selection of interesting instants): We discov-
ered that the sum of pairwise differences of the average signals, i.e.,

∑K
j,l=1 mj−ml

1 In this contribution, N is the number of samples available for profiling. The number
of samples per key dependency is about N/K in case of a uniform distribution.

2 We denote that each sample and mi is a vector of sampled points in time.
3 This is true for many block ciphers.

18 B. Gierlichs, K. Lemke-Rust, and C. Paar

for l ≥ j is not an appropriate basis for choosing the interesting points in time.
This is due to the fact that positive and negative differences between the averages
may zeroize, which is desirable to filter noise but hides as well valuable peaks that
derive from significant signal differences with alternating algebraic sign. There-
fore we implemented the sum of squared pairwise differences of the average signals∑K

j,l=1(mj −ml)2 for l ≥ j (also referred to as sosd in this work) so that the hid-
ing effect does not emerge anymore at the cost of a non-zero noise floor. Further,
large differences get amplified.

Improvement 2 (concerning the classification step): The original Template
Attack only provides a sample classification strategy based on one available
sample. While this may be a realistic scenario in the context of stream ciphers4,
the situation is probably less tight in the context of block ciphers. Moreover,
in case of a low-leakage implementation, one sample may not be sufficient for a
reliable classification. For these reasons, a classification strategy that processes
one or several samples is applied.

2.2 Stochastic Model

The Stochastic Model [7] assumes that the physical observable It(x, k) at time t
is composed of two parts, a data-dependent part ht(x, k) as a function of known
data x and subkey k and a noise term Rt with zero mean: It(x, k) = ht(x, k) +
Rt. It(x, k) and Rt are seen as stochastic variables. For this paper, we use the
maximum likelihood based approach of [7] and skip the minimum principle as it is
already proven to be less efficient in [7]. Profiling processes N = N1+N2 samples
representing a known subkey k and known data x1, x2, . . . , xN and consists of two
parts. The first part yields an approximation of ht(·, ·), denoted as h̃∗

t (·, ·), i.e.,
the data-dependent part of the side channel leakage, in a suitable u-dimensional
chosen vector subspace Fu;t for each instant t. The second part then computes
a multivariate density of the noise at relevant instants. For the computation
of h̃∗

t (·, ·), an overdetermined system of linear equations has to be solved for
each instant t. The (N1 × u) design matrix is made up by the representation of
the outcome of a selection function combining k and xn (1 ≤ n ≤ N1) in Fu;t
and the corresponding N1-dimensional vector includes the instantiations itn of
the observable. As preparation step for the computation of the multivariate
density, p side channel relevant time instants have to be chosen based on h̃∗

t (·, ·).
The complementary subset of N2 measurements is then used to compute the
covariance matrix C. For this, p-dimensional noise vectors have to be extracted
from all N2 measurements at the p instants by subtracting the corresponding
data-dependent part. Given the covariance matrix C, this leads to a Gaussian
multivariate density f̃0 : IRp → IR.

Key extraction applies the maximum likelihood principle. Given N3 measure-
ments at key extraction, one decides for key hypothesis k ∈ {1, . . . , K} that
maximizes
4 Reference [9] presents an amplified attack against stream ciphers for the case of

several available samples.

Templates vs. Stochastic Methods 19

α(x1, . . . , xN3 ; k) =
N3∏
j=1

f̃0

(
it(xj , k

◦)− h̃∗
t(xj , k)

)
. (2)

Herein, k◦ is the unknown correct key value.

Use of Stochastic Methods Against AES. We chose the vector subspace F9,
i.e., bitwise coefficients at the S-Box outcome as selection function as suggested
by [7]. The base vectors gl(x⊕ k) (0 ≤ l ≤ 8) are

gl(x⊕ k) =
{

1 if l = 0
l-th bit of S-box(x⊕ k) if 1 ≤ l ≤ 8

}
. (3)

The choice of relevant time instants is based on sosd5. Other parameters are
kept fixed, as e.g., we use N1 = N

2 measurements for profiling the data-dependent
part and N2 = N

2 measurements for profiling the noise throughout this paper6.

2.3 Compendium of Differences

Table 1 summarizes the fundamental differences in the approaches of both attacks.
Following the notation in [7], Templates estimate the data-dependent part ht it-
self, whereas the Stochastic model approximates the linear part of ht in the chosen
vector subspace (e.g., F9) and is not capable of including non-linear parts. Tem-
plates build a covariance matrix for each key dependency whereas the Stochastic
Model generates only one covariance matrix, hereby neglecting possible multivari-
ate key dependent noise terms. A further drawback may be that terms of the co-
variance matrix are distorted because of non-linear parts of ht in F9.

Table 1. Fundamental differences between Templates and the Stochastic Model

Sample portion Template Attack Stochastic Model
signal estimation of key dependent linear approximation of key

signal dependent signal in F9

→ 256 average signals → 9 sub-signals
noise key dependent, characterized non-key dependent , characterized

→ 256 cov matrices → one cov matrix

3 Performance Evaluation

In this contribution, performance aspects for side channel cryptanalysis are elab-
orated for the Template Attack and the Stochastic Model. Our goal is to provide
a systematic performance comparison with respect to resources7 needed for a suc-
cessful attack. An adversary is successful if the (unknown) key value is correctly
identified at classification.
5 The Euclidean norm proposed in [7] produces very similar results.
6 One may argue that the choice of instants can be done using all N samples.
7 We focus on the number of available samples (side channel quality) since computa-

tional complexity is of minor importance for the attacks under consideration.

20 B. Gierlichs, K. Lemke-Rust, and C. Paar

3.1 Metrics, Parameters, and Factors to Study

Hence in determining performance of side channel based techniques we first
have to answer four related questions: (i) which are the relevant parameters that
have an impact on attack performance, (ii) which of these parameters can be
controlled resp. their influence measured and hence should be in the scope of our
experiments, (iii) on which values for the remaining parameters this case study
should be based, and (iv) what metrics should we select in order to best capture
performance aspects?

From the standpoint of resources needed for a successful attack, parame-
ters that influence the success rate are manifold ranging from the measurement
equipment and its environment, the knowledge about the attacked implementa-
tion, the configuration of the implementation during profiling, and the concrete
methodical approach used for analysis to the number of measurements in the
profiling and classification steps.

Among them, we evaluate (I) the methodical approach, (II) the number of
curves for profiling, and (III) the number of curves in the classification step. The
remaining parameters are chosen to be identical for both methods evaluated.
Because of this, we are able to exclude any measurement or implementation
dependent impact on our analysis results for each setup.

We evaluate two methodical approaches as these are the Template Attack and
the Stochastic Model. Concrete parameter settings of both methods additionally
include the number and composition of time instants chosen for the multivariate
probability density. We implemented identical point selection algorithms oper-
ating on sosd (cp. Sections 2.1 and 2.2) selecting at most one point per clock
cycle. The number of measurements, both during profiling and key extraction,
is regarded as the relevant and measurable parameter. Let N be the number of
measurements used in the profiling step and N3 the number of measurements
used at key extraction. For both, the Template Attack and the Stochastic Model,
the concrete parameter values to study are given in Section 3.2.

Profiling efficiency is measured (1) as efficiency in estimating the data-
dependent sample portion (refers only to N) and (2) as ability to determine
the correct set of points of interests (refers to N and p). Both metrics relate to
reference values obtained for maximal N (referred to as Nmax below) used in
the concrete setting.

Metric 1: The first efficiency metric for profiling evaluates the correlation
coefficient ρ of the average vectors mi(N) obtained from N samples and the
reference vectors mi(Nmax): 1

K

∑K
i=0 ρ(mi(N), mi(Nmax)). For the Stochastic

Model, we approximate the mi(N) with h̃∗
t (·, ·) and use the reference mi(Nmax)

that we assume to be the best possible estimator of the data-dependent part ht.
Metric 2: The second metric compares the set of selected points based on

N samples to the reference set obtained using Nmax samples and returns the
percentage of points that are located in the correct clock cycle.

Metric 3: Classification efficiency (refers to N3, N and p) is measured as
success rate to obtain the correct key value. The success rate at key extraction

Templates vs. Stochastic Methods 21

is empirically determined by classifying N3 randomly chosen measurements out
of the key extraction measurement series. This random choice is repeated one
thousand times and the success rate is then defined as the percentage of success
in determining the correct key value.

In Section 5 optimizations for both methods are included in the performance
analysis.

3.2 Experimental Design

The performance analysis is applied to two experimental units performing AES
in software without any countermeasures. Our first experimental unit (device A)
is an ATM163 microcontroller. A set of more than 230,000 power measurements
was recorded for profiling purposes with a fixed AES key and randomly chosen
plaintexts. For classification purposes, we recorded a second set comprising 3000
measurements with a different fixed AES key. The experimental design is full
factorial. Our second experimental unit is another 8-bit microcontroller from
a different manufacturer (device B). Furthermore, the power measurements of
device B stem from a different, low-noise, measurement setup. We obtained a
set of 50,000 power measurements for profiling purposes and a classification set
of 100 power measurements, both with fixed but different AES keys. Table 2
shows all concrete parameter values we studied. However, Sections 4 and 5 only
provide the most relevant results.

Table 2. Concrete parameter values to study

Device Parameter Parameter Values
A N 231k, 50k, 40k, 30k, 25k, 20k, 10k, 5k, 2k8, 1k8, 2008

A p 3, 6, 9, x9

A N3 1, 2, 5, 10
B N 50k10, 10k, 5k, 5008, 1008

B p x9

B N3 1, 2, 5

4 Experimental Evaluation: Results for Original Attacks

4.1 Comparison of Profiling Efficiency

Profiling metrics 1 and 2 are summarized in Fig. 1 and Table 3. Metric 1 clearly
yields enhanced results for Templates which is reasonable as the Stochastic
Model uses only half of the measurements for the determination of the data-
dependent part. Though less efficient in determining the data-dependent part,

8 Stochastic Model only.
9 x = maximum number identified after profiling.

10 Template Attack only.

22 B. Gierlichs, K. Lemke-Rust, and C. Paar

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 50000 100000 150000 200000 250000

co
rr

el
at

io
n

number of curves for profiling

metric 1 Template Attack
metric 1 Stochastic Model

Fig. 1. Metric 1 for device A

Table 3. Metric 2 for device A as function of N

231k 50k 40k 30k 25k 20k 10k 5k
Template Attack 1 0.89 0.89 0.78 0.67 0.56 0.23 0.23
Stochastic Model 1 1 1 1 1 1 0.67 0.78

Table 3 clearly indicates the superiority of the Stochastic Model in terms of
selecting the right points in time.

4.2 Comparison of Classification Efficiency

We compare the success rates for variations of N , N3 ∈ {1, 10} and the optimal
number of selected instants to maximize the success rates. Fig. 2 shows metric 3
plotted as function of these parameters. One can observe, that each pair of plots
intersects at least once. Hence, a general statement on which attack yields better
success rates is not feasible as this depends on the number of curves that are
available in the profiling step. If a large number of samples is available (e.g.,
more than twenty thousand), the Template Attack yields higher success rates.
If only a small number of samples is available (e.g., less than twenty thousand),
stochastic methods are the better choice.

4.3 Weaknesses and Strengths

Template Attack The strength of the Template Attack is, that it extracts far
more information from the samples than the Stochastic Model. Given sufficient
samples in the profiling step, it is clearly superior to the Stochastic model in
the classification step, due to the precise estimation of the average signal and
the use of 256 covariance matrices. On the other hand, it requires much more

Templates vs. Stochastic Methods 23

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

su
cc

es
s

ra
te

number of curves for profiling

metric 3 Template Attack
metric 3 Stochastic Model
metric 3 Template Attack

metric 3 Stochastic Model

Fig. 2. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves

samples than stochastic methods to reduce the noise in the side channel and to
select correct instants (see Table 3).

Stochastic Model. The Stochastic Model’s strength is the ability to “learn”
quickly from a small number of samples. One weakness lies in the reduced
precision due to the linear approximation in a vector subspace. A second weak-
ness is the usage of only a single covariance matrix. If the approximation of the
data-dependent part is not precise enough, errors in the approximation affect
the remaining “noise”.

5 Experimental Evaluation: Optimized Results

The maximum efficiency achievable at key extraction for each method is of high
importance, so that we carried out optimizations for each method. Particularly,
Section 4 reveals that the point selection algorithm is crucial for the key extrac-
tion efficiency. Both, for Templates and the Stochastic Model, we evaluate the
statistical t-distribution as the basis of instant selection in this Section. For the
Stochastic Model, the choice of the vector subspace (single intermediate result
vs. two intermediate results) is studied additionally.

Template Attack with T-Test. The Template Attack’s weakness is its poor
ability to reduce the noise in the side channel samples if the adversary is bounded
in the number of samples in the profiling step. For small N , the remaining noise
distorts the sosd curve, which we used as the basis for the selection of interesting
points so far.

The T-Test is a standard statistical tool to meet the challenge of distinguishing
noisy signals. When computing the significant difference of two sets (i, j), it
does not only consider the distance of their means mi, mj but as well their
variability (σ2

i , σ2
j) in relation to the number of samples (ni, nj). We modified

24 B. Gierlichs, K. Lemke-Rust, and C. Paar

our implementation to compute the sum of squared pairwise t-differences (also
referred to as sost in this work)

K∑
i,j=1

⎛⎜⎜⎝ mi −mj√
σ2

i

ni
+

σ2
j

nj

⎞⎟⎟⎠
2

for i ≥ j

as basis for the point selection instead of sosd. Fig. 3 illustrates the striking
difference between sosd and sost for N = 50000 and 10000 samples. The scale

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

so
sd

time

template50000\sosd_channel_A

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

so
st

time

template50000\sost_channel_A

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

so
sd

time

template10000\sosd_channel_A

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

so
st

time

template10000\sost_channel_A

Fig. 3. sosd (left) and sost (right) as functions of time, N = 50000 (top) and 10000
(bottom)

of the vertical axis is not the same for all plots, but as one is not interested in
comparing the absolute height of the peaks, this can be disregarded. What is
important is the relative distance between the peaks and the noise floor in each
curve. While the reduction of N by a factor 5 leads to a very distorted sosd
signal, the significance of sost in terms of where to find interesting points does
not change. Apart from the different scale, the peaks have a virtually identical
shape.

High-Order Stochastic Model with F17 and T-Test. According to the
improvements for Templates, we apply a slightly modified sost for the use with

Templates vs. Stochastic Methods 25

stochastic methods. Here, the data-dependent approximators h̃∗
t (·, ·) and the em-

pirical variance σ2 derived from N1 measurements are used in the computation.
As for Templates, we observe a significant improvement of the point selection
performance.

The weakness of the Stochastic Model with F9 is the limited precision due to
the approximation of the data-dependent sample portion. An obvious solution
to this problem is to increase the number of dimensions of the vector subspace
in order to generate a more precise approximator at the cost of needing more
samples in the profiling step (trade off problem). But as the authors of [7] already
analyzed several high-dimensional vector subspaces and concluded that F9 seems
to be most efficient, we decide to follow a different attempt.

Our approach arises from comparing the sosd curves of the Stochastic Model
and the Template Attack. Due to the fact that the underlying samples repre-
sent only one fixed key, the Template Attack’s sosd curve shows peaks for x,
x⊕ k, and Sbox(x⊕ k). Since the Stochastic Model only approximates the data-
dependent sample portion at Sbox(x ⊕ k), it can not track bits “through” the
Sbox and hence the point selection algorithm only finds instants for Sbox(x⊕k).
Our approach aims at the fact that the Stochastic Model “overlooks” instants
covering the Sbox lookup which yield the strongest peaks in the sosd curve of
the Template Attack. We increase the number of dimensions of the vector sub-
space, but rather than increasing the level of detail at one intermediate result of
the AES encryption, we add consideration of a second intermediate result. We
(re-)define the selection functions gl of the 17-dimensional vector subspace F17
as follows:

gl(x ⊕ k) =

⎧⎨⎩1 if l = 0
l-th bit of S-box(x⊕ k) if 1 ≤ l ≤ 8
(l − 8)-th bit of x⊕ k if 9 ≤ l ≤ 16

⎫⎬⎭ . (4)

As desired, additional clear peaks during the Sbox lookup (x⊕k) were found by
the point selection algorithm.

5.1 Comparison Templates vs. T-Test Based Templates

When comparing the optimized Template Attack with the original attack, we
evaluate the basis on which the point selection algorithm operates.

Profiling Efficiency
Table 4 shows the efficiency of both attacks in the profiling step using metric 2.
The numbers clearly indicate the superiority of the improved version, the T-Test
Template Attack, in terms of selecting the right instants and hence, in the pro-
filing step. Considering Fig. 3 again, the improved profiling efficiency obviously
derives from the enhanced ability to suppress noise in the side channel.
Classification Efficiency
In the following, we compare the classification success rates of the attacks in
Fig. 4. We restrict our attention to variations of N , N3 ∈ {1, 10} for the sake of
clarity, and, each time, the optimal number of selected instants to maximize the

26 B. Gierlichs, K. Lemke-Rust, and C. Paar

Table 4. Metric 2 for device A as function of N

231k 50k 40k 30k 20k 10k 5k
Template Attack 1 0.89 0.89 0.78 0.56 0.23 0.23
T-Test Templates 1 1 1 1 1 1 1

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

su
cc

es
s

ra
te

number of curves for profiling

metric 3 T-Test Templates
metric 3 Template Attack

metric 3 T-Test Templates
metric 3 Template Attack

Fig. 4. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves

success rates. For small N , e.g., N smaller than thirty thousand, the improved
profiling of the optimized attack clearly leads to a higher success rate at classi-
fication.

5.2 Comparison First-Order Stochastic Model vs. T-Test Based
High-Order Stochastic Model

When comparing the optimized Stochastic Model with the original attack, we
evaluate the choice of the vector sub-space and the T-Test based point selection.

Profiling Efficiency
Table 5 shows the profiling efficiency of both attacks in metric 2. The numbers
indicate the improved attack’s advanced ability to select the right points, in
particular when processing only a small number of profiling measurements.

Table 5. Metric 2 for device A as function of N

231k 50k 40k 30k 25k 20k 10k 5k 2k 1k 200
Stochastic Model 1 1 1 1 1 1 0.67 0.78 0.67 - -
T-Test based Stochastic Model 1 1 1 1 1 1 1 0.9 1 1 0.5

Classification Efficiency
In the following, we compare the classification success rates of both attacks.
We restrict our attention to variations of N , N3 ∈ {1, 10}, and, each time, the

Templates vs. Stochastic Methods 27

optimal number of selected instants to maximize the success rates. Fig. 5 shows
metric 3 plotted as function of these parameters.

The benefit of generating eight additional base vectors with respect to the
Sbox input and using sost instead of sosd is clearly visible. Following the profiling
efficiency (cp. Table 5), the efficiency in the classification step is significantly
increased. Particularly, for N larger than thirty thousand and N3 = 10, the
T-Test based high-order Stochastic Model clearly exceeds the 90% success rate
“boundary” and finally reaches 100% success.

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

su
cc

es
s

ra
te

number of curves for profiling

metric 3 T-Test based Model
metric 3 Stochastic Model

metric 3 T-Test based Model
metric 3 Stochastic Model

Fig. 5. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves

5.3 Overall Comparison

In this Section we illustrate the efficiency of the improved methods in the classi-
fication step and give a short summary of the observations. We provide them to
give an overall survey of our work. Fig. 6 contrasts the classification efficiency
of the attacks using metric 3.

The T-Test Template Attack is the best possible choice in almost all parameter
ranges. For small N (e.g., N less than five thousand), the T-Test based high-
order Stochastic Model leads to better results. We would like to point out that
the improved version of the Stochastic Model still operates successfully using
extremely small N . For example, using N = 200 profiling measurements and
N3 = 10 curves for classification it still achieves a success rate of 81.7%.

To stress the impact of the factor “measurement quality” we present success
rates of the improved attacks for measurements of device B that stem from the
low-noise setup. Table 6 provides the attack efficiencies in metric 3 for variations
of N , N3 ∈ {1, 5}, and, each time, the optimal number of selected instants to
maximize the success rates.

Besides the fact that the relation of N to success rate of both attacks is better
by orders of magnitude when using low-noise measurements, we would like to
point out, that the improved Stochastic Model still classifies keys successfully,

28 B. Gierlichs, K. Lemke-Rust, and C. Paar

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

su
cc

es
s

ra
te

number of curves for profiling

metric 3 T-Test Templates
metric 3 T-Test based Model

metric 3 T-Test Templates
metric 3 T-Test based Model

Fig. 6. Metric 3 for device A, N3 = 10 for upper and N3 = 1 for lower curves

Table 6. Metric 3 for device B as function of N

50k 10k 5k 500 100
T-Test Templates N3 = 1 94.8 93.0 88.2 - -

N3 = 5 100.0 100.0 100.0 - -
T-Test based Stochastic Model N3 = 1 - 57.5 60.1 46.8 27.1

N3 = 5 - 100.0 99.9 100.0 96.5

even if the profiling has been done with as little as N = 100 curves, which is far
less than the number of subkey hypotheses.

6 Conclusion

In this contribution, an experimental performance analysis is applied to the
Template Attack and the Stochastic Model. We concentrate on measurable pa-
rameter settings such as the number of curves during profiling and classification.
By using the originally proposed attacks, it was revealed that towards a low
number of profiling measurements stochastic methods are more efficient whereas
towards a high number of profiling samples Templates achieve superior perfor-
mance results. For improvements, we introduce T-Test based Templates and give
experimental results for the use of high-order stochastic methods in combination
with a T-Test based choice of instants. It is shown that the improved variants are
indeed practical, even at a low number of profiling measurements11. As a main
result, T-Test based Templates are generally the method of choice. However, in

11 This is of particular importance when applying these attacks to noisy EM samples.
We experimentally proved that the T-Test based attacks yield far better results than
the original attacks in such a setting.

Templates vs. Stochastic Methods 29

case of a low number of samples for profiling, stochastic methods can still turn
out to be more efficient.

References

1. D. Agrawal, J.R. Rao, P. Rohatgi: Multi-Channel Attacks. In: C.D. Walter, Ç.K.
Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Systems — CHES
2003, Springer, LNCS 2779, 2003, 2–16.

2. E. Brier, C. Clavier, F. Olivier: Correlation Power Analysis with a Leakage Model.
In: M. Joye and J.-J. Quisquater (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2004, Springer, LNCS 3156, 2004, 16-29.

3. S. Chari, J.R. Rao, P. Rohatgi: Template Attacks. In: B.S. Kaliski Jr., Ç.K. Koç,
C. Paar (eds.): Cryptographic Hardware and Embedded Systems — CHES 2002,
Springer, LNCS 2523, 2003, 13–28.

4. P.N. Fahn, P.K. Pearson: IPA: A New Class of Power Attacks. In: Ç.K. Koç and C.
Paar: Cryptographic Hardware and Embedded Systems — CHES 1999, Springer,
LNCS 1717, 1999, 173–186.

5. K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic Analysis: Concrete Results.
In: Ç Koç, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2001, Springer, LNCS 2162, 2001, 251–261.

6. P.C. Kocher, J. Jaffe, B. Jun: Differential Power Analysis. In: M. Wiener (ed.):
Advances in Cryptology — CRYPTO ’99, Springer, LNCS 1666, 1999, 388–397.

7. W. Schindler, K. Lemke, C. Paar: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: J.R. Rao, B. Sunar (eds.): Cryptographic Hardware and
Embedded Systems — CHES 2005, Springer, LNCS 3659, 2005, 30–46.

8. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes
in C — The Art of Scientific Computing. Second Edition, Cambridge University
Press, 1992.

9. C. Rechberger, Side Channel Analysis of Stream Ciphers, Master Thesis, Technical
University Graz, 2004

10. Trochim, William M., The Research Methods Knowledge Base, 2nd Edition,
http://trochim.human.cornell.edu/kb/index.htm , January 16 2005

Towards Security Limits in Side-Channel Attacks
(With an Application to Block Ciphers)

F.-X. Standaert�, E. Peeters, C. Archambeau, and J.-J. Quisquater

UCL Crypto Group, Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{fstandae, peeters, archambeau, quisquater}@dice.ucl.ac.be

Abstract. In this paper, we consider a recently introduced framework
that investigates physically observable implementations from a theoret-
ical point of view. The model allows quantifying the effect of practically
relevant leakage functions with a combination of security and information
theoretic metrics. More specifically, we apply our evaluation methodology
to an exemplary block cipher. We first consider a Hamming weight leak-
age function and evaluate the efficiency of two commonly investigated
countermeasures, namely noise addition and masking. Then, we show
that the proposed methodology allows capturing certain non-trivial in-
tuitions, e.g. about the respective effectiveness of these countermeasures.
Finally, we justify the need of combined metrics for the evaluation, com-
parison and understanding of side-channel attacks.

1 Introduction

In [14], a formal practice-oriented model for the analysis of cryptographic prim-
itives against side-channel attacks was introduced as a specialization of Micali
and Reyzin’s “physically observable cryptography” paradigm [8]. The model is
based on an theoretical framework in which the effect of practically relevant
leakage functions is evaluated with a combination of security and information
theoretic measurements. A central objective of the model was to provide a fair
evaluation methodology for side-channel attacks. This objective is motivated by
the fact that side-channel attacks may take advantage of different statistical tools
(e.g. difference of means [5], correlation [2], Bayesian classification [1], stochastic
models [13]) and are therefore not straightforward to compare. Additionally to
the comparisons of side-channel attacks, a more theoretical goal was the under-
standing of the underlying mechanisms of physically observable cryptography.

Specifically, [14] suggests to combine the average success rate of a (well spec-
ified) adversary with some information theoretic metrics in order to capture
the intuition summarized in Figure 1. Namely, an information theoretic met-
ric should measure the average amount of information that is available in some
physical observations while a security metric measures how efficiently an actual
adversary can turn this information into a successful key recovery.
� François-Xavier Standaert is a post doctoral researcher funded by the FNRS (Funds

for National Scientific Research, Belgium).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 30–45, 2006.
c© International Association for Cryptologic Research 2006

Towards Security Limits in Side-Channel Attacks 31

se
cu

rit
y

m
et

ric

information theoretic metric

insecure
implementation

(some information available,
turned into a successful attack)

strong implementation
good leakage model
and enough queries

(little information available,
turned into a successful attack)

secure
implementation

(little information available,
not exploited by the adversary)

weak implementation
bad leakage model

or not enough queries

(some information is available,
not well exploited by the adversary)

Fig. 1. Summary of side-channel evaluation criteria

In this paper, we consequently study the relevance of the suggested method-
ology, by the analysis of a practical case. For this purpose, we investigate an
exemplary block cipher and consider a Hamming weight leakage function in dif-
ferent attack scenarios. First, we consider an unprotected implementation and
evaluate the information leakages resulting from various number of Hamming
weight queries. We discuss how actual block cipher components compare to ran-
dom oracles with respect to side-channel leakages. Then, we evaluate the secu-
rity of two commonly admitted countermeasures against side-channel attacks,
i.e. noise addition and masking. Through these experiments, we show that the
proposed evaluation criteria allows capturing certain non-trivial intuitions about
the respective effectiveness of these countermeasures. Finally, we provide some
experimental validations of our analysis and discuss the advantages of our com-
bination of metrics with respect to other evaluation techniques.

Importantly, in our theoretical framework, side-channel analysis can be viewed
as a classification problem. Our results consequently tend to estimate the secu-
rity limits of side-channel adversaries with two respects. First, because of our
information theoretic approach, we aim to evaluate precisely the average amount
of information that is available in some physical observations. Second, because
we consider (one of) the most efficient classification test(s), namely Bayesian
classification, it is expected that the computed success rates also correspond to
the best possible adversarial strategy. However, we mention that the best eval-
uation and comparison metrics to use in the context of side-channel attacks are
still under discussion. Our results intend to show that both are useful, but other
similar metrics should still be investigated and compared.

2 Model Specifications

In general, the model of computation we consider in this paper is the one ini-
tially presented in [8] with the specializations introduced in [14]. In this section,

32 F.-X. Standaert et al.

we first describe our target block cipher implementation. Then, we specify the
leakage function, the adversarial context and adversarial strategy that we con-
sider in this work. Finally, we provide the definitions of our security and infor-
mation theoretic metrics for the evaluation of the attacks in the next sections.
Both the adversarial classifications and the metrics were introduced and detailed
in [14].

2.1 Target Implementation

Our target block cipher implementation is represented in Figure 2. For conve-
nience, we only represent the combination of a bitwise key addition and a layer
of substitution boxes. We make a distinction between a single block and a mul-
tiple block implementation. This difference refers to the way the key guess is
performed by the adversary. In a single block implementation (e.g. typically, an
8-bit processor), the adversary is able to guess (and therefore exploit) all the
bits in the implementation. In a multiple block implementation (e.g. typically, a
hardware implementation with data processed in parallel), the adversary is only
able to guess the bits at the output of one block of the target design. That is, the
other blocks are producing what is frequently referred to as algorithmic noise.

P

Sg

X
Y

2-input function

n

Sg

X
Y

2-input function

n
PS

S
S
S

S

i
i i

i ii

Fig. 2. Single block and multiple block cipher implementation

2.2 Leakage Function

Our results consider the example of a Hamming weight leakage function. Specif-
ically, we assume a side-channel adversary that is provided with the (possi-
bly noisy) Hamming weight leakages of the S-boxes outputs in Figure 2, i.e.
WH(Y i). With respect to the classification introduced in [14], perfect Ham-
ming weights correspond to non-profiled leakage functions while noisy Hamming
weights relate to the context of device profiled (stochastic) leakage functions. In
the latter one, the leakage function includes a characterization of the noise in
the target device. For this purpose, we assume a Gaussian noise distribution.
We note also that our exemplary leakage functions are univariate since they
only consider one leaking point in the implementations, namely the S-boxes
outputs.

Towards Security Limits in Side-Channel Attacks 33

2.3 Adversarial Context

We consider a non-adaptive known plaintext adversary that can perform an
arbitrary number of side-channel queries to the target implementation of Figure
2 but cannot choose its queries in function of the previously observed leakages.

2.4 Adversarial Strategy

We consider a side-channel key recovery adversary with the following (hard)
strategy: “given some physical observations and a resulting classification of key
candidates, select the best classified key only”.

2.5 Security Metric: Average Success Rate of the Adversary

The success rate of a side-channel key recovery attack can be written as follows.
Let S and O be two random variables in the discrete domains S and O, respec-
tively denoting the target secret signals and the side-channel observations. Let
Oi

Sg
be an observation generated by a secret signal Sg. Let finally C(L(S), Oi

Sg
)

be the statistical tool used by the adversary to compare an actual observation of
a device with its prediction according to a leakage function L1. This statistical
tool could be a difference of mean test, a correlation test, a Bayesian classifica-
tion, or any other tool, possibly inspired from classical cryptanalysis. For each
observation Oi

Sg
, we define the set of keys selected by the adversary as:

M i
Sg

= {ŝ | ŝ = argmax
S

C[L(S)|Oi
Sg

]}

Then, we define the result of the attack with the index matrix:

IiSg,S = 1
|Mi

Sg
| if S ∈M i

Sg
, else 0.

The success rate of the adversary for a secret signal Sg is estimated as:

SR(Sg) = E
Oi

Sg

ISg,Sg , (1)

and the average success rate of the adversary is defined as:

SR = E
Sg

E
Oi

Sg

ISg,Sg (2)

In the following, we will only consider a Bayesian classifier, i.e. an adversary
that selects the keys such that P[S|Oi

Sg
] is maximum, since it corresponds to

(one of) the most efficient way(s) to perform a side-channel key recovery.
Finally, it is interesting to remark that one can use the complete index matrix

to build a confusion matrix CSg,S = EOi
Sg

ISg,S . The previously defined average
success rate simply corresponds to the averaged diagonal of this matrix.
1 In our following examples, L is the Hamming weight function.

34 F.-X. Standaert et al.

2.6 Information Theoretic Metric: Conditional Entropy

In addition to the average success rate, [14] suggests the use of an information
theoretic metric to evaluate the information contained in side-channel observa-
tions. We note (again) that different proposals could be used for such evaluation
purposes and their comparison is a scope for further research. In the present
paper, we selected the classical notion of Shannon conditional entropy and in-
vestigate how one can take advantage of the approach to understand and evaluate
side-channel attacks. Let P[S|Oi

Sg
] be the probability vector of the different key

candidates S given an observation Oi
Sg

generated by a correct key Sg. Similarly
to the confusion matrix of the previous section, we define a probability matrix:
PSg,S = EOi

Sg
P[S|Oi

Sg
] and an entropy matrix HSg,S = EOi

Sg
− log2 P[S|Oi

Sg
].

Then, we define the average probability of the correct key as:

P[Sg|OSg] = E
Sg

PSg,Sg (3)

And the conditional entropy:

H[Sg|OSg] = E
Sg

HSg,Sg (4)

We note that this definition is equivalent to Shannon conditional entropy2. We
simply used the previous notation because it is convenient to compute the prob-
ability (or entropy) matrices. For example, it allows to detect a good leakage
function, i.e. a leakage function such that maxS HSg,S = HSg,Sg . In the fol-
lowing, the leakages will be quantified as conditional entropy reductions that
corresponds to the mutual information I[Sg; OSg] = H[Sg]−H[Sg|OSg].

It is important to observe that the average success rate fundamentally de-
scribes an adversary. In general, it has to be computed for different number of
queries in order to evaluate how much observations are required to perform a
successful attack. By contrast, the information theoretic measurement says noth-
ing about the actual security of an implementation but characterizes the leakage
function, independently of the number of queries.

3 Investigation of Single Leakages
In this section, we analyze a situation where an adversary is provided with the
observation of one single Hamming weight leakage. First, we evaluate single
block implementations. Then, we discuss multiple block implementations and
key guesses. Finally, we evaluate the effect of noise addition in this context.
2 Since: H[Sg |O]= EOi ESg H[Sg |Oi]

=
∑

Oi P[Oi]
∑

Sg
P[Sg |Oi] · − log2(P[Sg |Oi])

=
∑

Oi P[Oi]
∑

Sg

P[Oi|Sg]·P[Sg]
P[Oi] · − log2(P[Sg |Oi])

=
∑

Oi

∑
Sg

P[Oi|Sg] · P[Sg] · − log2(P[Sg |Oi])
=
∑

Sg

∑
Oi P[Oi|Sg] · P[Sg] · − log2(P[Sg |Oi])

=
∑

Sg
P[Sg]

∑
Oi P[Oi|Sg] · − log2(P[Sg|Oi]) = ESg HSg ,Sg

Towards Security Limits in Side-Channel Attacks 35

3.1 Single Block Implementations

Let us assume the following situation: we have an n-bit secret key Sg and an
adversary is provided with the leakage corresponding to a computation Y i =
f(Sg, P

i) = S(P i ⊕ Sg). That is, it obtains an observation Oi
Sg

= WH(Y i) and
we assume a single block implementation as the one in the left part of Figure 2.
Therefore, the adversary can potentially observe the n + 1 Hamming weights of
Y i. Since the Hamming weights of a random value are distributed as binomials,
one can easily evaluate the average success rate of the adversary as:

SR = E
Sg

E
Oi

Sg

ISg,Sg =
n∑

h=0

(
n
h

)
2n

· 1(
n
h

) =
n + 1
2n

(5)

This equation means that on average, obtaining the Hamming weight of a secret
n-bit value increases the success rate of a key-recovery adversary from 1

2n to n+1
2n .

Similar evaluations will be performed for the conditional entropy in Section 3.3.

3.2 Multiple Blocks and Key Guesses

Let us now assume a situation similar to the previous one, but the adversary
tries to target a multiple block implementation. Therefore, it is provided with
the Hamming weight of an n-bit secret value of which it can only guess b bits,
typically corresponding to one block of the implementation. Such a key guess
situation can be analyzed by considering the un-exploited bits as a source of
algorithmic noise approximated with a Gaussian distribution. This will be done
in the next section. The quality of this estimation will then be demonstrated in
Section 5, by relaxing the Gaussian estimation.

3.3 Noise Addition

Noise is a central issue in side-channel attacks and more generally in any signal
processing application. In our specific context, various types of noise are usually
considered, including physical noise (i.e. produced by the environment), mea-
surement noise (i.e. caused by the sampling process and tools), model matching
noise (i.e. meaning that the leakage function used to attack does possibly not
perfectly fit to real observations) or algorithmic noise (i.e. produced by the un-
targeted values in an implementation). All these disturbances similarly affect the
efficiency of a side-channel attack and their consequence is that the information
delivered by a single leakage point is reduced. For this reason, a usually accepted
method to evaluate the effect of noise is to assume that there is an additive ef-
fect between all the noise sources and their overall effect can be quantified by a
Gaussian distribution. We note that this assumption may not be perfectly veri-
fied in practice and that better noise models may allow to improve the efficiency
of side-channel attacks. However, this assumption is reasonable in a number of
contexts and particularly convenient for a first investigation.

36 F.-X. Standaert et al.

In our experiments, we will consequently assume that the leakage function is
affected by some Gaussian noise such that the physical observations are repre-
sented by a variable: Oi

Sg
= WH(Y i) + N(0, σ2). It is then possible to estimate

the average success rate of the adversary and the conditional entropy as follows:

SR = E
Sg

E
Oi

Sg

ISg,Sg =
n∑

h=0

(
n
h

)
2n

·
∫ +∞

−∞
P[OSg |h] · ISg,Sg do, (6)

H[Sg|OSg] = E
Sg

HSg,Sg =
n∑

h=0

(
n
h

)
2n

·
∫ +∞

−∞
P[OSg |h] · − log2(P[Sg|OSg]) do, (7)

where P[OSg = o|WH(Y i) = h] = 1
σ
√

2π
exp

−(o−h)2

2σ2 and the a posteriori prob-
ability P[Sg|OSg] can be computed thanks to Bayes’s formula: P[Sg|OSg] =
P[OSg |Sg]·P[Sg]

P[OSg] , with P[Osg] =
∑

S P[OSg |S]·P[S]. As an illustration, the average
success rate and the mutual information are represented in Figure 3 for an 8-bit
value, in function of the observation signal-to-noise ratio (SNR=10 · log10(

ε2

σ2),
where ε and σ respectively denote the standard deviation of the signal and the
noise emanated from the implementation).

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

SNR=10⋅ log
10

(ε2/σ2)

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

9/256

1/256

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

M
ut

ua
l I

nf
or

m
at

io
n

[b
it]

SNR=10 ⋅ log
10

 (ε2/σ2)

Fig. 3. Average success rate and mutual information in function of the SNR

Note that the average success rate starts at 9/256, i.e. the noise-free value
computed with Equation (5) and tends to 1/256 which basically means that very
little information can be retrieved from the leakage. The figures also shows the
correlation between the information available and the resulting success rate.

4 Investigation of Multiple Leakages

In the previous section, we analyzed a situation in which an adversary performs
one single query to a leaking implementation and evaluated the resulting average
success rate and mutual information. However, looking at Figure 3, it is clear
that such a context involves limited success rates, even in case of high SNRs. As

Towards Security Limits in Side-Channel Attacks 37

a matter of fact, actual adversaries would not only perform one single query to
the target device but multiple ones, in order to increase their success rates. This
section consequently studies the problem of multiple leakages.

For this purpose, let us consider the following situation: we have an n-bit se-
cret key Sg and an adversary is provided with the leakages corresponding to two
computations Y 1 = f(Sg, P

1) and Y 2 = f(Sg, P
2). That is, it obtains WH(Y 1)

and WH(Y 2) and we would like to evaluate the average predictability of Sg.
The consequence of such an experiment (illustrated in Figure 4) is that the key

),(111 YPf −

),(221 YPf −

Y Sg

Y

Y

1

2

1

2

Sg

Sg

Fig. 4. Multiple point leakages

will be contained in the intersection of two sets of candidates obtained by in-
verting the 2-input functions Y 1 = f(Sg, P1) and Y 2 = f(Sg, P2). The aim of
our analysis is therefore to determine how the keys within this intersection are
distributed. Importantly, and contrary to the single query context, this analysis
requires to characterize the cryptographic functions used in the target imple-
mentation, since they will determine how the intersection between the sets of
candidates behaves. Therefore, we will consider two possible models for these
functions.

4.1 Assuming Random S-Boxes

A first (approximated) solution is to consider the functions f−1(P i, Y i) to be-
have randomly. As a consequence, each observed Hamming weight leakage hi =
WH(Y i) will give rise to a uniform list of candidates for the key Sg of size
ni =

(
n
hi

)
, without any particular dependencies between these sets but the key.

Let us denote the size of the set containing Sg after the observation of q leak-
ages respectively giving rise to these uniform lists of ni candidates by a random
variable Iq(n1, n2, . . . , nq). From the probability density function of Iq (given in
appendix A), it is straightforward to extend the single leakage analysis of Section
3.1 to multiple leakages. The average success rate can be expressed as:

SR =
n∑

h1=0

n∑
h2=0

. . .

n∑
hq=0

(
n

h1

)
2n

·
(

n
h2

)
2n

. . .

(
n

hq

)
2n

·
∑

i

P[Iq = i] · 1
i

(8)

38 F.-X. Standaert et al.

4.2 Using Real Block Cipher Components

In order to validate the previous theoretical predictions of the average success
rate, we performed the experiments illustrated in Figure 5. In the first (upper)
experiment, we generated a number of plaintexts, observed the outputs of the
function f = S(P i ⊕ Sg) through its Hamming weights WH(Y i), derived lists of
ni candidates for Y i corresponding to these Hamming weights and went through
the inverted function f−1(P i, Y i) to obtain lists of key candidates. In the sec-
ond (lower) experiment, a similar procedure is applied but the ni key candidates
were selected from random lists (including the correct key). As a matter of fact,
the first experiment corresponds to a side-channel attack against a real block
cipher (we used the AES Rijndael S-box) while the second experiment emulates
the previous random S-box estimation. We generated a large number (namely

f

Sg

P Y WH(Y) [Y1,Y2,…,Yni] [S1,S2,…,Sni]f -1

P

R Y ni

[Kg | KR1,KR2,KR3,…,KRN]

[Sg | SR1,SR2, … SRni-1]

WH(Y)

i

ii

i i

i

Fig. 5. Multiple leakages experiments: real S-boxes and random S-boxes simulation

100 000) of observations and, for these generated observations, derived the ex-
perimental average success rate in the two previous contexts. Additionally, we
compared these experiments with the theoretical predictions of the previous sec-
tion. The results of our analysis are pictured in Figure 6, where we can observe
that the real S-box gives rise to lower success rates (i.e. to less information)
than a random function. The reason of this phenomenon is that actual S-boxes

4

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

real S−boxes

random S−boxes

theoretical
predictions

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

zoom

Fig. 6. Multiple leakages experimental results

Towards Security Limits in Side-Channel Attacks 39

give rise to correlated lists of key candidates and therefore to less independence
between consecutive observations, as already suggested in [2, 11]. These experi-
ments suggest that even if not perfectly correct, the assumption that block cipher
components are reasonably approximated by random functions with respect to
side-channel attacks is acceptable. We note that this assumption is better veri-
fied for large bit sizes since large S-boxes better approximate the behavior of a
random function than small ones.

5 Investigation of Masked Implementations

The previous sections illustrated the evaluation of simple side-channel attacks
based on a Hamming weight leakage function thanks to the average success
rate and mutual information. However, due to the simplicity of the investigated
contexts, these notions appeared to be closely correlated. Therefore it was not
clear how one could need both criteria for our evaluation purposes. In this section,
we consequently study a more complex case, namely masked implementations
and higher-order side-channel attacks. This example is of particular interest
since it allows us to emphasize the importance of a combination of security and
information theoretic metrics for the physical security evaluation process of an
implementation. As a result of our analysis, we provide (non-trivial) observations
about the respective effectiveness of masking and algorithmic noise addition that
can be easily turned into design criteria for actual countermeasures.

S

S’

Sg

P

R Q

Y = S(P Sg) Q
i

i

i i i

i

Fig. 7. 1st order boolean masking

The masking technique (e.g. [4]) is one of the most popular ways to prevent
block cipher implementations from Differential Power Analysis. However, recent
results suggested that it is not as secure as initially thought. Originally pro-
posed by Messerges [7], second and higher-order power analysis attacks can be
successfully implemented against various kinds of designs and may not require
more hypotheses than a standard DPA [9]. In [12], an analysis of higher-order
masking schemes is performed with respect to the correlation coefficient. In the
following, we intend to extend this analysis to the (more powerful but less flexi-
ble) case of a Bayesian adversary, as introduced in [10].

For the purposes of our analysis, we will use the masked implementation
illustrated in Figure 7 in which the plaintext P i is initially XORed with a random

40 F.-X. Standaert et al.

mask Ri. We use two S-boxes S and S’ such that: S(P i⊕Ri⊕Sg)=S(P i⊕Sg)⊕Qi,
with Qi = S′(P i ⊕ Ri ⊕ Sg, R

i). According to the notations introduced in [10],
it is particularly convenient to introduce the secret state of the implementation
as Σg = S(P i ⊕ Sg) and assume an adversary that obtains (possibly noisy)
observations: Oi

Σg
= WH [Σg ⊕ Qi] + WH [Qi] + N(0, σ2). Similarly to a first-

order side-channel attack, the objective of an adversary is then to determine the
secret state Σg (it directly yields the secret key Sg). Because of the masking, Σg

is not directly observable through side-channel measurements but its associated
PDFs do, since these PDFs only depend on the Hamming weight of the secret
state WH(Σg). As an illustration, we provide the different discrete PDFs (over
the random mask values) for a 4-bit masked design in Figure 8, in function of the
secret state Σg. We also depict the shapes of the discrete PDFs corresponding to
an unmasked secret state affected by four bits of algorithmic noise (i.e. we add
4 random bits to the 4-bit target and the PDF is computed over these random
bits). Similar distributions can be obtained for any bit size. In general, knowing
the probability distributions of the secret state, the average success rate and
conditional entropy can be straightforwardly derived:

1/16

4/16
6/16

4/16

1/16 2/16

6/16 6/16

2/16
4/16

8/16

4/16

8/16 8/16

16/16

0 2 4 6 8 1 3 5 7 2 4 6 3 5 4

WH(S(Pi Sg))= 0 1 2 3 4

(a) 4-bit masked value

1/16

4/16
6/16

4/16

1/16

0 1 2 3 4

1/16

4/16
6/16

4/16

1/16

1 2 3 4 5

1/16

4/16
6/16

4/16

1/16

2 3 4 5 6

1/16

4/16
6/16

4/16

1/16

3 4 5 6 7

1/16

4/16
6/16

4/16

1/16

4 5 6 7 8

WH(S(Pi Sg))= 0 1 2 3 4

(b) 4-bit value and 4 noisy bits

Fig. 8. Exemplary discrete leakage PDFs

SR = E
Σg

E
Oi

Σg

IΣg,Σg =
n∑

h=0

(
n
h

)
2n

·
∫ +∞

−∞
P[OΣg |h] · IΣg,Σg do, (9)

H[Sg|OSg] = E
Σg

HΣg,Σg =
n∑

h=0

(
n
h

)
2n

·
∫ +∞

−∞
P[OΣg |h] · − log2(P[Σg|OΣg]) do,

(10)
where P[OΣg = o|WH(Σg) = h] can be computed as in Section 3.3, assuming
that the OΣg are distributed as a mixture of Gaussians. In the following, we
illustrate these metrics in different contexts. First, we consider 2nd and 3rd order
masking schemes for 8-bit S-boxes. Then, we consider unmasked implementations
where 8 (resp. 16) random bits of algorithmic noise are added to the secret signal
Sg, corresponding to the 2nd (resp. 3rd) order mask bits.

Towards Security Limits in Side-Channel Attacks 41

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
M

ut
ua

l I
nf

or
m

at
io

n
[b

it]

SNR=10 ⋅ log
10

 (ε2/σ2)

8−bit value

8 masked bits
and one 8−bit mask

8−bit value and 8 noisy bits

(a) 2nd order masking

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

M
ut

ua
l I

nf
or

m
at

io
n

[b
it]

SNR=10 ⋅ log
10

 (ε2/σ2)

8−bit value

8−bit value and 16 noisy bits

8 masked bits and
two 8−bit masks

(b) 3rd order masking

Fig. 9. Mutual information of 2nd, 3rd order masking and equivalent algorithmic noise

The first (and somewhat surprising) conclusion of our experiments appears
in Figure 9. Namely, looking at the mutual information for high SNRs, the use
of a n-bit mask is less resistant (i.e. leads to lower leakages) than the addition
of n random bits to the implementation. Fortunately, beyond a certain amount
of noise the masking appears to be a more efficient protection. The reason of
this behavior appears clearly when observing the evolution of the PDFs asso-
ciated to each secret state in function of the SNR, pictured in Appendix B,
Figures 13 and 14. Clearly, the PDFs of the masked implementation are very
different with small noise values (e.g. in Figure 13.a, the probability that an
observation belong to both PDFs is very small) but becomes almost identical
when the noise increases, since they are all identically centered (e.g. in Fig-
ure 13.b). Conversely, the means of each PDF in the unmasked implementa-
tions stay different whatever the noise level (e.g. in Figure 14.b). Therefore the
Bayesian classification is easier than in the masked case when noise increases.
These observations confirm the usually accepted fact that efficient protections
against side-channel attacks require to combine different countermeasures. A
practically important consequence of our results is the possibility to derive the
exact design criteria (e.g. the required amount of noise) to obtain an efficient
masking.

It is also interesting to observe that Figure 9 confirms that algorithmic noise
is nicely modeled by Gaussians. Indeed, e.g. for the 2nd order case, the mutual
information of an 8-bit value with 8 noisy bits for high SNRs exactly corresponds
to the one of an unprotected 8-bit value with SRN=0.

The second interesting conclusion is that the average success rate after one
query (pictured in Figure 10) does not follow an identical trend. Namely, the
masked implementations and their equivalent noisy counterparts do not cross
over at the same SRN. This situation typically corresponds to the intutive cate-
gory of weak implementations in Figure 1. That is, some information is available
but the number of queries is too low to turn it into a successful attack. If our in-
formation theoretic measurement is meaningful, higher number of queries should
therefore confirm the intuition in Figure 9.

42 F.-X. Standaert et al.

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

SNR=10 ⋅ log
10

(ε2/σ2)

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8−bit value

8−bit value and 8 noisy bits
8 masked bits and

one 8−bit mask

(a) 2nd order masking

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

SNR=10 ⋅ log
10

(ε2/σ2)

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8−bit value

8−bit value and 16 noisy bits 8 masked bits and
two 8−bit masks

(b) 3rd order masking

Fig. 10. Avg. success rate of 2nd, 3rd order masking and equivalent algorithmic noise

Success rates with higher number of queries for a 3rd order masking scheme
(and noisy equivalent) were simulated in Figures 11, 12. In Figure 11, a very
high SNR=20 is considered. As a consequence, we observe that the masks bring
much less protection than their equivalent in random bits, although the initial
value (for one single query) suggests the opposite. Figure 12 performs similar ex-
periments for two SNRs that are just next to the crossing point. It illustrates the
same intuition that the efficiency of the key recovery when increasing the number
of queries is actually dependent on the information content in the observations.

Importantly, these experiments illustrate a typical context where the combi-
nation of security and information theoretic metrics is meaningful. While the
average success rate is the only possible metric for the comparison of different
side-channel attacks (since it could be evaluated for different statistical tools),
the information theoretic metric allows to infer the behavior of an attack when
increasing the number of queries. As an illustration, the correlation-based anal-
ysis performed in [12] only relates to one particular (sub-optimal) statistical tool
and was not able to lead to the observations illustrated in Figure 9.

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8 masked bits and
 two 8−bit masks

8−bit value and 16 noisy bits

Zoom

(a) Comparison

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8 masked bits and
 two 8−bit masks

8−bit value
and 16 noisy bits

(b) Zoom

Fig. 11. Avg. success rate of an 8-bit 3rd order masking scheme with noisy counterpart

Towards Security Limits in Side-Channel Attacks 43

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8−bit value
and 16 noisy bits

8 masked bits
and two 8−bit masks

(a) SNR=10

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Leakages Obtained

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e

8 masked bits
and two 8−bit masks

8−bit value
and 16 noisy bits

(b) SNR=11

Fig. 12. Avg. success rate of an 8-bit 3rd order masking scheme with noisy counterpart

6 Concluding Remarks

This paper discusses the relevance of a recently introduced theoretical framework
for the analysis of cryptographic implementations against side-channel attacks.
By the investigation of a number of implementation contexts, we illustrate the
interest of a combination of security and information theoretic metrics for the
evaluation, comparison and understanding of side-channel attacks. Specifically,
in a well defined adversarial context and strategy, the average success rate would
allow the comparison of different usually considered side-channel attacks (e.g.
DPA, correlation analysis, template attacks). By contrast, independently of the
statistical tools used by the adversary, an information theoretic metric provides
theoretical insights about the behavior and effects of a particular leakage function
that can possibly be turned into practical design criteria.

References

1. S. Chari, J.R. Rao, P. Rohatgi, Template Attacks, CHES 2002, LNCS, vol. 1965,
pp. 13–28.

2. E. Brier, C. Clavier, F. Olivier, Correlation Power Analysis with a Leakage Model,
CHES 2004, LNCS, vol 3156, pp 16-29.

3. J.-S. Coron, P. Kocher, D. Naccache, Statistics and Secret Leakage, Financial
Crypto 2000, LNCS, vol. 1972, pp. 157–173.

4. L. Goubin, J. Patarin, DES and Differential Power Analysis, CHES 1999, LNCS,
vol. 1717, pp. 158-172.

5. P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, CRYPTO 1999, LNCS,
vol. 1666, pp. 15–19.

6. S. Mangard, Hardware Countermeasures against DPA - a Statistical Analysis of
their Effectiveness, CT-RSA 2004, LNCS, vol. 2964, pp. 222-235.

7. T.S. Messerges, Using Second-Order Power Analysis to Attack DPA Resistant Soft-
ware., CHES 2000, LNCS, vol. 2523, pp. 238–251.

8. S. Micali, L. Reyzin, Physically Observable Cryptography (extended abstract)., TCC
2004, LNCS, vol. 2951, pp. 278–296.

44 F.-X. Standaert et al.

9. E. Oswald, S. Mangard, C. Herbst, S. Tillich, Practical Second-Order DPA Attacks
for Masked Smart Card Implementations of Block Ciphers., CT-RSA 2006, LNCS,
vol. 3860, pp. 192–207.

10. E. Peeters, F.-X. Standaert, N. Donckers, J.-J. Quisquater, Improved Higher-Order
Side-Channel Attacks with FPGA Experiments, CHES 2005, LNCS, vol. 3659,
pp. 309–323.

11. E. Prouff, DPA Attacks and S-Boxes, FSE 2005, LNCS, vol. 3557, pp. 424-441.
12. K. Schramm, C. Paar, Higher Order Masking of the AES, CT-RSA 2006, LNCS,

vol. 3860, 208-225.
13. W. Schindler, K. Lemke, C. Paar, A Stochastic Model for Differential Side-Channel

Cryptanalysis, CHES 2005, LNCS, vol 3659, pp 30-46.
14. F.-X. Standaert, T.G. Malkin, M. Yung, A Formal Practice-Oriented Model

For The Analysis of Side-Channel Attacks, Cryptology ePrint Archive, Report
2006/139, 2006, http://eprint.iacr.org/.

A Probability Density Function of the Variable Iq

We take an iterative approach and first consider the intersection after two leak-
ages. Assuming that the leakages respectively give rise to uniform lists of n1 and
n2 candidates and the the key space has size N = 2n, it yields P[I2 = i|n1, n2] =(

n1 − 1
i − 1

)
·
(

N − n1
n2 − i

)
(

N − 1
n2 − 1

) , where the binomials are taken among sets of N−1 possible el-

ements since there is one fixed key that is not chosen uniformly. Then, assuming
the knowledge of the distribution of Iq(n1, n2, ..., nq) and an additional leakage
that gives rise to a uniform list of nnew candidates, we can derive the distribution
of Iq+1 as follows: P[Iq+1 = j|Iq, nnew] =

∑
i P[Iq+1 = j|Iq = i, nnew]·P[Iq = i],

with: P[Iq+1 = j|Iq = i, nnew] =

(
i − 1
j − 1

)
·
(

N − i
nnew − j

)
(

N − 1
nnew − 1

) .

B Additional Figures

−1 0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Observation: O

P
[O

|Σ
]

W
H

(Σ)=1

W
H

(Σ)=0

(a) SNR=10

−10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Observation: O

P
[O

|Σ
]

 W
H

(Σ)=1W
H

(Σ)=0

(b) SNR=−6

Fig. 13. Leakages PDFs in function of the noise: masked implementation

Towards Security Limits in Side-Channel Attacks 45

−1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Observation: O

P
[O

|Σ
]

W
H

(Σ)=0 W
H

(Σ)=1

(a) SNR=10

−15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Observation: O

P
[O

|Σ
]

W
H

(Σ)=0
W

H
(Σ)=1

(b) SNR=−6

Fig. 14. Leakages PDFs in function of the noise: unmasked implementation

HIGHT: A New Block Cipher Suitable for
Low-Resource Device�

Deukjo Hong1, Jaechul Sung2, Seokhie Hong1, Jongin Lim1,
Sangjin Lee1, Bon-Seok Koo1, Changhoon Lee1, Donghoon Chang1,

Jesang Lee1, Kitae Jeong1, Hyun Kim4,
Jongsung Kim1, and Seongtaek Chee3

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{hongdj, hsh, jilim, sangjin, bskoo, crypto77,
pointchang, jslee, kite, joshep}@cist.korea.ac.kr

2 Department of Mathematics, University of Seoul, Seoul, Korea
jcsung@uos.ac.kr

3 National Security Research Institute (NSRI),
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

chee@etri.re.kr
4 Korea Information Security Agency (KISA),

78 Karak-dong, Songpa-gu, Seoul 138-160, Korea
hkim@kisa.or.kr

Abstract. In this paper, we propose a new block cipher HIGHT with
64-bit block length and 128-bit key length. It provides low-resource hard-
ware implementation, which is proper to ubiquitous computing device
such as a sensor in USN or a RFID tag. HIGHT does not only consist
of simple operations to be ultra-light but also has enough security as
a good encryption algorithm. Our hardware implementation of HIGHT
requires 3048 gates on 0.25 µm technology.

Keywords: Block Cipher, Ubiquitous, Low-Resource Implementation.

1 Introduction

Cryptographic applications providing various security services such as confiden-
tiality, integrity, protection of privacy, and so on, are admitted as core technologies
for advances in digital information society based on internet. Recently, ubiquitous
computing system is in a matter of concern and interest, and designing crypto-
graphic algorithms and applications suitable for such environment is an interest-
ing research issue. For example, radio frequency identification (RFID) systems are
useful for the automated electronic toll collection system, identifying and tracing
pets, the administration of physical distribution, and so on, while the radio fre-
quency communication between a reader and a tag causes the problems about
confidentiality and privacy. Such problems have been considered as obstacles to
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 46–59, 2006.
c© International Association for Cryptologic Research 2006

HIGHT: A New Block Cipher Suitable for Low-Resource Device 47

the advancement of RFID technology. However, since such ubiquitous computing
technology has low-cost low-power light-weight platform, existing cryptographic
algorithms can be hardly implemented under such resource constraint.

Recently, research on cryptographic protocols based on AES (Advanced En-
cryption Standard) [1] for resource-constraint environment is receiving a lot of
attention. Further essentially, a few low-resource ASIC implementations of AES
are presented [11,12].

In this paper, we propose a new block cipher HIGHT (high security and light
weight) with 64-bit block length and 128-bit key length, which is suitable for
low-cost, low-power, and ultra-light implementation. HIGHT has a 32-round
iterative structure which is a variant of generalized Feistel network. The promi-
nent feature of HIGHT is that it consists of simple operations such as XOR,
addition mod 28, and left bitwise rotation. So, it is hardware-oriented rather
than software-oriented. We checked that HIGHT can be implemented with 3048
gates on 0.25 µm technology. Our circuit processes one round encryption per one
clock cycle, thus its data throughput is about 150.6 Mbps at a 80 MHz clock rate.

Table 1. Comparison the hardware implementation of HIGHT with AES’s

Algorithm Technology Area throughput Max frequency
(µm) (GEs) (Mbps) (MHz)

AES [12] 0.35 3400 9.9 80
HIGHT 0.25 3048 150.6 80

��������
Initial Transform

�

Round1

��������

��������

Plaintext

��������
Round32

��������
Final Transform

��������

�
Ciphertext

SK3,SK2,SK1,SK0�

�SK127,SK126,SK125,SK124

����������������

����������������

�

�

Key Schedule

�

Master Key

Master Key

WK3,WK2,WK1,WK0

�WK7,WK6,WK5,WK4

Fig. 1. Encryption process of HIGHT

48 D. Hong et al.

This performance is much faster than those of recently proposed low-resource
hardware implementations of AES [11,12].

The embedded CPU to sensor nodes in sensor networking system is 8-bit
oriented. In case of 8-bit oriented software implementation, HIGHT is far faster
than AES. The key schedule algorithm of HIGHT is designed to keep the original
value of the master key after generating all whitening keys and all subkeys. Due
to this property, the subkeys are generated on the fly in both encryption and
decryption processes.

The paper is organized as follows. In Section 2, we present the specification
and the design principle of HIGHT. Section 3 presents the design principles of
HIGHT. In Section 4, we give the security analysis and statistical randomness
tests of HIGHT against various existing attacks including differential and lin-
ear cryptanalysis. Section 5 treats the hardware implementation of HIGHT. In
Section 6, we conclude this paper.

2 Specification

2.1 Notations

We use the following notations for the description of HIGHT. The 64-bit plaintext
and ciphertext are considered as concatenations of 8 bytes and denoted by P =
P7|| · · ·P1||P0 andC = C7|| · · ·C1||C0, respectively.The64-bit intermediate values
are analogously represented, Xi = Xi,7|| · · ·Xi,1||Xi,0 for i = 0, · · · , 32. The 128-
bit master key is considered as a concatenation of 16 bytes and denoted by MK =
MK15|| · · · ||MK0. The followings are notations for mathematical operations:

� : addition mod 28

� : subtraction mod 28

⊕ : XOR (eXclusive OR)
A≪s : s-bit left rotation of a 8-bit value A

We focus on the encryption process in the description of the specification
of HIGHT because the decryption process is explained in the similar to the
encryption process. The encryption process of HIGHT HightEncryption consists
of key schedule, initial transformation, round function, and final transformation.
Its description is as follows.

HightEncryption(P, MK) {
KeySchedule(MK,WK,SK);
HightEncryption(P, WK, SK) {

InitialTransfomation(P, X0, WK3, WK2, WK1, WK0);
For i = 0 to 31 {

RoundFunction(Xi, Xi+1, SK4i+3, SK4i+2, SK4i+1, SK4i);
}
FinalTransfomation(X32, C, WK7, WK6, , WK5, WK4);

}
}

WK and SK mean whitening keys and subkeys, respectively.

HIGHT: A New Block Cipher Suitable for Low-Resource Device 49

2.2 Key Schedule

The key schedule KeySchedule for HightEncryption consists of two algorithms,
WhiteningKeyGeneration which generates 8 whitening key bytes WK0, · · · , WK7,
and SubkeyGeneration which generates 128 subkey bytes SK0, · · · , SK127.

KeySchedule(MK, WK, SK) {
WhiteningKeyGeneration(MK, WK);
SubkeyGeneration(MK, SK);

}

WhiteningKeyGeneration. HIGHTuses8whiteningkeybytesWK0,· · ·, WK7
for the initial and final transformations. The algorithm WhiteningKeyGeneration
generates them as follows.

WhiteningKeyGeneration {
For i = 0 to 7 {

If 0 ≤ i ≤ 3, then WKi ← MKi+12;
Else, WKi ← MKi−4;

}
}

Subkey Generation. 128 subkeys are used for 1 computation of
HightEncryption, 4 subkeys per round. The algorithm SubkeyGeneration uses the
subalgorithm ConstantGeneration to generate 128 7-bit constants δ0, · · · , δ127,
and then generates the subkeys SK0, · · ·SK127 with the constants.

δ0 is fixed as 10110102. This is also the initial state (s6, · · · , s0) of 7-bit
LFSR h. The connection polynomial of h is x7 + x3 + 1 ∈ Z2[x]. The algo-
rithm ConstantGeneration uses the LFSR h to produce δ1, · · · , δ127 from δ0 as
follows.

ConstantGeneration {
s0 ← 0; s1 ← 1; s2 ← 0; s3 ← 1;
s4 ← 1; s5 ← 0; s6 ← 1;
δ0 ← s6||s5||s4||s3||s2||s1||s0;
For i = 1 to 127 {

si+6 ← si+2 ⊕ si−1;
δi ← s6||s5||s4||s3||s2||s1||s0;

}
}

Since x7+x3+1 is a primitive polynomial in Z2[x], the period of h is 27−1 = 127
and so δ0 = δ127.

50 D. Hong et al.

The algorithm SubkeyGeneration generates the subkeys as follows.

SubkeyGeneration(MK, SK) {
Run ConstantGeneration
For i = 0 to 7 {

For j = 0 to 7 {
SK16·i+j ← MKj−i mod 8 � δ16·i+j ;

}
For j = 0 to 7 {

SK16·i+j+8 ← MK(j−i mod 8)+8 � δ16·i+j+8;
}

}
}

2.3 Initial Transformation

InitialTransformation transforms a plaintext P into the input of the first
RoundFunction, X0 = X0,7||X0,6||· · ·||X0,0 by using the four whitening-key bytes,
WK0, WK1, WK2, and WK3.

InitialTransfomation(P, X0, WK3, WK2, WK1, WK0) {
X0,0 ← P0 � WK0; X0,1 ← P1; X0,2 ← P2 ⊕WK1; X0,3 ← P3;
X0,4 ← P4 � WK2; X0,5 ← P5; X0,6 ← P6 ⊕WK3; X0,7 ← P7;

}

2.4 Round Function

RoundFunction uses two auxiliary functions F0 and F1:

F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7,

F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6.

For i = 0, · · · , 31, RoundFunction transforms Xi = Xi,7|| · · · ||Xi,0 into Xi+1 =
Xi+1,7|| · · · ||Xi+1,0 as follows.

RoundFunction(Xi, Xi+1, SK4i+3, SK4i+2, SK4i+1, SK4i) {
Xi+1,1 ← Xi,0; Xi+1,3 ← Xi,2; Xi+1,5 ← Xi,4; Xi+1,7 ← Xi,6;
Xi+1,0 = Xi,7 ⊕ (F0(Xi,6) � SK4i+3);
Xi+1,2 = Xi,1 � (F1(Xi,0)⊕ SK4i+2);
Xi+1,4 = Xi,3 ⊕ (F0(Xi,2) � SK4i+1);
Xi+1,6 = Xi,5 � (F1(Xi,4)⊕ SK4i);

}

2.5 Final Transformation

FinalTransformation untwists the swap of the last round function and trans-
forms X32 = X32,7|| X32,6|| · · · ||X32,0 into the ciphertext C by using the four
whitening-key bytes WK4, WK5, WK6, and WK7.

HIGHT: A New Block Cipher Suitable for Low-Resource Device 51

FinalTransfomation(X32, C, WK7, WK6, WK5, WK4) {
C0 ← X32,1 � WK4; C1 ← X32,2; C2 ← X32,3 ⊕WK5; C3 ← X32,4;
C4 ← X32,5 � WK6; C5 ← X32,6; C6 ← X32,7 ⊕WK7; C7 ← X32,0;

}

2.6 Decryption Process

The decryption process HightDecryption is done in the canonical way to invert
HightEncryption. Key schedule generates the subkeys in the reverse order. The
round function in the decryption process has � instead of � and byte-swap with
the opposite direction to that in the encryption process.

3 Design Principles

In this section we list brief description of design principles of HIGHT.

– The structure of HIGHT is generalized Feistel-like. This kind of structure
reduces restriction of designing inner auxiliary functions. Compared to SP-
like structure, the round function is light. Since encryption process is simply
converted into decryption process, implementation of the circuit supporting
both encryption and decryption processes does not require much more cost
than the encryption-only circuit.

– Every operation in HIGHT is 8-bit-processor-oriented. CPUs embedded into
the sensors in USN (Ubiquitous Sensor Network) are based on 8-bit proces-
sor. So, HIGHT has efficient performance in such environment. We checked
that in 8-bit-oriented software implementation HIGHT is faster than AES-
128.

– We intend to combine XOR and addition mod 28 alternatively. The combi-
nation of these quite different operations spread out the whole round of the
algorithm. It plays an important role for resistance against existing attacks.

– The inner functions F0 and F1 of the round function provide bitwise diffu-
sion. These functions can be viewed as linear transformations from GF (2)8

to GF (2)8. We selected two among linear transformations which have best
diffusion.

– The 128-bit register used in the key schedule algorithm contains the master
key value both before and after running the algorithm. So, only one 128-bit
register is required for both encryption and decryption processes.

– The whitening keys are used in the first and the last rounds of HIGHT. If
the whitening keys are not used, then the inputs to F0 and F1 in the first
and the last rounds are directly revealed from plaintexts and ciphertexts.

– The sequence δ0, · · · , δ127 generated by the linear feedback shift register h
enhances randomness of subkey bytes. It also provides the resistance against
slide attack.

52 D. Hong et al.

4 Security Analysis

We analyze the security of HIGHT against various attacks. As a result, we claim
that HIGHT is secure enough for cryptographic applications. In this subsection,
we present not only brief description of our analysis but also the result of the
statistical tests on HIGHT.

4.1 Differential Cryptanalysis

The resistance of a block cipher against differential cryptanalysis [6] depends on
the maximum probability of differential characteristics, which are paths from the
plaintext difference to the ciphertext difference. First of all, we have implemented
a simulation for finding the maximum differential characteristics of a small ver-
sion of HIGHT, Mini-HIGHT, which consists of four 8-bit input registers when
232 of all possible input values are given. As a result, we found two 8-round max-
imum differential characteristics α → β with a probability of 2−28 in which there
always exist a difference pattern such that hamming weight is one at a particular
round, where (α, β) ∈ {(d0 00 ed 86x, 00 84 82 01x), (04 dc 20 e2x, 00 84 82 01x)}.

Since it is impossible for us to find all of the corresponding differential charac-
teristics of HIGHT for given 264 possible input values, we considered the above
difference pattern of Mini-HIGHT with a noticeable feature and then found
several 11-round differential characteristics α → β with probability 2−58 where
(α, β)∈{(11 89 25 e2 c8 01 00 00x, 45 02 01 00 00 91 29 95x), (c8 01 00 00 11 89 25
e2x, 00 91 29 95 45 02 01 00x)}. Each of them are constructed by setting a
difference of a particular intermediate variable to the starting point, and by
prepending and appending good one-round differential characteristics to it. We
expect that they have the best probability over all the 11-round differential
characteristics and that for r > 11, no r-round differential characteristic is use-
ful for differential cryptanalysis of HIGHT because we checked that there is no
any efficient iterative differential characteristic. Differential attack on 13-round
HIGHT without the final transformation recovers the subkeys of the 12th and
13th rounds with 262 plaintexts.

4.2 Linear Cryptanalysis

Linear cryptanalysis [17,18] uses linear relations of the plaintext, ciphertext,
and key which hold with a probability. We call them, linear approximations. Let
p = 1/2+ ε be the probability of a linear approximation. ε is called, bias. If ε2 is
relatively high, the linear approximation is very useful for linear cryptanalysis.
We found several 10-round linear approximations with ε2 = 2−54. Similarly to
differential cryptanalysis of HIGHT, they were constructed by putting a 1-bit
position of an intermediate variable to the starting point, and by prepending
and appending good one-round linear approximations to it. We expect that they
have the best bias over all the 10-round approximations and that for r > 10,
no r-round linear approximation has good bias because we checked that there
is no any iterative linear approximation in HIGHT. Linear attack on 13-round

HIGHT: A New Block Cipher Suitable for Low-Resource Device 53

HIGHT without the final transformation recovers 36 bits of the subkeys of the
1st, 12th, and 13th rounds. It requires 257 plaintexts with the success rate 96.7%.

4.3 Truncated Differential Cryptanalysis

Truncated differential characteristic [15] is a path from a partial difference of
the input to a partial difference of the output. In order to find good truncated
differential characteristics, we computed the probabilities of all differential char-
acteristics with the following form:

00 α1 00 α2 00 α3 00 α4 → 00 β1 00 β2 00 β3 00 β4 (1)

where all αi, βj are 1-byte values. The truncated differential characteristics with
such form can be iterated, but their probabilities are terribly low. Even the sum
of them is too low to be applied to the attack.

As the second approach, we considered several 10-round truncated differen-
tial characteristics with probability 1. For example, one among them has the
following form: the input difference is 80 e9 00 00 00 00 00 00x and the output
difference is γ δ1 δ2 δ3 δ4 δ5 δ6 δ7 where γ is a nonzero 1-byte value and δi’s
are arbitrary 1-byte values. This truncated differential characteristic provides us
with only one information about the output difference that the left-most byte
of the output difference is nonzero. Since the probability of the characteristic
is 1, we have information enough for the attack on HIGHT. We can use the
truncated differential characteristic to recover 96 bits of the subkeys used from
the 11th round to the 16th round in 16-round HIGHT. The attack requires 214.1

plaintexts and 2108.69 encryptions of 16-round HIGHT.

4.4 Impossible Differential Cryptanalysis

We can construct a differential characteristic, which never occurs, by composing
two short truncated differential characteristics with the probability 1 which do
not meet in the middle. We call it an impossible differential characteristic [2].
Such differential characteristic can be used for attacks on block ciphers. Roughly
speaking, since a key candidate satisfies an impossible differential characteristic
is a wrong key, we can reduce the number of the key candidates by repeating
such tests. We investigated all of the possible characteristics for all of the possible
input differences and then found a 14-round impossible differential characteristic
α→β �=γ←δ where α = (80 e9 00 00 00 00 00 00)x, β = (�, ?, ?, ..., ?)x (� : a
nonzero), γ = (00, 00, ?, ?, ?, ?, ?, ?)x, and δ = (00 ? ? ? 00 00 00 00)x. We
can use this 14-round impossible differential characteristic to attack 18-round
HIGHT. This attack requires 246.8 chosen-plaintexts and 2109.2 encryptions of
18-round HIGHT.

4.5 Saturation Attack

The saturation attack [10,16] uses a saturated multiset of plaintexts. The at-
tacker needs the property that XOR sum of particular parts of the corresponding

54 D. Hong et al.

ciphertexts is zero. We call it a saturation characteristic. Saturation characteris-
tics useful for the attack are often found in block ciphers in which small portions
of the bits are interleaved by a strong nonlinear function while the main interleav-
ing stage is linear. There exist 12-round saturation characteristics with the prob-
ability 1 in HIGHT, e.g., α = (S, C, C, C, C, C, C, C)→β = (?, ?, ?, ?, B0, ?, ?, ?)
where S: a saturation set, C: a fixed constant, and B0: a balanced set for the
least significant bit. We can apply them to the attack on 16-round HIGHT. It
requires 242 plaintexts and 251 encryptions of 16-round HIGHT.

4.6 Boomerang Attack

The main idea behind the boomerang attack [20] is to use two short differential
characteristics with relatively high probabilities instead of one long differential
with low probability. The boomerang attack has been improved to the amplified
boomerang [14] and the rectangle [4,5] attacks. This kind of attacks treat the
block cipher E as E = E1 ◦ E0 a cascade of E0 and E1. We assume that for E0
there exists a differential characteristic α → β with probability p and that for
E1 there exists a differential characteristic γ → δ with probability q. Then the
boomerang characteristic which is constructed from two differential characteris-
tics α → β and γ → δ has probability p2q2. We applied the amplified boomerang
attack to 13-round HIGHT without final transformation. We build a 11-round
boomerang characteristic of HIGHT with probability 2−58 from two differential
characteristics — one with probability 2−12 decipted in Table 2 and the other
one with probability 2−17 decipted in Table 3. We use the 11-round boomerang
characteristic to recover the subkeys of the 13th round with 262 plaintexts.

Table 2. The 5 rounds differential characteristics (the 1st round ∼ the 5th round)
with probability 2−12

α −→ β

82 01 00 00 00 00 00 00x −→ 00 90 95 ca 01 00 00 00x
00 00 00 00 82 01 00 00x −→ 01 00 00 00 00 90 95 cax

Table 3. The 6 rounds differential characteristics (the 6th round ∼ the 11th round)
with probability 2−17

γ −→ δ

42 82 01 00 00 00 00 00x −→ 00 90 95 ca 01 00 00 00x
00 00 00 00 42 82 01 00x −→ 01 00 00 00 00 90 95 cax

4.7 Interpolation and Higher Order Differential Attack

Interpolation [13] and higher order differential [15] attacks are aimed against
block ciphers which have low algebraic degree. Since the degree of a round func-
tion of HIGHT is 8, the full-round HIGHT has a high degree as a vector Boolean

HIGHT: A New Block Cipher Suitable for Low-Resource Device 55

function. Furthermore, we believe that the result of higher order differential at-
tack on HIGHT is less than the result of saturation attack on HIGHT because
saturation attack can be viewed as a special and more effective case of higher
order differential attack.

4.8 Algebraic Attack

In order to apply the algebraic attack [9] to block ciphers, we should derive an
over-defined system of algebraic equations. Since a round function of HIGHT is
the degree 8 as a vector Boolean function, it may be impossible to convert any
equation system in HIGHT into an over-defined system.

4.9 Slide and Related-Key Attacks

Slide [7,8] and related-key [3] attacks use some weakness of key schedule. The
subkey generation algorithm of HIGHT has a simplicity and a linearity but
resistance enough to frustrate those attacks due to the use of the round func-
tion with strong non-linearity and avalanche effect. It is known that the iter-
ated ciphers with identical round functions, that is, equal structures and equal
subkeys in the round functions, are vulnerable to slide attacks. However, since
HIGHT uses the different constant for each round, it is secure against slide
attack.

We are also convinced that the key schedule and round function of HIGHT
makes related-key attacks difficult although the relation between two master keys
is known and the corresponding relations between the subkeys can be predeter-
mined due to linearity of the key schedule. To find long related-key differential
characteristics with high probability and mount a successful distinguishing at-
tack, we must keep the number of additions small. This can be done by trying
to cancel out differences in XORs and additions but this work is not easy. So,
by trial and error, we constructed 18-round related-key boomerang distinguisher
which is composed of two short related-key differential characteristics with rel-
atively high probability; one is the first 8 rounds, (2c 00 80 00 00 00 00 00)x →
(00 00 00 00 43 80 00 00)x under the related-key difference (00 00 80 2c 00, ..., 00)
with probability 2−6 and the other one is 10 rounds, (08 9e 6f 80 2c 00 80 00)x

→ (2c 00 80 00 00 00 00 00)x under the related-key difference (80 2c 00 00, ..., 00)
with probability 2−23. This is useful to attack on 19 rounds HIGHT but can be
used to attack on full-round HIGHT.

4.10 Weak Keys

Originally, a weak key is defined as a key under which the encryption function
is involution [19]. We checked that there does not exists any equivalent or weak
key in HIGHT. In a broad sense, a weak key can be defined as a key under which
the resistance of the block cipher against any attacks falls off. We suppose that
it is very difficult to find such kind of weak keys in HIGHT.

56 D. Hong et al.

Table 4. Results of HIGHT

Statistical Test Proportion
High Density Low Density

Frequency 0.994(Pass) 0.986(Pass)
Block Frequency (m = 100) 0.993(Pass) 0.991(Pass)

Runs 0.990(Pass) 0.982(Pass)
Long Runs of Ones 0.990(Pass) 0.994(Pass)

Rank 0.988(Pass) 0.992(Pass)
Spectral DFT 1.00(Pass) 0.990(Pass)

Non-overlapping Templates (m = 9) 0.990(Pass) 0.990(Pass)
Overlapping Templates (m = 9) 0.978(Pass) 0.984(Pass)

Universal 0.992(Pass) 0.980(Pass)
Lempel-Ziv Complexity 0.986(Pass) 0.980(Pass)

Linear Complexity (M = 500) 0.984(Pass) 0.994(Pass)
Serial (m = 5) 0.992(Pass) 0.985(Pass)

Approximate Entropy (m = 5) 0.986(Pass) 0.990(Pass)
Cusum 0.992(Pass) 0.988(Pass)

Random Excursions 0.986(Pass) 0.990(Pass)
Random Excursions Variant 0.989(Pass) 0.987(Pass)

4.11 Random Test

We show the results of the NIST statistical test on HIGHT. We use 500 samples
of about 106 bit sequences for each test. Consequently, 500 (sample) × 106

(sequence) bits are used for each test. The Table 4 shows results of HIGHT. Here
input parameters used in these tests has been included in parenthesis beside the
name of the statistical test. From the Table 4, it is clear that the statistical test
results for HIGHT don’t indicate a deviation from random behaviour.

5 Hardware Implementation

We designed a simple circuit of HIGHT in order to check the hardware com-
plexity on 0.25µm CMOS technology. The circuit consists of three parts: Round-
Function, KeySchedule, and Control Logic. RoundFunction processes whitening-
key addition or round function with 64-bit input data and 4-byte round key, and
KeySchdule generates 4-byte round key (four byte whiteningkeys or subkeys).
Control Logic controls RoundFunction and KeySchedule to process HIGHT algo-
rithm. The total size corresponds to 3048 NAND gates as you see in Table 5.
Our circuit processes one round encryption per one clock cycle, thus its data
throughput is about 150.6 Mbps at a 80 MHz clock rate. Note that our circuit is
not area-optimized, and in order to reduce the gate count, we can simply modify
it to process 1/2 or 1/4 of one round operation per a clock cycle. In the case

HIGHT: A New Block Cipher Suitable for Low-Resource Device 57

of 1/4 round design, we estimate the minimized circuit would require much less
than 3000 gates on 0.25µm technology and its data throughput would be about
37.6 Mbps at a 80 MHz clock rate. Meanwhile the last hardware implementa-
tion result of AES-128 [12] requires about 3400 gates and its data throughput is
about 9.9 Mbps under the same clock rate.

Table 5. Gate count for hardware implementation of HIGHT

Component Gate Count
RoundFunction 838
KeySchedule 1648
Control Logic 562

Total 3048

6 Conclusion

We proposed a block cipher HIGHT with 64-bit block length and 128-bit key
length. HIGHT was designed to be proper to the implementation in the low-
resource environment such as RFID tag or tiny ubiquitous devices. From security
analysis, we are sure that HIGHT has enough security. Our implementation
circuit processes one HIGHT encryption with 34 clock and requires 3048 gates.
The data throughput of the circuit is about 150.6 Mbps under the operating
frequency 80 MHz.

References

1. National Institute of Standards and Technology (NIST), FIPS-197: Advanced En-
cryption Standard, November 2001. http://www.itl.nist.gov/fipspubs/

2. E. Biham, A. Biryukov and A. Shamir, “Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials,” Advances in Cryptology - EUROCRYPT’99,
J. Stern, Ed., LNCS 1592, Springer-Verlag, pp. 12-23, 1999.

3. E. Biham, “New Types of Cryptanalytic Attack Using Related Keys,” Journal of
Cryptology, Volume 7, Number 4, pp. 156–171, 1994.

4. E. Biham, O. Dunkelman, N. Keller, “The Rectangle Attack – Rectangling the
Serpent,” Advances in Cryptology – EUROCRYPT 2001, LNCS 2045, Springer-
Verlag, pp. 340–357, 2001.

5. E. Biham, O. Dunkelman, N. Keller, “New Results on Boomerang and Rectangle
Attacks,” FSE 2002, LNCS 2365, Springer-Verlag, pp. 1–16, 2002.

6. E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard,” Springer-Verlag, 1993.

7. A. Biryukov, D. Wagner, “Slide Attacks,” Advances in Cryptology – FSE’99, LNCS
1687, Springer-Verlag, pp. 244-257, 1999.

8. A. Biryukov, D. Wagner, “Advanced Slide Attacks,” Advances in Cryptology –
EUROCRYPT 2000, LNCS 1807, Springer-Verlag, pp. 589–606, 2000.

9. N. Courtois, J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations,” Advances in Cryptology – ASIACRYPT 2002, LNCS 2501,
Springer-Verlag, pp. 267–287, 2002.

10. J. Daemen, L. Knudsen and V. Rijmen, “The Block Cipher SQUARE,” FSE’97,
LNCS 1267, Springer-Verlag, pp. 137–151, 1997.

58 D. Hong et al.

11. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication for RFID
Systems Using the AES Algorithm,” CHES’04, LNCS 3156, pp. 357–370, Springer-
Verlag, 2004.

12. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain of
Sand,” IEE Proceedings on Information Security, Volume 152, Issue 1, pp. 13–20,
2005.

13. T. Jakoben and L. R. Knudsen, “The Interpolation Attack against Block Ciphers,”
FSE’97, LNCS 1267, Springer-Verlag, pp. 28–40, 1997.

14. J. Kelsey, T. Kohno, B. Schneier, “Amplified Boomerang Attacks Against Reduced-
Round MARS and Serpent,” FSE 2000, LNCS 1978, Springer-Verlag, pp. 75–93,
2001.

15. L. R. Knudsen, “Truncated and Higher Order Differential,” FSE 94, LNCS 1008,
Springer-Verlag, pp. 229–236, 1995.

16. S. Lucks, “The Saturation Attack – a Bait for Twofish,” FSE 2001, LNCS 1039,
Springer-Verlag, pp. 189-203, 2001.

17. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in Cryp-
tology – EUROCRYPT’93, T. Helleseth, Ed., LNCS 765, Springer-Verlag, pp.
386–397, 1994.

18. M. Matsui, “The First Experimental Cryptanalysis of DES,” Advances in Cryptol-
ogy – CRYPTO’94, LNCS 839, Springer-Verlag, pp. 1–11, 1994.

19. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

20. D. Wagner, “The Boomerang Attack,” FSE’99, LNCS 1636, Springer-Verlag, pp.
156–170, 1999.

A Figure of Functions in HIGHT

16 11, 16 10, 16 9, 16 8()i i i iδ δ δ δ+ + + +

16 15, 16 14, 16 13, 16 12()i i i iδ δ δ δ+ + + +

16 7, 16 6, 16 5, 16 4()i i i iδ δ δ δ+ + + +

16 3, 16 2, 16 1, 16()i i i iδ δ δ δ+ + +

16 3, 16 2, 16 1, 16()i i i iSK SK SK SK+ + +

16 7, 16 6, 16 5, 16 4()i i i iSK SK SK SK+ + + +

16 11, 16 10, 16 9, 16 8()i i i iSK SK SK SK+ + + +

16 15, 16 14, 16 13, 16 12()i i i iSK SK SK SK+ + + +

Bytewise RotationBytewise Rotation
Bytewise Rotation

16 11, 16 10, 16 9, 16 8()i i i iδ δ δ δ+ + + +

16 15, 16 14, 16 13, 16 12()i i i iδ δ δ δ+ + + +

16 7, 16 6, 16 5, 16 4()i i i iδ δ δ δ+ + + +

16 3, 16 2, 16 1, 16()i i i iδ δ δ δ+ + +

16 3, 16 2, 16 1, 16()i i i iSK SK SK SK+ + +

16 7, 16 6, 16 5, 16 4()i i i iSK SK SK SK+ + + +

16 11, 16 10, 16 9, 16 8()i i i iSK SK SK SK+ + + +

16 15, 16 14, 16 13, 16 12()i i i iSK SK SK SK+ + + +

Bytewise RotationBytewise Rotation
Bytewise Rotation

Fig. 2. Subkey generation of HIGHT key schedule

HIGHT: A New Block Cipher Suitable for Low-Resource Device 59

� �F0 ��

�

� �F1 �� � �F0 �� � �F1 ��

� � � � � � �
Xi,0

Xi−1,7 Xi−1,6 Xi−1,5 Xi−1,4 Xi−1,3 Xi−1,2 Xi−1,1 Xi−1,0

�

SK4i−1

� �

SK4i−2 SK4i−3

�

SK4i−4

Xi,7 Xi,6 Xi,5 Xi,4 Xi,3 Xi,2 Xi,1

Fig. 3. The i-th RoundFunction of HIGHT for i = 1, · · · , 32

Integer Factoring Utilizing PC Cluster

Kazumaro Aoki

NTT
1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan

maro@isl.ntt.co.jp

The integer factoring problem is one of the oldest and important problems and
it is considered as hard, i.e., the problem cannot be solved in polynomial time
for the worst case, because the security of RSA is heavily dependent on the diffi-
culties of integer factoring. As is well known, hardware technology is progressing
rapidly from year to year and it seems that the time is now ripe to factor 1024-
bit integers. Recently, there have been many studies that have investigated the
possibility of 1024-bit integer factoring.

Base on the progress in hardware, several studies claim that special purpose
hardware for integer factoring can factor a 1024-bit integer in a year at a rea-
sonable cost. However, there seems to be no published report that the world
record for integer factoring was superseded by this kind of hardware. A super-
computer is a promising candidate for factoring large integers, but it is not cost
effective. Considering a limited budget, a PC cluster seems to be the most cost
effective hardware for factoring a large integer. Actually, recent world records
were superseded using a PC cluster.

This presentation introduces the usage of a PC cluster for integer factoring.
In particular, the experience of achieving the world record will be discussed.
Our factoring team wrote several tens of thousands of lines of source code, and
used hundreds of PCs. They spent several months to achieve the record. We did
not expect any PC miscomputation, however, it is still of serious concern. It is
hoped that this presentation provides a better understanding of what has been
accomplished toward world-class integer factoring.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, p. 60, 2006.
c© International Association for Cryptologic Research 2006

Optically Enhanced Position-Locked
Power Analysis

Sergei Skorobogatov

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

sps32@cl.cam.ac.uk

Abstract. This paper introduces a refinement of the power-analysis at-
tack on integrated circuits. By using a laser to illuminate a specific area on
the chip surface, the current through an individual transistor can be made
visible in the circuit’s power trace. The photovoltaic effect converts light
into a current that flows through a closed transistor. This way, the contri-
bution of a single transistor to the overall supply current can be modulated
by light. Compared to normal power-analysis attacks, the semi-invasive
position-locking technique presented here gives attackers not only access
to Hamming weights, but to individual bits of processed data. This tech-
nique is demonstrated on the SRAM array of a PIC16F84 microcontroller
and reveals both which memory locations are being accessed, as well as
their contents.

Keywords: side-channel attacks, power analysis, semi-invasive attacks,
optical probing.

1 Introduction

Power analysis, especially in the form of differential power analysis (DPA), be-
came a serious concern since it was first announced in 1999 by Kocher et al. [1].
Since then, it proved to be a useful technique to breach security in many devices,
including smartcards [2]. During the last six years, many attempts were made
to improve protection against power analysis. This involved both hardware and
software countermeasures [3,4,5]. On one hand, such improvements reduced the
success of known techniques, on the other, they only pushed away poorly funded
or less knowledgeable attackers, thereby creating the impression of an already
solved problem.

Power analysis attacks had a huge impact on the industry since their effec-
tiveness in helping to break many cryptographic algorithms was demonstrated
in the late nineties [2]. However, in spite of the relatively simple setup necessary
for power analysis (resistor in the ground line, digitizing oscilloscope and a com-
puter) it is still not reliably and straightforwardly applicable to each situation.
This is due to a number of reasons. Firstly, the power analysis technique is usu-
ally applied to a whole chip rather than to a small area of interest. As a result,
power transitions in areas that are not relevant to the data processing also affect

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 61–75, 2006.
c© International Association for Cryptologic Research 2006

62 S. Skorobogatov

the power trace. Secondly, as the power fluctuations are affected by a number
of bits being set or reset, only a Hamming weight of data (number of bits set)
can be guessed, rather than the actual value. Finally, in order to get a reliable
result from a power analysis, often hundreds or even thousands of traces have
to be acquired and averaged. This is because the signal from a single transition
is too small compared to the inevitable noise from the resistor in the power line
and the noise from the A/D converter of the oscilloscope. Also, the number of
transitions happening at a time might be so high that the signal from a single
bit of information would be too small to be distinguished with 8-bit resolution.
The easiest way to increase the resolution is averaging the signal. However, this
requires precise triggering or post processing of the acquired power traces.

Recently introduced electro-magnetic analysis (EMA) [6] can increase the
level of a useful signal by placing an antenna close to the area of interest, for
example, above the internal RAM, CPU or ALU. However, this is still not enough
to distinguish between values of data with the same Hamming weights, because
the minimum size of the antenna is significantly larger than the data buffer or
the memory cell.

In our laboratory, we have for many years tried to improve the effectiveness of
power analysis during security evaluations of microcontrollers and smartcards.
One idea was to combine optical probing attacks [7] with a standard power
analysis setup. As such analysis will require partial decapsulation of the chip
without direct connection to its internal wires, it should be considered to be a
semi-invasive attack. If we could influence the power consumption of a certain
area on the chip surface by exposing it to ionizing radiation, we would be able to
see if the signal in the power trace came from this area or not. Thus, by moving
from one location to another, we should be able to recognise which areas on the
chip contribute to the power trace. Vice versa, if we know the point of interest,
for example, an address of the variable which holds the security flag, we could
point to the corresponding location inside the SRAM and find out the exact time
when this memory address is accessed.

Lasers have been used in failure analysis for testing states of on-chip transis-
tors for many years and the ability of laser radiation to ionize silicon substrate
was studied long ago [8]. One of these techniques, called light-induced voltage
alteration (LIVA) [9], uses the photovoltaic effect to distinguish between open
and closed transistors. However, this technique assumes that the chip is in a
static condition and the result of scanning cannot be updated faster than a
few frames per second. Another technique, published in 1992 [10], was designed
specifically to detect electrical signals at internal nodes in silicon ICs and uses
the phenomenon that charge density affects the refractive index of silicon within
the device. However, the setup necessary for detecting this change of refractive
index in a tiny area is very difficult and expensive to implement. Therefore,
methods which are less expensive and easier to implement are desirable.

Successful position-locked power analysis would be highly useful for failure
analysis and security testing of secure microcontrollers as it would offer a faster
and less expensive solution. It would also help in partial reverse engineering of

Optically Enhanced Position-Locked Power Analysis 63

a chip operation and help with the analysis of signals inside a chip. Of course,
failure analysis techniques such as using a focused-ion beam (FIB) machine fol-
lowed by microprobing [11] will with high probability give the required result,
but at the cost of many hours of preparation work and a large number of analysed
points. Optical probing can give a result in a significantly shorter time (normally
minutes) and does not require expensive sample preparation techniques, which
often irreversibly modify the die of an analysed chip.

In spite of the seeming simplicity of the proposed idea, it took me a long time
until I managed to get a useful and reliable result. The main problem to solve
was to find a reliable way of influencing the power consumption from a particular
CMOS inverter, flip-flop or memory cell, without interfering with its operation.

2 Background

Most digital circuits built today are based on CMOS technology, using comple-
mentary transistors as basic elements. When a CMOS gate changes its state, it
charges/discharges a parasitic capacitive load and causes a dynamic short circuit
of the gate [12]. The more gates change their state, the more power is dissipated.
The current consumed by a circuit can be measured by placing a 10–50 Ω resistor
in the power supply line, usually a ground pin, because an ordinary oscilloscope
probe has a ground connection.

Drivers on the address and data bus consist of many parallel inverters per bit,
each driving a large capacitive load. During transition they cause a significant
power surge, in the order of 0.5–1 mA per bit, which is sufficient to estimate
the number of bus bits changing at a time using a 12-bit A/D converter [13].
By averaging the measurements of many repeated identical operations, smaller
transitions can be identified. Of particular interest for attacking cryptographic
algorithms would be observing the state change of a carry bit. Each type of
instruction executed by a CPU causes different levels of activity in the instruction
decoder and arithmetic unit, therefore instructions can be often quite clearly
distinguished such that parts of algorithms can be reconstructed.

Memory inside a microcontroller or a smartcard, especially SRAM, is of partic-
ular interest to an attacker, because it may store sensitive variables, encryption
keys, passwords and intermediate results of cryptographic operations. When ac-
cessing an SRAM memory cell, not only data bits are contributing to the power
trace, but also the address being accessed, because of the different number of
bits set inside the address latches. An SRAM cell consists of six transistors (Fig-
ure 1), four of which create a flip-flop while the other two are used for accessing
the cell inside the memory array. An SRAM write operation often generates the
strongest signal, because the output of the flip-flop is connected to the output of
the bit lines, causing a current surge. However, still only bits which are changed
during the write operation will contribute to the power trace.

In order to apply optical attacks, the surface of the chip must be accessible.
Originally, optical attacks were demonstrated with light from a photoflash [7]. In
order to influence each memory cell independently, a better light source should

64 S. Skorobogatov

Fig. 1. The architecture and layout of an SRAM cell

be used, for example a laser beam [14]. As the target of my experiments was
SRAM, we should look at the structure of such memory first. One example of
the SRAM layout is shown in Figure 1. If it is possible to partially open one of
the transistors forming the flip-flop, then the cell will behave differently when
accessed, consuming more power, and this can be detected by comparing the
acquired power trace with a reference trace. If the flip-flop switches, this will
reduce the leakage current, because the leaking channel will be closed. However,
if it were possible to influence both transistors of the flip-flop simultaneously,
then any access to the cell will result in a change of the power consumption.

Laser radiation can ionize semiconductor regions in silicon chips if its photon
energy exceeds the semiconductor band gap (> 1.1 eV or λ < 1100 nm). This
results in free carriers (electrons and holes) being created that produce a pho-
tocurrent at p-n junctions and this can be detected, for example, by observing
a voltage drop over a resistor inserted in the power supply line. The injected
photocurrent can also influence the normal operation of the chip and this can
be simulated [15]. From a practical point of view, it is more efficient to influence
n-channel transistors, as they have higher doping concentrations and their car-
riers (electrons) have higher mobility. P-channel transistors can be influenced as
well, but will require a higher level of ionizing radiation.

3 Experimental Method

For my experiments, I chose a common microcontroller, the Microchip PIC16F84
[16], which has 68 bytes of SRAM memory on chip. The allocation of data bits
in the memory array and the mapping from the addresses to the corresponding
physical location of each memory cell were already documented for this chip [7].
The microcontroller was decapsulated in a standard way [13] and placed in a
computer-controlled test board with a ZIF socket under a special microscope for
semi-invasive analysis (Figure 2).

Optically Enhanced Position-Locked Power Analysis 65

As a light source, I chose a red laser, which can be easily focused down to a
submicron point on a chip surface. The most difficult part was choosing the right
equipment for my experiments. Firstly, precise control over the sample position
with submicron precision was essential. Secondly, as any sort of fault injection
was undesirable, precise control over the laser power was required. Finally, be-
cause the chip has a metal layer, the optical system must allow focusing the laser
beam at any point within several micrometers distance from the focal plane of
the microscope. Otherwise, most of the energy will be reflected or deflected by
the metal wires. Optical fault injection equipment, such as industrial laser cut-
ters [17], was unsuitable for my needs because they offer limited control over
timing. I performed several tests and also found that the pulses emitted by such
laser cutters have too much power variability and too short and uncontrollable
duration.

Fig. 2. Test setup for semi-invasive analysis

After a long time of searching, I finally chose equipment from Semiconductors
Research Ltd – a company specialising in security testing and evaluation of inte-
grated circuits [18]. What I used in my experiments was a special semi-invasive

66 S. Skorobogatov

diagnostic system that combines several laser sources with extended positioning
control, mounted on a specialized optical microscope with long working distance
high-magnification objectives and a CCD camera for imaging. The software con-
trol toolbox for this equipment allowed fully computerised control over all pa-
rameters of the laser sources in both manual and automatic modes (Figure 2).
The last capability was very important as it allowed me to synchronize the sup-
ply of test signals with the photon sources. In addition, the system has a very
useful high-resolution laser scanning capability, which helps to find active areas
on the chip surface.

To acquire power traces with a sampling rate of 500 MHz, I used a Tektronix
TDS7054 oscilloscope with a P6243 active probe (DC coupled) connected on the
test board across a 10 Ω resistor. A metal-film resistor was used to minimize
noise. The oscilloscope’s built-in analogue 20 MHz low-pass filter was activated
(anti-aliasing filter), along with the “Hi-Res” acquisition mode, in which a digital
low-pass filter implemented in the oscilloscope further reduces noise and increases
the effective A/D-converter resolution to slightly more than 8 bits per sample.

The images of the SRAM area and the image produced by a video camera
during the experiment with a 100× objective are presented in Figure 3. The laser
source (639 nm) was set to a safe reference mode (0.01 mW) in which the image
can be taken with a camera and the laser can be directly observed without any
danger to eyes.

Fig. 3. Optical image of the SRAM area in the PIC16F84 microcontroller and the laser
beam focused with a 100× objective

Although the circuit diagrams of most SRAM cells are identical, their layouts
can differ. The layout of the SRAM cell presented in Figure 4 is very similar to
the one found in the PIC16F84.

In order to locate active areas inside the memory cell, a passive laser scan-
ning operation was applied to the sample. In failure analysis, this technique is
called optical beam induced current (OBIC) and the image produced as location-
dependent induced current. The result of scanning the SRAM cell with the laser
is presented in Figure 4. Having such a reference helps in focusing the laser beam

Optically Enhanced Position-Locked Power Analysis 67

on any of the MOS transistors forming the flip-flop. The right bright areas corre-
spond to light-sensitive areas of p-channel transistors VT2 and VT5, where the
left grey lines correspond to n-channel transistors VT1 and VT4. The left grey
areas correspond to light-sensitive areas of the select transistors VT3 and VT6.

Fig. 4. Layout and laser scan of the SRAM cell

The PIC16F84 microcontroller was programmed with a simple test program
which firstly initialised SRAM locations 0x10, 0x11, 0x20, 0x31 with value 0x00
and locations 0x21, 0x30, 0x40, 0x41 with 0xFF, and then executed the following
code:

bsf PORTA,test ; generate pulse on PA0 for triggering
bcf PORTA,test
nop
movf 0x10, W ; read location 0x10
nop
movwf 0x11 ; write to location 0x11
nop
movf 0x20, W ; read location 0x20
nop
movwf 0x21 ; write to location 0x21
nop
movf 0x30, W ; read location 0x30
nop
movwf 0x31 ; write to location 0x31
nop
movf 0x40, W ; read location 0x40
nop
movwf 0x41 ; write to location 0x41

Finally, it outputs the contents of all memory locations to Port B.

68 S. Skorobogatov

I put NOP commands between each instruction to avoid the influence of
instruction pipelining, so that the result from a previous instruction will not
affect the next instruction. This was necessary only for the evaluation stage.
In a power-analysis comparison, such an influence will be eliminated anyway,
because we are not interested in the absolute values in the power traces, but in
their changes. However, pipelining might pose problems for recognising particular
instructions.

Previous experiments with power analysis of a similar microcontroller [19]
showed that instructions can be distinguished, and that there is a correlation to
the number of bits set or changed in the data during operations. My aim was
to identify, which particular bits were set and which addresses in the memory
array were accessed.

4 Results

Writing into an SRAM cell causes a significantly larger current response than
a read operation, therefore my first experiment was performed on the SRAM
memory locations being written by the test program. The aim was to check
whether write operations performed on a particular memory location can be
reliably identified.

In the test program, the write operation does not change the state of memory
locations 0x11 and 0x41, which are 0x00 and 0xFF, respectively. Location 0x21
was changed from 0x00 to 0xFF and location 0x31 from 0xFF to 0x00. For each
memory cell, I performed a series of tests with different focusing points and
power settings for the laser. The optimum laser power I found to be between
1 mW and 3 mW. The laser was switched on in the beginning of the test program
and switched off before sending the contents of the memory locations to Port B.

As predicted, the maximum response was received from areas close to n-
channel transistors. I averaged the traces of 16 repeated program executions to
reduce noise and the acquired waveform with the laser focused on transistor VT1
of memory location 0x31 is presented in Figure 5. The power trace is compared
with a reference waveform acquired without laser light. The difference between
the reference and the acquired waveforms is presented in enlarged scale. The
trace difference is clearly noticeable, however, the signal is very close to the noise
level. Any attempts to influence transistor VT1 at address 0x21 and transistor
VT4 at 0x31 were unsuccessful. Also, for unchanged locations (0x11, 0x41), I
was unable to see any noticeable change in the power consumption.

Any attempts to improve the signal-to-noise ratio by increasing the laser
power caused the memory cell to change its state, resulting in noticeable changes
in the power analysis traces (Figure 6). Similar waveforms, if the state of the
memory cell was changed, were received for memory locations 0x11, 0x21 and
0x41. This was still a positive result, because it allowed detection of memory
access events, however, from an attacker’s point of view, it is always better to
be unnoticeable.

Optically Enhanced Position-Locked Power Analysis 69

Similar measurements were performed for memory locations which were read
by the test program. Unfortunately, I received only a very small signal response,
which was very hard to distinguish from noise. Again, increasing the laser power
caused these memory locations to change their state and this was detectable in
the power trace in a similar way as with the written locations.

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.4
−0.3
−0.2
−0.1
0
0.1
0.2

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 5. Laser focused on VT1 of memory cell 0x31, write leaves state unchanged

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.1
0
0.1
0.2
0.3
0.4
0.5
0.6

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 6. Laser focused on VT1 of memory cell 0x31, write changes state

My next idea was to try focusing the laser at the area in between the two
n-channel transistors, hoping that this will influence both CMOS inverters of
the flip-flop and, therefore, might result in influencing the power consumption
each time the memory cell was accessed (previously it was either VT1 or VT4

70 S. Skorobogatov

which influenced the signal). Again, I decided to start with the write operations
as they always give a stronger signal in the power trace.

However, the result of the measurements surpassed my expectations. The
difference signal had significantly increased, such that it became possible to see
a clearly distinguishable difference between two traces, even without averaging
the waveforms (Figure 7). Still, increasing the laser power resulted in the contents
of the memory location to be changed (Figure 8). However, the difference in the
waveforms is significantly easier to distinguish than before, when either VT1 or
VT4 was influenced.

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]
Fig. 7. Laser focused on VT1+VT4 of memory cell 0x31, write leaves state unchanged

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 8. Laser focused on VT1+VT4 of memory cell 0x31, write changes state

This is very likely an outcome of a short circuit created inside a memory cell
if both n-channel transistors forming a flip-flop were opened for a short period of

Optically Enhanced Position-Locked Power Analysis 71

time. Such a situation happens because the ionizing radiation creates excessive
carriers, which require additional time to recombine, keeping a transistor in the
open state longer. I described the influence of laser radiation on microcontrollers
in the form of laser pulses already in [20]. If the energy of the laser is too high,
the memory cells become unstable and can spontaneously switch into the other
state. This causes a surge in the power consumption.

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 9. Laser focused on VT1+VT4 of memory cell 0x30, read

77 81 85 89 93 97

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP MOVF 0x30, W NOP MOVWF 0x31 NOP

77 81 85 89 93 97

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 10. Laser focused on VT1+VT4 of memory cell 0x30, read changes state

Applying the same approach to a memory addresses being read, the same
level of current response was achieved when the state of a memory cell was not
changed (Figure 9). However, higher laser power was destructive to the memory
contents (Figure 10). Repeating the non-destructive operation of data analysis

72 S. Skorobogatov

for each bit of the memory with the same address revealed the actual value of
the byte.

45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP

MOVF 0x10, W

NOP

MOVWF 0x11

NOP

MOVF 0x20, W

NOP

MOVWF 0x21

NOP

MOVF 0x30, W

NOP

MOVWF 0x31

NOP

MOVF 0x40, W

NOP

MOVWF 0x41

NOP

45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 11. Laser focused on VT3+VT6 of memory cell 0x31

45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113

−4
−2

0
2
4
6
8

10

4−MHz clock cycles since trigger

tw
o

cu
rr

en
t t

ra
ce

s
[m

A
]

NOP

MOVF 0x10, W

NOP

MOVWF 0x11

NOP

MOVF 0x20, W

NOP

MOVWF 0x21

NOP

MOVF 0x30, W

NOP

MOVWF 0x31

NOP

MOVF 0x40, W

NOP

MOVWF 0x41

NOP

45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113

−0.5
0
0.5
1
1.5
2
2.5
3

tr
ac

e
di

ffe
re

nc
e

[m
A

]

Fig. 12. Laser focused on VT3+VT6 of memory cell 0x30

Another surprise came at a point when a laser was focused on the area between
cell select transistors VT3 and VT6. In this case, the whole column of memory
cells was affected, independently of which cell in the row was influenced. In my
first experiment, the laser beam was pointed between VT3 and VT6 of memory cell
0x31, which caused all cells from this row (addresses 0x31, 0x41, 0x11 and 0x21) to
be detectable in the power trace (Figure 11). Similar, by pointing between VT3 and
VT6 of memory location 0x30, responseswere received if any of the addresses 0x30,
0x40, 0x10 and 0x20 were accessed (Figure 12). However, in both experiments the
state of the selected memory locations always changed to zero.

Optically Enhanced Position-Locked Power Analysis 73

5 Limitations and Further Improvements

My results were achieved on a relatively old microcontroller (PIC16F84) built
with 0.9 µm technology. The majority of modern microcontrollers are built with
0.35 µm and 0.25 µm technology (three or four metal layers) and some high-end
microcontrollers employ now 0.18 µm technology (up to six metal layers). This
fact, in addition to interlayer polishing and gap filling techniques, significantly
reduces the amount of laser radiation which can reach the underlying transistor
gates.

One improvement could be to approach memory cells from the rear side of
the chip. However, in this case, laser radiation with a longer wavelength must
be used, which causes lower levels of ionization and also creates unnecessary
carriers in the whole volume of the silicon substrate. In order to achieve similar
results, it might be necessary to reduce the thickness of the substrate.

6 Conclusions

My experiments showed how combining optical probing techniques with power
analysis methods can significantly improve the results. Using such techniques,
partial reverse engineering to locate data bits and addresses being accessed in
memory becomes easier and significantly faster compared to with other methods
[20]. However, this technique has some limitations, especially for modern deep
submicron technologies, where multiple metal layers and small transistor sizes
prevent easy and precise analysis. Further improvements to these methods might
involve approaching the die from its rear side, but this requires more expensive
equipment.

Possible forms of protection against such attacks could involve using tamper
sensors to prevent direct access to the chip surface, as well as implementing
light sensors. Top metal protection might help, but is very likely to be overcome
by approaching the sample from the rear side. Using modern deep submicron
technologies will also eliminate most of these attacks.

Acknowledgements

I would like to thank Semiconductors Research Ltd for providing me with the
special equipment necessary for optical analysis of semiconductors. I would also
like to thank Markus Kuhn for his helpful discussions and Matlab programming.

References

1. Paul Kocher, Joshua Jaffe, Benjamin Jun: Differential Power Analysis. CRYPTO
’99, LNCS, Vol. 1666, Springer-Verlag, 1999, pp. 388–397

2. Thomas Messerges, Ezzy Dabbish, Robert Sloan: Investigations of Power Analysis
Attacks on Smartcards. USENIX Workshop on Smartcard Technology, Chicago,
Illinois, USA, May 10–11, 1999

74 S. Skorobogatov

3. Jean-Sebastien Coron: Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. Cryptographic Hardware and Embedded Systems Workshop
(CHES-1999), LNCS, Vol. 1717, Springer-Verlag, 1999, pp. 292–302

4. Simon Moore, Ross Anderson, Robert Mullins, George Taylor, Jacques Fournier:
Balanced Self-Checking Asynchronous Logic for Smart Card Applications. Micro-
processors and Microsystems Journal, Vol. 27, No. 9 (October 2003), pp 421–430

5. Thomas Popp, Stefan Mangard: Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints, Cryptographic Hardware and Embed-
ded Systems Workshop (CHES-2005), LNCS, Vol. 3659, Springer-Verlag, 2005, pp.
172–186

6. Jean-Jacques Quisquater and David Samyde: ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smard Cards. Smart Card Programming and
Security (E-smart 2001), Cannes, France, LNCS Vol. 2140, Springer-Verlag, 2001,
pp. 200–210

7. Sergei Skorobogatov, Ross Anderson: Optical Fault Induction Attacks, Crypto-
graphic Hardware and Embedded Systems Workshop (CHES-2002), LNCS Vol.
2523, Springer-Verlag, 2002, pp. 2–12

8. D.H. Habing: Use of Laser to Simulate Radiation-induced Transients in Semicon-
ductors and Circuits. IEEE Transactions on Nuclear Science, Vol. 12(6), December
1965, pp. 91–100

9. Cheryl Ajluni: Two New Imaging Techniques Promise to Improve IC Defect Iden-
tification. Electronic Design, Vol. 43(14), July 1995, pp. 37–38

10. H.K. Heinrich, N. Pakdaman, J.L. Prince, G. Jordy, M. Belaidi, R. Franch, D.C.
Edelstein: Optical Detection of Multibit Logic Signals at Internal Nodes in a Flip-
chip Mounted Silicon Static Random-Access Memory Integrated Circuit. Journal
of Vacuum Science and Technology, Microelectronics and Nanometer Structures,
Vol. 10(6), November 1992, pp. 3109–3111

11. Lawrence C. Wagner: Failure Analysis of Integrated Circuits: Tools and Techniques.
Kluwer Academic Publishers, 1999

12. Manfred Aigner, Elisabeth Oswald: Power Analysis Tutorial http://www.iaik.
tugraz.at/aboutus/people/oswald/papers/dpa tutorial.pdf

13. Oliver Kömmerling, Markus G. Kuhn: Design Principles for Tamper-Resistant
Smartcard Processors. USENIX Workshop on Smartcard Technology, Chicago, Illi-
nois, USA, May 10–11, 1999

14. David Samyde, Sergei Skorobogatov, Ross Anderson, Jean-Jacques Quisquater:
On a New Way to Read Data from Memory. SISW2002 First International IEEE
Security in Storage Workshop, Greenbelt Marriott, Maryland, USA, December 11,
2002

15. Vladimir V. Belyakov, Alexander I. Chumakov, Alexander Y. Nikiforov, Vyache-
slav S. Pershenkov, Peter K. Skorobogatov, A.V. Sogoyan: Prediction of Local and
Global Ionization Effects on ICs: The Synergy between Numerical and Physical
Simulation. Russian Microelectronics, Vol. 32(2), March 2003, pp. 105–118

16. Microchip PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers http://ww1.
microchip.com/downloads/en/DeviceDoc/30430c.pdf

17. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whe-
lan: Workshop on Fault Detection and Tolerance in Cryptography, Florence, Italy,
June 30, 2004

Optically Enhanced Position-Locked Power Analysis 75

18. Semiconductors Research Ltd: Special equipment for semi-invasive hard-
ware security analysis of semiconductors http://www.semiresearch.com/inc/
equipment for sale.html

19. Rita Mayer-Sommer: Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smart Cards. Cryptographic Hardware and Embedded Systems
(CHES-2000), LNCS Vol. 1965, Springer-Verlag, 2000, pp. 78–92

20. Sergei Skorobogatov: Semi-invasive attacks – A new approach to hardware se-
curity analysis. Technical Report UCAM-CL-TR-630, University of Cambridge,
Computer Laboratory, April 2005

Pinpointing the Side-Channel Leakage of
Masked AES Hardware Implementations�

Stefan Mangard1 and Kai Schramm2

1 Institute for Applied Information Processing and Communciations (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

2 Horst Görtz Institute for IT Security (HGI),
Universitätsstr. 150, Ruhr University Bochum, 44780 Bochum, Germany
stefan.mangard@iaik.tugraz.at, schramm@crypto.ruhr-uni-bochum.de

Abstract. This article starts with a discussion of three different attacks
on masked AES hardware implementations. This discussion leads to the
conclusion that glitches in masked circuits pose the biggest threat to
masked hardware implementations in practice. Motivated by this fact,
we pinpointed which parts of masked AES S-boxes cause the glitches that
lead to side-channel leakage. The analysis reveals that these glitches are
caused by the switching characteristics of XOR gates in masked multipli-
ers. Masked multipliers are basic building blocks of most recent proposals
for masked AES S-boxes. We subsequently show that the side-channel
leakage of the masked multipliers can be prevented by fulfilling timing
constraints for 3 · n XOR gates in each GF (2n) multiplier of an AES
S-box. We also briefly present two approaches on how these timing con-
straints can be fulfilled in practice.

Keywords: AES, DPA, Glitches, Zero-Offset DPA, Zero-Input DPA,
Masking, Delay Chains.

1 Introduction

The Advanced Encryption Standard (AES) [13] is the most commonly used
block cipher in modern applications. This is why there has been a significant
effort during the last years to design implementations of this algorithm that are
resistant against power analysis attacks [7].

One approach to secure implementations of AES against power analysis at-
tacks is to mask the intermediate values that occur during the execution of the
algorithm. Masking schemes for AES have been presented in [2], [22], [5], [11],
[3], and [15]. The first two of these schemes have turned out to be susceptible to
so-called zero-value attacks [5] and the second one is even susceptible to standard
DPA attacks [1]. The third scheme is quite complex to implement and there are
no published implementations of this approach so far. The last three schemes
are provably secure against DPA attacks and the schemes can also be efficiently
� The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 76–90, 2006.
c© International Association for Cryptologic Research 2006

Pinpointing the Side-Channel Leakage 77

implemented in hardware. This is why these schemes are the most commonly
used schemes to secure implementations of AES in hardware.

However, in 2005 several publications have shown that even provably secure
masking schemes can be broken in practice, if they are implemented in standard
CMOS. The reason for this is that in CMOS circuits a lot of unintended switching
activities occur. These unintended switching activities are usually referred to as
dynamic hazards or glitches. The effect of glitches on the side-channel resistance
of masked circuits has first been analyzed in [8]. A similar analysis has also been
presented in [19]. A technique to model the effect of glitches on the side-channel
resistance of circuits has been published in [20]. The fact that glitches can indeed
make circuits susceptible to DPA attacks in practice was finally shown in [9].

After the publication of these articles it was clear that considering the effect
of glitches is crucial when implementing masking schemes in hardware. However,
one important question has remained unanswered so far. The existing articles
only show that implementations of masking schemes leak side-channel informa-
tion. They do not pinpoint the exact gates or parts of the masked circuits that
account for the leakage. In [9] for example, it has been shown that a CMOS
implementation of [15] can be attacked because of glitches. However, it is not
clear which gates within the masked S-box implementation actually account for
this fact.

The current article answers this question by performing a close analysis of
masked multipliers which are the basis of masking schemes such as [11], [15],
and [3]. In fact, we show that the switching characteristics of the XOR gates
in these multipliers account for the side-channel leakage. This insight and the
fact how this insight can be used to develop DPA-resistant implementations of
masking schemes constitute the main contribution of this article.

However, before we start our analysis of the masked multipliers, Sect. 2 first
briefly recapitulates the different DPA attacks on masked AES hardware imple-
mentations that have been published recently. In particular, this section com-
pares the attack presented in [9] with the zero-offset DPA attack presented
in [23]. Both attacks are performed on a masked AES hardware implementation
according to [15]. The comparison turns out that the first attack is significantly
more effective. In fact, we are even able to show that a much simpler power
model of the masked S-box leads to successful attacks as well.

Motivated by this fact Sect. 3 analyzes which parts of the AES S-box actually
cause the side-channel leakage. As already pointed out, this analysis leads to the
conclusion that the XOR gates within the masked multipliers of the AES S-box
account for the leakage. This insight is used in Sect. 4 to present new approaches
in order to securely implement masking schemes. Sect. 5 summarizes the most
important results of this article and provides some conclusions.

2 Attacks on Masked AES Hardware Implementations

This section discusses results of three DPA attacks against a masked AES hard-
ware implementation. The device under attack was an AES ASIC that is based

78 S. Mangard and K. Schramm

on the masking scheme that has been proposed in [15]. The chip uses a 32-bit ar-
chitecture and hence the computation of one AES round takes four clock cycles,
and a complete AES encryption takes 40 clock cycles. All of our DPA attacks
are based on a set of 1,000,000 power traces which we collected from the masked
AES chip. The traces have been measured at 1 GS/s using a differential probe.

The first attack we discuss is the zero-offset DPA (ZODPA) as proposed
in [23]. This attack requires that masks and masked data of the attacked device
leak simultaneously and it uses squaring as a preprocessing step. Subsequently,
we discuss a DPA attack based on a toggle-count power model of a masked S-box
of our chip. This attack has been performed in the same way as it has been pro-
posed in [9]. Finally, we present a simplification of this attack, which we refer to
as zero-input DPA. This attack is based on the fact that the power consumption
of our masked AES S-box implementation has a significant minimum for the
case that the mask and the masked input are equal.

2.1 Zero-Offset DPA

Zero-offset DPA was originally proposed by Waddle et al. in [23] and it represents
a special case of second-order DPA [10,6,14,18]. This can be shown as follows.
Let us assume the power consumption at time t0 of the attacked device can be
described as

P (t0) = ε · (W (M) + W (Y)) + N (1)

where W (M) represents the Hamming weight of a random mask M , W (Y)
represents the Hamming weight of key-dependent data masked by M , ε is a
constant of proportionality, and N represents additive Gaussian noise. When
squaring this power signal, it can be observed that a zero-offset DPA is essentially
equivalent to a second-order DPA. Both attacks rely on the term W (M) ·W (Y).

P 2(t0) = ε2 · (W (M) + W (Y))2 + 2 · ε · (W (M) + W (Y)) ·N + N2 (2)
= ε2 · (W 2(M) + 2 ·W (M) ·W (Y) + W 2(Y)

)
+2 · ε · (W (M) + W (Y)) ·N + N2 (3)

However, zero-offset DPA can only be used, if the mask and the masked
data are processed simultaneously. While this scenario is unlikely to happen
in masked software implementations, it commonly occurs in masked hardware
implementations. In particular, it also occurs in our attacked AES ASIC and
hence a zero-offset DPA should theoretically be possible. Consequently, we have
squared our power traces and have computed the correlation coefficient between
the squared traces and corresponding hypotheses. However, even with 1,000,000
measurements we have not been able to perform a successful zero-offset DPA.

2.2 Toggle-Count DPA

In conventional CMOS circuits, signal lines typically toggle several times during
a clock cycle. In [8] it has been shown that the total number of signal toggles in

Pinpointing the Side-Channel Leakage 79

0 50 100 150 200 250
2000

2100

2200

2300

2400

AES S−box input

A
ve

ra
ge

 to
gg

le
 c

ou
nt

Fig. 1. Average number of toggles in our masked S-box circuit

0 50 100 150 200 250

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Key hypothesis

C
or

re
la

tio
n

Fig. 2. Correlation coefficients of the toggle-count DPA against the masked AES ASIC
with 15,000 measurements. The correct key hypothesis (225) is clearly distinguishable
from all false key hypotheses.

masked non-linear gates, e.g. in masked AND or masked OR gates, is correlated
to the unmasked input and output signals. This fact has been exploited in a
simulated DPA attack.

A similar approach has been pursued in [9] to break masked AES hardware
implementations in practice. A back-annotated netlist of the attacked device
has been used in order to derive a toggle-count model of masked AES S-boxes.
Subsequently, these models were used in DPA attacks to reveal the secret key of
an AES chip1.

In order to confirm these results,we have performed these attacks on our masked
ASIC implementation again. We have first simulated our chip to determine the

1 Note that the toggle-count model assumes that each signal toggle has an equal
contribution to the power consumption. This condition is typically not met in real
life. Nevertheless, the model is usually sufficient mount successful DPA attacks on
masked implementations.

80 S. Mangard and K. Schramm

0 50 100 150 200 250
−0.02

−0.01

0

0.01

0.02

0.03

Key hypothesis

C
or

re
la

tio
n

Fig. 3. Correlation coefficients of a zero-input DPA against the masked AES ASIC
with 30,000 measurements. The correct key hypothesis (225) is clearly distinguishable
from the false correlation coefficients.

average number of toggles that occur in our masked AES S-box for different data
inputs. The power model of our S-box is shown in Fig. 1. In this figure, the number
of toggles of our masked S-box are shown for all possible 256 S-box inputs. Please
note that there occurs a distinct minimum for S-box input 0, i.e. the case when
mask and masked data are equal.

We have used the power model shown in Fig. 1 to mount a DPA attack
on our masked AES chip. We have correlated the measured power traces of
our masked AES implementation with hypotheses based on the power model.
In this attack, we have obtained a correlation coefficient of r = 0.04 for the
correct key hypothesis using 1, 000, 000 measurements. Approximately 15, 000
measurements were necessary to distinguish this correlation coefficient from the
false correlation coefficients. The correlation coefficients for an attack based on
15, 000 measurements are shown in Fig. 2.

2.3 Zero-Input DPA

As shown in Fig. 1, the simulated masked AES S-box has a significant power
consumption minimum, if the S-box input x = xm ⊕ mx = 0. This significant
minimum suggests that it should also be possible to perform DPA attacks that
just exploit this property. Hence, we have adapted our power model of the S-box
to the following much simpler model P (x).

P (x) = 0 if x = 0
= 1 if x �= 0

Using this generic zero-input power model we have repeated our attack
based on the same set of power traces. We have obtained a correlation coeffi-
cient of r = 0.022 for the correct key hypothesis. About 30, 000 measurements
were necessary to clearly distinguish this correlation coefficient from the ones

Pinpointing the Side-Channel Leakage 81

of false key hypotheses. Fig. 3 shows the result of an attack based on 30, 000
measurements.

The number of measurements that are needed for a zero-input DPA is greater
compared to the attack based on the more precise power model. However, the
attack is still feasible and it is much more effective than a zero-offset DPA attack.
The biggest advantage of the zero-input DPA over the two other attacks we have
discussed, is that the zero-input DPA does not require detailed knowledge about
the attacked device and it is still very effective. It exploits the fact that the power
consumption of the masked S-box implementation has a significant minimum for
the input value zero. In the following section, we analyze why implementations
of masked S-boxes actually leak side-channel information and we pinpoint where
the side-channel leakage is caused.

3 Pinpointing the Side-Channel Leakage of Masked
S-boxes

The masked AES S-box implementation we have attacked in the previous section
is based on composite field arithmetic. In fact, most recent proposals for masked
AES S-boxes (see [11], [15], and [3]) are based on this approach. Masked AES
S-boxes of this kind essentially consist of an affine transformation, isomorphic
mappings, adders and multipliers. All these elements except for the multipliers
are linear and hence it is easy to mask them additively. An additive masking of
a linear operation can be done by simply performing the operation separately
for the masked data and the mask.

In hardware, masked linear operations are usually implemented by two com-
pletely separate circuits. One circuit performs the linear operation for the masked
data and one circuit performs the linear operation for the corresponding mask.
There is no shared signal line between these two circuits. Therefore, the power
consumption P1 of the first circuit exclusively depends on the masked data and
the power consumption P2 of the second circuit exclusively depends on the mask.
According the definition of additive masking [2], the masked data and the mask
are pairwise statistically independent from the corresponding unmasked data.
Hence, P1 and P2 are also pairwise independent from the unmasked data.

In practice this means that an attacker who does not know the mask can
not perform a successful first-order DPA attack on the power consumption of
either of these two circuits. An attacker can only formulate hypotheses about
unmasked intermediate values of the performed cryptographic algorithm. In this
article, we denote the set of all unmasked intermediate values of the attacked
algorithm asH. Our previous argumentation hence formally means that ρ(H, P1)
and ρ(H, P2) are both 0 for all HεH. This also implies that the total power
consumption is uncorrelated to all intermediate values, i.e. ρ(H, P1 + P2) =
0 ∀HεH. Throughout this article, we use the common assumption that the
total power consumption of a circuit is the sum of the power consumption of
its components. Using this assumption, it is clear that the linear elements of a
masked S-box do not account for the side-channel leakage we have observed in

82 S. Mangard and K. Schramm

the toggle-count and zero-input DPA attacks presented in Sect. 2. As the power
traces are not pre-processed in these attacks, the side-channel leakage can only
be caused by the non-linear elements, i.e. the multipliers which combine masks
and masked data.

In general, there exist several approaches to mask a multiplier. However, there is
also one very common approach. Fig. 4 shows the architecture of a masked GF (2n)
multiplier according this common approach. The multiplier takes two masked in-
puts am and bm that are masked with ma and mb, respectively. The output qm is
the product of the corresponding unmasked values a and b masked with mq.

GF(2n)
Multiplier

XOR

GF(2n)
Multiplier

GF(2n)
Multiplier

GF(2n)
Multiplier

XOR

XOR

XOR

am bm mb ma mq

qm=(a b) xor mq

i4

i7

i3

i6

i2

i5

i1

n n n n n

n

Fig. 4. Common architecture of a masked multiplier

The masked multiplier consists of four unmasked multipliers that calculate
the intermediate values i1 . . . i4. These intermediate values are then summed by
4 · n XOR gates. A masked multiplier of this kind has been used as a masked
AND gate (n = 1) in [21]. Furthermore, this architecture is also used in the
masked S-boxes presented in [11], [3], and [15]. This is why we now analyze this
architecture more closely. We start our analysis by first looking at a masked
AND gate (n = 1). Subsequently, we look at multipliers in GF (22) and GF (24).
Finally, we look at the side-channel leakage of masked S-boxes as a whole that
contain several such masked multipliers.

3.1 Masked AND Gate

Masked AND gates that are based on the architecture shown in Fig. 4 have
already previously been analyzed in [8] and [20]. These analyses have revealed
that such gates indeed leak side-channel information. However, in neither of
these publications the source of the leakage has been pinpointed exactly. Both
publications essentially state that there occurs leakage due to timing properties.

Pinpointing the Side-Channel Leakage 83

Yet, these properties are not analyzed further. In the current article, we pinpoint
the exact cause of the side-channel leakage.

For this purpose we have implemented a masked AND gate based on the
architecture shown in Fig. 4. We have then simulated the back-annotated netlist
of this gate for all possible input transitions. There are five input signals and
hence there are 210 possible input transitions2. For each of these 210 cases we
have counted the number of transitions that occur on each signal line in the
design. We denote the these numbers of transitions with T (am), T (bm), T (ma),
T (mb), T (mq), T (qm), and T (i1) . . . T (i7).

In order to analyze which signal lines account for the side-channel leakage
of the gate, we have calculated the correlation between these numbers on the
one hand and the unmasked values a, b and q on the other hand. Due to the
masking T (am), T (bm), T (ma), T (mb), and T (mq) do not leak side-channel
information. Furthermore, it turns out that also ρ(T (ij), a) = 0, ρ(T (ij), b) = 0
and ρ(T (ij), q) = 0 for j = 1 . . . 4. This result is actually not surprising. The
four multipliers (the four AND gates in case of n = 1) never take a masked
value and a corresponding mask as input. For example, there is no multiplier
that takes am and ma as input. Each pair of inputs of the multipliers is not only
pairwise independent of a, b and q, but it is completely statistically independent
of these values. Therefore, also the power consumption of the multipliers and
their outputs are independent of a, b and q. The side-channel leakage can only
be caused by the XOR gates.

At first sight this might seem counter-intuitive because the number of tran-
sitions that occur at the output of an XOR gate intuitively correspond to the
sum of transitions that occur at the inputs of the gate. Each input transition
should lead to one output transition. The number of input transitions does not
leak side-channel information and hence also the number of output transitions
should not. Unfortunately, this reasoning is wrong in practice.

It is true that an XOR gate usually switches its output each time an input
signal switches. However, the gate does not switch its output, if both input
signals switch simultaneously or within a short period of time. In this case, the
input transitions are “absorbed” by the XOR gate and not propagated further.
Exactly this effect accounts for the side-channel leakage of the masked AND gate.
Our simulations have shown that the number of absorbed transitions is indeed
correlated to a, b and q. This means that the arrival times of the input signals
at the XOR gates depend on the unmasked values. It is the joint distribution of
the arrival times of the signals i1 . . . i4 that causes the side-channel leakage of
the gate. The arrival times are different for different unmasked values and hence
a different number of transitions is absorbed. This in turn leads to a different
power consumption.

It is important to point out that it is exclusively this effect that accounts
for the side-channel leakage of the masked AND gate. If each XOR gate would
switch its output as often as its inputs switch, the gate would be secure. This is
a consequence of the fact that T (i1) . . . T (i4) are uncorrelated to a, b and q.

2 In our simulation all input signals are set at the same time.

84 S. Mangard and K. Schramm

3.2 Masked Multipliers for GF (22) and GF (24)

In order to confirm the insights gained from the analysis of the masked AND
gate, we have also implemented masked multipliers for GF (22) and GF (24).
Multipliers of this kind are used in the masked AES S-boxes of [11], [3], and [15].
As in the case of the masked AND gates, we have performed different simulations
based on back-annotated netlists of these multipliers.

First, we have confirmed that T (i1) . . . T (i4) are indeed independent of a,
b and q. This analysis was actually just done for sake of completeness. From
a theoretical point of view it is clear that the power consumption of the four
multipliers shown in Fig. 4 is independent of the unmasked values. As already
pointed out before, the inputs of each multiplier are completely statistically
independent from the unmasked values. This fact is independent of the bit width
of the multipliers.

In the second step, we have again analyzed the switching characteristics of the
XOR gates. Our simulations have confirmed that the number of absorbed tran-
sitions depends on the unmasked values a, b and q—exactly as in the case of the
masked AND gate. The side-channel leakage of all masked multipliers that are
based on the architecture shown in Fig. 4 is obviously caused by the same effect.

However, unfortunately it is not possible to make a general statement on how
much information such masked multipliers leak. The fact how many transitions
are absorbed by the XOR gates depends on many implementation details. The
arrival times of the signals at the XOR gates strongly depend on the placement
and routing of the circuit. Of course also the used CMOS library has a strong
impact. The library affects the timing of the input signals and it also determines
how big the delay between two input transitions of an XOR gate has to be in
order propagate.

Based on our experiments, we can make one general statement. We have
implemented several masked multipliers and we have also placed and routed
them several times. In all cases, we have observed side-channel leakage. In order
to prevent that the XOR gates absorb transitions, it is therefore necessary to
explicitly take care of this issue during the design process (see Sect. 4).

3.3 Masked AES S-boxes

Masked AES S-boxes as they are presented in [11], [15], [3] contain several
masked multipliers. We now analyze two concrete implementations of masked
AES S-boxes in order to check how the side-channel leakage of the multipliers
affects the other components of the S-boxes. We first analyze an implementation
of the AES S-box proposed in [15] and then we look at an implementation of [11].

Masked S-box of Oswald et al. The first step of our analysis was to generate a
back-annotated netlist of the masked AES S-box described in [15]. Subsequently,
we have simulated this netlist for 200, 000 randomly selected input transitions.
During these simulations, we have counted the number of transitions that occur
on each of the internal signal lines of the S-box. Based on these numbers it was
possible to determine which signal lines cause the most side-channel leakage.

Pinpointing the Side-Channel Leakage 85

As expected, all the linear operations that are performed at the beginning
of the S-box do not leak any information. The transitions that occur on the
corresponding signal lines are independent of the unmasked S-box input. The
first leakage within the S-box occurs in the first masked multiplier. The XOR
gates of this multiplier absorb a different number of transitions for different data
inputs. The number of transitions that occur on the output signal of the masked
multiplier is therefore correlated to the unmasked version of the S-box input.

The fact that the switching activity of this signal is correlated to the unmasked
S-box input has severe consequences for all components that use this signal as
input. The switching activity of all these components typically also becomes
correlated to the unmasked S-box input3. This holds true for linear and non-
linear components. Therefore, the leakage that is caused by the first masked
multiplier spreads out like an avalanche through the remaining S-box.

This leakage is additionally amplified by the leakage of all other masked mul-
tipliers in the S-box. In fact, the leakage continuously grows on its way through
the S-box. In case of our S-box implementation of [15] this leads to the power
consumption characteristic we have already shown in Fig. 1. A different amount
of transitions occurs for every unmasked S-box input. A significant minimum for
the number of transitions occurs for the case that the input value is 0. In this
case, the masked S-box input and the corresponding mask are equal. The arrival
times of the signals in the masked multipliers are more uniform in this case than
in all other cases. Therefore, more transitions are absorbed by the XOR gates
and also less transitions propagate through the components that are connected
to the multipliers.

Masked S-box of Morioka and Akishita. We have also analyzed the masked
AES S-box proposed by Morioka and Akishita in [11]. The architecture of this
S-box is based on the unmasked S-box proposed by Satoh et al. in [17]. As in
the case of the masked S-box by Oswald et al. [15] we have first generated a
back-annotated netlist of the design. Subsequently, we have simulated 200, 000
random input transitions and we have counted the number of transitions for
each signal line. Again, we have noticed that the total number of transitions
in the masked S-box circuit is clearly correlated to the unmasked S-box input.
As a matter of fact, we were able to successfully mount a simulated zero-input
attack on this masked S-box. The attack only required a few thousand simulated
power traces, i.e. simulations of transition counts. This result also confirms our
aforementioned claim that a precise power model of a masked S-box implemented
in CMOS is not always necessary to successfully perform a DPA attack.

In order to investigate why the number of toggles has a minimum, if the mask
and the masked input are equal, we have evaluated transition count data of

3 There are of course also gates that do not propagate the leakage. For example, the
output signal of a NAND gate that is connected to a leaking signal on input one
and to 0 on input two does not leak any information. However, there are typically
sufficient gates connected to a leaking signal that at least some of the gates propagate
the leakage.

86 S. Mangard and K. Schramm

various S-box subcircuits. We have then performed zero-input attacks against
these subcircuits. Exactly as in the case of the masked S-box by Oswald et al. we
have found out that glitches are absorbed in XOR gates of a masked finite field
multiplier. Our analysis has confirmed that the number of absorbed transitions
is again correlated to the unmasked S-box input and that there is a significant
power consumption minimum for input 0. The masked S-box of Morioka and
Akishita is highly symmetric with regard to the signal paths of the mask and
the masked input. This symmetry seems to be the main reason why transitions
are absorbed by the XOR gates, if the mask and the masked input are equal.

In general, it is difficult to make a general statement on whether all masked
S-boxes have a significant minimum of the power consumption for the case that
the input is 0. Many implementation details influence the exact switching char-
acteristic of an S-box. However, based on our observations we assume that most
masked S-boxes are vulnerable to zero-input attacks.

4 Countermeasures

In the previous section, we have analyzed the side-channel leakage of masked
multipliers that are based on the architecture shown in Fig. 4. It has turned out
that the XOR gates summing the outputs of the four unmasked multipliers of
this architecture, account for the side-channel leakage. These XOR gates absorb
transitions and the number of absorbed transitions is correlated to the unmasked
operands of the masked multiplier.

In Sect. 3, we have already pointed out that it is exclusively this absorbtion
that causes the side-channel leakage. A masked multiplier is secure against DPA
attacks, if no transitions are absorbed by the XOR gates. This means that the
number of transitions at the output of an XOR gate needs to be equal to the total
number of transitions occurring at the inputs. A masked multiplier that imple-
ments XOR gates in this way is secure. The transitions of the signal lines i1 . . . i4
are uncorrelated to a, b and q. If the XOR gates propagate these transitions to
the output qm without any absorbtion, the whole multiplier is secure.

In a masked GF (2n) multiplier, there are 4 ·n XOR gates that sum the signals
i1 . . . i4 and mq. When looking at Fig. 4, it is clear that the n XOR gates that
sum i4 and mq, are actually not critical. The input signals of these gates depend
on mask values only and hence the absorbed number of transitions of these gates
cannot depend on a, b or q. As a consequence, there are actually only 3 ·n XOR
gates in a masked multiplier that must not absorb any transitions. These are
the gates summing i1, i2, i3 and i7. Preventing an absorbtion at these gates
means that the inputs of these gates must not arrive simultaneously or within
the propagation delay of the XOR gate. This is the timing constraint that needs
to be fulfilled by the input signals.

In general, timing constraints are quite challenging to fulfill in practice. How-
ever, there exist two approaches that can be used to reach this goal. The first
approach is to insert delay elements into the paths of the input signals of the
XOR gate. A similar approach has actually already been used in [12] to reduce

Pinpointing the Side-Channel Leakage 87

the power consumption of an unmasked AES S-box. In case of a masked multi-
plier, delay elements need be inserted into the lines i1, i2 and i3 in such a way
that the timing constraints for the XOR gates are fulfilled. We have successfully
implemented a secure GF (2) multiplier based on this approach. Simulations of
this multiplier have confirmed that the transitions of all signal lines in the design
are indeed independent of a, b and q.

However, it is important to point out that it is not always possible to efficiently
fulfill the timing constraints of the XOR gates by inserting delay elements. For
our masked multiplier we have assumed that all masked input signals arrive at
the same time. However, the arrival times of the operands at a masked multiplier
can vary significantly, if the multiplier is not connected to flip flops directly. If
the multiplier is part of a long combinational path, the approach of inserting
delay elements is usually not the best one to fulfill the timing constraints.

An alternative to inserting delay elements is to use enable signals in the circuit.
The basic idea of this approach is to generate enable signals by a dedicated
circuit that enable the inputs of the critical XOR gates just at the right time.
Enable signals of this kind have for example also been used in [19] to control the
switching activity of masked gates. Of course, the generation of enable signals
requires a certain effort and it increases the design costs.

However, building secure masked circuits is always associated with costs. The
proposal for secure masked gates presented in [4] is also associated with timing
constraints that need to be fulfilled when building a masked circuit. One approach
for secure masked circuits without timing constraints has been presented in [16].
However, this approach requires a pre-charging phase and hence the throughput
of such implementations is halved compared to standard CMOS circuits.

5 Conclusions

In the first part of this article, we have presented results of three different DPA
attacks on a masked AES ASIC implementation. One of these attacks was a
simplification of the attack presented in [9]. Comparing this attack with zero-
offset DPA has turned out that glitches are indeed the biggest problem of masked
hardware implementations of AES. Motivated by this fact, we have pinpointed
which parts of masked AES S-boxes cause glitches that lead to side-channel
leakage. Our analysis has turned out that the glitches are caused by switching
characteristics of XOR gates in masked multipliers.

We have subsequently shown that the side-channel leakage can be prevented
by fulfilling timing constraints for 3 · n XOR gates in each GF (2n) multiplier of
an AES S-box. In practice, these timing constraints can essentially be fulfilled by
two approaches: the insertion of delay elements and the usage of enable signals.

Acknowledgements

The authors would like to thank Elisabeth Oswald, Takashi Wanatabe, and
Takashi Endo for the very helpful discussions.

88 S. Mangard and K. Schramm

References

1. Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin. Two Power Analysis At-
tacks against One-Mask Methods. In Bimal K. Roy and Willi Meier, editors, Fast
Software Encryption, 11th International Workshop, FSE 2004, Delhi, India, Febru-
ary 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science,
pages 332–347. Springer, 2004.

2. Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and
AES, Secure against Some Attacks. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.

3. Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure Masking
of AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in
Cryptography, 11th International Workshop, SAC 2004, Waterloo, Canada, August
9-10, 2004, Revised Selected Papers, volume 3357 of Lecture Notes in Computer
Science, pages 69–83. Springer, 2005.

4. Wieland Fischer and Berndt M. Gammel. Masking at Gate Level in the Presence
of Glitches. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2005, 7th International Workshop, Edinburgh,
Scotland, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 187–200. Springer, 2005.

5. Jovan D. Golić and Christophe Tymen. Multiplicative Masking and Power Analysis
of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2535 of Lecture Notes in Computer Science, pages 198–212. Springer, 2003.

6. Marc Joye, Pascal Paillier, and Berry Schoenmakers. On Second-Order Differen-
tial Power Analysis. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2005, 7th International Workshop, Ed-
inburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 293–308. Springer, 2005.

7. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

8. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage of
Masked CMOS Gates. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

9. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully Attack-
ing Masked AES Hardware Implementations. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, 7th Inter-
national Workshop, Edinburgh, Scotland, August 29 - September 1, 2005, Proceed-
ings, volume 3659 of Lecture Notes in Computer Science, pages 157–171. Springer,
2005.

Pinpointing the Side-Channel Leakage 89

10. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, Second International Workshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture
Notes in Computer Science, pages 238–251. Springer, 2000.

11. Sumio Morioka and Toru Akishita. A DPA-resistant Compact AES S-Box Circuit
using Additive Mask. In Computer Security Composium (CSS), October 16, 2004,
Proceedings, pages 679–684, September 2004. (in Japanese only).

12. Sumio Morioka and Akashi Satoh. An Optimized S-Box Circuit Architecture for Low
Power AES Design. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, edi-
tors, Cryptographic Hardware andEmbedded Systems –CHES2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume
2535 of Lecture Notes in Computer Science, pages 172–186. Springer, 2003.

13. National Institute of Standards and Technology (NIST). FIPS-197: Ad-
vanced Encryption Standard, November 2001. Available online at http://www.
itl.nist.gov/fipspubs/.

14. Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
Second-Order DPA Attacks for Masked Smart Card Implementations of Block
Ciphers. In David Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February
13-17, 2006, Proceedings, volume 3860 of Lecture Notes in Computer Science, pages
192–207. Springer, 2006.

15. Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen.
A Side-Channel Analysis Resistant Description of the AES S-box. In Henri
Gilbert and Helena Handschuh, editors, Fast Software Encryption, 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005, Proceedings,
volume 3557 of Lecture Notes in Computer Science, pages 413–423. Springer, 2005.

16. Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-Charge Logic: DPA-
Resistance without Routing Constraints. In Josyula R. Rao and Berk Sunar, edi-
tors, Cryptographic Hardware and Embedded Systems – CHES 2005, 7th Interna-
tional Workshop, Edinburgh, Scotland, August 29 - September 1, 2005, Proceedings,
volume 3659 of Lecture Notes in Computer Science, pages 172–186. Springer, 2005.

17. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact Ri-
jndael Hardware Architecture with S-Box Optimization. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the
Theory and Application of Cryptology and Information Security, Gold Coast, Aus-
tralia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Com-
puter Science, pages 239–254. Springer, 2001.

18. Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, Topics inCryptology - CT-RSA 2006, TheCryptographers’ Track
at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings,
volume 3860 of Lecture Notes in Computer Science, pages 208–225. Springer, 2006.

19. Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. Random Switching Logic: A
Countermeasure against DPA based on Transition Probability. Cryptology ePrint
Archive (http://eprint.iacr.org/), Report 2004/346, 2004.

20. Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. DPA Leakage Models for
CMOS Logic Circuits. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2005, 7th International Workshop, Ed-
inburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 366–382. Springer, 2005.

90 S. Mangard and K. Schramm

21. Elena Trichina, Tymur Korkishko, and Kyung-Hee Lee. Small Size, Low Power,
Side Channel-Immune AES Coprocessor: Design and Synthesis Results. In Hans
Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, Advanced Encryption
Standard - AES, 4th International Conference, AES 2004, Bonn, Germany, May
10-12, 2004, Revised Selected and Invited Papers, volume 3373 of Lecture Notes in
Computer Science, pages 113–127. Springer, 2005.

22. Elena Trichina, Domenico De Seta, and Lucia Germani. Simplified Adaptive Mul-
tiplicative Masking for AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2535 of Lecture Notes in Computer Science, pages 187–197.
Springer, 2003.

23. Jason Waddle and David Wagner. Towards Efficient Second-Order Power Analysis.
In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and
Embedded Systems – CHES 2004, 6th International Workshop, Cambridge, MA,
USA, August 11-13, 2004, Proceedings, volume 3156 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2004.

The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

A Generalized Method of Differential Fault
Attack Against AES Cryptosystem

Amir Moradi1, Mohammad T. Manzuri Shalmani1,
and Mahmoud Salmasizadeh2

1 Department of Computer Engineering, Sharif University of Technology,
Azadi St., Tehran, Iran

2 Electronic Research Center, Sharif University of Technology,
Azadi St., Tehran, Iran

a moradi@ce.sharif.edu, {manzuri, salmasi}@sharif.edu

Abstract. In this paper we describe two differential fault attack tech-
niques against Advanced Encryption Standard (AES). We propose two
models for fault occurrence; we could find all 128 bits of key using one of
them and only 6 faulty ciphertexts. We need approximately 1500 faulty
ciphertexts to discover the key with the other fault model. Union of
these models covers all faults that can occur in the 9th round of en-
cryption algorithm of AES-128 cryptosystem. One of main advantage of
proposed fault models is that any fault in the AES encryption from start
(AddRoundKey with the main key before the first round) to MixColumns
function of 9th round can be modeled with one of our fault models. These
models cover all states, so generated differences caused by diverse plain-
texts or ciphertexts can be supposed as faults and modeled with our
models. It establishes a novel technique to cryptanalysis AES without
side channel information. The major difference between these methods
and previous ones is on the assumption of fault models. Our proposed
fault models use very common and general assumption for locations and
values of occurred faults.

Keywords: AES, Fault Attacks, Smart Card, Side Channel Attacks,
Cryptanalysis.

1 Introduction

At first, Boneh, Demillo and Lipton in 1997 indicated using computational er-
rors occurred during execution of cryptographic algorithm can help to break it
and find the secret key [1]. This idea was applicable only on public key cryp-
tosystems and they presented successful results to discover the secret key of a
RSA implementation. Subsequently, Biham and Shamir extended this idea for
applying it on implementations of symmetric block ciphers such as DES [2] and
introduced Differential Fault Attack (DFA) concept. DFAs are powerful and
applicable against cryptographic hardwares specially on smart cards.

Many activities have been done on employing DFA to AES implementations
by several researches and some methods were introduced [3,5,4,6]. All previous

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 91–100, 2006.
c© International Association for Cryptologic Research 2006

92 A. Moradi, M.T.M. Shalmani, and M. Salmasizadeh

techniques assumed very specific models for fault location and value. Using these
methods, such attacks in real world is applicable only with sophisticated equip-
ments such as narrow Laser beam. The most of the results appeared in these
papers are simulation based [3,4], however the second attack of [5] was put into
practice. In this paper we present two general models for fault occurrence in
AES cryptosystem which neither of them needs any sophisticated equipment.
The first model covers 1.55% of all possible faults between the beginning of
AES-128 and the input of MixColumns in round 9, and the reminder (98.45% of
them) are covered with the second one. We should emphasize that these mod-
els do not cover faults induced during the Key Scheduling as well as safe-errors
attacks described in [3]. But in previous methods coverage rate of fault models
were tiny. For example, fault models in [4,5] cover approximately 2.4 × 10−5%
of all possible faults induced at input of MixColumns in round 9. Therefore,
these attacks are applicable with special equipments for injecting certain faults
in desired locations. However, our proposed methods could be implemented by
power supply disturbance or glitch in clock pulse.

The rest of this paper organized as follows: we explain both of fault models
and illustrate their coverage in section 2. The next section describes algorithm of
the proposed attack using presented fault models. Section 4 presents simulation
results of the proposed attack. In section 5 we show how we can use proposed
methods for breaking AES cryptosystem without fault injection. We will show
how the AES encryption will be broken only by changing assumptions. Finally
section 6 concludes the paper.

2 Proposed Fault Models

In AES with 128-bit key, faults may occur in any function, i.e. SubBytes,
ShiftRows, MixColumns and AddRoundKey, of each 10 rounds. Some previous
works [4,5] assumed faults occur in the input of MixColumns of the 9th round.
Figure 1 shows the last two rounds of AES encryption algorithm, for more in-
formation see [7]. We assumed any type of fault appears as a random data to be
added to the original data.

Suppose that only one byte of column 1 of input of MixColumns is influenced
by fault then, 4 bytes of its output will change. Let M stands for MixColumns and
considering the fact that MixColumns operates on each column independently,
then equations (1) to (4) could be summarized as equation (5).

M

⎛⎜⎜⎝A⊕

⎡⎢⎢⎣
e 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = M (A)⊕

⎡⎢⎢⎣
2 • e 0 0 0

e 0 0 0
e 0 0 0

3 • e 0 0 0

⎤⎥⎥⎦ (1)

M

⎛⎜⎜⎝A⊕

⎡⎢⎢⎣
0 0 0 0
e 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = M (A)⊕

⎡⎢⎢⎣
3 • e 0 0 0
2 • e 0 0 0

e 0 0 0
e 0 0 0

⎤⎥⎥⎦ (2)

A Generalized Method of Differential Fault Attack 93

Fig. 1. Last two rounds of AES encryption function

M

⎛⎜⎜⎝A⊕

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
e 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = M (A)⊕

⎡⎢⎢⎣
e 0 0 0

3 • e 0 0 0
2 • e 0 0 0

e 0 0 0

⎤⎥⎥⎦ (3)

M

⎛⎜⎜⎝A⊕

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
e 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = M (A)⊕

⎡⎢⎢⎣
e 0 0 0
e 0 0 0

3 • e 0 0 0
2 • e 0 0 0

⎤⎥⎥⎦ (4)

M

⎛⎜⎜⎝A⊕

⎡⎢⎢⎣
e1 0 0 0
e2 0 0 0
e3 0 0 0
e4 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ = M (A)⊕

⎡⎢⎢⎣
2 • e1 ⊕ 3 • e2 ⊕ e3 ⊕ e4 = e′1 0 0 0
e1 ⊕ 2 • e2 ⊕ 3 • e3 ⊕ e4 = e′2 0 0 0
e1 ⊕ e2 ⊕ 2 • e3 ⊕ 3 • e4 = e′3 0 0 0
3 • e1 ⊕ e2 ⊕ e3 ⊕ 2 • e4 = e′4 0 0 0

⎤⎥⎥⎦ (5)

In the first model we suppose that at least one of the bytes e1 to e4 is zero.

FM1 = {ε : (e1, e2, e3, e4) | ∃ ei = 0; (1 ≤ i ≤ 4)} (6)

In other words, at least one byte of MixColumn (in one column only) is fault
free, but we don’t know any other thing about occurred faults such as locations
and values. In consequence, this model covers one byte, two bytes and three
bytes fault(s) among four bytes of each column. The coverage rate of this model,
CR, is defined as the proportion of the number of covered faults to the number
of all possible faults. Equation (7) gives the CR of this model.

CR1 =

(
4
1
)× 255 +

(
4
2
)× 2552 +

(
4
3
)× 2553

2564 − 1
= 0.0155 (7)

The second model is the complement of the first one i.e., in the second model
all four bytes of one column should be faulty.

FM2 = {ε : (e1, e2, e3, e4) | ∀ ei �= 0; (1 ≤ i ≤ 4)} (8)

94 A. Moradi, M.T.M. Shalmani, and M. Salmasizadeh

So, all four bytes of one column are influenced by the occurred fault. In this
case the fault coverage is given by (9).

CR2 =
2554

2564 − 1
= 0.9845 (9)

The second model is more general than the first one, but the first model is
more similar with assumed fault models in previous attacks. Additionally, all
possible faults can be covered by one of the two presented models and there is
no fault that is not included in one of these two models.

It should be emphasized that the intersection of the two presented models is
empty and the union of them is all possible faults which can occur in four bytes
(2564 − 1). Consequently, any occurred fault in other units of the encryption
algorithm from the beginning of the algorithm up to MixColumns of round 9
can be considered as another fault occurred in MixColumns input of the 9th
round, then it’s coverable with one of the illustrated models. None of previous
fault models against AES had this capability.

According to the structure of AES, ShiftRows exchanges contents of the rows
and MixColumns composes each column of exchanged rows. Thus, changes in one
byte before ShiftRows will affect at most on four bytes after MixColumns. Figure
2 shows an example that two bytes of ShiftRows were induced by fault injection
and finally two columns of MixColumns output were affected. Consequently,
every fault which occurs in a round with high probability leads to big changes
in the next round.

Fig. 2. Effects of faults that occur before ShiftRows on MixColumns

3 Attack Methods

In this section we show how the new proposed models can be used and then
illustrate attack techniques. Consideration equation (5) we generated two set S1
and S2.

S1 = {ε′ : (e′1, e
′
2, e

′
3, e

′
4) | ∀ e′i �= 0; (1 ≤ i ≤ 4),

∃ ε : (e1, e2, e3, e4) ∈ FM1; MixColumn (ε) = (ε′)} (10)

S2 = {ε′ : (e′1, e
′
2, e

′
3, e

′
4) | ∀ e′i �= 0; (1 ≤ i ≤ 4),

∃ ε : (e1, e2, e3, e4) ∈ FM2; MixColumn (ε) = (ε′)} (11)

These two sets can be generated using function MixColumns independent of
plaintext and key. The (12) and (13) show the number of elements of S1 and S2
respectively.

|S1| =
(

4
1

)
× 255 +

(
4
2

)
× 2552

(
4
3

)
× 2553 = 66, 716, 670 (12)

A Generalized Method of Differential Fault Attack 95

|S2| = 2554 = 4, 228, 250, 625 (13)

According to the figure 3, after MixColumns of round 9 each byte of its out-
put affects on one byte of ciphertext independent of other bytes, because the
MixColumns of round 10 is omitted. In fact this algorithmic weakness of AES
causes the success of these attacks. As a result, we could consider each column
of MixColumns output in round 9 independently. Gray cells in figure 3 show the
effects of the first column of the input of MixColumns in round 9 on the other
internal values. Therefore, errors on each byte of output of MixColumns can be
traced independently. Equations (15) to (18) show it for the first column.

Fig. 3. The AES encryption scheme from MixColumns of round 9 to the end

Ciphertext = ShiftRows (SubBytes (A⊕RoundKey9))⊕RoundKey10 (14)

A : output of MixColumns in round 9, AddRK : AddRoundKey

AddRK

⎛⎜⎜⎝
⎡⎢⎢⎣

A1 ⊕ e′1
A2 ⊕ e′2
A3 ⊕ e′3
A4 ⊕ e′4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K91
K92
K93
K94

⎤⎥⎥⎦
⎞⎟⎟⎠ = AddRK

⎛⎜⎜⎝
⎡⎢⎢⎣

A1
A2
A3
A4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K91
K92
K93
K94

⎤⎥⎥⎦
⎞⎟⎟⎠⊕

⎡⎢⎢⎣
e′1
e′2
e′3
e′4

⎤⎥⎥⎦ (15)

SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

B1 ⊕ e′1
B2 ⊕ e′2
B3 ⊕ e′3
B4 ⊕ e′4

⎤⎥⎥⎦
⎞⎟⎟⎠ = SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

B1
B2
B3
B4

⎤⎥⎥⎦
⎞⎟⎟⎠⊕

⎡⎢⎢⎣
e′′1
e′′2
e′′3
e′′4

⎤⎥⎥⎦ (16)

ShiftRows :

⎡⎢⎢⎣
D1
D14
D11
D8

⎤⎥⎥⎦⊕
⎡⎢⎢⎣

e′′1
e′′2
e′′3
e′′4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
C1
C2
C3
C4

⎤⎥⎥⎦⊕
⎡⎢⎢⎣

e′′1
e′′2
e′′3
e′′4

⎤⎥⎥⎦ (17)

96 A. Moradi, M.T.M. Shalmani, and M. Salmasizadeh

AddRK

⎛⎜⎜⎝
⎡⎢⎢⎣

D1 ⊕ e′′
1

D14 ⊕ e′′
2

D11 ⊕ e′′
3

D8 ⊕ e′′
4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K101

K1014

K1011

K108

⎤⎥⎥⎦
⎞⎟⎟⎠ = AddRK

⎛⎜⎜⎝
⎡⎢⎢⎣

D1

D14

D11

D8

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K101

K1014

K1011

K108

⎤⎥⎥⎦
⎞⎟⎟⎠⊕

⎡⎢⎢⎣
e′′
1

e′′
2

e′′
3

e′′
4

⎤⎥⎥⎦ (18)

AddRoundKey is a linear transformation so (e′1, e
′
2, e

′
3, e

′
4) (errors on output

of MixColumn and input of AddRoundKey) are transferred to its output. But
SubBytes uses S-box transformation and it’s a non linear function. As a conse-
quence, (e′′1 , e′′2 , e′′3 , e′′4) presented on output of SubBytes does not have any linear
relation with (e′1, e

′
2, e

′
3, e

′
4) (errors on its input). But each e′′i relates to only e′i

and the non linearity of this relation is very high. ShiftRows and AddRoundKey
are linear functions, thus (e′′1 , e′′2 , e′′3 , e′′4) appears exactly on ciphertext but in
(1, 14, 11, 8) locations respectively. At the first for presenting the attack, we
suppose that all occurred fault are coverable by the first model and consider
the first column of input of MixColumns in round 9 only. We have one fault
free ciphertext (FFC) and another faulty ciphertext (FC) that occurred fault is
covered by the first fault model. Consequently, ε′′ : (e′′1 , e′′2 , e′′3 , e′′4) is given by
equation (19). ⎡⎢⎢⎣

e′′1
e′′2
e′′3
e′′4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
FFC1
FFC14
FFC11
FFC8

⎤⎥⎥⎦⊕
⎡⎢⎢⎣

FC1
FC14
FC11
FC8

⎤⎥⎥⎦ (19)

We know that ε′′ is the difference at the output of SubBytes. So, we generate
set EI.

EI = { (ε′ : (e′1, e
′
2, e

′
3, e

′
4) , ι : (I1, I2, I3, I4)) |

SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

I1
I2
I3
I4

⎤⎥⎥⎦
⎞⎟⎟⎠⊕ SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

I1 ⊕ e′1
I2 ⊕ e′2
I3 ⊕ e′3
I4 ⊕ e′4

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎢⎢⎣
e′′1
e′′2
e′′3
e′′4

⎤⎥⎥⎦} (20)

But all values of ε′ are not useful then we generate set I.

I = EI ∩ S1 = {ι : (I1, I2, I3, I4) | ∃ ε′; ε′ ∈ S1 ∧ (ε′, ι) ∈ EI} (21)

In other words, set I contains all possible values for the first column of Sub-
Bytes input at the last round. Thus, we gather some faulty ciphertexts caused by
same plaintext and different faults that are covered by the first model. Then we
will decrease the size of set I by repeating the proposed method using collected
faulty ciphertexts until set I has only one element. Now we know four bytes of
SubBytes input at the last round. As a consequence, we know its output. On the
other hand, we know ciphertext (FFC) and according to (23) we can calculate
four bytes of the 10th RoundKey (K10).

A Generalized Method of Differential Fault Attack 97

SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

I1
I2
I3
I4

⎤⎥⎥⎦
⎞⎟⎟⎠⊕

⎡⎢⎢⎣
K101
K1014
K1011
K108

⎤⎥⎥⎦ =

⎡⎢⎢⎣
FFC1
FFC14
FFC11
FFC8

⎤⎥⎥⎦ (22)

⎡⎢⎢⎣
K101
K1014
K1011
K108

⎤⎥⎥⎦ = SubBytes

⎛⎜⎜⎝
⎡⎢⎢⎣

I1
I2
I3
I4

⎤⎥⎥⎦
⎞⎟⎟⎠⊕

⎡⎢⎢⎣
FFC1
FFC14
FFC11
FFC8

⎤⎥⎥⎦ (23)

Running this method for all other columns of MixColumns input of round
9, we will find all 16 bytes of 10th RoundKey (K10). As a result, we can find
the secret key of attacked system by knowing one RoundKey completely [4].
The essential functions for discovering the main key from RoundKey are Inverse
S-box and Exclusive-OR only.

One of the advantages of this attack is that finding every four bytes of 10th
Roundkey can be processed separately and parallel. Also, we can employ four
dedicated systems that each one tries to find four bytes of K10. (1, 14, 11,
8) locations of ciphertexts are examined by the first attacker, the second one
employs (5, 2, 15, 12) locations, the third one used (9, 6, 3, 16) locations and
the final attacker tries with (13, 10, 7, 4). Then, we will find all 128 bits of K10.

The other method to attack is completely similar to the presented one but we
assume occurred faults can be covered by the second fault model and we use S2
for limiting (e′1, e

′
2, e

′
3, e

′
4) in EI. All other specifications and advantages of the

first method are true for the second method.
The main difference between the two attack methods is their fault model. The

first model based attack uses any faulty ciphertext with probability of 0.0155
but this value is 0.9845 for the second model based attack.

In these two methods we supposed all faulty ciphertexts are coverable with
the first model or by the second model. We can use combination of two models,
in each round of attack if we know faulty ciphertext caused by a fault that is
covered by the first model (the second model) we limit EI by S1 (S2). In this
method we should know each occurred fault is coverable with which fault model.
But knowing this characteristic of happened fault seems not applicable.

4 Experimental Results

According to the coverage rate of the used fault models, we predicated that we
need more faulty ciphertexts in the second attack method than the first one.
Because the second fault model has greater coverage rate and many faults are
covered with this model. Additional experiments verified this idea.

At the first, we implemented the first method of attack. We started with the
first column of MixColumn input in round 9 and we selected faulty ciphertexts
that all four bytes in 1, 14, 11 and 8 locations are different with fault free
ciphertext. In this situation, we ran the attack algorithm to 1000 encryption
unit with different random generated keys. In average 6 faulty ciphertexts were

98 A. Moradi, M.T.M. Shalmani, and M. Salmasizadeh

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6
Round of Attack

Lo
g

(N
um

be
r o

f C
an

di
da

te
s)

Fig. 4. Average number of candidates for SubBytes input in each round of the first
attack method

0

2

4

6

8

10

12

1 123 245 367 489 611 733 855 977 1099 1221 1343 1495
Round of Attack

Lo
g

(N
um

be
r o

f C
an

di
da

te
s)

Fig. 5. Average number of candidates for SubBytes input in each round of the second
attack method

needed to find all four bytes of 10th RoundKey and the needed time is not
considerable (10 seconds). In the first round of attack we had 6.6×107 candidates
for SubBytes input in average and this number of candidates decreased to 106

at the second round of attack. Figure 4 shows average number of candidates in
each round of attack.

The explained results were for the the first column of MixColumns input
and for finding four bytes of RoundKey, but those results are correct for other

A Generalized Method of Differential Fault Attack 99

columns and other bytes of RoundKey. As we explained previously, the attack
algorithm can be applied to each column synchronously.

But conditions for the second attack method were different because S2 has
more elements and calculating of intersection between S2 and EI needs more
time comparing to the first method. On the other hand, S2 needs 15.5 GB
memory. After improving, optimizing and using memory management techniques
on the implementation of the attack, we succeeded to do it with 762.5 MB
memory and in almost 2 hours. We should specify that the simulations have
been done using Visual C++ on a 2GHz centrino with 1GB memory.

We applied this attack to AES with 100 random keys. Each attack needed 1495
faulty ciphertexts and 2 hours in average to find four bytes of K10. It’s noticeable,
these results are expected according to the previous results of coverage rates.
Figure 5 presents the average number of candidates for SubBytes inputs on this
method.

5 Using Fault Attack Assumption for Breaking AES

We used faulty ciphertexts to find secret key of attacked systems. In proposed
methods we supposed faults occur only on internal values, but we assumed
RoundKeys and KeyExpansion unit is completely fault free. As previously de-
scribed, any fault that happen before the MixColumns of round 9 is coverable
with one of our proposed fault models. We can suppose fault occurred on the
beginning of the encryption algorithm means plaintext. Thus, changing in plain-
text that leads to different ciphertexts can be assumed as a fault that occurred
in the plaintext and is covered by one of our two models. Then that’s enough
to know that the caused difference in MixColumns input of round 9 is coverable
with which of our fault models. We implemented this idea and we supposed that
we can access to the input of MixColumns in round 9 and we can understand
only which model can cover the caused changes in this location. The results
of this attack were as successful as previous experimental results. Furthermore,
finding a way to know the caused changes in MixColumns input of 9th round
is coverable with which fault model, is enough to break the AES cryptosystem
and finish its era.

Additionally, we don’t need to know plaintexts and if we can find a method to
distinguish and classify the different ciphertexts based on MixColumns input of
round 9, we will have a successful Ciphertext Only Attack and it’s not necessary
to run Known Plaintext Attack.

6 Conclusion and Future Works

We presented two models for covering all possible faults on input of MixColumns
in round 9 of the AES-128 encryption algorithm. Then we designed two methods
to attack using new proposed fault models. The biggest advantage of these attack
methods is high coverage rate of used fault models. One of them covers 1.55%
and the other one covers 98.45% of all possible faults on each four bytes of

100 A. Moradi, M.T.M. Shalmani, and M. Salmasizadeh

MixColumns input. None of previous DFAs to the AES had this coverage rate
and none of them used general fault models. Additionally, we presented very
successful results of proposed attacks implementation. With the first fault model
we needed only 6 faulty ciphertexts in average for discovering the main key and
1495 faulty ciphertexts for the second one. Hence, we will succeed in attacking to
the implementations of AES-128 with simple fault injection equipments such as
power supply disturbance or glitch in clock signal. It’s applicable for attacking
to new smart cards that implemented AES cryptosystem.

At last we introduced a method for breaking AES without fault injection
and with changing assumptions that different ciphertexts caused by different
plaintexts not by fault occurrence or injection. In consequence, finding a method
to know difference between two ciphertexts is coverable with the first fault model
or the other one, is one of our future works. We are working on designing a
method to generate some ciphertexts that we know which model covers the
difference between each of them. Also, we are trying to construct a test method
to know the difference between two ciphertexts at MixColumns input in round 9
is coverable with which fault models. Then, by finding any method or designing
a rule, we will break AES with 128-bit key and its period will be finished.

Another work for future is trying to run these methods for attacking to the
AES cryptosystem with 192 and 256 bits keys. It’s noticeable that by illustrated
methods we can find completely a RoundKey of AES-192 and AES-256. But we
can not discover the main key of these systems. We should design other methods
for finding the half of another RoundKey for AES-192 and whole of another
RoundKey for AES-256 to reach the secret key.

References

1. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Eliminat-
ing Errors in Cryptographic Computations. In Journal of Cryptology 14(2), pages
101-120, 2001.

2. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In B. Kaliski, editor, Advances in Cryptology - CRYPTO 97, volume 1294 of Lecture
Notes in Computer Science, pages 513-525. Springer, 1997.

3. J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced Encryp-
tion Standard (AES). In Financial Cryptography 03, LNCS. Springer, 2003. Also
available at http://eprint.iacr.org/,2002/075.

4. P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on A.E.S.
Available at http://eprint.iacr.org/, 2003/010.

5. C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors, Ad-
vanced Encryption Standard (AES): 4th International Conference, AES 2004, vol-
ume 3373 of Lecture Notes in Computer Science, pages 27-41. Springer-Verlag, 2005.

6. G. Piret and J.J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad. In Cryptographic Hardware
and Embedded Systmes - CHES 2003, volume 2779 of Lecture Notes in Computer
Science. Springer, 2003.

7. National Institute of Standards and Technology, Advanced Encryption Standard,
NIST FIPS PUB 197, 2001.

Breaking Ciphers with COPACOBANA –
A Cost-Optimized Parallel Code Breaker

Sandeep Kumar1, Christof Paar1, Jan Pelzl1,
Gerd Pfeiffer2, and Manfred Schimmler2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{kumar, cpaar, pelzl}@crypto.rub.de

2 Institute of Computer Science and Applied Mathematics, Faculty of Engineering,
Christian-Albrechts-University of Kiel, Germany

{gp, masch}@informatik.uni-kiel.de

Abstract. Cryptanalysis of symmetric and asymmetric ciphers is com-
putationally extremely demanding. Since the security parameters (in
particular the key length) of almost all practical crypto algorithms are
chosen such that attacks with conventional computers are computation-
ally infeasible, the only promising way to tackle existing ciphers (assum-
ing no mathematical breakthrough) is to build special-purpose hardware.
Dedicating those machines to the task of cryptanalysis holds the promise
of a dramatically improved cost-performance ratio so that breaking of
commercial ciphers comes within reach.

This contribution presents the design and realization of the COPA-
COBANA (Cost-Optimized Parallel Code Breaker) machine, which is
optimized for running cryptanalytical algorithms and can be realized for
less than US$ 10,000. It will be shown that, depending on the actual
algorithm, the architecture can outperform conventional computers by
several orders in magnitude. COPACOBANA hosts 120 low-cost FP-
GAs and is able to, e.g., perform an exhaustive key search of the Data
Encryption Standard (DES) in less than nine days on average. As a
real-world application, our architecture can be used to attack machine
readable travel documents (ePass). COPACOBANA is intended, but not
necessarily restricted to solving problems related to cryptanalysis.

The hardware architecture is suitable for computational problems
which are parallelizable and have low communication requirements. The
hardware can be used, e.g., to attack elliptic curve cryptosystems and to
factor numbers. Even though breaking full-size RSA (1024 bit or more)
or elliptic curves (ECC with 160 bit or more) is out of reach with COPA-
COBANA, it can be used to analyze cryptosystems with a (deliberately
chosen) small bitlength to provide reliable security estimates of RSA and
ECC by extrapolation1.

1 Introduction

All modern practical ciphers, both symmetric and asymmetric ones, use secu-
rity parameters (in particular the key-length) which makes them secure against
1 The basic architecture of COPACOBANA was presented as a poster at a hardware

workshop (not disclosed here in order to keep this submission anonymous).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 101–118, 2006.
c© International Association for Cryptologic Research 2006

102 S. Kumar et al.

attacks with current computers. Depending on the security margin chosen in
a given application, many ciphers are potentially vulnerable to attacks with
special-purpose machines which have, say, a cost-performance ratio which is
several orders of magnitude better than that of current PCs. This contribution
describes a design and successful prototype realization of such a special-purpose
cryptanalytical machine based on low-cost FPGAs.

Cryptanalysis of modern cryptographic algorithms requires massive computa-
tional effort, often between 256 to 280 operations. A characteristic of many (but
not all) cryptanalytical algorithms is that they can run in a highly parallel fashion
with very little interprocess communication. Such applications map naturally to a
hardware based design, requiring repetitive mapping of the basic block, and can be
easily extended by adding more chips as required. However, it should be stressed
that the mere availability of computational resources is not the core problem, but
providing massive computational resources at affordable costs is. The non recur-
ring engineering costs for ASICs have put special-purpose hardware for crypt-
analysis in almost all practical situations out of reach for commercial or research
institutions, and have been considered only feasible by government agencies.

An alternative approach to distributed computing with loosely coupled proces-
sors is based on using the idle cycles of the huge number of computers connected
via the Internet, for instance the SETI@home project [16]. The results of this ap-
proach has been quite successful for some applications (even though the confirmed
detection of extraterrestrial life is still an open problem) and is used for selected
problems which are not viable with the computing power within a single organiza-
tion. Using distributed computing, however, has the disadvantage of, first, having
to find individuals who would be interested in joining to solve a problem and, sec-
ondly, trusting the nodes from introducing errors. Finally, for many code-breaking
application, shared computation is not a method of choice in many cases.

With the recent advent of low-cost FPGA families with much logic resources,
field programmable gate arrays provide a very interesting alternative tool for
the massive computational effort required for cryptanalytic applications. Recon-
figurable computing has been emerged as a cost effective alternative for vari-
ous applications which require the power of a custom hardware but require the
flexibility provided by a software based design, e.g., in rapid prototyping. In
addition, to the cost-performance advantage over PC-based machines, such a
machine has the advantage over ASIC-based designs that it can be used to at-
tack various different cryptosystems without the need to rebuilt a new machine
each time. In cryptanalysis, certain algorithms are very well suited for special-
purpose hardware. A prime example for this is an exhaustive key search of the
Data Encryption Standard (DES) [10]. Such a brute-force attack is more than
two orders of magnitude faster when implemented on FPGAs than in software
on general purpose computers at equivalent costs2.

2 Based on our existing implementations, a single FPGA at a cost of US$ 50 (current
market price) can test 400 million keys, a PC (Pentium4, 2GHz) for US$+ 200
approx. 2 million keys per second. Hence, 4 FPGAs can perform the same task
approximately 800 times faster than a PC at the same cost.

Breaking Ciphers with COPACOBANA 103

This contribution describes the design, implementation, and applications of
COPACOBANA, a massively parallel machine based on FPGAs. The hardware
is suitable for computational problems which are parallelizable and have low
communication requirements and can be used, e.g., to attack elliptic curve cryp-
tosystems and to factor numbers. Even though breaking full-size RSA (1024 bit
or more) or elliptic curves (ECC with 160 bit or more) is out of reach with CO-
PACOBANA, it provides for the first time a tool for a reliable security estimation
of RSA and ECC. Even more relevant is the fact that resource constrained appli-
cations, in particular mobile devices, sometimes settle with shorter parameters,
such as the 112 bit and 128 bit ECC systems recommended by the SECG stan-
dard, which become vulnerable with our machine. Also, assuming Moore’s law,
we can predict the security margin of RSA and ECC in the years to come.

Another interesting application emerges in the area of machine readable travel
documents (ePass): The International Civil Aviation Organization (ICAO) ini-
tiated biometric and RFID technologies for border and visa control. Current
realizations of Basic Access Control deploy symmetric cryptography (Triple-
DES) and generate the corresponding encryption and authentication keys from
passport information. As pointed out by many experts however, the low entropy
of the key allows for attacks of complexity of not more than single DES. Using
our hardware architecture this kind of attack can be mounted in much shorter
time, and even real-time, i.e., the time needed to pass the inspection system.

The outline of the paper is as follows: In the next Section, we identify a model
for an optimized hardware architecture for breaking codes which we realized as
a custom-designed computing machine. We will present the architectural con-
cept and the prototype of COPACOBANA, consisting of a backplane, an FPGA
DIMM module, and a controller card. In Section 3, cryptanalytical applications
which are suited for running on low-cost FPGAs will be discussed: First, we show
how cryptographically weak systems can be attacked with COPACOBANA. An
implementation of the Data Encryption Standard (DES) on COPACOBANA im-
pressively shows how DES can be broken with low effort in less than nine days,
making many existing legacy implementations of DES vulnerable to attacks by
nearly everyone. Furthermore, we show how the DES implementation at hand
can be used for attacks on machine readable travel documents, which use Triple-
DES with keys of low entropy. Secondly, we briefly sketch how an efficient hard-
ware implementation of the elliptic curve method (ECM) on COPACOBANA
can be used to factor composite integers in parallel. As another asymmtetric
cryptanalytical example, a specially tweaked implementation of Pollard’s rho
algorithm, can be used for breaking elliptic curve cryptosystems (ECC).

2 Proposed Architecture for Cryptanalysis

As we will see in Section 3, many algorithms tackling the most important prob-
lems in cryptanalysis can be implemented on FPGAs. However, code breaking
involves more effort than programming just a single FPGA with a particular
algorithm. Due to the enormous dimensions of cryptanalytical problems, much

104 S. Kumar et al.

more resources than a single FPGA are required. What is needed is a powerful
massively parallel machine, tweaked to the needs of the targeted algorithms.

Most problems can be parallelized and are perfectly suited for a distributed
architecture. In many cases, not much communication overhead is required. Con-
ventional parallel computing architectures, such as provided by Cray, can in the-
ory also be used for cryptanalytical applications. However, the cost-performance
ratio is not optimized with this approach, resulting in prohibitively expensive
attack machines. Similarly, many features of current high-end processors are not
required for the targeted cryptanalytical problems. For instance, high-speed com-
munication between CPUs, fast floating point operations, etc., cannot be used
in our context. All of these features usually increase the cost of such a device,
which is in particular annoying when they are superfluous. Even a simple grid of
conventional PCs is not efficient, as can be seen from implementations of DES:
An implementation on a single FPGA can be more than 100 times faster than
an implementation on a conventional PC, while the FPGA is much cheaper than
the PC. Therefore, a custom design is inevitable in order to obtain a low-cost
architecture with the required performance.

Our metric to decide whether an architecture is “good” or not is a function of
performance, flexibility, and monetary cost. A good performance metric for hard-
ware implementations is the area-time (AT) complexity. Whenever we can mini-
mize the AT-complexity, the design can be called efficient. ASIC implementations
can be AT-minimal and are the best choice for high-volume applications. How-
ever, ASICs are not flexible since they can implement only a single architecture.
FPGAs in contrast are reprogrammable and, thus, are flexible. Moreover, if only
a relatively small number of chips (< 10 000) is required, FPGAs are preferable
since the production of ASICs is profitable only when targeting high volumes.

In the following, we describe an optimized architecture for cryptanalytical
purposes and its implementation as custom-designed FPGA machine which hosts
120 FPGAs and can be produced for less than US$ 10,000, including material
and manufacturing costs.

2.1 An Optimal Architecture to Break Ciphers

All targeted algorithms (see Section 3) have the following common characteris-
tics: First, the computational expensive operations are parallelizable. Secondly,
single parallel instances do not need to communicate with each other. Thirdly,
the overall communication overhead is low, driven by the fact that the com-
putation phase heavily outweighs the data input and output phases. In fact,
computation time dominates compared to the time for data input or output.
Ideally, communication is almost exclusively used for initialization and report-
ing of results. A central control instance for the communication can easily be
accomplished by a conventional (low-cost) PC, connected to the instances by a
simple interface. No high-speed communication interface is required. Forthly, all
presented algorithms and their corresponding implementations call for very lit-
tle memory. As a consequence, the available memory on contemporary low-cost
FPGAs such as the Xilinx Spartan3 is sufficient.

Breaking Ciphers with COPACOBANA 105

2.2 Realization of COPACOBANA

Recapitulating, the Cost-Optimized Parallel Code Breaker (COPACOBANA)
fitting our needs consists of many independent low-cost FPGAs, connected to
a host-PC via a standard interface, e.g., USB or Ethernet. Furthermore, such a
standard interface allows to easily extend a host-PC with more than one CO-
PACOBANA device. The initialization of FPGAs, the control, and the accu-
mulation of results is done by the host. Since the cryptanalytical applications

Controller

Card

Host−PC

FPGAUSB

2

Chip Select

IO−Register

5

6

Data 64

1

Board Address

Read/Write

5

Decoder
Address

FPGA

64

Address
Decoder

64

Module 1

2

Module 20

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

Fig. 1. Architecture of COPACOBANA

demand for plenty of computing power, the targeted platform aggregates up to
120 FPGAs (Spartan3-1000). Building a system of such a dimension with com-
mercially available FPGA boards is certainly feasible, but comes with a cost
penality. Hence we decided to design, layout, and build our own hardware. We
considered several different design options. Our cost-performance optimized de-
sign became only feasible by strictly restricting all functionality to those directly
necessary for code breaking, and to make several design choices based on readily
available components and interfaces. The design of COPACOBANA is depicted
in Figure 1 and consists of

– FPGA modules for the actual implementation of the presented hardware
architectures,

– a backplane, connecting all FPGA modules to a common data bus, address
bus, and power supply,

– and a controller card, connecting the data bus and address bus to a host-PC
via USB.

FPGA Modules: We decided to pick a contemporary low-cost FPGA for the
design, the Xilinx Spartan3-1000 FPGA (XC3S1000, speed grade -4, FT256
packaging). This comes with 1 million system gates, 17280 equivalent logic cells,

106 S. Kumar et al.

1920 Configurable Logic Blocks (CLBs) equivalent to 7680 slices, 120 Kbit Dis-
tributed RAM (DRAM), 432 Kbit Block RAM (BRAM), and 4 digital clock
managers (DCMs) [20].The choice for this chip was derived by an evaluation of
size and cost over several FPGA series and types.

A step towards an extendable and simple architecture has been accomplished
by the design of small pluggable FPGA modules. We decided to settle with small
modules in the standard DIMM format, comprising 6 Xilinx XC3S1000 FPGAs.
Figure 4 (Appendix A) shows its realization as custom made 4-layer printed
circuit board. The FPGAs are directly connected to a common 64-bit data bus
on board of the FPGA module which is interfaced to the backplane data bus via
transceivers with 3-state outputs. While disconnected from the bus, the FPGAs
can communicate locally via the internal 64-bit bus on the DIMM module. The

Fig. 2. FPGA module (DIMM)

DIMM format allows for a very compact component layout, which is important
to closely connect the modules by a bus. Figure 2 depicts the chip arrangement.
From the experience with current implementations on the same FPGA type, we
dispense with active cooling of the FPGAs at these times. Depending on the heat
dissipation of future applications, passive or active cooling might be an option
for an upgrade.

Backplane: The backplane hosts all FPGA-modules and the controller card.
All modules are connected by a 64-bit data bus and a 16-bit address bus. This
single master bus is easy to control because no arbiter is required. Interrupt
handling is totally avoided in order to keep the design as simple as possible. If
the communication scheduling of an application is unknown in advance, the bus
master will need to poll the FPGAs.

Moreover, the power supply is routed to every FPGA module and the con-
troller interface. The backplane distributes two clock signals from the controller
card to the slots. Every FPGA module is assigned a unique hardware address,
which is accomplished by Generic Array Logic (GAL) attached to every DIMM
socket. Hence, all FPGA cores can have the same configuration and all FPGA
modules can have the same layout. They can easily be replaced in case of a de-
fect. Figure 5 (Appendix A) shows the prototype of the backplane equipped with

Breaking Ciphers with COPACOBANA 107

one FPGA module and the control interface card which will be described in the
next subsection. The entire bus has been successfully tested by use of the pro-
totype FPGA module with frequencies of up to 50 MHz. For the fully equipped
board, the bus speed will be limited to 33 MHz due to power dissipation.

Control Interface: Data transfer from and to the FPGAs and to the host-PC
is accomplished by the control interface. We decided to pick a small development
board with an FPGA (CESYS USB2FPGA [3]) in favor of a flexible design. The
development board comes with a Xilinx XC2S200 SPARTAN II FPGA (PQ208),
an integrated USB controller (CYPRESS FX-2), and 1 MByte SRAM. Moreover,
the board provides an easy-pluggable 96-pin connector which we use for the
connection to the backplane. In later versions of the design, it is also possible to
replace the FPGA development board by a small microcontroller with a standard
USB or Ethernet interface.

The controller hardware has to handle the adaptation of different clock rates:
The USB interface uses a clock rate of 24 MHz, the backplane is clocked with
33 MHz, and the controller itself is running at an internal clock of 133 MHz. The
internal clock is generated by an external clock synthesizer, the system clock is
derived from a digital clock manager (DCM) present on the FPGA.

The main state machine of the control interface is used to decode and execute
host commands received via USB, program the FPGAs via the data bus in
slave parallel mode, initialize (write to) FPGAs and start the computation, and
regularly poll the FPGAs and check for new results.

Programming can be done for all FPGAs simultaneously, for a set of such, or
for a particular one. Since the targeted cryptanalytic applications do not require
different code on distinct FPGAs, a concurrent programming of all devices is
very helpful.

Host-PC: The top level entity of COPACOBANA is a host-PC which is used
to program and control all FPGA implementations. For this purpose, a software
library has been written to issue commands to the USB connected controller
card of COPACOBANA. All software routines are based on the closed source
library provided by the board manufacturer (CESYS). With the low-level func-
tions, FPGAs can be addressed and data can be stored and read to/ from a
particular FPGA. Further functions include the detection of the hardware and
some configuration routines such as, e.g., a backplane reset. Higher-level func-
tions comprise commands at application level. E.g., for the DES Cracker, we can
store a certain plaintext in the DES units, check its status, etc.

3 Cryptanalytic Motivation for COPACOBANA

In this section, we will point to possible applications in cryptanalysis. COPA-
COBANA can be used to break cryptographically weak or outdated algorithms
such as DES, A5, and SHA-1 which have an attack complexity of at most 270 op-
erations. But, clearly, COPACOBANA can not recover keys from actual strong

108 S. Kumar et al.

cryptosystems such as AES, ECC, and RSA. However, the hardware approach
allows to implement attacks on such systems with a deliberately chosen small
bitlength and to extrapolate the results to finally obtain a much better esti-
mate of the security of actual cryptosystems against attacks with special-purpose
hardware.
We will investigate the complexity of following attacks:

– An exhaustive key search of DES (Subsection 3.1). DES still is used for com-
patibility reasons and/ or in legacy products. Out-dated DES-based cryp-
tosystems such as Norton Diskreet (a very popular encryption tool in the
1990ies which was of the well-known Norton Utilities package) can be broken
with COPACOBANA. Diskreet was used to encrypt single files as well as to
create and manage encrypted virtual disks.

– Attacks on machine readable travel documents (ePass): With the DES im-
plementation at hand, an intimidating real-world example of a weak cryp-
tosystem, namely the recently introduced ePass by ICAO, can be attacked
in certain ways which we will sketch in Subsection 3.2.

– Factoring composites with the elliptic curve factorization method (ECM)
(Subsection 3.3). ECM can be used as a crucial step for factoring actual
RSA moduli and a reliable estimate of its complexity is indispensable for
the security evaluation of factorization-based cryptosystems such as RSA.

– Attacks against ECC with a parallel variant of Pollard’s rho method (Subsec-
tion 3.4). The hardware implementation of an algorithm solving the discrete
logarithm problem on elliptic curves gives rise to a more realistic estimate
of the security of ECC against attacks with special-purpose hardware.

3.1 Exhaustive Key Search of DES

Ideally, the security of symmetric ciphers is dependent on the impracticability
of an exhaustive key search. This requires examining through each key in the
possible key space. The cost of the attack is calculated based on the available
technology and expected future developments. Usually, the key size is chosen
such that it allows for a fast and efficient implementation of the cryptosystem
but making such brute force attacks impracticable.

The Data Encryption Standard (DES) with a 56-bit key size was chosen as the
first commercial cryptographic standard by NIST in 1977 [10]. A key size of 56-
bits was considered to be good choice considering the huge development costs for
computing power in the late 70’s, making a search over all the possible 256 keys
impractical. But DES has survived long beyond its recommended lifetime and
still is being used in legacy systems or due to backward compatibility reasons.
The advances in the hardware and decreasing costs have made DES vulnerable
to brute force attacks.

Previous Work: There has been a lot of feasibility studies on the possible
use of parallel hardware and distributed computing for breaking DES. The first
estimates were proposed by Diffie and Hellman [5] for a brute force machine that
could find the key within a day at US$ 20 million.

Breaking Ciphers with COPACOBANA 109

A first ever detailed hardware design description for a brute force attacker
was presented by Michael Wiener at the rump session of CRYPTO’93 and is
reprinted in [18]. The machine could be built for less than a million US$ with
57, 000 DES chips that could recover a key every three and half hours. The
estimates were updated in 1998 due to the advances in hardware for a million
dollar machine to 35 minutes for each key recovery [19].

Ian Goldberg and David Wagner estimated the cost for building a DES brute
force attacker using FPGAs at US$ 45,000 for a key recovery within a year [6]. In
1997, a detailed cost estimate for three different approaches for DES key search:
distributed computing, FPGAs and custom ASIC designs, was compiled by a
group of cryptographers [1].

The real practical attempts at breaking DES were encouraged by the RSA
Secret Key challenge launched in 1997 [15]. The first challenge was solved by
Rocke Verser, Matt Curtin, and Justin Dolske using the DESCHALL distributed
network in 1997. The RSA DES Challenge II-1 was broken by distributed.net
within 39 days in 1998. The RSA DES Challenge II-2 was won by the Electronic
Frontier Foundation (EFF) DES hardware cracker called Deep Crack in 1998
within 56 hours [6]. The DES cracker consisted of 1, 536 custom designed ASIC
chips at a cost of material of around US$ 250,000 and could search 88 billion keys
per second. The final blow to DES was given by the DES Challenge III which
was solved in 22 hours 15 minutes using the combined effort of Deep Crack and
distributed.net

A first low-cost approach in attacking a DES-based protocol was realized
by [4]. The authors describe their experiences attacking the IBM 4758 CCA
with an off-the-shelf FPGA development board.

Though this proved to be an end for DES for many applications, the huge cost
involved to producing a machine like Deep Crack and access to foundries makes
building such machines still impractical for smaller organizations. Therefore, we
propose a more practical approach of an off-the-shelf-FPGA based hardware
cracker.

DES on FPGAs: When DES was first proposed as a standard, its main ap-
plication was seen in hardware based implementations. Hence DES is extremely
efficient in terms of area and speed for hardware but unsuitable for a good soft-
ware implementation due to the bit-level addressing in the design. Therefore an
FPGA implementation of DES can be more than a 100 times faster than an im-
plementation on a conventional PC at much lower costs. This allows a hardware
based key search engine to be much faster and efficient compared to a software
based approach.

The main aim of our key search engine is to check as many keys as possible
in the least time to find the right key that could encrypt a known plaintext to
its ciphertext that is made available. It is obvious that such a key search can be
done in a highly parallelized fashion by partitioning the key space. This requires
hardly any inter-process communication, as each of the DES engines can search
for the right key within its allocated key subspace.

110 S. Kumar et al.

For the DES engine, we implemented a highly pipelined design of the Uni-
versité Catholique de Louvain’s Crypto Group [14]. The design can test one
key per clock per engine and the pipelined architecture is adjusted such that
the critical path is as small as possible, allowing for a fast implementation. For
COPACOBANA, we can fit four such DES engines inside a single FPGA, and
therefore allow for sharing of control circuitry and the key space as shown in
Figure 3. It consists of a 64-bit Plaintext register and 64-bit Ciphertext register.
The key space is allocated to each chip as the most-significant 15-bits of the key
which is stored in the Key register. The Counter is used to run through the least
significant 39 bits of the key. The remaining two bits of the 56-bit key for each of
the DES engines is hardwired and is different for each of them. Thus, for every
such FPGA, a task is assigned to search through all the keys with the 15 most-
significant bits fixed, that is 241 different keys. The partitioning of the key space

���������

	�
�������

�� 	������

	���������

����� �����

����������

��
 ��

��
��

��

	��

�������

	��� 	����� �!"! !��� ��"

	��

���"

��	"

	"

�"�� �"

�"
�"

	"
	"

	"

��
��

��

���� ��	����

#�

$�

�$�%��& �'�%��&

$�

#�

#� #�

#� #�

#�#�

$�$�

#� #�

Fig. 3. Overview of an FPGA with four DES key search units

is done by the host-PC such way that each chip takes around 90 minutes (at
100 MHz) to check through its allocated key subspace, thus, avoiding huge com-
munication requirements. This also allows the machine to restart the key search
easily from a previous state if a power failure occurs. The generated cipher text
(CT) is compared to that of the given Ciphertext stored in the register, using
the comparator (cmp) block. The results of the four comparators are ORed and

Breaking Ciphers with COPACOBANA 111

reported to the controller. If any of the DES engines provides a positive match,
the controller reports the counter value to the host-PC. The host-PC keeps track
of the key range that is assigned to each of the FPGAs and, hence, can match
the right key from a given counter value. If no match is found until the counter
overflows, the FPGA reports completion of the task and remains idle until a new
key space is assigned. Since each FPGA can search through its key space totally
independent of any other FPGA, only the host-PC needs to keep track of the
number of FPGAs and the allocated key space. The estimated time to complete
the key search using COPACOBANA is discussed in the following.

Exhaustive Key Search with COPACOBANA: We can operate each of the
FPGAs at 100 MHz and, therefore, each FPGA can check four keys every 10 ns.
Consequently, a partial key space of 241 keys can completely be checked in 239 ·10
ns by a single FPGA, which is approximately 92 minutes. Since COPACOBANA
hosts 120 of these low-cost FPGAs, the key search machine can check 4 · 120 =
480 keys every 10 ns, i.e., 48 billion keys per second. To find the right key,
COPACOBANA has to search through an average of 255 different keys. Thus on
average, COPACOBANA can find the right key after (255 · 10)/480 ns which is
approximately 8.7 days. The time required for loading the plaintext, ciphertext
and key space allocation are ignored as they are negligibly small compared to
the overall running time.

3.2 ePass

One important application of our architecture concerns the current scheme for
machine readable travel documents, also known as ePass, which is initiated by
organizations3 in United States and several other countries to deploy biomet-
ric and RFID technologies for border and visa control. The claimed goal is to
enhance security, protect against forgery and manipulation of travel documents
and ease identity checks. The initiative has been subject to many political and
technical debates. Several researchers have pointed out the security and privacy
weaknesses of the deployed schemes and proposed improvements (see, e.g. [8,9]).
The cryptographic parts of the scheme shall consist of a Passive Authentica-
tion, Basic Access Control and an Active Authentication. Whereas Passive Au-
thentication means that the data stored on an ePass are signed by the issuing
nation, Basic Access Control should setup a secure (confidential) channel be-
tween the reader device (part of the inspection system) and the ePass chip and
Active Authentication is deployed for anti-clonig purposes and requires an inte-
ger factorization based signature scheme implemented on the ePass chip. Note,
that both Basic Access Control and Active Authentication are optional mecha-
nisms. Basic Access Control is already implemented, e.g., in Germany and the
Netherlands.

Current realizations of Basic Access Control deploy symmetric cryptography
(Triple-DES) and generate the corresponding encryption and authentication keys
3 More concretely, the International Civil Aviation Organization (ICAO).

112 S. Kumar et al.

from passport information that is visible in the physical document (e.g., serial
number, date of birth and expiration date). More concretly, the key derivation
scheme (e.g., implemented in reader devices) includes three computations of
SHA-1, one to derive the chip individual key K Seed, and two consecutive com-
putations that derive encryption key K Enc and authentication key K MAC.
One of the main concerns pointed out by many experts is the low entropy of
this visible information being insecure for key generation. The scheme has been
already successfully attacked using offline dictionary attacks4.

Using our hardware architecture this kind of attack can be mounted in much
shorter time, and even real-time, i.e., the time needed to pass the inspection
system. Note that the dictionary attack can be accelerated by pre-computing
possible encryption keys using SHA-1 in advance. Then our hardware only has
to check for a matching of ciphertexts implementing Triple-DES only.

Moreover, we are currently working on a device that can continuously read
and record RF based communication at public places with high ePass density like
airports. After the real-time decryption with our DES cracker, the information
can be injected into distributed databases. Having installed such devices on many
different airports and other similar places one can trace any person similar to
tracing packages sent using postal services such as UPS.

3.3 Factorization

Since the introduction of public-key cryptography, the problem of factoring large
composites is of increased interest. These days, the by far most popular asym-
metric cryptosystem is RSA which was developed by Ronald Rivest, Adi Shamir
and Leonard Adleman in 1977 [13]. The security of the RSA cryptosystem re-
lies on the difficulty of factoring large numbers. Hence, the development of a
fast factorization method could allow for cryptanalysis of RSA messages and
signatures. The best known method for factoring large integers is the General
Number-Field Sieve (GNFS). One important step within the GNFS is the fac-
torization of mid-size numbers for smoothness testing, an efficient algorithm for
which is the Elliptic Curve Method (ECM). Since ECM is suitable for paral-
lelization, it is promising to be implemented in hardware.

The algorithm itself is almost ideal for improving the area-time product
through special purpose hardware. First, it performs a very high number of op-
erations on a very small set of input data, and is, thus, not very I/O intensive.
Secondly, it requires relatively little memory. Thirdly, the operands needed for
supporting GNFS are well beyond the width of current computer buses, arith-
metic units, and registers, so that special purpose hardware can provide a much
better fit. This justifies the higher development costs compared to a solution
with DSPs. Lastly, it should be noted that the nature of the application allows
for a very high degree of parallelization.
4 Experiments on the Netherlands’ epass demonstrated that the encrypted infor-

mation can be revealed in 2 hours after intercepting the communication, see
http://www.riscure.com/news/passport.html. The issuing scheme in the Nether-
lands has about 35 bits of entropy.

Breaking Ciphers with COPACOBANA 113

The first reported implementation of ECM in hardware was used to factor
numbers of up to 200 bit [11]. However, the monetary cost of the used System-
on-Chip hardware is quite high. Practical applications demand for a cheap real-
ization of such ECM units. Therefore, a hardware platform consisting of many
low-cost FPGAs seems to be an appropriate choice. As a result of the simple
control logic for the ECM algorithm, no complex microcontroller is required and
most logic can easily be put into the FPGA.

We propose to extend the proof-of-concept implementation of [11] to a highly
parallel design comprised of many (cheap) FPGAs which can be used to assist
attacks on RSA cryptosystems with moduli of sizes up to 1024 bit. For larger
moduli, such a design demands for large quantities of ECM engines such that
an ASIC implementation is preferable.

All algorithms are chosen such that they allow for an implementation with
a low area consumption and a relatively high speed. At the time of writing, a
basic ECM unit has been realized with a very efficient ALU and first performance
results are available in Table 1 (the values include overhead for memory access).

Table 1. ECM implementation (200 bit modulus) (Xilinx XC3S1000, 40MHz)

Operation Time
modular addition/ subtraction 100 ns

modular multiplication/ squaring 5.13 µs
point addition 31.4 µs

point duplication 26.0 µs

A single unit can be clocked with 40 MHz and requires approximately 40% of
the slices of the Spartan3 device. Most memory has been realized with internal
dual-port RAM.

3.4 Solving Elliptic Curve Discrete Logarithms

Besides factorization, many public-key cryptosystems are based on the difficulty
of solving discrete logarithms in cyclic groups, known as the Discrete Logarithm
Problem (DLP). A popular choice of such is the Elliptic Curve Cryptosystem
(ECC) [7].

Attacking ECC requires the same algorithmic primitives as the cryptosystem
itself, namely point addition and point doubling. Similar to the case of ECM
in the previous section, these primitives can be implemented very efficiently in
hardware. A parallel Pollard’s Rho (PR) algorithm is described in [17].

The PR algorithm essentially does a great many computations without the
necessity of communication. Only particular results have to be reported to a
central control unit, which can be realized by, e.g., a host-PC connected to the
FPGA. The parameterization of the algorithm can be optimized for a low area-
time product and a low communication overhead. Hence, the reports of the PR
units to the host occur not very frequently. As with the ECM unit, a single PR

114 S. Kumar et al.

unit is comprised of an ALU, some memory and a control logic. The ALU for
PR comprises modular inversion as additional function. Opposed to ECM, every
single PR unit requires an individual control flow. Hence, the logic overhead for
the algorithmic state machine is slightly higher. For curves defined over prime
fields of 160 bit, two independent PR units can be loaded onto a XC3S1000
device. In this case, the maximum clock frequency is approximately 40 MHz
and the area usage is 6067 slices (79%). With 160 bit curves, a point addition
requires 846 cycles (21.15 µs) and 47 280 point operations can be performed per
second by one unit. Consequently, a single FPGA can compute approximately
94 500 point operations per second.

We can parallelize Pollard’s rho for COPACOBANA with the method pre-
sented in [17]. All instances of the algorithm can run independently from each
other. Solely certain values have to be collected by a host-PC. Unlike ECM, we
need a separate control logic for every single PR unit, yielding a slight overhead
in logic on the FPGA. All units can be addressed individually by the host-PC
using a unique address.

The chosen parameterization of the algorithm allows for a moderate commu-
nication overhead. In principle, all units compute point additions until they hit
a point of a certain structure (so-called distinguished points). In such a case, the
distinguished point is loaded to an output buffer for transmission to the host-PC
while the computation continues.

For successfully solving the discrete logarithm problem over curves defined
over prime fields Fp, we have to compute approximately

√
q points, where q is

the largest prime power of the order of the curve. Appendix B provides estimates
for solving the Certicom ECC challenges in hardware and software.

4 Conclusion and Future Work

The work at hand presents the design and first prototype of a cost-efficient hard-
ware for running cryptanalytical algorithms. COPACOBANA can be built for
for less than US$ 10,000 and hosts 120 low-cost FPGAs which can be adopted
to any suitable task which is parallelizable and has low communication require-
ments. For instance, we demonstrated how the Data Encryption Standard (DES)
can be broken within 9 days with the hardware at hand at an average rate of 48
billion keys per second.

We described how the DES implementation at hand can be used to attack
the recently introduced machine readable travel documents. Furthermore, we
introduced to two cryptanalytical algorithms which can be used to attack asym-
metric algorithms. We propose a massively parallel implementation of the elliptic
curve method for factorization. Building an efficient ECM machine is believed
to speed-up the factorization of current RSA moduli. Furthermore, we can an-
alyze the security of elliptic curve cryptosystems by solving the ECDLP with a
hardware architecture for the parallel Pollard’s rho algorithm.

Even though breaking full-size RSA (1024 bit or more) or elliptic curves (ECC
with 160 bit or more) is out of reach with COPACOBANA, our machine provides

Breaking Ciphers with COPACOBANA 115

for the first time a tool for a reliable security estimation of RSA and ECC. Even
more relevant is the fact that resource constrained applications, in particular
mobile devices, sometimes settle with shorter parameters, such as the 80 bit
and 112 bit ECC systems recommended by the SECG standard, which become
vulnerable with our machine. Also, assuming Moore’s law, we can predict the
security margin of RSA and ECC in the years to come.

Recapitulating, COPACOBANA is the first and currently the only available
cost-efficient design to solve cryptanalytical challenges. COPACOBANA was in-
tended to, but is not necessarily restricted to solving problems related to crypt-
analysis. Almost certainly there will exist more interesting problems apart from
cryptology, which can be solved efficiently with the design at hand. In an ongoing
project, we plan to apply the Smith-Waterman algorithm [21,12] for scanning
sequences of DNA or RNA against databases.

Future work includes optimization of the parallel implementations of the
presented cryptanalytical algorithms to guarantee the best possible through-
put. Furthermore, it seems promising to mount a real-world attack on the ePass
and on other cryptographically weak systems such as SHA-1 with help of
COBACOBANA.

Acknowledgments. We like to thank the Xilinx Inc. for the generous dona-
tion of Spartan-3 FPGAs which formed the basis of our design. We are also
indebted to Jean-Jacques Quisquater and François-Xavier Standaert of the Uni-
versité Catholique de Louvain for making their high-speed DES design available.
Furthermore, we would like to thank Kerstin Lemke and Ahmad-Reza Sadeghi
for interesting discussions on the security of machine readable travel documents.

References

1. M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, T. Shimomura, E. Thompson, and
M. Wiener. Minimal Key Lengths for Symmetric Ciphers to Provide Adequate
Commercial Security: A Report by an Ad Hoc Group of Cryptographers and
Computer Scientists. Technical report, January 1996. Available at http://www.
counterpane.com/keylength.html.

2. Certicom Corporation. Certicom ECC Challenges, 2005. http://www.certicom.
com

3. CESYS GmbH. USB2FPGA Product Overview. http://www.cesys.com, January
2005.

4. R. Clayton and M. Bond. Experience Using a Low-Cost FPGA Design to Crack
DES Keys. In B.S. Kaliski, C.K. Koc Cetin, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop, Red-
wood Shores, CA, USA, volume 2523 of series, pages 579 – 592. Springer-Verlag,
August 2002.

5. W. Diffie and M. E. Hellman. Exhaustive cryptanalysis of the NBS Data Encryp-
tion Standard. COMPUTER, 10(6):74–84, June 1977.

6. Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics & Chip Design. O’Reilly & Associates Inc., July 1998.

7. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

116 S. Kumar et al.

8. A. Juels, D. Molnar, and D. Wagner. Security and privacy issues in e-passports.
In SecureComm 2005, First International Conference on Security and Privacy for
Emerging Areas in Communication Networks, Athens, Greece, September 2005.

9. G.S. Kc and P.A. Karger. Security and Privacy Issues in Machine Readable Travel
Documents (MRTDs). RC 23575, IBM T. J. Watson Research Labs, April 2005.

10. NIST FIPS PUB 46-3. Data Encryption Standard. Federal Information Processing
Standards, National Bureau of Standards, U.S. Department of Commerce, January
1977.

11. J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovský, V. Fischer, and C. Paar. Area-Time Efficient Hardware Architecture for
Factoring Integers with the Elliptic Curve Method. IEE Proceedings Information
Security, 152(1):67–78, October 2005.

12. G. Pfeiffer, H. Kreft, and M. Schimmler. Hardware Enhanced Biosequence Align-
ment. In International Conference on METMBS, pages 11–17. CSREA Press,
2005.

13. R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

14. G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Design Strate-
gies and Modified Descriptions to Optimize Cipher FPGA Implementations: Fast
and Compact Results for DES and Triple-DES. In Field-Programmable Logic and
Applications - FPL, pages 181–193, 2003.

15. RSA Laboratories. Announcements: The RSA Data Security Secret-Key Chal-
lenge. CRYPTOBYTES, 2(3):16, 1997. Available at ftp://ftp.rsa.com/pub/
cryptobytes/crypto2n3.pdf.

16. University of California, Berkeley. Seti@Home Website, 2005. http://setiathome.
berkeley.edu/.

17. P.C. van Oorschot and M.J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology, 12(1):1–28, 1999.

18. M. J. Wiener. Efficient DES Key Search. In William R. Stallings, editor, Practical
Cryptography for Data Internetworks, pages 31–79. IEEE Computer Society Press,
1996.

19. M. J. Wiener. Efficient DES Key Search: An Update. CRYPTOBYTES, 3(2):6–8,
Autumn 1997.

20. Xilinx. Spartan-3 FPGA Family: Complete Data Sheet, DS099. http://www.
xilinx.com, January 2005.

21. C.W. Yu, K.H. Kwong, K.H. Lee, and P.H.W. Leong. A Smith-Waterman Systolic
Cell. In Proceedings of the 13th International Workshop on Field Programmable
Logic and Applications — FPL 2003, pages 375–384. Springer, 2003.

A Realization of COPACOBANA

Figure 4 shows the realization of a single FPGA DIMM module as printed circuit.
COPACOBANA with a 19 DIMM modules is depicted in Figure 5.

B Certicom ECC Challenges

To show how secure ECC is (and, thus, how hard it is to solve the discrete log-
arithm problem on elliptic curves), the company certicom announced challenges

Breaking Ciphers with COPACOBANA 117

Fig. 4. FPGA module (4-layer printed circuit board)

Fig. 5. COPACOBANA backplane with FPGA modules

for different bit-sizes [2]. The latest challenge solved was for a curve defined over a
prime field of size of 109 bit. The challenge was estimated to take approximately
9 · 106 machine days on a conventional PC. For q ≈ 109 bit, we would need to
compute approximately 254 point additions. In this case we would send every

118 S. Kumar et al.

230th point to a host-PC for subsequent comparisons. With COPACOBANA,
the discrete logarithm could be solved in approximately 106 days with a single
FPGA. Since the targeted FPGA is low-cost (approx. US$ 50 per piece at small
quantities5), it is fair to assume that we can buy more than one FPGA for the
price of a single PC. We assume that COPACOBANA can solve the challenge
approximately 90 times faster than a PCs at equivalent costs.

Table 2 provides a comparison of the expected running time in days of a
conventional PC versus the running time of COPACOBANA built of 120 FP-
GAs6. Furthermore, we assume the presence of 3, 2, and 1 PR unit(s) on a single
FPGA for the bit-length 79-97, 109-191, and 239, respectively. Furthermore, a
fixed clock rate of 40 MHz is assumed. The estimates for the machine days are
taken from [2].

Table 2. Expected runtime on different platforms and for different Certicom ECC
challenges

Challenge Pentium M@1.7GHz COPACOBANA
ECCp-79 49.0 d 0.13 d
ECCp-89 4.64 y 4.90 d
ECCp-97 74.7 y 93.4 d
ECCp-109 5570 y 24.2 y
ECCp-131 1.40 · 107 y 6.17 · 104 y
ECCp-163 1.09 · 1012 y 7.63 · 109 y
ECCp-191 2.17 · 1016 y 1.58 · 1014 y
ECCp-239 4.44 · 1023 y 7.18 · 1021 y

5 Xilinx offers this particular FPGA for US$ 12 at large quantities (> 250, 000 pcs.).
6 For simplicity, we neglect the central control instance and the required memory

which is, in fact, the same for both the PC and the FPGA solution.

Implementing the Elliptic Curve Method of
Factoring in Reconfigurable Hardware

Kris Gaj1, Soonhak Kwon2, Patrick Baier1, Paul Kohlbrenner1,
Hoang Le1, Mohammed Khaleeluddin1, and Ramakrishna Bachimanchi1

1 Dept. of Electrical and Computer Engineering, George Mason University,
Fairfax, Virginia 22030, USA

{kgaj, pkohlbr1, hle7, mkhaleel, rbachima}@gmu.edu, districtline@gmx.net
2 Inst. of Basic Science, Sungkyunkwan University,

Suwon 440-746, Korea
shkwon@skku.edu

Abstract. A novel portable hardware architecture for the Elliptic Curve
Method of factoring, designed and optimized for application in the rela-
tion collection step of the Number Field Sieve, is described and analyzed.
A comparison with an earlier proof-of-concept design by Pelzl, Šimka, et
al. has been performed, and a substantial improvement has been demon-
strated in terms of both the execution time and the area-time product.
The ECM architecture has been ported across three different families of
FPGA devices in order to select the family with the best performance to
cost ratio. A timing comparison with a highly optimized software imple-
mentation, GMP-ECM, has been performed. Our results indicate that
low-cost families of FPGAs, such as Xilinx Spartan 3, offer at least an
order of magnitude improvement over the same generation of micropro-
cessors in terms of the performance to cost ratio.

Keywords: Cipher-breaking, factoring, ECM, FPGA.

1 Introduction

The fastest known method for factoring large integers is the Number Field Sieve
(NFS), invented by Pollard in 1991 [1,2]. It has since been improved substantially
and developed from its initial “special” form (which was only used to factor
numbers close to perfect powers, such as Fermat numbers) to a general purpose
factoring algorithm. Using the Number Field Sieve, an RSA modulus of 663
bits was successfully factored by Bahr, Boehm, Franke and Kleinjung in May
2005 [3]. The cost of implementing the Number Field Sieve and the time it takes
for such an implementation to factor a b-bit RSA modulus provide an upper
bound on the security of b-bit RSA.

In order to factor a big integer N , such as an RSA modulus, NFS requires
the factorization of a large number of moderately sized integers created at run
time, perhaps of size 200 bits. Such numbers can be routinely factored in very lit-
tle time. However, because an estimated 1010 such factorizations are necessary for
NFS to succeed in factoring a 1024 bit RSA modulus, it is of crucial importance

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 119–133, 2006.
c© International Association for Cryptologic Research 2006

120 K. Gaj et al.

to perform these auxiliary factorizations as fast and efficiently as possible. Even
tiny improvements, once multiplied by 1010 factorizations, would make a signif-
icant difference in how big an RSA modulus we can factor. The Elliptic Curve
Method (ECM), which is the main subject of this paper, is a sub-exponential
factoring algorithm, with expected run time of O(exp(c

√
log p log log p)M(N))

where c > 0, p is a factor we aim to find, and M(N) denotes the cost of
multiplication (mod N). ECM is the best method to perform the kind of factor-
izations needed by NFS, for integers in the 200-bit range, with prime factors of
up to about 40 bits [16,17].

The contribution of this paper is an implementation of the elliptic curve
method in hardware (FPGAs). We describe in detail how to optimize the de-
sign and compare our work both to an existing software implementation (GMP-
ECM)[4,5] and an earlier hardware implementation [6,7].

2 Elliptic Curve Method

2.1 ECM Algorithm

Let K be a field with characteristic different from 2, 3. An elliptic curve can
be represented by a homogeneous equation Y 2Z = X3 + AXZ2 + BZ3 with
X, Y, Z ∈ K not all zero, where A, B are in K with 4A3 + 27B2 �= 0, together
with a special point O = (0, 1, 0) called a ”point at infinity”. Points of the curve
E together with the addition operation form an abelian group which is denoted
by E(K), where O is the identity element of the group [8].

The Elliptic Curve Method of factoring was originally proposed by Lenstra [9]
and subsequently extended by Brent [10] and Montgomery [11,12]. The original
part of the algorithm proposed by Lenstra is typically referred to as Phase 1
(or Stage 1), and the extension by Brent and Montgomery is called Phase 2 (or
Stage 2). The pseudocode of both phases is given below as Algorithm 1.

Algorithm 1. ECM Algorithm
Require: N : composite number to be factored, E: elliptic curve, P0 = (x0, y0, z0) ∈ E(ZN): initial

point, B1: smoothness bound for Phase 1, B2: smoothness bound for Phase 2, B2 > B1.
Ensure: q: factor of N, 1 < q ≤ N , or FAIL.

Phase 1.
1: k ← ∏

p≤B1
p�logp B1�

2: Q0 ← kP0
{Q0 = (xQ0 , yQ0 , zQ0)}

3: q ← gcd(zQ0 , N)
4: if q > 1 then
5: return q
6: else
7: go to Phase 2
8: end if

Phase 2.
9: d ← 1

10: for each prime p = B1 to B2 do
11: (xpQ0 , ypQ0 , zpQ0) ← pQ0.
12: d ← d · zpQ0 (mod N)
13: end for
14: q ← gcd(d, N)
15: if q > 1 then
16: return q
17: else
18: return FAIL
19: end if

2.2 Implementation Issues

An efficient algorithm for computing scalar multiplication was proposed by
Montgomery [11] in 1987, and is known as the Montgomery ladder algorithm.

Implementing the ECM of Factoring in Reconfigurable Hardware 121

This algorithm is especially efficient when an elliptic curve is expressed in the
Montgomery form, E : by2 = x3 + ax2 + x. This form is obtained by a suitable
change of variables [4] from the standard Weierstrass form. The corresponding
expression in projective coordinates is

E : by2z = x3 + ax2z + xz2, (1)

with b(a2 − 4) �= 0.
When one uses the Montgomery ladder algorithm with the Montgomery form

of elliptic curve given in (1), all intermediate computations can be carried on
using only x and z coordinates. As a result, we denote the starting point P0
by (x0 : : z0), intermediate points P , Q, by (xP : : zP), (xQ : : zQ), and the
final point kP0 by (xkP0 : : zkP0). The pseudocode of the Montgomery ladder
algorithm is shown below as Algorithm 2., and its basic step is defined in detail
as Algorithm 3..

Algorithm 2. Montgomery Ladder Algorithm
Require: P0 = (x0 : : z0) on E with x0
= 0, an s-bit positive integer k = (ks−1ks−2 · · · k1k0)2

with ks−1 = 1
Ensure: kP0 = (xkP0 : : zkP0)
1: Q ← P0, P ← 2P0
2: for i = s − 2 downto 0 do
3: if ki = 1 then
4: Q ← P + Q, P ← 2P
5: else
6: Q ← 2Q, P ← P + Q
7: end if
8: end for
9: return Q

Algorithm 3. Addition and Doubling using the Montgomery’s Form of Elliptic Curve
Require: P = (xP : : zP), Q = (xQ : : zQ) with xP xQ(xP − xQ)
= 0, P0 = (x0 : : z0) =

(xP −Q : : zP−Q) = P − Q, a24 = a+2
4 , where a is a parameter of the curve E in (1)

Ensure: P + Q = (xP+Q : : zP+Q), 2P = (x2P : : z2P)
1: xP+Q ← zP −Q[(xP − zP)(xQ + zQ) + (xP + zP)(xQ − zQ)]2

2: zP+Q ← xP −Q[(xP − zP)(xQ + zQ) − (xP + zP)(xQ − zQ)]2

3: 4xP zP ← (xP + zP)2 − (xP − zP)2

4: x2P ← (xP + zP)2(xP − zP)2

5: z2P ← (4xP zP)
(
(xP − zP)2 + a24 · (4xP zP)

)

A careful analysis of formulas in Algorithm 3 indicates that point addition P +Q
requires 6 multiplications, and point doubling 5 multiplications. Therefore, a
total of 11 multiplications are required in each step of the Montgomery ladder
algorithm. In Phase 1 of ECM, the initial point, P0, can be chosen arbitrarily.
Choosing z0 = 1 implies zP−Q = 1 throughout the entire algorithm, and thus
reduces the total number of multiplications from 11 to 10 per one step of the
algorithm, independent of the i-th bit ki of k. This optimization is not possible
in Phase 2, where the initial point Q0 is the result of computations in Phase 1,
and thus cannot be chosen arbitrarily.

122 K. Gaj et al.

2.3 Implementation of Phase 2

Phase 1 computes one scalar multiplication kP0, and the implementation issues
are relatively easy compared with Phase 2. For Phase 2, we follow the basic idea
of the standard continuation [11] and modify it appropriately for efficient FPGA
implementation. Choose 2 < D < B2, and let every prime p, B1 < p ≤ B2, be
expressed in the form

p = mD ± j (2)

where m varies between MMIN = �(B1 + D
2)/D� and MMAX = �(B2 − D

2)/D�,
and j varies between 1 and �D

2 �. The condition that p is prime implies that
gcd(j, D) = 1. Thus, possible values of j form a set JS = {j : 1 ≤ j ≤
�D

2 �, gcd(j, D) = 1}, of the size of φ(D)/2, and possible values of m form a
set MT = {m : MMIN ≤ m ≤ MMAX}, of the size MN = MMAX −MMIN + 1,
where MN is approximately equal to B2−B1

D . Then, the condition pQ0 = O,
implies (mD ± j)Q0 = O, and thus mDQ0 = ±jQ0.

Writing mDQ0 = (xmDQ0 : : zmDQ0) and jQ0 = (xjQ0 : : zjQ0), the condi-
tion mDQ0 = ±jQ0 ∈ E(Zq) is satisfied if and only if xmDQ0zjQ0−xjQ0zmDQ0 ≡
0 (mod q). Therefore existence of such pair m and j implies that one can find a
factor of N by computing

gcd (d, N) > 1, where d =
∏
m,j

(xmDQ0zjQ0 − xjQ0zmDQ0) (3)

In order to speed up these computations, one precomputes one of the sets S =
{jQ0 : j ∈ JS} or T = {mDQ0 : m ∈MT }. Typically, the first of these sets, S, is
smaller, and thus only this set is precomputed. One then computes the product
d in the (3) for a current value of mDQ0, and all precomputed points jQ0, for
which either mD+ j or mD− j is prime. For each pair, (m, j), where j ∈ JS and
m ∈ MT , we can precompute a bit value: prime table[m, j] = 1 when mD + j
or mD − j is prime, and 0 otherwise. This table can be reused for multiple
iterations of Phase 2 with the same values of B1 and B2, and is of the size of
MN · φ(D)/2 bits. Similarly, we can precompute a bit table: GCD table[j] = 1
when j ∈ JS, and 0 otherwise. This table will have D/2 bits for odd D and D/4
for even D (no need to reserve bits for even values of j). The exact pseudocode
of the algorithm used in our implementation of Phase 2 is given in Algorithm 4.

The value B1 is usually chosen as B1 ≈ e
√

1
2 log q log log q where q is unknown

prime we want to find, and the value B2 is between 50B1 and 100B1 depending
on the computational resources for Phase 2. In our case, like Šimka et al. [6,7],
we choose B1 = 960 and B2 = 57000 to find a 40-bit prime divisor of 200-bit
integers. Note that one has e

√
1
2 log q log log q ≈ 988 by setting q = 241 which is

close to 960, and the ratio B2/B1 is 57000/960 ≈ 59. In general, the larger
values of B1 and B2 increase the probability of success in Phase 1 and Phase 2
respectively (and thus decrease the expected number of trials), but at the same
time, increase the execution time of these phases. Values of D = 30 = 2 · 3 · 5
and D = 210 = 2 · 3 · 5 · 7 are the two most natural choices for D as they

Implementing the ECM of Factoring in Reconfigurable Hardware 123

minimize the size of sets JS and S and as a result of the amount of memory
storage and computations required for Phase 2. The larger D, the larger the
amount of Precomputations in Algorithm 4., but the smaller MN , and thus the
smaller number of iterations of the outer loop during Main computations in
Algorithm 4.. A theoretical analysis of the optimal parameter choices is given in
[19], with a view towards software implementations. The techniques developed
there - which use Dickman’s function to estimate the probability of success of
the Elliptic Curve Method - can be adapted to a hardware setting and make it
possible to determine optimal parameter choices via numerical approximations
to Dickman’s function. While our choices are not strictly optimal, they are fairly
good and allow for direct comparsion with Šimka et al. [6,7].

Algorithm 4. Standard Continuation Algorithm of Phase 2
Require: N : number to be factored, E: elliptic curve, Q0 = kP0 : initial point for Phase 2 calculated

as a result of Phase 1, B1: smoothness bound for Phase 1, B2: smoothness bound for Phase 2,
B2 > B1, D: parameter determining a trade-off between the computation time and the amount
of memory required; D is assumed even in this version of the algorithm.

Ensure: q: factor of N , 1 < q ≤ N or FAIL

Precomputations:
1: MMIN ← �(B1 + D

2)/D�
2: MMAX ← (B2 − D

2)/D�
3: clear GCD table, clear JS

4: for each j = 1 to D
2 step 2 do

5: if gcd(j, D) = 1 then
6: GCD table[j] = 1
7: add j to JS

8: end if
9: end for

10: clear prime table
11: for each m = MMIN to MMAX do
12: for each j = 1 to D

2 step 2 do
13: if (mD + j or mD − j is prime) then
14: prime table[m, j] = 1
15: end if
16: end for
17: end for
18: Q ← Q0
19: for j = 1 to D

2 step 2 do
20: if GCD table[j] = 1 then
21: store Q in S

{Q = jQ0 = (xjQ0 : : zjQ0)}
22: end if
23: Q ← Q + 2Q0
24: end for

Main computations:
25: d ← 1, Q ← DQ0, R ← MMIN Q
26: for each m = MMIN to MMAX do
27: for each j ∈ JS do
28: if prime table[m,j] = 1 then
29: retrieve jQ0 from table S
30: d ← d · (xRzjQ0 − xjQ0zR)

{R = (xR : : zR)}
31: end if
32: end for
33: R ← R + Q
34: end for
35: q ← gcd(d, N)
36: if q > 1 then
37: return q
38: else
39: return FAIL
40: end if

3 ECM Architecture

3.1 Top-Level View: ECM Units

Our ECM system consists of multiple ECM units working independently in par-
allel, as shown in Figure 1. Each unit performs the entire ECM algorithm for
one number N, one curve E and one initial point P0. All units share the same
global control unit and the same global memory. All components of the system
are located on the same integrated circuit, either an FPGA or an ASIC, depend-
ing on the choice of an implementation technology. The exact number of ECM

124 K. Gaj et al.

units per integrated circuit depends on the amount of resources available in the
given integrated circuit. Multiple integrated circuits may work independently in
parallel, on factoring a single number, or factoring different numbers. All inte-
grated circuits are connected to a central host computer, which distributes tasks
among the individual ECM systems, and collects and interprets results.

The operation of the system starts by loading all parameters required for
Phase 1 of ECM from the host computer to the global memory on the chip.
These parameters include:

1. Number to be factored, N , coordinates of the starting point P0, and the
parameter a24 dependent on the coefficient a of the curve E - all of which
can be separate for each ECM unit.

2. Integer k, used as an input in the ECM Phase 1 (see Algorithm 1.), its size
kN , and the parameter n = �log2 NMAX� + 2, related to the size of the
largest N, NMAX , processed by the ECM units - all of which are common
for all ECM units.

Fig. 1. Block diagram of the top-level unit. Notation: MEM-memory; M1, M2-
multipliers 1 and 2; A/S adder/subtractor.

In the next step, N , the coordinates of P0, and the parameters a24 and n are
loaded to the local memories of the respective ECM units, and the operation
of these units is started. All units operate synchronously, on different data sets,
performing all intermediate calculations exactly at the same time.

The results of these calculations are the coordinates xQ0 and zQ0 of the ending
point Q0 = kP0, separate for each ECM unit. These coordinates are downloaded
to the host computer, which performs the final calculations of Phase 1, q =
gcd(zQ0 , N).

If no factor of N was found, the ECM system is ready for Phase 2. The values
of N , the parameters a24 and n, and the coordinates of the points Q0 obtained as
a result of Phase 1 are already in the local memories of each ECM unit. The host
computer calculates and downloads to the global memory of the ECM system
the following parameters dependent on B2 and D: MMIN , MN , GCD table, and
prime table, defined in Section 2.3. The Phase 2 is then started simultaneously
in all ECM units, and produces as final results, the accumulated product d (see
(3)). These final results are then downloaded to the host computer, where the
final calculations q = gcd(d, N) are performed.

Implementing the ECM of Factoring in Reconfigurable Hardware 125

Note that with this top level organization, there is no need to compute greatest
common divisor or division in hardware. Additionally, the overhead associated
with the transfer of data between the ECM system and the host computer, and
the time of computations in software are both typically insignificant compared to
the time used for ECM computations in hardware, even in the case of a relatively
slow interface and/or a slow microprocessor.

3.2 Medium-Level View: Operations of the ECM Unit

Medium-Level Operations. The primary operation constituting Phase 1 of
ECM is a scalar multiplication Q0 = kP0. As discussed in Section 2.2, this oper-
ation can be efficiently implemented in projective coordinates using Algorithm 2.

In Phase 1, one coordinate of P0 can be chosen arbitrarily, and therefore the
computations can be simplified by selecting zP0 = zP−Q = 1. The remaining
computations necessary to simultaneously compute P + Q and 2P can be inter-
leaved, and assigned to three functional units working in parallel, as shown in
Table 1. The entire step of a scalar multiplication, including both point addition
and doubling can be calculated in the amount of time required for 2 modular
additions/subtractions and 5 modular multiplications. Please note that because
the time of an addition/subtraction is much shorter than the time of a multipli-
cation, two sequential additions/subtractions can be calculated in parallel with
two multiplications.

Table 1. One step of a scalar multiplication, including the concurrent operations P +Q
and 2P , for the case of zP−Q = 1. Notation: A: operations used for addition only, D:
operations used for doubling only, A/D: operations used for addition and doubling.

Adder/Subtractor Multiplier 1 Multiplier 2

A/D: a1 = xP + zP

s1 = xP − zP

A/D: a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s2

1 D: m2 = a2
1

D: s3 = m2 − m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A: a3 = m3 + m4
s4 = m3 − m4

D: x2P = m5 = m1 · m2 D: m6 = s3 · a24

D: a4 = m1 + m6 A: xP+Q = m7 = a2
3 A: m8 = s2

4
A: zP+Q = m9 = m8 · xP −Q D: z2P = m10 = s3 · a4

The storage used for temporary variables a1, . . . , a4, s1, . . . , s4, and m1, . . . , m10
can be reused whenever any intermediate values are no longer needed. With
the appropriate optimization, the amount of local memory required for Phase 1
has been reduced to 11 256-bit operands, i.e., 88 32-bit words. The remaining
portion of this memory is used in Phase 2 of ECM.

In Phase 2, the initial computation

D ·Q0 and MMIN · (D ·Q0)

can be performed using an algorithm similar to the one used in Phase 1. The
only difference is that now, P −Q = Q0 cannot be chosen arbitrarily, and thus,

126 K. Gaj et al.

zP−Q = zQ0 �= 1. As a result, the computations will take the amount of time
required for 2 modular additions/subtractions and 6 modular multiplications.

The second type of operation required in Phase 2 is a simple point addition
P + Q. This operation can be performed in the time of 6 additions/subtractions
and 3 modular multiplications.

Finally, the last medium level operation required in Phase 2 is the accumula-
tion of the product d, as defined in (3). We can rewrite the expression for d as

d ≡
∏
i,n

din ≡
∏
i,n

(xnzi − xizn) (mod N) (4)

where, (xi, zi) ∈ {(x, z) : (x : : z) = jQ0}, (xn, zn) ∈ {(x, z) : (x : : z) = mDQ0}
and GCD table[j]=1 and prime table[m, j]=1. In Table 2, we show how these
operations can be distributed in an optimum way among three arithmetic units
working in parallel. As shown in Table 2, after the initial delay of one mul-
tiplication, the time required to compute and accumulate any two subsequent
values of a partial product xmDQ0zjQ0−xjQ0zmDQ0 is equal to the time of three
multiplications.

Table 2. Accumulation of the partial results
∏
i,n

(xnzi −xizn) (mod N) in Phase 2 (for

fixed n and moving i)

Adder/Subtractor Multiplier 1 Multiplier 2
m1 = xn · z0 m2 = x0 · zn

d0n = m1 − m2 m3 = xn · z1 m4 = x1 · zn

d1n = m3 − m4 d = d · d0n m1 = xn · z2
d = d · d1n m2 = x2 · zn

d2n = m1 − m2 m3 = xn · z3 m4 = x3 · zn

d3n = m3 − m4 d = d · d2n m1 = xn · z4
d = d · d3n m2 = x4 · zn

· · · · · · · · · · · · · · · · · ·

Instructions of the ECM Unit. Each ECM unit is composed of two modular
multipliers, one adder/subtractor, and one local memory. The local memory size
is 512 32-bit words, equivalent to 64 256-bit registers. In Phase 1, only 11 out of
64 256-bit registers are in use. In Phase 2, with D = 210, the entire memory is
occupied.

Every ECM unit forms a simple processor with its own instruction set. Since
all ECM units perform exactly the same instructions at the same time, the
instructions are stored in the global instruction memory, and are interpreted
using the global control unit, as shown in Figure 1. Three sequences of ECM
instructions describe three kinds of medium-level operations:

1. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 1,
i.e., with zP0 = 1 (see Table 1).

2. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 2,
i.e., with zP0 �= 1.

3. Addition P + Q in Phase 2, i.e., with zP0 �= 1.

Implementing the ECM of Factoring in Reconfigurable Hardware 127

Since only 11 256-bit registers are necessary to perform each of the sequences of
instructions given above, only 4 bits are required to encode each input/output
address.

The operation performed by each instruction is determined based on the po-
sition of the instruction in the instruction sequence, and thus does not need to
be encoded in the instruction body. In particular, a group of four instructions
corresponds to one row of Table 1 and is stored in the order: Multiplication 2,
Multiplication 1, Subtraction, and Addition. These four consecutive instructions
are fetched serially, but executed in parallel. The processor progresses to the next
group of four instructions only when all instructions of the previous group have
been completed. If the given arithmetic unit should remain inactive in the given
sequence of four instructions, this inactivity is described using the zero value of
a special flag in the body of the respective instruction.

3.3 Low-Level View: Modular Multiplication and
Addition/Subtraction

The three low level operations implemented by the ECM unit are Montgomery
modular multiplication [13], modular addition, and modular subtraction. Modu-
lar addition and subtraction are very similar to each other, and as a result they
are implemented using one functional unit, the adder/subtractor. For 256-bit
operands, both addition and subtraction take 41 clock cycles.

In order to simplify our Montgomery multiplier, all operations are performed
on inputs X, Y in the range 0 ≤ X, Y < 2N , and return an output S in the
same range, 0 ≤ S < 2N . This is equivalent to computing all intermediate
results modulo 2N instead of N , which increases the size of all intermediate
values by one bit, but shortens the time of computations, and leads to exactly
the same final results as operations mod N .

In our implementation we have adopted the Radix-2 Multiplier Algorithm
with Carry Save Addition, reported earlier in [14]. With this algorithm applied,
the total execution time of a single Montgomery multiplication is equal to n+16
clock cycles. For a typical use within ECM, n is greater than 100, and thus one
addition followed by one subtraction can easily execute in the amount of time
smaller than the time of a single Montgomery multiplication.

4 Implementation Results

Our ECM system has been developed entirely in RTL-level VHDL, and written
in a way that provides portability among multiple families of FPGA devices and
standard-cell ASIC libraries. In the case of FPGAs, the code has been synthesized
using Synplicity Synplify Pro v. 8.0, and implemented on FPGAs using Xilinx
ISE v. 6.3, 7.1 and 8.1. Three different families of FPGA devices have been
targeted, including high-performance families, Virtex E and Virtex II, as well as
a low-cost family, Spartan 3. The design has been debugged and verified using
a test program written in C, and using GMP-ECM [4,5].

128 K. Gaj et al.

Table 3. Execution time of Phase 1 and Phase 2 in the ECM hardware architecture
for 198-bit numbers N, B1 = 960 (which implies number of bits of k, kN = 1375),
B2 = 57000, and D = 30 or D = 210

Operation Notation Formula # clk # clk
cycles cycles
D = 30 D = 210

Elementary operations
Modular addition TA 41

Montgomery TM TM = n + 16 216
multiplication

Point addition and TAD1 TAD1 = 5TM + 2TA + 50 1212
doubling (Phase 1)
Point addition and TAD2 TAD2 = 6TM + 2TA + 50 1428
doubling (Phase 2)

Point addition (Phase 2) TADD2 TADD2 = 3TM + 6TA + 30 924
(Phase 2)

Phase 1
Phase 1 (estimation) TP1 est TP1 ≈ kN · TAD1 1,666,500
Phase 1 (simulation) TP1 sim 1,713,576

Phase 2
Precalculating TjQ TjQ ≈ 2TAD2 7476 49,056

jQ0 +(�D/4� − 2)TADD2 (0.19%) (2.56%)
DQ0 TDQ TDQ ≈ log2(D + 1)�TAD2 7140 11,424

(0.18%) (0.60%)
MMIN DQ0 TMminDQ TMminDQ ≈ 8568 4284

log2(MMIN + 1)�TAD2 (0.22%) (0.22%)
Calculating mDQ0 for TmDQ TmDQ ≈ (MN − 2)TADD2 1,725,108 244,860

MMIN < m ≤ MMAX (44.29%) (12.78%)
Number of ones nprime table 4531 4361

in the prime table
Calculating Td Td ≈ 1.5 · nprime table�(TM + 12) 1,789,883 1,525,886

accumulated product d +MN (TM + TA)/2 (45.95%) (79.67%)
Phase 2 (estimation) TP2 est TP2 ≈ TjQ + TDQ + TMminDQ 3,538,175 1,835,510

+TmDQ + Td (90.84%) (95.84%)
Phase 2 (simulation) TP2 sim 3,895,013 1,915,219

(100%) (100%)

The execution times of Phase 1 and Phase 2 in the ECM hardware architecture
are shown in Table 3. The generic formulas for major component operations
are provided, together with the estimated values of the execution times for the
case of 198-bit numbers N , and the smoothness bounds B1 = 960 and B2 =
57000. The estimated values are compared with the accurate values obtained
from simulation. The difference is less than 10%, and can be attributed to the
time needed for control operations and data movements within local memories,
and between global memory and local memories. Two values of the parameter
D are considered for Phase 2, D = 30 and D = 210. The table proves that
the choice of the parameter D = 210, reduces the execution time of Phase 2
in our architecture by a factor of two compared to the case of D = 30. As
confirmed by exhaustive search, the choice of D = 210 results in the smallest
possible execution time for Phase 2 for the given values of the smoothness bounds

Implementing the ECM of Factoring in Reconfigurable Hardware 129

B1 = 960 and B2 = 57000, assuming execution times of basic operations given
in Table 3. For D = 210, the largest contribution to Phase 2, around 80%, comes
from the calculation of the accumulated product d.

In order to estimate an overhead associated with the transfer of control and
data between a microprocessor and an FPGA, the ECM system with 10 ECM
units has been ported to a reconfigurable computer SRC 6 from SRC Computers
[18], based on 2.8 GHZ Xeon microprocessors and Xilinx Virtex II XC2V6000-6
FPGAs running at a fixed clock frequency of 100 MHz. The data and control
transfer overheads have been experimentally measured to be less than 4% of the
end-to-end execution time for the combined Phase 1 and Phase 2 calculations.

In Table 4, we compare our ECM architecture to an earlier design by Pelzl,
Šimka, et al., presented at SHARCS 2005, and described in subsequent publi-
cations [6,7]. Every possible effort was made to make this comparison as fair as
possible. In particular, we use an identical FPGA device, Virtex 2000E-6. We
also do not take into account any limitations imposed by an external microcon-
troller used in the Pelzl/Šimka architecture. Instead, we assume that the system
could be redesigned to include an on-chip controller, and it would operate with
the maximum possible speed reported by the authors for their ALUs [6,7], i.e., 38
MHz (clock period = 26.3 ns). We also ignore a substantial input/output over-
head reported by the authors, and caused most likely by the use of an external
microcontroller.

In spite of these equalizing measures, our design outperforms the design by
Pelzl, Šimka, et al. by a factor of 9.3 in terms of the execution time for Phase 1,
by a factor of 7.4 in terms of the execution time for Phase 2 with the same value
of parameter D, and by a factor of 15.0 for Phase 2 with the increased value
of D = 210, not reported by Pelzl/Šimka. The main improvements in Phase 1
come from the more efficient design for a Montgomery multiplier (a factor of
5 improvement) and from the use of two Montgomery multipliers working in
parallel (a factor of 1.9 improvement). An additional smaller factor is the ability
of an adder/subtractor to work in parallel with both multipliers, as well as, the
higher clock frequency.

One might expect that such improvement in speed comes at the cost of sub-
stantial sacrifices in terms of the circuit area and cost. In fact, our architecture
is bigger, but only by a factor of 2.7 in terms of the number of CLB slices. Ad-
ditionally, the design reported in [6,7] has a number of ECM units per FPGA
device limited not by the number of CLB slices, but by the number of internal
on-chip block RAMs (BRAMs). If this constraint was not removed, our design
would outperform the design by Pelzl/Šimka in terms of the amount of compu-
tations per Xilinx Virtex 2000E device by a factor of 9.3 · 2.33 = 22 for Phase
1 and 35 for Phase 2. If the memory constraint is removed, the product of time
by area still improves compared to the design by Pelzl and Šimka by a factor of
9.3/2.7 = 3.4 for Phase 1 and 5.6 for Phase 2.

In Table 5, we show the results of porting our design to three families of Xil-
inx FPGAs. For each family, a representative device is selected and used in our
implementation. For each device we determine the exact amount of resources

130 K. Gaj et al.

Table 4. Comparison with the design by Pelzl, Šimka, et al., both implemented using
Virtex 2000E-6

Part 1: Execution Time

Pelzl, Šimka, et al. Our design Ratio
Pelzl, Šimka / ours

clk cycles Time # clk cycles Time # clk cycles Time
Clock period 26.3 ns 18.5 ns

Modular addition 16 0.62 µs 41 0.78 µs 0.6 0.8
Modular subtraction 24 0.42 µs 41 0.78 µs 0.4 0.5

Montgomery 796 20.7 µs 216 4.1 µs 3.7 5.0
multiplication

Point addition & 8200 213.2 µs 1212 23.0 µs 6.8 9.3
doubling (Phase 1)

Phase 1 11,266,800 292.9 ms 1,713,576 31.7 ms 6.6 9.3

Point addition & 8998 233.9 µs 1428 27.1 µs 5.6 8.6
doubling (Phase 2)

Point addition 4920 127.9 µs 924 17.6 µs 4.8 7.3
(Phase 2)

Calculation and 4776 124.2 µs 648 12.3 µs 6.2 10.1
accumulation of
two values of din

(Phase 2)

Phase 2 (D = 30) 20,276,060 527.2 ms 3,895,013 72.1 ms 5.2 7.4

Phase 2 (D = 210) - - 1,915,219 35.5 ms 10.6 15.0

Part 2: Resource usage per one ECM unit

Pelzl, Šimka, et al. Our design Ratio
(D = 210) Ours / Pelzl, Šimka

Number of # % # %
CLB slices N/A 6.0 3102 16 2.7

LUTs 1754 4.5 4933 13 2.8
FFs 506 1.25 3129 8 6.2

BRAMs 44 27 2 1.25 0.045
Maximum 3 7

number of ECM (limited by BRAMs) (limited by CLB slices) 2.33
units per chip

needed per single ECM unit, the maximum number of ECM units per chip,
the maximum clock frequency, and then the maximum amount of ECM com-
putations (Phase 1 and Phase 2) per unit of time. Finally, we normalize the
performance by dividing it by the cost of a respective FPGA device. From the
last row in the table one can see that the low-cost FPGA devices from the Spar-
tan 3 family outperform the high-performance Virtex II devices by a factor of
16, and thus are more suitable for cost effective code breaking computations.

In Table 6, we compare the execution time of Phase 1 and Phase 2 between
the two representative FPGA devices and a highly optimized software imple-
mentation (GMP-ECM) running on Pentium 4 Xeon, 2.8 GHz. GMP-ECM is
one of the most powerful software implementations of ECM and contains mul-
tiple optimization techniques for both Phase 1 and Phase 2 [4,5]. Additionally,
we run our own test program in C that mimics almost exactly the behavior of

Implementing the ECM of Factoring in Reconfigurable Hardware 131

Table 5. Results of the FPGA implementations (resources and timing for one ECM
unit per FPGA device, execution time of Phase 1 and Phase 2 for 198-bit numbers
N, B1 = 960, B2 = 57000, D = 210)

Results Virtex Virtex II Spartan 3
XCV2000E-6 XC2V6000-6 XC3S5000-5

Resources for one ECM unit
- CLB slices 3102 (16%) 3197 (9%) 3322 (10%)

- LUTs 4933 (13%) 5025 (7%) 5134 (8%)
- FFs 3129 (8%) 3102 (5%) 3130 (5%)

- BRAMs 2/160 2/144 2/104
Maximum number of ECM units 7 10 10

per FPGA device
Technology 0.15/0.12 µm 0.15/0.12 µm 90 nm

Cost of an FPGA devicea $1230 $2700 $130
Maximum clock frequency for one ECM unit 54 MHz 123 MHz 100 MHz

Time for Phase 1 and Phase 2 67.2 ms 29.5 ms 36.3 ms

of ECM computations per second 104 339 276
with the maximum number of ECM units

of ECM computations per second per $100 8 13 212
with the maximum number of ECM units

a Approximate cost per unit for a batch of 10,000+ devices

Table 6. Comparison of the execution time between 2.8 GHz Xeon Pentium 4
(w/512KB cache) and two types of FPGA devices Virtex II XC2V6000-6 and Spartan
3 XC3S5000-5 (198-bit number N, B1 = 960, B2 = 57000, D = 210, maximum number
of ECM units per FPGA device)

Virtex II Spartan 3 Pentium 4 Pentium 4
XC2V6000-6 XC3S5000-5 (testing program) (GMP-ECM)

Clock frequency 123 MHz 100 MHz 2.8 GHz
No. of parallel 10 10 1

ECM computations
Time of Phase 1 13.9 ms 17.1 ms 18.3 ms 11.3 ms

Time of Phase 2 15.6 ms 19.2 ms 18.6 ms 13.5 ms

Time of Phase 1 & Phase 2 29.5 ms 36.3 ms 36.9 ms 24.8 ms

of Phase 1 718 584 55 89
computations per second

of Phase 2 642 522 54 74
computations per second

of Phase 1 & 2 339 276 27 40
computations per second

hardware, except for using calls to the multiprecision GMP library for all low
level operations, such as modular multiplication and addition. One can see that
the algorithmic optimizations used in GMP-ECM matter, and reduce the overall
execution time for Phase 1 from 18.3 ms to 11.3 ms (38%), and Phase 2 from
18.6 ms to 13.5 ms (27%).

Interestingly, the execution time for an ECM unit running on Virtex II, 6000E
is only slightly greater than the execution time of GMP-ECM on a Pentium

132 K. Gaj et al.

4 Xeon. At the same time, since this FPGA device can hold up to 10 ECM
units, its overall performance is about 8.5 times higher for combined Phase 1
and Phase 2 computations. However, the current generation of high-end FPGA
devices cost about 10 times as much as comparable microprocessors. Therefore,
the advantage of Virtex II over Pentium 4 disappears when cost is taken into
account. In order to get an advantage in terms of the performance to cost ratio,
one must use a low-cost FPGA family, such as Xilinx Spartan 3. In this case, the
ratio of the amount of computations per chip is about 7 in favor of the biggest
Spartan 3. Additionally this device is actually cheaper than the state-of-the-art
microprocessor, so the overall improvement in terms of the performance to cost
ratio exceeds a factor of 10.

5 Conclusions

A novel hardware architecture for the Elliptic Curve Method of factoring has
been proposed. The main differences as compared to an earlier design by Pelzl,
Šimka, et al. [6,7] include the use of an on-chip optimized controller for Phase
1 and Phase 2 (in place of an external controller based on an ARM processor),
substantially smaller memory requirements, an optimized architecture for the
Montgomery multiplier, the use of two (instead of one) multipliers, and the
ability of all arithmetic units (two multipliers and one adder/subtractor) to
work in parallel. When implemented on the same Virtex 2000E-6 device, our
architecture has demonstrated a speed-up by a factor of 9.3 for ECM Phase 1
and 15.0 for ECM Phase 2, compared to the design by Pelzl/Šimka, et al. At
the same time, memory requirements have been reduced by a factor of 22, and
the requirements for CLB slices have increased by a factor of 2.7. If the same
optimizations regarding the memory usage and the use of an internal controller
were applied to the design by Pelzl/Šimka, our architecture would still retain an
advantage in terms of the performance to cost ratio by a factor of 3.4 for Phase
1 and 5.6 for Phase 2.

Our architecture has been implemented targeting two additional families of
FPGA devices, Virtex II and Spartan 3. Our analysis revealed that the low-cost
Spartan 3 devices outperformed the high-performance Virtex II devices in terms
of the performance to cost ratio by a factor of about 16.

We have also compared the performance of our hardware architecture im-
plemented using Virtex II XC2V6000-6 and Spartan 3 XC3S5000-5 with the
optimized software implementation running on Pentium 4 Xeon, with a 2.8 GHz
clock. Our analysis shows that the high performance FPGA device outperforms
the same generation microprocessor by a factor of about 8.5, but looses its advan-
tage when the cost of both devices is taken into account. On the other hand, the
low-cost FPGA device Spartan 3 achieves about an order of magnitude advan-
tage over the same generation Pentium 4 processor in terms of both performance
and performance to cost ratio. This feature makes low-cost FPGA devices an
appropriate basic building block for cost-optimized hardware for breaking cryp-
tographic systems, which is consistent with the conclusions of other research
groups reported earlier in the literature [15].

Implementing the ECM of Factoring in Reconfigurable Hardware 133

References

1. J.M. Pollard, “Factoring with cubic integers”, Lecture Notes in Mathematics 1554,
pp. 4-10, Springer, 1993.

2. A.K. Lenstra and H.W. Lenstra, The Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554, Springer, 1993.

3. Factorization of RSA-200, F. Bahr, M. Boehm, J. Franke, T. Kleinjung, http:
crypto-world.com/announcements/rsa200.txt.

4. P. Zimmermann, “20 years of ECM,” preprint, 2005, http://www.loria.fr/∼
zimmerma/papers/ecm-submitted.pdf.

5. J. Fougeron, L. Fousse, A. Kruppa, D. Newman, and P. Zimmermann, “GMP-
ECM”, http://www.komite.net/laurent/soft/ecm/ecm-6.0.1.html, 2005.

6. M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovsky, V. Fischer, and C. Paar, “Hardware factorization based elliptic curve
method”, IEEE Symposium on Field-Programmable Custom Computing Machines
- FCCM’05, Napa, CA, USA, 2005.

7. J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovsky, V. Fischer, and C. Paar, “Area-time efficient hardware architecture for
factoring integers with the elliptic curve method”, IEE Proceedings on Information
Security, vol . 152, no. 1, pp. 67-78, 2005.

8. D. Hankerson, A.J. Menezes, and S.A. Vanstone, Guide to Elliptic Curve Cryptog-
raphy, Springer–Verlag, 2004.

9. H.W. Lenstra, “Factoring integers with elliptic curves”, Annals of Mathematics,
vol. 126, pp. 649–673, 1987.

10. R.P. Brent, “Some integer factorization algorithms using elliptic curves”, Aus-
tralian Computer Science Communications, vol. 8, pp. 149–163, 1986.

11. P.L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-
tion”, Mathematics of Computation, vol. 48, pp. 243–264, 1987.

12. P.L. Montgomery, “An FFT extension of the elliptic curve method of factorization”,
Ph.D. Thesis, UCLA, 1992.

13. P.L. Montgomery, “Modular multiplication without trivial division”, Mathematics
of Computation, vol. 44, pp. 519–521, 1985.

14. C. McIvor, M. McLoone, J. McCanny, A. Daly, and W. Marnane, “Fast Mont-
gomery modular multiplication and RSA cryptographic processor architectures”,
Proc. 37th IEEE Computer Society Asilomar Conference on Signals, Systems and
Computers, Monterey, USA, pp. 379-384, Nov. 2003.

15. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, M. Schimmler, “How to break
DES for 8,980 Euro”, 2nd Workshop on Special-purpose Hardware for Attacking
Cryptographic Systems - SHARCS 2006, Cologne, Germany, April 3-4, 2006.

16. J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, and C. Stahlke, “SHARK :
A realizable special hardware sieving device for factoring 1024-bit integers”, Cryp-
tographic Hardware and Embedded Systems - CHES 05, LNCS 3659, pp. 119–130,
Springer-Verlag, 2005.

17. W. Geiselmann, F Januszewski, H Koepfer, J. Pelzl, and R. Steinwandt, “A sim-
pler sieving device: Combining ECM and TWIRL”, Cryptology ePrint Archive,
http://eprint.iacr.org/2006/109.

18. SRC Computers, Inc., http://www.srccomp.com.
19. R.D. Silverman and S.S. Wagstaff,“A practical analysis of the elliptic curve factor-

ing algorithm”, Mathematics of Computation, vol. 61, no. 203, pp. 465-462, 1993.

Implementing Cryptographic Pairings on
Smartcards

Michael Scott, Neil Costigan, and Wesam Abdulwahab

School of Computer Applications
Dublin City University

Ballymun, Dublin 9, Ireland
mike@computing.dcu.ie

Abstract. Pairings on elliptic curves are fast coming of age as cryp-
tographic primitives for deployment in new security applications,
particularly in the context of implementations of Identity-Based En-
cryption (IBE). In this paper we describe the implementation of various
pairings on a contemporary 32-bit smart-card, the Philips HiPerSmartTM,
an instantiation of the MIPS-32 based SmartMIPSTM architecture. Three
types of pairing are considered, first the standard Tate pairing on a
nonsupersingular curve E(Fp), second the Ate pairing, also on a non-
supersingular curve E(Fp), and finally the ηT pairing on a supersingular
curve E(F2m). We demonstrate that pairings can be calculated as effi-
ciently as classic cryptographic primitives on this architecture, with a
calculation time of as little as 0.15 seconds.

Keywords: Elliptic curves, pairing-based cryptosystems, fast
implementations.

1 Introduction

The appreciation that the Weil and Tate pairings can be used for constructive
cryptographic application has caused a minor revolution in cryptography. After
a flurry of research results involving new protocols based on new but plausible
security assumptions, it is time for the first commercial applications to start
appearing. The final, and perhaps most demanding, niche for the implementation
of many cryptographic protocols is in the smart-card, a constrained computing
environment in which private keys can be adequately protected. It is the purpose
of this paper to demonstrate that such implementations are perfectly feasible.

In the beginning it was original research by Menezes, Okamoto and Vanstone
[27], and by Frey et al. [16], which pointed out that the Weil and Tate pairings
could be used for cryptanalytic purposes, undermining the security of certain
types of elliptic curves, some of which had been suggested as suitable vehicles
for the implementation of Elliptic Curve Cryptography (ECC). However this
was followed by a prolonged hiatus before Sakai, Ohgishi and Kasahara [33]
and Joux [23] independently observed that these very same condemned elliptic
curves had in fact useful cryptographic properties. Almost immediately Boneh

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 134–147, 2006.
c© International Association for Cryptologic Research 2006

Implementing Cryptographic Pairings on Smartcards 135

and Franklin famously came up with a very simple solution to the problem of
Identity-Based Encryption [10], an open problem in cryptography since the idea
was first mooted by Shamir [37].

Since then there has been a veritable flood of ideas, of new protocols for
identity-based encryption [10], [32], short signatures [11] and identity-based sign-
cryption [26] to mention but a few. We do not attempt to provide a complete
history here, but instead refer the interested reader to the pairing-based crypto-
lounge [2].

There have been two previously reported implementations of pairings on
smartcards, the first in the form of an announcement by Gemplus [17], and
the second in a paper by Bertoni et al. [8]. There have also been proposals for
implementations, such as that by Granger et al. [18], which would require spe-
cial supporting hardware. Bertoni et al. report a timing of 752 milliseconds on
a 33MHz ST22 32-bit smartcard [8], for the same level of security as considered
here.

2 Pairing-Friendly Elliptic Curves

When it comes to the selection of elliptic curves suitable for pairing-based cryp-
tography, one is currently limited to either the supersingular curves or certain
special non-supersingular curves of prime characteristic. A basic requirement is
that the selected elliptic curve should have a small embedding degree, or security
multiplier, denoted as k. In this paper it will be assumed that k is even.

So for cryptographic purposes a pairing-friendly elliptic curve over a finite
field consists of the finite set of points (including a point at infinity) on a curve
which can be described by one of

E(Fpm) : y2 = x3 + Ax + B

E(F2m) : y2 + y = x3 + x + b

E(F3m) : y2 = x3 − x + b

In the first case the curve can be either supersingular, with an embedding
degree of k = 2, or nonsupersingular with m = 1 and any finite embedding
degree [9]. In the second case the curve is supersingular and has a maximum
embedding degree of k = 4, where b = 0, 1. In the third case the curve is also
supersingular with a maximum embedding degree of k = 6, and where b = ±1.

As is common in elliptic curve cryptography over E(Fq), one wants to work
with a group of points of prime order r, where r | q + 1 − t the total number
of points on the curve (denoted #E), and where t is the trace of the Frobenius,
with |t| � 2

√
q (the Hasse condition) [27]. These points then form a prime order

cyclic abelian group. This group size needs to be large enough to avoid various
generic attacks on the elliptic curve discrete logarithm problem, and therefore
at a minimum r should be 160-bits. The embedding degree k is related to this
group of points on the elliptic curve by the condition that k is the smallest
positive integer such that r | (qk − 1). A further security requirement for these

136 M. Scott, N. Costigan, and W. Abdulwahab

elliptic curves is that Fqk , where q = p, 2m or 3m, should be an extension field
of sufficient size to prevent an index calculus attack on the discrete logarithm
problem in that field. So at a minimum k. lg(q) should be 1024 bits.

So we have the interesting constraints that r can at most be about as big as
q (due to the Hasse condition), with lg(r) a minimum of 160, and that k. lg(q)
should then be at least 1024. One obvious feasible solution would be to choose
lg(r) ≈ 170, r = q + 1 − t, and k = 6 so that 6. lg(q) ≈ 1024. This explains
the early popularity of curves of characteristic 3 with k = 6. This also has the
advantage of keeping the size of the elliptic curve as small as those required for
standard ECC while still attaining the minimum levels of index calculus security.
However another valid and popular choice would be to use a supersingular [10]
or non-supersingular curve [34] over Fp, with lg(r) = 160, lg(p) = 512 and k = 2.

In the case of fields of low characteristic the security situation is rather unclear.
As first pointed out by Coppersmith [14], the discrete logarithm problem in F2m

is somewhat easier than it is over a prime characteristic field. According to
the current record holder [38], who was able to calculate discrete logarithms
for m = 607, it would require m ≈ 1200 to obtain a greater level of security
than 1024-bit RSA. Interpolating into the tables provided by Lenstra [24] would
suggest that 1300 bits would be sufficient. Page, Smart and Vercauten [31] have
observed that since the record for prime field discrete logarithms is 398 bits [25],
607/298 = 1.53. So perhaps 50% more bits for characteristic 2 might be about
right. We believe that our choice of m = 379 bits and hence 4m = 1516 bits, is
an appropriately conservative one.

A pairing is denoted as e(P, Q), where P is taken as a point of order r,
usually on E(Fq), and Q is a point on E(Fqk) linearly independent of P . The
pairing evaluates naturally as an element of order r in Fqk . Its most important
cryptographic property is its bilinearity

e(aP, bQ) = e(P, Q)ab

If Q should be linearly dependent on P and P ∈ E(Fq), then the pairing is
degenerate and e(P, Q) = 1, and so for example e(P, P) = 1. On a supersingular
curve it is usual to exploit the existence of a distortion map ψ(.), which maps a
point from E(Fq) to a linearly independent point on E(Fqk). Now both P and Q
can be linearly dependent points from the same group of order r on E(Fq), and
the distorted pairing can be calculated as ê(P, Q) = e(P, ψ(Q)). This pairing has
the additional and sometimes useful property that ê(P, Q) = ê(Q, P), which is
implied by the condition that ê(P, P) �= 1. As our chosen smart-card has special
support for multiprecision arithmetic over Fp, and over F2m , we will restrict
our attention here to these two cases, although the field F3m has undoubted
advantages (with its nice embedding degree k = 6) and has received considerable
attention in the context of pairing based cryptography [18].

3 The SmartMIPSTM Architecture

The SmartMIPSTM specification is of an instruction-set enhanced version of
the popular RISC MIPS32 architecture [1]. The enhancements are designed to

Implementing Cryptographic Pairings on Smartcards 137

improve the performance of popular cryptographic algorithms, and are largely
those envisaged and described by Großschädl and Savas [19]. It is interesting to
note that this new generation of 32-bit smartcards do not employ a classic cryp-
tographic co-processor, with its restricted and specialised set of operations, but
rather use carefully selected instruction set enhancements, which when combined
with the improved overall performance of the 32-bit chip, permit standard cryp-
tographic algorithms to be executed with sufficient speed. It is also fortunately
flexible enough to efficiently support new algorithms that were not envisaged
when the processor was being designed.

The main idea is that an extended ACX|HI|LO triple of registers can be
used to accumulate the partial products that arise when employing the pop-
ular Comba/Montgomery technique for multi-precision multiplication [19]. This
is supported by a modified MADDU instruction which carries out an unsigned
integer multiplication and addition to the triple register. Another important
addition to the instruction set is the inclusion of a MADDP instruction which
supports binary polynomial multiplication, and which therefore supports field
multiplication over F2m . For many years algorithms over this field have been
disadvantaged with respect to the field Fp by the absence of such an instruction
in standard processors. The addition of this instruction finally “levels the play-
ing field”, and allows the full potential of fast arithmetic over the field F2m to
be realised.

One disadvantage of the MIPS architecture for multi-precision integer arith-
metic is the lack of a carry flag, and specifically an add-with-carry ADC instruc-
tion. In fact it takes 5 instructions just to process one digit in a multi-precision
integer addition in order to handle the carry-in and carry-out correctly, not in-
cluding memory loads and stores. Note however that this is not an issue in F2m

as in this context addition is carry-free.
When considering the performance of any processor the CPU performance

equation [20] is relevant

CPU Time =
Number of Instructions× Average Clocks Per Instruction

Clock Speed in cycles per second

As instantiated by the Philips HiPerSmartTM our targeted processor is char-
acterised by

– A five stage pipeline
– Maximum clock speed of 36MHz
– 2k Instruction cache
– 256k Flash memory
– 16k RAM memory

One of the most significant attributes from a programming point of view is
the small size of the 2-way associative instruction cache. The MIPS processor as
described in [20] is very much designed as a classic RISC processor, which can
benefit enormously from loop-unrolling as is indeed the default behaviour of

138 M. Scott, N. Costigan, and W. Abdulwahab

GCC -O3 compiler optimization. However this is entirely inappropriate with such
a small instruction cache. Cache misses are very expensive, and are the main rea-
son for increased CPI (Clocks-Per-Instruction), leading to poorer performance.
Ruthless loop unrolling can dramatically decrease overall instruction count, but
only at the cost of much poorer CPI.

While the majority of instructions can complete one pipeline stage per clock
tick, certain combinations of instructions will cause a stall in the pipeline. Most of
these stalls can be identified and avoided by instruction scheduling (re-ordering).
A typical cause for such a stall might be the latency of a multiply instruction
like MADDU. However as pointed out in [19] these potential performance hits can
be avoided if we use the right algorithm. While such pipeline stalls increase CPI,
they do so in a fashion which is independent of the clock speed. Cache capacity
misses must happen given the small size of the cache, and furthermore conflict
misses are inevitable give that the cache is only 2-way associative. These cache
misses exact a cost in wasted cycles which can increase dramatically with clock
speed, as the access time of main memory becomes much slower than the 1-cycle
access time of a cache hit.

4 Calculating the Pairing

We consider the scenario in which a smart-card is required to carry out IBE de-
cryption, using either the IBE method of Boneh and Franklin [10] or the method
of Sakai and Kasahara as described in [12]. In both cases the critical calculation
to recover the plaintext is of the pairing e(A, B), where A is the recipient’s pri-
vate and constant key, and B is a public and variable value associated with the
ciphertext. For provable chosen ciphertext security an additional point multipli-
cation is required in both cases, but this is multiplication of a constant point
and so fast methods can be used. We omit a formal description of either scheme
and instead refer the interested reader to the referenced material.

Much effort has been made to optimize the Tate pairing. In this work we
will describe an implementation of the pairing over a prime order finite field Fp

using the BKLS algorithm [4], as described by Scott [34], an implementation of
the recently discovered Ate pairing [21], and an implementation over the small
characteristic field F2m using the ηT pairing approach described in [3]. In all cases
we will exploit the setting in which the pairing is to be calculated to maximize
performance.

4.1 The BKLS Pairing Algorithm

All algorithms for calculating a pairing are elaborations and improvements of
the basic Miller algorithm [29]. This particular variation [4] has general appli-
cability to pairing-friendly elliptic curves E(Fp), either supersingular or non-
supersingular. In this case we choose to use an embedding degree of 2 with a
non-supersingular curve, very much following the description given in [34]. We
use the same non-supersingular curve as described there, where p is a 512-bit

Implementing Cryptographic Pairings on Smartcards 139

prime number and r is the low Hamming weight Solinas prime 2159+217+1. The
point Q is handled as a point on the twisted curve E′(Fp). Since p = 3 mod 4,
elements of the extension field Fp2 such as m can be described as mR + imI ,
where i is the “imaginary” square root of the quadratic non-residue −1.

The helper function g(.) calculates the line functions required by Miller’s al-
gorithm, and returns a value in Fp2 . This function in turn requires a function
A.add(B) which adds the elliptic curve points A = A + B using standard meth-
ods, and returns the slope of the line joining A and B.

Algorithm 1. Function g(.)
Input: A, B, Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return yi − λi(xQ + xi) − i.yQ

Algorithm 2. Computation of the Tate pairing e(P, Q) on E(Fp) : y2 = x3 +
Ax + B where P is a point of prime order r on E(Fp) and Q is a point on the
twisted curve E′(Fp)
Input: P, Q
1: m = 1
2: A = P
3: n = r − 1
4: for i ← �lg(r)� − 1 downto 0 do
5: m = m2 · g(A,A, Q)
6: if ni = 1 then m = m · g(A,P, Q)
7: end for
8: m = m̄/m
9: return V(p+1)/r(mR)

After the Miller loop, the value of m needs to be subject to a final exponentia-
tion to the power of (p−1)(p+1)/r. This is done in two parts – first we calculate
mp−1 using a conjugation and a division, and then we use a Lucas sequence to
raise this value to the power of (p+1)/r. The returned value is thus compressed
to a single element in Fp [36].

Observe that the parameter P is in effect being multiplied by its group order
r using a standard double-and-add method. The points generated as a result of
this process (the xi and yi in the g(.) function), and the associated line slopes λi,
can be precalculated and stored if P is a constant, which it will be in the context
under consideration here – in fact its the IBE private key of the card-holder.

Therefore we will precompute and store the points (xi, yi, λi) that arise in
the multiplication of P by r. This results in a much simplified algorithm, where
the expensive A.add(B) function is no longer required and curve points can be
represented using simple affine coordinates.

140 M. Scott, N. Costigan, and W. Abdulwahab

4.2 The Ate Pairing Algorithm

The Ate pairing [21] is calculated faster than the Tate pairing over non-
supersingular curves E(Fp) if lg(t)/ lg(r) is less than one, as it uses a truncated
Miller loop of length lg(t) instead of lg(r) as required above. It was once consid-
ered “natural” when implementing the Tate pairing on non-supersingular curves
with embedding degree k ≥ 4, that the first parameter P should be on the the
curve defined over the base field E(Fp) and that the second parameter Q should
be a point on a twist of the curve E′(Fpk/d), where d can always be 2 [6], but
can be as high as 6 for certain curves, such as the BN curves [7]. The authors
of [21] however observed that, rather counter-intuitively, the Ate pairing idea
works best with P on E′(Fpk/d) and Q on E(Fp). In our application this swap-
ping of roles is not an important issue, as P will be fixed and its multiples can
be precalculated and stored as above. More important is the fact that we can
get away with a possibly much shorter Miller loop, and still calculate a viable
bilinear pairing.

To exploit the Ate pairing we first need a family of elliptic curves which
have the required properties. Not only must they be pairing-friendly, but to get
the full advantage we want lg(t) < lg(r). The best that can be hoped for is that
lg(t)/ lg(r) = 1/ deg(Φk(x)), where Φk(x) is the k-th cyclotomic polynomial [21].
So for a k = 12 curve such as that described in [5], the loop may be shortened
to as little as one-quarter size. However for our targeted level of security, k = 12
is too big. Consider instead the family of elliptic curves defined by

x = (Dz2 − 3)/4, t = x + 1, r = x2 + 1
p = (x3 + 13x2 + 26x + 13)/25, #E = ((x + 13)r)/25

It can easily be verified that these parameters define a family of pairing-
friendly elliptic curve with embedding degree k = 4, and with complex multipli-
cation by −D. Note that r = Φ4(x), and that lg(t)/ lg(r) = 0.5 which is optimal,
and so we can leverage the maximum advantage from the Ate pairing idea with a
half-length loop. The actual parameters of a curve in the form y2 = x3 +Ax+B
can then be found using the method of complex multiplication [22]. By choosing
random z such that p is prime and 256 bits in length, then we can easily find
a value for r which has a 160-bit prime divisor. In this way the conditions that
k. lg(p) = 1024 and lg(r) = 160 can be satisfied. For our particular curve (Ap-
pendix A), t−1 has a relatively low Hamming weight of 31, and the discriminant
D = 259. The full algorithm can now be given

Algorithm 3. Function g(.)
Input: A, B, Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return i2yQ − i(i2yi/2 + λi(i2xi/2 + xQ))

Implementing Cryptographic Pairings on Smartcards 141

Algorithm 4. Computation of the Ate pairing a(P, Q) on E(Fp) : y2 = x3 +
Ax + B where P is a point of prime order r on the twisted curve E′(Fp2) and Q
is a point on the curve E(Fp)
Input: P, Q
1: m = 1
2: A = P
3: n = t − 1
4: for i ← �lg(n)� − 1 downto 0 do
5: m = m2 · g(A,A, Q)
6: if ni = 1 then m = m · g(A,P, Q)
7: end for
8: m = m̄/m
9: return V(p2+1)/r(mR)

In this case the function g(.) returns a value in Fp4 and the Ate pairing returns
a compressed value in Fp2 . Since we choose p = 5 mod 8, −2 is a quadratic non-
residue in Fp and

√−2 is a quadratic non-residue in Fp2 , elements in Fp4 can be
represented as a pair of elements in Fp2 , m = mR + imI with i = (−2)1/4 [30]. In
the function g(.), points on the twisted curve E′(Fp2) must first be converted to
coordinates on E(Fp4), which explains the apparent complexity of this function.
However given that these can all be precalculated, this is not an issue in practise.

4.3 The BGOhES Pairing Algorithm

On the supersingular curve

E(F2m) : y2 + y = x3 + x + 1

where m is prime and m = 3 mod 8, the number of points is 2m + 2(m+1)/2 + 1
[3]. For our choice of m = 379, this value is a prime. A suitable irreducible
polynomial for the field F2379 is x379 +x315 +x301 +x287 +1. This supersingular
curve has an embedding degree of k = 4. To represent the quartic extension field
F24m , we use the irreducible polynomial X4 + X + 1.

Recall that in a characteristic 2 field with a polynomial basis, field squarings
are of linear complexity. Furthermore on this supersingular curve, point dou-
blings require only cheap field squarings (using affine coordinates). Therefore we
can anticipate that calculations on this curve will be very efficient.

A distortion map for this particular supersingular curve is ψ(x, y) = (x +
s2.y + sx + t), where t = X and s = X + X2 [27]. A major insight from [3]
is that the Tate pairing can be calculated from the more primitive ηT pairing,
which requires a half-length loop compared to the Duursma-Lee method [15],
with considerable computational savings. The algorithm as described benefits
from unrolling the loops times 2, in which case each iteration costs just seven
base field multiplications. The final exponentiation looks a little complex, but in
fact can be accomplished with only 4 extension field multiplications, (m + 1)/2
cheap extension field squarings and some nearly-free Frobenius operations.

142 M. Scott, N. Costigan, and W. Abdulwahab

Algorithm 5. Computation of ê(P, Q) on E(F2m) : y2 + y = x3 + x + b : m ≡ 3
(mod 8) case
Input: P, Q
Output: ê(P, Q)
1: let P = (xP , yP), Q = (xQ, yQ)
2: u ← xP + 1
3: f ← u · (xP + xQ + 1) + yP + yQ + b + 1 + (u + xQ)s + t
4: for i ← 1 to (m + 1)/2 do
5: u ← xP , xP ← √

xP , yP ← √
yP

6: g ← u · (xP + xQ) + yP + yQ + xP + (u + xQ)s + t
7: f ← f · g
8: xQ ← x2

Q, yQ ← y2
Q

9: end for
10: return f (22m−1)(2m−2(m+1)/2)+1)(2(m+1)/2+1)

Since P will be fixed, all the square roots in this algorithm can be precalculated
and stored with some savings. With this modification, our implementation is
largely the same as that described in [3].

5 Implementation Issues

Our implementation makes use of the MIRACL multiprecision library [35]. The
current version (5.01) of this library is fortunately friendly towards those at-
tempting implementations in a constrained environment, like a smartcard. Typ-
ically a big number library forces allocation of memory for big variables from the
heap. In a constrained environment however a heap is a luxury that often cannot
be afforded. Therefore allocation from the stack is appropriate, and is supported.
Header file definitions were used to cut down the amount of code required. This
was supplemented with some manual pruning of unwanted functionality.

For optimal performance MIRACL includes a mechanism for generating un-
rolled Comba code for modular multiplication, squaring, and reduction with
respect to a fixed modulus, including specific support for the SmartMIPSTM

processor. However as pointed out above, fully unrolled code is inappropriate in
an environment where the instruction cache is very small. Therefore we found
it necessary to take the automatically generated (and correct) code, and to roll
it up again into tight loops, much as described in [19]. Extra manually written
inline assembly code was provided to support fast squaring in F2m using the
MADDP instruction, and short unrolled assembly language code was provided for
fast field addition in F2m . With these exceptions, the rest of the code was written
in standard C.

Precomputation was used to advantage in all cases. The amount of ROM
required to store precomputed values was 31232, 25036 and 18432 bytes respec-
tively, for the Tate, Ate and ηT pairing. The RAM requirement in all cases was
comfortably with the 16K available, typically requiring only half of that. As
stack memory is inherently re-usable, a simple restructuring of the programs
could reduce this requirement still further.

Implementing Cryptographic Pairings on Smartcards 143

6 Results

We present our results in a series of tables. As well as the timings for the pairings,
we include timings for (non-fixed) point multiplications and pairing exponentia-
tions, as these as often relevant to pairing based protocols. For each of the three
implementations we assume projective coordinates are used for point multiplica-
tion, as field inversions which are required for affine point addition are very slow
on the smartcard. The point multiplication is taken over the base field E(Fq)
using a random 160-bit multiplier. Field exponentiation is of the pairing value
to a random 160-bit exponent. For the E(Fp) cases we use Lucas exponentiation
(also known as a “Montgomery powering ladder”) of the compressed pairing,
while for the E(F2379) case we use standard windowed exponentiation, as we
believe these to be the fastest methods in each case.

Our hardware emulator is only cycle accurate up to 20.57MHz, and so we
estimate the timings for the maximum supported speed of 36MHz, using linear
interpolation for CPI. For comparision purposes we include figures for 1024-
bit RSA decryption (using the Chinese Remainder Theorem), and timings on a
standard PC (note that these are faster than previously reported timings, due
to their implementation in C rather than C++).

Table 1. Instructions required (% icache misses) - Philips HiPerSmartTM

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3705344 (10.9%) 7753341 (7.3%) 8156645 (15.8%)

Point Mult. 2589569 (9.6%) 7418768 (6.1%) 2663217 (17.5%)

Field exp. 1551117 (11.4%) 1364124 (7.2%) 1614016 (15.7%)

RSA decryption 4372772 (3.4%)

Table 2. Clock cycles required/CPI/time in seconds @ 9 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4311454/1.16/0.48 9104450/1.17/1.01 10860479/1.33/1.21

Point Mult. 3118344/1.20/0.35 8529176/1.15/0.95 3739596/1.40/0.42

Field exp. 1924596/1.24/0.21 1593313/1.17/0.18 2122221/1.31/0.24

RSA decryption 4740271/1.08/0.53

The most surprising and significant observation to be made is that the ηT

pairing can be calculated just about as quickly as a standard RSA decryption, for
approximately the same level of security. As expected CPI goes up as clock speed
increases, as we are punished more heavily for cache misses. This has less impact
on algorithms that spend more time in tight loops, and hence disadvantages the
ηT and Ate pairings with their more elaborate structures and higher extension
fields. Note that RSA, due to its simplicity, suffers least from increasing CPI.

144 M. Scott, N. Costigan, and W. Abdulwahab

Table 3. Clock cycles required/CPI/time in seconds @ 20.57 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4590712/1.24/0.22 9755457/1.26/0.47 12207440/1.50/0.59

Point Mult. 3391127/1.31/0.16 9049457/1.22/0.44 4278858/1.61/0.21

Field exp. 2118707/1.37/0.10 1705365/1.25/0.08 2374885/1.47/0.12

RSA decryption 4880323/1.12/0.24

Table 4. Clock cycles required/CPI/time in seconds @ 36MHz (estimated)

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4891054/1.32/0.14 10467010/1.35/0.29 13621597/1.67/0.38

Point Mult. 3677188/1.42/0.10 9570210/1.29/0.27 4847055/1.82/0.13

Field exp. 2326675/1.50/0.06 1814285/1.33/0.05 2630846/1.63/0.07

RSA decryption 5072415/1.16/0.14

Table 5. Timings in milliseconds on 3GHz Pentium IV

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3.88 2.97 3.16

Point Mult. 1.82 3.08 1.17

Field exp. 1.14 0.54 0.62

RSA decryption 1.92

7 Does Pairing Delegation Make Sense?

The idea of securely delegating the calculation of a pairing to the terminal was
considered in [13]. This was motivated by the assumption that the pairing calcu-
lation might be too resource consuming to be carried out on a smartcard. Here
we present a slightly modified version of the method described in Section 6.2
of [13]. In the context of IBE decryption the calculation of e(A, B) involves a
constant and private A (in fact the IBE private key), and a public B (in fact part
of the ciphertext). It is assumed that the smartcard also has stored a random
secret point Q and the value of e(A, Q).

– The card generates random x,y,and z, and queries the following pairings to
the terminal.

α1 = e(x−1A, B), α2 = e(yA, z(B + Q))

– The card computes
eAB = αx

1

Implementing Cryptographic Pairings on Smartcards 145

– The card checks that

αr
1 = 1, αxyz mod r

1 = α2/e(A, Q)yz mod r

If successful the protocol outputs e(A, B) = eAB. Observe that two of the
point multiplications are of the fixed point A. These may be calculated offline,
or at the very least can benefit from fast methods for fixed-point multiplication.
Also e(A, Q)yz can be precalculated, or calculated using fixed-base exponentia-
tion [28]. So the major online cost will be of 3 exponentiations and one point
multiplication. ¿From the tables above it is clear that the ηT pairing is so fast
that delegation is unlikely to be beneficial. The standard Tate pairing (k = 2)
implementation suffers badly as point multiplication is over a large 512-bit field.
However in the case of our Ate pairing implementation, with its smaller 256-bit
field size, it appears that delegation might be beneficial.

8 Conclusions

We have demonstrated for the first time that cryptographic pairings can be im-
plemented just as quickly as classic public key cryptographic operations on a
standard smartcard, hence clearing the way for their more widespread adoption.
The issue of pairing delegation has been investigated, and it appears that de-
spite the efficiency of our implementations, it may be advantageous in certain
circumstances.

References

1. http://www.mips.com/content/Products/Architecture/SmartMIPSASE/
ProductCatalog/P SmartMIPSASE/productBrief.

2. P. S. L. M. Barreto. The pairing-based crypto lounge. http://paginas.terra.
com.br/informatica/paulobarreto/pblounge.html .

3. P. S. L. M. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott. Efficient pairing
computation on supersingular abelian varieties. Cryptology ePrint Archive, Report
2004/375, 2004. http://eprint.iacr.org/2004/375 .

4. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer-Verlag, 2002.

5. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks – SCN’2002,
volume 2576 of Lecture Notes in Computer Science, pages 263–273. Springer-
Verlag, 2002.

6. Paulo S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC’2003, volume 3006 of Lecture
Notes in Computer Science, pages 17–25, Ottawa, Canada, 2003. Springer-Verlag.

7. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
Cryptology ePrint Archive, Report 2005/133, 2005. http://eprint.iacr.org/
2005/133.

146 M. Scott, N. Costigan, and W. Abdulwahab

8. G. M. Bertoni, L. Chen, P. Fragneto, K. A. Harrison, and G. Pelosi. Comput-
ing tate pairing on smartcards, 2005. http://www.st.com/stonline/products/
families/smartcard/ches2005 v4.pdf.

9. I. F. Blake, G. Seroussi, and N. P. Smart, editors. Advances in Elliptic Curve
Cryptography, Volume 2. Cambridge University Press, 2005.

10. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

11. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – Asiacrypt’2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532. Springer-Verlag, 2002.

12. L. Chen and Zhaohui Cheng. Security proof of Sakai-Kasahara’s identity-based
encryption scheme, 2005. http://eprint.iacr.org/2005/226 .

13. B. Chevallier-Mames, J-S. Coron, N. McCullagh, D. Naccache, and M. Scott. Secure
delegation of elliptic-curve pairing, 2005. http://eprint.iacr.org/2005/150 .

14. D. Coppersmith. Fast evaluation of logarithms in fields of characteristics two. In
IEEE Transactions on Information Theory, volume 30, pages 587–594, 1984.

15. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer-Verlag, 2003.

16. G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,
45(5):1717–1719, 1999.

17. Gemplus. ID based Cryptography and Smartcards, 2005. http://www.gemplus.
com/smart/rd/publications/pdf/Joy05iden.pdf.

18. R. Granger, D. Page, and M. Stam. Hardware and software normal basis arithmetic
for pairing based cryptography in characteristic three. Cryptology ePrint Archive,
Report 2004/157, 2004. http://eprint.iacr.org/2004/157.

19. Johann Großschädl and Erkay Savas. Instruction set extensions for fast arithmetic
in finite fields GF(p) and GF(2m). In CHES, pages 133–147, 2004.

20. J. Hennessy and D. Patterson. Computer Architecture - a Qualitative Approach
(third edition). Morgan Kaufmann, 2003.

21. F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. Cryptology
ePrint Archive, Report 2006/110, 2006. http://eprint.iacr.org/2006/110.

22. IEEE Computer Society, New York, USA. IEEE Standard Specifications for Public-
Key Cryptography – IEEE Std 1363:2000, 2000.

23. A. Joux. A one-round protocol for tripartite Diffie-Hellman. In Algorithm Number
Theory Symposium – ANTS IV, volume 1838 of Lecture Notes in Computer Science,
pages 385–394. Springer-Verlag, 2000.

24. A. K. Lenstra. Unbelievable security. Matching AES security using public key
systems. In Advances in Cryptology – Asiacrypt 2001, volume 2248, pages 67–86.
Springer-Verlag, 2001.

25. R. Lercier. Discrete logarithms in GF(p). Posting to NMBRTHRY List, 2001.
26. N. McCullagh and P. S. .L. M. Barreto. Efficient and forward-secure identity-

based signcryption. Cryptology ePrint Archive, Report 2004/117, 2004. http://
eprint.iacr.org/2004/117

27. A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-
ers, 1993.

28. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC Press, Boca Raton, Florida, 1996. URL: http://cacr.
math.uwaterloo.ca/hac.

Implementing Cryptographic Pairings on Smartcards 147

29. V. Miller. Short programs for functions on curves. unpublished manuscript, 1986.
http://crypto.stanford.edu/miller/miller.pdf.

30. Y. Nogami and Y. Morikawa. A fast implementation of elliptic curve cryptosys-
tem with prime order defined over fp8 , 1998. http://www.trans.cne.okayama-u.
ac.jp/nogami-group/papers/kiyou(2).pdf.

31. D. Page, N. P. Smart, and F. Vercauteren. A comparison of MNT curves and
supersingular curves. Cryptology ePrint Archive, 2004. http://eprint.iacr.org/
2004/165.

32. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptography ePrint Archive, Report 2003/054, 2003. http://eprint.iacr.org/
2003/054 .

33. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

34. M. Scott. Computing the Tate pairing. In CT-RSA, volume 3376 of Lecture Notes
in Computer Science, pages 293–304. Springer-Verlag, 2005.

35. M. Scott, 2006. http://ftp.computing.dcu.ie/pub/crypto/miracl.zip .
36. M. Scott and P. Barreto. Compressed pairings. In Advances in Cryptology –

Crypto’ 2004, volume 3152 of Lecture Notes in Computer Science, pages 140–156.
Springer-Verlag, 2004. Also available from http://eprint.iacr.org/2004/032/.

37. A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of Crypto 1984, volume 196 of Lecture Notes in Computer Science, pages 47–53.
Springer-Verlag, 1984.

38. E. Thomé. Computation of discrete logarithms in F2607 . In Advances in Cryptology
– Asiacrypt’2001, volume 2248 of Lecture Notes in Computer Science, pages 107–
124. Springer-Verlag, 2001.

A The Ate Pairing Non-supersingular k = 4 Curve

The curve over Fp is described in the Weierstrass form as

E : y2 = x3 − 3x + B

The curve has p + 1 − t points on it, which is a number divisible by a large
prime r. For our chosen curve

B = 47757104637654076446719767983734023399018465557799879638758483211193582773900

p = 73190453176371233031922874717260488242507261313747586254294463297030724930453

r = 7039968169563831716203361508047454068025613140101

t = 122310802304306476153797569

SPA-Resistant Scalar Multiplication on
Hyperelliptic Curve Cryptosystems Combining

Divisor Decomposition Technique and Joint
Regular Form

Toru Akishita, Masanobu Katagi, and Izuru Kitamura

Information Technologies Laboratories, Sony Corporation,
6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan

akishita@pal.arch.sony.co.jp,
{Masanobu.Katagi, Izuru.Kitamura}@jp.sony.com

Abstract. Hyperelliptic Curve Cryptosystems (HECC) are competitive
to elliptic curve cryptosystems in performance and security. Recently ef-
ficient scalar multiplication techniques using a theta divisor have been
proposed. Their application, however, is limited to the case when a theta
divisor is used for the base point. In this paper we propose efficient and
secure scalar multiplication of a general divisor for genus 2 HECC over
IF2m . The proposed method is based on two novel techniques. One is di-
visor decomposition technique in which a general divisor is decomposed
into two theta divisors. The other is joint regular form for a pair of
integers that enables efficient and secure simultaneous scalar multipli-
cation of two theta divisors. The marriage of the above two techniques
achieves both about 19% improvement of efficiency compared to the stan-
dard method and resistance against simple power analysis without any
dummy operation.

Keywords: hyperelliptic curve cryptosystems, scalar multiplication,
theta divisor, signed binary representation, simple power analysis.

1 Introduction

Elliptic Curve Cryptosystems (ECC) have increased their importance in public
key cryptosystems because of their higher efficiency than RSA cryptosystems.
Hyperelliptic Curve Cryptosystems (HECC) are generalization of ECC: ECC
just correspond to HECC of genus 1. The security of HECC whose genus is
smaller than 4 is thought to match that of ECC of the same group size. On the
other side, the performance of HECC was believed to be slower than that of
ECC due to their complex group operations. However, since Harley proposed an
efficient group addition and doubling algorithm, so-called Harley algorithm, for
genus 2 curves of odd characteristics in 2000 [7], optimizations and generaliza-
tions of Harley algorithm have been carried out [2], and at present HECC are
competitive to ECC also in performance.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 148–159, 2006.
c© International Association for Cryptologic Research 2006

SPA-Resistant Scalar Multiplication on HECC 149

In recent years, a new class of attacks has been proposed to extract some
secret information from a cryptographic device using its power consumption: so-
called power analysis. This paper deals with only Simple Power Analysis (SPA),
which utilizes a power consumption trace during a single execution. Differential
Power Analysis (DPA) is the more sophisticated attack that requires many power
consumption traces with statistical tools.

In regard to HECC, the countermeasure against SPA must be considered
when an ephemeral and secret scalar is used for scalar multiplication. The stan-
dard countermeasure is the double-and-add-always method that always repeats
a divisor class doubling and a divisor class addition per bit of the scalar [3].
Recently the useful countermeasure for ECC, Montgomery ladder, was applied
to HECC [4], but underlying curves of the HECC version are limited.

On the contrary, efficient and SPA-resistant scalar multiplication techniques
peculiar to HECC have been recently proposed, which use a theta divisor [9,8].
A theta divisor has weight smaller than the genus of the underlying curve. For a
genus 2 hyperelliptic curve over IFq, a theta divisor is represented as D = (x +
u0, v0), whereas a general divisor is represented as D = (x2 +u1x+u0, v1x+v0),
where ui, vi ∈ IFq. The cost of an addition of a theta divisor is smaller than that
of a general divisor due to its simple representation, so that scalar multiplication
of a theta divisor is faster than that of a general divisor. This efficiency, however,
can be utilized in the limited case, when the base point is a theta divisor and
scalar multiplication of the base point is carried out, for example, in HEC Diffie-
Hellman phase 1 or HEC-DSA signature generation.

In this paper we enhance the efficient use of a theta divisor to scalar multi-
plication of a general divisor for a genus 2 curve over IF2m . The enhancement is
based on the following two novel techniques. The first one is Divisor Decomposi-
tion Technique (DDT). A general divisor D = (U(x), V (x)) can be decomposed
into two theta divisors D1 and D2 if U(x) is reducible over IF2m . The second
one is Joint Regular Form (JRF), which is a new signed binary representation
of a pair of integers such that one is even and the other is odd. Any signed bits
at the same position of JRF satisfy that one is 0 and the other is ±1.

In order to utilize both DDT and JRF, we compute dD1 + (d + 1)D2 and
then subtract D2 as compensation instead of the scalar multiplication dD. The
simultaneous scalar multiplication dD1+(d+1)D2 with JRF of (d, d+1) repeats
a divisor class doubling and an addition of a theta divisor ±D1 or ±D2 per bit
of d. Its cost is almost equal to the cost of the double-and-add-always method
of a theta divisor, and is smaller than that of a general divisor. Moreover, SPA-
resistance is guaranteed because of regularity without any dummy operation,
which causes the possibility of fault-based attacks. Even if D is unable to be
decomposed into D1 and D2, we update D by repeating a divisor class doubling
of D until D can be decomposed into D1 and D2. Then, after computing (dD1 +
(d+1)D2)−D2 = dD, we repeat a divisor class halving [10] of dD the correspond-
ing times. The proposed method is 18.7% faster than the double-and-add-always
method of a general divisor.

150 T. Akishita, M. Katagi, and I. Kitamura

The rest of paper is organized as follows. In next two sections, we briefly
introduce HECC mainly focused to theta divisors and scalar multiplication. In
Section 4 and 5, we present two novel techniques: Divisor Decomposition Tech-
nique (DDT) and Joint Regular Form (JRF). In Section 6, we show the efficient
and secure scalar multiplication of a general divisor by combining DDT and
JRF. Section 7 analyzes the computational efficiency of the proposed method.
Finally, we draw our conclusion and discuss further work in Section 8.

2 Hyperelliptic Curve Cryptosystems

We give only a brief introduction of Hyperelliptic Curve Cryptosystems (HECC)
because of space limitation. More details can be found, for example, in [1,2,11].

In this paper, we discuss genus 2 HECC over IF2m . A hyperelliptic curve over
IF2m is defined by C : y2+h(x)y = f(x), where h(x) = x2+h1x+h0 ∈ IF2m [x] and
f(x) = x5+

∑3
i=0 fix

i ∈ IF2m [x]. In contrast to ECC, points P on a hyperelliptic
curve C do not form a group. The group law is defined over Jacobian variety JC .
JC is isomorphic to a divisor class group which forms an additive group, and
each divisor class is uniquely represented as a reduced divisor. A reduced divisor
D =

∑
miPi− (

∑
mi)P∞, where Pi = (xi, yi) and P∞ is a point at infinity, can

be represented by two polynomials (U(x), V (x)) [16],

U(x) =
∏

i

(x + xi)mi , V (xi) = yi,

deg V < deg U ≤ 2, V 2 + hV + f ≡ 0 mod U.

The deg U of a reduced divisor is called weight. We denote the weight of a
reduced divisor D by w(D).

2.1 Theta Divisor and General Divisor

In the case of genus 2 hyperelliptic curves, a reduced divisor has weight smaller
than or equal to 2. A divisor is called a theta divisor1 if its weight is smaller
than 2 [12]. On the other hand, we call a divisor of weight 2 a general divisor.
A theta divisor is represented as D = (x + u0, v0), whereas a general divisor is
represented as D = (x2 + u1x + u0, v1x + v0).

Let D1 = (U1, V1), D2 = (U2, V2) ∈ JC(IF2m) be reduced divisors. The
computational cost of a divisor class doubling D3 = (U3, V3) = 2D1 and a
divisor class addition D3 = D1 +D2 depends on the conditions that D1, D2 and
D3 satisfy. We list some conditions as follows:

DBL w(D1) = 2, w(D3) = 2, gcd(h, U1) = 1,
ADD w(D1) = 2, w(D2) = 2, w(D3) = 2, gcd(U1, U2) = 1,
TDBL w(D1) = 1, w(D3) = 2, gcd(h, U1) = 1,
TADD w(D1) = 2, w(D2) = 1, w(D3) = 2, gcd(U1, U2) = 1.

1 A theta divisor is called a degenerate divisor in [9].

SPA-Resistant Scalar Multiplication on HECC 151

DBL and ADD correspond to so-called most frequent cases of a divisor class
doubling and an addition, respectively. TDBL denotes the doubling of a theta
divisor. TADD denotes the addition of a general divisor and a theta divisor.

The computational cost of TDBL and TADD is smaller than that of DBL
and ADD, respectively, because of simple representation of a theta divisor. We
summarize their cost in Table 1. M , S, and I denote the required time of mul-
tiplication, squaring, and inversion, respectively.

Table 1. Cost of group operations (genus 2, C/IF2m)

Group operations Cost
DBL [13] 1I + 22M + 5S
ADD [13] 1I + 22M + 3S

TDBL [8] 1I + 5M + 2S
TADD [13] 1I + 10M + 1S

3 Scalar Multiplication on HECC

3.1 Double-and-Add-Always Method

In order to construct HECC, it is necessary to compute scalar multiplication
dD, where d is a non-negative integer and D is a reduced divisor. Let d =
(dn−1 · · · d0)2 be the binary representation of d, where dn−1 = 1. The most
standard SPA-resistant method to compute dD is called the Double-and-Add-
Always method (DAA), shown in Algorithm 1.

Algorithm 1. Double-and-add-always Method (DAA)
Input: a non-negative integer d, a reduced divisor D ∈ JC(IF2m)
Output: dD
1. Q[0]← D
2. For i = n− 2 downto 0 do:

2.1 Q[0]← 2Q[0]
2.2 Q[1]← Q[0] + D
2.3 Q[0]← Q[di]

3. return(Q[0])

In step 2.1 and step 2.2, a divisor class doubling and a divisor class addition
are computed, respectively. If the input divisor D is a general divisor, a doubling
in step 2.1 corresponds to DBL and an addition in step 2.2 corresponds to ADD
with very high probability. On the other hand, if D is a theta divisor, ADD is
replaced by TADD. From Table 1, we estimate the computational cost of scalar
multiplication dD of both a general divisor and a theta divisor. DAA of a General
Divisor, which we call DAA GD, takes (1I + 22M + 3S) + (1I + 22M + 5S) =
2I + 44M + 8S per bit of the scalar d. On the other hand, DAA of a Theta

152 T. Akishita, M. Katagi, and I. Kitamura

Divisor, which we call DAA TD, takes only (1I +10M +1S)+(1I+22M +5S) =
2I +32M +6S per bit of d [8]. Therefore the idea choosing a theta divisor as the
input divisor can achieve about 20% improvement of efficiency under I = 8M
and S = 0.1M . Its cryptographic application, however, is limited; even if we
choose a theta divisor as the base point of HECC, we must often compute scalar
multiplication of a general divisor.

DAA repeats the identical sequence of a doubling and an addition by inserting
dummy additions for di = 0 in step 2.2. Thus, an SPA attacker cannot guess
any bit information of d. The insertion of dummy operations, however, causes
the possibility of fault-based attacks.

3.2 Simultaneous Scalar Multiplication

Let us consider the sum of scalar multiplication kD1 and lD2, where k, l are non-
negative integers and D1, D2 are reduced divisors. It is necessary to compute
the sum kD1 + lD2 in HEC-DSA signature verification. The efficient method
to compute kD1 + lD2 is known as Shamir’s method. This method computes
kD1 + lD2 simultaneously instead of computing kD1 and lD2 independently, so
that it is called simultaneous scalar multiplication.

Let k = (kn−1 · · ·k0)2 and l = (ln−1 · · · l0)2 be the binary representations
of k and l, respectively, where kn−1 = 1 or ln−1 = 1. The simultaneous scalar
multiplication kD1 + lD2 is shown in Algorithm 2.

Algorithm 2. Simultaneous Scalar Multiplication
Input: non-negative integers k, l and reduced divisors D1, D2
Output: kD1 + lD2

1. (pre-computation) compute D1 + D2
2. Q← kn−1D1 + ln−1D2
3. For i = n− 2 downto 0 do:

3.1. Q ← 2Q
3.2. if (ki, li) �= (0, 0) then

T ← Q + (kiD1 + liD2)
4. return Q

Algorithm 2 can reduce the number of doublings to half compared to comput-
ing kD1 and lD2 separately. Furthermore we define the following terms in order
to evaluate the number of additions.

Definition 1. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representations
of non-negative integers k and l, respectively. The number of i (0 ≤ i ≤ n− 1)
satisfying (ki, li) �= (0, 0) is called Joint Hamming Weight of (k, l).

Definition 2. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representa-
tions of non-negative integers k and l, respectively. The ratio of Joint Hamming
Weight of (k, l) to n is called Joint Hamming Density.

SPA-Resistant Scalar Multiplication on HECC 153

The average Joint Hamming Density is 3/4 for the binary representations of k
and l. As a result, the number of additions required in Algorithm 2 is about
3n/4 on average.

In order to speed up simultaneous scalar multiplication, Solinas gave the ef-
ficient signed binary representation of two non-negative integers [17]. The rep-
resentation is called Joint Sparse Form (JSF), and any pair of non-negative
integers has unique JSF. The average Joint Hamming Density of JSF is 1/2,
so that simultaneous scalar multiplication with JSF can reduce the number of
additions to about n/2 on average.

4 Divisor Decomposition Technique

In this section we propose a novel technique called Divisor Decomposition Tech-
nique (DDT).

We now consider a general divisor D = (x2+u1x+u0, v1x+v0), where ui, vi ∈
IF2m for i = 0, 1. D can be decomposed into two theta divisors D1 = (x+x1, y1)
and D2 = (x + x2, y2) if x2 + u1x + u0 is factored to (x + x1)(x + x2) over IF2m .
It depends on only the reducibility of x2 + u1x + u0 over IF2m whether D can
be decomposed or not. Consequently, Tr(u0/u2

1) = 0 is the only condition of
divisor decomposition, where Tr(c) is trace of c ∈ IF2m . We show the procedure
of DDT in Algorithm 3, where Hr(c) is half-trace of c. T and H denote the
computational cost of trace and half-trace, respectively.

Algorithm 3. Divisor Decomposition Technique (DDT)
Input: a general divisor D = (x2 + u1x + u0, v1x + v0)
Output: theta divisors D1, D2, s.t.D = D1 + D2 or FAILURE
Step Procedure Cost
1. if Tr(u0/u2

1) = 1 return FAILURE 1I + 1M + 1S + 1T
2. x1 ← u1Hr(u0/u2

1), x2 ← x1 + u1 1M + 1H
3. y1 ← v(x1), y2 ← v(x2) 2M
4. D1 ← (x + x1, y1), D2 ← (x + x2, y2)
5. return D1, D2

The question we have to ask here is whether DDT contributes to the efficiency
of scalar multiplication dD. As we have seen, each scalar multiplication dD1, dD2
is faster than dD. The direct computation of dD1 +dD2, however, is slower than
scalar multiplication dD because Table 1 shows that TADD is not twice as fast
as ADD.

5 Joint Regular Form

In this section we propose the other novel technique called Joint Regular Form
(JRF).

We define a signed binary representation for a pair of non-negative integers
as follows.

154 T. Akishita, M. Katagi, and I. Kitamura

Definition 3. Let 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 be signed binary representations
of k and l, respectively, satisfying k+l ≡ 1 (mod 2). 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉
is called Joint Regular Form (JRF) of (k, l), if ki and li satisfy ki + li = ±1,
that is, (ki, li) = (0,±1) or (±1, 0) for any i.

Example 1. JRF of (52, 39) is represented as follows, where 1̄ denotes −1.

52 = 〈 1 0 1̄ 0 1 0 0 〉
39 = 〈 0 1 0 1 0 1̄ 1 〉

The Joint Hamming Density of JRF is always 1. JRF has the following properties:

– A pair of non-negative integers (k, l) satisfying k+ l ≡ 1 (mod 2) has a JRF.
– JRF of a certain length is unique.

We first prove the uniqueness of JRF.

Theorem 1. A pair (k, l) of non-negative integers has at most one Joint Regular
Form of a certain length.

Proof. Assume that there are two distinct JRFs of length n as

k = 〈kn−1 · · · k0〉 = 〈k′
n−1 · · · k′

0〉
l = 〈ln−1 · · · l0〉 = 〈l′n−1 · · · l′0〉.

Let j be the minimal value satisfying ki �= k′
i or li �= l′i, and

s = 〈kn−1 · · · kj〉 = 〈k′
n−1 · · ·k′

j〉
t = 〈ln−1 · · · lj〉 = 〈l′n−1 · · · l′j〉.

We may assume that kj �= k′
j by exchanging k and l if necessary. It follows that

kj and k′
j have value 1 and −1. We assume that kj = 1 and k′

j = −1 without
loss of generality. By the definition of JRF, lj = 0 and l′j = 0.

Suppose that s ≡ 1 (mod 4). kj+1 = 0 and k′
j+1 = ±1 since kj = 1 and

k′
j = −1. It follows that lj+1 = ±1 and l′j+1 = 0. The former indicates that

t ≡ 2 (mod 4) and the latter indicates that t ≡ 0 (mod 4). This contradiction
shows that the initial assumption must be wrong. Supposing s ≡ 3 (mod 4), the
similar contradiction occurs. ��
The most straightforward way to prove the existence of JRF for any pair of non-
negative integers (k, l) satisfying k + l ≡ 1 (mod 2) is to present an algorithm
for constructing it. We explain how to construct JRF from the least significant
bit. Let (kn−1 · · · k0)2 and (ln−1 · · · l0)2 be the binary representations of k and l,
respectively. Firstly, (k0, l0) = (0, 1) or (1, 0) by k + l ≡ 1 (mod 2).

Next, we notice (k1, l1). If (k1, l1) = (0, 0), either of the following transforma-
tions is carried out according to (k0, l0).

SPA-Resistant Scalar Multiplication on HECC 155

k1 k0
0 1
0 0
l1 l0

⇒
k1 k0
1 1̄
0 0
l1 l0

k1 k0
0 0
0 1
l1 l0

⇒
k1 k0
0 0
1 1̄
l1 l0

If (k1, l1) = (1, 1), one performs either of the following transformations according
to (k0, l0).

k1 k0
1 1
1 0
l1 l0

⇒
k1 k0

+1 0 1̄
1 0
l1 l0

k1 k0
1 0
1 1
l1 l0

⇒
k1 k0
1 0

+1 0 1̄
l1 l0

+1 means 1 is carried over to either (kn−1 · · · k2)2 or (ln−1 · · · l2)2. If (k1, l1) =
(0, 1) or (1, 0), one needs no transformation. In all cases of (k1, l1), it is possible to
satisfy the following conditions: (k0, l0) = (0,±1) or (±1, 0), and (k1, l1) = (0, 1)
or (1, 0).

By applying this transformation from the least significant bit, we construct the
signed binary representations 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉 satisfying (ki, li) =
(0,±1) or (±1, 0) for any i. The detailed algorithm is shown in Algorithm 4.

Algorithm 4. Joint Regular Form (JRF)
Input: a pair of non-negative integers (k, l) s.t. k + l ≡ 1 (mod 2)
Output: JRF of (k, l): 〈kn−1 · · ·k0〉, 〈ln−1 · · · l0〉
1. i← 0, s← k, t← l,
2. while s > 0 or t > 0 do:

2.1. ki = s mod 2, li = t mod 2
2.2. if (ki, li) = (0, 0) then

ki ← ki−1, ki−1 ← −ki−1, li ← li−1, li−1 ← −li−1, s ← s/2, t← t/2
else if (ki, li) = (1, 1) then

ki ← 1− ki−1, ki−1 ← −ki−1, li ← 1− li−1, li−1 ← −li−1,
s ← (s− 2ki + 1)/2, t← (t− 2li + 1)/2

else then
s ← (s− ki)/2, t← (t− li)/2

2.3. i ← i + 1
3. n ← i
4. return 〈kn−1 · · · k0〉 and 〈ln−1 · · · l0〉

If we apply JRF of (k, l) to the simultaneous scalar multiplication kD1 + lD2,
we always compute a divisor class doubling and an addition of ±D1 or ±D2 per
bit of (k, l). Consequently, we achieves the SPA-resistant simultaneous scalar
multiplication without any dummy operation and pre-computation D1 ±D2.

Remark 1. The advantages of simultaneous scalar multiplication with JRF are
useful to not only HECC but also ECC. Lim-Lee method [14], GLV method [6],
and BRIP [15] seem to be nice applications of JRF.

156 T. Akishita, M. Katagi, and I. Kitamura

6 Combination of DDT and JRF

We show that the combination of DDT and JRF achieves efficient and secure
scalar multiplication of a general divisor.

Suppose that a general divisor D can be decomposed into two theta divisors
D1 and D2 as D = D1+D2. We compute (dD1+d′D2)−D2 instead of the scalar
multiplication dD, where d′ = d+1. JRF of (d, d′) is applied to the simultaneous
scalar multiplication dD1 + d′D2. As we have discussed above, dD1 + d′D2 with
JRF computes a divisor class doubling and an addition of a theta divisor ±D1
or ±D2 per bit of (d, d′).

Indeed, JRF of (d, d′), 〈dn · · · d0〉 and 〈d′n · · · d′0〉, can be represented very easily
without Algorithm 4 as follows:

1. Let 〈dn−1 · · · d0〉 be the binary representation of d.
2. d′i = di − 1 for 0 ≤ i ≤ n− 1.
3. Append dn = 0 and d′n = 1.

The validity of this representation is clearly shown by d =
∑n−1

i=0 di2i and d′ =
d + 1 = 2n +

∑n−1
i=0 (di − 1)2i. For example, JRF of (53, 54) is represented as

53 = 〈0110101〉 and 54 = 〈1001̄01̄0〉.
We present the detailed algorithm for theta divisors D1 and D2 in Algorithm 5.

Obviously Algorithm 5 always computes a divisor class doubling and an addition
of a theta divisor whether di = 0 or 1. Therefore, an SPA-attacker cannot guess
any bit information of d.

Algorithm 5. Simultaneous Scalar Multiplication with JRF (SimJRF)
Input: a non-negative integer d, theta divisors D1, D2 s.t. D = D1 + D2
Output: dD
1. D[0]← −D2, D[1]← D1
2. Q← TDBL(D2)
3. Q← TADD(Q, D1)
4. for i = n− 2 downto 0 do:

4.1. Q ← DBL(Q)
4.2. Q ← TADD(Q, D[di])

5. Q← TADD(Q, D[0])
6. return Q

As described in Section 4, a general divisor D cannot be always decomposed
to two theta divisors; D can be decomposed only if x2 + u1x + u0 is reducible
over IF2m , where D = (x2 + u1x + u0, v1x + v0). In order to apply DDT to
any general divisor, we utilize a divisor class doubling (DBL) and its inverse
operation, that is, a divisor class halving (HLV) [10]. If D cannot be decomposed,
one repeats i times until D′ = 2iD can be decomposed by D′ = D′

1 + D′
2. After

computing dD′ using SimJRF, one then repeats a divisor class halving i times
by dD = 1/2i(dD′). We summarize our efficient and secure scalar multiplication
algorithm for a general divisor in Algorithm 6.

SPA-Resistant Scalar Multiplication on HECC 157

Algorithm 6. DDT and SimJRF (DDT+SimJRF)
Input: a non-negative integer d, a general divisor D
Output: dD
1. i← 0
2. while DDT(D) outputs “FAILURE” do:

2.1. D ← DBL(D), i ← i + 1
3. Q← SimJRF(D1, D2, d)
4. while i > 0 do:

4.1. Q ← HLV(Q), i ← i− 1
5. return Q

The iteration count i becomes 1 on average since DDT returns “FAILURE”
in probability of about 1/2. Accordingly, we require two DDT and one DBL in
step 2, and one HLV in step 4.

Remark 2. In HEC ElGamal-type decryption, a receiver A needs to compute
sAD, where sA is A’s secret key and D is a random divisor. In the case, instead
of the operations DBL and HLV, we can utilize an addition of the base point G
and a subtraction of sAG, where sAG is A’s public key.

7 Computational Efficiency

We estimate the computational cost of DDT+SimJRF proposed in Algorithm 6
and compare it to that of the Double-and-Add-Always method of a General
Divisor (DAA GD) and the Double-and-Add-Always method of a Theta Divisor
(DAA TD). The cost of divisor doublings and additions is referred to Table 1.
As we have mentioned in Section 3.1, the cost of DAA GD and DAA TD is (n−
1)(2I + 44M + 8S) and (n− 2)(2I + 32M + 6S) + 2I + 28M + 3S, respectively,
where n is the bit length of d.

In order to estimate the cost of DDT+SimJRF in Algorithm 6, we evaluate
the cost required in divisor decomposition step (step 2), SimJRF (step 3),
and compensation step (step 4) as following.

divisor decomposition step. According to our analysis in Section 6, we re-
quire two DDT, one of which returns “FAILURE”, and one DBL on average. The
estimated cost is 2(1I + 1M + 1S + 1T) + (3M + 1H) + (1I + 22M + 5S) =
3I + 27M + 7S + H + 2T .

SimJRF. We estimate the cost of SimJRF through Algorithm 5. In step 1, the
inverse of a theta divisor D2 = (x + x2, y2), −D2 = (x + x2, y2 + h(x0)), is
computed, which corresponds to 1M . Step 2 and 3 are the main procedures of
SimJRF. We then require one TDBL, (n−1) DBL, and n TADD, which correspond
to (1I +5M +2S)+ (n− 1)(1I +22M +5S)+n(1I +10M +1S) = (n− 1)(2I +
32M + 6S) + 2I + 15M + 3S. Step 4 requires 1I + 10M + 1S. As a result, the
total cost of SimJRF is estimated to be (n−1)(2I +32M +6S)+3I +26M +4S.

158 T. Akishita, M. Katagi, and I. Kitamura

compensation step. We require one HLV as we have shown in Section 6.
According to [10], the cost of HLV is 1I +19.5M +2S +2.5SR+2H +2T , where
SR denotes the cost of square root over IF2m .

Consequently, the cost of DDT+SimJRF is estimated to be n(2I + 32M +
6S) + 5I + 40.5M + 7S + 2.5SR + 3H + 4T in total.

Suppose that the bit length of d is 160, that is, n = 160. According to [5,10],
we may assume that the following ratios of field operations to multiplication are
satisfied: I = 8M , S = 0.1M , SR = 0.5M , H = 0.6M , and T = 0.

Table 2 summarizes the comparison of DAA GD, DAA TD, and DDT+SimJRF.
The column ’Divisor’ indicates whether each method computes scalar multipli-
cation of a general divisor or a theta divisor; the column ’Dummy’ indicates
whether each method uses any dummy operation or not. The proposed method
DDT+SimJRF is 18.7% faster than DAA GD and eliminates any dummy opera-
tion. DDT+SimJRF requires no more than 1.8% increase of computational cost
compared to DAA TD that can be used only in the limited case.

Table 2. Comparison of scalar multiplication (160bit)

Method Divisor Dummy Cost
DAA GD general use 318I + 6996M + 1272S (9667.2M)
DAA TD theta use 318I + 5084M + 951S (7723.1M)
DDT+SimJRF general NOT use 325I + 5160.5M + 967S

+2.5SR + 3H + 4T (7860.3M)

8 Conclusion and Further Work

In this paper, efficient and secure scalar multiplication of a general divisor for
genus 2 HECC over IF2m is proposed through Divisor Decomposition Technique
(DDT) and Joint Regular Form (JRF). The proposed method achieves both
about 19% improvement of efficiency compared to the double-and-add-always
method and SPA resistance without any dummy operation.

It must be emphasized that the strategy of the proposed method is applicable
to not only genus 2 HECC over IF2m . For genus 3 HECC, a general divisor whose
weight is 3 might be decomposed into either three theta divisors of weight 1 or
two theta divisors of weight 2. In the former case, we must generalize the concept
of JRF to three non-negative integers. In the latter case, we need to develop effi-
cient DDT in which a weight 3 divisor is decomposed into two weight 2 divisors.

References

1. D.G. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve”, Mathematics
of Computation, 48, 177, pp.95-101, 1987.

2. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,
Handbook of Elliptic Curve and Hyperelliptic Curve Cryptography, Chapman &
Hall, 2005.

SPA-Resistant Scalar Multiplication on HECC 159

3. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems”, Cryptographic Hardware and Embedded Systems - CHES ’99,
LNCS 1717, pp.292-302, Springer-Verlag, 1999.

4. S. Duquesne, “Montgomery Scalar Multiplication for Genus 2 Curves”, Algorithmic
Number Theory - ANTS VI, LNCS 3076, pp.153-168, Springer-Verlag, 2004.

5. K. Fong, D. Hankerson, J. López and A. Menezes, “Field inversion and point
halving revised,” Technical Report CORR 2003-81, 2003. http://www.cacr.math.
uwaterloo.ca/techreports/2003/corr2003-18.pdf

6. R.P. Gallant, R.J. Lambert, and S.A. Vanstone, “Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms”, Advances in Cryptology - CRYPTO
2001, LNCS 2139, pp.190-200, Springer-Verlag, 2001.

7. R. Harley, “Adding.txt, Doubling.c”, 2000. http://cristal.inria.fr/ harley/hyper/
8. M. Katagi, T. Akishita, I. Kitamura, and T. Takagi, “Efficient Hyperelliptic Curve

Cryptosystems Using Theta Divisors”, IEICE Trans. Fundamentals, vol.E89-A,
no.1, pp.151-160, 2006.

9. M. Katagi, I. Kitamura, T. Akishita, and T. Takagi, “Novel Efficient Implementa-
tions of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors”, Informa-
tion Security Application s - WISA 2004, LNCS 3325, pp.345-359, Springer-Verlag,
2004.

10. I. Kitamura, M. Katagi, and T. Takagi, “A Complete Divisor Class Halving Algo-
rithm for Hyperelliptic Curve Cryptosystems of Genus Two”, Information Security
and Privacy - ACISP 2005, LNCS 3674, pp.146-157, Springer-Verlag, 2005.

11. N. Koblitz, “Hyperelliptic Cryptosystems”, Journal of Cryptology, vol.1, pp.
139-150, Springer-Verlag, 1989.

12. S. Lang, “Abelian Varieties”, Springer-Verlag, 1983.
13. T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves”, Applica-

ble Algebra in Engineering, Communication and Computing, vol.15, pp.295-328,
Springer-Verlag, 2005.

14. C.H. Lim and P.J. Lee, “More Flexible Exponentiation with Precomputation”,
Advances in Cryptology - CRYPTO ’94, LNCS 839, pp.95-107, Springer-Verlag,
1994.

15. H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient Countermeasure against RPA,
DPA, and SPA”, Cryptographic Hardware and Embedded Systems - CHES 2004,
LNCS 3156, pp.343-356, Springer-Verlag, 2004.

16. D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser,
1984.

17. J.A. Solinas, “Low-Weight Binary Representations for Pairs of Integers”,
Technical Report CORR 2001-41, 2001. http://www.cacr.math.uwaterloo.ca/
techreports/2001/corr2001-41.ps

Fast Generation of Prime Numbers on Portable
Devices: An Update

Marc Joye1,� and Pascal Paillier2

1 Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue Belle Fontaine, 35576 Cesson-Sévigné, France
marc.joye@thomson.net
2 Gemalto, Security Labs

34 rue Guynemer, 92447 Issy-les-Moulineaux Cedex, France
pascal.paillier@gemalto.com

Abstract. The generation of prime numbers underlies the use of most
public-key cryptosystems, essentially as a primitive needed for the cre-
ation of RSA key pairs. Surprisingly enough, despite decades of intense
mathematical studies on primality testing and an observed progressive
intensification of cryptography, prime number generation algorithms re-
main scarcely investigated and most real-life implementations are of dra-
matically poor performance.

We show simple techniques that substantially improve all algorithms
previously suggested or extend their capabilities. We derive fast imple-
mentations on appropriately equipped portable devices like smart-cards
embedding a cryptographic coprocessor. This allows onboard generation
of RSA keys featuring a very attractive (average) processing time.

Our motivation here is to help transferring this task from terminals
where this operation usually took place so far, to portable devices them-
selves in near future for more confidence, security, and compliance with
network-scaled distributed protocols such as electronic cash or mobile
commerce.

Keywords: Public-key cryptography, RSA, primality testing, prime
number generation, embedded software, efficient implementations, cryp-
toprocessors, smart cards, PDAs.

1 Introduction

Undoubtedly, the lack of efficient prime number generators severely restricts
the development of public-key cryptography in embedded environments. Several
algorithms that generate prime numbers do exist, some of them being well-known
and popular [5,6,8,17], but most of them are hardly adapted to the computational
context of portable devices like smart cards or PDAs, where memory capabilities
and processing power are somewhat limited. A noticeable exception is found in
a recent heuristic algorithm by Joye, Paillier and Vaudenay [13].
� This work was done while the author was with Gemalto (formerly Gemplus).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 160–173, 2006.
c© International Association for Cryptologic Research 2006

Fast Generation of Prime Numbers on Portable Devices 161

In this paper, we improve their algorithm in multiple directions. First, we
give a more general description with extended parameter choices that fit any
(crypto-)processor architecture. Second, we present new techniques that speed up
the entire process and reduce the standard statistical deviation, especially in the
generation of so-called units. Third, we consider the issue of length extendability,
that is, algorithmic solutions for obtaining primes of arbitrary and dynamically
chosen bitsize.

The way prime numbers are selected during (e.g., RSA) key generation is
critical towards the security of generated key pairs. Therefore we investigate the
mathematical properties fulfilled by our improved algorithms. Using an analogue
of Gallagher’s empiric law on the distribution of primes in arithmetic progres-
sions [10,11], we accurately evaluate the output entropy of our generators. We
also analyze the probability that two outputs are identical, i.e., that one gets the
same prime number when running the generation twice with randomly selected
independent inputs. It is shown that the output entropy is nearly optimal (the
entropy loss is < 0.61 bits compared to uniform distribution) and that collisions
remain extremely unlikely.

The prime number generation algorithms we consider here find their main
application in the generation of RSA keys on embedded platforms. This context
of use implies the additional condition on a prime q being generated, that q − 1
be coprime to a prescribed public RSA exponent e. We show how our algorithm
may automatically fulfill this latter condition at negligible cost, at least for small
or smooth values of e. Further, as an additional application of our techniques,
we show how to efficiently generate a random safe (resp. quasi-safe) prime. This
answers a problem left open in [13].

The rest of the paper is organized as follows. In the next section, we present
our improved prime generation algorithms. We then provide a security analysis
in Section 3. In Section 4, we apply our techniques to the generation of RSA
keys and of safe primes. Finally, we conclude in Section 5.

2 Efficient Generation of Prime Numbers

This section describes efficient (trial-division free as opposed to [3,6,8,17]) al-
gorithms for producing a prime q uniformly distributed in some given interval
[qmin, qmax] or a sub-interval thereof; qmin and qmax being two arbitrarily chosen
integers and qmin < qmax. Our proposal actually consists of a pair of algorithms:
the prime generation algorithm itself and an algorithm for generating invert-
ible elements, also called units [13]. We assume that a random number gen-
erator is available, and that some fast (pseudo-)primality (resp. compositeness
[2,4,14,20,22,25,19]) testing function T is provided as well.

Parameter setup. Let 0 < ε � 1 denote a quality parameter (a typical value for
ε is 10−3). Let also φ denote Euler’s totient function. Our setup phase requires
to choose a product of primes, Π =

∏
i pi, such that there exist integers t, v, w

satisfying

162 M. Joye and P. Paillier

(P1) 1− ε <
wΠ − 1

qmax − qmin
� 1 ;

(P2) vΠ + t � qmin ;

(P3) (v + w)Π + t− 1 � qmax ;

(P4) the ratio φ(Π)/Π is as small as possible .

��������������������������

vΠ
+

t

qmin

(v
+

w
)Π

+
t−

1

qmax

wΠ − 1

Fig. 1. ε-approximated output domain

The primes output by our algorithm lie, in fact, in the sub-interval [vΠ+t, (v+
w)Π+t−1] ⊆ [qmin, qmax] as illustrated on Fig. 1. The error in the approximation
is captured by the value of ε meaning that a smaller value for ε gives better
results (cf. Property (P1)). The minimality of the ratio φ(Π)/Π in Property (P4)
ensures that Π contains a maximum number of distinct primes and that these
primes are as small as possible. Given any tuple (qmin, qmax, ε), computing the
tuple (Π, v, w, t) that best matches Properties (P1)–(P4) is experimentally easy.

Prime number generation. We now proceed to describe our prime number gen-
eration algorithm in its most generic version, as depicted on Fig. 2.

The first step requires the random selection of an integer k ∈ (Z/mZ)∗ (see
Section 2.2) where m = wΠ is a smooth integer. At this stage, it is worth-
while noticing that since a ∈ (Z/mZ)∗, k remains coprime to m and also to
Π throughout the algorithm — remember that Π contains a large number of

Parameters: t, v, w and a ∈ (Z/mZ)∗ \ {1}
Output: a random prime q ∈ [qmin, qmax]

1. Compute l ← vΠ and m ← wΠ
2. Randomly choose k ∈ (Z/mZ)∗

3. Set q ← [(k − t) mod m] + t + l
4. If (T(q) = false) then

(a) Set k ← a · k (mod m)
(b) Go to Step 3

5. Output q

Fig. 2. Generic prime generation algorithm for q ∈ [qmin, qmax]

Fast Generation of Prime Numbers on Portable Devices 163

prime factors by Property (P4). This, in turn, implies that q is coprime to Π
as q ≡ [(k − t) mod m] + t + l ≡ k (mod Π) and k ∈ (Z/ΠZ)∗. Hence, this
technique ensures built-in coprimality of our prime candidate q with a large set
of small prime numbers. Consequently, the probability under which q is prime at
Step 3 is in fact quite high. When q is found to be composite, a new candidate
is derived by “recycling” q in a way that preserves its coprimality to Π .

2.1 An Implementation Example

The previous algorithm is actually very general and can be adapted in numer-
ous ways, depending on hardware capabilities of the targeted processor archi-
tecture. Public-key crypto-processors generally allow super-fast (modular) addi-
tions, subtractions and multiplications over large integers, and this renders other
types of computations comparatively prohibitive, unless specific hardware is in-
tegrated to support these. We now give a possible implementation to illustrate
this, in which we attempt to increase our algorithm’s performance to its upper-
most level while running on a general-purpose crypto-processor. Other choices
of parameters may lead to better results on specific platforms.

A first improvement is to choose w = 1 and to let the value of t varying as a
random multiple of Π , say t = bΠ for some integer b, instead of fixing it. This
allows to compute modulo Π , resulting in faster arithmetic. Also, the constant a
may be chosen such that performing a multiplication by a modulo m turns out
to be a somewhat trivial operation. In the end, the best possible choice is a = 2,
because multiplying by 2 then amounts to a single bit shift or addition, possibly
followed by a subtraction. Unfortunately, 2 must belong to (Z/mZ)∗ and owing
to Property (P4), 2 is a factor of Π , a contradiction. A simple trick here consists
in choosing m odd (so that 2 ∈ (Z/mZ)∗) and in slightly modifying the above
framework in order to ensure that a prime candidate q is always odd. We require
Π =

∏
i pi (with pi �= 2) and integers bmin, bmax, v satisfying:

(P1) 1− ε <
(bmax − bmin + 1)Π − 1

qmax − qmin
� 1 ;

(P2) vΠ + bminΠ � qmin ;

(P3) (v + 1)Π + bmaxΠ − 1 � qmax ;

(P4) the ratio φ(Π)/Π is as small as possible .

Putting it all together, we obtain the algorithm shown on Fig. 3.1 Note that if
k+t+l is even then Π−k+t+l is odd since Π−k+t+l ≡ Π+(k+t+l) ≡ Π ≡ 1
(mod 2). Hence, as before, any candidate q belonging to our search sequence is
coprime to 2Π : we get gcd(q, 2) = 1 as q is odd. Also, gcd(q, Π) = 1 as q ≡ ±k
(mod Π) and ±k ∈ (Z/ΠZ)∗.

1 Stricly speaking, the algorithm of Fig. 3 is a particular case of the generic algorithm
of Fig. 2 only if, at Step 6(b), we go to Step 3 (instead of Step 4).

164 M. Joye and P. Paillier

Parameters: Π odd, bmin, bmax, v
Output: a random prime q ∈ [qmin, qmax]

1. Compute l ← vΠ
2. Randomly choose k ∈ (Z/ΠZ)∗

3. Randomly choose b ∈ {bmin, . . . , bmax} and set t ← bΠ
4. Set q ← k + t + l
5. If (q even) then q ← Π − k + t + l
6. If (T(q) = false) then

(a) Set k ← 2k (mod Π)
(b) Go to Step 4

7. Output q

Fig. 3. Faster prime generation algorithm

2.2 Generation of Units

All prime generation algorithms presented in this paper require the random
selection of some element k ∈ (Z/mZ)∗ in the spirit of [13]. This section provides
an algorithm that efficiently produces such an element with uniform output
distribution. We base our design on the next two propositions, making use of
Carmichael’s function λ.

Proposition 1 (Carmichael [7]). Let m > 1 and let k be any integer modulo
m. Then k ∈ (Z/mZ)∗ if and only if kλ(m) ≡ 1 (mod m). ��
Proposition 2. Let k, r be integers modulo m and assume gcd(r, k, m) = 1.
Then

[k + r(1 − kλ(m)) mod m] ∈ (Z/mZ)∗ .

Proof. Let
∏

i pi
δi denote the prime factorization of m. Define ω(k, r) := [k +

r(1 − kλ(m)) mod m] ∈ Z/mZ. Let pi be a prime factor of m. Suppose that
pi | k then ω(k, r) ≡ r �≡ 0 (mod pi) since gcd(r, pi) divides gcd(r, gcd(k, m)) =
gcd(r, k, m) = 1. Suppose now that pi � k then kλ(m) ≡ 1 (mod pi) and so
ω(k, r) ≡ k �≡ 0 (mod pi). Therefore for all primes pi | m, we have ω(k, r) �≡ 0
(mod pi) and thus ω(k, r) �≡ 0 (mod pi

δi), which, invoking Chinese remainder-
ing, concludes the proof. ��
We benefit from these facts by devising the unit generation algorithm shown on
Fig. 4.

This algorithm is self-correcting in the following sense: as soon as k is relatively
prime to some factor of m, it remains coprime to this factor after the updating
step k ← k + rU . This is due to Proposition 2. What happens in simple words
is that, viewing k as the vector of its residues k mod pi

δi for all pi
δi | m (i.e.,

the RNS representation of k based on m, see [9]), non-invertible coordinates of
k are continuously re-randomized until invertibility is reached for all of them.

Fast Generation of Prime Numbers on Portable Devices 165

Parameters: m and λ(m)
Output: a random unit k ∈ (Z/mZ)∗

1. Randomly choose k ∈ [1, m[
2. Set U ← (1 − kλ(m)) mod m
3. If (U
= 0) then

(a) Choose a random r ∈ [1, m[
(b) Set k ← k + rU (mod m)
(c) Go to Step 2

4. Output k

Fig. 4. Our unit generation algorithm

This ensures that the output distribution is strictly uniform provided that the
random number generator is uniformly distributed over [1, m[.

2.3 Efficiency

A complexity analysis for generating an n0-bit prime q is easily driven from the
work of [13]. The expected number of calls to T, i.e., the number of primality or
compositeness tests required on average, heuristically amounts to

n0 · ln 2 · φ(Π)
Π

= O
(

n0

lnn0

)
.

Naturally the exact, concrete efficiency of our implementation also depends
on hardware-related features. In any case, in practice, a spectacular execution
speed-up2 is generally observed in comparison with usual, incremental and trial-
division-based prime number generators. It can be shown that the unit gen-
eration requires about 2.15 modular exponentiations x �→ xλ(m) mod m where
the bitsize of λ(m) is much smaller than the bitsize of m, and experimentally
never exceeds |m|/3. For instance, one has |λ(m)| � 160 when |m| = 512. Note
also that all computations fall into the range of operations easily and efficiently
performed by any crypto-processor.

We note that many previous works such as [24,16,15] make use of trial-
divisions up to a large bound to decrease the number of calls to T. This common
technique is hardly adapted to cryptoprocessors where each and every modular
reduction may impose a prior, time-prohibitive modulus-dependent initializa-
tion. Experience shows that practical smart-card implementations are found to
impressively benefit from our above algorithm in comparison to these.

2.4 Length Extendability

So far, our implementation parameters are Π , a, the tuple (v, w, t) and λ(m) with
m = wΠ . These values are chosen once and for all and heavily depend on qmin =
2 Which usually amounts to one order of magnitude.

166 M. Joye and P. Paillier

�2n0−1/2� and qmax = 2n0 , if n0 denotes the bitsize of prime numbers being
generated. Now, the feature we desire here (and this is motivated by code size
limitations embedded platforms usually have to work with), consists in the ability
to use the parameters sized for n0 to generate primes numbers of bitsize n �= n0.
A performance loss is acceptable compared to the situation when parameters are
generated for both lengths.

We propose an implementation solving that problem for any n � n0, provided
that a was chosen odd and that arithmetic computations can still be carried out
over n-bit numbers on the processor taken into consideration. It is an extended
version of the algorithm depicted on Fig. 2. We exploit the somewhat obvious,
following facts:

1. Letting qmax(x) = 2x and qmin(x) = �2x−1/2�, we have of course qmax(n) =
qmin(n0)2n−n0 and qmin(n) ≈ qmin(n0)2n−n0 ;

2. Given Π(n0) chosen as per Section 2, we take⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π(n) = Π(n0)
v(n) = v(n0)2n−n0

w(n) = w(n0)2n−n0

t(n) = t(n0)2n−n0

,

hence l(n) = l(n0)2n−n0 and m(n) = m(n0)2n−n0 ;
3. a(n) = a(n0), hence a(n) ∈ (Z/m(n)Z)∗ since a(n0) is taken odd;
4. Given λ(n0) = λ(m(n0)), it is easy to see that denoting λ(n) = λ(n0)2n−n0 ,

we have again λ(n) = λ(m(n)), or at least λ(n) ∝ λ(m(n)) which is a
sufficient condition for the unit generation algorithm to be effective.

These transformations happen to preserve Properties (P1), (P2) and (P3) we
required earlier, with ε(n) = ε(n0). It is easy to see that all parameters for some
bitsize n may, as a direct consequence, be replaced by the respective parameters
computed for n0 multiplied by 2n−n0 , except for Π(n) = Π(n0). By performing
this replacement, we just accept to live with sub-optimized performances because
the ratio φ(Π(n))/Π(n) will not be chosen minimal. Still, our algorithm will
output n-bit primes in a correct manner, for any dynamic choice of n � n0, with
a 1-bit granularity.

Our extended algorithm is depicted on Fig. 5. In Step 1, the random unit
generation is carried out with parameters m(n0)2n−n0 and λ(n0)2n−n0 instead
of m(n0) and λ(n0). This does not affect the algorithm whatsoever. Another
observation is that the order of a(n) modulo m(n) is necessarily larger than (or
equal to) the order of a(n0) modulo m(n0). It is therefore large enough for all
our choices of n provided that a(n0) was correctly chosen in the first place.

3 Security Analysis

We outline in this section a mathematical analysis of our generic prime gener-
ation algorithm (Fig. 2). The results are easily transposable to the other prime

Fast Generation of Prime Numbers on Portable Devices 167

Parameters: l(n0) = v(n0)Π(n0), m(n0) = w(n0)Π(n0),
t(n0), a(n0) ∈ (Z/m(n0)Z)∗\ {1}, n0

Input: bitsize n � n0

Output: a random prime q ∈ [qmin(n), qmax(n)]

1. Set m ← m(n0)2n−n0, t ← t(n0)2n−n0 and l ← l(n0)2n−n0

2. Randomly choose k ∈ (Z/mZ)∗

3. Set q ← [(k − t) mod m] + t + l
4. If (T(q) = false) then

(a) Set k ← a(n0) k (mod m)
(b) Go to Step 3

5. Output q

Fig. 5. Our scalable prime generation algorithm

generation algorithms presented in this paper. We answer the following critical
questions:

Question 1. Are output primes well distributed? How much entropy is there in
the output distribution?

Question 2. What is the probability that the same prime is output for two in-
dependently selected input values?

3.1 Output Entropy

We accurately evaluate the entropy H of the output distribution which, following
Brandt and Damg̊ard’s methodology [5], is considered as a quality measure of a
prime number generator.

Theorem 1. Let Hmax be the maximal possible value of H. Then, under Hardy
and Littlewoods’ prime r-tuple conjecture [11] and Gallagher’s heuristic [10], we
have for any n � 256,

Hmax −H <
1− γ

ln 2
= 0.609949

where γ is the Euler-Mascheroni constant [22]. ��
Theorem 1 shows that the entropy loss with respect to a perfectly uniform gen-
erator is less that 0.61 bit for any prime bitlength. Due to lack of space, we omit
the proof here and refer the reader to the extended version of this work for more
detail [12].

Table 1 represents the concrete values for H , Hmax and ρ = (Hmax−H)/Hmax
for various bitlengths n. We see that the output entropy of our generator is
similar to the one of random search, in which one sets candidate q to successive
random numbers until q is prime. Our figures show that

168 M. Joye and P. Paillier

Table 1. Output entropy H as a function of n

n 256 384 512 640 768 896 1024
Hmax 246.767 374.179 501.762 629.439 757.176 884.953 1012.76

H 246.194 373.596 501.173 628.847 756.581 884.356 1012.16
Hmax − H 0.572795 0.583093 0.588773 0.592377 0.594834 0.59669 0.598092

ρ (%) 0.23212 0.155833 0.117341 0.094111 0.078559 0.067426 0.0590557

– asymptotically, the output entropy gets arbitrarily close to its maximal pos-
sible value, and

– the gap is already negligibly small for concrete bitsizes of practical interest
256 � n � 1024.

3.2 Collision Probability

Theorem 2. We denote by ν the probability that the same prime number is
output twice for two uniformly and independently distributed random inputs.
Then

ν <
ln 2

1− 1√
2

· n · 2−n+1 .

��
Again, we refer to the extended version of this paper [12] for a detailed proof of
Theorem 2 and related insights. Table 2 displays ν for common values of n.

Table 2. Collision probability

n 128 256 384 512 1024

ν � 1.91 · 10−75 3.30 · 10−152 4.28 · 10−229 4.93 · 10−306 5.49 · 10−614

As a result, from Theorems 1 and 2, we conclude that our prime generation
algorithms are provably reliable.

4 Concrete Cryptographic Applications

We apply the prime number generators above to the concrete generation of RSA
primes, in which the public exponent e is fixed and set to a standard value. We
also consider the case of safe primes as they underly many variants of RSA and
other popular cryptosystems.

4.1 Generating RSA Primes

This section deals with the generation of an RSA prime q. Let e =
∏

i ei
νi denote

the prime factorization of a given public exponent e. Because the RSA primitive
(see Appendix A) induces a permutation (i.e., gcd(e, λ(N)) = 1), it turns out
that q must be such that gcd(ei, q − 1) = 1 for each prime ei dividing e.

Fast Generation of Prime Numbers on Portable Devices 169

First, let us assume that ei | Π for all i. This happens in the most popular
scenario where e is some small prime (like 3 or 17) or when e is chosen smooth.
Let α be an integer such that

gcd(α, m) = 1 and order(α mod ei, ei) = ei − 1 for each ei | e . (1)

In practice, the choice of a value for α may be done easily using Chinese re-
maindering. Note that for such an α, we get that order(α, ei) is simultaneously
even for all prime factors {ei}i. We define e+ = gcd(e, Π) =

∏
i ei and denote

by k0 the initial value for k that the unit generation algorithm of Fig. 4 gets
by invoking the random number generator in Step 1. It is easily seen that if we
force

k0 ≡ α (mod e+) , (2)

then the unit k eventually output by the algorithm will also verify that k ≡ α
(mod e+). This is due to the algorithm’s self-correctness. We then adapt the
generic prime generation algorithm by choosing a = α2. By doing so, every
candidate q generated by the sequence will satisfy

q ≡ α2j+1 (mod e+) ,

for some integer j, because e+ | Π . Hence we can never have q ≡ 1 (mod ei)
since α is of even order modulo ei and q is an odd power of α. Consequently,
q �≡ 1 (mod ei) for all i, which implies gcd(q − 1, e) = 1.

So our technique works when ei | Π for all i, that is, when e has only small
prime factors. To deal with cases when ei � Π for some ei | e, we face the
following options:

– either e is a prime number itself (like Fermat’s fourth prime 216 + 1) and we
add the verification step

q − 1
?
�≡ 0 (mod e)

before or after the primality test T is applied; or
– e is not prime but its factorization is known. We already know that q �≡ 1

(mod ei) when ei | Π , so we have to ensure that the same holds when ei � Π .
To do this, we simply check that q − 1 �≡ 0 (mod ei) for all prime factors
ei � Π , or equivalently (but preferably) invoke Proposition 1 and make sure
that

(q − 1)λ(e−) ≡ 1 (mod e−) ,

where e− =
∏

i ei for all ei � Π .

In both cases, unfortunately, adding at least one additional test to the imple-
mentation cannot be avoided.

Finally, forcing k0 ≡ α (mod e+) in Eq. (2) is easily done by picking a random
number r and setting k0 = α + e r (mod m).

170 M. Joye and P. Paillier

4.2 Generating Safe and Quasi-safe Primes

We now show how to apply our generic techniques to the specific case of gen-
erating safe primes or quasi-safe primes. A safe prime is a prime q such that
(q− 1)/2 is also a prime. More generally, a d-quasi-safe prime is a prime q such
that (q − 1)/2d is prime.

All the point here resides in the way the search sequence is carried out. It
should ideally verify that each and every candidate q be such that both q and
(q − 1)/2 are always coprime to Π . It is somewhat easy to guarantee that for q
by ensuring (like in previous sections) that

q ≡ ak (mod Π)

for some a, k ∈ (Z/mZ)∗. However, the later constraint on (q−1)/2 is a bit more
delicate. Our need here is to ensure that for each prime divisor pi of Π , pi �= 2,

q �≡ 1 (mod pi) .

Our idea is to make sure that q mod pi just cannot be an element of QR(pi),
the subgroup of quadratic residues modulo pi. Doing so, we ensure that q �≡ 1
(mod pi). We proceed in the following way. First, the constant a is chosen in
QR(m). Next, we choose once for all a parameter u ∈ (Z/mZ)∗ such that

∀(odd) pi | Π : u �∈ QR(pi) . (3)

From there on, the initial unit k (to avoid confusion, we denote it by k0) is
chosen as k0 = u χ2 mod m for some random χ ∈ (Z/mZ)∗. Then, as before,
we have at iteration j

q = [(aj k0 − t) mod m] + t + l .

It is now easy to see that for each and every odd prime pi | Π , q ≡ aj uχ2

(mod pi) has a Legendre symbol different from 1, and consequently q−1 cannot
be 0 modulo pi, i.e., q − 1 is coprime to Π .

When 2τ | m for some τ � 2, we have to make sure, in addition to the above,
that q ≡ 3 (mod 4) meaning that the last two bits in the binary representation
of q are forced to . . . 112, thereby ensuring that (q − 1)/2 is an odd number and
consequently that (q − 1)/2 ∈ (Z/ΠZ)∗. This is done by forcing k ≡ 3 (mod 4)
and a ≡ 1 (mod 4).

The resulting algorithm is described on Fig. 6.
It is straightforward to extend our algorithm to the case of d-quasi-safe prime

numbers whenever d < τ . In this case, the constraint q ≡ 3 (mod 4) has to be
extended to q ≡ 2d + 1 (mod 2d+1).

A note on efficiency. Heuristically, about(
n0 · ln 2 · φ(Π)

Π
+ 1

)(
n0 · ln 2 · φ(Π)

Π

)
primality tests are required for generating a n0-bit safe prime q. This is≈ 25 times
faster than incremental search algorithms (where we iterate q ← q + 2 until q and

Fast Generation of Prime Numbers on Portable Devices 171

Parameters: l = vΠ, m = wΠ, m′ = m/2τ,
t, a ∈ QR(m) and u as above

Output: a random prime q ∈ [qmin, qmax] with (q−1)/2 prime

1. Randomly choose χ ∈ (Z/mZ)∗

2. Set k ← 4uχ2 + 3m′ mod m
3. Set q ← [(k − t) mod m] + t + l
4. If (T(q) = false or T((q − 1)/2) = false) then

(a) Set k ← ak (mod m)
(b) Go to Step 3

5. Output q

Fig. 6. Safe-prime generation algorithm for q ∈ [qmin, qmax]

(q− 1)/2 are simultaneously prime) for 512-bit numbers. Another obvious benefit
of our technique resides in its simplicity when compared to classical algorithms.

5 Conclusion

We devised and analyzed simple computational techniques that improve the
work of [13] in multiple ways. It is argued that our algorithms present much
better performances than previous, classical methods.

We also would like to stress that our prime generation algorithm may support
additional modifications mutatis mutandis in order to simultaneously reach other
properties on q — for instance forcing the last bits of q to fit the Rabin-Williams
cryptosystem with even public exponents. Independently, some applications re-
quire that the pair of primes satisfy specific properties such as being strong or
compliant with ANSI X9.31 recommendations [1]. We refer the reader to [13] for
a collection of mechanisms allowing to produce such primes. We point out that
our improvements may coexist perfectly with these.

We also proposed a specific implementation for generating safe prime numbers
which really boosts real-life execution performances. We emphasize that, imple-
menting our techniques, a complete RSA key generation process can be executed
on any given crypto-enhanced embedded processor in nearly all circumstances
and with extremely attractive running times.

References

1. ANSI X9.31. Public-key cryptography using RSA for the financial services industry.
American National Standard for Financial Services, draft, 1995.

2. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics
of Computation, vol. 61, pp. 29–68, 1993.

172 M. Joye and P. Paillier

3. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In Advances
in Cryptology − CRYPTO ’97, vol. 1294 of Lecture Notes in Computer Science,
pp. 425–439, Springer-Verlag, 1997.

4. W. Bosma and M.-P. van der Hulst. Faster primality testing. In Advances in Cryp-
tology − CRYPTO ’89, vol. 435 of Lecture Notes in Computer Science, pp. 652–656,
Springer-Verlag, 1990.

5. J. Brandt and I. Damg̊ard. On generation of probable primes by incremental search.
In Advances in Cryptology − CRYPTO ’92, vol. 740 of Lecture Notes in Computer
Science, pp. 358–370, Springer-Verlag, 1993.

6. J. Brandt, I. Damg̊ard, and P. Landrock. Speeding up prime number generation. In
Advances in Cryptology − ASIACRYPT ’91, vol. 739 of Lecture Notes in Computer
Science, pp. 440–449, Springer-Verlag, 1991.

7. R.D. Carmichael. Introduction to the Theory of Groups of Finite Order, Dover,
1956.

8. C. Couvreur and J.-J. Quisquater. An introduction to fast generation of large prime
numbers. Philips Journal of Research, vol. 37, pp. 231–264, 1982.

9. C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem, Word Scientific,
1996.

10. P.X. Gallagher. On the distribution of primes in short intervals. Mathematica,
vol. 23, pp. 4–9, 1976.

11. G.H. Hardy and J.E. Littlewood. Some problems of ‘Partitio Numerorum’ III: On
the expression of a number as a sum of primes. Acta Mathematica, vol. 44, pp. 1–70,
1922.

12. M. Joye and P. Paillier. Fast generation of prime numbers on portable devices: An
update. Extended version of this work. Available on http://eprint.iacr.org.

13. M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime numbers. In
Cryptographic Hardware and Embedded Systems − CHES 2000, vol. 1965 of Lecture
Notes in Computer Science, pp. 340–354, Springer-Verlag, 2000.

14. D.E. Knuth. The Art of Computer Programming - Seminumerical Algorithms,
vol. 2, Addison-Wesley, 2nd ed., 1981.

15. C. Lu and A.L.M. Dos Santos. A note on efficient implementation of prime gener-
ation in small portable devices. Computer Networks, vol. 49, pp. 476–491, 2005.

16. C. Lu, A.L.M. Dos Santos, and F.R. Pimentel. Implementation of fast RSA key gen-
eration on smart cards. In 17th ACM Symposium on Applied Computing, pp. 214–
221, ACM Press, 2002.

17. U. Maurer. Fast generation of prime numbers and secure public-key cryptographic
parameters. Journal of Cryptology, vol. 8, pp. 123–155, 1995.

18. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1997.

19. L. Monier. Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms. Theoretical Computer Science, vol. 12, pp. 97–108, 1980.

20. H.C. Pocklington. The determination of the prime or composite nature of large
numbers by Fermat’s theorem. Proc. of the Cambridge Philosophical Society,
vol. 18, pp. 29–30, 1914.

21. J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronics Letters, vol. 18, pp. 905–907, 1982.

22. H. Riesel. Prime Numbers and Computer Methods for Factorization, Birkhäuser,
1985.

Fast Generation of Prime Numbers on Portable Devices 173

23. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, vol. 21, pp. 120–
126, 1978.

24. R.D. Silverman. Fast generation of random, strong RSA primes. Cryptobytes, vol. 3,
pp. 9–13, 1997.

25. R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal
on Computing, vol. 6, pp. 84–85, 1977.

A The RSA Primitive

RSA is certainly the most widely used public-key cryptosystem today. We give
hereafter a short description of the RSA primitive and refer the reader to the
original paper [23] or any textbook in cryptography (e.g., [18]) for further details.

Let N = pq be the product of two large primes. We let e and d denote a pair
of public and private exponents, satisfying

e d ≡ 1 (mod λ(N)) ,

with gcd(e, λ(N)) = 1 and λ being Carmichael’s function. As N = pq, we have
λ(N) = lcm(p− 1, q − 1). Given x < N , the public operation (e.g., message en-
cryption or signature verification) consists in raising x to the e-th power modulo
N , i.e., in computing y = xe mod N . Then, given y, the corresponding private
operation (e.g., decryption of a ciphertext or signature generation) consists in
computing yd mod N . From the definition of e and d, we obviously have that
yd ≡ x (mod N). The private operation can be carried out at higher speed
through Chinese remaindering (CRT mode [21,9]). Computations are indepen-
dently performed modulo p and q and then recombined. In this case, private
parameters are {p, q, dp, dq, iq} with⎧⎪⎨⎪⎩

dp = d mod (p− 1) ,

dq = d mod (q − 1) , and
iq = q−1 mod p .

We then obtain yd mod N as

CRT(xp, xq) = xq + q
[
iq(xp − xq) mod p

]
,

where xp = ydp mod p and xq = ydq mod q. We expect a theoretical speed-up
factor close to 4 (see [21]), compared to the standard, non-CRT mode.

Thus, an RSA modulus N = pq is the product of two large prime numbers
p and q. If n denotes the bitsize of N then, for some 1 < n0 < n, p must
lie in the range

[⌈
2n−n0−1/2

⌉
, 2n−n0

]
and q in the range

[⌈
2n0−1/2

⌉
, 2n0

]
so

that 2n−1 < N = pq < 2n. For security reasons, so-called balanced moduli are
generally preferred, which means n = 2n0.

A Proposition for Correlation Power Analysis
Enhancement

Thanh-Ha Le1, Jessy Clédière1, Cécile Canovas1, Bruno Robisson1,
Christine Servière2, and Jean-Louis Lacoume2

1 CEA-LETI
17 avenue des Martyrs, 38 054 Grenoble Cedex 9, France

{thanhha.le, jessy.clediere, cecile.canovas, bruno.robisson}@cea.fr
2 Laboratoire des Images et des Signaux

961 rue de la Houille Blanche, 38 402 Saint Martin d’Hères Cedex
{christine.serviere, jean-louis.lacoume}@inpg.fr

Abstract. Cryptographic devices are vulnerable to the nowadays well
known side channel leakage analysis. Secret data can be revealed by
power analysis attacks such as Simple Power Analysis (SPA), Differen-
tial Power Analysis (DPA) and Correlation Power Analysis (CPA). First,
we give an overview of DPA in mono-bit and multi-bit cases. Next, the
existing multi-bit DPA methods are generalized into the proposed Par-
titioning Power Analysis (PPA) method. Finally, we focus on the CPA
technique, showing that this attack is a case of PPA with special coeffi-
cients and a normalization factor. We also propose a method that allows
us to improve the performance of CPA by restricting the normalization
factor.

Keywords: side channel, power analysis, DPA, multi-bit DPA, PPA,
CPA, correlation, DES, AES.

1 Introduction

Differential analysis on side channel signals were set up by Kocher et al. [10,11]
on DES algorithm. Power consumption signals of CMOS chips were used, giving
good results to retrieve key values by difference of mean curves selected on a de-
fined criteria. Electromagnetic radiation signals, acquired by dedicated sensors,
were then successfully used by several authors [17,20,21]. Hereafter, the terms
DPA and CPA have been generalized for any side channel signal (i.e., power con-
sumption and electromagnetic radiation signals). Since then, differential analysis
has been applied on various cryptographic algorithms, including DES and AES,
and several countermeasures have been proposed to secure those algorithms from
first and high order differential attacks [9,7,1,2]. Some authors [3,14,4,22] have
extended Kocher’s et al. attack, introducing multi-bit DPA methods to improve
differential analysis. Currently, there are different multi-bit DPA concepts. We
propose in this paper the Partitioning Power Analysis (PPA) method to merge
these concepts in a single form.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 174–186, 2006.
c© International Association for Cryptologic Research 2006

A Proposition for Correlation Power Analysis Enhancement 175

Lately, the power analysis technique based on the correlation has been widely
studied [5,6,8,12]. We propose a reviewing of the correlation approach suggested
by Brier et al., named Correlation Power Analysis [5], and the study of its
normalization effect. We then propose a way to enhance the performance of
CPA. The analytical results are finally confronted with the experimental ones.

The paper is organized as follows. Section 2 starts with an overview of power
analysis including the original DPA method, the multi-bit PPA concept and the
correlation based CPA method. In Sect. 3, a discussion about the CPA attack and
its normalization factor is expressed. We also propose in this section a method to
enhance CPA. Experimental results with electromagnetic radiation signals are
shown in Sect. 4 and a brief conclusion is given in the last section.

2 Power Analysis Techniques

2.1 Differential Power Analysis

Differential Power Analysis was originally proposed by Kocher et al. [11]. This
analysis is based on the fact that the power dissipation to manipulate one bit to
1 is different from the power dissipation to manipulate it to 0. To test different
keys Ks, DPA uses N cipher messages (or plain messages) Ci (i = 1 . . .N) and
a selection function D(Ci, b, Ks). This boolean function computes the value of
an examined bit b, for example a bit of the S-box output. DPA computes a
differential trace ∆D(b) as the difference between the average of the traces for
which D(Ci, b, Ks) is 1 and the average of the traces for which D(Ci, b, Ks) is
0. If we note W (Ci) the power consumption or electromagnetic radiation signal
corresponding to the message Ci, the differential trace ∆D(b) is computed as
follows:

∆D(b) =
∑N

i=1 D(Ci, b, Ks)W (Ci)∑N
i=1 D(Ci, b, Ks)

−
∑N

i=1(1−D(Ci, b, Ks))W (Ci)∑N
i=1(1−D(Ci, b, Ks))

(1)

If the bits calculated during the cryptographic algorithm are statistically uni-
formly distributed and if the number of ciphering traces is sufficient, ∆D(b) tends
to 0 for wrong key hypothesis and ∆D(b) �= 0 for the correct key Ks hypothesis
at the instant τ where the bit b is handled, this is the DPA peak. However, in
practice, the bit distribution is correlated to S-box output and so some peaks
can be observed on wrong key differential traces. This is the ghost peak problem
explained for example in [5,15]. For the correct key, peaks can also appear at
instants other than τ due to the correlation between transient results during the
cryptographic computation.

Note that there exist three main aspects to be considered for applying a power
analysis method. The first one is how to choose target bits and cipher mes-
sages. For example, the bit b in DPA method is well chosen if the highest peak
belongs to the differential trace of the correct hypothesis, which is not always
true for any choice of b. The cipher messages can be random or chosen. By using
chosen messages, attackers can reduce the algorithmic noise and also simplify the

176 T.-H. Le et al.

Hamming distance to the Hamming weight for hardware implementation [14,15].
However a chosen message attack implies that the bits inside the algorithm are
not independently distributed. So unexpected peaks related to the bits other
than b can be observed.

The second aspect is how to determine different classes. In mono-bit DPA
method, Kocher has proposed two classes:

G0 = {W (Ci), i = 1 . . .N |D(Ci, b, Ks) = 0}

G1 = {W (Ci), i = 1 . . .N |D(Ci, b, Ks) = 1}
These classes are computed with the Hamming weight, but can be extended

with the Hamming distance considering a previous state for b.
The third aspect is related to the function that calculates differential traces in

order to evaluate and detect efficiently the correct hypothesis. These traces can
be called as the decision signals. In the mono-bit case, this decision signal is
∆D(b). Different kinds of classes and decision signals will be discussed in further
sections.

2.2 Partitioning Power Analysis

Multi-bit DPA: To enhance the original DPA, some authors have introduced
d-bit DPA attacks which means that d bits are used instead of only one bit. The
method proposed by Messerges et al [14] is still based on the idea of dividing
power consumption signals into two classes. For a d-bit set B = b1b2 . . . bd, two
classes of their multi-bit DPA are defined as follows:

G0 =
{

W (Ci), i = 1 . . .N |H(Ci,B, Ks) <
d

2

}

G1 =
{

W (Ci), i = 1 . . .N |H(Ci,B, Ks) ≥ d

2

}
where H(Ci,B, Ks) denotes the Hamming weight of B corresponding to Ks and
Ci. Note that if we consider a previous state R of B as the reference state,
H(Ci,B, Ks) can be used as the Hamming distance between R and the actual
state of B. 1

The decision signal becomes:

∆H(B) =

∑
G1

W (Ci)
N1

−
∑

G0
W (Ci)
N0

(2)

with N0 = card(G0) and N1 = card(G1).

1 In the research of Brier et al.[5], the Hamming distance is used and defined as the
number of flipping bits to switch from a reference state R to another state D, and is
given by H(R⊕D).When the reference state R is 0, the Hamming distance H(R⊕D)
becomes the Hamming weight of D.

A Proposition for Correlation Power Analysis Enhancement 177

In a 4-bit DPA case, Bevan et al. [4] suggested combining the ∆D(bi) computed
independently for each bit bi (i = 1 . . . 4) of B:

ΣD(B) = ∆D(b1) + ∆D(b2) + ∆D(b3) + ∆D(b4) (3)

The notion of class in this case is the same as the one of mono-bit DPA but
it is defined for each bit bi (i = 1 . . . 4) of B. The decision signal ΣD(B) is the
sum of four other decision signals ∆D(bi) (i = 1 . . . 4). This method is efficient
only if the values of the four bits influence the power consumption at the same
time and in the same way. 2

Partitioning Power Analysis: In order to generalize the multi-bit DPA meth-
ods, we propose here the Partitioning Power Analysis (PPA) method based on
the Hamming distance. The multi-partition method has been suggested by Akkar
et al.[3] with DiPA, but these authors did not formalize the concept.

We consider d-bit set B = b1b2 . . . bd and divide N power consumption signals
W (Ci) (i = 1 . . .N) into (d + 1) partitions (classes) G0, G1, . . . , Gd.

Gj = {W (Ci), i = 1 . . .N |H(Ci,B, Ks) = j}
where H(Ci,B, Ks) denotes the Hamming distance between a previous state and
the actual state of B, corresponding to the message Ci and the key guess Ks.
We note Nj = card(Gj), so

∑d
j=0 Nj = N . The decision signal of PPA is given

as follows, where aj (j = 1 . . .N) are chosen weights.

ΣH(B) =
d∑

j=0

aj

∑
Gj

W (Ci)

Nj
(4)

The choice of these weights can be determined with a known key algorithm or
with a selection function based on known bits, for example input message bits.

Note: By the previous definition of PPA, the multi-bit DPA concepts proposed
by Messerges and Bevan are two cases of PPA with special coefficients aj. For
the Messerges’ method, ∆H(B) derived from (2) can be formulated as (4), H
being the Hamming distance and aj = −1 for 0 ≤ j < d/2 and aj = 1 for
d/2 ≤ j ≤ d. Referring to Bevan’s concept, in order to use the Hamming distance
notion, we can choose the reference state of B as ’0000’. After some algebraical
manipulation, the ΣD(B) of (3) can be rewritten under a form of (4) as follows:

ΣD(B) = −1
8

∑
G0

W (Ci)− 1
4

∑
G1

W (Ci) +
1
4

∑
G3

W (Ci) +
1
8

∑
G4

W (Ci) (5)

By the same way, if we consider the reference state of the target bit b is ’0’, the
original DPA proposed by Kocher becomes the simplest PPA with a coefficient
-1 for the group G0 and a coefficient 1 for the group G1.

2 This point may be true for a hardware algorithm, but false for a software one.

178 T.-H. Le et al.

2.3 Correlation Power Analysis

Correlation approaches are based on the dependence between the power con-
sumption of the circuit and the Hamming weight [8,12] or the Hamming distance
[5] of manipulated data. According to Brier’s model, the relationship between
the power consumption W and H(R ⊕D) is linear (W = aH + b, a and b are
constant). The correct key is the one which maximizes the correlation factor
ρWH .

If we denote Hi,R = H(R ⊕ Ci) the Hamming distance between the actual
state of the message Ci and the reference state R, the decision signal of the CPA
method is the correlation factor ρ̂WH [5]:

ρ̂WH(R) =
N
∑

W (Ci)Hi,R −
∑

W (Ci)
∑

Hi,R√
N
∑

W (Ci)
2 − (

∑
W (Ci))2

√
N
∑

Hi,R
2 − (

∑
Hi,R)2

(6)

According to this concept, the notion of class is not explicitly used, i.e., N
power consumption signals W (Ci) corresponding to N cipher messages Ci (i =
1 . . .N) are not classified in to different classes. However, this notion can be
introduced here by grouping the power consumption signals W (Ci) where Ci

has the same Hamming distance with a reference state R. Considering a d-bit
set B of messages Ci and using the same notation described in the previous
section, we divide N power consumption signals W (Ci) (i = 1 . . .N) into (d+1)
classes G0, G1, . . . , Gd with

Gj = {W (Ci), i ∈ 1 . . .N |H(Ci,B, Ks) = j}

We develop now the term A = N
∑

W (Ci)Hi,R −
∑

W (Ci)
∑

Hi,R by split-
ting N power consumption signals W (Ci) into (d + 1) partitions. The term A
becomes:

A = N

d∑
j=0

∑
Gj

W (Ci).j − (
d∑

j=0

∑
Gj

W (Ci))(
d∑

k=0

∑
Gk

k)

=
d∑

j=0

N.j
∑
Gj

W (Ci)− (
d∑

j=0

∑
Gj

W (Ci))(
d∑

k=0

Nk.k)

=
d∑

j=0

(
N.j −

d∑
k=0

Nk.k

)∑
Gj

W (Ci)

By denoting αj = Nj

N

(
j −∑d

k=0
Nk

N .k
)
, the term A becomes:

A = N2
d∑

j=0

(
αj

∑
Gj

W (Ci)

Nj

)
(7)

A Proposition for Correlation Power Analysis Enhancement 179

Accordingly, from (6) and (7) the correlation between power consumption W
and Hamming distance H is then rewritten as:

ρ̂WH(R) =

d∑
j=0

(
αj

∑
Gj

W (Ci)

Nj

)
σW σH

(8)

Equation (8) shows that the differences between CPA and PPA are the coef-
ficients αj and the normalization factor σW σH . Note that while the coefficients
αj of CPA (see (8)) depend on the distribution of Nj , the aj of PPA (see (4))
are flexibly chosen. If N is large and the bits of B are uniformly distributed, the
coefficients αj of CPA tend to constant values and can be calculated in function
of d and j by the following formula:

αj =
Cj

d

2d
(j −

d∑
k=0

Ck
d

2d
.k)

where Cj
d = d!

j!(d−j)! is the number of combinations of d elements taken j at a
time.

Some values of αj when d = 1 . . . 4 are given in the Table 1.

Table 1. Coefficients αj for an uniform distribution of B

d α0 α1 α2 α3 α4

1 -1/4 1/4 - - -
2 -1/4 0 1/4 - -
3 -3/16 -3/16 3/16 -3/16 -
4 -1/8 -1/4 0 1/4 1/8

We can notice that the coefficients αj (i = 1 . . . 4) for d = 4 are identical to
those of Bevan’s method. This interesting remark shows the relation between
the multi-bit DPA method of Bevan, a special case of PPA, and the correlation
concept of Brier. The difference between these methods is the normalization by
σW σH . This point is studied in the next section.

3 CPA and Normalization Effect

In this section, we discuss the normalization effects by σW σH of CPA signals.
For d = 4, we examine only 4 bits instead of all bits of messages Ci. If the bits
of B are uniformly distributed and N is large enough, according to the Table 1,
the correlation factor ρ̂WH(R) given by the formula (8) becomes:

ρ̂WH(R) =
− 1

8

∑
G0

W (Ci)
N0

− 1
4

∑
G1

W (Ci)
N1

+ 1
4

∑
G3

W (Ci)
N3

+ 1
8

∑
G4

W (Ci)
N4

σW σH
(9)

180 T.-H. Le et al.

Note that the numerator is equal to ΣH(B) given in (4) with d = 4, a0 = − 1
8 ,

a1 = − 1
4 , a2 = 0, a3 = 1

4 and a4 = 1
8 . With such choice of PPA weights aj =

αj , we can observe the effect of the normalization factor σW σH , which is the only
difference between PPA and CPA in this case. Furthermore, if the messages are
random, the number of messages N is large and if d bits are uniformly distributed,
σH is independent to keyhypothesis andequal to d

4 .Thenormalization effectfinally
depends only on σW .

In order to have a better knowledge of σW , we use N power consumption
signals to compute the standard deviation σW (t) at every instant t. Because
data are handled at clock edges, σW (t) is larger at theses points of time than
at other instants. Hence, ΣH(B) is divided by significant values at clock edges
and by smaller values at other moments. Consequently, the noise level of the
correlation factor ρ̂WH(R) rises. It can be very high if σW (t) tends toward zero.

A common numerical method [23] to reduce this normalization effect consists
in adding to σW (t) a positive constant ε. If the ε is correctly chosen, the noise
should be reduced without modifying any principal result. We now obtain for
the correlation factor:

ρ̂WH(R) =
ΣH(B)

(σW + ε)σH
(10)

In our case, the choice of ε is delicate. If ε tends to zero, the CPA signals
are always normalized by small values at the non-clock-edge moments. Thus,
the noise level of CPA signal is still high. On the other hand, if ε is great in
comparison with σW (t) at clock edges, the correlation between H and W is not
respected any more. The object of the following section is to explain the choice
of ε that allows an improvement of the CPA detection capacity.

4 Experimental Confrontation

Experimental results from real measured signals shown in this section allow to
compare the three techniques DPA, PPA, CPA and to valid our CPA enhance-
ment proposition. Here we compare the PPA and CPA by observing 4 exam-
ined bits. The coefficients aj of PPA and αj of CPA are identically chosen for
j = 1 . . . 4. This choice of coefficients helps us to see the normalization effect.
The results of original mono-bit DPA (i.e., d = 1) are also shown as a reference
for comparison.

Signal acquisition: In our experiment, the electromagnetic radiation of a syn-
thesized ASIC during a DES operation was measured. Up to 10000 messages
randomly generated were used. The upper curve of Fig. 1 represents an experi-
mental electromagnetic signal where the 16 peaks corresponding to 16 rounds of
the DES can be observed. As the electromagnetic signal is used instead of the
power consumption ones, the notation W (Ci) represents here the voltage at the
output of our electromagnetic sensor for the processing of the message Ci.

Variation of σW(t): As mentioned in the previous section, we compute the
standard deviation σW (t) at each instant t to observe its variation. This one is

A Proposition for Correlation Power Analysis Enhancement 181

0 2000 4000 6000 8000 10000
0

100

200

300

0 2000 4000 6000 8000 10000
0

10

20

30

Fig. 1. The horizontal axes represent the time sampling proportional to clock cycles.
The upper vertical axis represents the potential difference on the output of an electro-
magnetic sensor (mV) and the lower one represents its standard deviation.

depicted in the lower curve of Fig. 1. The figure validates our analytical results
that the σW increases rapidly at each clock edge.

Signal observation: In the first experiment, we used 2000 cipher messages
to test 64 key hypothesis with DPA, PPA, CPA and enhanced CPA methods.
In Fig. 2, we present the DPA, PPA, CPA and enhanced CPA signals for the
correct key (left column) and for a wrong key (right column) resulting in the
highest ghost peak. From these figures, we realize that the unexpected peaks for
the correct key and for the wrong key appear clearly in the DPA signals. We also
see that the PPA method performs better than DPA in terms of the appearance
of these unexpected peaks. This result shows the advantage of multi-bit concept
compared to the mono-bit one. For the CPA method, the expected peak is clear
and the signals coincide with our analysis in Sect. 3: the level of noise in the
CPA signal is higher. We can also note that ghost peaks in CPA (see Fig. 2 for
the wrong key) are overwhelmed in this described noise.

Evaluation and validation of the proposed method: In order to evaluate
the success of an attack, we define two attack-efficient indexes which reflect
the possibility of key detection. The first index , i1, is defined as the ratio
between the DPA/PPA/CPA peak (expected peak) corresponding to the correct
hypothesis at the moment τ where the bits are manipulated and the highest
DPA/PPA/CPA peak among incorrect hypothesis at this instant. If this index
is greater than 1, the expected peak is the highest one and the key detection
is reliable. On the contrary, if this index is smaller than 1, there exists another
peak higher than the expected peak, i.e the key detection is impossible.

The values of i1 when the number of cipher messages varying from 100 to
10000 messages is illustrated in Fig. 3 and enlarged in Fig. 4. The attack-efficient
index i1 of DPA is represented by the dotted curve, that of PPA is the dashed

182 T.-H. Le et al.

0 5000 10000

−10

0

10 correct key

0 5000 10000

−10

0

10 wrong key

0 5000 10000

−0.2

0

0.2 correct key

0 5000 10000

−0.2

0

0.2 wrong key

0 5000 10000
−0.2

0

0.2 correct key

0 5000 10000
−0.2

0

0.2 wrong key

0 5000 10000
−4
−2

0
2
4

correct key

0 5000 10000
−4
−2

0
2
4

wrong key
DPA

PPA

CPA

Enhanced
 CPA

Fig. 2. Power analysis signals with 2000 messages. 1st line: DPA method, 2nd line:
PPA method, 3rd line: CPA method and 4th line: Enhanced CPA method. Left column:
correct key guess, Right column: wrong key guess resulting in the highest ghost peak.
Horizontal axes: time sampling proportional to clock cycle, 1st line vertical axis: ∆D(b),
2nd line vertical axis: ΣH(B), 3rd and 4th line vertical axes: ρ̂WH(R).

curve and that of CPA is the dashdot curve. The solid curve corresponds to
our proposed method to enhance the CPA. Figure 3 shows that the values i1
of CPA are always greater than those of DPA/PPA. The better performance of
CPA against DPA can easily be explained by the fact that the DPA method
is based on the weighting with a single bit b and the CPA method is based on
a weighting with 4 examined bits of the cipher messages. The result of CPA
against PPA confirms the efficiency of the normalization factor of CPA. When
comparing DPA and PPA, we observe that the index i1 of PPA is always higher
than DPA’s index. Hence, the multi-bit attack PPA (4 bits in our case) performs
better than the mono-bit attack DPA. This conclusion is also confirmed by Fig.
2 in which we observe that the PPA peak is much higher and clearer than the
DPA one.

The second index , i2, is the signal to noise ratio of the DPA/PPA/ CPA
signal corresponding to the correct key. The DPA/PPA/CPA peak is considered
as signal and the rest as noise. If i2 is not large enough, the expected peak
corresponding to the correct key does not appear and we can not confirm which
key is correct. The limit is chosen equal to 3 through our experiment results.
Figure 5 illustrates the variation of the second attack-efficient index i2 as function
of the number of curves Ci. We observe that the values i2 of CPA are much lower
than those of DPA/PPA. Accordingly, the noise in the CPA signal for correct
key is more significant. By using our enhanced CPA method, we reduce this
noise.

A Proposition for Correlation Power Analysis Enhancement 183

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

i1

detection threshold

number of used cipher messages

DPA
PPA
CPA
Enhanced CPA

Fig. 3. First attack-efficient index

100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

number of used cipher messages

i1

DPA
PPA
CPA
Enhanced CPA

detection threshold

Fig. 4. A zoom of Fig. 3

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

detection threshold

number of used cipher messages

i2

DPA
PPA
CPA
Enhanced CPA

Fig. 5. Second attack-efficient index

100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

number of used cipher messages

CPA
Enhanced CPA

detection threshold

i2

Fig. 6. A zoom of Fig. 5

We choose ε = 2 which is about 10 % of σW (τ). This value is quite small
compared to σW (τ) so that its influence on i1 index, which is computed at
instant τ , is negligible. This explains why the CPA and enhanced CPA curves
in Fig. 3 are very close. On the other hand, the value ε = 2 is large enough to
reduce the noise level observed in Fig. 2 (the rate of noise in the enhanced CPA
signals is weaker than in the CPA signals) and Fig. 5 (the enhanced CPA curve
is above the CPA curve) .

Number of cipher messages required for key detection: The key detec-
tion depends on both i1 and i2 indexes. The key detection is only feasible and
reliable if the two following conditions are satisfied: i1 > 1 and i2 > 3. The
first condition is trivial. The second condition is chosen through our experiment
results.

Hence, if we take into account both indexes i1 and i2, according to Fig. 3 and
Fig. 5, the DPA method needs about 2500 messages, the PPA needs about 1000
messages and the CPA needs about 400 messages to detect the correct key, i.e.
both indexes are above the detection threshold. By using our proposed enhanced
CPA method, only 200 messages are required to retrieve the coding key. Figure
7 confirms again our conclusion: with only 200 messages, our enhanced CPA
can detect the key but the original CPA can not. The use of ε, that

184 T.-H. Le et al.

restricts the standard deviation used in CPA, allows us to considerably reduce
the noise level (see Fig. 2),3 and to retrieve the key with a lower number of
curves (see Fig. 7). This restricted normalization can also be applied to PPA
and DPA.

0 5000 10000
−0.5

0

0.5
correct key

0 5000 10000
−0.5

0

0.5
wrong key

0 5000 10000
−0.5

0

0.5
correct key

0 5000 10000
−0.5

0

0.5
wrong key

CPA

Enhanced
CPA

Fig. 7. Power analysis signals with 200 used messages, 1st line: CPA method, 2nd
line: enhanced CPA method. Left column: correct key guess, Right column: wrong key
guess resulting in the highest ghost peak. Horizontal axes: time sampling proportional
to clock cycle, Vertical axes: ρ̂WH .

Let’s also note that interesting clock cycles can be firstly investigated without
normalization and then the restricted factor can be used to fully perform the
differential analysis around the selected areas to find the correct keys.

5 Conclusions

First, we merged all existing multi-bit DPA methods into the PPA concept which
consists of dividing power consumption signals into partitions. PPA could also
be merged into existing cryptanalysis techniques such as partitioning attacks
(see for example [18,19]).

We demonstrate that CPA is, in fact, a special form of PPA normalized by the
standard deviation of power consumption signals. This normalization is efficient
because it allows us to reduce significantly the number of messages required
to break the cryptographic secrets. However, the normalization also increases
the noise level of the CPA signal. This noise level can be reduced by using the
proposed method with the restriction ε. Through the experiments, our enhanced
CPA performs better than original CPA, DPA and four-bit PPA in terms of
number of messages required for key detection. In future work, we would like
to find the coefficients aj that optimize the PPA efficiency. From this optimized
PPA, we would expect to be able to propose a new power consumption model,
taking into account for example the different bit contributions as suggested in
[3,24,25].

3 Note that the ghost peaks in CPA are hidden in the noise and are better revealed
with the enhanced method proposed here.

A Proposition for Correlation Power Analysis Enhancement 185

References

1. M.L. Akkar, C. Giraud: An Implementation of DES and AES Secure Against Some
Attacks. In proceedings of CHES 2001, LNCS 2162, pp. 309-318, Springer-Verlag,
2001.

2. M.L. Akkar, L. Goubin: A Generic Protection Against High-Order Differential
Power Analysis. In proceedings of FSE 2003, LNCS 2887, pp. 192 - 205, Springer-
Verlag, 2003.

3. M.L. Akkar, R. Bevan, P. Dischamp, D. Moyart: Power Analysis, What Is Now
Possible. . . In proceedings of ASIACRYPT 2000, LNCS 1976, pp. 489 - 502,
Springer-Verlag, 2000.

4. R. Bevan, E. Knudsen: Ways to Enhance DPA. In proceedings of ICISC 2002,
LNCS 2587, pp.327-342, Springer-Verlag, 2003.

5. E. Brier, C. Clavier, F. Olivier: Correlation Power Analysis with a Leakage Model,
In proceedings of CHES 2004, LNCS 3156, pp. 16-29, Springer-Verlag, 2004.

6. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi: Towards Sound Approaches to Coun-
teract Power Analysis Attacks. In proceedings of CRYPTO 1999, LNCS 1666, pp.
348-412, Springer-Verlag, 1999.

7. J.S. Coron, L. Goubin: On Boolean and Arithmetic Masking Against Differential
Power Analysis. In proceedings of CHES 2000, LNCS 1965, pp. 231-237, Springer-
Verlag, 2000.

8. J.S. Coron, P. Kocher, D. Naccache: Statistics and Secret Leakage. In proceedings
of Financial Cryptography, LNCS 1972, pp. 157-173, Springer-Verlag, 2000.

9. L. Goubin, J. Patarin: DES and Differential Power Analysis: The Duplication
Method. In proceedings of CHES 1999, LNCS 1717, pp. 158-172, Springer-Verlag,
1999.

10. P. Kocher, J. Jaffe, B. Jun: Introduction to Differential Power Analysis and related
attacks. http://www.cryptography.com.

11. P. Kocher, J. Jaffe, B. Jun: Differential Power Analysis. In proceedings of CRYPTO
1999, LNCS 1666, pp. 388-397, Springer-Verlag, 1999.

12. R. Mayer-Sommer: Smartly Analysing the Simplicity and the Power of Simple
Power Analysis on Smartcards. In proceedings of CHES 2000, LNCS 1965, pp.
78-92, Springer-Verlag, 2000.

13. T. S. Messerges, E. A. Dabbish, R. H. Sloan: Investigations of Power Analysis
Attacks on Smartcards. In proceedings of the USENIX Workshop on Smart Card
Technology 1999, http://www.usenix.org/, 1999.

14. T. S. Messerges, E. A. Dabbish, R. H. Sloan: Examining Smart-Card Security
under the Threat of Power Analysis Attacks. IEEE Transactions on Computers,
Vol. 51, N5, pp. 541-552, May 2002.

15. C. Canovas, J. Clédière: What do S-boxes Say in Differential Side Channel Attacks?
Cryptology ePrint Archive, http://eprint.iacr.org/, Report 20085/311, 2005.

16. S. Guilley, P. Hoogvorst, R. Pacalet: Differential Power Analysis Model and some
Results In proceedings of CARDIS 2004, Kluwer Academic Publishers, pp. 127-142,
2004.

17. K. Gandolfi, C.Mourtel, F.Olivier: Electromagnetic Attacks: Concrete Results. In
proceedings of CHES 2001, LNCS 2162, pp. 252-261, Springer, 2001.

18. Carlo Harpes: Partitioning Cryptanalysis. Post-Diploma Thesis, Signal and Infor-
mation Processing Lab., Swiss Federal Institute of Technology, Zurich, March 1995.
http://www.isi.ee.ethz.ch/ harpes/pc.ps.

186 T.-H. Le et al.

19. Thomas Jakobsen: Correlation Attacks on Block Ciphers, Master’s Thesis, Dept.
of Mathematics, Technical University of Denmark, January 1996.

20. J.J. Quisquater, D. Samyde: Electromagnetic Analysis (EMA): Measures and
Countermeasures for Smart Cards. In proceedings of e-Smart 2001, LNCS 2140,
pp. 200-201, Springer, 2001.

21. J.R. Rao, P. Rohatgi: EMpowering Side-Channel Attacks. Cryptology ePrint
Archive, http://eprint.iacr.org/, Report 2001/037, 2001.

22. R. Bevan: Estimation statistique et sécurité des cartes à puces, évaluation
d’attaques DPA évolués. OCS, rapport de thèse, 2004.

23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical
Recipes in C++. Cambridge University Press, Second Edition, 1002pp, New York,
2002.

24. J. R. Rao, P. Rohatgi, H. Scherzer, S. Tinguely : Partitioning Attacks : Or How to
Rapidly Clone Some GSM Cards. In proceedings of the 2002 IEEE Symposium on
Security and Privacy, pp. 31-41, IEEE Computer Society, 2002.

25. F.-X. Standaert, F. Mace, E. Peeters, J.-J. Quisquater: Updates on the Security
of FPGAs Against Power Analysis Attacks. In proceedings of ARC 2006, LNCS
3985, pp. 335-346, Springer-Verlag, 2006.

High-Resolution Side-Channel Attack Using
Phase-Based Waveform Matching

Naofumi Homma1, Sei Nagashima1, Yuichi Imai1, Takafumi Aoki1,
and Akashi Satoh2

1 Graduate School of Information Sciences, Tohoku University
6-6-05, Aramaki Aza Aoba, Aoba-ku, Sendai-shi 980-8579, Japan

{homma, nagasima, imai}@aoki.ecei.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp
2 IBM Research, Tokyo Research Laboratory, IBM Japan, Ltd.

1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa, 242-8502, Japan
akashi@jp.ibm.com

Abstract. This paper describes high-resolution waveform matching
based on aPhase-OnlyCorrelation (POC) technique and its application for
a side-channel attack. Such attacks, such as Simple Power Analysis (SPA)
and Differential Power Analysis (DPA), use a statistical analysis of signal
waveforms (e.g., power traces) to reduce noise and to retrieve secret infor-
mation. However, the waveform data often includes displacement errors in
the measurements. The use of phase components in the discrete Fourier
transforms of the waveforms makes it possible to estimate the displace-
ments between the signal waveforms with higher resolution than the sam-
pling resolution. The accuracy of a side-channel attack can be enhanced
using this high-resolution matchingmethod. In this paper, we demonstrate
the advantages of the POC-based method in comparison with conventional
approaches through experimental DPA and Differential ElectroMagnetic
Analysis (DEMA) against a DES software implementation on a Z80
processor.

Keywords: side-channel attacks, DPA, DEMA, cryptographic module,
waveform matching, phase-only correlation.

1 Introduction

Cryptanalysis based on side-channel information is of major concern for the
evaluation of tamper-resistant devices. When a cryptographic module performs
encryption or decryption, secret parameters correlated to the intermediate data
being processed can be leaked via power dissipation [1], electromagnetic radiation
[2], or operating times as side-channel information. These are now essential issues
for designers of smartcards and other embedded cryptosystems.

In general, a side-channel attack requires a statistical analysis of waveforms
(e.g., power traces) to reduce noise and to retrieve secret information. The impor-
tant assumption here is that each waveform is captured by a digital measuring
device at the exact moment as the corresponding cryptographic computation.
However, it is almost impossible to time exactly when the data was captured for

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 187–200, 2006.
c© International Association for Cryptologic Research 2006

188 N. Homma et al.

cryptographic modules in actual applications, because there is no trigger signal
precisely synchronized with the cryptographic computation. For example, wire-
less devices and smartcards often have no internal clock generator, or devices
using PLLs will not have any external clock synchronized with the internal clock.
Even if a trigger signal is available, it often contains jitter-related deviations from
the true timing of the encryption process. As a result, the measured waveforms
always include displacement errors. The displacement errors are usually smaller
than the sampling interval, but may cause significant loss of the secret informa-
tion when the waveforms are averaged together, unless there is exact alignment
during the statistical analysis.

Some approaches dealing with the displacements in waveforms were proposed
[3], [4]. In a theoretical model, Differential Power Analysis (DPA) with the fast
Fourier transform of the powerwaveforms is introduced to correct the displacement
errors [3]. Reference [4], on the other hand, demonstrated a practical approach to
analyze Rijndael and ECC on a Java-based wireless PDA. The reported methods
were performed in the frequency domain, and thus it would be very difficult to use
them in collaboration with other side-channel attacks in the time domain.

Addressing the displacement problem, we propose a high-resolution waveform
matching method using a Phase-Only Correlation (POC) function. POC tech-
niques have been successfully applied to high-accuracy image matching tasks
[5]-[8]. The POC function employs phase components in the discrete Fourier
transforms of waveforms, and makes it possible to determine displacement er-
rors between signal waveforms with high noise tolerance by using the location
of the correlation peak. By fitting the analytical model of the correlation peak
to the actual numerical data, we can evaluate the displacement errors with a
higher resolution than the sampling resolution. The waveform matching can be
available directly for a wide variety of side-channel attacks in the time domain
against real-world applications.

In this paper, we describe a high-resolution side-channel attack using POC-
based waveform matching, and demonstrate its advantages in comparison with
conventional methods through experimental analysis of DPA and Differential
ElectroMagnetic Analysis (DEMA) against a DES software implementation on
a Z80 processor. The essence of the proposed method is to use the POC-based
waveform matching as a preprocessing step followed by standard analysis. In
this experiment, the side-channel information is monitored with a digital oscil-
loscope for various sampling rates. The differential analysis with the POC-based
matching shows better results in comparison with the conventional attacks for
all of the sampling rates.

2 High-Resolution Waveform Matching Using
Phase-Only Correlation

2.1 Phase-Based Waveform Matching

Consider two signal waveforms, f(n) and g(n), where we assume that the index
range is n = −M, · · · , M for mathematical simplicity, and hence the length

High-Resolution Side-Channel Attack 189

of waveforms N = 2M + 1. Let F (k) and G(k) denote the Discrete Fourier
Transforms (DFTs) of the two waveforms. F (k) and G(k) are given by

F (k) =
M∑

n=−M

f(n)W kn
N = AF (k)ejθF (k), (1)

G(k) =
M∑

n=−M

g(n)W kn
N = AG(k)ejθG(k), (2)

where WN = e−j 2π
N , AF (k) and AG(k) are amplitude components, and ejθF (k)

and ejθG(k) are phase components.
The cross-phase spectrum (or normalized cross spectrum) RFG(k) is defined

as

RFG(k) =
F (k)G(k)∣∣∣F (k)G(k)

∣∣∣ = ejθF G(k), (3)

where G(k) denotes the complex conjugate of G(k) and θFG(k) = θF (k)−θG(k).
The POC function rfg(n) is the Inverse Discrete Fourier Transform (IDFT) of
RFG(k) and is given by

rfg(n) =
1
N

M∑
k=−M

RFG(k)W−kn
N . (4)

If there is a similarity between two waveforms, the POC function gives a distinct
sharp peak. (When f(n) = g(n), the POC function becomes the Kronecker delta
function.) If not, the peak drops significantly. The height of the peak can be used
as a good similarity measure for waveform matching, and the location of the peak
shows the translational displacement between the two waveforms.

Now consider fc(t) as a waveform defined in continuous space with a real
number index t. Let δ represents a displacement of fc(t). So, the displaced wave-
form can be represented as fc(t − δ). Assume that f(n) and g(n) are spatially
sampled waveforms of fc(t) and fc(t− δ), and are defined as

f(n) = fc(t)|t=nT , (5)
g(n) = fc(t− δ)|t=nT , (6)

where T is the sampling interval and the index range is given by n = −M, · · · , M .
For simplicity, we assume T = 1. The cross-phase spectrum RFG(k) and the POC
function rfg(n) between f(n) and g(n) will be given by

RFG(k) =
F (k)G(k)∣∣∣F (k)G(k)

∣∣∣ � ej 2π
N kδ, (7)

rfg(n) =
1
N

M∑
k=−M

RFG(k)W−kn
N

190 N. Homma et al.

−3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

n

r fg
 (n

)

(a)

−3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

n

r fg
 (n

)

(b)

Fig. 1. POC functions: (a) for the case δ = 0, (b) for the case δ = 0.5

� α

N

sin {π (n + δ)}
sin

{
π
N (n + δ)

} , (8)

where α = 1. The above Eq. (8) represents the shape of the peak for the POC
function between the same waveforms that are slightly displaced with each other.
This equation gives a distinct sharp peak. The peak position δ of the POC func-
tion corresponds to the displacement between the two waveforms. We can prove
that the peak value α decreases (without changing the shape of the function it-
self), when small noise components are added to the original waveforms. Hence,
we assume α ≤ 1 in practice. For the waveform matching task, we evaluate the
similarity between the two waveforms by the peak value α, and estimate the
displacement by the peak position δ.

By calculating the POC function for two waveforms f(n) and g(n), we can ob-
tain a numerical value of rfg(n) for each discrete index n, where n = −M, · · · , M .
Fig. 1 shows the POC functions around the correlation peaks when (a) δ = 0 and
(b) δ = 0.5, where the black dots indicate the discrete data values from rfg(n).
We use Eq. (8) (the closed-form peak model of the POC function) directly for es-
timating the peak position by function fitting. Fig. 1 also shows these examples,
where the solid lines represent the estimated shapes of the POC functions. Thus,
it is possible to find the location of the peak that may exist between sampling
intervals by fitting the peak model to the calculated data around the correlation
peak, where α and δ are fitting parameters. Note here that we can use other
types of functions, such as a Gaussian function or a quadratic function, for the
function fitting.

2.2 Preliminary Evaluation

Consider two waveforms f(n) and g(n), and an estimated displacement δ. The
waveform matching finally calculates g′(n) by shifting g(n) by an amount corre-
sponding to δ. For example, this waveform shifting is done by the phase rotation

High-Resolution Side-Channel Attack 191

0 25 50 75 100 125 150
40

60

80

100

120

140

160

Sampled point

(a)

0 25 50 75 100 125 150
40

60

80

100

120

140

160

Sampled point

(b)

Fig. 2. Example of POC-based waveform matching: (a) input waveforms f(n) and
g(n), (b) f(n) and displacement-normalized waveform g′(n)

of the waveform in the frequency domain. Let G′(k) denotes the DFT of g′(n).
G′(k) will be given by

G′(k) � G(k)ej 2π
N kδ. (9)

Therefore, g′(n) is given by

g′(n) =
1
N

M∑
k=−M

G′(k)W−kn
N . (10)

We can also implement the waveform shifting with various interpolation tech-
niques, such as bicubic interpolation.

Fig. 2 shows an example of the POC-based waveform matching, where the two
waveforms are power traces from a microprocessor captured by using a trigger
signal at the times of the same computation. Due to the trigger jitter, there is
a displacement error between these waveforms as shown in Fig. 2(a). Using the
POC-based waveform matching, we can obtain the displacement δ = 1.5555.
Fig. 2(b) shows two waveforms after the waveform shifting. Thus, the proposed
method can be used to match waveform positions with higher resolution than
the sampling resolution.

Fig. 3 shows examples of the POC function and the ordinary correlation func-
tion, where we use the two waveforms shown in Fig. 2. We observe that the POC
function provides a sharp peak in comparison to the ordinary function. The sharp
peak typically exhibits good discrimination properties.

To evaluate the sharpness of a correlation peak, we consider the Peak-to-
Sidelobe Ratio (PSR) between a central region around at the peak and the resid-
ual region (sidelobe region). PSR is determined as PSR = (peak −mean)/std,
where peak is the correlation peak value, and mean and std are the mean and
standard deviation in the sidelobe region [9]. In this example, the PSR values of

192 N. Homma et al.

−1 −0.5 0 0.5 1
x 10

5

0

0.1

0.2

0.3

n

(a)

−1 −0.5 0 0.5 1
x 10

5

0.96

0.97

0.98

0.99

1

1.01

n

(b)

Fig. 3. Examples of the POC function and the ordinary correlation function between
two similar waveforms: (a) POC function, (b) ordinary correlation function

the POC function and the ordinary function are 104.76 and 6.54, respectively.
This suggests that the POC function exhibits much higher discrimination than
the ordinary correlation function.

3 Side-Channel Attacks with POC-Based Waveform
Matching

3.1 Basic Concept

The proposed waveform matching is used as a preprocessing step followed by
standard analysis. Fig. 4 shows an overview of the proposed DPA with the
POC-based waveform matching. We first collect power traces by sampling power
consumption for a series of encryptions of different plaintexts. In the following
experiment, a trigger signal is used as in the conventional DPAs for simplicity,
and the measured waveforms are initially aligned at the trigger. However, the
proposed method can get the same alignment of the waveforms without using
a trigger signal. After gathering a number of power traces, we use the POC-
based matching for the precise alignment of the waveforms. In the matching
step, we select any one of the waveforms as a reference, and then evaluate the
displacement errors between the other waveforms and the reference. The POC-
based matching considered here includes the advanced techniques described in
Appendix A. Finally, we resample each waveform according to the evaluated
displacement.

After the waveform matching using POC, the standard analysis is performed.
First, we divide the waveforms into two groups according to one bit output
from a selection function calculated by guessing the secret key. If the guess is
correct, a noticeable difference is found between the two averaged waveforms,
but no significant difference appears for a wrong guess that gives no correlation
between the selection function and the secret key.

High-Resolution Side-Channel Attack 193

POC-based

waveform

matching

Measured waveforms

Classification based

on a key block guess

Averaging

Difference

calculation

Correct guess

Wrong guess

Averaging

Fig. 4. Proposed differential analysis with POC-based waveform matching

CPU

Measuring points

Fig. 5. Evaluation board (INSTAC-8)

Electromagnetic
probe

CPU

Fig. 6. Electromagnetic probing

3.2 Experimental Conditions

We applied the POC-based matching technique to DPAs and to DEMAs against
a DES software implementation on a Zilog Z80 processor (8 MHz). For the
selection functions, we focus on the S-box computation in the 16-th (final) round.
DES has eight 6-bit-input and 4-bit-output S-boxes, and thus 4×8 = 32 selection
functions using the S-box output can be formed. For each selection function, we
have 26 = 64 key candidates derived from the 6-bit S-box input.

Fig. 5 shows the INSTAC-8 CPU board [10] designed for the side-channel
attack experiment, and the measurement points on the board. The power con-
sumption of the processor was monitored as the voltage drop caused by a resistor
inserted between the Z80 ground pin and the ground plane of the board. The
electromagnetic radiation was also monitored over the Z80 processor as illus-
trated in Fig. 6. We used a trigger signal synchronized with the beginning of
round 15, and obtained four sets of waveforms at sampling rates of 100 MSa/s
(millions of samples per second), 200 MSa/s, 400 MSa/s, and 1 GSa/s. Fig. 7 is
the measured waveform at 400 MSa/s. The capture range of waveforms is from
4.22 ms to 4.24 ms after the trigger signal, which contains all of the operations
of S-box 1 to S-box 8. Two sets of 1,000 waveforms (power and electromagnetic)
were measured during encryption of 1,000 random plaintexts with a fixed key.
The subkey values from S-box 1 to S-box 8 at the round 16 were fixed as 21, 16,
31, 35, 9, 51, 51, and 48 in decimal, respectively.

194 N. Homma et al.

Sampling rate: 400 MSa/s

Vertical axis: 100 mV/div Horizontal axis: 500 us/div

Capture range

Round 15 Round 16

Fig. 7. Example of measured waveform

Fig. 8. Estimated displacements Fig. 9. Correlation peak values

3.3 Experimental Results

Fig. 8 shows the evaluated displacements for the 1,000 waveforms sampled at 200
MHz (5 ns/point), where the horizontal and vertical axes indicate the waveform
index and the displacement value, respectively. The waveforms contain relatively
large displacement errors even though they were captured by using a trigger
signal synchronized to the system clock, which was generated by the board. Fig.
9 shows the correlation peaks between each waveform and a reference. The peak
between two waveforms was about 0.2 due to the different plaintexts and noise.
(The peak between identical waveforms is 1.) However, we can identify the peak
position clearly since the POC function gives a distinct sharp peak as shown
in Fig. 10(a). Fig. 9 also shows that there are some small peaks among the
waveforms. Fig. 10(b) shows one of the corresponding POC functions. We found
that the waveforms at a low peak value were quite different in shape from the
reference waveform. The proposed POC-based analysis can easily detect this kind

High-Resolution Side-Channel Attack 195

Fig. 10. POC functions: (a) for the case α ≈ 0.2, (b) for the case α ≈ 0.02

False peaks

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−15

−10

−5

0

5

10

15

Sampled point

(a)

True peak

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−15

−10

−5

0

5

10

15

Sampled point

(b)

Fig. 11. Example of DPAs: (a) conventional DPA, (b) proposed DPA

of inaccurately measured waveform, and thus adverse effects on the statistical
analysis can be prevented by removing them in an averaging process.

Fig. 11 illustrates the results of the conventional DPA and the proposed DPA,
where both DPAs have used the same set of waveforms sampled at 200 MHz.
These results were obtained by evaluating 64 possible keys with one out of the
four selection functions of S-box 1. When the DPA succeeds, the highest peak ap-
pears in the averaged waveform indicating the correct key, but the conventional
DPA in Fig. 11(a) gives many high false peaks for incorrect keys. In contrast, the
proposed DPA clearly indicates the true peak with the correct key as shown in
Fig. 11(b). In this experiment, we confirmed that the proposed DPA consistently
increased the peak signal and reduced the noise at all four of the sampling rates,
100 MSa/s, 200 MSa/s, 400 MSa/s, and 1 GSa/s.

196 N. Homma et al.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Number of waveforms

N
u
m

b
e
r

o
f
e
rr

o
r

b
it
s 100 MSa/s

200 MSa/s

400 MSa/s

1 GSa/s

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Number of waveforms

N
u
m

b
e
r

o
f
e
rr

o
r

b
it
s 100 MSa/s

200 MSa/s

400 MSa/s

1 GSa/s

(b)

Fig. 12. Error rates for various sampling rates: (a) conventional DPA, (b) proposed
DPA

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Number of waveforms

N
u
m

b
e
r

o
f
e
rr

o
r

b
it
s

100 MSa/s

200 MSa/s

400 MSa/s

1 GSa/s

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Number of waveforms

N
u
m

b
e
r

o
f
e
rr

o
r

b
it
s 100 MSa/s

200 MSa/s
400 MSa/s

1 GSa/s

(b)

Fig. 13. Error rates for various sampling rates: (a) conventional DEMA, (b) proposed
DEMA

Fig. 12 compares the error rates of the conventional DPA and those of the pro-
posed DPA for different numbers of waveforms, where the vertical axis indicates
the number of error bits. In other words, Fig. 12 shows the number of selection
functions that could not distinguish a correct key from the incorrect keys by
investigating the highest peak. If no secret key bit was obtained, the number
of errors is 32 bits. The error rate comparisons between the conventional and
proposed DEMA are also shown in Fig. 13. The sampling rate of 1 GSa/s is
high enough to attack the slow 8-MHz processor by using conventional DPA and
DEMA, but the proposed method has clear computational advantages at the
sampling rates of 200 MSa/s and 400 MSa/s as shown in Figs. 12 and 13. For
example, the proposed DEMA at 200 MSa/s requires less than half the number
of waveforms to achieve the 50 % error rate in comparison with the conventional
DEMA.

Tables 1 and 2 show the DPA results using 1,000 waveforms at 200 MSa/s and
400 MSa/s, respectively. The 4-bit output from each S-box Si was used for four

High-Resolution Side-Channel Attack 197

Table 1. Estimation results of DPAs at 200 MSa/s

Conventional DPA

14

58

33

35

S4

11

33

27

5

S5

11

13

54

51

S6

60

26

32

51

S7

1144551

2054458

60432215

48311621

S8S3S2S1

Proposed DPA

14

58

21

35

S4

50

2

12

9

S5

51

26

49

51

S6

19

8

51

51

S7

48311638

20311610

7532511

48311621

S8S3S2S1

Table 2. Estimation results of DPAs at 400 MSa/s

Conventional DPA

14

35

53

35

S4

9

9

47

9

S5

32

26

51

51

S6

51

8

51

51

S7

39311621

36311655

51312511

48311621

S8S3S2S1

Proposed DPA

14

35

35

35

S4

9

9

47

9

S5

51

26

51

51

S6

51

8

51

51

S7

48311621

48311621

48312521

48311621

S8S3S2S1

selection functions, and thus four estimations were made for each 6-bit subkey
that was XORed to 6 bits of S-box input data. Therefore, four 6-bit possible
keys were obtained for each S-box in the tables, and the shaded boxes indicate
the correctly guessed keys. If two or more of the values in an S-box column are
the same, then there is a very high probability that we can obtain the correct
subkey by majority vote. As shown in Table 1, the proposed DPA found five out
of eight subkeys at 200 MSa/s while the conventional approach found none. In
the 400 MSa/s measurements, the proposed DPA determined all of the subkeys,
as shown in Table 2. It is important to note that both DPAs used exactly the
same waveform data, and the POC pre-process is simply applied to the captured
waveforms before statistical analysis. Therefore, our method can be applied to
many varieties of side-channel attacks, such as SPA, SEMA, DPA, and DEMA,
to improve the precision of the key estimations.

4 Conclusions

In this paper we proposed a high-resolution waveform matching method based on
the POC technique and described its application to side-channel attacks. The
POC-based matching method makes it possible to evaluate the displacement
between signal waveforms with higher resolution than the sampling resolution.
In addition to the waveform alignment, we can remove inaccurately measured
waveforms by detecting significant drops of correlation peaks, eliminating their
adverse effects on the statistical analysis.

198 N. Homma et al.

The advantage of proposed method over the conventional methods was demon-
strated by experimental DPAs and DEMAs against a DES software implementa-
tion. The results showed that the proposed method improved the accuracy of the
differential analysis. A high success rate of finding correct subkeys was obtained
even at a low sampling rate where the conventional attacks failed. At higher sam-
pling rates, the proposed analysis requires fewer plaintexts to obtain the same error
rate as the conventional analysis. As a result, we confirmed that the POC-based
waveform matching can be used efficiently for both DPA and DEMA on software
implementations without any drawbacks. Applications to other side-channel at-
tacks and on other platforms such as FPGAs and ASICs remain for future study.

The important feature of the proposed method is its capability to enhance any
side-channel analysis independently of the cryptographic algorithms, implementa-
tions (software or hardware), and kind (power or electromagnetic) of side-channel
information. In experiments with a Z80 board, we used a trigger signal synchro-
nized with the cryptographic operations for simplicity, but the POC-based match-
ing does not require this for aligning a number of power traces. Therefore, our ap-
proach is very efficient for attacking cryptographic modules in actual applications,
even where no trigger signal or no internal clock can be observed.

In addition, the proposed method can defeat some countermeasures creating
distorted waveforms with random delays, dummy cycles, or unstable clocking.
In this paper, the proposed waveform matching was used for relatively long
waveforms, in which the number of sample points is from 20,000 to 200,000.
Even when the waveforms have small numbers of sample points, the POC-based
technique exhibits good discrimination properties. For example, high-accuracy
block matching of small images (e.g., 33 × 33 pixels) have been implemented
using the POC-based techniques [11]. The block matching technique can also be
effective for waveforms. Thus, POC-based block matching would easily cancel
out distortion components in waveforms. We are now conducting research to
develop advanced waveform matching techniques and to investigate their utility
in attacks against the waveform-distortion countermeasures.

Acknowledgments. We would like to thank Prof. M. Yamaguchi of Tohoku
University for his important advice about electromagnetic measurements. We
would also like to thank K. Degawa for his generous support.

References

1. P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” CRYPTO 1999,
Lecture Notes in Computer Science, vol. 1666, pp. 388 – 397, Aug. 1999.

2. K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete re-
sults,” CHES 2001, Lecture Notes in Computer Science, vol. 2162, pp. 251 – 261,
May 2001.

3. J. Waddle and D. Wagner, “Towards efficient second-order power analysis,” CHES
2004, Lecture Notes in Computer Science, vol. 3156, pp. 1 – 15, Aug. 2004.

4. H. C. Gebotys, S. Ho, and C. C. Tiu, “EM analysis of Rijndael and ECC on
a wireless Java-based PDA,” CHES 2005, Lecture Notes in Computer Science,
vol. 3659, pp. 250 – 264, Aug. 2005.

High-Resolution Side-Channel Attack 199

5. Q. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only matched filtering of
Fourier-Mellin transforms for image registration and recognition,” IEEE Transac-
tions Pattern Analysis & Machine Intelligence, vol. 16, pp. 1156 – 1168, Dec. 1994.

6. K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi, “High-accuracy sub-
pixel image registration based on phase-only correlation,” IEICE Transactions on
Fundamentals of Electronics, Communicati ons and Computer Sciences, vol. E86-
A, pp. 1925 – 1934, Aug. 2003.

7. K. Ito, H. Nakajima, K. Kobayashi, T. Aoki, and T. Higuchi, “A fingerprint match-
ing algorithm using phase-only correlation,” IEICE Transactions on Fundamentals
of Electronics, Communicati ons and Computer Sciences, vol. E87-A, pp. 682 – 691,
Mar. 2004.

8. K. Takita, A. M. Muquit, T. Aoki, and T. Higuchi, “A sub-pixel correspondence
search technique for computer vision applications,” IEICE Transactions on Fun-
damentals of Electronics, Communicati ons and Computer Sciences, vol. E87-A,
pp. 1913 – 1923, Aug. 2004.

9. B. V. Kumar, Correlation Pattern Recognition. Cambridge University Press, 2005.
10. T. Matsumoto, S. Kawamura, K. Fujisaki, N. Torii, S. Ishida, Y. Tsunoo, M. Saeki,

and A. Yamagishi, “Tamper-resistance standardization research committee report,”
The 2006 Symposium on Cryptography and Information Security, pp. 1 – 6, Jan. 2006.

11. A. M. Muquit, T. Shibahara, and T. Aoki, “A high-accuracy passive 3D measure-
ment system using phase-based image matching,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, vol. E89-A,
pp. 686 – 697, Mar. 2006.

A Advanced Techniques for High-Resolution Waveform
Matching

Listed below are important considerations for high-resolutionwaveformmatching.

A.1 Windowing to Reduce Boundary Effects

Due to the DFT’s periodicity, a waveform can be considered to “wrap around” at
an edge, and therefore discontinuities, which arenot supposed to exist in real world,
occur at every edge in DFT computations. We reduce the effect of a discontinuity
at a waveform border by applying a window function to the input waveforms f(n)
and g(n). For example, we can employ a Hanning window defined as

w(n) =
1 + cos(πn

M)
2

. (11)

The use of window functions is especially useful when the length of waveforms
is short.

A.2 Spectral Weighting Technique to Reduce Aliasing and Noise
Effects

For natural waveforms, typically the high frequency components may have less
reliability (low S/N ratio) compared with the low frequency components. We

200 N. Homma et al.

could improve the estimation accuracy by applying a low-pass-type weighting
function H(k) to RFG(k) in frequency domain and eliminating the high fre-
quency components having low reliability. The simplest weighting function H(k)
is defined as

H(k) =
{

1 |k| ≤ U
0 otherwise , (12)

where U is an integer satisfying 0 ≤ U ≤ M . The cross-phase spectrum RFG(k)
is multiplied by the weighting function H(k) when calculating the IDFT. Then
the modified rfg(n) will be given by

rfg(n) =
1
N

M∑
k=−M

RFG(k)H(k)W−kn
N

� α

N

sin
{

V
N π (n + δ)

}
sin

{
π
N (n + δ)

} , (13)

where V = 2U +1. When using the spectral weighting technique, Eq. (13) should
be used for function fitting instead of Eq. (8). The main lobe of the POC function
is extended by the spectral weighting technique.

Note that we can use any other weighting functions according to the reliability
of the frequency components. If we use a weighting function, we need to change the
peak model for function fitting correspondingly. The peak model can be calculated
by the IDFT of the product of the weighting function and the cross-phase spectrum
in Eq. (7).

A.3 Band-Limited POC Function

Another important technique for eliminating the high frequency components of
waveforms is to use a band-limited POC function [7].

Assume that the range of the inherent frequency band is given by k =
−K, · · · , K, where 0 ≤ K ≤ M . (The parameter K may be automatically de-
tected by waveform processing.) The band-limited POC function is defined as

rK
fg(n) =

1
L

K∑
k=−K

RFG(k)W−kn
L

� α

L

sin {π (n + δ′)}
sin

{
π
L (n + δ′)

} , (14)

where L = 2K + 1, n = −K, · · · , K and δ′ = L
N δ. Therefore, the displace-

ment is given by δ = N
L δ′. The maximum value of the correlation peak of the

band-limited POC function is always normalized to 1 and is not dependent on
the frequency band size L. In practice, we can combine the band-limited POC
function with the above spectral weighting technique.

Cache-Collision Timing Attacks Against AES

Joseph Bonneau1 and Ilya Mironov2

1 Computer Science Department, Stanford University
jbonneau@stanford.edu

2 Microsoft Research, Silicon Valley Campus
mironov@microsoft.com

Abstract. This paper describes several novel timing attacks against the
common table-driven software implementation of the AES cipher. We de-
fine a general attack strategy using a simplified model of the cache to
predict timing variation due to cache-collisions in the sequence of lookups
performed by the encryption. The attacks presented should be applica-
ble to most high-speed software AES implementations and computing
platforms, we have implemented them against OpenSSL v. 0.9.8.(a) run-
ning on Pentium III, Pentium IV Xeon, and UltraSPARC III+ machines.
The most powerful attack has been shown under optimal conditions to
reliably recover a full 128-bit AES key with 213 timing samples, an im-
provement of almost four orders of magnitude over the best previously
published attacks of this type [Ber05]. While the task of defending AES
against all timing attacks is challenging, a small patch can significantly
reduce the vulnerability to these specific attacks with no performance
penalty.

Keywords: AES,cryptanalysis, side-channelattack, timingattack, cache.

1 Introduction

Side-channel attacks have been demonstrated experimentally against a variety
of cryptographic systems. Side-channel attacks utilize the fact that in reality,
a cipher is not a pure mathematical function EK [P] → C, but a function
EK [P]→ (C, t), where t is any additional information produced by the physical
implementation. The attacks presented in this paper use timing data.

In 1997, Rijmen and Daemen proposed the Rijndael cipher to the National
Institute of Standards and Technology (NIST) as a candidate to become the Ad-
vanced Encryption Standard (AES). After four years of competition, Rijndael
was chosen by NIST in October 2000 and officially became AES in 2001 with US
FIPS 197. The cipher is now widely deployed and is expected to be the world’s
predominant block cipher over the next 25 years. In its final evaluation of Rijn-
dael [NBB+00], NIST stated that table lookup operations are “not vulnerable
to timing attacks” and regarded Rijndael as the easiest among the finalists to
defend against side-channel attacks.

In contrast to NIST’s predictions, a number of side channel attacks have
already been demonstrated against AES, including timing attacks by Bernstein

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 201–215, 2006.
c© International Association for Cryptologic Research 2006

202 J. Bonneau and I. Mironov

[Ber05] and Tsunoo et al. [TSS+03]. This paper considers a model for attacking
AES by using the timing effects of cache-collisions to gather noisy information
about the likelihood of relations between key bytes. This leads to a multivariate
optimization problem, where the unknown key is an optimal value of a certain
objective function. We solve for the key using a variety of AI methods, including
belief propagation and iterated local search, as discussed in Appendix D. We also
deviate from previous work in attacking the final round of encryption instead of
the first round. Table 1 demonstrates the improvements of the attacks in this
paper over several previous attacks (see also [CLS06,NSW06,NS06]).

Table 1. Overview of timing attacks against AES

Attack Samples needed Sample type Goal
Bernstein [Ber05] 227.5 Plaintext/timing Full key recovery

Tsunoo et al. [TSS+03] 226 Plaintext/timing Full key recovery
First round attack 214.58 Plaintext/timing 60 key bits recovered
Final round attack 215 Ciphertext/timing Full key recovery

Expanded Final round attack 213 Ciphertext/timing Full key recovery

2 Overview of the AES Cipher

A full description of the Rijndael cipher is provided in [DR02], but below is a brief
description of the cipher’s properties that were utilized in this study. This paper
will focus exclusively on AES with a 128 bit key. 192 and 256 bit versions use a
different key expansion algorithm and more rounds. AES is an iterated cipher:
Each round i takes a 16-byte block of input X i and a 16-byte block of key mate-
rial Ki, producing a 16-byte block of output X i+1. Each round is carried out by
performing the algebraic operations SubBytes, ShiftRows, and MixColumns on
X i, then taking the exclusive-or with the round key Ki. Performance-oriented
software implementations of AES combine all three operations and pre-compute
the values. The values are stored in large lookup tables, T0, T1, T2, T3, each map-
ping one byte of input to four bytes of output. Each round is carried out by
splitting up X i into 16 bytes xi

0, x
i
1, . . . , x

i
15, and Ki into 16 bytes ki

0, k
i
1, . . . , k

i
15.

The encryption round is then carried out as:

X i+1 = {T0[xi
0]⊕ T1[xi

5]⊕ T2[xi
10]⊕ T3[xi

15]⊕ {ki
0 , ki

1 , ki
2 , ki

3 },
T0[xi

4]⊕ T1[xi
9]⊕ T2[xi

14]⊕ T3[xi
3]⊕ {ki

4 , ki
5 , ki

6 , ki
7 },

T0[xi
8]⊕ T1[xi

13]⊕ T2[xi
2]⊕ T3[xi

7]⊕ {ki
8 , ki

9 , ki
10, k

i
11}, (1)

T0[xi
12]⊕ T1[xi

1]⊕ T2[xi
6]⊕ T3[xi

11]⊕ {ki
12, k

i
13, k

i
14, k

i
15}}.

The round calculation can be performed very efficiently in software this way,
using just 16 table lookups and 16 word-length x-or’s. A complete encryption
consists of an x-or with the first 16 bytes of key material, referred to as “in-
put whitening,” followed by 9 normal encryption rounds, plus a simplified final

Cache-Collision Timing Attacks Against AES 203

round. The final round performs no MixColumns operation as it might trivially
be inverted by an attacker and would ostensibly slow down hardware implemen-
tations. This omission will prove crucial, as it causes software implementations
to use a new table T4 in the last round, which is just the AES S-Box.

A total of 10 rounds are used in 128-bit AES, but 11 16-byte blocks of key
material are needed because of the input-whitening. These 176 bytes of key
material are generated by taking the raw 16-bytes of the key and repeatedly
carrying out a non-linear transformation which produces the next 16-byte block
based on the previous 16-byte block until all 176 bytes are created. This key
expansion structure was explicitly chosen [DR02] to be invertible given any 16
consecutive bytes of the expanded key. This is useful to an attacker in that
recovery of the final 16 bytes of the expanded key (or any other 16 bytes) is
equivalent to recovery of the original key.

This formulation was a part of the original Rijndael proposal [DR02]. The
attacks in this paper are widely applicable as many AES implementations have
made no significant changes to the original optimized Rijndael code In addition
to OpenSSL v. 0.9.8.(a), which was used in our experiments, the AES imple-
mentations of Crypto++ 5.2.1 and LibTomCrypt 1.09 use the original Rijndael
C implementation with very few changes and are highly vulnerable. The AES
implementations in libgcrypt v. 1.2.2 and Botan v. 1.4.2 are also vulnerable, but
use a smaller byte-wide final table which lessens the effectiveness of the attacks.

3 Related Work

Side-channel attacks have been demonstrated against implementations of many
cryptosystems, utilizing timing [Ber05,TSS+03,Koc96,BB05], power consump-
tion [ABDM00,KJJ99], electromagnetic radiation [GMO01], etc. Public key algo-
rithms have proved the most vulnerable to timing attacks because they typically
perform lengthy mathematical operations, the running time of which depends
directly on the data due to branch statements. Kocher demonstrated timing at-
tacks against a variety of software public-key systems in 1996 [Koc96]. Brumley
and Boneh demonstrated more advanced timing attacks against RSA in 2003
which were effective even against a remote SSL server [BB05], these attacks
were improved by another order of magnitude in 2005 [ASK05].

A similar timing attack was demonstrated against the reference AES imple-
mentation which uses branch statements to perform multiplication in the field
GF(28) [KQ99]. However, as noted above, performance AES implementations
pre-compute this calculation, obviating this attack. During the AES selection
process, it was believed that timing attacks were only applicable to software
with a data-dependent execution path (i.e., branch statements, data-dependent
shifts), although Kocher did suggest that timing attacks could be constructed
against symmetric ciphers by studying “cache hit ratio” [Koc96], a conclusion
also reached by Kelsey et al. [KSWH00]. Nevertheless, in an analysis of AES
finalists done by Daemen and Rijmen, Rijndael was deemed a “favorable” can-
didate to secure against timing attacks, since it did not use branch instructions or

204 J. Bonneau and I. Mironov

data-dependent rotations [DR99]. Even by the final NIST evaluation [NBB+00],
it was not recognized that table lookups could lead to timing attacks due to the
effects of cached memory and AES was considered to be safe.

The use of table lookups into cached memory has recently been recognized as
an exploitable cryptographic side-channel [Pag02]. Recent attacks due to Osvik,
Shamir, and Tromer demonstrate how specific information about what values in
cached memory the encryption algorithm has accessed can quickly leak enough
information to reconstruct an AES key [OST06]. For example, if the attacker can
determine that, whenever p0 = z, the data in T0[z′] is accessed during encryption,
then it must be the case that x0

0 = z′. Since it holds that p0 ⊕ k0 = x0
0, the

attacker can conclude that k0 = z ⊕ z′. These attacks are different from timing
attacks because they require that the attacker gain direct knowledge about cache
access patterns,1 thus they are directly using cache accesses as a cryptographic
side-channel instead of timing.

Another class of cache attacks focuses on the use of power consumption to de-
tect whether lookups performed during AES encryption resulted in hits or misses.
This technique was first demonstrated in [BBM+06]. An attack using power anal-
ysis of the first round was also described by Lauradoux [Lau05]. Acıiçmez and
Koç [AK06] extended this approach by considering the first two rounds of AES.
Their attack requires a very low (∼ 50) number of encryptions, but require
physical access to a machine’s power supply.

Cache access patterns also cause timing variation, which can be used to con-
struct a timing attack against AES software without direct observation of the
cache accesses. This principle was first demonstrated by Tsunoo et al. [TTMM02,
TSS+03] who demonstrated timing attacks against DES and MISTY. Tsunoo
et al, assuming that cache hit ratio should be correlated with encryption time,
collect a number of plaintexts with unusually long encryption times. These plain-
texts are then used to infer information about key bytes by inferring that the
correct key should be one that leads to the lowest cache-hit ratio when used
with the set of “slow” plaintexts. While the authors focus on attacking DES, the
possibility of an attack on AES is briefly mentioned in [TSS+03]. Unfortunately,
insufficient detail is provided to reproduce the attack, although a figure of 218

plaintexts with long encryption times is presented for the attack. Assuming con-
sistency with the attacks on DES, this means a total of 224 plaintexts are needed.

Our approach is similar to that of Tsunoo et al. in utilizing the correlation
between cache hits and encryption time. However, our attacks focus on individual
cache-collisions during encryption, instead of overall hit ratio. Furthermore, we
use the entire data set, instead of simply plaintexts resulting in long encryption,
and we consider conditions which lead to a shorter encryption time, instead of a
longer one. Our methods is similar to that used in recent attacks independently
described by Acıiçmez [Acıi05] and Neve et al. [NSW06, NS06], although our
attacks differ in focusing on the final round of encryption as opposed to the first
round.

1 As implemented in [OST06], knowledge of cache accesses is gained by running attack
code on the target computer before and after the encryption operation.

Cache-Collision Timing Attacks Against AES 205

Bernstein demonstrated a different type of timing attack against AES in
2005 [Ber05] which can be thought of as a statistical timing attack. Bernstein
observed that since the input bytes to the first round of encryption are simply
the bytes x0

i = pi ⊕ ki, and these bytes are immediately used as indices into
the lookup tables, the entire encryption time t can be affected by each of the
values x0

i . To carry out Bernstein’s attack, first a large volume of timing data is
collected for each value of an input byte x0

i using a reference machine, this data
is then correlated with data from the target machine to recover the key.

Bernstein’s attack is a generic attack because it does not utilize any specific
knowledge of why the value of a specific x0

i affects the encryption time, only the
empirical observation that certain values do cause time variation. This approach
is widely applicable because, as Bernstein details, it is extremely difficult to
achieve fast constant-time software, and any timing variation could potentially
be exploitable. The statistical attack method can even be extended [CLS06] to
exploit timing variation of individual bits of the key instead of whole bytes.

The first downside of the statistical approach is that it requires a large num-
ber of samples, approximately 227.5 in Bernstein’s experiments. More critically,
the attack is very fragile because relies on subtle machine-specific cache effects,
requiring that the attacker recreate the target platform exactly. In our own ex-
periments with Bernstein’s attack code, we found even small changes to the mix
of background processes from the target machine to the reference machine were
enough to make the attack fail, raising serious doubts on the practicality of the
attack. Similar difficulty in reproducing the attacks was reported in [OST06]
and [OT05]. A recent analysis by Neve et al. [NSW06] discusses the reasons the
attack succeeds in some cases and why it is probably not practical.

In contrast, this paper focuses exclusively on white-box timing attacks, which
use expected timing effects due to the structure of the cipher. This approach
requires no specific information about the target platform, and is likely to require
far fewer samples if encryption software lends itself to simple and predictable
timing effects, as AES does.

4 Attack Model and Strategy

The attacks in this paper assume the computer performing the encryption op-
eration uses cached memory which can be described using a simple model of
the cache. A cache is a small, fast storage area situated between the CPU and
main memory. When values are looked up in main memory, they are stored in
the cache, evicting older values in the cache. Subsequent lookups to the same
memory address can then retrieve the data from the cache, which is faster than
main memory, this is called a “cache hit.”

Complicating matters is the fact that modern caches do not store individual
bytes, but groups of bytes from consecutive “lines” of main memory. Line size
varies between 32 bytes for a Pentium III and 64 or 128 bytes on more recent
Pentium IV or AMD Athlon processors. Since the usual size of AES table entries
is 4 bytes, groups of 8 consecutive table entries share a line in the cache on a

206 J. Bonneau and I. Mironov

Pentium III (this value is defined as δ in [OST06]). So, for any bytes l, l′ which
are equal ignoring the lower log2 δ bits (notated as 〈l〉 = 〈l′〉 in [OST06]), looking
up address l will cause an ensuing access to l′ to hit in cache.

We view an AES encryption as a sequence of 160 table lookups to indices
l1, l2, ..., l160. A “cache collision” occurs if two separate lookups li, lj satisfy
〈li〉 = 〈lj〉. In this situation, lj should always hit in the cache.2 If it were the
case that 〈li〉 �= 〈lj〉, then the access to lj may result in a cache miss if T [lj] was
out of memory prior to the encryption and no previous access fetched it. This
should, on the average, take more time as it will require a second cache lookup
with non-zero probability. We formalize this assumption:

Cache-Collision Assumption. For any pair of lookups i, j, given a large
number of random AES encryptions with the same key, the average time when
〈li〉 = 〈lj〉 will be less than the average time when 〈li〉 �= 〈lj〉.

This assumption rests on the approximation that the individual table lookups
in the sequence are effectively independent for random plaintexts, which seems
to hold in practice.3 This assumption greatly oversimplifies many the intricacies
of modern caches, as discussed in Appendix B and Appendix C, but is well
supported by experimental data as shown in Figure 1. Notice that there is a
clear correlation, especially for ≤ 10 collisions, which is where 90% of the data
lies. We fit the experimental data with a linear model where the unknowns are
defined as bonuses due to collisions between table lookups in the final round,
a total of 120 variables. Depending on the mix of the processes running in the
background the model explains between 13% and 28% of the variance in the
timing data (the results are supported by five-fold cross-validation).

The notion of using collisions in the cache is by no means unique to this paper.
Because caches are specifically designed to behave differently in the presence of
a collision a non-collision, they are a natural side channel for attacking AES.
This general notion has been used in several other attacks on AES [TTMM02,
Pag02,TSS+03, Lau05,OST06], we seek to explicitly define the utility of cache
collisions as they apply to timing attacks (similar to [Acıi05,NSW06,NS06]).

5 First Round Attack

A natural approach to attacking AES is to analyze table lookups performed in
the first round, because they use the indices x0

i = pi⊕ki, each of which depends
on only one key byte and one plaintext byte. In equation (1), we can see that in
the first round of encryption, the bytes x0

0, x
0
4, x

0
8, x

0
12 are each used as an index

into table T0; they make up a “family” of four bytes in that they are all used
2 We are assuming that the AES encryption itself does not evict any table entries

after loading them, a reasonable assumption given the large size of modern caches
compared to the AES tables.

3 This will not hold for the first round if plaintexts are not random. This should hold
for the final round regardless of plaintext, since the output ciphertext should be
statistically random in any secure cipher.

Cache-Collision Timing Attacks Against AES 207

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

collisions

sa

m
p

le
s

-50

-40

-30

-20

-10

0

10

20

30

T
im

in
g

 d
ev

ia
ti

o
n

 (
cy

cl
es

)

ave + sd/2
80% quantile
20% quantile
ave - sd/2
samples

Fig. 1. Time deviation vs number of final round cache-collisions, Pentium III

to access the same table. There are three other families of bytes which share
the tables T1, T2, and T3 in round one. A cache collision occurs whenever two
bytes x0

i , x
0
j in the same family satisfy 〈x0

i 〉 = 〈x0
j 〉. This should occur when

〈pi〉 ⊕ 〈ki〉 = 〈pj〉 ⊕ 〈kj〉, or after rearranging, 〈pi〉 ⊕ 〈pj〉 = 〈ki〉 ⊕ 〈kj〉.
Plaintexts satisfying 〈pi〉 ⊕ 〈pj〉 = 〈ki〉 ⊕ 〈kj〉 for a pair of bytes i, j should

have a lower average encryption time due to the collision. The first round attack
algorithm compiles timing data into a table t[i, j, 〈pi〉⊕〈pj〉] of average encryption
times for all i, j in the same table family. If a low average time occurs at t[i, j, ∆],
the algorithm estimates that 〈ki〉 ⊕ 〈kj〉 = ∆. A t-test is used to identify values
which are lower than the mean to a statistically significant degree. For each table
family, the attacker will eventually have a redundant set of six equations, such
as 〈k0〉 ⊕ 〈k4〉 = ∆1, 〈k0〉 ⊕ 〈k8〉 = ∆2, 〈k0〉 ⊕ 〈k12〉 = ∆3, 〈k4〉 ⊕ 〈k8〉 = ∆4,
〈k4〉 ⊕ 〈k8〉 = ∆5, 〈k8〉 ⊕ 〈k12〉 = ∆6 for table T0.

The four sets of equations for key bytes within the same family are the only
information gained by this attack; there is no way to gain exact key informa-
tion without looking at other rounds (see Section 8).Furthermore, there is no
way to learn the lower log2 δ bits of each key byte. The attacker must still
guess a value for one complete byte in each table family, plus the low-order
log2 δ bits of the other bytes, or a total of 4 × (8 + 3 · log2 δ) = 68 bits (for
δ = 8), which is impractical to search for almost any real attacker.The attack
does provides a significant speedup over previous attacks, in experiments with
50 random keys on a Pentium III the attack succeeded with an average of 214.6

timing samples.

6 Final Round Attack

To design a fast attack which can recover the full key, we consider the final round
of encryption. As noted previously, the final round of AES omits the MixColumns
operation, reducing equation (1) to simply:

208 J. Bonneau and I. Mironov

C = {T4[x10
0]⊕ k10

0 , T4[x10
5]⊕ k10

1 , T4[x10
10]⊕ k10

2 , T4[x10
15]⊕ k10

3 ,

T4[x10
4]⊕ k10

4 , T4[x10
9]⊕ k10

5 , T4[x10
14]⊕ k10

6 , T4[x10
3]⊕ k10

7 , (2)

T4[x10
8]⊕ k10

8 , T4[x10
13]⊕ k10

9 , T4[x10
2]⊕ k10

10 , T4[x10
7]⊕ k10

11 ,

T4[x10
12]⊕ k10

12 , T4[x10
1]⊕ k10

13 , T4[x10
6]⊕ k10

14 , T4[x10
11]⊕ k10

15}.

In this equation, C is the 16-byte output ciphertext, and T4 is the AES S-box.
The details of the S-box are inconsequential to this attack, the only important
fact is that the S-box is a non-linear permutation over all 256 possible byte
values. For any two ciphertext bytes ci, cj , it holds that ci = k10

i ⊕ T4[x10
u] for

some u and cj = k10
j ⊕ T4[x10

w] for some w. Regardless of the actual values of u

and w, whenever x10
u = x10

w , a cache collision occurs on T4. Suppose x10
u = x10

w ,
and T4[x10

u] = T4[x10
w] = α. Then it will hold that ci = k10

i ⊕α and cj = k10
j ⊕α.

If, on the other hand, ci⊕ cj �= k10
i ⊕ k10

j , two different values α, β must have
resulted from the table lookups. It would be true that α⊕β = γ = ci⊕cj⊕k10

i ⊕
k10

j with γ a constant for a fixed value of ci ⊕ cj. Since α and β are the direct
results of S-box lookups, though, a fixed differential γ does not guarantee a fixed
offset of the lookup indexes used to produce them. Ironically, the non-linearity
which is the raison d’être of the S-box also enables this attack to succeed. For
the purposes of this attack, given values of α and β satisfying α⊕β = γ �= 0, the
indexes which were looked up in the S-box to produce α and β are essentially
random. So, if ci⊕ cj = k10

i ⊕ k10
j , then a cache collision occurs in T4, otherwise,

the lookups will be from two essentially random locations in T4.
The goal of the attack is to record timing data for random ciphertexts at each

value of ∆ = ci ⊕ cj . For each ciphertext/time pair observed, the encryption
time is used to update a table of average times t[i, j, ∆] for all values i, j. The
goal to find one value ∆′

i,j for each i, j such that t[i, j, ∆′
i,j] < t̄ where t̄ is the

average encryption time over all ciphertexts. Eventually, the values of ∆′
i,j will

become accurate guesses for the true values ∆i,j = k10
i ⊕ k10

j , which should be
the only values which cause significantly low encryption times.

These values can be used by an attacker to construct a guess at the final 16
bytes of the expanded key in the presence of noise, as described in Appendix D.
The authors of Rijndael made it a specific design goal to enable recovery of the
entire key given any 16 consecutive bytes of the expanded key [DR02]. Thus, it is
simple to revert the key expansion algorithm to recover the raw key K given the
final 16 bytes k10

0 , k10
1 , . . . , k10

15 of the expanded key. For each guess at the final
key bytes, the attack program reverts the key and checks it against one known
plaintext/ciphertext pair. Table 2 presents statistical data for the number of
(C, t) pairs seen before the attack recovers a full 128-bit AES key, from attacks
against 50 random keys.

7 Expanded Final Round Attack

One problem with the simple final round attack is that it considers only cache
collisions due to lookups on the same table index. When the number of table

Cache-Collision Timing Attacks Against AES 209

entries per cache line δ is 8 or 16, however, the majority of cache collisions will
not be on the same index but on two different indices of the same cache line.
To take advantage of all cache collisions, we consider all conditions for which
there will be a cache collision in the final round on two bytes i, j. Recall that
ci = k10

i ⊕ S[x10
u] and cj = k10

j ⊕ S[x10
v] for some u, v. A collision will occur

whenever 〈x10
u 〉 = 〈x10

v 〉, or equivalently:

〈S−1[ci ⊕ ki]〉 = 〈S−1[cj ⊕ kj]〉. (3)

An attacker can utilize this relationship by guessing exact values (k′
i, k

′
j) for

each i, j, instead of guessing only a differential. For each guess, an average time
is computed for all timing samples which satisfy equation (3) under the guessed
key bytes. The correct value will eventually have a lower average time due to the
cache collision. The memory and time requirements for analyzing timing data
are higher in this attack because there are 256 · 256 = 65, 536 possible guesses
for each pair of bytes. However, the data processing can be done off-line by the
attacker after the data is collected. In practice, an attacker will want to reduce
the amount of samples needed at the expense of increasing off-line processing
time. Appendix D describes details of the attack algorithm.

This greatly speeds up the attack because the data collection rate is effec-
tively increased by δ, since all cache-line collisions over any two bytes i, j are
detected instead of exact byte collisions. That is, the proportion of random sam-
ples which satisfy equation (3) is δ

256 , instead of 1
256 for the simpler version of

the attack. Additionally, the data is more precise in that a guess can be made
about the probability of the exact value of a pair of key bytes, instead of simply
a differential. These factors combine to give the following performance numbers
over 50 random keys:

Table 2. Median samples required, Final round Attacks

Attack Type
CPU Final Round Expanded Final Round

Cache Eviction Policy
L1 L2 L1 L2

Pentium III 1.0 GHz 216 215 214 213

Pentium IV Xeon 3.2 GHz 219.9 216 218.6 213.6

UltraSPARC-III+ 0.9 GHz 218.7 215 217.3 214.3

8 Attack Variants

The final round attacks are effective against decryption with only minor modifi-
cations, require known plaintext instead of known ciphertext. They are actually
slightly simpler in that they recover information about the raw key, instead of
the final bytes of the expanded key, so key reversion is not necessary.

A key area for further research is adaptive chosen plaintext/ciphertext attacks.
In many real world, an attacker may be able to get encryption times for chosen

210 J. Bonneau and I. Mironov

plaintext and/or chosen ciphertext, this ability could likely be used to greatly
decrease the number of samples required for an attack to succeed.

Another promising avenue is extending the first round attack shown here to
two rounds. The problem of the first round attack only recovering partial key
information is a common problem in cache-based attacks due to the use of cache
lines on modern processors, considering the second round of cache accesses is
a common solution [Acıi05,AK06,OST06,NSW06]. In the online version of the
paper we discuss an approach to extending our first round attack to a two rounds
attack, which could potentially recover the key with 216 samples, but requires a
very high offline search by the attacker.

9 Countermeasures and Conclusions

General countermeasures against cache-based side channel attacks on AES have
been widely discussed in the literature. Suggested approaches vary from modi-
fying hardware to limit the amount of data leaked by the cache [Pag02,Pag05,
Ber05,OST06], to constant-time software [Ber05], to careful obfuscation of cache
access patterns by the AES software [BGNS06]. Unfortunately, all of these ap-
proaches have performance implications. We add to the discussion the specific
suggestion of scrapping the special final round lookup table T4, whose function
can be replaced by the other four tables. This small modification led to our at-
tacks requiring as many as 1,000 times more samples, and has no performance
cost. Details are presented in the online version of the paper. In lieu of stronger
protections, this “free” defense should be considered.

Side-channel attacks were not given adequate treatment in the AES selection
process. Rijndael, in optimized form, makes heavier use of lookup tables than
any of the other four AES finalists, which exposes it to multiple side-channel
attacks, including timing. By comparison, Serpent [BAK98], the AES runner-
up, uses only tiny 4-bit by 4-bit S-boxes, which are in fact implemented only
by logical operations, making Serpent invulnerable to cache-based side-channel
attacks. At the time this was not recognized as an advantage, but it should be
clear now that table lookups should be avoided or used with extreme caution in
future cryptographic software.

The attacks described in this paper represent a significant step towards de-
veloping realistic remote timing attacks against AES, which are to make use
of less accurate data than the processor cycle counts available in the simulated
environment used in this study. There are a number of environments where such
an attack could potentially be employed where direct observation of the pattern
of cache accesses is not possible:

– On an encrypted network file system, an attacker which could time encryp-
tions of single disk blocks and attempt to recover the encryption key.

– In a virtual machine environment, the virtual machine monitor could force
cache flushes between context switches. An attacker could attempt to time
another virtual machine performing encryptions.

Cache-Collision Timing Attacks Against AES 211

– As recently proposed by Page [Pag05], a computer could partition cache
between separate processes. User-level processes could not access the cache
used by a root-level daemon process doing encryptions, but could time en-
cryptions being done by that process.

– An SSL server (or client) could be a source of timing data to an attacker
listening on the network. It is possible that both encryption and decryption
could be observed in this setting.

In principle, the attacks in this paper could be employed in such scenarios,
since they only require timing data and known plaintext or ciphertext. It re-
mains to be seen if the timing data which could be obtained is accurate enough
to attack, and there are additional complications as discussed in Appendix A.
Nevertheless, the timing attacks in this paper should make clear the need for
software AES implementations to protect against timing variation due to cached
memory. While AES has resisted conventional cryptanalysis so far, it will be ren-
dered useless if practical timing attacks are developed.

Acknowledgements

We are grateful to Dan Boneh for his encouragement of this research as well
as many helpful comments, as well as Andrew Morrison and anonymous CHES
2006 reviewers for comments on drafts of this paper.

References

[ABDM00] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart.
Power analysis, what is now possible.... In Advances in Cryptology—
ASIACRYPT 2000, pages 489–502, 2000.

[AK06] Onur Acıiçmez and Çetin Kaya Koç. Trace driven cache attack on AES.
IACR Cryptology ePrint Archive, Report 2006/138, April 2006.

[Acıi05] Onur Acıiçmez. “Remote Timing Attacks”. Given at Intel Corporation,
Oregon, USA, December 2005. Available at: http://web.engr.oregonstate.
edu/˜aciicmez/osutass/

[ASK05] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. Improving Brum-
ley and Boneh timing attack on unprotected SSL implementations. ACM
Conference on Computer and Communications Security, 2005.

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Fast Software Encryption ’98, pages 222–238, 1998.

[BGNS06] Ernie Brickell and Gary Graunke and Michael Neve and Jean-Pierre
Seifert. Software mitigations to hedge AES against cache-based software
side channel vulnerabilities. IACR ePrint Archive, Report 2006/052, Feb
2006.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[BBM+06] Guido Bertoni, Luca Breveglieri, Matteo Monchiero, Gianluca Palermo,
and Vittorio Zaccaria. AES power attack based on induced cache miss
and countermeasure. ITCC(1), 2005.

212 J. Bonneau and I. Mironov

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. April 2005. http://
cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[CLS06] Anne Canteaut, Cedric Lauradoux, and Andre Seznec. Understanding
cache attacks. Technical Report, April 2006. Available at: ftp://ftp.
inria.fr/INRIA/publication/publi-pdf/RR/RR-5881.pdf

[DR99] Joan Daemen and Vincent Rijmen. Resistance against implementation at-
tacks: A comparative study of the AES proposals. Second AES Candidate
Conference, February 1999.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES—the
advanced encryption standard. Springer-Verlag, 2002.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems—CHES 2001, pages 251–261, 2001.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology—CRYPTO ’99, pages 388–397, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in Cryptology—CRYPTO ’96,
pages 104–113, 1996.

[KQ99] F. Koeune and J.-J. Quisquater. A timing attack against Rijndael. Tech-
nical Report CG-1999/1, June 1999.

[KSWH00] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. J. of Computer Security, 8(2/3), 2000.

[Lau05] Cedric Laradoux. Collision attacks on processors with cache and coun-
termeasures. Western European Workshop on Research in Cryptology—
WEWoRC’05, C. Wolf, S. Lucks, and P.-W. Yau (editors), pp. 76–85,
2005.

[LMV04] H. Ledig, F. Muller, and F. Valette. Enhancing collision attacks. In
Cryptographic Hardware and Embedded Systems—CHES 2004, pp. 176–
190, 2004.

[NBB+00] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti,
and E. Roback. Report on the development of the Advanced Encryp-
tion Standard (AES). October 2000. http://csrc.nist.gov/CryptoToolkit/
aes/round2/r2report.pdf.

[NSW06] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A refined look
at Bernstein’s AES side-channel analysis. ASIACCS, p. 369, 2006.

[NS06] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache
attacks on AES. In SAC’06, to appear.

[OT05] Mairead O’Hanlan and Anthony Tonge. Investigation of cache timing
attacks on AES. School of Computing, Dublin City University, 2005.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: the case of AES. In CT-RSA, pages 1–20, 2006.

[Pag02] Daniel Page. Theoretical use of cache memory as a cryptanalytic side-
channel. Technical Report CSTR-02-003, University of Bristol, April 2002.

[Pag03] Daniel Page. Defending against cache based side channel attacks. Techni-
cal Report. Department of Computer Science, University of Bristol, 2003.

[Pag05] Daniel Page. Partitioned cache as a side-channel defense mechanism.
IACR Cryptology ePrint Archive, Report 2005/280, August 2005.

[Per05] Colin Percival. Cache missing for fun and profit. Presented at BSD-
Can ’05, 2005. http://www.daemonology.net/hyperthreading-considered-
harmful/.

Cache-Collision Timing Attacks Against AES 213

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, Christof Paar. A collision-
attack on AES: Combining side channel- and differential-attack. In Cryp-
tographic Hardware and Embedded Systems—CHES 2004, pp. 163–175,
2004.

[SWP03] Kai Schramm, Thomas J. Wollinger and Christof Paar. A new class of col-
lision attacks and its application to DES. In Fast Software Encryption—
FSE’03, pages 206–222, 2003.

[TSS+03] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Crypt-
analysis of DES implemented on computers with cache. In Cryptographic
Hardware and Embedded Systems—CHES 2003, pp. 62–76, 2003.

[TTMM02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In International Symposium on Information Theory and Applica-
tions 2002, pages 803–806, 2002.

[TTS+06] Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Hiroya Kubo, and
Kazuhiko Minematsu. Improving cache attacks by considering cipher
structure. In International Journal of Information Security 2006.

A Implementation Notes

All of the attacks described in this paper have been implemented as a UNIX
command line program aes attack, the source code of which is available at
the author’s website. The program can be recompiled to use any of the attack
algorithms described, as well as options for decryption attacks and different
cache eviction routines. The program first generates a large number of timing
samples by repeatedly triggering one encryption for a random plaintext using
an OpenSSL library call and recording the resulting ciphertext along with a
processor cycle count. Each timing/ciphertext pair is added to a large buffer
after being recorded, this allows a minimum of activity in between encryptions.
An explicit cache eviction routine is called before each encryption, as described in
Appendix B, no other work is done between encryptions. After each encryption,
each byte of the resulting ciphertext is touched, this must be done to ensure the
encryption has finished before recording the ending time on platforms such as
the Pentium IV which support out-of-order instruction execution while waiting
for cache misses.

After generating a large number of samples, the attack algorithm is called
with a small set of the data. It is incrementally given more of the data until it
succeeds in recovering the key. Samples are not used if their time is more than
twice the lowest time seen, this eliminates noise due to page faults and context
switches. These ignored samples are still counted when reporting the number of
samples necessary for the attack to succeed.

B Cache Eviction

All of the attacks described in this paper require the AES lookup tables to be (at
least partially) out of the cache prior to an encryption operation. If all tables are

214 J. Bonneau and I. Mironov

cached, which would occur during a long run of consecutive encryptions, then
cache collisions will not reduce timing. In a real attack scenario, an attacker
must have some ability to remove the tables from cache before an encryption.
The most likely approach would be simply waiting. If the target machine is doing
other work, the tables will probably be quickly evicted from memory as other
processes load their own data. Also, it is assumed that the target program only
performs key expansion once, then stores the expanded key in memory and uses
it for subsequent encryptions. Otherwise, key expansion before each encryption
would have the side effect of loading some of the AES tables into memory, since
they are used in key expansion.

For the purposes of this study, we consider two cases, if the AES tables are
fully evicted from Level 1 cache, and if the AES tables are fully evicted from
Level 2 cache. It is also easy to verify that if only some random fraction of the
table entries are out of cache, the attack will still succeed with additional sam-
ples. To simulate the eviction of tables from L2 cache, we sequentially accesses
a continuous block of memory the size of the cache, which will evict all previ-
ous contents. To save time in experiments on Pentium IV, we use the clflush
instruction. Eviction from L1 cache is similar, although we must be careful not
to evict tables from L2 cache. To do this, we read in a small amount of data to
evict only L1 cache, but not the AES tables in L2 cache.

C Pentium IV Complications

The model discussed in Section 4 appears to be a very good approximation
for the cache behavior of the Pentium III and UltraSPARC processors. From
our experiments, we have seen that it does not fully capture the complexity of
the Pentium IV’s cache structure. The first complication is that Pentium IV
“usually” loads cache lines in pairs, making the cache lines 128 bytes. In some
experiments two indices being in neighboring cache lines produced a bigger time
drop than a traditional collision. Second, Pentium IV has a hardware pre-fetch
mechanism. If it notices “several” straight cache misses, it will begin pre-fetching
data in the direction the accesses are going, assuming it is a large serial data
read. The Intel documentation uses the word several, which it says could be
“as few as 2.” So, certain cache collisions may trigger the hardware pre-fetcher,
while others may not. Finally, Pentium IV supports out-of-order instruction
execution while waiting for cache misses. This means that in certain situations,
cache misses may have little effect on the overall encryption if there are enough
instructions to be executed which do not depend on the fetched value. The net
result of these Pentium IV features is somewhat chaotic behavior when a simple
model is assumed, this was also observed in [OST06].

D Final Round Optimizations

The final round attack looks at the average time for each possible value ∆i,j =
k10

i ⊕ k10
j for all i, j, where the true value for each ∆i,j should be lower than the

Cache-Collision Timing Attacks Against AES 215

average. The raw data is converted into a cost function, c(i, j, ∆), which should
be low for values of ∆ which represented low times. Eventually, the true values
of each ∆i,j should be the lowest values. However, in the presence of noise, the
algorithm seeks to produce some guess K ′ at the key which minimizes the total
cost function C[K] =

∑
i,j [c(i, j, Ki ⊕Kj)]. The guess K ′ will not be a guess of

actual key bytes, but a set of offsets ∆0,i = k10
0 ⊕ k10

i for all 1 ≤ i ≤ 15. Two
adapted AI algorithms can be used to attempt to minimize this function.

The first is a variant of local optimization search. The cost function used by
this algorithm is simply c(i, j, ∆) = (∆ − ∆∗)2, where ∆∗ is the lowest value
observed for that particular i, j. After an initial guess K0 is made at the key
offsets, the total cost function is calculated for every key guess K ′

0 which can be
obtained by changing one byte of K0. The lowest cost K ′

0 then becomes the new
key guess K1. This process is repeated either until a local minimum is reached,
or a preset maximum number of iterations is reached. Each guess Ki leads to
256 possible values for the actual key. These are obtained by guessing all values
for k10

0 , the final 15 bytes of the key are then determined by the offsets ∆0,i.
Finally, the guess at the final 16 bytes of expanded key is reverted to a guess at
the original key, which can be checked against a known plaintext value.

The second approximation algorithm used is belief propagation. For this ap-
proach, a probability approximation ϕ(i, j, ∆) can be made based on the observed
data by mapping it to a normal distribution, since the average and standard de-
viation are known. This is used in place of a cost function. Next, an initial set of
probabilities are guessed for each key offset p0(i, ∆) = Pr[k10

0 ⊕ k10
i = ∆]. These

probability guesses p0(i, ∆) are updated as follows: For each j �= i, the maximum
value of p0(j, ∆′) · ϕ(i, j, ∆⊕∆′) over all ∆′ is added to p1. The guesses p1 are
then normalized. This process is repeated, and the probabilities p(i, ∆) should
eventually be higher for the correct values. After each iteration, the probabili-
ties are used to construct a best guess for the key, as before. In this study, both
algorithms were used, since we found experimentally that each was successful
before the other for certain data sets.

The expanded final round attack provides slightly different raw data than
the simple final round attack, namely, a set of average times t(i, j, α, β), low
times should occur at the values k10

i = α and k10
j = β. Instead of using a cost

function, each pair is given a weight w. A threshold τ is chosen, times t(i, j, α, β)
which are not among the τ lowest times for i, j are given weight 0. The lowest
time is given weight τ − 1, the next lowest time τ − 2, and so on. The goal of
the approximation algorithm is to produce a key guess which has the highest
sum of weights W [K] =

∑
i,j [w(i, j, Ki, Kj)]. After making an initial guess, the

algorithm proceeds to perform a series of local optimizations, changing one byte
in each round which raises the total weight of the key as much as possible.
Heuristically, this approach performed better than belief propagation for this
attack. For this study, the algorithm was used with τ = 16.

Provably Secure S-Box Implementation Based
on Fourier Transform

Emmanuel Prouff1, Christophe Giraud2, and Sébastien Aumônier1

1 Oberthur Card Systems,
71-73, rue des Hautes Pâtures, 92 726, Nanterre, France

{e.prouff, s.aumonier}@oberthurcs.com
2 Oberthur Card Systems,

4, allée du doyen Georges Brus, 33 600, Pessac, France
c.giraud@oberthurcs.com

Abstract. Cryptographic algorithms implemented in embedded devices
must withstand Side Channel Attacks such as the Differential Power
Analysis (DPA). A common method of protecting symmetric crypto-
graphic implementations against DPA is to use masking techniques.
However, clever masking of non-linear parts such as S-Boxes is difficult
and has been the flaw of many countermeasures. In this article, we take
advantage of some remarkable properties of the Fourier Transform to
propose a new method to thwart DPA on the implementation of every
S-Box. After introducing criteria so that an implementation is qualified
as DPA-resistant, we prove the security of our scheme. Finally, we apply
the method to FOX and AES S-Boxes and we show in the latter case
that the resulting implementation is one of the most efficient.

Keywords: Differential Power Analysis, Provably Secure Countermea-
sure, Fourier Transform, Symmetric Cryptosystems, S-Box, AES, FOX.

1 Introduction

In 1996, Kocher introduced the concept of Side Channel Analysis which utilizes
side channel leakage of embedded devices such as timing execution to obtain
Information about sensitive data [18]. This concept was pushed one step further
in [17]. In this paper, Kocher et al. use power consumption measurements of the
device during the execution of sensitive operations, allowing two kinds of Power
Attacks: the Simple Power Analysis (SPA) and the Differential Power Analy-
sis (DPA). The first attack consists in directly interpreting power consumption
measurements and the second attack also involves statistical tests. From then
on, many papers describing either countermeasures or attack improvements have
been published (see [1,4,6,21] for example).

In the case of symmetric cryptosystems such as DES [11] and AES [10], the
most critical part when securing implementations against DPA is to protect

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 216–230, 2006.
c© International Association for Cryptologic Research 2006

Provably Secure S-Box Implementation Based on Fourier Transform 217

their non-linear operations (i.e. the calls to the S-Boxes). Indeed, all the other
operations are more or less linear and can be protected in a straightforward
manner (see [1] for instance). To protect the calculus of the output of an S-Box
against DPA, three main kinds of methods have been proposed in the literature.
The first one, called the duplication method [6,13], consists in randomly splitting
every piece of sensitive data in a constant number of blocks. Then, the compu-
tation can be securely carried out by performing calculations with these random
blocks. The second method, called the re-computation method [1,2,29], involves
a re-computation of the lookup tables corresponding to the S-Box with one or
several random value(s) which must be changed each time the algorithm is ex-
ecuted. The third generic method, that we call here S-Box secure calculation,
has been essentially applied to protect AES implementations [5,15,28,32] due to
the strong algebraic structure of the AES S-Box. In this case, S-Box outputs are
not directly obtained by accessing a lookup table but are computed by using
a mathematical representation of the S-Box. All the logical operations involved
during this calculation are resistant to DPA.

In this paper, we present a new, secure and generic S-Box calculation method
based on the discrete Fourier transform. In Section 2, we formalize DPA attacks
on S-Boxes and we introduce a model allowing us to measure the efficiency of
such attacks. We also exhibit criteria so that an implementation is qualified as
DPA-resistant. In Section 3, we briefly present the Fourier transform and we
use its properties to introduce a new S-Box secure calculation. We then prove
that our method is DPA-resistant in accordance with the criteria established in
Section 2. In Section 4, we apply our method to AES and FOX and we compare
its efficiency with other existing countermeasures.

2 On the Notion of DPA-Resistant Implementation of
S-Boxes

S-Boxes aim to ensure confusion of Information in many symmetric cryptosys-
tems. Since they manipulate sensitive data, their implementation in embedded
devices must withstand side-channel cryptanalysis such as DPA. During the last
decade, several ways of securely implementing S-Boxes have been proposed. For
some of them, no proof of resistance to DPA has been established and sometimes
Information about the secret is recovered. In such cases, there is a need to quan-
tify the relevance of the leaked Information from the attacker’s point of view.
In the following, we introduce a new notion called Advantage which allows us to
measure how much DPA on the S-Box implementation impacts the security of
the whole embedded cryptosystem. Even if we focus on block cipher algorithms,
our study is valid for every symmetric cryptosystem involving S-Boxes.

A block cipher is the iteration of several rounds, each round involving S-
Boxes. The rounds are parameterized by round-keys which are derived from a
secret parameter usually called master key. A round-key RK can be viewed
as an uplet of small vectors, called sub-keys, which are used separately by the

218 E. Prouff, C. Giraud, and S. Aumônier

S-Boxes. In the following, we denote by n the bit-length of the sub-keys and by
N the bit-length of the round-keys.

In a well-designed block cipher algorithm, recovering a sub-key K must be
as difficult as recovering the whole round-key RK by brute force attack. An
implementation of such an algorithm is said to be secure if this fundamental
property is not only satisfied by the algorithm but also by its implementation.

When an S-Box implementation thwarts DPA, recovering the sub-key by at-
tacking the S-Box calculus is as difficult as recovering the round-key itself (and
thus requires around 2N suppositions). In this case, the security of the cryp-
tosystem is not impacted by DPA on the S-Boxes implementations.

On the contrary, when the S-Box implementation has some drawbacks from
a DPA point of view, some Information about the sub-key is obtained. In this
case, the efficiency of the attack depends on the amount of Information on K
which has leaked:

– in the best case, the attack allows the attacker to get K completely.
– in less favorable situations, the attacker does not recover the sub-key directly,

but some useful Information on it is obtained (for instance the Hamming
weight of the sub-key or a linear relation which must be satisfied by some of
its bit-coordinates [19]).

Let RK denote the round-key an attacker tries to recover by DPA. By per-
forming a DPA for every S-Box which manipulates a sub-key extracted from
RK, the attacker succeeds in isolating the round key in a proper subset of the
key-space. Therefore, the attacker does not need to test all the N -bit round-keys
but only a subset of them to recover RK. Depending on the efficiencies of the
localized DPAs, the cardinality ε of this subset ranges from 1 (the best case from
the attacker viewpoint) to 2N (when all the attacks failed).

To compare the efficiency of different countermeasures against DPA, we intro-
duce the notion of Advantage which aims to evaluate the attacker’s capacity to
recover a secret round-key RK manipulated partially by one or several S-Box(es),
each of them being implemented through a method M.

Definition 1. Let RK be a N -bit secret value. The Advantage of an adversary
in recovering the secret RK by DPA is the value Adv defined by:

Adv(M) = 2N − ε , (1)

where ε denotes the cardinality of the subset of FN
2 containing all the candidate

round-keys isolated by DPA.

When DPA allows the attacker to unambiguously recover all the sub-keys, the
whole round-key is straightforwardly deduced and ε equals 1. On the contrary,
when power consumption measurements give no Information on K, then ε equals
2N . We deduce 0 ≤ Adv(M) ≤ 2N − 1.

Proposition 1. An S-Box implementation M is such that Adv(M) = 0 if and
only if M thwarts DPA. Such an implementation is said to be DPA-resistant.

Provably Secure S-Box Implementation Based on Fourier Transform 219

A first step in securing an S-Box implementation against DPA consists in mask-
ing the sensitive data manipulated at input and at output of the S-Box calcula-
tion. This is usually performed by securely adding random values to these data
[6]. Then, while the S-Box computation is performed with the masked input,
other operations must be involved (in parallel or as pre-computations) allowing
the so-called mask-correction and the introduction of a new mask for the out-
put. Let op denote either the bitwise-addition or a modular addition and let F
denote the S-Box, an S-Box secure calculation M can be viewed as a process
allowing to get the pair (F (X) op R2, R2) from the input pair (X op R1, R1).
So, a generic solution to securely perform an S-Box calculation can be depicted
by the following generic procedure:

Procedure 1. S-Box calculation

Inputs: A random value R1, a masked value X̃ = X op R1 (with X a sensitive data),
a function F representing the S-Box, a method M
Output: The pair (F (X) op R2, R2) with R2 a random value

1 Generate a random value R2

2 Compute result ← M(X̃, R1, R2, F) [result = F (X) op R2]

3 Return (result, R2)

Remark 1. We assume throughout this paper that the distribution of the gener-
ated random values is uniform which is a prerequisite for security.

The cost of the mask-correction is usually not negligible compared to the one
of the entire block-cipher algorithm. Indeed, as it can be seen in [25] or [31]
for instance, it induces a very high (timing and/or memory) overhead, especially
because one must always ensure that the sensitive data are securely manipulated
and that the mask-correction algorithm itself thwarts DPA.

For an S-Box calculation as depicted in Procedure 1., the method M is DPA-
resistant if the computation of F (X) op R2 from X op R1, R1 and R2 is per-
formed without revealing any useful Information for DPA. In order to design
such a method, random values independent of the input X are usually involved
when manipulating sensitive data during the calculation of the output stored in
result.

By using and adapting ideas of [3], we decompose M into d steps at the unit
level1. The intermediate results of the d steps are denoted by I1(X, Z1), · · · , Id

(X, Zd), where X is the sensitive input of the S-Box and where Zi denotes an
uplet of random variables involved to securely manipulate the i-th intermediate
data.

Let us assume that a methodM is such that every intermediate value Ii(X, Zi)
is independent of the sensitive input X . Then, the power consumption resulting
from the manipulation of the values Ii(X, Zi) gives no Information on X . Based
on this remark, we introduce a proposition characterizing the methods M for
which Adv(M) = 0:
1 In hardware terms, this level is based on the contents of registers.

220 E. Prouff, C. Giraud, and S. Aumônier

Proposition 2. Let d denote the number of steps at the unit level of an S-Box
implementation M. Then, Adv(M) is null if and only if for every i = 1, · · · , d,
the random variables X and Ii(X, Zi) are independent.

Remark 2. The Mutual Information can be used to formalize the notion of in-
dependency between two variables (see [22] for instance).

In the particular case of the AES algorithm, some S-Box implementations have
been proved to be DPA-resistant [3,23]. Nevertheless, as they rely on the alge-
braic structure of the AES S-Box, they are not generic. In the next section, we
present a new DPA-resistant method which can be applied to every S-Box.

3 A New Method to Protect S-Boxes Access from DPA

In this section we firstly recall some basics about the Fourier transform. Then,
we exhibit an interesting property of this function from which a new S-Box
secure calculation method is deduced. Finally, we prove that the corresponding
implementation is DPA-resistant, i.e. the Advantage of an adversary over this
implementation is equal to zero.

3.1 Fourier Transform

Let us recall the definition of the Fourier transform of a function defined from
an abelian group G into C.

Definition 2. Let G be an abelian group and let Ĝ denote the dual space of
G. Let C[G] denote the set of applications from G into C. Then, the Fourier
transform on C[G], denoted by F , is defined by:

F : C[G] → C[Ĝ]
F �→ F̂

, (2)

where F̂ is defined by:

∀χ ∈ Ĝ, F̂ (χ) =
∑
X∈G

F (X)χ(X) . (3)

In this paper, we use the Fourier transform in the particular case G = Fn
2 .

When G is a n-dimensional vector space over F2, its dual group Ĝ is the set
of characters χA : X �→ (−1)A·X , where · denotes the scalar product defined
by A · X =

∑
i∈{0,...,n−1} Ai · Xi mod 2. So, if G = Fn

2 then Relation (3) is
equivalent to:

∀χA ∈ Ĝ, F̂ (χA) =
∑
X∈G

F (X)(−1)A·X . (4)

The Fourier transform of a function F defined on Fn
2 satisfies F = 1

2n

̂̂
F ,

that is:
∀X ∈ Fn

2 , F (X) =
1
2n

∑
χA∈Ĝ

F̂ (χA)(−1)A·X . (5)

Provably Secure S-Box Implementation Based on Fourier Transform 221

For simplicity reasons, the value F̂ (χA) is denoted by F̂ (A) and the summation
in Relation (5) is computed for A ∈ G.

3.2 DPA-Resistant Implementation of S-Boxes Access

The New Method. Relation (5) is the starting point of our study about how
to find a new solution to protect S-Box access from DPA. From this relation and
the involutive property of the Fourier transform, we observe that the image of
a message X through a function F can be computed from a masked message X̃
and the corresponding mask.

Let X , R1 and A be three elements of Fn
2 and let X̃ denote the vector X⊕R1.

As A ·X ⊕ X̃ ·R1 equals A · X̃ ⊕R1 · (X̃ ⊕A), one can re-write Relation (5) as
follows:

(−1)X̃·R1F (X) =
1
2n

∑
A∈F

n
2

F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A) . (6)

The relation above is the core of our solution. When F denotes an S-Box,
it provides a way to compute ±F (X) from a boolean masked input X̃. The
most remarkable fact in Relation (6) is that the mask-correction is performed
on-the-fly during the computation of F (X). The induced overhead is negligible
compared to the whole calculus and the simplicity of the mask-correction op-
erations makes it easy to evaluate the DPA-resistance of the method with the
model introduced in Section 2. However, a direct implementation of this relation
is not secure since the output and some intermediate results are unmasked. In
particular, as R1 · X̃ equals R1 · X (where X denotes the two-complement of
X), the scalar multiplication R1 · X̃ has a flaw when X equals the all-one vector
(see [12] for the description of an attack exploiting such a flaw). To circumvent
this default, the variable X̃ must be masked by a random value R2 independent
of R1.

In the following, we present a modified version of Relation (6) whose straight-
forward implementation is DPA-resistant (as proved in Section 3.3):

(−1)(X̃⊕R2)·R1F (X) + R3 =⌊
1
2n

(
R′ +

∑
A∈F

n
2

F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2)
)⌋

,
(7)

where R′ = 2nR3 + R4 with R3, R4 ∈ Fn
2 . The 2n-bit vector R′ is used to mask

the intermediate results of the summation.

Implementation Aspects. In the following, we denote by SP a function which
computes (−1)X·Y from a couple (X, Y) and by AM2BM a procedure which
transforms an arithmetic masking into a boolean masking:

AM2BM : (sign, sign×X + R, R) �→ X ⊕R , (8)

where sign = ±1.

222 E. Prouff, C. Giraud, and S. Aumônier

From Relation (7), we deduce the following algorithm which computes the
boolean masked output of an S-Box from a boolean masked input:

Algorithm 1. Computation of a boolean masked S-Box output from a boolean masked
input

Inputs: A masked input X̃ = X ⊕ R1, the input mask R1 and a lookup table F̂
Output: The couple (F (X) ⊕ R3, R3)

1 Pick up three n-bit random R2, R3 and R4

2 result ← 2nR3 + R4

3 for A from 0 to 2n − 1 do
4 T1 ← SP(A, X̃) [T1 = (−1)A·X̃]

5 T2 ← X̃ ⊕ A [T2 = X̃ ⊕ A]

6 T2 ← T2 ⊕ R2 [T2 = X̃ ⊕ A ⊕ R2]

7 T2 ← SP(R1, T2) [T2 = (−1)R1·(X̃⊕A⊕R2)]

8 T2 ← T1 × T2 [T2 = (−1)A·X̃⊕R1·(X̃⊕A⊕R2)]

9 T2 ← T2 × F̂ (A) [T2 = F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2)]

10 result ← result + T2 [result = 2n
R3 + R4 +

∑
i∈{0,A}

F̂ (i)(−1)i·X̃⊕R1·(X̃⊕i⊕R2)]

11 result ← result >> n [result = (−1)(X̃⊕R2)·R1F (X) + R3]

12 T1 ← X̃ ⊕ R2 [T1 = X̃ ⊕ R2]

13 T1 ← SP(T1, R1) [T1 = (−1)(X̃⊕R2)·R1]

14 result ← AM2BM(T1, result,R3) [result = F (X) ⊕ R3]

15 Return (result,R3)

In Algorithm 1, the lookup table F̂ is always accessed 2n times in a way
which is independent of the input X . The values X and R1 only impact the
combination of the values F̂ (A).

Random values R3 and R4 aim at masking the content of the buffer result.
Before the right-shift operation of Step 11, the least significant half part of
result contains the value R4. After Step 11, the content of result equals the
value (−1)(X̃⊕R2)·R1F (X) + R3 left-padded with zeros.

Computation performed in Step 14 (cf. Relation (8)) is essentially a trans-
formation of an arithmetic masking into a boolean masking. Goubin [14] and
Coron et al. [7] proposed DPA-resistant implementations of such a computation.
To implement AM2BM we use a slightly modified version of Goubin’s method
which outputs (X ⊕ R, R) from (X − R, R). To take into account the sign pa-
rameter, we use Goubin’s algorithm with (sign× (sign×X + R),−sign×R) as
input.

Efficiency of Algorithm 1 is strongly related to the dimension n of the S-Box
since the lookup table F̂ contains 2n signed integers belonging to [−22n; 22n] and
is accessed 2n times. For n = 8, F̂ requires at most 544 bytes of ROM (which
is reduced to 512 bytes if all the values F̂ (A) are even, which is often the case
for cryptographic functions F) and it is accessed 256 times for each execution
of Algorithm 1. The overhead becomes significantly smaller when n = 4: in this

Provably Secure S-Box Implementation Based on Fourier Transform 223

case only 16 access to the 18-byte lookup table F̂ are required (if all the values
F̂ (A) are even, F̂ can be stored over 16 bytes).

3.3 Security Analysis

In this section we analyse the security of Algorithm 1. From Proposition 2,
Algorithm 1 is DPA-resistant if and only if all the intermediate values Ii(X, Zi)
are independent of the input X .

We do not focus on Step 14 since Goubin shows in [14, §4.3] that all the
intermediate values that appear during the execution of his algorithm are inde-
pendent of the input.

In Table 1, we list the different sensitive intermediate results Ii(X, Zi) which
appear during the execution of Algorithm 1. The values which only depend on
the loop counter or on a random value are obviously omitted:

Table 1. The different sensitive values manipulated during Algorithm 1

Step i Instruction Intermediate results Ii(X, Zi) Zi

4.1 reg ← X̃ X̃ R1

4.2 T1 ← SP(A, X̃) (−1)A·X̃ R1

5 T2 ← X̃ ⊕ A X̃ ⊕ A R1

6 T2 ← T2 ⊕ R2 X̃ ⊕ A ⊕ R2 (R1, R2)

7 T2 ← SP(R1, T2) (−1)R1·(X̃⊕A⊕R2) (R1, R2)

8 T2 ← T1 × T2 (−1)A·X̃⊕R1·(X̃⊕A⊕R2) (R1, R2)

9 T2 ← T2 × F̂ (A) F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2) (R1, R2)

10 result ← result + T2 2nR3 + R4 (R1, R2, R3, R4)

+
∑

i F̂ (i)(−1)i·X̃⊕R1·(X̃⊕i⊕R2)

11 result ← result >> n (−1)(X̃⊕R2)·R1F (X) + R3 (R1, R2, R3)

12 T1 ← X̃ ⊕ R2 X̃ ⊕ R2 (R1, R2)

13 T1 ← SP(T1, R1) (−1)(X̃⊕R2)·R1 (R1, R2)

To establish the independency of these intermediate values Ii(X, Zi) with X ,
we use the following lemma:

Lemma 1. Let α ∈ Fn
2 be arbitrary and let β be uniformly distributed over Fn

2
and independent of α. The variable α⊕β is uniformly distributed and independent
of α. The same holds for (−1)α⊕β if n = 1.

The proof of this lemma is straightforward and therefore omitted.
The sensitive values Ii(X, Zi) can be divided into two groups:

1. the ones which are masked by adding or by XORing a random value: X̃ ,
X̃ ⊕A, X̃ ⊕A⊕R2, X̃ ⊕R2 and result in Steps 10 and 11,

224 E. Prouff, C. Giraud, and S. Aumônier

2. the other values: (−1)A·X̃ , (−1)(X̃⊕R2)·R1 , (−1)R1·(X̃⊕A⊕R2),
(−1)A·X̃⊕R1·(X̃⊕A⊕R2) and (−1)A·X̃⊕R1·(X̃⊕A⊕R2)F̂ (A).

The values belonging to the first group have a boolean or an arithmetic mask
which is chosen uniformly at random, so it is obvious that they are independent
of the input.

Now, let us analyse the values belonging to the second group:

– In the case A = 0, the variable (−1)A·X̃ = (−1)A·(X⊕R1) is always equal
to 1 and so it is independent of X . When A �= 0, the independency of the
variables (−1)A·X⊕A·R1 and A · X is established by applying Lemma 1 to
α = A · X and β = A · R1. Since the variable X only appears in the term
A ·X , one deduces that (−1)A·X⊕A·R1 is independent of X .

– By noticing that (X̃ ⊕R2) ·R1 = X ·R1 ⊕R2 ·R1, one deduces in a similar
way from Lemma 1 that variables (−1)(X̃⊕R2)·R1 and (−1)R1·(X̃⊕A⊕R2) are
independent of X .

– As A ·X̃ +R1 · (X̃⊕A⊕R2) equals A ·X⊕X ·R1⊕R2 ·R1, Lemma 1 implies
that the variables (−1)A·X̃+R1·(X̃⊕A⊕R2) and X are independent. The same
conclusion holds for (−1)A·X̃+R1·(X̃⊕A⊕R2)F̂ (A).

We proved above that all the values Ii(X, Zi) manipulated during the ex-
ecution of Algorithm 1 are independent of the input X . From Proposition 2,
we thus deduce that our method is DPA-resistant, i.e. that its Advantage is
null.

In the next section, we apply our method to protect S-Boxes access of AES
and FOX. In the first case, we compare its performances with the ones of two
other well-known countermeasures.

4 Applications

4.1 DPA-Resistant AES Implementation

Before the final choice for the Advanced Encryption Standard (AES) [10], several
papers had investigated the security of the AES candidates against side-channel
attacks, especially DPA [5,9,20]. Since 2000, many countermeasures have been
proposed to counteract DPA on AES2.

To counteract DPA, Kocher proposed in [18] a very simple and generic solution
which can be applied to protect an AES implementation. It consists in using the
lookup table F ∗ defined by X �→ F [X ⊕ R1] ⊕ R2, where R1 and R2 are two
random values generated for each new execution of the algorithm. The main
drawback of this solution is the large amount of RAM required to store F ∗.
Indeed, this kind of memory is very limited on embedded devices.

Another method called Transformed Masking Method (TMM) has been pre-
sented in [1]. However, it has a weakness when computing the AES S-Box

2 A survey of the proposed countermeasures is done in [8].

Provably Secure S-Box Implementation Based on Fourier Transform 225

(cf. [12]). In order to fix this flaw, several papers have been published (cf. [12,23]
for example).

In the two methods above, the AES S-Box, which performs an inversion in
F28 with 0 being mapped to 0, is implemented through a lookup table. Rijmen
presented in [27] an alternative idea which essentially consists in using efficient
combinational logic. In this approach, each element a of F28 is represented as
a linear polynomial ahx + al over F24 . The inversion of such a polynomial can
be computed as follows when it is different from zero: (ahx + al)−1 = a′

hx + a′
l

where a′
h = ah×d−1 and a′

l = (ah +al)×d−1 with d = (a2
h×{e})+(ah×al)+a2

l

and with {e} denoting the hexadecimal value 0x0E (cf. [26, §3.3]).
Rijmen’s remark has been used in [24,23,32,30] to fix the flaw of TMM when

accessing S-Box: the so-called Tower Field Methods perform the inversion in F28

by using masked multiplications and masked inversions in F24 or F22 .
In the following algorithm, we present a new way to implement the AES S-Box

based on the method presented in Section 3. As this method is much faster in
F2n/2 than in F2n , we use Rijmen’s remark to perform the computations in F24

instead of F28 . We denote by ÎnvF24
the Fourier transform of the inverse over F24

where the element 0 is mapped to itself, and by map the isomorphism defined
in [26] which takes an element a of F28 as input and outputs the coefficients of
the corresponding linear polynomial ahx + al over F24 .

Algorithm 2. Inversion of a masked element ã = a ⊕ ma in F28

Inputs: (ã = a ⊕ ma, ma) ∈ F28
2

Output: (ã−1 = a−1 ⊕ m′
a, m′

a)

1 Pick up three 4-bit random md, m′
h and m′

l

2 (mh, ml) ∈ F2
24 ← map(ma)

3 (ãh, ãl) ∈ F2
24 ← map(ã) [(ãh, ãl) = (ah ⊕ mh, al ⊕ ml)]

4 d̃ ← ãh
2 ⊗ {e} ⊕ ãh ⊗ ãl ⊕ ãl

2 ⊕ md ⊕ ãh ⊗ ml [d̃ = d ⊕ md]

⊕ ãl ⊗ mh ⊕ m2
h ⊗ {e} ⊕ m2

l ⊕ mh ⊗ ml

5 (d̃−1, md−1) ← Algorithm 1(d̃, md, ÎnvF24
) [d̃−1 = d−1 ⊕ m

d−1]

6 ã′
h ← ãh ⊗ d̃−1 ⊕ m′

h ⊕ mh ⊗ d̃−1 ⊕ md−1 ⊗ ãh ⊕ md−1 ⊗ mh [ã′
h

= a′
h ⊕ m′

h]

7 ã′
l ← ãl ⊗ d̃−1 ⊕ m′

l ⊕ ã′
h ⊕ d̃−1 ⊗ ml ⊕ ãl ⊗ md−1 ⊕ m′

h ⊕ ml ⊗ md−1 [ã′
l

= a′
l ⊕ m′

l]

8 m′
a ← map−1(m′

h, m′
l)

9 ã−1 ← map−1(ã′
h, ã′

l) [ã−1 = a−1 ⊕ m′
a]

10 Return (ã−1, m′
a)

Steps 1 to 4 and Steps 6 to 9 have been proved to be DPA-resistant in [23].
In the following table, we compare our method applied to AES with two

other countermeasures. The three implementations use boolean masking of the
intermediate results except when accessing S-Boxes where we use:
– Algorithm 2,
– Oswald et al.’s method [23,24]. It only differs from Algorithm 2 in its ap-

proach to compute the inversion of d̃ ∈ F16. In [23,24], the inversion is

226 E. Prouff, C. Giraud, and S. Aumônier

performed by going down to F4 and its complexity approximatively equals
the one of Algorithm 2 excluding the 5th Step which is replaced by a square
operation (since the inversion operation in F4 is equivalent to squaring),

– Trichina et al.’s method [31] which uses log- and alog-tables.3

The timings were obtained with a CPU running at 8 MHz.

Table 2. Comparison of several methods to protect AES against DPA

Method Timings (ms) RAM(bytes) ROM(bytes)
Straightforward implementation 5 32 1150

This paper (Algo. 2) 32 39 3100
Oswald et al. [23,24] 26 42 3400
Trichina et al. [31] 21 291 3050

To test the DPA-resistance of our method in practice, we mount a DPA attack
on the implementation described above. The results are given in Appendix A.

4.2 DPA-Resistant FOX Implementation

In [16], Junod and Vaudenay introduce a new family of block ciphers called FOX.
The non-linear part of a FOX-algorithm is ensured by an S-Box S. It consists
in a Läı-Massey scheme with three rounds taking three different small S-Boxes
as round functions; these functions, denoted by S1, S2 and S3, operate on 4-bit
words.

S2

or4 or4

S3S1

Fig. 1. Structure of the S-Box of FOX

In Figure 1, the or4 operation consists in a single round of a 4-bit Feistel
scheme with the identity function as round function: for every X =(x0, x1, x2, x3)
∈ F4

2, we have or4(X) = (x2, x3, x0 ⊕ x2, x1 ⊕ x3).
For every n-bit vector X , let us denote by X l and Xr the two n

2 -bit vectors
such that X = X l||Xr. To thwart DPA attack during the S-Box calculations,
we perform the following algorithm which inherits the security of Algorithm 1:

3 Trichina et al.’s method seems to have a flaw with regard to the Zero Value Attack
(cf. [25]). Thus, its DPA-resistance is not well-established yet.

Provably Secure S-Box Implementation Based on Fourier Transform 227

Algorithm 3. Secure computation of FOX S-Box

Inputs: X̃ = X ⊕ R1 and R1 in F8
2

Output: S(X) ⊕ R2 and R2, where R2 is a random vector

1 T1 ← X̃l; T2 ← X̃r; T3 ← Rl
1; T4 ← Rr

1

2 for i from 1 to 3 do
3 (r̃esult,mask) ← Algorithm 1(T1 ⊕ T2,T3 ⊕ T4,Ŝi)

4 T2 ← r̃esult ⊕ T2

5 T4 ← mask ⊕ T4

6 if i
= 3 then

7 T1 ← or4(r̃esult ⊕ T1); T3 ← or4(mask ⊕ T3)
8 else
9 T1 ← r̃esult ⊕ T1; T3 ← mask ⊕ T3

10 r̃esult ← (T1 << 4) ⊕ T2; mask ← (T3 << 4) ⊕ T4

11 Return (r̃esult, mask)

Because the S-Boxes Si of FOX operate on 4-bit vectors, computing their
outputs by use of Algorithm 1 only implies 16 lookup table’s access for each
Si. It is possible to check that this overhead is much smaller than the overhead
induced by previous S-Box secure calculation methods.

5 Conclusion and Perspectives

In this paper, we describe a new and generic method based on the Fourier trans-
form to obtain DPA-resistant S-Box implementations. After introducing a se-
curity model to resist DPA, we prove the resistance of our proposal. Since our
method does not rely on specific S-Box properties, it can be applied to any sym-
metric cryptosystem. It is very efficient when the S-Box is applied to small fields
such as FOX’s or when the computations can be performed in vector spaces of
small dimensions. In particular, we apply our method to AES and we evaluate in
practice the efficiency and the resistance of the corresponding implementation.

This work raises two interesting open problems. The first one is to upgrade
our security model and our method to take into account high-order DPA attacks.
The second one is to find other transformations or operators which allow us to
compute a masked output of an S-Box from a masked input, without revealing
information on the sensitive data.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In CHES 2001, vol. 2162 of LNCS, pages 309–318. Springer, 2001.

2. M.-L. Akkar and L. Goubin. A Generic Protection against High-Order Differential
Power Analysis. In FSE 2003, vol. 2887 of LNCS, pages 192–205. Springer, 2003.

228 E. Prouff, C. Giraud, and S. Aumônier

3. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES. In
SAC 2004, vol. 3357 of LNCS, pages 69–83. Springer, 2004.

4. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In CHES 2004, vol. 3156 of LNCS, pages 16–29. Springer, 2004.

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A Cautionary Note Regarding Evalu-
ation of AES Candidates on Smart-Cards. In AES 2, March 1999.

6. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Counter-
act Power-Analysis Attacks. In CRYPTO ’99, vol. 1666 of LNCS, pages 398–412.
Springer, 1999.

7. J.-S. Coron and A. Tchulkine. A New Algorithm for Switching from Arithmetic to
Boolean Masking. In CHES 2003, vol. 2779 of LNCS, pages 89–97. Springer, 2003.

8. N. Courtois and L. Goubin. An Algebraic Masking Method to Protect Against
Power Attacks. In ICISC 2005, vol. 3935 of LNCS. Springer, 2006.

9. J. Daemen and V. Rijmen. Resistance Against Implementation Attacks: A Com-
parative Study of the AES Proposals. In AES 2, March 1999.

10. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards
and Technology, 2001.

11. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards,
January 1977.

12. J. Golić and C. Tymen. Multiplicative Masking and Power Analysis of AES. In
CHES 2002, vol. 2523 of LNCS, pages 198–212. Springer, 2002.

13. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In CHES ’99, vol. 1717 of LNCS, pages 158–172. Springer, 1999.

14. L. Goubin. A Sound Method for Switching between Boolean and Arithmetic Mask-
ing. In CHES 2001, vol. 2162 of LNCS, pages 3–15. Springer, 2001.

15. S. Gueron, O. Parzanchevsky, and O. Zuk. Masked Inversion in GF(2n) Using
Mixed Field Representations and its Efficient Implementation for AES. In Em-
bedded Cryptographic Hardware: Methodologies and Architectures, pages 213–228.
Nova Science Publishers, 2004.

16. P. Junod and S. Vaudenay. FOX: a new family of block ciphers. In SAC 2004, vol.
3357 of LNCS, pages 114–129. Springer, 2004.

17. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99, vol.
1666 of LNCS, pages 388–397. Springer, 1999.

18. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In CRYPTO ’96, vol. 1109 of LNCS, pages 104–113. Springer, 1996.

19. S. Kunz-Jacques, F. Muller, and F. Valette. The Davies-Murphy Power Attack. In
ASIACRYPT 2004, vol. 3329 of LNCS, pages 451–467. Springer, 2004.

20. T. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In FSE
2000, vol. 1978 of LNCS, pages 150–164. Springer, 2000.

21. T. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant soft-
ware. In CHES 2000, vol. 1965 of LNCS, pages 238–251. Springer, 2000.

22. R. Oppligern. Contemporary Cryptography. ARTECH House, 2005.
23. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis

Resistant Description of the AES S-box. In FSE 2005, vol. 3557 of LNCS, pages
413–423. Springer, 2005.

24. E. Oswald, S. Mangard, and N. Pramstaller. Secure and Efficient Masking of AES
– A Mission Impossible ? Cryptology ePrint Archive, Report 2004/134, 2004.
http://eprint.iacr.org/.

25. E. Oswald and K. Schramm. An Efficient Masking Scheme for AES Software
Implementations. In WISA 2005, vol. 3786 of LNCS, pages 292–305. Springer,
2006.

Provably Secure S-Box Implementation Based on Fourier Transform 229

26. C. Paar. VLSI Architectures for Bit Parallel Computations in Galois Fields. PhD
thesis, Universität Essen, 1994.

27. V. Rijmen. Efficient Implementation of the Rijndael S-box, 2000. Available at
http://www.esat.kuleuwen.ac.be/∼rijmen/rijndael/sbox.pdf.

28. A. Rudra, P. K. Bubey, C. S. Jutla, V. Kumar, J. Rao, and P. Rohatgi. Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In CHES
2001, vol. 2162 of LNCS, pages 171–184. Springer, 2001.

29. E. Trichina, D. DeSeta, and L. Germani. Simplified Adaptive Multiplicative Mask-
ing for AES. In CHES 2002, vol. 2523 of LNCS, pages 187–197. Springer, 2002.

30. E. Trichina, L. Korkishko, and K. H. Lee. Small Size, Low Power, Side Channel-
Immune AES Coprocessor, Design and Synthesis Results. In AES 4, vol. 3373 of
LNCS, pages 113–127. Springer, 2005.

31. E. Trichina and L. Korkishko. Secure and Efficient AES Software Implementation
for Smart Cards. In WISA 2004, vol. 3325 of LNCS, pages 425–439. Springer, 2004.

32. E. Trichina. Combinatorial Logic Design for AES SubByte Transforma-
tion on Masked Data. Cryptology ePrint Archive, Report 2003/236, 2003.
http://eprint.iacr.org/.

A Practical Evaluation of Our Method Applied to AES

In this section we present the results of a practical evaluation of our method
applied to AES (cf. Section 4.1). The implementation was done on a 8-bit smart
card on which we do not activate the different hardware countermeasures. Con-
cerning the statistical treatment, we use an improvement of traditional DPA
called Correlation Power Analysis (CPA) (cf. [4]).

Firstly, we attack a straightforward implementation of the AES when access-
ing the first S-Box during the first round. By using the selection function equal
to the Hamming weight of the output of the S-Box, we obtain the result depicted
in Figure 2 after 100 executions of the algorithm. The value of the sub-key used
by the S-Box is recovered with only 30 executions of the algorithm.

10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evolution of Max(|ρ
Ki

|)

Max(|ρ
Ki

|)

Number of plaintexts

Fig. 2. CPA on non-masked AES S-Box implementation using 100 random plaintexts

Secondly, we perform the same attack against our DPA-resistant method (cf.
Algorithm 2) by using 20 000 executions of the algorithm. As shown in Figure 3,

230 E. Prouff, C. Giraud, and S. Aumônier

the attack fails. We also apply CPA by using several other selection functions
such as the Hamming weight of the input of the S-Box. All these attacks fail in
the same way.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Evolution of Max(|ρ
Ki

|)

Max(|ρ
Ki

|)

Number of plaintexts (x100)

Fig. 3. CPA on Algorithm 2 using 20 000 random plaintexts

The Outer Limits of RFID Security

Ari Juels

RSA Laboratories
Bedford, MA 01730, USA
ajuels@rsasecurity.com

It is tempting to regard RFID security and privacy primarily as questions of
cryptographic protocol design. We would like RFID tags to authenticate them-
selves in a trustworthy manner. We would also like them to protect the identities
and personal data of their bearers. We might imagine that our aims should be to
squeeze cryptographic primitives down to the constrained environments of RFID
tags and to craft protocols that scale up to populations of millions or billions of
devices. By adapting existing tools, it might seem that we can readily fulfill the
majority of our needs with some more circuitry in tags, a greater abundance of
cycles and memory on application servers, and a bit of clever economizing.

Ultimately, however, the issues of RFID security and privacy extend well
beyond the confines of this neat, conventional picture. At the outer limits of
research on RFID security today is a great variety of topics, including:

– Side channels: The best logical-layer protocols are in vain if RFID tags are
insecure at other layers. For example, as a surprising challenge to RFID
privacy, recent research has shown that “dead” tags may be detectable and
even classifiable based on their RF signatures. What is the impact (negative
and positive) of such information channels?

– Covert channels: RFID tags may be viewed loosely as sensors. They will
increasingly act as such, gathering and transmitting data about their am-
bient environment. What can we say about the risk that they are covertly
transmitting more?

– Human-implantable RFID: Surgically implantable RFID tags for medical
identification and access control are commercially available today. What are
the security and privacy implications of such “prosthetic biometrics?”

– Ramping up security: Moore’s Law—or pressing security needs—may some-
day democratize cryptography among RFID devices. This is likely to happen
when there exists a legacy RFID infrastructure with limited support for secu-
rity. How can we accommodate growing RFID-security needs more gracefully
than we have for the Internet?

– Cooperative architectures: A spectrum of devices with varying capabilities
will operate in the RFID domain. How can high-resource devices assist low-
resource ones through simulation and audit?

It is evident that RFID devices are not mere propagators of information, but
devices whose physical characteristics and operating environments give rise to
rich medley of security challenges and tools.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, p. 231, 2006.
c© International Association for Cryptologic Research 2006

Three-Phase Dual-Rail Pre-charge Logic

Marco Bucci1, Luca Giancane2,
Raimondo Luzzi1, and Alessandro Trifiletti2

1 Infineon Technologies AG
2 University of Rome “La Sapienza”

{marco.bucci, raimondo.luzzi}@infineon.com
{giancane, trifiletti}@die.mail.uniroma1.it

Abstract. This paper investigates the design of a dual-rail pre-charge
logic family whose power consumption is insensitive to unbalanced load
conditions thus allowing adopting a semi-custom design flow (automatic
place & route) without any constraint on the routing of the comple-
mentary wires. The proposed logic is based on a three phase operation
where, in order to obtain a constant energy consumption over the oper-
ating cycle, an additional discharge phase is performed after pre-charge
and evaluation. In this work, the proposed concept has been implemented
as an enhancement of the SABL logic with a limited increase in circuit
complexity. Implementation details and simulation results are reported
which show a power consumption independent of the sequence of pro-
cessed data and load capacitances. An improvement in the energy con-
sumption balancing up to 100 times with respect to SABL has been
obtained.

Keywords: DPA, dual-rail logic, SABL, security.

1 Introduction

Side channel attacks can reveal confidential data (i.e. cryptographic keys and
user PIN’s) exploiting the information leaked by the hardware implementation
of cryptographic algorithms. In particular, power analysis attacks, simple and
differential, are based on the fact that logic operations feature a power consump-
tion profile dependent on the processed data: with simple statistical analyses of
a sufficient number of power traces, the correlation between the circuit switching
activity and the key material can be revealed [1,2,3,4].

In the recent years, a wide spectrum of countermeasures against differential
power analysis (DPA) have been proposed in the technical literature. In a classifi-
cation which takes into account the involved abstraction level during the design
flow, three classes can be defined: system-level, gate-level and transistor-level
countermeasures.

System-level techniques include adding noise to the device power consump-
tion [5], duplicating logics with complementary operations [6], active supply
current filtering with power consumption compensation [7], passive filtering,
battery on chip and detachable power supply [8]. Notice that some of the men-
tioned countermeasures have a pure theoretical interest since, with the current

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 232–241, 2006.
c© International Association for Cryptologic Research 2006

Three-Phase Dual-Rail Pre-charge Logic 233

state of the art, their employment to design tamper resistant cryptographic
devices (e.g. chipcard microcontrollers) is limited by technological and cost
constraints.

As gate-level countermeasures, techniques that can be implemented using logic
gates available in a standard-cell library are intended, e.g. random masking [9],
random pre-charging [10], state transitions and Hamming weight balancing, ran-
dom delay insertion [11]. Random masking is the most studied but, as it has been
recently proved [12,13], implementations in an automatic synthesis flow starting
from a HDL description, can be still attacked exploiting glitches generated in
the combinatorial networks when the random masks are applied.

Finally, the transistor-level approach is based on the adoption of a logic style
whose power consumption is constant or independent of the processed data. In a
dual-rail pre-charge (DRP) logic style (e.g. SABL [14], WDDL [15], Dual-Spacer
DRP[16]), signals are encoded as two complementary wires and power consump-
tion is constant under the hypothesis that the differential outputs of each gate
drive the same capacitive load. Dual-rail pre-charge logics are not affected by
glitches but building two balanced wires requires a full-custom approach thus
increasing design and maintenance costs.

Recently, semi-custom design flows with support differential logic families have
been proposed in the technical literature. An approach based on a technique for
the automatic routing of balanced complementary lines is reported in [17]. Even if
an automatic place and route could sensibly reduce design time and increase the
portability, the proposed balanced routing technique does not take into account
the dependence of the capacitive load on a line on the logic state of the adjacent
wires and, furthermore, introduces additional constraints for the routing tool
thus limiting its efficiency and, likely, causing an area overhead especially if only
few metal layers are available for the inter-cell routing (as it is the case in a
chipcard where the top layers are reserved for shielding). Moreover, in a modern
deep sub-micron technology, intra-chip process gradients cannot be neglected
and they are the limiting factor for the load matching accuracy.

A second approach proposed in [18] is based on a masked dual-rail pre-charge
logic style (MDPL) where, due to the random masking at the gate level, power
consumption is randomized. Moreover, since MDPL is a dual-rail pre-charge
logic, glitches are avoided but, at the same time, the complementary wires do not
need to be balanced thus removing the main drawback of the dual-rail circuits.
On the other hand, the authors report in [19] a significant penalty in terms of
area and, above all, power consumption with respect to a CMOS implementation.

This paper proposes a further approach to the design of a dual-rail pre-charge
logic family which is insensitive to unbalanced load conditions thus allowing
adopting a semi-custom design flow (automatic place & route) without additional
constraints on the routing of the complementary wires.

The proposed concept is based on a three phase operation where an additional
discharge phase is performed after the pre-charge/evaluation steps typical of any
dynamic logic style. Although the concept is general, it can be implemented as
an improvement of the SABL logic with a limited increase in circuit complexity.

234 M. Bucci et al.

Implementation details and simulation results on a basic set of logic gates are re-
ported in Section 2. A more complex case study is discussed in Section 3 and an ex-
tensive comparison with the corresponding SABL implementation is carried out.

2 The Proposed Logic Style

This paper proposes a three-phase dual-rail pre-charge logic (TDPL) where, dur-
ing the first phase (pre-charge), the output lines of a generic logic gate are both
charged to VDD, then (second phase - evaluation) the proper line is discharged
to VSS according to the input data, thus generating a new output data. Finally,
during the last phase (discharge), the other line is discharged too. As a conse-
quence, since both wires are pre-charged to VDD and discharged to VSS , a TDPL
logic gate shows a constant energy consumption over its operating cycle (inde-
pendent of the input data), even if unbalanced capacitive loads to VDD and/or
VSS are taken into account.

The proposed approach can be implemented as an enhancement of the SABL
logic style with a minimum increase in the required area. Therefore, throughout
this paper, SABL cells are assumed as the benchmark for the equivalent TDPL
cells. An inverter is shown in Figure 1, where two additional pull-down NMOS
transistors (N1, N4) and a PMOS switch (P1) have been added to the SABL
inverter in order to implement the discharge phase.

P1

3PP2 P4 P5

N1 N2 N3 N4

N5 N6

N7

VDD

discharge

charge charge

discharge discharge

out

out

inin

eval

Fig. 1. TDPL inverter

With reference to the timing diagram shown in Figure 2, the circuit operation
is the following:

Three-Phase Dual-Rail Pre-charge Logic 235

1. charge: at the beginning of each cycle, signal discharge goes low, thus closing
P1. Signal charge goes low too and both output lines are pre-charged to VDD.

2. evaluation: during the charge phase new input data (in, in) are presented to
the circuit. On the raising edge of signal eval, N7 is closed thus discharging
one of the output lines according to the input data.

3. discharge: at the end of each operating cycle, input discharge is activated
in order to pull down (through the additional pull-down transistors N1, N4)
the output line which has not been discharged during the evaluation phase.

0/1

discharge

charge

eval

out

out

in/in

charge evaluation discharge

Fig. 2. Timing diagram of the TDPL inverter

More complex gates are obtained changing the pull-down logic. As an example,
a 2-input NAND/AND and a XOR/NXOR are depicted in Figure 3.

This basic set of cells has been designed in a 0.12µm CMOS process from In-
fineon Technologies. A 1.5V supply voltage and a 200MHz operating frequency
are adopted. Each transistor is designed with a width W = 0.68µm and the
minimum gate length L = 0.12µm is assumed. Simulations are done in Spectre,
using BSIM3v3 transistor models.

Table 1. Capacitive loads

to VDD to VSS

from out CV DD
out = 8fF CV SS

out = 4fF

from out CV DD
out

= 1fF CV SS
out

= 3fF

In order to simulate the cells in a real operating condition, the testbench
shown in Figure 4 has been defined where, each input to the gate under analysis
is driven by a TDPL inverter and unbalanced load capacitances to VDD (CV DD

out ,
CV DD

out
) and VSS (CV SS

out , CV SS
out

) are assumed on the output lines (out, out).

236 M. Bucci et al.

P1

3PP2 P4 P5

N1 N2 N3 N4

N5

VDD

N6 N7 N8

N9

discharge

charge charge

discharge discharge

out

out

eval

A

B A B

(a)

P1

3PP2 P4 P5

N1 N2 N3 N4

VDD

N5 N6 N7 N8

N9 N10

N11

discharge

charge charge

discharge discharge

out

out

eval

A AA

B B

(b)

Fig. 3. NAND/AND (a) and XOR/NXOR (b)

b
b

Cout

VDD
a
a out

out
DUT Cout

VDD

Cout

Cout

VSS

VSS

Fig. 4. Simulation testbench

Typical values for the parasitic interconnection capacitances in a standard-cell
semi-custom layout are used (Table 1). The same testbench, with SABL inverters
on the inputs, has been used to simulate the corresponding SABL cells. In both
cases, only the current consumption of the gate under analysis is taken into
account and every input data transition is simulated.

For the NAND/AND gate, a superimposition of the power supply current
traces IDD(t) for the 16 input transitions is depicted in Figure 5. Both in the
SABL and the TDPL cell, each operation phase can be clearly identified in
the supply current profile. Notice that, in unbalanced load conditions, SABL
cells show a data dependent current consumption during both pre-charge and
evaluation. In the TDPL cells, the pre-charge current pulse is constant while a
data dependency is visible in the evaluation and discharge phases.

Three-Phase Dual-Rail Pre-charge Logic 237

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

time [ns]

S
up

pl
y

cu
rr

en
t [

m
A

] SABL

pre−charge evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

time [ns]

S
up

pl
y

cu
rr

en
t [

m
A

] TDPL

pre−charge evaluation discharge

Fig. 5. NAND/AND - superimposition of the power supply current traces: SABL
(above) vs. TDPL (bottom)

As in [14], the energy per cycle E = VDD ·
∫ T

0 IDD(t)dt is adopted as figure
of merit to measure the resistance against power analysis attacks. The obtained
results for the three analyzed gates are summarized in Table 2, where the nor-
malized energy deviation (NED) is defined as (max(E)−min(E))/ max(E) and
NSD is the normalized standard deviation σE/E. As expected, SABL gates are
sensible to unbalanced load conditions (NED> 30%, NSD> 15%) thus confirm-
ing that a balanced routing must be necessary employed to obtain a constant
energy consumption. Vice versa, TDPL cells show an extremely balanced energy
consumption (NED< 3%, NSD< 1%) in spite of unbalanced load capacitances.

Table 2. Simulation results for the three basic gates

INV NAND/AND XOR/NXOR
SABL[14] This work SABL[14] This work SABL[14] This work

max(E)[fJ] 52.3 65.6 56.3 68.3 58.4 69.5
min(E)[fJ] 31.1 65.3 35.2 66.4 39.4 68.0
NED 40.4% 0.4% 37.5% 2.7% 32.6% 2.1%
E[fJ] 41.7 65.5 50.5 67.3 48.9 68.7
σE[fJ] 10.9 0.1 8.0 0.6 8.5 0.4
NSD 26.1% 0.2% 15.9% 0.9% 17.4% 0.6%

238 M. Bucci et al.

From Table 2, it follows that, as expected, an increase in the mean energy per
cycle must be taken into account since both output lines are discharged in each
cycle. On the contrary, the penalty in terms of silicon area is minimal (16% for
the NAND/AND in Figure 3), especially if compared with what is reported for
MDPL [19]. With respect to SABL, TDPL requires the routing of an additional
signal (discharge). However, if at least four metal layers are available for signal
routing, an increase in silicon area is not expected, especially in regular structures
such as data-paths. Notice that MDPL is affected by a similar drawback due to
the routing of the random data for masking.

3 A Case Study

In order to confirm the results discussed in the previous section, a TDPL full
adder designed as depicted in Figure 6 has been tested and compared with the

a
a
b

b

a
a
b

b

a
a

cin
cin

sum

cout

cout

cin

cin

cin
cin

b
b

sum

Fig. 6. TDPL full adder

Table 3. Simulation results for the FULLADDER

FULLADDER
SABL[14] This work

max(E)[fJ] 447.0 609.6
min(E)[fJ] 360.1 604.1
NED 19.4% 0.9%
E[fJ] 405.6 606.8
σE[fJ] 22.1 1.3
NSD 5.4% 0.2%

Three-Phase Dual-Rail Pre-charge Logic 239

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

time [ns]

S
up

pl
y

cu
rr

en
t [

m
A

]
SABL

pre−charge evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

time [ns]

S
up

pl
y

cu
rr

en
t [

m
A

] TDPL
pre−charge evaluation discharge

Fig. 7. FULLADDER- superimposition of the power supply current traces: SABL
(above) vs. TDPL (bottom)

0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

45

50

Energy per cycle [pJ]

N
um

be
r

of
 o

bs
er

va
tio

ns

SABL

TDPL

Fig. 8. FULLADDER - energy consumption per cycle: SABL vs. TDPL

equivalent SABL design. An implementation based on XOR/NXOR and NAND/
AND gates is employed and cascaded gates are connected using a Domino logic.
The static inverters between two gates do not cause an unbalanced energy

240 M. Bucci et al.

consumption because, in each cycle, both inverters on each couple of output
wires switch two times (1-0 commutation during the pre-charge phase and a 0-1
event during either the evaluation or the discharge phase). On the contrary, in
the SABL approach balanced interconnections between inverter and the follow-
ing gate are necessary.

As done for the simulation of a single gate, unbalanced capacitances (Table 1)
have been used on the output of each SABL/TDPL gate in order to model the
routing parasitic capacitances. A superimposition of the power supply current
traces IDD(t) for the 64 possible transitions of the 3-bit input {A, B, Cin} is
depicted in Figure 7 for both the SABL and the TDPL implementation.

A histogram of the observed energies per cycle reported in Figure 8 shows that
TDPL guarantees a balanced energy consumption, independent of the processed
data, even in presence of unbalanced interconnections. Results summarized in
Table 3 confirm the improvement which has been obtained with respect to SABL.

4 Conclusions and Future Work

A novel DPA-resistant dual-rail logic style suitable to be used in a semi-custom
design flow has been introduced and compared to the state of the art in the
technical literature. Experimental results confirm that the proposed logic family
shows a constant energy consumption even in presence of asymmetric intercon-
nections. The simulated energy consumption per cycle is up to 100 times more
balanced than in the corresponding SABL gates without requiring any constraint
on the geometry of the complementary wires. At the same time, the penalty in
terms of mean power consumption and silicon area is smaller than in the MDPL
style thus representing a valid alternative approach in all the cases where the
design and characterization of a new digital library can be afforded.

Further work on a TDPL storage element is planned. Actually, even if TDPL
is compatible with SABL flip-flops, a memory element which supports the three
phase operation allows to fully exploit the advantages of TDPL.

References

1. P. Kocher, J. Jaffe and B. Jun, Differential power analysis, Proc. Advances in Cryp-
tology (CRYPTO ’99), Lecture Notes in Computer Science, vol. 1666, Springer-
Verlag, pp. 388-397, 1999.

2. T. S. Messerges, E. A. Dabbish and R. H. Sloan, Examining Smart-Card Security
under the Threat of Power Analysis Attacks, IEEE Trans. Computers, vol. 51, no.
5, pp. 541-552, May 2002.

3. J. Coron, Resistance Against Differential Power Analysis for Elliptic Curve Cryp-
tosystems, Proc. Workshop on Cryptographic Hardware and Embedded Systems
(CHES ’99), Lecture Notes in Computer Science, vol. 1717, Springer-Verlag, pp.
292-302, 1999.

4. C. Clavier, J. Coron and N. Dabbous, Differential Power Analysis in the Presence
of Hardware Countermeasures, Proc. Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’00), Lecture Notes in Computer Science, vol. 1965,
Springer-Verlag, pp. 252-263, 2000.

Three-Phase Dual-Rail Pre-charge Logic 241

5. L. Benini, E. Omerbegovic, A. Macii, M. Poncino, E. Macii, F. Pro, Energy-aware
design techniques for differential power analysis protection, Proc. Design Automa-
tion Conf. (DAT ’03), pp. 36-41, 2003.

6. H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks, S. Kim,
and W. Zhang, Masking the energy behavior of DES encryption, Proc. Design,
Automation and Test in Europe Conf. (DAT ’03), pp. 84-89, 2003.

7. G. B. Ratanpal, R. D. Williams and T. N. Blalock, An On-Chip Suppression Coun-
termeasure to Power Analysis Attacks, IEEE Trans. Dependable and Secure Com-
puting, vol. 1, no. 3, pp. 179-189, July-Sept. 2004.

8. A. Shamir, Protecting Smart Cards from Passive Power Analysis with Detached
Power Supplies, Proc. Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES ’00), Lecture Notes in Computer Science, vol. 1965, Springer-Verlag,
pp. 71-77, 2000.

9. J. Dj. Golic and R. Menicocci, Universal Masking on Logic Gate Level, Electronics
Lett., vol. 40, no. 9, April 2004.

10. M. Bucci, M. Guglielmo, R. Luzzi and A. Trifiletti, A Power Consumption Random-
ization Countermeasure for DPA-Resistant Cryptographic Processors, Proc. Int.l
Workshop on Power and Timing Modeling, Optimization and Simulation (PAT-
MOS ’04), Lecture Notes in Computer Science, vol. 3254, Springer-Verlag, pp.
481-490, 2004.

11. M. Bucci, M. Guglielmo, R. Luzzi and A. Trifiletti, A Countermeasure against
Differential Power Analysis based on Random Delay Insertion, Proc. IEEE Int.l
Symp. Circuits and Systems (ISCAS ’05), pp. 3547-3550, 2005.

12. S. Mangard, T. Popp and B. M. Gammel, Side-Channel Leakage of Masked CMOS
Gates, Proc. Cryptographers’ Track at the RSA Conference (CT-RSA ’05), Lecture
Note in Computer Science, vol. 3376, Springer-Verlag, pp. 351-365, 2005.

13. S. Mangard, N. Pramstaller and E. Oswald, Successfully Attacking Masked AES
Hardware Implementations, Proc. Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES ’05), Lecture Notes in Computer Science, vol. 3659,
Springer-Verlag, pp. 157-171, 2005.

14. K. Tiri, M. Akmal and I. Verbauwhede, A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards, Proc. IEEE 28th European Solid-State Circuit Conf.
(ESSCIRC ’02), 2002.

15. K. Tiri and I. Verbauwhede, A Logic Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation, Proc. Design, Automation and Test in
Europe Conference and Exposition (DATE ’04), pp. 246-251, 2004.

16. D. Sokolov, J. Murphy, A. Bystrov and A. Yakovlev, Improving the Security of
Dual-Rail Circuits, Proc. Workshop on Cryptographic Hardware and Embedded
Systems (CHES ’04), Lecture Notes in Computer Science, vol. 3156, Springer-
Verlag, pp. 282-297, 2004.

17. K. Tiri and I. Verbauwhede, Place and route for secure standard cell design, Proc.
Smart Card Research and Advanced Application IFIP Conf. (CARDIS ’04), 2004.

18. T. Popp and S. Mangard, Masked Dual-Rail Pre-Charge Logic: DPA-Resistance
without Routing Constraints, Proc. Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’05), Lecture Notes in Computer Science, vol. 3659,
Springer-Verlag, pp. 172-186, 2005.

19. T. Popp and S. Mangard, Implementation Aspects of the DPA-Resistant Logic Style
MDPL, to appear in Proc. IEEE Int.l Symp. Circuits and Systems (ISCAS ’06).

Dual-Rail Random Switching Logic:
A Countermeasure to Reduce Side

Channel Leakage�

Zhimin Chen and Yujie Zhou

Shanghai Jiao Tong University, China
chenzhimin@sjtu.edu.cn, zhou863@vip.sina.com.cn

Abstract. Recent research has shown that cryptographers with glitches
are vulnerable in front of Side Channel Attacks (SCA). Since then, sev-
eral methods, such as Wave Dynamic Differential Logic (WDDL) and
Masked Dual-Rail Pre-charge Logic (MDPL), have been presented to
make circuits clean. In this paper, we propose a more accurate power
model based on logic gates’ output transitions and divide it into pieces
according to input signals’ transformations. Based on our model, we
demonstrate that 1-bit masked logic gates with asynchronous inputs al-
ways leak side-channel information from their output transitions. There-
fore, even those gates designed without glitches are still susceptible to
be attacked. To solve this problem, Dual-Rail Random Switching Logic
(DRSL) is presented. By introducing a local pre-charge signal, DRSL
gates have their inputs synchronized. Experimental results indicate that
DRSL eliminates most of the leakage.

Keywords: Side Channel Attacks, DPA, Gate Level Masking, DRSL,
Dual-Rail, Pre-charge.

1 Introduction

Until Paul Kocher et al. [1] proposed practical Side Channel Attacks (SCA) on
chips, especially powerful Differential Power Analysis (DPA), people generally
thought that cryptographic algorithms implemented in hardware chips were se-
cure, therefore, they put more attention on security of protocols and mathematic
algorithms. But since then, people began to pay more attention on implementa-
tions, and lots of countermeasures have been proposed in the last few years.

The earliest ways to act against DPA were called “Ad-hoc Approaches” [2],
such as adding noises, randomizing execution sequence and so on. The drawback
of this kind of countermeasures is that they do not prevent attacks completely:
attacks can still be successful by taking more samples and signal processing.

For the purpose of preventing DPA completely, methods to protect cryptog-
raphers on the algorithm level were presented. Louis Goubin et al. [3] proposed

� This work has been supported by National Science Fund for Creative Research
Groups (60521002) and Shanghai AM Fund (0425).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 242–254, 2006.
c© International Association for Cryptologic Research 2006

Dual-Rail Random Switching Logic 243

a way called duplication (or masking). Subsequently, masking method has been
improved by many researchers [12, 13, 16, 17, 18].

On the other hand, more generic countermeasures are also under discussion.
These countermeasures are on circuit level. We call them more generic in that
they are not constrained to a certain cryptographic algorithm. Once a practical
method is found, designers need not to care about the security of implementa-
tions for a specific algorithm. This makes possible the automatic design. These
measures fall into two categories: complementary circuits and gate level mask
circuits.

Kris Tiri and Ingrid Verbauwhede [7] proposed a complementary logic called
“Sense Amplifier Based Logic” (SABL), in which “Dual-rail” and “Pre-charge”
are employed. Considering SABL requires a new core cell library, “Simple Dy-
namic Differential Logic” (SDDL) and its refinement “Wave Dynamic Differen-
tial Logic” (WDDL) came into being afterward also under efforts of Kris Tiri
[8]. Compared with SABL, WDDL only makes use of common cells.

Besides complementary circuits, masking on gate level is analyzed in [9], and
implementation of masked gate circuits has been presented by Trichina and
Korkishko in [10, 11].

Though the above methods, in both algorithm level and circuit level, aim at
preventing DPA completely, they still leak side channel information. For masking
methods, outputs’ transitions of logic gates are dependent on the input signals
when glitches exist [4]. What’s more, in [5], Stefan Mangard et al. did a successful
attack on masked AES hardware implementations with glitches. For complemen-
tary circuits, loading capacitance is hard to control for deep submicron process
technologies where the transistor sizes and wiring widths continuously shrink [6].

To overcome the disadvantages of both masked and complementary circuits,
Thomas Popp and Stefan Mangard in [6] bound masked and complementary cir-
cuits together and showed us “Masked Dual-Rail Pre-charge Logic” (MDPL). By
absorbing “pre-charge protocol” and “Dual-Rail encoding”, no glitches appears
in MDPL circuits; by masking intermediate value with random bit, designers do
not have to consider routing constrains.

However, we find that predictable energy dissipation still appears whenever
inputs of a logic gate arrive at different moments, no matter glitches exist or
not. This means that the previous methods are still susceptible to be attacked,
including WDDL and MDPL. We did attack simulation with Hspice and the
results demonstrate that our opinion is reasonable.

What should be mentioned is that Daisuke Suzuki et al. [15] also presented a
kind of masked logic gate called “Random Switching Logic” (RSL). RSL belongs
to Single-Rail circuits. All inputs to a RSL gate are synchronized by a pre-charge
signal (called “enable signal” in [15]), but how to generate such a pre-charge signal
was not mentioned yet. We think it is hard to generate such a pre-charge signal for
each gate respectively in Single-Rail circuits.

In this article, we propose a power dissipation model according to a gate’s
output transitions, and divide it into pieces according to the input transitions.
Based on our model, we demonstrate that 1-bit masked logic gates still leak

244 Z. Chen and Y. Zhou

side channel information. As an effective countermeasure, Dual-Rail Random
Switching Logic (DRSL) is presented, in which inputs are synchronized for each
gate respectively. Our experimental results show that DRSL reduces most of the
side channel leakage. Therefore, DRSL is more robust than other logics.

This article is organized as follows. In Section 2, a mathematical model of
power consumption and theoretical analysis of gate leakage are proposed. Our
logic DRSL is presented in Section 3. Experimental results are given in Section 4.

2 Mathematical Models and Analysis

2.1 Gate Model

A logic gate in a cryptographer performs a Boolean algebra function. Factors
that influence a gate’s output values can be categorized into two groups: one
is those determinable factors that can be decided by internal keys and outside
input (or output) data; the other is the independent factors, such as the internal
generated random numbers. For simplicity, we, here, only consider gates with
only one output. What’s more, for the practical consideration, each logic gate
discussed in this article has only one independent factor. Then our model can
be described in Equation 1.

q = f(a0, a1, · · · , an−1, m) (1)

where q is the output value; a0, a1, · · · , an−1 are n factors related to key and
outside data while m is the internal independent factor, f is the Boolean function
that the gate performs. Hereafter, we also represent a0, a1, · · · , an−1 as A for
simplicity.

In a gate level masked circuit, ‘m’ is a mask signal, ‘ai’ is the unmasked value
of a masked input and ‘q’ is a masked output. A common digital circuit can
be considered as a special subset of masked circuits, in which ‘m’ equals to a
constant ‘0’ or ‘1’.

2.2 Power Model

Power consumed by a CMOS gate is determined by many factors, such as output
transition, load capacitance, self capacitance, clock frequency, supply voltage,
and switch voltage [14]. In this article, we mainly focus on output transitions.
We define the output transition as (qi−1, qi). Correspondingly, energy consumed
can be defined as E(qi−1, qi).

In a combinational circuit, input signals to a gate always arrive at different
moments. The result following this is that outputs would probably switch several
times during a clock cycle before they reach stable values. This is what we
usually call “glitches”. Suppose inputs arrive at k different moments, then power
consumption can be represented as shown in Equation 2.

E = (E0, E1, · · · , Ei, · · · , Ek−1, Ek) (2)

Dual-Rail Random Switching Logic 245

where Ei is the gate’s power consumption during the input arriving intervals
between moment i and moment i+1. When voltage of the output at moment i
(vi) and i+1 (vi+1) are both stable values (for example, 0v or 1.8v in 0.18µm
technology), energy can be written as E(0, 0), E(0, 1), E(1, 0), or E(1, 1). Oth-
erwise, if at least one of them is not stable, energy consumed can be represented
as tE(0, 1) or tE(1, 0) by employing a coefficient ‘t ’ (0 < t < 1). Here, t is de-
termined by vi and vi+1. From another point of view, t is mainly determined by
the length of the interval, and is independent on the value of A.

2.3 Analysis

When attacking cryptographers using DPA, attackers aim to discover whether
their key guesses are correct. Explaining this with our model, a correct key guess
brings us a correct prediction of internal predictable factors, while incorrect
key guesses lead to wrong predictions. If some statistical characteristic of the
energy dissipated depends on the predictable factors, then attackers can make
use of the power consumption as side-channel information to judge whether their
key guesses are valid. Hence, secure cryptographers should have their power
dissipation statistically independent on those predictable factors.

DPA can target on a circuit element (CE), which is a (group of) gate(s).
Output values of a CE are statistically independent of others, so independence
between the power consumption and the internal predictable factors lays on no
correlation between E and A of a CE. What’s more, we hold the opinion that
independence between E and A at every time can be satisfied only if every
element Ei of E is statistically independent on A, otherwise, the cryptographers
would probably suffer from DPA.

In pre-charge circuits, at the beginning of evaluation phase, every signal has
an initialized value: 0. (In some logics, signals are pre-charged to 1, but there
is no essential difference.) As mentioned before, coefficient ‘t ’ is independent on
A, hence, independence of Ei and A stands on independence between qi+1 and
A (qi = 0). This is the main topic of the following discussion.

Single-Rail Circuits. In a Single-Rail circuit, each CE has only one output.
The independence between q and A can be described in an equation as follows.

P (q = 0/Ai) = P (q = 0/Aj) (3)

where P is the conditional probability, Ai and Aj are arbitrary sets of (a0, a1, · · · ,
an−1). What’s more, q must not be a constant and is related to every input.

Until now, the problem becomes to designing a logic gate that satisfies Equa-
tion 3 in all the k time intervals during a clock cycle. First, we consider the
scenario that all inputs have arrived at this gate.

Lemma 1. Let f be a logic gate’s Boolean algebra function, q be its output and
a0, a1, · · · , an−1, and m be its n+1 independent variables: q = f(a0, a1, · · · , an−1,
m). When q does not equal to constant 0 or 1, and is correlated to every input,

246 Z. Chen and Y. Zhou

then the necessary and sufficient condition for the statistical independence be-
tween q and a0, a1, · · · , an−1 is

q = f(a0, a1, · · · , an−1, m) = g(a0, a1, · · · , an−1)⊕m (4)

and
P (m = 0) = P (m = 1) = 1/2

where g is a Boolean algebra function; P is the probability. (Since lemmas in
this article are easy to prove, we do not list their proof here.)

As we can see, to make circuits designed resistant to DPA, signals propagating
inside should be masked as a⊕m or ā⊕m.

When considering other cases, we take the kth interval as an example. In this
interval, only one input has not arrived at the gate, which means either one of
the masked signals (ai⊕m) or the masking signal (m) remains pre-charged.

If the last one is ai⊕m, we define the delayed signal as aim. Since aim is pre-
charged to 0, we can assume that ai equals to m in this interval. Then Equation
4 can be rewritten as follows.

q = f(a0, a1, · · · , an−1, m) = g(a0, a1, · · · , ai−1, m, ai+1, · · · , an−1)⊕m (5)

Is q in this case still independent on the remaining predictable factors (a0, a1, · · · ,
ai−1, ai+1, · · · , an−1)? According to Lemma 1, we should make sure whether there
exists a Boolean algebra function h satisfying the following equation.

q = f(a0, a1, · · · , an−1, m) = h(a0, a1, · · · , ai−1, ai+1, · · · , an−1)⊕m (6)

Lemma 2. When a Boolean function f can be written as Equation 5, it cannot
be rewritten into Equation 6.

If the last one is signal m, we can represent output q with the same equation as
before while replacing ai with ai⊕m, and m with 0 (m is still pre-charged). So
Equation 4 can be rewritten as follows.

q = g(a0⊕m, a1⊕m, · · · , an−1⊕m)⊕0 (7)

Still, we should make sure whether there is a function h which satisfies Equation 8.

q = h(a0, a1, · · · , an−1)⊕m (8)

Lemma 3. when a gate’s logic function can be described as Equation 7 and
Equation 8, then n must be an odd number and

h(a0, a1, · · · , an−1) = fa(a0)⊕a1⊕ · · · ⊕an−1 (9)

According to Lemma 3, gates, such as masked AND and OR, do not satisfy
Equations 7 and 8 simultaneously. Therefore, when m arrives last, output q is
dependent on predictable factors A. Since AND and OR gates are the main

Dual-Rail Random Switching Logic 247

components of cryptographers, so we can say that delay of the mask signal also
has side channel leakage.

Based on Lemma 1 to Lemma 3, we can make a conclusion:

Conclusion 1. In Single-Rail Circuits with all signals masked by the same ran-
dom bit, when inputs arrive at logic gates at different moments, predictable fac-
tors dependent power dissipation appears no matter glitches occur or not. What’s
more, if inputs to a gate are pre-charged asynchronously, leakage would also occur.

Dual-Rail Circuits. As for the Dual-Rail Circuits, the independent circuit
element is a pair of complementary signals. Therefore, Equation 4 should be
rewritten as follows.

(Q1, Q0) = q + q̄ = f(A, m) + f(A, m)
= g(a0, a1, · · · , an−1)⊕m + g(a0, a1, · · · , an−1)⊕m̄ (10)

where ‘+’ represents common addition; q and q̄ are a pair of complementary
signals. q̄ equals to the inversion of q in evaluation phase, while equals to q in
pre-charge phase. Therefore,

Q0 = q⊕q̄, Q1 = qq̄

For a Dual-Rail Circuit resistant to DPA, both Q0 and Q1 should be statistical
independent on A.

Using the same proof methods employed in last section, we can demonstrate
that when inputs to a gate arrive asynchronously, side-channel leakage occurs as
well. Therefore, we can get Conclusion 2 as follows.

Conclusion 2. In Dual-Rail Circuits with all signals masked by the same random
bit, when inputs arrive at logic gates at different moments, predictable factors de-
pendent power dissipation appears, no matter glitches occur or not. What’s more,
if inputs to a gate are pre-charged asynchronously, leakage would also occur.

3 Dual-Rail Random Switching Logic

3.1 Basic Cells

Section 2 tells us that besides “free of glitches” and “no routing constrains”,
every internal gate in a DPA resistant cryptographer should have its inputs
synchronized. DRSL is devised under such a guideline. To suppress glitches,
“pre-charge” protocol is used; to remove routing constrains, random mask is
introduced; to synchronize input signals, a local pre-charge signal is generated.
The main idea of DRSL is derived from RSL and MDPL. But compared with
MDPL, the advantage of DRSL is that it avoids side channel leakage caused by
asynchronous inputs. As for RSL, DRSL makes use of Dual-Rail method to make

248 Z. Chen and Y. Zhou

practical the generation of the local pre-charge signal (called “enable” signal in
RSL) for every gate.

The schematic of a two-input DRSL AND gate is shown in Fig. 1. Fig. 1(a)
presents a single rail element; Fig. 1(b) describes a DRSL AND gate with a logic
part (two Single-Rail elements) and a pre-charge generation circuit in it.

(a) (b)

Fig. 1. (a). RSL NAND schematic, (b). DRSL AND schematic

In DRSL circuits, there are two work phases alternating with each other: one
is pre-charge phase, the other is evaluation phase. In the pre-charge phase, all
signals, including mask signal m, are pre-charged to 0; while in the evaluation
phase, pre-charge signal turns to be invalid after all inputs are evaluated values.
Pre-charge of the whole circuit is done in a way of waveform: starting from
registers, propagating through combinational logic gates and finally running back
to registers. A global pre-charge signal is not suitable in that, between logic gates,
their inputs arrive at different moments. This is similar to WDDL and MDPL,
however, the difference is that each DRSL gate has its own pre-charge circuit.
A DRSL gate is pre-charged at the time when one of the inputs turns to be
pre-charged value, and enabled after all its inputs are evaluated values. Thus,
DRSL gates do not suffer from asynchronous inputs.

In a Single-Rail circuit, pre-charged values and evaluated values can both be 0,
so it is hard to judge when all inputs are evaluated values. On the other hand, pre-
charged and evaluated values in Dual-Rail circuit do not have intersection: the
former can only be (0, 0), and the latter belong to (1, 0) and (0, 1). This makes it
possible to identify the time when all evaluated inputs have arrived. Based on the
above consideration, Dual-Rail circuits are preferable in our logic. Once the pre-
charge signal is generated, input signals are synchronized. This property of DRSL
allows converting all kinds of logic gates to DRSL. For example, XOR, which is
not a monotonic gate, is not used in MDPL and WDDL. But in DRSL, XOR is
accepted. What’s more, since DRSL is Dual-Rail, an inverter can be implemented
by just swapping its two complementary inputs. The same as mentioned in [15],
odd-number-input XOR and XNOR function does not need a random signal
input in DRSL.

Dual-Rail Random Switching Logic 249

Fig. 2. DRSL D-flip-flop schematic

Since random mask changes every clock cycle, value stored in registers should
be masked by the random signal for the following clock period. We incorporate
the idea of MDPL D-flip-flop, in which a D-flip-flop consists of a RSL XOR gate,
a common CMOS D-flip-flop and two CMOS NOR gates. Random signals for
the XOR gate are mi⊕mi+1 and mi⊕mi+1, where mi is the random value for
the current cycle and mi+1 is the one for the next. DRSL D-flip-flop schematic
is presented in Fig. 2.

Table 1 compares DRSL cells in 0.18µm technology with the corresponding
cells from TSMC 0.18µm standard cell library in area complexity.

Table 1. DRSL cells area complexity

DRSL Cell Implementation Area (gate equivalents) Ratio

DRSL Standard DRSL/std.

Inverter Wire swapping 0 0.67 0

Buffer 2×Buffer 2.66 1.33 2

AND, OR(2-in) 2×RSL NAND, OAI 7.21 1.33 5.42

NAND, NOR(2-in) 2×RSL NAND, OAI 7.21 1 7.21

XOR, XNOR 2×RSL XOR, OAI 8.22 2.67 3.30

D-flip-flop DRSL XOR, CMOS 14.49 5.67 2.56

D-FF, 2×NOR

As can be seen from Table 1, DRSL AND, OR, NAND, and NOR gates
cost much more area than standard gates. This is mainly caused by the local
pre-charge circuit and the dual-rail circuit. However, as the gate becomes more
complex, pre-charge circuit takes less proportion. Area ratio of DRSL XOR,
XNOR, and D-flip-flop is smaller than DRSL AND and OR gates.

Compared with MDPL gates, DRSL AND (OR) gates cost more area than
MDPL AND (OR) gates. But for XOR and DFF gates, DRSL costs less. Consid-
ering DRSL is compatible with MDPL, when designing DRSL circuits, a DRSL

250 Z. Chen and Y. Zhou

AND (OR) gate can be replaced by a MDPL AND (OR) gate if inputs to it are
already synchronized.

3.2 Security Analysis

For every DRSL gate, outputs only change after all inputs arrive, energy elements
before the last signal’s arrival should be 2E(0, 0), assume signals arrive at k
different moments and the final output is q, then the last energy piece is E(0, 0)+
E(0, q). Power consumption of a DRSL gate can be represented as follows.

E = (2E0(0, 0), 2E1(0, 0), · · · , 2Ei(0, 0), · · · , 2Ek−1(0, 0), Ek(0, 0) + Ek(0, q))

Since output q is masked by a random signal, the above equation is not influenced
by those predictable factors. So we can see the logic part of DRSL is free of
leakage caused by asynchronous inputs.

Similarly, for the pre-charge circuit in DRSL, its power consumption can be
described as follows.

E = (E0(0, 0), E1(0, 0), · · · , Ei(0, 0), · · · , Ek−1(0, 0), Ek(0, 1))

Again, the equation is not related to those predictable factors, which means the
pre-charge circuit is secure as well.

4 Experimental Results

We have performed DPA attacks simulation with Hspice on four 2-input AND
gates implemented by common Single-Rail masked logic, WDDL, MDPL, and
DRSL. All these gates are in 0.18µm technology. The layout parasitics have been
neglected. Test circuits are illustrated in Fig. 3. In Fig 3(a), am arrives last; in
Fig. 3(b), the random mask signal m arrives last.

For the Single-Rail masked AND gate, when am arrives later than bm and m,
then in the time interval, output q can be shown as follows.

q = ((am⊕m)(bm⊕m))⊕m = ((0⊕m)(bm⊕m))⊕m = b̄m

For WDDL and MDPL, we can also get the following results (m=0 for WDDL):

q̄ = ((ām⊕m̄)(b̄m⊕m̄))⊕m̄ = ((0⊕m̄)(b̄m⊕m̄))⊕m̄ = b̄m̄

q0 = q⊕q̄ = b̄, q1 = qq̄ = 0

We simulate all the 8 possible combinations of input transitions on each of
the AND gate. Current I(Vd)from circuits to power Vdd is the probed signal.
Waveforms are divided into two groups, one with b = bm⊕m = 1, while the other
with b = 0. Finally, we subtract the average of group 2 (b = 0) by the means of
group 1 (b = 1) to get the difference. In the time interval when bm and m have
arrived and am is still pre-charged, only group 2 is possible to change output to

Dual-Rail Random Switching Logic 251

(a) (b)

Fig. 3. (a). am arrives last, (b). m arrives last

0 0.5 1

−200

0

200

SRML AND GATE

D
iff

er
en

ce
 o

f M
ea

ns
 [u

A
]

(a)

0 0.5 1

−200

0

200

WDDL AND GATE

(b)

0 0.5 1

−200

0

200

MDPL AND GATE

Time [ns]
(c)

D
iff

er
en

ce
 o

f M
ea

ns
 [u

A
]

0 0.5 1

−200

0

200

DRSL AND GATE

Time [ns]
(d)

Fig. 4. Difference of means

be ‘1’; after am arrives, raise of output only occurs in group 1. So it is expected
to get a figure with a valley followed by a peak in SRML, WDDL, and MDPL
circuits. Results can be seen in Fig. 4.

When m arrives last, for Single-Rail masked AND gate:

q = ((am⊕0)(bm⊕0))⊕0 = (āb̄m) ∨ (abm̄)

For MDPL, we can also get the following results:

q̄ = ((ām⊕0)(b̄m⊕0))⊕0 = (āb̄m̄) ∨ (abm)

q0 = q⊕q̄ = a⊗b, q1 = qq̄ = 0

In this case we divide waveforms of I(Vd) into two groups, one with a = b, while
the other with a �=b. Since this division happens to be the same as the former,

252 Z. Chen and Y. Zhou

their figures are similar (slight differences are caused by different self capacitance
related to each input). We do not list the plots of this case here.

¿From Fig. 4 we can clearly notice the advantage of the DRSL AND Gate.
The first three plots apparently have a valley followed by a peak, while the
fluctuation of DRSL AND Gate is much smaller. Peak-to-peak values of each
plot are approximately 418(SRML), 363(WDDL), 550(MDPL), and 117(DRSL)
µA. Therefore, leakage of DRSL is reduced by at least 68%. When comparing
the total power leakage, DRSL’s performance is even better.

We also did an experiment in which every input reaches the gate at the same
time. We divide the waveforms and get the difference of means in the same way
as before. Result can be seen in Fig. 5(a). What’s more, two immediate current
I(Vd) plots (ambmm = 000 and ambmm = 100) are shown in Fig. 5(b).

0 0.2 0.4 0.6 0.8 1
−300

−200

−100

0

100

200

300
DRSL AND GAT

Time [ns]

D
iff

er
en

ce
 o

f M
ea

ns
 [u

A
]

(a)

0.6 0.7 0.8 0.9 1

−600

−500

−400

−300

−200

−100

0

100

Time [ns]

I(
V

d)
 [u

A
]

AmBmM=000

AmBmM=100

(b)

Fig. 5. (a). Inputs synchronized, (b). Immediate Current

By comparing Fig. 4(d) and Fig. 5(a), we notice that the two plots are
identical around 0.75ns, which means this part of leakage occurs even if in-
puts arrive at the same time. Accordingly, we divide the plot in Fig. 4(d) into
two parts: the high-frequency fluctuation around 0.5ns and the comparatively
low-frequency part near 0.75ns. We think the former be related to self capaci-
tance. Leakage in this part is hard to identify. As for the latter, it is caused by
different charging speeds. If am = bm = m, all P transistors in the transiting
RSL AND gate are open. This brings larger current and quicker change than
other cases. In Fig. 5(b), charging current (-I(Vd)) belonging to ambmm = 000
(real line) is larger than that of ambmm = 100 (dotted line) at the beginning
of transition. Since the stored charge is limited, the former also ends earlier
than the latter. According to the above categorization, all traces belonging to
am = bm = m were grouped into the second group (b = 0), so when subtract-
ing the means of the two groups, a small valley followed by a peak appears.
This kind of leakage is not considered in our model, as it does not come from
the total power difference but the immediate power trace disagreement. Un-
fortunately, DRSL cannot avoid this kind of leakage. To minimize such kind
of leakage is our job in the future.

Dual-Rail Random Switching Logic 253

5 Conclusion

We presented a power model where the power consumption of a logic gate de-
pends on the value of the gate’s output transition. Based on the model, we
establish conditions for statistical independence between output transitions and
the input values. Theoretical analysis shows that 1-bit masked gates with asyn-
chronous inputs always leak side channel information. After that, we propose a
kind of logic called Dual-Rail Switching Logic, which employs a local pre-charge
circuit in each gate. Experimental results show that DRSL can eliminate most
of the side channel leakage and therefore is more secure.

References

[1] Paul Kocher, Joshus Jaffe, and Benjamin Jun. Differential Power Analysis. In
proceeding of Advances in Cryptology - CRYPTO ’99, pp. 388-397, Springer,
1999.

[2] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In proceeding of Ad-
vances in Cryptology - CRYPTO ’99, pp. 398-412, Springer, 1999.

[3] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis - The
“Duplication” Method. In proceeding of Cryptographic Hardware and Embedded
Systems - CHES ’99, pp. 158-172, Springer, 1999.

[4] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage
of Masked CMOS Gates. In Topics in Cryptology - CT-RSA 2005, pp. 351-365,
Springer, 2005.

[5] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully At-
tacking Masked AES Hardware Implementations. In proceeding of Cryptographic
Hardware and Embedded Systems - CHES 2005, pp. 157-171, Springer, 2005.

[6] Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints. In proceeding of Cryptographic Hard-
ware and Embedded Systems - CHES 2005, pp. 172-186, Springer, 2005.

[7] Kris Tiri and Ingrid Verbauwhede. Securing Encryption Algorithms against DPA
at the Logic Level Next Generation Smart Card Technology. In proceeding of Cryp-
tographic Hardware and Embedded Systems - CHES 2003, pp. 137-151, Springer,
2003.

[8] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation. In Design, Automatin and Test
in Europe Conference and Exposition (DATE 2004), IEEE Computer Society, pp.
246-251, 2004.

[9] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In proceeding of Advances in Cryptology - CRYPTO
2003, pp. 463-481, Springer, 2003.

[10] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. Cryptology ePrint Archive (http://eprint.iacr.org/) , Report
2003/236, 2003.

[11] Elena Trichina and Tymur Korkishko. Small Size, Low Power, Side Channel-
Immune AES Comprocessor: Design and Synthesis Results. In proceeding of the
Fourth Conference on the Advanced Encryption Standard (AES), 2004.

254 Z. Chen and Y. Zhou

[12] Elena Trichina and Tymur Korkishko. Secure AES Hardware Module for Resource
Constrained Devices. In proceeding of Security in Ad-hoc and Sensor Networks:
First European Workshop, ESAS 2004, pp. 215-229, Springer 2005.

[13] Elena Trichina and Lesya Korkishko. Secure and Efficient AES Software Imple-
mentation for Smart Cards. In proceeding of Information Security Applications:
5th International Workshop, WISA 2004, pp. 425-439, Springer 2004.

[14] A.P. Chandrakasan, S. Shen and R.W.Brodersen. Low Power Digital CMOS De-
sign. In IEEE Journal of Solid State Circuits, Vol.27, N0.4. pp. 473-484, 1992.

[15] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. Random Switching Logic: A
Countermeasure against DPA based on Transition Probability. Cryptology ePrint
Archive (http://eprint.iacr.org/), Report 2004/346, 2004.

[16] Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and
AES, Secure against Some Attacks. In proceeding of Cryptographic Hardware
and Embedded Systems: CHES 2001, pp. 309-318, Springer 2001.

[17] Johannes Blomer, Jorge Guajardo, and Volker Krummel. Provably Secure Masking
of AES. In proceeding of Selected Areas in Cryptography: 11th International
Workshop, SAC 2004, pp. 69-83, Springer 2005.

[18] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A
Side-Channel Analysis Resistant Description of the AES S-Box. In proceeding of
Fast Software Encryption: 12th International Workshop, FSE 2005, pp. 413-423,
Springer 2005.

Security Evaluation of DPA Countermeasures
Using Dual-Rail Pre-charge Logic Style

Daisuke Suzuki and Minoru Saeki

Mitsubishi Electric Corporation, Information Technology R&D Center,
5-1-1 Ofuna Kamakura, Kanagawa, 247-8501, Japan

{Suzuki.Daisuke@bx, Saeki.Minoru@db}.MitsubishiElectric.co.jp

Abstract. In recent years, some countermeasures against Differential
Power Analysis (DPA) at the logic level have been proposed. At CHES
2005 conference, Popp and Mangard proposed a new countermeasure
named Masked Dual-Rail Pre-Charge Logic (MDPL) which combine
dual-rail circuits with random masking to improve Wave Dynamic Differ-
ential Logic (WDDL). The proposers of MDPL claim that it can imple-
ment secure circuits using a standard CMOS cell library without special
constraints for the place-and-route because the difference of loading ca-
pacitance between all pairs of complementary logic gates in MDPL can
be covered up by the random masking. In this paper, we especially focus
the signal transition of the MDPL gate and evaluate the DPA-resistance
of MDPL in detail. Our evaluation results show that the leakage occurs
in the MDPL gates as well as WDDL gates when input signals have dif-
ference of delay time even if MDPL has an effectiveness on reducing the
leakage caused by the difference of loading capacitance. Furthermore, we
demonstrate the problem with different input signal delays by measure-
ments of an FPGA and show the validity of our evaluation.

1 Introduction

In recent years, some countermeasures against Differential Power Analysis (DPA)
[1] at the logic level have been proposed. Since the logic level countermeasure is
applied to the basic components of hardware and aims to cut off DPA leakage at
its source, it indicates that we can take the versatile countermeasure independent
of the algorithm.

Some problems of security and implementation are pointed out to the coun-
termeasures at the logic level that have been already proposed. For example,
Mangard pointed out that the countermeasure to implement random masking
by combinational circuit [2] should leak out the secret information from the
power consumption caused due to glitches [3] and actually, they found DPA
leakage on the real ASIC [4]. Random Switching Logic (RSL) [5] proposed by
Suzuki et al. can suppress the occurrence of glitch and make uniform the power
consumption at each gate in the statistical analysis using the random number.
However, RSL requires the special CMOS gates to perform effective implement-
ing process and the special constraints of timing to assure the security. Wave
Dynamic Differential Logic (WDDL) [6], which applies the dual-rail synchronous

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 255–269, 2006.
c© International Association for Cryptologic Research 2006

256 D. Suzuki and M. Saeki

circuit, must adopt the specialized place-and-route method to adjust the loading
capacitance for implementing of the secure circuit [7]. In addition, Suzuki et al.
present the fact that DPA leakage occurs when there are differences in the delay
time between the input signals at the WDDL gates [5,8].

As one of the recent research, Masked Dual-Rail Pre-Charge Logic (MDPL) [9]
that improved WDDL was proposed at CHES 2005 conference. The proposers of
MDPL claim that it can implement secure circuits using a standard CMOS cell
library without special constraints for the place-and-route because the difference
of loading capacitance between all pairs of complementary logic gates in MDPL
can be covered up by the random masking.

In this paper, we especially focus the signal transition of the MDPL gate and
evaluate the DPA-resistance of MDPL in detail. Our evaluation results show that
the leakage occurs in the MDPL gates as well as WDDL gates when input signals
have difference of delay time even if MDPL has an effectiveness on reducing
the leakage caused by the difference of loading capacitance. Furthermore, we
demonstrate the problem with different input signal delays by measurements of
an FPGA and show the validity of our evaluation.

2 DPA Countermeasures Using Dual-Rail Circuits

2.1 Wave Dynamic Differential Logic [6]

Tiri et al. proposed WDDL applying DCVSL (Differential Cascode Voltage
Switch Logic) as a countermeasure against DPA [6]. Figure 1 shows the basic
components of WDDL. The WDDL circuits have the following features:

(1) WDDL gates have complementary outputs (q, q̄).
(2) The pre-charge signal controls the pre-charge phase to transmit (0, 0) and

the evaluation phase to transmit (0, 1) or (1, 0).
(3) The pre-charge operation is performed at the first step in combinational

circuit and, the components to be used are limited to AND, OR, and NOT
(re-wiring) operations.

(4) The number of transitions in all circuits generated during an operation cycle
is constant without depending on the values of input signals.

The power consumption in the CMOS circuits is generally proportional to the
number of transitions at the gates. Therefore, the WDDL circuits are effective
as a countermeasure against DPA since the power consumption may become
constant without depending on the values of input signals as described in the
feature above.

2.2 Masked Dual-Rail Pre-charge Logic [9]

Popp et al. proposed Masked Dual-Rail Pre-charge Logic (MDPL) that the ran-
dom data masking is introduced into WDDL gates [9]. Figure 2 and Figure 3
show the basic components of MDPL. In addition, Table 1 shows the truth table

Security Evaluation of DPA Countermeasures 257

Pre-charge
logics

prch

WDDL AND gate

WDDL OR gate

a
b

a
b

a b

a b

a,b

a, b

a,b

a, b

Fig. 1. Components of WDDL

of an MDPL AND gate. The logic AND function and OR function in the WDDL
gate apply a pair of standard two-input AND gate and OR gate and on the other
hand, those in the MDPL gate apply a pair of majority logic (MAJ) gates.

The architecture of cryptographic circuits using MDPL is shown in Figure 4.
The signals (am, bm, ām, b̄m) masked with the random data m and m̄ and those
random data are entered into the MAJ gates in the combinational circuit shown
in Figure 4. Hereupon, at the MAJ gates with the three input ports (x, y, r)
shown in Figure 3, the signals (am, ām) and (bm, b̄m) are entered into the input
ports x and y, respectively and then, the signals (m, m̄) are entered into the
input port r.

When examining the security against DPA, we assume that an attacker can
predict the architecture of the combinational circuit shown in Figure 4 and the
pre-masking signals (a, b, ā, b̄) corresponding to the signals (am, bm, ām, b̄m). And
the random numbers m and m̄ generated in the VLSI can be predicted only with
a probability of 1/2.

The relations between the signals are described below. In the beginning, there
are following relations between the input signals.

am = a⊕m, bm = b⊕m, ām = a⊕ m̄, b̄m = b⊕ m̄.

The output signals qm and q̄m of the MDPL AND gate are as follows:

qm = MAJ(am, bm, m) = a · b⊕m,

q̄m = MAJ(ām, b̄m, m̄) = a · b⊕ m̄.

As realized from Figure 3 and the above formulas of qm and q̄m, the MDPL
gates have the following feature, including those of WDDL gates described in
Section 2.1.

• Even if the correct signal values a, b (ā, b̄) are predictable, the random transi-
tion occurs at the MAJ gate according to the value of random data m (m̄).

For this reason, the power consumption is made uniform even if there is a differ-
ence of the loading capacitance between each complementary logic gate. Thus,

258 D. Suzuki and M. Saeki

x y

r

y

x

r

yx

x

y

q

Fig. 2. MAJ gate

MDPL AND gate

am x
MAJ
gatey

r

qbm

m

qm

am x
MAJ
gate

y

r

qbm

m

qm

MDPL OR gate

am x
MAJ
gate

y

r

qbm

m

qm

am x
MAJ
gate

y

r

qbm

m

qm

Fig. 3. Components of MDPL

Table 1. Truth table of
an MDPL AND gate

a b am bm m qm ām b̄m m̄ q̄m

0 0 0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0 0 0
0 1 0 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1 0 0
1 0 1 0 0 0 0 1 1 1
1 0 0 1 1 1 1 0 0 0
1 1 1 1 0 1 0 0 1 0
1 1 0 0 1 0 1 1 0 1

input
input

PRNG

MDPL
DFF

MDPL
Combinational

Circuit
output
output

m

m

m mn m mnprch

Pre-charge
logic

Fig. 4. Architecture of
MDPL circuit

the proposers of MDPL claim that MDPL does not need the constraints on the
place-and-route to adjust the loading capacitance and can improve security and
implementability.

3 Security Problems of WDDL

This section states the main factor of leakage in WDDL gate based on the
contents that have been already discussed on the security of WDDL.

3.1 Main Factors of the Leakage in WDDL

As the main factors of the DPA leakage in WDDL, the following two contents
have been pointed out [7,8]:

F1: Leakage caused by the difference of loading capacitance between two com-
plementary logic gates in WDDL gate

F2: Leakage caused by the difference of delay time between the input signals of
WDDL gates

We here describe the factor of the above-mentioned leakage in detail. At first, we
explain the main factor of leakage in F1. The power consumption at the CMOS
gate can be generally evaluated in the following formula [10]:

Ptotal = pt · CL · V 2
dd · fclk + pt · Isc · Vdd · fclk + Ileakage · Vdd, (1)

Security Evaluation of DPA Countermeasures 259

where CL is the loading capacitance, fclk is the clock frequency, Vdd is the supply
voltage, pt is the transition probability of the signal, Isc is the direct-path short
circuit current, and Ileakage is the leakage current. As realized from the formula
(1), the power consumption at the first term is different between the gates if
there is a difference of the loading capacitance between each complementary
logic gate. Since the existence of transition at each complementary logic gate is
determined by the values of input signals, the total power consumption differ in
dependence of the signal values even if the total number of transitions is equal
between the gates. For this reason, the difference of power consumption occurs
in dependence of the DPA selection function.

Next, we explain the main factor of leakage in F2. As described in Section
2.1, the transition probability during an operation cycle at the WDDL gates
is assured pt = 1 without depending on the input signals. However, the opera-
tion timing of each complementary logic gate are generally different due to the
conditions of values or delay time of input signals during an operation cycle.
In other words, this means that the timing of starting the power consumption
varies in dependence of the signal values during an operation cycle. Therefore,
since the average power traces specified by the predictable signal values have
different phases, the spike can be detected after the DPA operation.

3.2 Countermeasures Against Main Factors of Leakage in WDDL

We here consider the above-mentioned two factors of the leakage from the view-
point of implementing the logic circuit. First, we examine the leakage caused
by the difference of loading capacitance in F1. The difference of loading ca-
pacitance generally arises between the gates in dependence of the number and
type of gates connected to each other and the result of place-and-route. Com-
plementary logic gates of WDDL are different in the point of logical expression
(positive/negative), but their attribute (such as order and the number of con-
nected gate) are designed to be equal. Thus, the number of gates connected to
complementary logic gates of WDDL is equal basically. Therefore, the difference
of loading capacitance in the WDDL circuit arises due to the difference of capac-
itance at the AND/OR gates themselves and the difference of place-and-route.
Furthermore, when we consider the whole cryptographic circuit, a signal propa-
gating path with transition is determined in probability depending on the values
of input related signals. In a word, the leakage in F1 is a difference of power
consumption that depends on the difference between the propagation probabil-
ity and the loading capacitance of the signal in each path. We predict that the
difference of the capacitance that depends on the place-and-route is more pre-
dominant as the factor of the leakage in F1 than the difference of capacitance at
each gate such as AND/OR gate. Hereafter, we refer the leakage that depends
on the place-and-route and does not depend on the logical formula as incidental
leakage.

Next, we examine the leakage caused by the difference of delay time in F2.
Suzuki et al. analyzed the existence of leakage on assumption that there is dif-
ferent delay time between a and b (or between ā and b̄) among four input signals

260 D. Suzuki and M. Saeki

Table 2. Factors of the leakage caused by the difference of delay time

factor classification difference to cause the leakage
diff(a,ā) incidental place-and-route
diff(b,̄b) incidental place-and-route
diff(a,b) inevitable logic steps

(+ incidental) (+ place-and-route)
diff(ā,̄b) inevitable logic steps

(+ incidental) (+ place-and-route)

of WDDL AND gate of Figure 1 [8]. We explain the propriety of this assump-
tion below. Since the basic cryptographic components including the S-box as a
representative generally have their randomness, the logical formula consists of
various terms. Unless the special design is made as described in Ref. [12], the
input signals at the gates have the different number of logic steps and are easy
to cause differences in the delay time. On the contrary, since the number of gates
connected to each complementary output of WDDL is equal as described above,
the difference of place-and-route is predominant over a difference in the delay
time between a and ā (or b and b̄). In fact, it is appropriate to realize that a
difference in the delay time between a and b (or ā and b̄) occurs necessarily on
the normal design of logic circuit. From the consideration above, it can be said
that the leakage caused by the difference of delay time includes the inevitable
leakage that occurs depending on the difference of the logical formula together
with the incidental leakage that occurs depending on the place-and-route. Table
2 summarizes the relation of the leakage factors that correspond to the difference
of delay time between each input signal (diff(): indicates difference of delay time
between each argument signal).

A main factor of incidental leakage is the automatization of the place-and-
route that is generally carried out in the VLSI design at present. Therefore, in-
cidental leakage can be likely to improve with the place-and-route in the manual
operation or the semi-automatic operation using the special constraints. Actu-
ally, Tiri et al. and Guilley et al. proposed “Fat Wire” [7] and ”Backend Dupli-
cation” [11], respectively as a countermeasure in the place-and-route to improve
the DPA-resistance.

On the other hand, there is no study of a countermeasure against the in-
evitable leakage in the dual-rail circuit so far as the authors know. The S-box
design method for low power consumption proposed by Morioka et al. is recom-
mended as one technique to reduce inevitable leakage [12]. In the circuit design,
it generally needs high effort to adjust the delay time between the input signals
at each gate.

4 Security Evaluation of MDPL

As for the main factors of leakage described in Section 3.1, we here evaluate the
effectiveness of MDPL. As stated in Section 2.2, MDPL can improve in principle

Security Evaluation of DPA Countermeasures 261

the leakage caused by the difference of loading capacitance in F1 of Section 3.1.
Therefore, we focus the leakage caused by the difference of delay time in F2 of
Section 3.1.

When examining the difference of delay time, it is first necessary to inquire
the conditions of delay time between the input signals. As described in Section
3.2, differences of delay time between independent signals (e.g. am and bm) are
more likely to occur than those between complementary signals (e.g. am and ām)
in the design of dual-rail circuit. In the case of the MDPL gate, we supposed
that there are differences in the delay time between the signals am, bm and m
(or ām, b̄m and m̄). From the above matters, when assuming the single input
change model and if delay(am) < delay(bm) (delay(): indicates the delay of the
signal in parentheses) is satisfied, the following three delay condition (C1 - C3)
cover the whole timing relations of inputs signals in the MDPL gate.

C1: delay(am) < delay(bm) < delay(m)
C2: delay(am) < delay(m) < delay(bm)
C3: delay(m) < delay(am) < delay(bm)

In the case of delay(am) > delay(bm), the equivalent conditions C1 - C3 can be
obtained by changing the DPA selection function, so that it is not necessary to
distinguish the delay conditions between the data signals (am and bm).

Table 3 shows the delay conditions and the timing of transition on evaluation
and pre-charge phase in the MDPL AND gate. In addition, Table 3 indicates the

Table 3. Timing of transition in an MDPL AND gate

Delay condition: C1
∆am → ∆bm → ∆m

(∆ām → ∆b̄m → ∆m̄)
phase evaluation phase pre-charge phase
a b m ∆qm timing ∆q̄m timing ∆qm timing ∆q̄m timing
0 0 0 0 - 1 ∆b̄m 0 - 1 ∆b̄m
0 0 1 1 ∆bm 0 - 1 ∆bm 0 -
0 1 0 0 - 1 ∆m̄ 0 - 1 ∆ām
0 1 1 1 ∆m 0 - 1 ∆am 0 -
1 0 0 0 - 1 ∆m̄ 0 - 1 ∆b̄m
1 0 1 1 ∆m 0 - 1 ∆bm 0 -
1 1 0 1 ∆bm 0 - 1 ∆am 0 -
1 1 1 0 - 1 ∆b̄m 0 - 1 ∆ām

Delay condition: C2
∆am → ∆m → ∆bm

(∆ām → ∆m̄ → ∆b̄m)
phase evaluation phase pre-charge phase
a b m ∆qm timing ∆q̄m timing ∆qm timing ∆q̄m timing
0 0 0 0 - 1 ∆m̄ 0 - 1 ∆m̄
0 0 1 1 ∆m 0 - 1 ∆m 0 -
0 1 0 0 - 1 ∆m̄ 0 - 1 ∆ām
0 1 1 1 ∆m 0 - 1 ∆am 0 -
1 0 0 0 - 1 ∆b̄m 0 - 1 ∆m̄
1 0 1 1 ∆bm 0 - 1 ∆m 0 -
1 1 0 1 ∆bm 0 - 1 ∆am 0 -
1 1 1 0 - 1 ∆b̄m 0 - 1 ∆ām

Delay condition: C3
∆m → ∆am → ∆bm

(∆m̄ → ∆ām → ∆b̄m)
phase evaluation phase pre-charge phase
a b m ∆qm timing ∆q̄m timing ∆qm timing ∆q̄m timing
0 0 0 0 - 1 ∆ām 0 - 1 ∆ām
0 0 1 1 ∆am 0 - 1 ∆am 0 -
0 1 0 0 - 1 ∆ām 0 - 1 ∆m̄
0 1 1 1 ∆am 0 - 1 ∆m 0 -
1 0 0 0 - 1 ∆b̄m 0 - 1 ∆m̄
1 0 1 1 ∆bm 0 - 1 ∆m 0 -
1 1 0 1 ∆bm 0 - 1 ∆am 0 -
1 1 1 0 - 1 ∆b̄m 0 - 1 ∆ām

262 D. Suzuki and M. Saeki

values (a, b, m) that bring ∆qm (∆q̄m) = 1 under each delay condition and the
transition of the input signal which brings the output transition. For example,
when the values (a, b, m) is set (0, 0, 1) on evaluation phase under the delay
condition C1, the transition of the output signal qm (that is, ∆qm) occurs at a
time when the transition of the input signal bm (that is, ∆bm) occurs.

Next, we evaluate the DPA-resistance of the MDPL AND gate from Table 3.
Here, the DPA selection function is a or b. The differential waveform (T1−0) that
the average power waveform (T0) with the selection function “0” is subtracted
from the average power waveform (T1) with the selection function “1” is regarded
as the DPA trace. Table 4 shows the evaluation result of the DPA-resistance
of the MDPL AND gate. And also, Table 4 indicates the existence of leakage
according to delay conditions and the spike polarity on the DPA trace T1−0. As
an example, we explain DPA-resistance on the evaluation phase under the delay
condition C2. First, it is found that the transition ∆qm (∆q̄m) occurs together
with the transitions ∆m (∆m̄) and ∆bm (∆b̄m) on the evaluation phase under
the delay condition C2 in Table 3. Here, when the DPA selection function is a,
the output transition with a = 1 is sure to occur with the transition ∆bm (∆b̄m),
but the output transition with a = 0 occurs with the transitions ∆m (∆m̄). Note
that the transition ∆m (∆m̄) is performed prior to ∆bm (∆b̄m) according to the
delay conditions. Therefore, it is predictable that the average power waveform
T0 will show the peak value of power consumption prior to T1. We here consider
that detectable power waveform in an actual measurement shows the power
consumption that some capacitance influence, and does not show pure power
consumption at each gate. More detailed consideration is presented in Appendix
A. From the abovementioned contents, the valley-type spike appears on the
differential waveform T1−0.

As shown in Table 4, it should be noted that the leakage occurs under any
delay conditions. In short, there is no secure delay condition in MDPL on the
single input change model. Therefore, in order to implement the secure logic
circuits using MDPL gates, it is required to adjust differences in the delay time
between the input signals.

5 Experimental Results

In this section, we show experimental results of evaluating DPA-resistance of the
basic components of WDDL and MDPL implemented on FPGA. The measure-
ment of the power consumption is done by measuring the potential difference
between both ends of a 10 ohm resistance which is inserted between the power
source and a power supply pin of the FPGA. Table 5 shows the evaluation en-
vironment applied this time. This evaluation aims to inspect the effectiveness of
MDPL for the leakage caused by the difference of loading capacitance (see F1
in Section 3.1) and leakage caused by the difference of delay time described in
Section 4.

Security Evaluation of DPA Countermeasures 263

Table 4. DPA-resistance of an MDPL AND gate

Delay condition Phase Selection function Leakage Spike polarity
C1 evaluation a No -

b No -
pre-charge a No -

b Yes ↑
C2 evaluation a Yes ↓

b No -
pre-charge a No -

b Yes ↑
C3 evaluation a Yes ↓

b No -
pre-charge a No -

b No -

5.1 Implementation of Model Circuits for Evaluation

Figure 5 shows the architecture of a model circuit used for evaluation. In the cir-
cuits shown in Figure 5, we implement 32 AND operations by using each counter-
measure and supply the same input signals1. In order to evaluate only the power
consumption of each countermeasure, the model circuit is designed so that other
circuit parts should not operate while the countermeasure (MDPL/WDDL) part
operates. In addition, a pair of positive logic and negative logic (combinational
circuits for pre-charge, WDDL AND gates, MDPL AND gates and input/output
FF (Flip-Flop) circuits) in the countermeasures is integrated into two LUTs
(Look-Up Tables) and FFs in the Slice that are the basic components of Xilinx
FPGA. And, the random number for masking is generated by M-Sequence of
degree 89, which is created by the shift register installed in the FPGA. By using
above mentioned simple circuits, we experimented following two evaluations (E1
and E2):

E1: We use a variety of constraints in the place-and-route to the circuits of
WDDL and MDPL respectively and compare each DPA-resistance.

E2: To satisfy each delay conditions (C1 - C3), we insert the proper delay ele-
ment constructed of 4 LUTs connection in series after the pre-charge logic of
MDPL and compare the obtained DPA traces with evaluation results shown
as Table 4 in Section 4.

The evaluation E1 is to compare WDDL with MDPL in relation to the main
factor of leakage described in F1 of Section 3.1. The evaluation E2 is to inspect
the leakage caused by the difference of delay time in MDPL circuits shown in
Table 4.
1 This is to ease the measuring. In the case that only one AND operation is imple-

mented, the amount of the leakage becomes 1/32 and the number of samples to
obtain the same Signal-Noise ratio should become the square of 32 times.

264 D. Suzuki and M. Saeki

Table 5. Evaluation environment

Design environment
Language Verilog-HDL
Simulator NC-Verilog LDV5.1 QSR2
Logic synthesis Synplify Pro 8.1
Place and Route ISE 6.3.03i, IP update4

Measurement environment
Target FPGA XCV1000-6-BG560C
Oscilloscope Tektronix TDS 7104

am
am

PRNG

MDPL (WDDL)
AND gates FF

bm

bm

m m
prch

Pre-charge
Logics

32

32

32

32

1

1

FF

32

32

en en

FF
control

FF FF FF

Fig. 5. Architecture of model circuit for evaluation

5.2 DPA Traces of Model Circuits

First, we explain the result for the evaluation E1. Figure 6 shows the DPA trace
of the WDDL AND gates. The difference of constraints is location of LUTs and
Slices used for the complementary logic for the WDDL and MDPL AND gates 2.
As realized from Figure 6, the polarity and height of spike change in dependence
of the constraints. Figure 8 shows the DPA traces when the same constraints
in the place-and-route are used for the MDPL AND gates. It is found that the
spikes are difficult to recognize in Figure 8 by comparison with Figure 6. In other
words, this indicates that MDPL has effectiveness on reducing leakage caused in
dependence of the place-and-route.

Here, we consider each trace under the Constraint 1 in Figure 6 and Figure 8,
respectively. Figure 7 and Figure 9 show magnified views of DPA traces under
the Constraint 1. From Figure 6, Constraint 1 makes the complementary gates
balance more than other constraints. Nevertheless, we can confirm slight leakages
from the magnified views. Since these spikes have only narrow width, we guess
that these leakages occur due to slight differences of delay time.

From the abovementioned matters, in order to make cryptographic circuits
secure by using MDPL, we have to adopt the implementation method with
attention on the number of logic steps of every signal and differences in the delay
time between the signals, or the implementation method to adjust differences in
2 Each location is concretely specified by LOC and BEL command [13,14].

Security Evaluation of DPA Countermeasures 265

DPA trace
(Constraint 1)

DPA trace
(Constraint 2)

DPA trace
(Constraint 3)

Average Power
 (x 1/20)

Evaluation Phase Pre-Charge Phase

Voltage
(0.4mV/div)

Time (2.0ms/div) 250MHz sampling

Fig. 6. DPA traces of WDDL AND gates (Evaluation E1, 200,000 samples)

Time (2.0ms/div) 250MHz sampling

Voltage
(0.08mV/div)

Fig. 7. Magnified view of the DPA trace with Consraint 1 in Fig.6

the delay time between the input signals by use of the delay elements. Moreover,
if the slight leakages caused in Figure 8 become a problem, we also have to pay
attention to constraints of the place-and-route.

Next, we explain the result of evaluation E2. Figure 10 shows the DPA trace
of the MDPL AND gates corresponding to Table 4. From the content shown in
Figure 10, it is found that the existence and polarity of spikes to be caused in
the delay conditions are in good agreement with the content of Table 4. From
this fact, we can confirm the leakage caused by the difference of delay time on
the FPGA.

Here, we compare the height of spikes in Figure 8 and Figure 10. Since the
delay elements are not entered intentionally into the input signals on the im-
plementation for the evaluation E1, differences in the delay time between the
input signals mainly depends on the place-and-route. Therefore, there are slight
differences in the delay time between the input signals by comparison with the
implementation for the evaluation E2. In short, because there is only a slight
phase difference between the average power traces T0 and T1, the height of spikes
(leakage) is also slight in Figure 8. On the contrary, as shown in Figure 10, it

266 D. Suzuki and M. Saeki

DPA trace
(Constraint 1)

DPA trace
(Constraint 2)

DPA trace
(Constraint 3)

Average Power
 (x 1/20)

Evaluation Phase Pre-Charge Phase

Voltage
(0.4mV/div)

Time (2.0ms/div) 250MHz sampling

Fig. 8. DPA traces of the MDPL AND gates (Evaluation E1, 200,000 samples)

Time (2.0ms/div) 250MHz sampling

Voltage
(0.08mV/div)

Fig. 9. Magnified view of the DPA trace with Consraint 1 in Fig.8

is found that the easily visible leakage occurs on the implementation for the
evaluation E2 because there are large differences in the delay time between the
input signals.

6 Conclusion

In this paper, we classified the main factors of leakage in DPA countermeasures
using dual-rail circuit and especially evaluated the security of MDPL. As a result,
it was found that MDPL has effectiveness on reducing the leakage caused by the
difference of loading capacitance, but it makes the leakage occur as well as the
WDDL when there are differences in the delay time between the input signals. In
addition, experimental results using the FPGA showed that the more differences
in the delay time between the input signals increases, the more leakage volume
increases. Therefore, we expect that the DPA trace from the simulation has two
spikes with different polarity, respectively. On the other hand, we run the DPA
by measuring the voltage at both ends of the resistance connected outside of
FPGA in our experiment.

Security Evaluation of DPA Countermeasures 267

Evaluation Phase Pre-Charge Phase

<Delay Condition C1>

DPA selection function = a

DPA selection function = b

<Delay Condition C2>

<Delay Condition C3>

DPA selection function = a

DPA selection function = b

DPA selection function = a

DPA selection function = b

Average Power (x 1/20)

Voltage
(0.8mV/div)

Time (2.0ms/div)Time (2.0ms/div) 250MHz sampling

Fig. 10. DPA traces of the MDPL AND gates (Evaluation E2, 200,000 samples)

T1

leakage at each pair of
complementary logic gates

detectable leakage
on our measurement

undetectable leakage

T0

T1-0

Fig. 11. Hypothesis concerning detectable leakage : from a simulation (left); and from
our experiment (right)

The complicated logic circuits such as the cryptographic circuit generally
cause differences in the delay time between the input signals. For this reason,
the designer has to adjust the delay of signals with attention when designing the
combinational circuit in order to structure the secure circuit using WDDL or
MDPL. On the contrary, it needs some high-advanced complicated design at the
logic level to adjust such differences in the delay time between the input signals.
Moreover, if we assume an attacker who has high ability and can detect small

268 D. Suzuki and M. Saeki

spikes in Figure 8 which is caused by the differences in the delay time between
the input signal, it is very difficult to keep security of the cryptographic circuit
from the attacker.

When evaluating the DPA-resistance of the whole device including the cryp-
tographic circuit, the visibility of leakage mostly depends on the characteristics
of VLSI such as noise level, the evaluation environment, and the undetermined
elements such as the ability of attackers. One of the future subjects is the re-
search about how large differences in the delay time between the input signals
are to be allowed (or to be a problem) on the whole device.

References

1. P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” Crypto’99, LNCS
1666, pp. 388-397, Springer-Verlag, 1999.

2. E. Trichina, “Combinational Logic Design for AES SubByte Transformation on
Masked Data,” Cryptology ePrint Archive, 2003/236, 2003.

3. S. Mangard, T. Popp, and B. M. Gammel, “Side-Channel Leakage of Masked
CMOS Gates,” CT-RSA 2005, LNCS 3376, pp. 361-365, Springer-Verlag, 2005

4. S. Mangard, N. Pramstaller and E. Oswald, “Successfully Attacking Mased AES
Hardware Implementation,” CHES 2005, LNCS 3659, pp. 157-171, Springer-Verlag,
2005.

5. D. Suzuki, M. Saeki and T. Ichikawa, “Random Switching Logic: A Countermeasure
against DPA based on Transition Probability,” Cryptology ePrint Archive, Report
2004/346, 2004.

6. K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation,” In Proc. of Design Automation and
Test in Europe Conference, pp. 246-251, 2004.

7. K. Tiri and I. Verbauwhede, “Place and Route for Secure Stabdard Cell Design,”
CARDIS’04, pp.143-158, 2004.

8. D. Suzuki, M. Saeki, and T. Ichikawa, “DPA Lekage Models for CMOS Logic
Circuits,” CHES 2005, LNCS 3659, pp. 366-382, Springer-Verlag, 2005.

9. T. Popp and S. Mangard, “Masked Dual-Rail Pre-charge Logic : DPA-Resistance
Without Routing Constraints,” CHES 2005, LNCS 3659, pp. 172-186, Springer-
Verlag, 2005.

10. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low Power Digital CMOS
Design,” IEEE Journal of Solid State Circuits, Vol.27, N0.4. pp. 473-484,1992.

11. S. Guilley, P. Hoogvorst, Y. Mathieu, and R. Pacalet, “The “Backend Duplication”
Method,” CHES 2005, LNCS 3659, pp. 383-397, Springer-Verlag, 2005.

12. S. Morioka and A. Satoh, “An Optimized S-box Circuit Architecture for Low Power
AES Design,” CHES 2002, LNCS 2523, pp. 172-186, Springer-Verlag, 2002.

13. Xilinx, Inc., Data sheet “VirtexTM 2.5 V Field Programmable Gate Arrays,”
http://direct.xilinx.com/bvdocs/publications/ds003.pdf

14. Xilinx, Inc., Software Manuals “Constraints Guide,”
http://www.xilinx.com/support/sw manuals/xilinx6/download/cgd.zip

A Detectable Leakage in an Actual Measurement

In this paper, we discussed the leakage due to the difference of delay time between
the input signals of the complementary gates. We consider the difference between

Security Evaluation of DPA Countermeasures 269

the leakage that occurs essentially and the leakage that can be observed in our
experiment.

Figure 11 shows our qualitative hypothesis of the mechanism that the leakage
occurs due to the difference of delay time. Current at each complementary gate
that we can observe from the simulation (such as SPICE etc.) will show the
sharp trace that the current change completes in the short time as shown in the
left of Figure 11.

On the other hand, we run the DPA by measuring the voltage at both ends of
the resistance connected outside of FPGA in our experiment. In this case, each
trace shown in this paper has the feature shown in the right of Figure 11. First,
the current incereases rapidly in the vicinity of the clock edge. Afterwards, the
current decreases slowly until the next clock edges. Therefore, we can expect
that only the first spike sharpens, and the next spike smoothes. As a result,
we can recognize only the first spike from the DPA trace. One of the causes of
different results from simulation and actual measurement is various capacitance
of FPGA and measuring instruments.

Instruction Set Extensions for Efficient AES
Implementation on 32-bit Processors

Stefan Tillich and Johann Großschädl

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich, Johann.Groszschaedl}@iaik.tugraz.at

Abstract. Secure communication over public networks like the Internet requires
the use of cryptographic algorithms as basic building blocks. Most cryptographic
workloads pose a considerable burden on devices like PDAs, cell phones, and
sensor nodes, which are limited in processing power, memory and energy. In
this paper we present an approach to increase the efficiency of 32-bit processors
for handling symmetric cryptographic algorithms with the help of instruction set
extensions. We propose a number of custom instructions to support the Advanced
Encryption Standard (AES). Using the SPARC V8-compatible Leon2 embedded
processor, we evaluate the effects of the extensions on performance and code size
of AES, as well as on silicon area. With a moderate increase in silicon area, AES
performance can be improved by a factor of nearly 10, while code size is reduced
significantly and implementation flexibility is retained. We also show that our
approach is very beneficial for implementation in superscalar processors and
that it can compete with the performance of previously proposed cryptographic
processors and instruction set extensions.

Keywords: Advanced Encryption Standard, instruction set extensions, embed-
ded RISC processor, SPARC V8 architecture, efficient implementation.

1 Introduction

The increasing need for secure communication and data handling requires more and
more embedded systems to execute cryptographic algorithms. However, this task can
impose a heavy burden on constrained devices like PDAs, cell phones, and sensor nodes
due to their limited resources in terms of computing power, memory, and energy. The
traditional approach to alleviate the computational cost of cryptographic primitives is to
offload this workload from the host processor to a dedicated cryptographic coprocessor.
Optimized hardware implementations of cryptographic primitives can be several orders
of magnitude faster than software implementations on general-purpose processors. On
the other hand, hardware solutions have drawbacks as well: For instance, coprocessors
often lack the flexibility to support different key sizes, modes of operation, and other
parameters of a cryptographic algorithm. Moreover, the integration of a coprocessor can
entail a considerable increase in silicon area, which in turn raises production cost.

An alternative to coprocessors is the integration of custom instructions into general-
purpose processors with the goal to better support cryptographic computations. The

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 270–284, 2006.
c© International Association for Cryptologic Research 2006

Instruction Set Extensions for Efficient AES Implementation 271

concept of instruction set extensions has been employed very successfully in the do-
main of multimedia and digital signal processing. Recent research has also shown the
benefits of instruction set extensions for public-key cryptography. In this paper we
examine support for symmetric cryptography and present our research on instruction
set extensions for one of the most important symmetric cryptographic algorithms—the
Advanced Encryption Standard (AES) [13].

From a system’s perspective, the main aspect to consider is how much faster an
application completes execution, but not the “raw” performance figures of a hardware
accelerator. Recent work which examined the addition of an AES coprocessor to a
SPARC V8 embedded processor has shown that the benefits of a hardware accelerator
can be significantly mitigated through communication overhead, i.e. the transfer of data
to and from the coprocessor [8,16]. For instance, the AES coprocessor used in [8] is
able to encrypt a 128-bit block of data in 11 clock cycles, but loading the data and key
into the coprocessor, performing the AES encryption itself, and returning the result back
to the software routine takes 704 cycles altogether. In light of this result we argue that
tightly-coupled custom instructions can deliver superior performance at lower hardware
cost and with increased implementation flexibility. In any case, we demonstrate in this
paper that instruction set extensions for symmetric cryptography can be an attractive
design option for embedded systems which have a need for security.

The rest of the paper is organized as follows. In Section 2 we discuss some ap-
proaches for the efficient implementation of cryptographic primitives on a general-
purpose processor with emphasis on AES. Section 3 lists previous publications which
deal with architectural support for AES. In Section 4 we describe our approach in gen-
eral and give details for each custom instruction. Impact on silicon area of the extensions
is estimated in Section 5. In Section 6 we give a detailed analysis of performance and
code size of our AES implementations using different sets of custom instructions and
compare our results to related work. Conclusions are drawn in Section 7.

2 Efficient Implementation of Cryptography on General-Purpose
Processors

Software implementations of cryptographic primitives generally offer the highest de-
gree of flexibility, but may yield poor performance in embedded systems which are
limited in terms of processing power, memory, or available energy. The straightforward
way to overcome the inefficiencies of software solutions is the integration of a copro-
cessor to relieve the main processor from the cryptographic workload. Cryptographic
hardware is typically much faster and more energy efficient than software running on
an embedded processor. Depending on the application, a coprocessor may also help
to reduce the memory footprint of a cryptographic algorithm. A third implementation
option is the addition of custom instructions to the processor. Instruction set extensions
for cryptography can lead to a considerable reduction of processing time, which in turn
saves energy. Memory requirements may also be reduced with custom instructions.

Support for secret-key algorithms on programmable processors has mainly been
investigated in the context of application-specific processors (ASIPs) for cryptographic
workloads. The extension of general-purpose processors to better support secret-key

272 S. Tillich and J. Großschädl

algorithms has received relatively little attention. This paper is solely focussed at the
AES algorithm and we will discuss previous work dealing with AES in Section 3.

AES software implementations on 32-bit processors always require memory lookup
tables of a certain size. T-lookup implementations require up to three tables, where
each size can be either 1 KB or 4 KB. The T-lookup approach circumvents the costly
calculation of the MixColumns or InvMixColumns transformation within a normal AES
round with the first table. The second table can be used for the last round, which does
not include the MixColumns and InvMixColumns transformation. The third table is
useful for speeding up the key expansion for AES decryption. The T-lookup approach
increases code size and its performance highly depends on the size and organization
of the cache subsystem. The alternative to T-lookup is to calculate all AES round
transformations on the processor. The substitution using the S-box remains the only
operation too inefficient to calculate and which requires a 256-byte lookup table for
encryption and decryption, respectively. Such AES implementations—which we will
denote as calculating implementations in the rest of this paper—can pack either one
State column or one State row into a 32-bit register. The latter approach, which has been
proposed by Bertoni et al. [1], allows for a more efficient realization of the MixColumns
and especially of the InvMixColumns transformation at the cost of additional transpo-
sitions of the AES State and a slightly more complex key expansion function. In the
following, implementations according to the approach of Bertoni et al. will be denoted
as row-oriented, while conventional calculating implementations will be referred to as
column-oriented.

3 Previous Work on Extensions for AES

This section outlines previous work on the support of AES in application-specific and
general-purpose processors. A comparison of the respective performance figures with
those of our approach is given in Table 4 in Section 6.1.

Burke et al. have developed custom instructions for several AES candidates [3].
They have proposed a 16-bit modular multiplication, bit-permutation support, several
rotate instructions, and an instruction to facilitate address generation for memory table
lookups. In a follow-up work, Wu et al. have designed CryptoManiac, a cryptographic
coprocessor. CryptoManiac is a Very Long Instruction Word (VLIW) processor able to
execute up to four instruction per cycle [20]. Additionally, short latency instructions
(e.g. bitwise logical and arithmetic instructions) can be combined to be executed in a
single cycle. To support this feature, instructions have up to three source operands.

The Cryptonite crypto-processor is a VLIW architecture with two 64-bit datapaths
[14]. It features support for AES through a set of special instructions for performing
byte-permutation, rotation and xor operations. The main part of AES is done with help
of parallel table lookup from dedicated memories.

Fiskiran and Lee have investigated the inclusion of hardware lookup tables as a
measure to accelerate different symmetric ciphers including AES [5]. They propose
inclusion of on-chip scratchpad memory to support parallel table lookup. Examined are
datapath widths of 32, 64 and 128 bit with 4, 8 and 16 tables, respectively, whereby
each table contains 256 32-bit entries (i.e. is 1 KB in size).

Instruction Set Extensions for Efficient AES Implementation 273

Extensions for PLX—a general-purpose RISC architecture—have been proposed by
Irwin and Page [9]. In their work they also examined the usage of the multimedia
extensions of a PLX processor with a 128-bit datapath in order to implement AES with
a minimal number of memory accesses. However, the presented concepts can hardly be
adapted to 32-bit architectures.

Automatic generation of instruction set extensions for cryptographic algorithms (in-
cluding AES) has been investigated by Ravi et al. using the 32-bit Xtensa proces-
sor from Tensilica [15]. Nadehara et al. proposed a single custom instruction which
calculates most of the AES round transformations for a single State byte [12]. Their
approach maps the round lookup (T lookup) of fast AES software implementations on
32-bit platforms into a dedicated functional unit. Bertoni et al. have proposed several
instructions for AES and have recently published implementation details and estimated
performance figures for an Intel StrongARM processor [2].

Schaumont et al. [16] and Hodjat et al. [8] have investigated the addition of an
AES coprocessor to the 32-bit Leon2 embedded processor. Performance for a memory-
mapped approach and a connection through a dedicated coprocessor interface (CPI) has
been reported. An AES operation was one to two orders of magnitude slower in relation
to the mere time required by the coprocessor.

In our previous work we have investigated the use of instruction set extensions for
public-key cryptography for accelerating AES implementations [17]. We have also
focussed on minimizing the memory requirements of AES software implementations
with a single low-cost custom instruction [18]. The work presented in this paper deals
with different custom instructions for AES which can be implemented independently or
in combination, thereby enabling different trade-offs between performance and silicon
area. For example, the focus can be set on low cost (for a moderate speed-up) or high
performance (which is, of course, more costly in terms of area).

4 Proposed Instruction Set Extensions for AES

We designed several custom instructions to increase the performance of AES software
implementations. These instructions have been developed for 32-bit processors with
a RISC-like instruction format with two input operands and one output operand. All
important 32-bit RISC architectures, such as SPARC, MIPS and ARM, adhere to this
three-operand format. Our instructions do not require special architectural features like
dedicated look-up tables or non-standard register files, which makes their integration
into general-purpose RISC architectures relatively easy. An integration into extensible
processors like Tensilica’s Xtensa or the ARC 600/700 family of cores should also be
straightforward. Furthermore, all of our instructions have been designed with the goal
to keep the critical path of a concrete hardware implementation as short as possible.

The custom instructions can be categorized as byte-oriented or word-oriented, de-
pending on whether a single byte or four bytes are processed at a time. All instructions
calculate parts of AES round transformations, yielding either one or four transformed
bytes as result. The targeted AES round transformations are SubBytes, ShiftRows, and
MixColumns, as well as their respective inverses. Moreover, the custom instructions
also support the SubWord-RotWord operation of the key expansion.

274 S. Tillich and J. Großschädl

enc/dec

source byte

rs1 imm

destination byte

rd

S-box/
inv. S-box

Fig. 1. Functionality of the sbox instruction

enc/dec

destination byte

rs1 imm

destination byte

rd

MixColumns/
InvMixColumns

multiplier

Fig. 2. Functionality of the mixcol instruction

4.1 Byte-Oriented AES Extensions (sbox, mixcol)

The byte-oriented instructions have fixed types of source operands. The first source
operand is a register, while the second source operand is always an immediate value.
This immediate value is used to configure the operation of the instruction. The single-
byte result is written to a byte of the destination register, while the other three bytes
retain their previous value. As the second source operand is an immediate value, the
second read port of the register file is not occupied and can be used to load the value
of the destination register. In this way, the old value from the destination register can
be combined with the single-byte result, producing the complete 32-bit result of the
instruction, which is written back to the register file.

The sbox instruction has been proposed in [17] to reduce the memory requirements
of AES implementations. Its functionality is depicted in Figure 1. The sbox instruction
transforms one byte of the source register (rs1) with the AES S-box or inverse S-box and
writes the resulting byte into the destination register (rd). The immediate value (imm)
is used to select the source byte from the source register, the transformation (S-box
or inverse S-box) and the destination byte. With this instruction, both the SubBytes and
the ShiftRows transformation can be implemented very efficiently. The sbox instruction
also accelerates the SubWord-RotWord operation in the AES key expansion.

The mixcol instruction performs a part of the MixColumns or InvMixColumns
transformation. Figure 2 shows the functionality of this instruction. The mixcol in-
struction takes the value in the source register (rs1) as input column and produces a
single byte of the resulting column after the MixColumns operation. In this case, the
immediate value sets the operation (MixColumns or InvMixColumns) as well as the
destination byte. The complete resulting column can, therefore, be acquired with four
executions of the mixcol instruction. As MixColumns and especially InvMixColumns
are relatively costly in software, this instruction can lead to considerable speedups.

4.2 Plain Word-Oriented AES Extensions (mixcol4, sbox4)

The word-oriented instructions always produce a 32-bit result which is stored in the
destination register. The trivial approach is to quadruple the functionality of the byte-
oriented extensions. As our performance evaluation in Section 6 shows, this approach

Instruction Set Extensions for Efficient AES Implementation 275

enc/dec

rs1 imm

rotation distance

rd

4 S-boxes/
inv. S-boxes

byte rotator (>>)

Fig. 3. Functionality of the sbox4 instruction

enc/dec

rs1 imm

rd

4 MixColumns/
InvMixColumns

multipliers

Fig. 4. Functionality of the mixcol4 instruction

yields sub-optimal results. However, a slight modification introduced in Section 4.3 can
deliver very satisfactory support for AES.

The sbox4 instruction simply substitutes all four bytes of the first source register and
places them into the destination register. A byte-wise rotation can optionally be per-
formed on the result. The immediate value selects whether S-box or inverse S-box are
used for substitution and sets the rotation distance for the result. The optional rotation is
useful for row-oriented AES implementations, where ShiftRows can be performed with
no additional cost. Moreover, the SubWord-RotWord operation of the key expansion is
supported with the sbox4 instruction. The operation of sbox4 is shown in Figure 3.

The mixcol4 instruction calculates all four result bytes of the MixColumns or Inv-
MixColumns operations. As illustrated in Figure 4, the input column is taken from
the first source register while the immediate value as second operand just selects the
operation (encryption or decryption).

4.3 Advanced Word-Oriented AES Extensions with Implicit ShiftRows
(sbox4s/isbox4s/sbox4r, mixcol4s/imixcol4s)

The major drawback of the sbox4 and mixcol4 instructions is that they cannot be
combined in a manner to allow an efficient AES implementation. The problem lies with
the ShiftRows transformation, which has now become the performance bottleneck.

In a column-oriented implementation, SubBytes and MixColumns would be done
with the respective custom instruction, while ShiftRows must be done separately. As the
State columns are packed into registers, ShiftRows requires a number of shift and log-
ical operations (about 44 instructions). Another option would be to hold the State rows
in registers to perform SubBytes and ShiftRows with the sbox4 instruction, to map the
State columns into registers prior to MixColumns with mixcol4 and to map then back
to the State rows. However, each mapping would require similar effort as performing
ShiftRows. With two mappings required per round, this approach would be even more
inefficient than the column-oriented implementation with separate ShiftRows.

Luckily, the solution to this problem is quite simple. Assuming a column-oriented
implementation, ShiftRows can be done implicitly with slightly modified sbox4 and
mixcol4 instructions. In order to achieve this, the modified versions have two source
register operands. From each source register, two bytes are extracted and assembled to

276 S. Tillich and J. Großschädl

enc/dec

rs2 instr. opcode

rd

4 S-boxes/
inv. S-boxes

rs1

rotate left 8 (opt.)
rot/no rot

Fig. 5. Functionality of the sbox4s, isbox4s
and sbox4r instructions

enc/dec

rs2 instr. opcode

rd

rs1

4 MixColumns/
InvMixColumns

multipliers

Fig. 6. Functionality of the mixcol4s and
imixcol4s instructions

a new intermediate State column. The respective AES transformation is performed on
this intermediate column and the result is stored in the destination register. By selecting
the registers with the appropriate State columns as first and second source operands
it is possible to perform the ShiftRows transformation implicitly. The same is true for
InvShiftRows in decryption when the inverse equivalent cipher structure is used, i.e.
InvSubBytes, InvShiftRows, and InvMixColumns are subsequent transformations.

As the second operand must now be a register, no intermediate value is available
to configure the operation of the instruction. Therefore, separate instructions are used
for S-box and inverse S-box substitution as well as MixColumns and InvMixColumns.
The modified instructions are denoted with an “s” appended to the original mnemonic
(sbox4s, mixcol4s). To indicate the mnemonic for the respective inverse operation, an
“i” is prepended (isbox4s, imixcol4s).

Figure 5 shows the functionality of the sbox4s and isbox4s instructions. The first
(i.e. most significant) and third byte of the first source register and the second and fourth
(i.e. least significant) byte from the second source register are substituted using the AES
S-box or inverse S-box. The optional rotation to the left by one byte is not used for these
two instructions. The four S-boxes are used to realize a third instruction sbox4r, which
performs S-box substitution followed by rotation to the left by 8 bits. This instruction
implements the SubWord-RotWord operation of the AES key expansion. The byte
rotation by a selectable distance of the sbox4 instruction is not implemented as this
functionality is not useful for column-oriented AES implementations.

The two instructions mixcol4s and imixcol4s perform MixColumns and InvMix-
Columns, respectively. The functionality of these instructions is depicted in Figure 6.
The input column is assembled from the two most significant bytes of the first source
register and the two least significant bytes of the second source registers. Note that an
AES State column contained in a single register can be transformed by indicating the
register as both first and second source operand.

The selection of bytes from the two source registers of the sbox4s/isbox4s and
mixcol4s/imixcol4s instructions allows to perform the ShiftRows and InvShiftRows
transformation implicitly in the sequence of SubBytes, ShiftRows, and MixColumns in
AES encryption and InvSubBytes, InvShiftRows, and InvMixColumns in AES
decryption (using the equivalent inverse cipher structure).

Instruction Set Extensions for Efficient AES Implementation 277

Table 1. Area and delay of functional units for the proposed extensions as well as of the extended
integer unit

Area Delay
Functional unit/Component µ2 Gate equiv. Norm. ns
S-box (Canright) [4] 3,362.69 650 0.05 2.21
S-box (HW LUT) 15,709.25 3,033 0.23 0.64
MixColumns multiplier [19] 2,248.13 435 0.03 0.51
IU without extensions 69,144.19 13,349 1.00 3.93
IU with sbox 73,417.54 14,174 1.06 4.00
IU with sbox4 77,849.86 15,029 1.13 4.00
IU with mixcol 71,865.79 13,874 1.04 3.90
IU with mixcol4 72,372.10 13,972 1.05 3.98
IU with sbox & mixcol 71,753.47 13,853 1.04 4.00
IU with sbox & mixcol4 75,536.06 14,583 1.09 4.00
IU with sbox4s & mixcol4s 84,794.69 16,370 1.23 4.00

5 Hardware Cost

We have integrated the instructions proposed in Section 4 into the SPARC V8-compat-
ible Leon2 processor, which is freely available from Gaisler Research [6]. To estimate
the cost for the additional hardware, we synthesized the new functional units and the
complete Leon2 integer unit (IU)—i.e. the 5-stage processor pipeline—with the AES
extensions using a UMC 0.13 µm standard-cell library. We used all viable combinations
of custom instructions and have evaluated their performance in Section 6.

For the S-box extensions we have synthesized a single hardware S-box using two
different approaches: The design of Canright, which calculates the S-box in hardware
[4] and a hardware lookup table synthesized as an array of logic. The MixColumns
multiplier follows the approach by Wolkerstorfer [19] and produces a single byte of the
resulting column. For synthesis of the integer unit we have chosen a target delay for
the critical path of 4 ns, which conforms to a maximal clock frequency of 250 MHz.
These synthesis results include the complete area overhead of the extensions, e.g. new
functional units, decoding of additional opcodes. The results are given in Table 1. Note
that sbox4s indicates the three instructions sbox4s, isbox4s and sbox4r and that
mixcol4s stands for the instructions mixcol4s and imixcol4s.

The S-box of Canright is about one fifth the size of the synthesized lookup table, but
is also considerably slower. The MixColumns multiplier requires little area and has a
shorter critical path than the S-boxes. The results in Table 1 for the integer unit use the
approach of Canright [4] for S-box extensions. Area overhead is calculated in relation
to an integer unit without extensions and ranges between a factor of 1.04 and 1.23.

We used the minimal configuration (no hardware multiplier and divider, no FPU,
no Ethernet MAC, no PCI controller, no SDRAM controller, no Debug Support Unit),
where the IU accounts for less than half of the area of the Leon2 processor (excluding
register file and cache memories). The size of the register file and caches is configurable
and depends heavily on the particular RAM implementation. For the largest extensions

278 S. Tillich and J. Großschädl

(sbox4s & mixcol4s), the area overhead will therefore be maximally half of the IU
overhead (which is a factor of about 1.12), without taking register file or cache memory
into consideration. In practice, these units will require a large portion of the total area,
so that the overall overhead factor for the area will be much lower.

6 Performance and Code Size

We have implemented AES using different combinations of the proposed custom in-
structions on the modified Leon2. In total, we examined seven different sets of AES
extensions, where one of these sets (just the sbox instruction) has already been investi-
gated in [18]. For comparison, the performance of AES implementations using T lookup
has also been determined on the same platform. Bitsliced implementations of AES are
not expected to be faster than T lookup [10] and have therefore not been considered in
this evaluation. Both AES encryption and decryption with precomputed key schedule
as well as with on-the-fly key expansion have been examined. A pure-software AES
implementation has been used as baseline implementation. It uses no extensions and
calculates all AES round transformations except SubBytes. For all implementations
the number of clock cycles per block encryption/decryption and code size are given.
Moreover, the speedup as well as relative change of code size in comparison to the
baseline implementation are cited. For AES implementations with precomputed key
schedule, the performance of the key expansion is also given.

The Leon2 has been implemented on a GR-PCI-XC2V FPGA board with a cache
size of 16 KB for both instruction and data cache. The number of cycles has been
obtained with the help of a built-in cycle counter of the modified Leon2. For the timing
measurements we have used the code from Gladman’s AES implementation [7], which
times the execution of 9 subsequent operations and of a single AES operation. The time
for one operation is determined as the difference of these measurements divided by 8.
The code size encompasses all functions and memory constants required to perform
the respective AES operation. This includes the encryption/decryption function, the
key expansion function (if required), and necessary lookup tables. The used custom
instructions are indicated in the first column of each table. As before, sbox4s stands for
sbox4s, isbox4s and sbox4r; mixcol4s stands for mixcol4s and imixcol4s.

When a set of extensions is useable for both column-oriented and row-oriented
AES implementations, both of these options have been examined and the faster op-
tion cited in the tables. Most AES implementations are written in C and use inline
assembly to make use of the custom instructions. Implementations marked with ASM
are completely written in assembly. For the implementation which uses the sbox4s and
mixcol4s instructions, an assembly-optimized version with unrolled loops has also
been tested (marked with unrolled). For each T-lookup implementation, the size of the
tables is indicated. The first number indicates the table size for the round lookup, the
second number (if present) is the table size for the last round. For AES decryption,
the third number (if present) indicates the size of the table used for the key expansion
function.

Table 2 summarizes the performance and code size for AES-128 encryption with
a precomputed key schedule. Table 5 in Appendix A gives the respective figures for

Instruction Set Extensions for Efficient AES Implementation 279

Table 2. AES-128 encryption, precomputed key schedule: Performance and code size

Key exp. Encr. perf. Code size
Implementation Cycles Cycles Speedup Bytes Rel. change
No extensions (pure SW) 739 1,637 1.00 2,168 0.0%
sbox 647 1,140 1.44 1,464 -32.5%
sbox4 (C) 739 1,020 1.60 1,656 -23.6%
sbox4 (ASM) 739 718 2.28 1,520 -29.9%
mixcol 498 1,047 1.56 1,262 -41.8%
mixcol4 498 939 1.74 1,224 -43.5%
sbox & mixcol 346 566 2.89 612 -71.8%
sbox & mixcol4 (C) 346 458 3.57 564 -74.0%
sbox & mixcol4 (ASM) 346 337 4.86 480 -77.9%
sbox4s & mixcol4s (C) 316 458 3.57 568 -73.8%
sbox4s & mixcol4s (ASM) 316 219 7.47 412 -81.0%
sbox4s & mixcol4s, unrolled 316 196 8.35 896 -58.7%
T lookup (Gladman), 1 KB 436 1,585 1.03 9,956 +359.2%
T lookup (Gladman), 4 KB 436 1,097 1.49 10,900 +402.8%

decryption. For the proposed extensions, speedups of up to 8.35 for encryption and
9.97 for decryption are achieved. With the fastest extensions, AES-128 encryption and
decryption of a single block can be done in 196 clock cycles. The code size of these
implementations is always reduced, whereby the savings are more significant for the
MixColumns extensions than for the S-box extensions. The T-lookup implementations
from Brian Gladman have been used for comparison [7]. There the speedup is up to 1.5
for encryption and 1.78 for decryption at the cost of quite significant increases in code
size.

The results for AES-128 encryption with on-the-fly key expansion are given in Table
3. For the respective figures for decryption refer to Table 6 in Appendix A. All decryp-
tion implementations are supplied with the last round key. For encryption, speedups up
to 9.91 are achieved while the highest decryption speedup is 9.29. The fastest extensions
allow for encryption in 226 cycles and decryption in 262 cycles. Note that decryption
is slightly slower as it uses the inverse equivalent cipher structure, which requires a
more complex key expansion with additional InvMixColumns transformations. Some
extensions allow quite significant reductions of code size. Implementations which make
use of S-box extensions require no data memory accesses except for the loading of the
input block and key and the storing of the output block. T-lookup implementations for
encryption have speedups up to 1.5. Decryption functions with T lookup are highly
inefficient due to the more complex key expansion.

In order to get an idea of the worst-case execution time (WCET), we have also
measured a single AES-128 encryption (rolled loops) with flushed data and instruction
caches. Under these unfavorable conditions, encryption requires 565 cycles for a pre-
computed key schedule and 420 cycles for on-the-fly key expansion. Any subsequent
encryption requires only little more than the number of cycles given in Tables 2 and
3. For unrolled loops, the first encryption naturally gets more costly with 761 cycles
(precomputed) and 595 cycles (on-the-fly).

280 S. Tillich and J. Großschädl

Table 3. AES-128 encryption, on-the-fly key expansion: Performance and code size

Encr. perf. Code size
Implementation Cycles Speedup Bytes Rel. change
No extensions (pure SW) 2,239 1.00 1,636 0.0%
sbox 1,595 1.40 952 -41.8%
sbox4 1,618 1.38 1,696 -3.7%
mixcol 1,294 1.73 1,260 -23.0%
mixcol4 1,186 1.89 1,212 -25.9%
sbox & mixcol (C) 747 3.00 580 -64.6%
sbox & mixcol (ASM) 505 4.43 396 -75.8%
sbox & mixcol4 (C) 639 3.50 532 -67.5%
sbox & mixcol4 (ASM) 397 5.64 348 -78.7%
sbox4s & mixcol4s (C) 616 3.63 528 -67.7%
sbox4s & mixcol4s (ASM) 255 8.78 260 -84.1%
sbox4s & mixcol4s, unrolled 226 9.91 852 -47.9%
T lookup, 1 KB 2,066 1.08 2,572 +57.2%
T lookup, 4 KB 1,497 1.50 5,420 +231.3%

6.1 Comparison with Related Work

Table 4 cites performance figures for most of the related work listed in Section 3. Note
that it is difficult to compare the different approaches in a concise manner as some
architectures have quite unique features. We categorized the different platforms by the
width of their datapath (DPW), the number of instructions which can be executed per
cycle (issue width, IW), and the number of data memory read ports (DMRP). Most
architectures include dedicated lookup tables which allow parallel lookup. We have
stated the number of lookup tables (LUTs), i.e. the number of possible parallel lookups,
as well as the size of one table in bytes. The last two columns of Table 4 give the number
of cycles required for encryption and decryption of an 128-bit block with AES-128.

The fastest implementation with our proposed extensions is contained in the table
with an indicated issue width of 1. However, all of the proposed extensions are also
beneficial for processors with larger issue width. For high-speed implementations we
have examined the S-box and MixColumns extensions with implicit ShiftRows for
their benefits on processors with an issue width of 4. This allows us to compare our
extensions to existing architectures with superscalar processing and/or a datapath width
above 32. Note that we have not implemented such a 4-way processor and that our
performance figures are estimations based on pseudocode. Our code includes loading
of input block and cipher key from memory, as well as storing of the output block back
to memory. For our estimations we have assumed cache hits (one cycle latency) for
all loaded values. This is an overhead of about 10% compared to AES encryption or
decryption without loading of the input block and storing of the output block.

Except for [15], [2] and our work, all architectures have either a datapath width
greater than 32, an issue width greater than 1 and/or include dedicated parallel lookup
tables. Our single-issue approach is nearly an order of magnitude faster than [15] and
it has about the same performance of the approach in [12], which uses a superscalar

Instruction Set Extensions for Efficient AES Implementation 281

Table 4. AES-128 performance comparison with related work

Platform Reference DPW IW/DMRP LUTs/Size Encr. Decr.
RISC-like Fiskiran [5] 128 1/1 16/1,024 32 32
PLX-128 Irwin [9] 128 1/1 0/0 609 n/a
Alpha (8W+) Burke [3] 64 8/4 4/1,024 99 n/a
Alpha (4W+) Burke [3] 64 4/2 4/1,024 164 n/a
Cryptonite Oliva [14] 64 2/1 16/256 71 83
RISC-like Fiskiran [5] 64 1/1 8/1,024 126 126
CryptoManiac Wu [20] 32 4/1 4/1,024 90 n/a
Leon2 + ISE This work 32 4/1 0/0 51 51
RISC-like Nadehara [12] 32 2/1 0/0 200 200
RISC-like Fiskiran [5] 32 1/1 4/1,024 315 315
Xtensa + ISE Ravi [15] 32 1/1 0/0 1,400 1,400
StrongARM Bertoni [2] 32 1/1 0/0 311 n/a
Leon2 + ISE This work 32 1/1 0/0 196 196
Leon2 + COP (CPI) Hodjat [8] 32 1/1 0/0 704 n/a
Leon2 + COP (MM) Hodjat [8] 32 1/1 0/0 1,228 n/a
Leon2 + COP (MM) Schaumont [16]a 32 1/1 0/0 1,494 n/a
Athlon 64 Matsui [10] 64 3/2 0/0 170 n/a
Pentium 4 Matsui [11] 32 3/1 0/0 251 n/a

a Performance calculated from time for encryption at 50 MHz.

processor with issue width 2. Despite the worse cited performance figures, the approach
of [2] should be faster than our approach, but at the cost of a severe increase of the
critical path and the need for non-standard parallel access to four processor registers.
The CryptoManiac [20] with an issue width of 4 and four dedicated lookup tables of
1 KB each has only half of the cycle count of our single-issue approach, and is slower
than our 4-way issue approach . Only the architecture of [5] with a 128-bit datapath and
16 dedicated lookup tables of 1 KB each and with a subsequent dedicated XOR-tree is
faster than our 4-way issue approach by a factor of about 1.6.

Table 4 also includes the results of a Leon2 with attached AES coprocessor (COP)
[8,16]. Both works have investigated a memory-mapped (MM) solution and Hodjat et
al. have also examined an approach with a dedicated coprocessor interface (CPI) [8].
These works demonstrate impressively that the mere speed of an accelerator is not the
important point to consider from a system’s perspective. Hodjat et al. state in [8] that
the AES encryption itself takes only 11 cycles, but the complete program with loading
the data and key, AES encryption, and returning the result back to the software routine
takes a total of 704 cycles. Our worst-case execution times with flushed caches for
precomputed key schedule (565 cycles with rolled loops, 761 cycles with unrolled
loops) and on-the-fly key expansion (420 cycles with rolled loops, 595 cycles with
unrolled loops) compare very well to the coprocessor performance from [8,16].

For comparison we have also specified the performance of the currently fastest AES
implementations for the Pentium 4 (Northwood core) [11] and the Athlon 64 proces-
sor [10]. A single-issue Leon2 processor with our extensions has an area of about
50k gates altogether and requires less cycles than the Pentium 4 (about 13.5M gates)
and can nearly reach the cycle count of the Athlon 64 (about 17M gates).

282 S. Tillich and J. Großschädl

6.2 A Note on Side-Channel Attacks

The investigation of side-channel attacks has not been in the main focus of the present
work. The extensions for the S-box remove the need for memory accesses for table
lookups and, therefore, completely prevent cache-based side-channel attacks. As data
is manipulated similarly as on a processor without extensions, susceptibility to other
side-channel attacks should not become higher when using the proposed extensions.

Possible side-channel countermeasures encompass all traditional options for mi-
croprocessors, e.g. use of secure logic styles, randomization, software masking. AES
implementations which employ additive masking can also make use of the proposed
extensions. Additive software masking can be directly used with all MixColumns ex-
tensions, as MixColumns is a linear transformation. The custom instructions for S-box
substitution cannot be used in a masked SubBytes transformation, but they can be used
to compute masked S-box tables for conventional memory-based S-box table lookup.

7 Conclusions

In this paper we have presented instruction set extensions for 32-bit processors for the
Advanced Encryption Standard. We have proposed byte-oriented and word-oriented
custom instructions which can be combined in a number of different ways and which
provide support for the most time-consuming transformations of AES. Our extensions
are very flexible and can be used for encryption and decryption as well as with pre-
computed key schedule and on-the-fly key expansion. With hardware costs of about
3k gates, AES-128 encryption and decryption is possible in 196 clock cycles. In rela-
tion to an AES implementation using only SPARC V8 instructions, speedups of up to
9.91 for encryption and 9.97 for decryption are achieved, while code size is reduced
significantly. Furthermore, we have shown that our extensions can be implemented
in a superscalar processor where they can compete very successfully with dedicated
cryptographic processors and previously proposed instructions set extensions.

Acknowledgements. The research described in this paper has been supported by the
Austrian Science Fund (FWF) under grant number P16952-NO4 and, in part, by the
European Commission through the IST Programme under contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views, is provided
as is and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

References

1. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Efficient Software
Implementation of AES on 32-Bit Platforms. In Cryptographic Hardware and Embedded
Systems — CHES 2002, LNCS 2523, pp. 159–171. Springer Verlag, 2003.

2. G. Bertoni, L. Breveglieri, R. Farina, and F. Regazzoni. Speeding Up AES By Extending a
32-Bit Processor Instruction Set. In Proceedings of the 17th IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP 2006). IEEE CS
Press, Sept. 2006. To be published.

Instruction Set Extensions for Efficient AES Implementation 283

3. J. Burke, J. McDonald, and T. Austin. Architectural support for fast symmetric-key cryptog-
raphy. In Proceedings of the 9th Int. Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), pp. 178–189. ACM Press, 2000.

4. D. Canright. A very compact S-Box for AES. In Cryptographic Hardware and Embedded
Systems — CHES 2005, LNCS 3659, pp. 441–455. Springer Verlag, 2005.

5. A. M. Fiskiran and R. B. Lee. On-Chip Lookup Tables for Fast Symmetric-Key Encryption.
In Proceedings of the 16th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP 2005), pp. 356–363. IEEE CS Press, 2005.

6. J. Gaisler. The LEON-2 Processor User’s Manual (Version 1.0.30). Available for download
at http://www.gaisler.com/doc/leon2-1.0.30-xst.pdf , March 2006.

7. B. Gladman. Implementations of AES (Rijndael) in C/C++ and assembler. Available at
http://fp.gladman.plus.com/cryptography technology/rijndael/index.htm.

8. A. Hodjat and I. Verbauwhede. Interfacing a high speed crypto accelerator to an embedded
CPU. In Proceedings of the 38th Asilomar Conference on Signals, Systems, and Computers,
vol. 1, pp. 488–492. IEEE Press, 2004.

9. J. Irwin and D. Page. Using Media Processors for Low-Memory AES Implementation. In
Proceedings of the 14th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2003), pp. 144–154. IEEE CS Press, 2003.

10. M. Matsui. How far can we go on the x64 processors? In Fast Software Encryption — FSE
2006, Pre-Proceedings, pp. 488–492, March 2006.

11. M. Matsui and S. Fukuda. How to Maximize Software Performance of Symmetric Primitives
on Pentium III and 4 Processors. In Fast Software Encryption — FSE 2005, LNCS 3557,
pp. 398–412. Springer Verlag, 2005.

12. K. Nadehara, M. Ikekawa, and I. Kuroda. Extended Instructions for the AES Cryptography
and their Efficient Implementation. In Proceedings of the 18th IEEE Workshop on Signal
Processing Systems (SIPS 2004), pp. 152–157. IEEE Press, 2004

13. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption
Standard, November 2001. Available online at http://www.itl.nist.gov/fipspubs/.

14. D. Oliva, R. Buchty, and N. Heintze. AES and the Cryptonite Crypto Processor. In
Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES 2003), pp. 198–209. ACM Press, 2003.

15. S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass. System design methodologies
for a wireless security processing platform. In Proceedings of the 39th Design Automation
Conference (DAC 2003), pp. 777–782. ACM Press, 2003.

16. P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede. Embedded Software Integra-
tion for Coarse-Grain Reconfigurable Systems. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS 2004), pp. 137–142, IEEE CS
Press, 2004.

17. S. Tillich and J. Großschädl. Accelerating AES Using Instruction Set Extensions for Elliptic
Curve Cryptography. In International Workshop on Information Security & Hiding (ISH 05),
in conjunction with International Conference on Computational Science & Its Applications
(ICCSA 2005), LNCS 3481, pp. 665–675. Springer, 2005.

18. S. Tillich, J. Großschädl, and A. Szekely. An Instruction Set Extension for Fast and Memory-
Efficient AES Implementation. In Communications and Multimedia Security — CMS 2005,
LNCS 3677, pp. 11–21. Springer Verlag, 2005.

19. J. Wolkerstorfer. An ASIC Implementation of the AES-MixColumn operation. In Proceed-
ings of Austrochip 2001, pp. 129–132, 2001. ISBN 3-9501517-0-2.

20. L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A fast flexible architecture for secure
communication. In Proceedings of the 28th Annual International Symposium on Computer
Architecture (ISCA 2001), pp. 110–119. ACM Press, 2001.

284 S. Tillich and J. Großschädl

A Performance Figures for AES Decryption

Table 5. AES-128 decryption, precomputed key schedule: Performance and code size

Key exp. Decr. perf. Code size
Implementation Cycles Cycles Speedup Bytes Rel. change
No extensions (pure SW) 739 1,955 1.00 2,520 0.0%
sbox 647 1,555 1.26 1,592 -36.8%
sbox4 (C) 739 1,435 1.36 1,784 -29.1%
sbox4 (ASM) 739 1,061 1.84 1,676 -33.5%
mixcol 498 1,078 1.81 1,548 -38.6%
mixcol4 498 970 2.02 1,244 -50.6%
sbox & mixcol 346 566 3.45 608 -75.9%
sbox & mixcol4 (C) 346 458 4.27 560 -77.8%
sbox & mixcol4 (ASM) 346 330 5.92 484 -80.8%
sbox4s & mixcol4s (C) 316 459 4.26 564 -77.6%
sbox4s & mixcol4s (ASM) 393 218 8.97 456 -81.9%
sbox4s & mixcol4s, unrolled 393 196 9.97 944 -62.5%
T lookup (Gladman), 1 KB 1,517 1,292 1.51 12,816 +408.6%
T lookup (Gladman), 4 KB 1,828 1,262 1.55 14,640 +481.0%
T lookup (Gladman), 4+4+1 KB 1,085 1,099 1.78 18,512 +634.6%
T lookup (Gladman), 4+4+4 KB 885 1,122 1.74 20,500 +713.5%

Table 6. AES-128 decryption, on-the-fly key expansion: Performance and code size

Decr. perf. Code size
Implementation Cycles Speedup Bytes Rel. change
No extensions (pure SW) 2,434 1.00 2,504 0.0%
sbox 1,867 1.30 1,564 -37.5%
sbox4 1,715 1.42 1,748 -30.2%
mixcol 1,605 1.52 1,648 -34.2%
mixcol4 1,497 1.63 1,600 -36.1%
sbox & mixcol (C) 698 3.49 580 -76.8%
sbox & mixcol (ASM) 523 4.65 404 -83.9%
sbox & mixcol4 (C) 590 4.13 532 -78.8%
sbox & mixcol4 (ASM) 415 5.87 356 -85.8%
sbox4s & mixcol4s (C) 557 4.37 520 -79.2%
sbox4s & mixcol4s (ASM) 300 8.11 284 -88.7%
sbox4s & mixcol4s, unrolled 262 9.29 996 -60.2%
T lookup, 1 KB 6,528 0.37 4,504 +79.9%
T lookup, 4 KB 5,939 0.41 7,352 +193.6%
T lookup, 4+4+1 KB 3,257 0.75 11,272 +350.2%
T lookup, 4+4+4 KB 4,113 0.59 14,492 +478.8%

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 285 – 297, 2006.
© International Association for Cryptologic Research 2006

NanoCMOS-Molecular Realization of Rijndael

Massoud Masoumi, Farshid Raissi, and Mahmoud Ahmadian

ECE Dept., K. N. Toosi University of Technology, Tehran, Iran
m_masoumi@eetd.kntu.ac.ir, raissi@kntu.ac.ir,

mahmoud@kntu.ac.ir

Abstract. This paper describes the implementation of the Advanced Encryption
Standard Algorithm, Rijndael, in a new nanoscale technology, called CMOL.
This technology consists of an array of conventional CMOS gates and a wiring
network, which consists of a high density mesh of nanowires. The basic Mod-
ules of Rijndael were implemented using CMOL architecture. It is observed
that the implementation in such a technology has considerable advantages com-
pared to a conventional CMOS approach as regards to defect tolerance, speed,
area and power consumption.

Keywords: Rijndael, VLSI realization, CMOL.

1 Introduction

In our days, the need for secure transparent protocols seems to be one of the most
important issues in the communication standards and new reliable and flexible algo-
rithms specially designed to face the demand for secure but simple and flexible crypto-
systems. This demand has been accelerated by the emergence of large-scale, high speed
communication networks. Therefore, VLSI design and realization of cryptosystems has
been a motivational and challenging subject. The inherent advantages of using VLSI
chips for encryption are speed and more physical security. Software encryption has
other features like portability and flexibility but is slow and suffers from insecurity in
several aspects of key management and program manipulation. In 1997, NIST de-
cided that a new standard algorithm is needed because attacks like exhaustive key
search exploiting the short key length of DES had been demonstrated. Through three
Advanced Encryption Standard (AES) conferences, Rijndael [1] was selected as AES
in October 2000. After adoption of Rijndael, its VLSI realization was taken into con-
sideration and nowadays it is integrated in many various embedded applications like
Web Servers, ATMs, Fiber Distributed Data Interfaces (FDDIs), smart cards, cellular
phones… Since 2000, several architectures for efficient VLSI realization of AES
algorithm have been proposed and their performance evaluated using ASIC libraries
and FPGAs [2], [3], [4], [5], [6], [7]. Further integration or speed-up of such circuits
will not be easily possible in conventional manners. The ongoing feature size reduc-
tion of silicon based CMOS technology which has been basis of the development of
the semiconductor industry for the last three decades will run into severe physical and
economic problems. The scaling of MOSFETs is entering the deep-nanosized regime
in which fundamental limits of CMOS and technological challenges with regard the

286 M. Masoumi, F. Raissi, and M. Ahmadian

scaling of CMOS are encountered [8], [9]. While traditional silicon based microelec-
tronics is gradually approaching the end of its scaling [10], novel nanoelectronic solu-
tions will be needed to surmount the physical and economic barriers of current semi-
conductor technology. A feasible scenario is the integration of silicon with nanoelec-
tronic, i.e. a mixed CMOS/nano system [11]. This approach would allow a smooth
transition and permit leveraging the beneficial aspects of both technologies. One po-
tential alternative to supplement to or replace the CMOS microelectronics is the re-
cently proposed semiconductor-nanowire-molecular architecture known as CMOL
[12]. The basic idea for such circuits is to combine the advantages of current CMOS
technology including flexibility and high fabrication yield with nanometer scale mo-
lecular devices, self assembled on a pre-fabricated nanowire fabric, enabling very
high function density at modest fabrication cost. The implementation of such a struc-
ture via cross wire networks has been fully examined in literature [12], [13]. It seems
at best at this point that CMOL circuits are suitable for embedded and stand-alone
terabit memories and would be able to accomplish some tasks which are implemented
by neural networks such as image processing, pattern recognition and classification
[14], [15]. It is to this end that we are proposing that Rijndael can be implemented by
CMOL technology and such implementation can bypass VLSI performance bottle-
necks of this algorithm. Circuit density, speed and power consumption are three crite-
ria which are of utmost importance in encryption VLSI realization and CMOL is by
far the best scheme regarding these criteria. Moreover CMOL circuits have another
advantage in comparison with regular CMOS circuits and are inherently defect toler-
ant [12], [13]. We have recently shown that basic modules of Rijndael can be imple-
mented by CMOL technology with very interesting results [16]. The results we have
obtained demonstrate that longer keys can be easily realized by CMOL, making unau-
thorized deciphering almost impossible. We had not obtained an estimate of power
consumption of Rijndael’s basic modules on CMOL platform but the new results
show that the power consumption of theses modules are reduced with a factor of
1000-2000 in comparison with CMOS implementation. In this paper we focus on
nanotechnology as a new solution for removing VLSI cryptosystem realization bot-
tlenecks. We describe how basic modules of Rijndael can be implemented in CMOL
technology and present the new results obtained. The organization of the paper is as
follows. Section 2 explains AES algorithm briefly. Section 3 introduces CMOL tech-
nology and CMOL FPGA as the most promising structure for CMOL circuits. In
section 4 we describe how the basic building modules of Rijndael are realized in
CMOL technology and give the results of implementation. Finally, in the conclusion
we briefly summarize the results of our discussion.

2 Rijndael Algorithm

Rijndael has been developed and published by Daemen and Rijmen [1], [17]. This
algorithm is a byte-oriented symmetric block cipher, composed of a sequence of four
primitive functions, SubBytes, ShiftRows, MixColumns, and AddRoundKey, exe-
cuted round by round. Rijndael supports any key length and block length between 128
bits and 256 bits that is a multiple of 32 bits independently. The number of algorithm
rounds denoted by Nr, depends on the message or key length. Prior to each round

 NanoCMOS-Molecular Realization of Rijndael 287

AddRoundKey which combines the input with the cipher key is executed. The Key
Expansion algorithm generates a key schedule for different rounds from the cipher
key. In a 128-bit operation mode, at the start of the encryption, the message is divided
to the blocks of length 128-bit and is copied to a 16 byte rectangular array called
State. AddRoundKey is only a simple bit-wise XOR operation in which the elements
of the State are XORed with RoundKey bit-by-bit. SubBytes is a non-linear bit-wise
substitution of all bytes in the State. In SubBytes, each byte in the State is replaced by
its corresponding byte in another table called S-Box. S-Box contains multiplicative
inverse of all possible bytes over GF(28) followed by an affine transformation. Each

Fig. 1. Standard implementation of the AES algorithm

byte is an element of Galois field GF(28) with irreducible polynomial m(X) = X8 + X4
+ X3 + X + 1. In the ShiftRows transformation, each row of the state is considered
separately and the bytes in that row are cyclically shifted to the left based upon the
key-size of the algorithm. For the 128-bit key, the first row is unchanged. However,
the second, third and fourth rows are shifted one, two, and three bytes respectively.
The MixColumns transformation is a bricklayer permutation operating on each col-
umn of the State. In MixColumns, columns of the State are considered as a four-term

288 M. Masoumi, F. Raissi, and M. Ahmadian

polynomial over GF(28), then are multiplied with a fixed polynomial c(X) = {03}X3 +
{01}X2 + {01}X + {02}. Multiplications are performed modulo (x4+1). The algorithm
for the decryption has the same structure but uses mathematical inverses of the en-
cryption steps, i.e. InvSubBytes, InvShiftRows, and InvMixColumns. The round keys
are the same as those in encryption but are used in reverse order. Figure 1 shows the
standard implementation of the AES.

3 CMOL-FPGA Architecture

CMOL is semiconductor–nanowire–molecular architecture [12]. Such architectures
allow for significant design versatility. For example, while nano portion is restricted
to regular structures, the CMOS portion can be any arbitrary circuit. Perhaps the most
promising structure for CMOL circuits is an FPGA-like architecture combining a
CMOS stack and two-level nanowire crossbar with molecular-scale nanodevices
formed at each nanowire crosspoint together with the ability to reconfigure the cir-
cuits around nanodevices defects. Such reconfiguration is essential for any future
mixed CMOS-molecular system because the lack of enough alignment accuracy and
also due to the fact that self-assembly of molecules can hardly provide 100% yield.
This is an important issue for the product development since an insufficient yield
might render CMOS-nano technology unusable. It has been shown that CMOL cir-
cuits are defect tolerant and even with a high degree of defect rate can provide much
better performance in terms of area-power consumption and speed when compared to
circuits which use CMOS alone. CMOL circuits work with two-terminal nanodevices
whose are electrically activated or deactivated at the cross-points of the mesh and

Fig. 2. A simplified diagram of a mixed CMOS/nano system

their fabrication is substantially less challenging than their three-terminal counter-
parts. Of course the limited functionality of two terminal devices is compensated by
transistors of the CMOS subsystem. Two-terminal nanodevices provide us with high
degree of integrability while CMOS devices provide us with other necessary functions

 NanoCMOS-Molecular Realization of Rijndael 289

such as voltage gain, address decoding and output signal sensing enabling digital
performance with much speed and low power consumption. Novel ideas on the type
of molecules and their connection scheme have been proposed and current estimate
suggest that within 10-15 years such crossbar implementation of two-terminal devices
becomes quite possible [12], [13]. A simplified diagram of a mixed CMOS/nano
system and the hybrid complementary metal oxide semiconductor/molecular circuit
structure are shown in figures 2 and 3 respectively.

Fig. 3. The hybrid complementary metal oxide semiconductor/molecular circuit contains a
molecule that may function as a latching switch activated by two input signals

The general configuration of a CMOL FPGA and a CMOL cell, as proposed in
[13] is provided in Figures 4(a) and 4(b) respectively. Cross type nanowires (cross-
net) are placed over a regularly placed matrix of CMOS cells. Nanomolecular two
terminal devices are to be self assembled between the wires at each cross point. These
molecules either work as latching switches or similar to diodes with a rectifying char-
acteristic. The interesting proposed alignment of nanowires with respect to underlying
CMOS cells, which is rotated by a certain angle, makes it possible to address each and
every molecule. This is accomplished by CMOS cells which are accessible through
column and row lines. The configuration of unit cell which is made of a CMOS NOT
gate is shown in Figure 4(c) with its associated row and column lines. So called con-
nection pins are placed on each cell to create connections to the bottom and top wire
meshes. For example, the inputs are connected to the bottom nanowire and output to

290 M. Masoumi, F. Raissi, and M. Ahmadian

the top nanowire. In this manner several molecules are connected to each cell. To
provide for a universal FPGA architecture, there are small breaks in nanowires in a
periodic fashion. A square shaped connectivity domain can be defined for each cell.
Connectivity domain is a region around the initial cell containing 2r(r-1)-1 other cells,
in which input or output of the original cell can be connected to any cell in this re-
gion. r is a positive integer number called connectivity radius. In the Figure 4(a) the
connectivity radius is 3. This corresponds to the square shaped area in Figure 4(a). If
all the molecules were conducting current, all the inputs and outputs of all the cells
would be connected and circuits won’t work. Molecules, however, are considered to
act as latching switches. We can choose to make the appropriate ones to conduct their
corresponding address lines. For example, the molecule connecting the output of each
cell to its input must always be off or open. The same is true for all other molecules

Fig. 4. The topology of a CMOL FPGA., (a) Each rectangular cell is a NOT gate whose input
and output are shown by black dots. Input and outputs makes contact to separate layers of
nanowires. (b) The CMOS transistor which makes each inverter cell with its associated address
lines and so called “pass” transistors. (c) The molecules which have been turned ON and are
shown by dark gray at the crosspoint of the wire meshes. Other connections whose molecules
are not turned ON are not shown, (d) Circuit representation of the three input NOR gate which
is equivalent to a diode-resistor connected NOR gate.

 NanoCMOS-Molecular Realization of Rijndael 291

that connect the output to its connectivity domain. Now, each cell with its associated
molecular devices can be considered as a NOR gate as given in Figure 4(d). Having
NOT and NOR is sufficient to implement any Boolean function.

Due to the uniformity of the nanowiring/nanodevices levels of CMOL, they do not
need to be precisely aligned with each other and the underlying CMOS stack. In addi-
tion, CMOL circuits are inherently defect-tolerant, since there are M = 2r(r-1) -1
nanodevices in each cell. In some cases, even a 75% loss of molecular devices due to
misalignment results in acceptable functionality. After initial mapping on CMOL
fabric and configuration stage, each cell whose associated molecules are not properly
functioning may be swapped with another adjacent cell in its connectivity domain and
the circuit would operate properly. Such gate swapping is not provided by physical
relocation of gates but by using a new routing. This is shown in Figure 5 and the
reader is encouraged to refer to references [13] for detail. It has been reported that,
from the software point of view, a CMOL tile can be treated in the same way as that
of the island-type CMOS FPGA. Indeed, we first map the original pre-optimized logic
circuit onto a network of NOR gates (with a certain maximum fan-in) and latches (if
any), to produce a netlist. Next, we fix a certain number (N) of CMOS cells inside
each tile to perform logic operations, while the rest T−N CMOS cells are committed
to routing [18].

Fig. 5. Example of a circuit reconfiguration, (a) NOR-NOT equivalent circuit of an XOR gate,
(b) mapping the circuit on a 6*8 CMOL rectangular block. At least one of the molecules of gate
C is faulty and therefore this gate to be relocated. (c) The intersect of repair regions of input
and output cells of gate C, i.e. gates A and E houses gate D, hence the repair region of this gate
is calculated again. Since gate C lies in the repair region of gate D these gates can be swapped,
connection quality permitting. Here r = 3 and there are 11 other cells in the connectivity region
of each cell.

4 Implementation of Rijndael’s Basic Transformations Using
CMOL Scheme

In this section we discuss issues related to the implementation of Rijndael’s basic
building blocks, i.e. MixColumns and SubBytes. Several architectural and algorithmic

292 M. Masoumi, F. Raissi, and M. Ahmadian

optimization techniques have been proposed for efficient implementation of the AES
algorithm. The aim of these optimization techniques is to reduce the critical path, chip
area and power consumption of AES chips and are developed to suit the different
demand of applications. We demonstrate that if these proposed architectures are
implemented in CMOL performance of AES chips would be much improved. No
optimization can be performed on the hardware structure of ShiftRows and Ad-
dRoundKey, since no logic gates are needed for the former transformation and only
one step of XOR is needed for the latter. We present the new results obtained from
realization and performance estimation of MixColumns and SubBytes on a typical
CMOL fabric and compare them with their purely CMOS counterparts. While much
of the analysis in this paper is applicable to several other cryptographic algorithms,
we focus on Rijndael as a very good typical example.

4.1 Implementation of MixColumns

Over the years many implementations, with different levels of optimizations have
been presented and there are several architectures for efficient implementation for
MixColumns. A good possible implementation in the terms of speed and resource
sharing as proposed in [7] is shown in the figure 6. In this figure, ‘XTime’ block im-
plements the constant multiplication by {02} in GF(28). ‘XTime’ block consists of 3
XOR gates and its critical path includes only one XOR gate [6].

Fig. 6. Efficient implementation of MixColumns transformation

We represented this transformation to the fan-in two NOR gates and inverters, the
only available logic primitives on a standard CMOL FPGA, as shown in Figure 8. In
order to compare the performance of the implementation on CMOL with its CMOS
counterpart and to evaluate the effectiveness of our approach, first we simulated it
using VHDL codes with structural logic description and synthesized it on Spartan 3,

 NanoCMOS-Molecular Realization of Rijndael 293

the fastest commercially available FPGA from Xilinx family which is fabricated with
90-nm CMOS technology. The basic unit of such an FPGA is a slice consisting of two
4-input LUTs. Xilinx ISE 6.2i was used to synthesize the design and provide post-
placement timing results. The results of synthesis showed that it consumes 60 logic
cells and the total logic delay is about 0.62 ns. With the cell (tile) area approximated
as 2100 um2 [13], it means that the circuit will occupy about 126000 um2 on the chip.
Then, we mapped it manually on a 32*40 CMOL FPGA fabric with connectivity
radius r = 12 and CMOL parameters as FCOMS = 32 nm, Fnano = 8 nm. The way to
estimate density, speed, and power consumption of CMOL circuits has been described
in [13]. If we estimate the cell area Acell as 64(FCMOS)

2 [12], [13] with logic depth
equal to 28, the same implementation on CMOL FPGA with will result the total gate
delay equal to 0.15 ns, the total area equal to 84 µm2 and the area-delay product equal
to 12.6 µm2 ns. A computer program was written for finding a pseudo-optimum yield-
optimized gate placement. Then we performed Mont Carlo simulation for reconfigu-
ration algorithm. The circuit yield was about %98.5 for defect rate of molecular de-
vices up to 25%. However, reconfigurable circuits are not yet frequently embedded
into portable applications and our interest for power consumption was driven by an-
other reason. Indeed, for the implementation of cryptographic algorithms, not only the
speed and the size of the circuit are important, but also their security against imple-
mentation attacks. For example, in Differential Power Analysis, it is assumed that the
power consumption of a device is correlated with the data handled. The power dissi-
pation of the two implementation approaches could be estimated and compared. Ig-
noring the leakage current of molecular devices, the average total power consumption
of a CMOL gate may be estimated as a sum of two constituents, the static power PON
due to currents ION, and dynamic power Pdyn due to the recharging of nanowire capaci-
tances. Considering the subject that the total power consumed per unit circuit area for
CMOL FPGAs are limited at the level P/A = 200 W cm-2 [12], [13] we can estimate
the total power dissipated at each CMOL cell by using a rule of thumb. With FCMOS =
32 nm, ACell will be equal to 6.5536*10-11 cm2 which means that there are about
1.52*1010 CMOL cell cm-2, each cell dissipating about 0.13 nW. Hence, the MixCol-
umns module will dissipate about 0.16 mW. The power consumption of this transfor-
mation on Spartan-3 was estimated using ISE power analyzer and it was about 335
mW, about 2000 times larger than CMOL implementation. This estimate is close to the
one given by Likharev. Recently he has implemented a 32-bit Kogge-stone adder on a
CMOL FPGA fabric and has reported that power consumption of the circuit is 0.33
mW [12]. It is easy to justify this great difference between the power consumption of
the CMOL and CMOS approaches. Most current CMOS FPGAs are SRAM-
programmable, meaning that SRAM bits are connected to the configuration points in
the FPGA, and programming these SRAM cells configures the device. These compo-
nents are based on the static CMOS memory technology. Please notice that a 3-input
NOR gate is implemented in CMOL technology by using only an inverter and four
molecules, i.e. only one NMOS and one PMOS transistor, while it needs 3 PMOSs
and 3 NMOSs to be implemented in a typical static CMOS technology. While major
part of the power consumed in a CMOS FPGA is dissipated in its routing, intercon-
nects, logic and clocking resources [19], CMOL FPGA has a completely different
structure in which information is stored in molecules which consume very smaller
energy in comparison with CMOS transistors. Also, the nanowiring section of CMOL

294 M. Masoumi, F. Raissi, and M. Ahmadian

FPGA has a very smaller effective capacitance in comparison of wiring and routing
section of CMOS FPGAs [12], [13], [19]. It is obvious from comparing the results
obtained from these two different implementation approaches that the performance
will be much improved by replacing CMOS with CMOL.

Fig. 7. Implementation of one column of the MixColumns transformation using NOT and 2-
input NOR gates

4.1 Implementation of SubBytes

The area required by Rijndael is adversely affected by limited resource sharing be-
tween encryptor and decryptor, as well as by the use of large S-Boxes. The Rijndael
S-Box is formed based on the mapping X to X-1, where X-1 denotes the multiplicative
inverse of X in GF(28) followed by an affine transformation over GF(2) [17]. The
multiplicative inversion involved in SubBytes is a gate consuming and hardware de-
manding operation. There are various approaches for efficient designing of Rijndael
S-Box. Most of them are based on two different methods: performing lower cost
multiplicative inverse calculation on subfields of GF(28) or constructing a circuit
whose input-output relation is the same as S-Box. Vincent Rijmen during the second
round of the AES process proposed an efficient architecture for implementation of the
Rijndael S-Box using composite field arithmetic over GF((24)2) [20]. Using composite
field mapping, hardware usage will be reduced and the total number of gates con-
sumed to implement this transformation will be 99 XOR and 36 AND gates with 20

 NanoCMOS-Molecular Realization of Rijndael 295

XOR gates and 4 AND gates in the critical path [7]. It is worth noting that although
gate counts and area required for implementing SubBytes transformation is reduced
by using composite field arithmetic, studies of Morioka and Satoh [21] shows that
glitches and dynamic hazards caused by differences in signal arrival times at each
time and probability of signal transitions, cause that about %75 of power consumed in
a 128-bit, AES chip to be dissipated during SubBytes transformation. They have
developed a multi-stage PPRM (Positive Polarity Reed-Muller) low power architec-
ture for SubBytes based on GF(((22)2)2) isomorphic mapping, shown in figure 8,
which consumes 212 XOR and 189 AND gates for implementing S-Box and 200
XOR and 204 AND gates for implementing S-1Box.

Fig. 8. Implementation of SubBytes based on the so called 3 stage PPRM architecture

We synthesized the 3-stage PPRM architecture for SubBytes transformation using
Spartan 3. The total gate delay was about 6.2 ns and the FPGA cell usage was equal
to 74. The area occupation on chip was about 155400 µm2 and the area-delay product
was equal to 963480 µm2 ns. Then we mapped it on a 32*64 CMOL rectangular
block, the area and the area-delay product are: 134 µm2 and 255 µm2 ns. While it
dissipates approximately about 389 mW on Spartan 3 (estimation was obtained using
Xilinx ISE 6.2i power analyzer) it consumes about 0.26 mW on a 32*64 CMOL fab-
ric, about 1500 times less than its CMOS counterpart. Again we found a pseudo-
optimum yield-optimized gate placement and performed Mont Carlo simulation for
reconfiguration algorithm. The circuit yield was about %98.5 for defect rate of mo-
lecular devices up to 20%. It is observed that the basic block transformations of

296 M. Masoumi, F. Raissi, and M. Ahmadian

Rijndael can be implemented by CMOL with much improvement in speed, power
consumption, and chip area.

5 Conclusions

In this paper we presented a new methodology based on mixed CMOS/nano circuits
for future VLSI realization of Rijndael algorithm and showed the suitability of the
implementation of Rijndael in CMOL. High speed, very small required area, very low
power consumption and defect tolerance of CMOL circuits along with the possibility
of designing long key encryption make CMOL as an optimum possible platform for
encryption VLSI realization in the future. Nanoelectronic and mixed CMOS/nano
systems are steel quite young and will require new design and fabrication paradigm
but can lead to higher levels of computation and many other beneficial aspects.

References

1. Daemen, J, and Rijmen, V.: AES Proposal Rijndael, National Institute of Standards and
Technology, July 2001

2. Fischer, V, and Drutarovsky, M.: Two Methods of Rijndael Implementation in Recon-
figurable Hardware Proc. CHES, Paris, France (2001) 77-92

3. Sklavos, N, and Koufopavlou, O.: Architectures and VLSI Implementation of the AES-
Proposal Rijndael IEEE Trans Computers, 51, 12 (2002) 1454-59

4. Lu, C, C, and Tseng Y, S.: Integrated Design of AES (Advanced Encryption Standard) En-
cryptor and Decryptor, in Proc. IEEE Int. Conf. Application Specific Systems, Architec-
tures Processors (2002) 277-285

5. Satoh, A, Morioka, S, Takano, K, and Munetoh, S.: A Compact Rijndael Hardware Archi-
tecture S-BOX Optimization, in Proc. ASIACRYPT 2001, Gold Coast, Australia (2000)
239-254

6. Zhang, X, and Parhi, K, K.: Implementation Approaches for the Advanced Encryption
Standard Algorithm, IEEE Circuits Mag., 2, 4 (2002) 24-46

7. Zhang, X, and Parhi, K, K.: High-Speed VLSI Architectures for the AES Algorithm, IEEE
Trans. Very Large Scale Integration (VLSI) Systems, 12, 9 (2004) 957-967

8. Fortes, J.: Future challenges in VLSI System Design, Proceedings IEEE Computer Society
Annual Symposium on VLSI (ISVLSI’03) (2003) 5-7

9. Likharev K, K, and Strukov, D, B.: Electronics Below 10 nm, Nano and Giga Challenges
in Microelectronics, (Amsterdam: Elsevier) (2003) 27-68

10. International Technology Roadmap for Semiconductors (ITRS), 2004, Update, available
online at http://public. itrs. net/

11. Ziegler, M, M, and Stan, M, R.: CMOS/nano Co-Design for Crossbar-Based Molecular
Electronic Systems, IEEE Trans. Nanotechnology, 2 (4) (2003) 217–230

12. Likharev K, K, and Strukov, D, B.: CMOL: Devices, Circuits, and Architectures, avail-able
online at http://www-mcg.uni-regensburg.de/pages/admol/book/chapter_16.html/book/chapter_
16.html

13. Strukov, D, B, and Likharev, K, K.: CMOL FPGA: a Reconfigurable Architecture for Hy-
brid Digital Circuits with Two-Terminal Nanodevices, Nanotechnology, 16 (2005)
888-900

 NanoCMOS-Molecular Realization of Rijndael 297

14. Likharev, K, K, Türel, Ö, Lee, J, H, and Ma, X.: Architectures for Nanoelectronic Imple-
mentation of Artificial Neural Networks: New Results, Neurocomputing, 64, 1 (2005)
271-283

15. Strukov, D, and Likharev, K, Prospects for Terabit-Scale Nanoelectronic Memories,
Nanotechnology, 16 (2005) 137-38

16. Masoumi, M, Raissi, F, Ahmadian, M, and Keshavarzi, P.: Design and Evaluation of Basic
Standard Encryption Algorithm Modules using Nanosized CMOS-Molecular Circuits,
Nanotechnology, 17 (2006) 89-99

17. Daemen, J, and Rijmen, V.: The Design of Rijndael, Springer (2002)
18. Strukov, D, B, and Likharev, K, K.: A Reconfigurable Architecture for Hybrid

CMOS/Nanodevice Circuits, available online at: http://portal.acm.org/affiliated/citation.
cfm?id=1117221&coll=ACM&dl=guide

19. Standaert, F, X.: Secure and Efficient Use of Reconfigurable Hardware Devices in Sym-
metric Cryptography, Ph. D. Thesis, University of Catholique de Louvain, Belgium, 2004.

20. Rijmen, V, Efficient Implementation of Rijndael S-Box, available online at: www.iaik.
tugraz.at/research/ krypto/AES/old/~rijmen/rijndael/sbox.pdf

21. Morioka, S, and Satoh, A, An Optimized S-Box Circuit Architecture for Low Power AES
Design, in Proc. of Cryptographic Hardware and Embedded Systems (CHES) 2002, San
Francisco, USA (2002) 172-186

Improving SHA-2 Hardware Implementations

Ricardo Chaves1,2, Georgi Kuzmanov2,
Leonel Sousa1, and Stamatis Vassiliadis2

1 Instituto Superior Técnico/INESC-ID. Rua Alves Redol 9,
1000-029 Lisbon, Portugal
http://sips.inesc-id.pt/

2 Computer Engineering Lab, TUDelft. Postbus 5031, 2600 GA Delft,
The Netherlands

http://ce.et.tudelft.nl/

Abstract. This paper proposes a set of new techniques to improve the
implementation of the SHA-2 hashing algorithm. These techniques con-
sist mostly in operation rescheduling and hardware reutilization, allowing
a significant reduction of the critical path while the required area also de-
creases. Both SHA256 and SHA512 hash functions have been implemented
and tested in the VIRTEX II Pro prototyping technology. Experimental
results suggest improvements to related SHA256 art above 50% when com-
pared with commercial cores and 100% to academia art, and above 70%
for the SHA512 hash function. The resulting cores are capable of achiev-
ing the same throughput as the fastest unrolled architectures with 25%
less area occupation than the smallest proposed architectures. The pro-
posed cores achieve a throughput of 1.4 Gbit/s and 1.8 Gbit/s with a slice
requirement of 755 and 1667 for SHA256 and SHA512 respectively, on a
XC2VP30-7 FPGA.

Keywords: Cryptography, Hash functions, SHA-2 (256, 512), FPGA.

1 Introduction

Cryptography is becoming an essential part of most electronic equipments that
require data storing or manipulation. However, the algorithms used to enforce
this security are too demanding to be implemented in software for the current
required processing speeds. To achieve the require processing capability hardware
components have to be used. These hardware cores are usually implemented
either in dedicated ASIC cores [1–3] or in reconfigurable devices [4–7]. In this
paper we propose a new hardware implementation of the SHA-2 algorithm, used
in authentication systems and in the validity check of data. Several techniques
have been proposed to improve the implementation of the SHA-2 algorithm. The
most relevant are:

– the usage of parallel counters or well balanced Carry save Adders (CSA), in
order to improve the partial additions. In technologies, like reconfigurable
devices that have dedicated data paths for improving addition, this technique
is not always beneficial;

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 298–310, 2006.
c© International Association for Cryptologic Research 2006

Improving SHA-2 Hardware Implementations 299

– unrolling techniques that optimize the data dependency. This technique al-
lows for an improvement in the throughput, however, it usually significantly
increases the required circuit area [2, 8, 6];

– delay balancing and the usage of improved addition units, since in this algo-
rithm this is the critical operation;

– the usage of embedded memories to store the required constant values (Kt);
– use of pipelining techniques, to achieve higher working frequencies. Due to

highly dependent data computation the resulting throughput is usually not
improved and more complex control logic is required [2, 9].

However, the performance of the SHA-2 algorithmcan be further improvedwith
other techniques. To achieve this goal, this paper proposes operation rescheduling,
that allows for an efficient use of a pipelined structure without an increase in area,
and hardware reutilization techniques that allow for resource saving.

Both implementations of the SHA256 and SHA512 hash functions suggest:

– throughput per Slice efficiency metric improvement of 53% compared to
commercial SHA256 cores, and more than 100% to current SHA256 academia
art, and 77% for SHA512 implementations;

– a throughput of 1.4 Gbit/s for SHA256 and 1.8 Gbit/s for SHA512, with 755
and 1667 slices, on a XC2VP30-7 FPGA, respectively;

– 150 times speedup with respect to the software implementation.

The paper is organized as follows, Section 2 presents the SHA-2 algorithms.
Section 3 describes the proposed design. The characteristics of FPGA implemen-
tations are presented in section 4. Section 5 presents the obtained results and
compares them to related art. Section 6, concludes the paper with some final
remarks.

2 SHA-2 Hash Algorithm

In 1993 the Secure Hash Standard (SHA) was first published by the NIST.
In 1995 this algorithm was reviewed in order to eliminate some of the initial
weakness, and in 2001 new Hashing algorithms were proposed. This new family
of hashing algorithms known as SHA-2, use larger digest messages, making them
more resistent to possible attacks and allowing them to be used with larger blocks
of data, up to 2128 bits, e.g. in the case of SHA512. The SHA-2 hashing algorithm
is the same for the SHA256, SHA224, SHA384, and SHA512 hashing functions,
differing only in the size of the operands, the initialization vectors, and the size
of the final digest message.

The following describes the SHA-2 algorithm applied to the SHA256 hash
function, followed by the description of the SHA512 hash function, which differs
mostly in the size of the operands, using 64-bit words instead of 32-bit. Note
that SHA224 and SHA384 are computed as SHA256 and SHA512, respectively,
with the final hash value truncated to the corresponding size, the Initialization
Vector also differs.

300 R. Chaves et al.

Fig. 1. SHA-2 round calculation

SHA256 Hash Function: The SHA256 Hash function produces a final digest
message of 256 bits, that is dependent of the input message, composed by mul-
tiple blocks of 512 bits each. This input block is expanded and fed to the 64
cycles of the SHA256 function in words of 32 bits each (denoted by Wt). In
each cycle or round of the SHA-2 algorithm the introduced data is mixed with
the current state. This data scrambling is preformed by additions and logical
operations, such as bitwise logical operations and bitwise rotations. The compu-
tational structure of each round of this algorithm is depicted in Figure 1. The
several functions presented in this figure are described in Appendix I. The value
Wt is the 32-bit data word, for the t round, and the Kt value represents the
32-bit constant that also depends on the round.

The 32-bit values of the A to H variables are updated in each round and the new
values are used in the following round. The initial values of these variables is given
by the 256-bit constant value specified in [10], this value is only set for the first data
block. The consecutive data blocks use the intermediate hash value, computed for
the previous data block. Each 512 data block is processed for 64 rounds, after which
the values of the variables A to H are added to the previous digest message, in order
to obtain partial digest message. To better illustrate this algorithm a pseudo code
representation is depicted in Figure 2. The final Digest Message (DM) for a given
data stream, is given by the result of the last data block.

In some higher level applications like the efficient implementation of the keyed-
Hash Message Authentication Code (HMAC) [11] or when a message is frag-
mented, the initial hash value (IV) may differ from the constant specified in [10].
In these cases, the variables A to H are initialized by a variable Initialization
Vector (IV).

Improving SHA-2 Hardware Implementations 301

for each data block i do

W = expand(data block)
A = DM0 ; B = DM1 ; C = DM2 ; D = DM3
E = DM4 ; F = DM5 ; G = DM6 ; H = DM7

for t= 0, t≤ 63 {79}, t=t+1 do
T1 = H +

∑
1(E) + Ch(E, F, G) + Kt + Wt

T2 =
∑

0(A) + Maj(A, B, C)
H = G ; G = F ; F = E ;
E = D + T1
D = C ; C = B ; B = A
A = T1 + T2

end for

DM0 = A + DM0 ; DM1 = B + DM1
DM2 = C + DM2 ; DM3 = D + DM3
DM4 = E + DM4 ; DM5 = C + DM5
DM6 = D + DM6 ; DM7 = E + DM7

end for

Fig. 2. Pseudo Code for SHA-2 algorithm

SHA512 Hash function: The SHA512 hash function computation is identical
to that of the SHA256 hash function, differing in the size of the operands, that
are of 64 bits and not 32 bits as for the SHA256, the size of the Digest Message,
that has twice the size being composed by 512 bits, and in the Σ functions
described in Appendix I. This Appendix also describes the functions σ used in
the message schedule. The value Wt and Kt are of 64 bits and the each data
block is composed by 16 64-bit words, having in total 1024 bits.

Message schedule: In the SHA-2 algorithm the computation described in Fig-
ure 1 is performed for 64 rounds for the SHA256 (80 rounds for the SHA512),
in each round a 32-bit word (or 64-bit for SHA512) obtained from the inter-
midiate hash value is used. However each data block only has 16 32-bits words
for SHA256 or 16 64-bit words for SHA512, resulting in the need to expand the
initial data block to obtain the remaining words. This expansion is performed
by the computation described in (1), where M

(i)
t denotes the first 16 words of

the i-th data block.

Wt =
{

M
(i)
t , 0 ≤ t ≤ 15

σ1(Wt−2)+Wt−7+σ0(Wt−15)+Wt−16, 16 ≤ t ≤ 63 {or 79} (1)

Message padding: In order to assure that the input message in a multiple of
512 bits, as required by the SHA256 hash function, or 1024 for the SHA512 hash
function, it is necessary to pad the original message. This message padding also
comprises the inclusion of the original message dimension to the padded mes-
sage. This operation can be efficiently implemented in software with a minimal
cost.

302 R. Chaves et al.

3 Proposed Design

In the SHA-2 algorithm, the operations that have to be performed are simple,
however the data dependency of this algorithm does not allow for much paral-
lelization. Each round of the algorithm can only be computed after the values
A to H of the previous round have been calculated (see figure 2), imposing a
sequentiality to the computation. It should be noticed that in each round the
computation is only required to calculate the values of A and E, since the re-
maining values are obtained directly from the values of the previous round, as
depicted in the pseudo code of Figure 2.

In this paper, we propose a new operation rescheduling technique, a new form
to initialize the algorithm, and a more efficient hardware reutilization scheme.

Operation rescheduling: In our proposal, we identified the part of the com-
putation of a given round t that can be computed ahead in the previous round
t−1. Only the values that do not depend on the values computed in the previ-
ous round can be computed ahead. Unlike the rescheduling technique proposed
in [12] for the SHA1 algorithm, where the inter round data dependency is low,
in the SHA-2 algorithm the data dependency is more complex, as depicted in
Figure 1. While the variables B, C, D, F, G, and H are obtained directly from
the values of the round, not requiring any computation, the values of A and E
require computation and depend on all the values. In other words, the values A
and E for round t can not be computed until the values for the same variables
have been computed in the previous round have, as shown in (2).

Et+1 =Dt+Σ1(Et)+ Ch(Et, Ft, Gt)+ Ht+ Kt+ Wt (2)
At+1 =Σ0(At)+ Maj(Bt,Ct,Dt)+Σ1(Et)+ Ch(Et,Ft,Gt)+ Ht+ Kt+ Wt

Taking into account that the value Ht+1 is given directly by Gt which in its
turn is given by Ft−1, the precalculation of H can thus be given by Ht+1 = Ft−1.
Since the value of Kt and Wt can be precalculated and are simply used in each
round, (2) can be rewritten as:

δt =Ht + Kt + Wt = Gt−1 + Kt + Wt;
Et+1 =Dt + Σ1(Et) + Ch(Et, Ft, Gt) + δt; (3)
At+1 =Σ0(At) + Maj(Bt, Ct, Dt) + Σ1(Et) + Ch(Et, Ft, Gt) + δt,

where the value δt is calculated in the previous round. The value δt+1 can be
the result of a full addition or the Carry and the Save vectors from a Carry
Save Addition. With this computational separation the calculation of the SHA-
2 algorithm can be divided into two parts, allowing the calculation of δ to be
rescheduled to the previous clock cycle, depicted by the grey area in Figure 3.
Thus the critical path of the resulting hardware implementation can be reduced.
Since the computation is now divided by a pipeline stage, the calculation of the
SHA-2 requires an additional clock cycle, to perform all the rounds. In the case
of the SHA256 hash function 65 clock cycles are necessary to calculate the 64
rounds. As specified in the SHA-2 algorithm and depicted in Figure 2, after all

Improving SHA-2 Hardware Implementations 303

rounds have been computed, the internal variables (A to H) have to be added
to the previous Digest Message.

Hash value addition and initialization: As mentioned after the computation
of a given data block, the internal variables have to be added to the intermediate
hash value. If this addition were to be implemented in a straightforward manner,
8 adders would be required, one for each internal variable, of 32 or 64 bits
depending if SHA256 or SHA512 is being implemented. However, some hardware
reuse can be achieved. By analyzing the data dependency and the fact that most
of the internal variables do not require any computation, since their value is given
directly by the previous values of the other variables, taking into account that:

Ht = Gt−1 = Ft−2 = Et−3; (4)
Dt = Ct−1 = Bt−2 = At−3, (5)

the computation of the Digest Message for the data block i can be calculated
from the internal variables A and E, as:

DM7i = Et−3 + DM7i−1 ; DM3i = At−3 + DM3i−1;
DM6i = Et−2 + DM6i−1 ; DM2i = At−2 + DM2i−1; (6)
DM5i = Et−1 + DM5i−1 ; DM1i = At−1 + DM1i−1.

Thus the calculation can be performed by only 2 addition units, as:

DM(j + 4)i =Et−3+j + DM(j + 4)i−1 ; 1 ≤ j ≤ 3
DM(j)i =At−3+j + DM(j)i−1 ; 1 ≤ j ≤ 3. (7)

The selection of the corresponding part of the Digest Message (DMj), could be
performed by a multiplexer. However, taking into account the sequentiality in
which the values of DMj are used, a shifting buffer can be used, as depicted in
the right most part of Figure 3. Since the values At and Et require computation
and the final value is only calculated in the last clock cycle, the calculation of
the values DM0i and DM4i is performed in a different manner. Instead of using
one full adder, after the calculation of the final value of A and E, the Digest
Message (DM) is added during the calculation of their final values, by a Carry
Save Adder (CSA). Since the value of the previous Digest Message is known,
the value can be added during the first stage of the pipeline, not being on the
critical path, located in the second stage of the pipeline, where the full adders
are used. In the last round the value of A and E is not calculated, being directly
calculated the value of the Digest Message. During the normal round calculation
only the values At and Et can be computed, in these cases the input of the used
CSA is put to zero, as depicted in Figure 3.

After each data block has been computed, the internal values A to H have
to be re-initialized with the newly calculated Digest Message. This is performed
by a multiplexer that selects either the new value of the variable of the Digest
Message, as depicted in the left most side of Figure 3. Once more the values A
and E are the exception. Since the final value computed for these two variables

304 R. Chaves et al.

Fig. 3. SHA-2 round architecture

is already the Digest Message, the values are already loaded in the registers. An
enable signal is used in the A and E registers, in order to maintain these values
during the re-initialization of the other values.

In the first round the values of A to H also have to be initialized. All variables,
except A and E, are simply loaded with the values in the DM registers, depicted
in the leftmost part of Figure 3. For the A and E variables the value is fed through
the round logic. In this case the, all the variables are set to zero (Reset) except
the DM0 and DM4 inputs. Thus the resulting value for the A and E registers
will be the initialization values of the DM registers.

In the standard for the SHA-2 algorithm the initial value of the Digest Message
(loaded to the A to H variables) is a constant value, that can be loaded by using
set/reset signals in the registers. If the SHA-2 algorithm is to be used in a wider
set of applications and in the computation of fragmented messages, the initial
Digest Message is no longer a constant value. In these cases the initial value
is given by the IV that has to be loaded. This loading can be performed by
multiplexers at the input of the Digest Message registers. In order to optimized
the architecture the calculation structure for the Digest Message can be used to
load the IV , not being directly loaded into all the registers. The value of the A1
and E1 registers is set to zero during this loading, thus the existing structure
acts as a circular buffer, where the value is only loaded into one of the registers,
and shifted to the others.

Improving SHA-2 Hardware Implementations 305

This circular buffer can also be used to more efficiently read the final Digest
Message, in a structure with an interface with smaller output ports, since the
values are simply shifted and less multiplexes are required.

4 SHA-2 FPGA Implementation

In order to evaluate the proposed design, the resulting SHA256 and SHA512 hash
functions cores have been implemented in a Xilinx VIRTEX II Pro (XC2VP30-
7) FPGA using the Xilinx ISE (6.3) and SimplifyPro (8.4) tools. All the values
presented for our cores were obtained after Place and Route. A Custom Comput-
ing Unit (CCU) using these SHA-2 cores, has also been designed for the Molen
polymorphic computational model [13], in order to fully test the cores.

In order to fully exploit the capabilities of the reconfigurable device, some
design adaptation can be made. The main one lays in the use of fast carry chains
for Carry Propagate Adders (CPA) instead of CSA in both the first and in the
second pipeline stage, since they are able to achieve the same performance in
FPGA, with less area resources. For ASIC technologies, the structure depicted
in Figure 3 is more suitable. When implementing the SHA256 hash function,
a single BRAM can be used, since the 64 32-bits fit in a single 32-bit port
embedded memory. However, in the SHA512 hash function the operands have
64 bits, including the constant Kt. Since the existing BRAMs do not have 64-bit
ports, more than one would be required. However, they have a dual output ports
of 32 bits each. Thus the 80 64-bit constants can be mapped as two 32-bit words:
one port addresses the low part of the memory, with the lower 32 bits of the
constant and the other the high part of the memory with the higher 32 bits of
the same constant. With this, only one BRAM is used to generate the 64 bit
constant.

For the message schedule in the FPGA technology considered, CPA are also
used instead of CSA. The structure of the data expansion component is repre-
sented in Figure 4.

Mt

MUX

Wt

LoadWi

Wt-1

o0 o1

... ...

Wt-5 Wt-12 Wt-13

Fig. 4. SHA-2 data expansion module

These cores have also been integrated as a CCU for the MOLEN processor [13].
The MOLEN computational paradigm enables the SHA-2 core to be embedded
in a reconfigurable co-processor, tightly coupled with the core General Purpose
Processor (GPP). This, allows for a fast integration in existing software at a

306 R. Chaves et al.

small cost in terms of additional area. This polymorphic architecture uses the
FPGAs embedded PowerPC running at 300 MHz as a core GPP, with a main
data memory running at 100 MHz. The implementation is identical to the one
described in [12].

5 Performance Analysis and Related Work

Even though the SHA-2 cores have been developed with a VIRTEX II Pro FPGA
(XC2P30-7) as the target technology, they have also been implemented on a
VIRTEX (XCV400-6) and a VIRTEX II (XC2V2000-6), in order to compare
with the related art.

SHA 256 hash function core: The proposed SHA256 hash function core has
been compared with the most recent and most efficient related art, for both the
cores proposed in the academia and the best commercial core currently avail-
able,as far as it is known by the authors. The obtained comparison figures are
presented in Table 1. When compared with the most recent academic work [14,
8] the results show higher throughputs, from 17% up to 98%, while achieving
a reduction in area above 25% and up to 42%. These results suggest a signifi-
cant improvement to the Throughput per Slice (TP/Slice) metric in the range
of 100% to 170%. When compared with the commercial SHA256 core from He-
lion [15], the proposed core suggests an identical area value (less 7%) while
achieving a 40% gain to the throughput, resulting in an improvement of 53%
to the Throughput per Slice metric. Note that from the analyzed cores, ours is

Table 1. SHA256 core performance comparison

Architecture Sklav[14] Our McEv.[8] Our Helion[15] Our
Device XCV XCV XC2V XC2V XC2PV-7 XC2PV-7
IV cst yes cst yes cst yes
Slices 1060 764 1373 797 815 755
BRAMS ≥1 1 ≥1 1 1 1
Freq. (MHz) 83 82 133 150 126 174
Cycles n.a. 65 68 65 n.a. 65
ThrPut (Mbit/s) 326 646 1009 1184 977 1370
TP/Slice 0.31 0.84 0.74 1.49 1.2 1.83

the only one capable of loading the Initialization Vector (IV). In the proposed
FPGA implementation the logic required for the IV loading is located between
registers as depicted in Figure 3. If the IV loading mechanism were not present
the reconfigurable logic located in the CLB of the final register would be unused.
Thus one can say that the IV loading mechanism is implemented at zero cost.
Since this loading is performed with only an additional multiplexer located be-
tween registers, it does not influence the critical path of the circuit, as confirmed
by the implementation results. The structure proposed by McEvoy [8] also has

Improving SHA-2 Hardware Implementations 307

message padding hardware. This message padding is performed once to the end
of the message, and has no significant cost when implemented in software. Thus
the majority of the proposed cores and commercial core do not include the hard-
ware for this operation. McEvoy does not give figures for the individual cost of
this extra hardware. All the SHA256 cores have the data expansion hardware.

SHA 512 hash function core: Table 2 presents the implementation results for
our core and the most significant related art. The figures presented also suggest
a significant reduction to the required reconfigurable area, from 25% up to 60%,
while achieving a speedup to the hashing function. When compared with [14],
the core that requires less area from those compared, the proposed core requires
25% less reconfigurable logic while a throughput increase of 85% is achieved,
resulting in a Throughput per Slice metric improvement of 165%. From the
known proposed SHA512 cores, the unrolled core proposed by Lien in [16] is the
only one capable of achieving a higher throughput. However, this throughput
is only 4% higher, while requiring twice as much area (100% more) as the one
proposed in this paper. It should also be noticed that the results presented by
Lien in [16], do not include the data expansion module, that would most likely
influence the final throughput rate, not to mention the required area. Even in
this case the proposed core indicates a Throughput per Slice metric 77% higher.
All other analyzed cores have even lower values for this efficiency metric. Table 2
also presents the values for the VIRTEX II Pro implementation, for which the
core was originally developed.

Table 2. SHA512 core performance comparison

Architecture Sklav[14] Lien [16] Lien [16] Our McEv.[8] Our Our
Device XCV XCV XCV XCV XC2V XC2V XC2VP
Expansion yes no no yes yes yes yes
IV cst cst cst yes cst yes yes
Slices 2237 23841 35211 1680 2726 1666 1667
BRAMS n.a. n.a. n.a. 2 ≥1 1 1
Freq. (MHz) 75 56 67 70 109 121 141
Cycles n.a. n.a. n.a. 81 84 81 81
ThrPut (Mbit/s) 480 717 929 889 1329 1534 1780
TP/Slice 0.21 0.31 0.261 0.53 0.49 0.92 1.01

Polymorphic implementation of the SHA-2 cores: In order to integrate
the proposed core in the existing software applications and to easily test the
cores, they were integrated into the MOLEN polymorphic processor [13]. In
this processor the cores are integrated has a CCU, that can directly access the
main memory and communicates with the GPP via a set of exchange registers.
The core is evoked as the equivalent software function call. In order to use the
proposed cores as CCU units for the MOLEN processor, some additional logic
1 These values do not include the expansion data block, that in our architecture has

a cost of 224 slices.

308 R. Chaves et al.

is required. The CCU for the SHA256 core requires 994 Slices using in total 7%
of the available resources of the XC2VP30 FPGA. The CCU for the SHA512
core requires 1806 Slices using in total 13% of the available resources. In this
functional test, the CCU is running with same clock frequency as the main data
memory, operating at 100MHz. Table 3 presents the speedup achieved with the
use of this hardware core, when compared with the pure software algorithm.
The values presented are for the SHA256 kernel function. The values suggest a

Table 3. SHA256 polymorphic performances

Hardware Software
(Mbps) (Mbps) Kernel

Bits Cycles ThrPut Cycles ThrPut SpeedUp
512 354 434 30402 5.05 85
1024 552 556 60546 5.07 109
128k 50088 785 7718646 5.09 153

speedup up to 153 times for the SHA256 hash function, which is achieved when
the total size of the data is sufficiently large to compensate the initialization of
the core, achieving a throughput of 785 Mbit/s. When only one data block is
hashed the initialization time is still relevant, reducing the speedup to 85 times.
When at least two data block are sent, the initialization becomes less significant,
allowing already a speedup of 109%. The SHA512 CCU is capable of achieving
a maximum throughput of 1.2 Gbit/s.

6 Conclusions

The proposed hardware rescheduling and reutilization schemes for the SHA-2
algorithm implementations, allow for an improvement of both performance and
area resources. With the operation rescheduling, we were able to reduce the crit-
ical path in a similar manner as in the loop unrolling, without duplicating the
required hardware neither using more complex data expansion schemes. This
rescheduling also allows the usage of a well balanced pipeline structure that
does not need additional control logic, and where both stages are always being
used. The required reconfigurable resources are also significantly reduced due to
the way the Digest Message is added to the intermediate values, requiring less
multiplexers and adders. By adding and loading the variables A and E through
the round hardware, area can also be saved and one less computational cycle
is required to add the Digest Message. Experimental results shown a significant
gain compared to the existing commercial cores and related academia art. For
the SHA256 hash function, the proposed core is capable of achieving a 17%
higher throughput with an area reduction of 42%. When compared with the
Helion commercial core a 40% higher throughput is achieved while reducing the
required area by 7%. As an efficiency measure, the Throughput per Slice metric

Improving SHA-2 Hardware Implementations 309

has been improved by 53% for the considered commercial core and more than
100% when compared with the related academic art. The SHA512 hash function
implementation suggest identical results, requiring 25% less reconfigurable re-
sources than the smallest related art while achieving a 85% higher throughput.
Even when compared with the unrolled architectures, the proposed core is capa-
ble of achieving identical throughputs, only 4% slower than the fastest proposal,
which uses loop unrolling, for a 50% area reduction. These values indicate an
improvement to the Throughput per Slice metric of at least 77% and up to 165%.
On a VIRTEX II Pro FPGA, the proposed cores are capable of a throughput of
1.37 Gbit/s for the SHA256 and 1.78 Gbit/s for the SHA512, with only 755 and
1667 slices usage, respectively.

References

1. Dadda, L., Macchetti, M., Owen, J.: The Design of a High Speed ASIC Unit for
the Hash Function SHA-256 (384, 512). In: DATE, IEEE Computer Society (2004)
70–75

2. Macchetti, M., Dadda, L.: Quasi-pipelined hash circuits. In: IEEE Symposium on
Computer Arithmetic, IEEE Computer Society (2005) 222–229

3. Dadda, L., Macchetti, M., Owen, J.: An ASIC design for a high speed implementa-
tion of the hash function SHA-256 (384, 512). In Garrett, D., Lach, J., Zukowski,
C.A., eds.: ACM Great Lakes Symposium on VLSI, ACM (2004) 421–425

4. Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P., Flidr, J., Lehman,
T., Schott, B.: Comparative analysis of the hardware implementations of hash
functions SHA-1 and SHA-512. In Chan, A.H., Gligor, V.D., eds.: ISC. Volume
2433 of Lecture Notes in Computer Science., Springer (2002) 75–89

5. McLoone, M., McCanny, J.V.: Efficient single-chip implementation of SHA-384 &
SHA-512. proc. of IEEE International Conference on Field-Programmable Tech-
nology (2002) 311–314

6. Sklavos, N., Koufopavlou, O.: Implementation of the SHA-2 hash family standard
using FPGAs. The Journal of Supercomputing 31 (2005) 227248

7. Ting, K.K., Yuen, S.C.L., Lee, K.H., Leong, P.H.W.: An FPGA Based SHA-256
Processor. In Glesner, M., Zipf, P., Renovell, M., eds.: FPL. Volume 2438 of Lecture
Notes in Computer Science., Springer (2002) 577–585

8. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 family of hash functions on FPGAs. IEEE Computer Society Annual Sym-
posium on Emerging VLSI Technologies and Architectures (ISVLSI’06) (2006) 317–
322

9. Michail, H.E., Kakarountas, A.P., Selimis, G.N., Goutis, C.E.: Optimizing SHA-1
hash function for high throughput with a partial unrolling study. In Paliouras,
V., Vounckx, J., Verkest, D., eds.: PATMOS. Volume 3728 of Lecture Notes in
Computer Science., Springer (2005) 591–600

10. NIST: Announcing the standard for secure hash standard, FIPS 180-1. Technical
report, National Institute of Standards and Technology (1995)

11. NIST: The keyed-hash message authentication code (HMAC), FIPS 198. Technical
report, National Institute of Standards and Technology (2002)

12. (Omitted due to the blind review submission)

310 R. Chaves et al.

13. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The Molen polymorphic processor. IEEE Transactions on Computers (2004)
1363– 1375

14. Sklavos, N., Koufopavlou, O.: On the hardware implementation of the SHA-2
(256,384,512) hash functions. proc. of IEEE International symposium on Circuits
and systems (ISCAS 2003) (2003) 25–28

15. HELION: Fast SHA-2 (256) hash core for xilinx FPGA. http://www.heliontech.
com/ (2005)

16. Lien, R., Grembowski, T., Gaj, K.: A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512. In: CT-RSA. (2004) 324–338

Appendix I - SHA-2 Operations

In this appendix the several operations for the SHA2 algorithm are described. In
Table 4 the logical operations Ch, Maj, Σi, and σi are presented, where ⊕ rep-
resents the bitwise XOR operation, ∧ the bitwise AND operation, ROTRn(x)
the right rotation operation by n bits, and SHRn(x) the right shift operation
by n bits.

Table 4. SHA256 and SHA512 functions

Designation Function
Maj(x,y,z) (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)
Ch(x,y,z) (x ∧ y) ⊕ (x ∧ z)∑{256}

0 (x) ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)∑{256}
1 (x) ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

σ
{256}
0 (x) ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)

σ
{256}
1 (x) ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)∑{512}
0 (x) ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)∑{512}
1 (x) ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

σ
{512}
0 (x) ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ
{512}
1 (x) ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

Offline Hardware/Software Authentication for
Reconfigurable Platforms

Eric Simpson and Patrick Schaumont

Virginia Tech, Blacksburg VA 24060, USA
{esimpson, schaum}@vt.edu

Abstract. Many Field-Programmable Gate Array (FPGA) based sys-
tems utilize third-party intellectual property (IP) in their development.
When they are deployed in non-networked environments, the question
raises how this IP can be protected against non-authorized use. We de-
scribe an offline authentication scheme for IP modules. The scheme im-
plements mutual authentication of the IP modules and the hardware
platform, and enables us to provide authentication and integrity assur-
ances to both the system developer and IP provider. Compared to the
Trusted Computing Platform’s approach to hardware, software authen-
tication, our solution is more lightweight and tightly integrates with
existing FPGA security features. We are able to demonstrate an im-
plementation of the authentication scheme that requires a symmetric
cipher and a Physically Unclonable Function (PUF). In addition to the
low hardware requirements, our implementation does not require any
on-chip, non-volatile storage.

1 Introduction

The latest generation of Field Programmable Gate Arrays (FPGAs) can accom-
modate complex systems containing embedded hardware and software. While
they are often used in a constrained, non-networked environment, their con-
figuration presents a valuable piece of intellectual property that merits protec-
tion. Our contribution is an offline mutual authentication scheme for both the
hardware and software configuration of a reconfigurable platform. The mutual
authentication involves the FPGA chip manufacturers, who provide a standard
security module in each of their FPGAs, and the IP providers, who commit to
an identity for each release of their software. An FPGA system developer com-
bines chips and IP components in their product. Using the hardware identity
provided by the chip manufacturers and software identity committed to by the
IP providers, they are able to construct a product where hardware and software
components can authenticate each other.

In this section, we briefly review the roles that the chip manufacturers, IP
providers, and system developers play in the authentication scheme, along with
what it means to have a software or hardware identity. Also discussed is the
meaning of software in an FPGA and the role it plays in modern FPGA design.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 311–323, 2006.
c© International Association for Cryptologic Research 2006

312 E. Simpson and P. Schaumont

Fig. 1. Parties involved in modern FPGA design

1.1 Securing Intellectual Property in Modern FPGA Design

The rapidly increasing design capacity of FPGAs enables more complex and
bigger designs than ever before. Many current models of FPGAs not only support
traditional hardware design, but also have the ability to run embedded software.
The software in an FPGA executes in either an embedded hardcore processor like
the PowerPC, or in a softcore [1] that is synthesized with the rest of the hardware
design. These software modules are often developed and distributed by third-
party IP Providers. While design protection in FPGAs has been available for
some time in the form of configuration encryption [2], this technique is ineffective
at protecting third-party intellectual property and software modules. We point
out two key issues.

The first issue is that IP-methodologies require additional authentication. As
shown in Fig. 1, system developers design their product with a plug-and-play
methodology in which they adopt third-party intellectual-property components
(IP) for integration onto a chip. This IP can possibly come from multiple vendors
in the case of so-called System-on-Chip design (SoC). The result is an intriguing
multi-level authentication problem. At one level, system developers would like
to authenticate the IP they are running (Fig. 1, A), and at another level the IP
providers would like to authenticate the system into which they are integrated
(Fig. 1, B). In this paper, we will specifically consider the integration of software
IPs onto an FPGA platform, but it is understood that the need for authentication
in IP-methodologies is generic.

The second issue is that current FPGA security mechanisms have a limited
scope, focused on the hardware configuration. Bitstream encryption [3] for ex-
ample will enforce bitstream privacy and integrity, but it will not protect the
software running on the processors configured in the FPGA. In the case of
third-party IP, and specifically in the case of software IPs, additional protection
mechanisms are required.

Offline Hardware/Software Authentication for Reconfigurable Platforms 313

Fig. 2. Levels of Authentication

We present a solution to the above to problems, in the form of a protocol
and an architectural extension for FPGA-based design. We also demonstrate a
sample implementation and report on the complexity and performance of this
implementation.

The system setup that we are considering for our protocol development is
shown in Fig. 2. A hardware platform, designed by a System Developer, will be
configured into an FPGA. The System Developer will also use third-party soft-
ware IPs that execute on top of the platform. The System Developer can apply
bitstream encryption to protect the hardware configuration in the FPGA, but
an additional hardware-software authentication mechanism is needed to protect
the software IPs.

The outline of this paper is as follows. In Section 2 we describe the protocol
for enrolling the hardware and software identities in the authentication scheme.
Then, in Section 3 we discuss the protocol for distributing mutually authenti-
cated IP to system developers. After discussing the authentication protocol in
Sections 2 and 3, we analyze the security properties in Section 4. Finally, a low-
cost implementation of the offline, hardware, software authentication scheme is
presented in Section 5.

2 Enrollment Protocol

The enrollment phase involves three parties: the chip manufacturers, IP providers
and a trusted third-party that is used to store and communicate identity

314 E. Simpson and P. Schaumont

Developer
IP

Manufacturer

Trusted Third
Party

FPGA

Identity
SoftwareHardware

Identity

Fig. 3. Enrollment Phase

information among the participants. As shown in Fig. 3, the enrollment phase
is composed of two communication channels. One channel is used by the chip
manufacturer to communicate hardware identities to the trusted third-party, and
the other channel is used by the IP provider to communicate software identi-
ties. The definition of hardware and software identities is given in the following
sections.

2.1 Hardware Enrollment

In this phase, the manufacturer would like to distribute FPGAs that have the
ability to securely run third-party IP. To enable their customers to securely run
third-party IP, the FPGA manufacturers implement a standard security module
in each chip. This security module contains two distinct hardware blocks:

1. PUF - Used for hardware authentication and key generation
2. Block Cipher - Used for symmetric encryption and software authentication

The PUF is a device that maps inputs (challenges) to outputs (responses). The
mapping from a challenge to a response is determined by the physical properties
of the chip it is implemented in. Therefore, an identical PUF circuit implemented
on two different chips will result in different responses for the same challenge.
Several implementations for PUFs have been reported in literature [4,5].

After building their FPGAs, the manufacturer enrolls them in the authenti-
cation scheme by sending each chip’s identification information to the trusted
third-party. The identity is composed of two data items:

HW#: Public, unique 128-bit value that identifies the chip

−−−→
CRP : Private list of challenge, response pairs produced by the chip

To communicate the identity for each chip, the manufacturer opens an au-
thenticated and secure link to the trusted third-party (over SSL, SSH, etc.).
Over the authenticated and secure link, the manufacturer sends:

Manufacturer −→ TTP : HW#,
−−−→
CRP

Offline Hardware/Software Authentication for Reconfigurable Platforms 315

2.2 Software/IP Enrollment

The enrollment of IP providers in the authentication scheme allows system de-
velopers to verify the integrity and authenticity of the software they are running.
The identification information the IP provider sends to the trusted third-party
is composed of two data items:

IP# : Public, unique 128-bit value that identifies the name
and version of the intellectual property

Hash(SW, IP#) : Public hash of the IP# and software that the IP is
composed of

Like the chip manufacturer, the IP provider opens a secure and authenticated
link to the trusted third-party. For each version or release of their software, the
IP provider sends:

IPP −→ TTP : IP# , Hash(SW, IP#)

Since the IP Provider only has to commit to a hash of their IP, they don’t have
to trust the third-party with the actual software. Also, the IP provider doesn’t
have to make any changes to their development process to enroll in the authen-
tication scheme. They simply commit to a version and hash for each software
release. There is no need to embed watermarks [6], or any other identification
information in their software.

3 Authenticated IP Request and Distribution

Once the system developer has purchased FPGAs that have been enrolled in
the authentication scheme, the developer can request authenticated IP from the
trusted third-party. The request and distribution of an authenticated hardware-
software configuration requires four messages per IP module. The first three
messages, involving the trusted third-party, form the online phase of the protocol.
The fourth message does not require the trusted third-party and forms the offline
phase of the protocol.

The messages of the online phase are exchanged over a standard secure, and
authenticated link.

First, some definitions of the symbols used in the protocol:

Nonce : Number used once, a unique token used to ensure the freshness
of a message

Cttp, Rttp: Challenge, response pair used by the trusted third-party to
communicate the IP authentication and integrity data to the
system developer

Rip : Response used by the IP provider to encrypt and package their
software for the target hardware platform

Cip : Challenge that the target hardware can use to generate the Rip

used to encrypt the software.

316 E. Simpson and P. Schaumont

3.1 Request and Distribution Messages

(1) SYS −→ TTP : IP#, HW#, Nonce
(2) TTP −→ SYS : IP#, HW#, Cttp,{IP#, Hash (SW, IP#) , Cip, Nonce}Rttp

(3) TTP −→ IPP : IP#, HW#, Nonce, Rip

(4) IPP −→ SYS : IP#, HW#, {length, Nonce, SW}Rip

{IP#, Hash(SW, IP#), C , Nonce}
R ttp

(3) IP#, HW#, Nonce, Rip

Trusted Third
Party

Developer
System

Provider
IP

(1) IP#, HW#, Nonce

(4) IP#, HW#, {length, Nonce, SW}

ttp(2) IP#, HW#, C ,

ip

Rip

Fig. 4. Distribution Phase

3.2 Messages Explained

As shown in Fig. 4, the request and distribution of an authenticated hardware-
software configuration requires four messages between the system developer,
trusted third-party and the IP provider.

1. Message #1 is the system developer IP request to the trusted third-party.

2. Message #2 is sent by the trusted third-party to the system developer. The
message is encrypted using a CRP that the security module can generate
and use to decrypt the message. The message contains the requested IP’s
identity and integrity information. Also contained in this message is the
challenge that can be used by the security module to generate the response
used by the IP provider to encrypt their software.

3. Message #3 is the trusted third-party forwarding the system developer’s
request for IP to the IP provider. This message contains the response that
the IP provider will use as the key to encrypt their software.
After message #3, the trusted third-party is no longer involved in the mu-
tual authentication, and the protocol becomes off-line. At this point, the
IP provider can now securely package their software for a unique hardware
identity. While this package could be sent over the network, it could also be
in the form of a ROM chip that is given to the system developer.

Offline Hardware/Software Authentication for Reconfigurable Platforms 317

4. Once the system developer has received message #4 from the IP provider,
this data can be merged with authentication information contained in mes-
sage #2. At this point, the system developer has the following information:

(a) Cttp, {IP#, Hash (SW, IP#) , Cip, Nonce}Rttp

(b) {length, Nonce, SW}Rip

Part (a) of the message contains the necessary information to validate the
authenticity and integrity of the software, and the software is assured that
only the target hardware can decrypt the IP contained in part (b). Since the
security module is the only one that can generate the required responses to
decrypt the data, the merged message can then be saved to insecure storage
by the system developer. This IP containing message can then be validated,
loaded, and run by the offline FPGA indefinitely.

While the initial request and distribution of the messages involve active com-
munication, the last stage of verification is able to be performed in an offline
context. It is important that the last authentication stage can be performed of-
fline because many systems are deployed in non-networked environments. This is
an important distinction from protocols that require interactive zero-knowledge
proofs [7,8], or active dialogue to perform authentication [9].

4 Analysis

The protocol is secure against cheating attempts by either the system developer,
or IP provider.

4.1 Tampering with Data from the TTP

Since the response from the TTP in message #2 is encrypted with a random
response, only the developer who possesses the target hardware with a valid
security module, will be able to decrypt the message. Also, in order to create a
fake encrypted portion of the message, the attacker needs to know the mapping
from Cttp to Rttp, which is infeasible due to the properties of the PUF. Invalid
messages in this step can be detected when the plaintext IP# doesn’t match
the IP# contained in the encrypted portion of the message.

4.2 Tampering with Data from the IP Provider

There are two hurdles an attacker must overcome to tamper with the software
received by the system developer in Message #4. The first hurdle is that the
attacker must not only know the Cip the TTP sent in Message #2, but also
the mapping from Cip to Rip. In addition, any modifications to the data will
be detected when the Hash(SW, IP#) doesn’t match the expected data, or the
Nonces don’t agree.

318 E. Simpson and P. Schaumont

4.3 Collusion Scenarios

Using an example from today’s marketplace, it is interesting to look at the
possible sources of cheating and fraud between the various parties. The parties
are defined as follows:

System Developer: Customer designing a product or prototype

TTP: Fabless company that designs the actual FPGAs

IP Developer: Value-added seller that produces IP for a specific
company’s FPGAs

Chip Manufacturer: Third-party company that manufacturers the TTP
designed chips

The company that designs the actual FPGAs is the trusted third-party in
this scenario, because they have an incentive to be trustful to both the system
developers that purchase their chips, and the IP providers that develop for their
FPGAs. Since the FPGA designer is in the business of selling chips, it is desirable
to have a a complete design portfolio of IP components available for their FPGAs.
By designing the security module into their chips, they can assure IP providers
that their chips provide a secure environment from IP piracy. Therefore, if the
FPGA designing company wants to stay in business, they must stay trustworthy
to both their chip purchasing customers and IP providers. For example, if they
distributed a CRP that enabled a system developer to pirate an IP module, the
FPGA designer would lose all trust and likely see an exodus of IP providers from
their platform.

By having the trusted third-party directly generate the list of CRPs, the au-
thentication system also protects the FPGA designer from a chip manufacturer
who overbuilds and directly sells the FPGA designer’s product. Since the over-
built chips will not be in the TTP database, these chips will not be authorized
to run authenticated, third-party IP. In addition, when a system developer uses
a counterfeit chip, the FPGA designer will directly notice the counterfeits.

4.4 Implementation Practicality

One system issue is the ability of the TTP to store the authentication data. As
an example, for each chip the TTP must store the hardware ID along with a
CRP list. Making a rough estimate of 1,000 CRPs for each chip, this results in a
storage requirement of 250KB per chip. Therefore, a TTP would be able to store
the authentication data for a 1,000,000 chips on a single 250GB disk. Given that
many of today’s workstations have 250GB worth of storage, this is certainly a
reasonable storage requirement.

Also, implementing IP authentication into the development process is a reason-
able consideration as well. Given the fact that FPGA designers already distribute

Offline Hardware/Software Authentication for Reconfigurable Platforms 319

development software to system developers, implementing IP authentication into
these tools would be of similar complexity. Therefore, integrating an authenti-
cated IP distribution scheme into the development process does not appear to be
an unreasonable task.

5 Results

The security module for the reconfigurable platform was developed on a Xilinx
Spartan-3 FPGA. The security module block diagram is presented in Fig. 5. The
authenticated IP is stored in an off-chip memory module and loaded into the
FPGA on power-up. The security module’s Protocol Controller is responsible
for detecting the presence of authenticated IP on the input lines and coordinat-
ing the load of authenticated IP. The transfer from the external store into the
security module is done over an 8-bit bus, with full-handshaking. Once the data
is inside the security module, all data is passed over a shared 128-bit bus be-
tween the Protocol Controller, AES module and the PUF. All processing is done
in a fully parallel manner, such that the AES block, PUF and IO can overlap
execution. Therefore, after one IP block has completed authentication and is be-
ing loaded into FPGA for execution, another can be undergoing authentication,
while the next IP block is simultaneously being loaded into the security module.

IO−OUT

IO−IN

Security Module

AES PUF

FPGA
Fabric

PROM SW/IP
Storage

Get CRPs Controller
Protocol

Fig. 5. Security Module block diagram

Whether the security module is loading authenticated IP or generating CRPs
is determined by a leading opcode. Currently the opcode is one byte, with two
predefined opcodes. One opcode is used to instruct the security module to gener-
ate a CRP, while the other causes IP to be loaded through the security module.
Therefore, authenticated IP is stored in the following three-part format:

320 E. Simpson and P. Schaumont

1. Opcodeload

2. Cttp, {IP#, Hash (SW, IP#) , Cip, Nonce}Rttp

3. {length, Nonce, SW}Rip

An important note is that the authentication scheme is not limited to loading
a single authenticated IP module. The FPGA can load an arbitrary number of
IP components through the security module. Even while running, the system can
be configured to load new IP modules, or to swap old ones out of the system.

Generating a
−−−→
CRP requires the following message:

1. OpcodeCRP , seed, # of pairs to generate

Where the seed is a random number used to seed the PUF, and the number of
pairs to generate is a 64-bit integer. The CRP list is generated by the following:

C0 = PUF (PUF (seed)) (1)
R0 = PUF (C0) (2)

For i = 1 to # of pairs to generate
Ci = Ri−1 (3)
Ri = PUF (Ci) (4)

The system was designed and simulated using the the GEZEL language and
environment [10]. In addition to decrypting incoming IP modules, the AES cipher
is also used to compute hashes as in Cohen’s AES-hash NIST proposal [11]. We
have not yet built a PUF implementation, but have simulated its behavior using
another AES block with a fixed key.

Since GEZEL is a cycle-based hardware description language, most of the work
and simulation was completed before translating the GEZEL code to VHDL. The
translation from GEZEL to VHDL was done by the fdlvhd tool provided by the
GEZEL environment. After translation, the VHDL was synthesized and mapped
to a Spartan-3 FPGA using Xilinx’s toolchain. The results are summarized in
Table 1.

Table 1. Security Module Synthesis

Component HW Slices Speed
Protocol Controller (Input) Spartan-3 169 202 MHz
Protocol Controller (Output) Spartan-3 142 187 MHz
AES Spartan-3 2046 124 MHz
Simulated PUF Spartan-3 2025 124 MHz

As expected, the hardware requirements are dominated by the AES and simu-
lated PUF. The important note though, is the low complexity and requirements

Offline Hardware/Software Authentication for Reconfigurable Platforms 321

of the Protocol Controller. Couple this protocol model with some of literature’s
low cost symmetric cipher and PUF implementations and this offline mutual
authentication scheme not only fills a needed security gap in modern FPGA
design, but is also low cost.

5.1 Related Work

While AES was chosen as the symmetric cipher, and a simulated PUF was used,
it’s important to note that our offline hardware, software authentication scheme
only requires a single symmetric cipher, and a single PUF. This is in contrast to
the Trusted Computing Group’s (TCG) authentication scheme that requires the
following components be implemented in their trusted platform module (TPM)
[12,13]:

Non-volatile storage for storing various keys and authorization data

True random-bit generator for key and nonce generation

SHA-1 Engine for computing signatures

RSA Key Generation for at least a 2048-bit modulus

RSA Engine for digital signatures and encryption/decryption

Compared to the recommended components for the TPM, our security module
is more practical to implement as a standard module in FPGAs. Also, the TPM
requirement for secure on-chip non-volatile storage isn’t likely to be met by
current reconfigurable platforms.

In [14] the authors present a solution to the shortcomings of the TCG specifi-
cations with regards to sealed data. Our work is orthogonal to [14] because their
focus is primarily on data that has been sealed to a particular TPM. This results
in a different problem domain because the data we are protecting is not unique.
While the data that an individual produces can be unique and irreplaceable,
the protected software delivered to our security module is neither unique, nor
irreplaceable. Instead, the software is able to duplicated by the IP provider on
demand. Therefore, when switching to a new FPGA, the system developer can
simply make a request to the TTP for another copy of the IP. The previously
distributed software doesn’t have to be exported in a secure way because it can
be duplicated by the IP provider. If our authentication scheme was to be ex-
tended to protecting not only hardware and software, but also unique data, the
ideas from [14] would be good addition for managing the secure data.

Other relevant work was done in [15] where the authors implemented a secure
and cost-optimized verson of a TPM for hand-held devices. The work describes an
architecture to cleanly implement the Trusted Computing Group specifications
[12] in a hand-held context. By focusing on the ability to implement the TCG
specifications though, this implementation has the same requirements as a stan-
dard TPM. A notable exception to the standard TPM implementation is that the

322 E. Simpson and P. Schaumont

authors discuss the possibility of using a PUF based system to avoid the need for
onchip non-volatile memory to store secrets. Other relevant work that our secu-
rity module could benefit from is in the [15] authors work on secure debugging
interfaces and methods.

6 Conclusions

The use of intellectual-property components in FPGA-based design leads to
new and particular security requirements. The protection of the configuration
bitstream itself is insufficient to cope with multiple IP originators, and moreover
it does not offer adequate guarantees with respect to IP protection. Our results
show that a protocol can be designed that offers the required protection while
meeting the constraints of a small embedded and offline implementation. We also
don’t require a major modification of the design process. In fact, our protocol
can be made backward compatible with existing approaches for downloading
FPGA bitstreams.

We believe that our scheme is applicable to situations outside of FPGA design,
and are presently investigating its use in the context of other implementation
technologies, as well as in the context of different forms of IP, including data
and hardware IP blocks.

References

1. Moyer, B.: Using softcore-based FPGAs to balance hardware/software needs in a
multicore design. Embedded System Design Magazine (2006)

2. Feng, J.: FPGA design security. ECN Magazine (2006) 23–24
3. Inc., X.: Using bitstream encryption. Handbook of the Virtex II Platform (2003)
4. Gassend, B.: Physical Random Functions. Master’s thesis, Massachusetts Institute

of Technology (2003)
5. Suh, G.E., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design and Implementation

of the AEGIS Single-Chip Secure Processor Using Physical Random Functions.
SIGARCH Comput. Archit. News 33 (2005) 25–36

6. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkon-
jak, M., Tucker, P., Wang, H., Wolfe, G.: Watermarking techniques for intellectual
property protection. In: Design Automation Conference. (1998) 776–781

7. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1
(1988) 77–94

8. Bellare, M., Palacio, A.: Gq and schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: CRYPTO. (2002)
162–177

9. Otway, D., Rees, O.: Efficient and timely mutual authentication. Operating Sys-
tems Review 21 (1987) 8–10

10. Schaumont, P., Ching, D.: GEZEL homepage. http://rijndael.ece.vt.edu/gezel2
(2006)

11. Cohen, B., Laurie, B.: AES-Hash. NIST: Modes of Operation for Symmetric Key
Block Ciphers (2001)

12. Group, T.C.: TCG Specification Architecture Overview. (2004)

Offline Hardware/Software Authentication for Reconfigurable Platforms 323

13. DoCoMo, N., IBM, Corporation, I.: Trusted Mobile Platform Hardware Architec-
ture Description. (2004)

14. Kuhn, U., Kursawe, K., Lucks, S., Sadeghi, A.R., Stuble, C.: Secure Data Manage-
ment in Trusted Computing. In: Cryptographic Hardware for Embedded Systems
(CHES 2005). (2005)

15. Khan, M., Seifert, J., Wheeler, D.M., Brizek, J.P.: A platform-level trust-
architecture for hand-held devices. In: Cryptographic Advances in Secure Hardware
(CRASH 2005). (2005)

Why One Should Also Secure RSA Public Key
Elements

Eric Brier1, Benôıt Chevallier-Mames1,2,
Mathieu Ciet1, and Christophe Clavier1

1 Gemalto, Security Labs,
La Vigie, Avenue du Jujubier, ZI Athélia IV,

F-13705 La Ciotat Cedex, France
firstname.familyname@gemalto.com

2 École Normale Supérieure, Département d’Informatique,
45 rue d’Ulm,

F-75230 Paris 05, France

Abstract. It is well known that a malicious adversary can try to retrieve
secret information by inducing a fault during cryptographic operations.
Following the work of Seifert on fault inductions during RSA signature
verification, we consider in this paper the signature counterpart.

Our article introduces the first fault attack applied on RSA in standard
mode. By only corrupting one public key element, one can recover the
private exponent. Indeed, similarly to Seifert’s attack, our attack is done
by modifying the modulus.

One of the strong points of our attack is that the assumptions on the
induced faults’ effects are relaxed. In one mode, absolutely no knowledge
of the fault’s behavior is needed to achieve the full recovery of the private
exponent. In another mode, based on a fault model defining what is called
dictionary, the attack’s efficiency is improved and the number of faults
is dramatically reduced. All our attacks are very practical.

Note that those attacks do work even against implementations with
deterministic (e.g., RSA-FDH) or random (e.g., RSA-PFDH) paddings,
except for cases where we have signatures with randomness recovery
(such as RSA-PSS).

The results finally presented on this paper lead us to conclude that
it is also mandatory to protect RSA’s public parameters against fault
attacks.

Keywords: RSA, Standard Mode, Fault Cryptanalysis, Seifert’s Attack.

1 Introduction

1.1 Basics

RSA [16] is today the most widely used public key cryptosystem. Let n = pq be
the product of two large primes typically of 512 to 1024 bits. Let e be the public
exponent, coprime with ϕ(n) = (p − 1)(q − 1), where ϕ(·) is the Euler totient
function. The public exponent e is linked to the so-called private exponent d by
equation ed ≡ 1 (mod ϕ(n)).

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 324–338, 2006.
c© International Association for Cryptologic Research 2006

Why One Should Also Secure RSA Public Key Elements 325

Basically, in RSA cryptosystem [3, 4, 14], public operations (i.e., signature
verification or encryption) are done by computing an e-th power, while private
operations (i.e., signature generation or decryption) are done by computing a
d-th power. To speed up private operations, an efficient technique based on the
Chinese Reminder Theorem was proposed [15]: this is referred to the CRT mode,
by opposition to the standard mode.

RSA and Physical Attacks. The security of the RSA public key cryptosystem
is linked to the hardness of the factorization. In addition, when implementing
cryptosystems, one needs to be very careful about information leakage, which
else would allow so-called side-channel analysis [11].

In 1996, another type of attacks, called fault attacks, has been introduced
against the RSA CRT implementation [6]. This attack is known as the Bellcore
attack : only one fault induction on one half of the computation suffices to recover
the modulus factorization from one correct and one faulty signature, by just
computing a greatest common divisor. However, in case of the use of random
padding, the Bellcore attack cannot be applied.

Nowadays, in case of the standard RSA, there is only one known fault induction
attack in order to recover the private exponent. This attack is based on flipping
bits of the private exponent one per one.1

Type of Faulted Parameters. All the previous methods are based on fault
induction against private parameters.2 An exception is presented in a recently
published article by Seifert [17], where he proposes for the first time to attack
the public part of RSA signature scheme, i.e., signature verification. The RSA
scheme itself is not endangered, i.e., the attacker is not able to forge new valid
signatures, but Seifert’s attack allows the attacker to pass — with a certain
probability — the signature verification step, for a message of her choice, by
corrupting the public modulus: all in all, the attacker’s goal is fulfilled, but the
attack is “one shot”, in the sense that it needs to be launched again to produce
another wrong acceptance.

1.2 Our Contribution

In this paper, we propose the first fault attack that can be used against RSA in
standard mode, to recover the private exponent by corrupting only public key
elements. This point is very critical, as other existing attacks already target the
private exponent, which should in essence be protected against faults. On the
contrary, prior to our paper, it was unclear whether it was necessary or not to
protect public elements: our paper clarifies this point by concluding that RSA
public key elements also have to be protected against fault attacks.

Our attack has the same starting point as Seifert’s one: it consists in corrupt-
ing the public modulus. However, Seifert’s attack allows the attacker to pass
1 This attack can also be generalized to modify small sets of bits, typically bytes.
2 Inducing fault against public method has also been considered in the case of elliptic

curves [5,8].

326 E. Brier et al.

a signature verification (with a certain probability), while our attack allows a
full key recovery. Once the key is recovered, the adversary gets all power, while
Seifert’s attack allows just a single false acceptance.

An additional key property of our attack is that, in one of its mode, the
attacker needs absolutely no knowledge of the fault effect. No matter what the
fault’s effect is, she might recover the private exponent. This clearly improves
upon Seifert’s attack (where the attacker must guess the faulty modulus), or
upon flipping bit attack (where the fault attack must be unrealistically precise).

In another mode, our attack can be improved. With the help of a fault model,
we are able to dramatically reduce the number of faults needed to fully recover
the private key. As explained later, the attacker is not assumed to be so powerful,
as her knowledge of the fault she produced may be probabilistic or unprecise:
some of the off-line phases of the attack are proposed to deal with uncertainty.

The new fault attacks presented in this article apply to standard RSA and
not to the CRT mode. Moreover, fixed paddings (e.g., RSA-FDH [3]) or random
paddings with joint randomness (e.g., RSA-PFDH [9]) do not influence the attack.
The only limitation is in case of the signature with randomness recovery (e.g.,
RSA-PSS [4]) where the problem remains open.

1.3 Organization of the Paper

This article is organized as follows. In Section 2, we remind the background
regarding fault attacks and the novelty introduced by Seifert. The core of our
paper begins at Section 3 where we define the general framework of our attack.
Then, in Section 4, we introduce the first mode of our attack, where the adversary
needs no particular knowledge about the fault induced on the device. Later, in
Section 5, we refine our attack to the case where a model of the fault attack is
accessible to the adversary. Finally, we conclude in Section 6.

2 Preliminaries

In the paper, the notation DL(µ, s, n) is used to express the discrete logarithm
of s with respect to the basis µ modulo n, which either is an integer defined
modulo the multiplicative order of µ mod n or does not exist mean that s is
not a power of µ mod n. Clearly, it can be generalized to any prime power pa

dividing n, and any integer r dividing the multiplicative order of µ mod pa as
DL(µ, s, pa) mod r (denoted DL(µ, s, pa, r) in the sequel), which is an integer
defined modulo r or does not exist.

We remind that for relatively small value of r — say from 15 to 20 digits —,
the discrete logarithm DL(µ, s, n, r) can be computed efficiently by square root
methods such as baby-step giant-step or Pollard’s rho [12].

2.1 Fault Models

Fault based attacks can be realized in practice by various ways. In the past,
it was possible on certain components to induce faults using VCC glitches [1].
Nowadays, chips are designed to resist such fault induction means.

Why One Should Also Secure RSA Public Key Elements 327

The best tools today to inject fault is certainly using a laser [2]. The effects
of the fault may vary according to the component, to the type of laser used,
to the various smart mechanisms implemented by the hardware designers etc.
Various fault models are commonly considered according to the “hypothetical”
capabilities of the attacker, in terms of location and timing precision of her
faults.

From a practical point of view, the fault effect is highly dependent on the
component. The most simple fault to induce is to change a word (whose size
depends on the architecture) in an undetermined way. This can simply be ob-
tained by inducing a fault on address decoders for example, when parameters
stored in EEPROM or in Flash are transferred to RAM. If this transfer in-
cludes a random ordering, then the location, in terms of word index is also
unknown.

For some component the effect of the fault can be known, eventually with some
probability. In the literature, single bit flip models are sometimes considered.
However, this is not so easy to make in practice whereas faulty word models are
very realistic. Moreover, a distinction is also done between permanent (sticky
bits) and transient faults: in the following we mainly consider values changed
from the beginning to the end of their use in a processus.

In this paper, we make less assumptions on the attacker’s injection capabilities
and stick a more realistic model

2.2 About the Attack of Seifert and Muir

Before going further, let us first give a brief description of the Seifert’s paper
that motivated this article [17] and its generalization by Muir [13]. For the sake
of simplicity, the attack is called Seifert’s attack in the rest of this article. We
refer the interested reader to the original papers for further details.

The basic principle of Seifert’s attack is the following: the attacker tries to
find (off-line) a faulty modulus n′ such that the public exponent e and ϕ(n′) are
coprime, and such that n′ is a possible or even plausible faulty value of modulus
n. To this aim, the adversary should use a fault model.

Furthermore, the attacker needs to compute efficiently the inverse of e mod
ϕ(n′). This is possible when the factorization of n′ is known. Once d′, the inverse
of e mod ϕ(n′) is computed, the attacker constructs a signature s′ = µd′

mod n′.
This first operation, that consists in trying to find a n′ satisfying an useful

property and constructing an associated “faulty” signature, is done before the
attack. Then, an on-line procedure is carried out: the attacker executes the
signature verification algorithm with (s′, µ) as input, and tries to inject a fault
during this procedure in order to proceed computations modulo targeted n′

instead of modulo n. Clearly, the probability of success, and so the average
required number of faults, is dependent on the accuracy of the fault model and
the capability for an attacker to produce an enough precise fault to be able to
obtain the faulty modulus n′ with non negligible probability.

328 E. Brier et al.

3 Framework of Our Extensions to Seifert’s Attack

Seifert’s attack succeeds in forging a signature that is accepted as valid, but does
not reveal any information about the private key elements. Some unauthorized
access can be granted but the RSA key itself is not broken.

In the sequel, extensions of Seifert’s attack are presented. They let an at-
tacker recover the private exponent d from several faulty computations when
the modulus is altered before a standard RSA exponentiation.

3.1 General Description and Constraints of Our Attack

General Methodology. Similarly to [17,13], our fault attack consists in mod-
ifying the modulus before an RSA exponentiation. The operation s = µd mod n
is targeted, and several faults are induced to collect faulty signatures from which
the attacker learns the private exponent d.

Definition 1 (Fault campaign, Fault couples). It is said that an attacker
processes the fault attack campaign if she executes the exponentiation s =
µd mod n I times, and corrupts these executions by changing the modulus n
into unknown moduli n′

i, to obtain fault couples (µi, si)1≤i≤I .

Paddings. A general constraint comes from the use of RSA in real life: it is
folklore knowledge that one needs to use functions (called paddings, and denoted
Λ) that reduces the malleability of the RSA prior to the exponentiation. Some of
the paddings are deterministic — i.e., µ = Λ(m)—, others are probabilistic —
i.e., µ = Λ(m, r).3 In the probabilistic case, the randomness can be either joint
or self-recovered.

Because of redundancy checks of the paddings, after the decryption phase
(e.g., in RSA-OAEP), exploitation of fault attacks during decryption is generally
not possible, and so decryption is out of scope of this paper. For signatures,
fault attacks might be possible if µi are known to the attacker. It is the case
when the padding is deterministic (e.g., RSA-FDH) or if the randomness is joint
with the signature (e.g., RSA-PFDH). On the contrary, if the randomness is self-
recovered from the signature (e.g., RSA-PSS), then the faulty result does not
allow recovering µi and our attack cannot be done.

From now, we suppose the attacker can compute bases µi used during the
faulty exponentiations.

3.2 Dictionary of Moduli

The literature is plenty of fault models (cf. Section 2.1) that would allow the
adversary to guess how she could have modified the modulus n into n′

i during
the faulty exponentiations. Once such a choice is made, the adversary is then
able to construct a dictionary.

3 The notations here are obvious: m is the message, and r is the randomness.

Why One Should Also Secure RSA Public Key Elements 329

Definition 2 (Dictionary). Depending on a fault model that the attacker might
have experimented, the attacker may be able to establish a priori a list of possible
values for the faulty moduli n′

i. Such a list is called a dictionary (of moduli).

Whether a dictionary is available to the attacker governs which methods she
may use to recover the private exponent d. As shown below, if an attacker has
access to a dictionary, then the main part of her work is to learn which of the
possible moduli of the dictionary was used for a given fault.

A dictionary is not necessarily mandatory and a first general method where
no dictionary is needed is presented in the next section. This particularly implies
that no fault model is required.

4 Recovering the Private Exponent Without Dictionary

This section describes a method to recover the private exponent d when the
attacker has no clue about what value a faulty modulus may take. This corre-
sponds to an attacker who is unable to predict or identify any fault model from
the experimental setting of the attack. Note also that in the case where the at-
tacker has actually identified a fault model and that the induced dictionary is
too large to be practically handled (typically 232 entries) the attacker may ignore
this “useless” dictionary and place herself in the context of no dictionary as well.

For the sake of clarity, in the description of the different attacks, we denote by
p’s the (possible) divisors of n′

i, and by q’s the (possible) divisors of the orders
of considered subgroups. Of course, these integers are not to be confused with
the unknown factorization of targeted modulus n.

4.1 General Description of the Attack

Once the fault campaign is performed, the attacker knows some fault couples
(µi, si)1≤i≤I , corresponding to unknown moduli n′

i �= n, related by si = µd
i mod

n′
i. Input µi and output si are known to the attacker while n′

i is unknown and
modeled as uniformly distributed over the integers less than 2�n , where �n is the
modulus bitsize.

From the data of the fault campaign, the private exponent d is retrieved off-
line, by progressively determining d mod rk, for some small prime powers rk.
When the product R =

∏
k rk exceeds the modulus n (and so unknown ϕ(n)), d

can be recovered by means of the Chinese Remainder Theorem.

Improving the Fraction of Bits of d to Know. If e is small (typically e = 3
or e = 216 + 1), then the equation relating public and private RSA exponents

ed = 1 + kϕ(n) = 1 + k(n + 1− α)

can be used in order to reduce the fraction of d’s bits the attacker has to find to
recover d. Here α is an unknown value, and k verifies 0 < k < e . If k is known,
or guessed by exhaustive search when e is small, we have

d =
1 + k(n + 1)

e
− kα

e

330 E. Brier et al.

where the unknown part kα/e verifies (assuming balanced factorization of n):

kα

e
< α < 2� ln

2 +1� .

Denoting u =
⌊

�n

2 − 1
⌋
, d may be expressed as d = d2u + d, where d is known,

and 0 < d < 2u is unknown. Knowledge of d mod R implies knowledge about
d mod R, so that d may be retrieved as soon as R is

⌈
�n

2 + 1
⌉

bits long. Hence,
in the following, for each attack, the two cases e small or e relatively large are
considered. It is thus possible to see how much it reduces the number of faults
required.

4.2 A Useful Proposition

Before detailing the off-line part, we state the following heuristics used hereafter.

Proposition 1. Let (µi, si) be a fault couple corresponding to modulus n′
i, and

pa a prime power such that p � µi and p � si. Let also δ be the multiplicative
order of µi modulo pa. Then, for any r dividing δ we have:

d ≡ DL(µi, si, p
a) (mod r) (1)

with probability 1 if pa | n′
i, and probability close to 1

r otherwise.

Proof. By definition, si = µd
i mod n′

i. Hence, when pa | n′
i, we have:

si ≡ µ
d mod ϕ(pa)
i (mod pa)

≡ µd mod δ
i (mod pa)

so that d ≡ DL(µi, si, p
a) (mod δ), from which Equation (1) follows.

On the contrary, when pa � n′
i, we admit that uniform distribution of n′

i over
the integers implies quasi uniform distribution of DL(µi, si, p

a) over residue
classes modulo r, hence the proposition. ��
Of course, without knowing n′

i, it is impossible to decide which pa can be used
to determine d mod r with certainty, for some divisors r of ϕ(pa). Nevertheless,
Proposition 1 suggests that, even if n′

i is unknown (and so its factorization),
one can mount an attack based upon a bias in favor of the true value dr of the
residue class of d modulo r.

4.3 The Off-Line Phase

The basic idea is that determining dr for some integer r, may be achieved by
considering some pa for which r | ϕ(pa), and by taking the discrete logarithm
of si in base µi modulo pa. From Proposition 1, and provided that r also di-
vides the multiplicative order of µi modulo pa, the probability distribution of
DL(µi, si, p

a, r) is:

Pr ((DL(µi, si, p
a, r)) = x)) =

{
1
pa + pa−1

r·pa if x = dr

pa−1
r·pa if x �= dr

Why One Should Also Secure RSA Public Key Elements 331

By computing the value DL(µi, si, p
a, r) for all the fault couples of the fault

campaign, and counting how many times each residue class is suggested, we
expect that the correct value dr emerges from the noise, and is suggested more
often than others.

Note that the value of the bias

ε =
1
pa + pa−1

r·pa

pa−1
r·pa

− 1 =
r

pa − 1

vanishes proportionally to pa − 1. This means that given r, the smaller pa, the
larger the bias, and the smaller the number of faults needed to determine dr.
This suggests Algorithm 1. which, given r as input, tries to find the residue
class dr. Among all possible values of pa such that r | ϕ(pa), this algorithm only
considers the smallest prime p such that r | p− 1 as this choice gives the largest
possible bias with high probability.

Algorithm 1. Predicting d mod r by counting method
Input: r = qf , a small power of a small prime
Output: A prediction for dr = d mod r

Initialize an array count[0, . . . , r − 1] to zero.

\\Phase 1: Search for the least prime p so that r | p − 1

p ← 2r + 1
while p is not prime

p ← p + r

\\Phase 2: Compute dr = d mod r via the bias

for each fault couple (µi, si)
if p � µi and p � si

if r | order of µi modulo p and if DL(µi, si, p, r) exists
count[DL(µi , si, p, r)]++

return dr such that count[dr] = maxi count[i]

Algorithm 1. leads to the knowledge of dr for individual prime powers r = qf .
The attacker may integrate this building block into a higher level procedure
which determines dr for as much r values as needed so that R =

∏
k rk is large

enough to fully recover d (or d when e is small).

4.4 Results

This counting method have been implemented. 512 bits of residue class infor-
mation about d are easily recovered within 25 000 faults, which is enough for a
1024-bit key with small public exponent. About 60 000 faults allow to recover
1024 bits of information, which is enough for either a 1024-bit key in the general
case, or a 2048-bit key with small public exponent.

332 E. Brier et al.

5 Recovering the Private Exponent with a Dictionary

As already mentioned, no dictionary is needed for applying the method of Sec-
tion 4. Nevertheless, when a dictionary S is available to the attacker, it is then
possible to improve upon this counting method.

5.1 General Methodology

The core observation is that, with a dictionary S, it becomes possible to relate
a particular modulus νj ∈ S to some fault couple (µi, si). Let us thus introduce
the following definition.

Definition 3 (Hit). For any νj ∈ S, we say that an attacker found a hit for
νj if she was able to identify some fault couple (µi, si) for which n′

i = νj.

Given a hit in hand, a certain amount of information about d may be collected.
Indeed, it is then possible to extract information related to each known pa di-
viding νj as in Equation (1). One may then retrieve d mod qf for each qf which
divides the multiplicative order of µi modulo pa.

We stress that the full factorization of νj is not needed since only some known
factors of νj may be considered and exploited. The attack thus consists in identi-
fying hits for a few moduli, and gathering information relative to known factors
for each of them. This raises the question: how many hits provide enough infor-
mation to recover the private exponent?

Table 1 shows some simulation results where the number of bits of information
retrieved about d is given as a function of the number of hits exploited. These hit
moduli were factorized by elliptic curve method up to 20–25 digits factors, and
information was retrieved with respect to all qf less than a given limit which took
values 105, 107 and 109 respectively. Simulations have been conducted several
times, and average over 200 experiments are presented below.

When the discrete logarithm computation limit is taken to 109, then 28 hits are
enough to recover a 1024-bit RSA key (13 in the case of small public exponent),
and 59 hits allow to recover the private exponent of a 2048-bit RSA key (28 in
the case of small public exponent).

Beside knowing how many hits are needed, we now present in the next sub-
sections, two methods aiming at identifying them.

5.2 Finding Hits by the Collision Method

Let r be an integer dividing the multiplicative order of µi modulo pa. Proposi-
tion 1 implies that computing DL(µi, si, p

a, r) for different couples (µi, si) al-
ways gives the correct value of dr, as soon as pa divides n′

i. Otherwise, results
are uniformly distributed between 0 and r − 1.

This suggests a method which detects collisions like:

DL(µi1 , si1 , p
a, r) = DL(µi2 , si2 , p

a, r) .

Why One Should Also Secure RSA Public Key Elements 333

Table 1. Amount of information (in bits) deduced from exploitation of hits

DL limit Number of hits
1 2 3 4 5 6 7 8 9 10

105 33 62 87 111 136 159 182 206 227 248
107 41 75 113 150 184 219 251 285 315 346
109 47 93 135 177 214 255 296 334 374 412

11 12 13 14 15 16 17 18 19 20
105 267 289 312 331 352 373 396 416 436 455
107 374 406 436 465 493 522 553 580 609 639
109 452 490 526 561 599 638 673 709 744 780

21 22 23 24 25 26 27 28 29 30
105 477 496 516 537 533 570 587 602 618 635
107 667 695 723 751 778 807 833 861 890 916
109 815 849 881 917 953 988 1018 1055 1088 1124

For suitably chosen pa and r values, with high probability, such a collision
reveals, not only that pa divides both n′

i1 and n′
i2 , but also that n′

i1 = n′
i2 = νj

(see Remark 1 below). This is particularly useful to identify one hit for this
common modulus.

Definition 4 (Marker). For a given modulus ν ∈ S, a couple (p, q) is called a
marker for ν, if p is a known prime factor of ν, and q is a not too small4 prime
dividing p− 1.

Preparation Phase. For as many moduli ν ∈ S as possible, we try to find
a specific marker. The set of moduli for which a marker has been identified is
denoted S∗.

Collision Search Phase. For each νj ∈ S∗ with marker (pj , qj), we maintain
a list Dνj of all DL(µi, si, pj , qj) for all fault couples exploited so far. As soon as
two fault couples have the same modulus value νj = n′

i1
= n′

i2
, a collision is found

in Dνj . By disregarding possible false positive, we can identify a hit for νj .

Complexity. In the ideal case where a marker has been found for all moduli
in S (i.e., S∗ = S), the number of faults required to obtain such a collision is
O(
√|S|). For small t, obtaining t hits requires O(

√
t|S|) faults.

In the more practical case where only a fraction α = |S∗|/|S| of all possible
moduli are affiliated with a marker, the number of faults required for obtaining

t hits is O(
√

t
α |S|).

Remark 1 (False positives). For a given νj , a true collision appears in Dνj after
2|S| faults on average, while a false collision appears after O(√qj) faults. There-
fore, false positive occurrence problem may be neglected as soon as minj

√
qj "

|S| . This inequality explains the notion of not too small introduced in Definition 4.
4 The fact that q should be not too small is required to avoid false positive in the

collision search (cf. Remark 1).

334 E. Brier et al.

Application. Concretely, assume an attacker targeting the transfer of the mod-
ulus from EEPROM to RAM, able to randomly modify any individual byte of the
modulus, but unable to control which particular byte she is modifying. This fault
model is very realistic when, as a counter-measure, the modulus bytes are trans-
ferred in random order. The corresponding dictionary contains 28 · 1024

8 = 215

(resp. 216) moduli for a 1024-bit (resp. 2048-bit) RSA key. Furthermore, assume
that a marker has been found for 80% of the moduli. Referring to Table 1, re-
trieving a key in the general case requires about 1 100 faults (resp. about 2 200
faults for 2048-bit). When a small public exponent is used, only about 750 faults
are needed for 1024-bit (resp. about 1 500 faults for 2048-bit). This demonstrates
that even when applied to such a pretty large dictionary, this square root method
allows to dramatically reduce the number of required faults compared to the case
where no fault model is identified.

5.3 Finding Hits by Optimally Exploiting Faults

The objective of this method is to guess vectors of hits by optimally exploiting
the information brought by fault couples.

We incrementally build lists Σt containing information provided by the faults
(µi, si) for 1 ≤ i ≤ t. Σt+1 is built by combining previous Σt with next fault
(µt+1, st+1), and by removing elements that are incompatible. In other words,
for a given t, this method considers t faults (µi, si)1≤i≤t acquired during the
fault campaign, and exhibits the set Σt of data that are compatible with the
given t faults.

More precisely, Σt is a list of triples (ν, ρ, σ), where :

– The t-uple ν = (νj1 , . . . , νjt) represents possible values taken by the faulty
moduli corresponding to the considered t faults;

– The residue knowledge about d, ρ, is a collection of triples (q, f, αqf), each
meaning that d ≡ αqf (mod qf), provided that ν is the correct guess for
the vector (n′

1, . . . , n
′
t), i.e., each νji is the correct modulus corresponding

to i-th fault;
– The selectivity σ associated to ν and ρ is a scalar allowing to quantify the

relative likelihood of this particular ν.

Below, we detail this method.

Initial Phase. Given (µ, s), not all ν ∈ S are compatible with this fault. Indeed,
ν must simultaneously verify several conditions:

1. The signature s must be smaller than the modulus candidate ν.
2. For each p dividing ν, either (p | µ and p | s) or (p � µ and p � s)
3. For each pa dividing ν, denoting δ(µ) and δ(s) the multiplicative orders

modulo pa of µ and s respectively, we must have δ(s) | δ(µ).
4. If qf | ϕ(pa) and qf | ϕ(p′a

′
), where both pa and p′a

′
divide ν, then if

DL(µ, s, pa, qf) and DL(µ, s, p′a
′
, qf) both exist, their respective values must

be equal.

Why One Should Also Secure RSA Public Key Elements 335

This first phase hence consists, for every fault, in reducing, from S to S(µ,s) ⊆
S, the set of all moduli in the dictionary which are compatible with that fault.
Note that this reduction is quite selective as — on average in our simulations —
only a mere 3% of the moduli verify all four conditions.

In the list S(µ,s), we associate to each modulus ν, the set ρ of all triples (q, f, αqf)
with αqf = DL(µ, s, pa, qf), for q of reasonable size, where pa | ν. Such a αqf value
is always uniquely determined since all incompatible moduli (w.r.t. condition 4)
have been removed from S(µ,s). Furthermore, for each modulus, we also compute
a selectivity parameter σ = ν̃/δ(µ), where ν̃ is the factored part of ν, and δ(µ)
is the multiplicative order of µ modulo ν̃ (i.e., the product of all qf used in the
DL computations). Doing this for all faults allows to compute I different potential
initial sets Σ1. We then choose one of them for initiating our process.

Combining Faults. Once we have extracted as much information as possible
from each individual fault, we start a phase of combining these pieces of informa-
tion. We use an iterative approach where we combine information from the list
Σt with information brought by the (t+1)-th fault to update the data structure
into a new Σt+1.

For this purpose, we exhaust all (ν, ρ, σ) of Σt, and all (ν, ρ, σ) where moduli
ν belong to S(µ,s). We consider combinations of each (ν, ρ, σ) with each (ν, ρ, σ).
Each such combination results in a new triple (f(ν, ν), g(ρ, ρ), h(σ, σ)), which
will be kept and added to Σt+1 only if evaluation of g(ρ, ρ) does not lead to any
inconsistency (see below).

The new guess of moduli, f(ν, ν) trivially consists in appending ν to ν. That
is, f(ν, ν) = (νj1 , . . . , νjt , νjt+1) where νjt+1 = ν.

The new residue knowledge on d, g(ρ, ρ), consists in the union of ρ with ρ.
If two triples (q, f, dqf) ∈ ρ and (q, f ′, dqf′) ∈ ρ share the same prime q, then
only the one with the largest exponent max(f, f ′) is kept. Moreover, in this case,
the compatibility between both constraints modulo q must be checked. That is
(assuming w.l.o.g. that max(f, f ′) = f), dqf mod qf ′

must be equal to dqf′ . If
this consistency is not verified, then that particular combination of (ν, ρ, σ) with
(ν, ρ, σ) is not kept.

The new selectivity h(σ, σ) takes the value σ · σ · κ, where the multiplication
by σ accounts for the selectivity of ν, and multiplication by κ accounts for a
cross-selectivity between ν and ν. This cross-selectivity factor is the product of
moduli in the intersection of ρ and ρ, that is κ =

∏
q qmin(f,f ′). Of course, in

this formula, if q is not in ρ (resp. in ρ), we set the corresponding exponent f
(resp. f ′) to 0.

Final Phase. Now that we have combined information from a set of faults, we
get a (possibly large) list of modular information about the private exponent
d, each associated to a likelihood/selectivity parameter σ. We can sort that
list according to this last parameter, and, for each entry, check the value of d
recovered by applying the Chinese Remainder Theorem on ρ, until we get the
correct one. Note that if the residue knowledge ρ corresponding to some entry
does not allow to unambiguously determine d, then one or several more faults

336 E. Brier et al.

must be exploited again, and combined with Σ. As the correct guess ν about
(n′

1, . . . , n
′
t) necessarily belongs to Σt, this algorithm must eventually succeed in

recovering d for some value t.

Remark 2. According to the size of the dictionary, handling these lists may be-
come intractable. In this case, one can choose to keep only track of a fraction of
the list, eliminating triples (ν, ρ, σ) with the lowest selectivity. The parameter
σ is in strong connection with an a posteriori probability of the guess ν about
faulty moduli. Practical implementation and tests we performed show undoubt-
edly that a strategy based on σ is efficient.

Of course, a drawback of this idea is that one might remove the correct combi-
nation of moduli from the list, and so this could lead to an unsuccessful end of the
algorithm. This may be the price to pay for shortening the list to a manageable
size.

Results. This method aims at determining the list of moduli vectors ν com-
patible with a given set of faults. Necessarily, it always succeeds in proposing
the correct guess for ν,5 leading to the identification of t hits with only t faults,
which is obviously optimal in terms of required number of faults. Of course, the
important question is whether the correct vector appears near the top of the
sorted list. If so, d is retrieved within only a few trials. Otherwise, the exhaus-
tive search for the correct guess on (n′

1, . . . , n
′
t) may be out of reach, or this

vector may have been dropped if the decimation process suggested by Remark 2
was implemented.

With a pretty well factorized dictionary of 1 000 moduli, we experimented
that this method allows to recover d with little computational effort in most
cases, with as few faults as required according to Table 1. We expect that similar
results may be obtained with moderate effort in the case of a dictionary of 10 000
moduli.

6 Conclusion

In this paper, we have proposed the first fault attack that can be realized against
RSA in standard mode, to recover the private exponent by corrupting only public
key elements. Our contribution can, in this sense, be viewed as a generalization
of Seifert’s and Muir’s recent articles on obtaining a false signature acceptance
by corrupting the modulus. However, this latter kind of attack only allows to
pass a signature verification, while ours allows a full key recovery.

Our attack is divided into two modes. In the first one, the attacker needs abso-
lutely no knowledge of the fault’s behavior to recover the private exponent. This
attack is also very attractive from a practical point of view, and represents, to
our knowledge, the only known fault attack on RSA in standard mode requiring
no fault model. The second mode, based on a fault model, has been proved to
be particularly efficient. It dramatically reduces the number of faults needed to

5 If the trick discussed in Remark 2 is not used.

Why One Should Also Secure RSA Public Key Elements 337

fully recover the private key. For this technique to work, the attacker does not
need to be particularly powerful in the sense that she does not have to master
the fault’s exact effect. The fault she produces may be probabilistic or unprecise.
Two variants have been proposed, with separate pros and cons and use cases.

There still are so open issues like whether our attacks can be adapted in the
case of randomized exponent, or whether one could tackle with a probabilistic
padding scheme with randomness recovery such as RSA-PSS.

Nevertheless, this paper teaches us that, as in the case of elliptic curves [5,8],
one should also protect RSA public key elements against fault attacks.

Acknowledgements

The authors would like to thank the anonymous referees for their useful remarks
and Marc Joye and Jacques Fournier for their careful reading of this paper.

The work described in this document has been financially supported by the
European Commission through the IST Program under Contract IST-2002-
507932 ECRYPT.

References

1. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert. Fault attacks on RSA
with CRT: Concrete results and practical countermeasures. In CHES 2002, volume
2523 of LNCS, pages 260-275

2. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s
apprentice guide to fault attacks. In Workshop on Fault Detection and Tolerance
in Cryptography, 2004

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

4. M. Bellare and P. Rogaway. The exact security of digital signatures - How to sign
with RSA and Rabin. In Advances in Cryptology – EUROCRYPT ’96, volume 1070
of LNCS, pages 399–416. Springer, 1996.

5. I. Biehl, B. Meyer, and V. Müller. Differential fault analysis on elliptic curve
cryptosystems. In Advances in Cryptology – CRYPTO 2000, vol. 1880 of LNCS,
pages 131–146. Springer, 2000.

6. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of checking crypto-
graphic protocols for faults. In W. Fumy, editor, Advances in Cryptology − EU-
ROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37–51.
Springer-Verlag, 1997.

7. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology 14(2):101–119, 2001. An
earlier version appears in [6].

8. M. Ciet and M. Joye. Elliptic curve cryptosystem in presence of permanent and
transient faults. Designs Codes and Cryptography 36(1), 2005.

9. J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In Ad-
vances in Cryptology – EUROCRYPT ’02, volume 2332 of LNCS, pages 272–287.
Springer, 2002.

338 E. Brier et al.

10. M. Joye, A.K. Lenstra, and J.-J. Quisquater. Chinese remaindering based cryp-
tosystems in the presence of faults. Journal of Cryptology 12(4):241–245, 1999.

11. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener,
editor, Advances in Cryptology − CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer-Verlag, 1999.

12. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC Press, 1997.

13. J.A. Muir. Seiferts RSA fault attack: Simplified analysis and generalizations. IACR
Eprint archive 2005.

14. PKCS #1 v 1.5: RSA Cryptography Standard.
15. J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key

cryptosystem. Electronics Letters 18(21):905–907, 1982.
16. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM 21(2):120–126,
1978.

17. J.-P. Seifert. On authenticated computing and RSA-based authentication. ACM
Conference on Computer and Communications Security 2005 : pages 122–127, 2005.

Power Attack on Small RSA Public Exponent

Pierre-Alain Fouque1, Sébastien Kunz-Jacques1,2, Gwenaëlle Martinet2,
Frédéric Muller3, and Frédéric Valette4

1 École normale supérieure, 45 rue d’Ulm, 75005 Paris, France
Pierre-Alain.Fouque@ens.fr

2 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg
F-75700 Paris 07 SP, France

{Gwenaelle.Martinet, Sebastien.Kunz-Jacques}@sgdn.pm.gouv.fr
3 HSBC, France

Frederic.Muller@m4x.org
4 CELAR, 35 Bruz, France

Frederic.Valette@dga.defense.gouv.fr

Abstract. In this paper, we present a new attack on RSA when the
public exponent is short, for instance 3 or 216 +1, and when the classical
exponent randomization is used. This attack works even if blinding is
used on the messages.

From a Simple Power Analysis (SPA) we study the problem of recov-
ering the RSA private key when non consecutive bits of it leak from the
implementation. We also show that such information can be gained from
sliding window implementations not protected against SPA.

Keywords: RSA cryptosystem, sliding window methods, exponent ran-
domization, Simple Power Analysis.

1 Introduction

Simple Power Analysis and Differential Power Analysis attacks are among the
most efficient and devastating attacks on some RSA-based products. Many coun-
termeasures have been proposed that prevent these attacks by securing the ex-
ponentiation algorithm which is usually targeted. This is the basis of a number
of academic papers whose results are widely used in practice. However, such
countermeasures often lead to a slower implementation and thus another area
of research is the speedup of the exponentiation process. As we will show in
this article, unfortunate interactions between side-channel countermeasures and
optimized exponentiation algorithms may lead to insecure implementations.

The aim of this paper is to present a new attack on RSA in the special case
where both a short public exponent and a randomization of the private exponent
are used. In such a case, free information on the private exponent can be obtained
from the public key and can be used to efficiently recover the whole private key.
The attack studies the problem when non-consecutive bits of the private key
can be found. It works on sliding window implementations not protected against
SPA attack.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 339–353, 2006.
c© International Association for Cryptologic Research 2006

340 P.-A. Fouque et al.

Known Results on Partially Known Information. Partial information
on the RSA private key allows it to be recovered in some cases. This kind of
attacks has experienced a revival since 1998 with the work of Boneh, Durfee and
Frankel [1]. In their article, they give some results about the security of RSA
schemes when some bits of the private key are exposed. However, the lattice
technique used in such cases cannot be applied for non-consecutive bits. None of
the previous papers have considered this particular case. Boneh et al. have even
considered in [1] that “[the authors] view attacks that require non-consecutive
bits of d as artificial”, showing the lack of interest for this topic at that time.

However, some practical attacks are now very efficient and allow the at-
tacker to recover some bits of the private key, not necessarily consecutive. This
is mainly due to the combination of very specialized attacks, based on side
channel analysis, and of the various countermeasures based on algorithmic re-
marks.

Main Idea of the Attack. Here, we do not solve the open problem of re-
covering the whole private key from non-consecutive partial information on it.
However, we focus on the special case where several non-consecutive bits of ran-
domized versions of the private key are known.

Efficient countermeasures against SPA attack are often not perfect. It is clas-
sical that some information about the secret exponent leaks. For example, slid-
ing window implementations can leak when consecutive bits are equal to zero.
By randomly generating bitstring and applying the parsing exponent algorithm
of the sliding window algorithm, either Constant Length Non-zero Window
(CLNW) or Variable Length Non-zero Window (VLNW), one can observe that
the information gained is 40% of the bits. This is not sufficient to recover the
entire secret by using previous results such as those of [1].

The first part of the attack is to record some power curves Ci which correspond
to the exponentiation of a message with the unknown private key di = d +
λi × ϕ(N) associated to an unknown short value λi. Then, using the fact that
the public exponent is small, we can consider that the most significant bits of
the secret exponent d are known. With this information, we can try all the
possible values of λ and check if the most significant bits of the value d̃ + λ ·N ,
where d̃ equals d on the half bits of high order, are compatible with the partial
information that can be recovered from the power curve by SPA. If we have
enough information, we can associate a single λi to the curve Ci.

The second part of the attack is now to recover the least significant bits of d.
Once we have enough curves with the known random value λi we can then use
partial information on the least significant bits of the randomized exponent on all
the curves to retrieve the least significant bits of the secret exponent. The principle
is to guess the least significant bits of ϕ(N) and so of d and of the secret exponent
di. Then, we check if the guess is compatible with the partial information on the
curve Ci. If we have enough curves, only one guess will be compatible. We can
then guess the next bits and continue until we know enough bits of d.

Our Results. We recall in section 2 how to get non-consecutive bits of the
RSA secret exponent by using side channel attacks. Such leakage depends on the

Power Attack on Small RSA Public Exponent 341

exponentiation algorithm used and on the various countermeasures implemented
against side channel attacks.

Then, in section 3 we formally show how to recover the whole RSA secret key
from such information in the case of the public exponent is 3. We extend this
attack for e = 216 + 1 in section 4, and we give practical results in section 5.

Related Works. A lot of work has already been done on the particular topic of
attacks when countermeasures are implemented. Indeed, a countermeasure may
allow or simplify a side channel attack.

Previous works have also been done to study the security of fast exponen-
tiation algorithm. Walter, in [9], describes the Big Mac attack which works on
sliding and m-ary window algorithms. He assumes that he can distinguish squares
and multiplies and operand of the multiplies. Here, we only assume that we can
distinguish squares and multiplies but we do not need to distinguish the different
operands of the multiplications.

Walter has also see in [10] that “in the classical m-ary and sliding windows
exponentiation algorithms, the most significant half of the public modulus yields
information which can be used to halve the number of key digits which need to
be guessed.” Having reduce the key digit by half or a quarter is not sufficient for
an 1024-bit value since 256 are missing.

The problem of computing the RSA private exponent from partial informa-
tion on it has known only a little attention in the literature. In [8], Stinson
presents two algorithms to compute discrete logarithms in a prime field, when
the Hamming weight of the discrete log is small. As we want to recover d such
that s = f(H(m))d mod N , where f is the padding function, and we know s
and f(H(m)), d can be viewed as the discrete log of s in basis f(H(m)) in Z∗

N .
In appendix A, we show that this algorithm can be used to recover d from non-
consecutive bits of it if the number of missing bits is relatively small, 128 for
instance. However the memory and time complexity of this algorithm is high
compared to our algorithm and cannot recover a large number of bits.

2 Modular Exponentiation and Side Channel Attacks

2.1 Classical Countermeasures Against Side Channel Attacks

To defeat DPA attacks, many protections methods have been suggested in the
literature. The most secure and widely used is the exponent randomization [6] as
it is very easy to implement and it comes at a reasonable computational cost. The
idea of this countermeasure is to use a classical SPA-protected implementation of
the exponentiation and to randomize the private exponent at each computation.
This randomization is based on the fact that the private exponent d is defined
modulo ϕ(N) since for all M ∈ Z�

N and all λ ∈ Z, Mλ×ϕ(N) = 1 mod N . Figure 1
describes this randomized exponentiation algorithm.

The success of this countermeasure lies in its very good efficiency and the
security it offers. Indeed, without randomization an attacker is able to guess the
exponent bit per bit and his check would be confirmed with a DPA attack [7].

342 P.-A. Fouque et al.

– Inputs: a message M , an exponent d, a modulus N
and ϕ(N)

– Output: Md mod N

1. Pick at random λ ∈ {0, . . . , 2� − 1}
2. Compute d′ = d + λ · ϕ(N)
3. Return SPA protected exponentiation Md′

mod N

Fig. 1. The exponent randomization algorithm

With the randomization, such a guess cannot be made anymore on the value d′

since the attacker does not know the random value used.

2.2 Optimized Exponentiation Algorithms

Timing attacks or SPA attacks are known to be very efficient on RSA-based cryp-
tosystems. In [6], Kocher has shown how to recover the whole private key from the
power consumption of a single RSA signature or decryption. If the square-and-
multiply algorithm is used for the exponentiation without any countermeasure,
various side channel attacks may be used to compromise the private key.

More efficient exponentiation algorithms may be used. Some of them use a
parsing of the private exponent into windows of constant or variable length.
In that case, side channel attacks cannot recover the whole private exponent
anymore. Only some bits of it leak from the implementation, whose distribution
depends on technical details of the exact algorithm used. The m-ary or the
sliding window techniques are such methods.

The sliding window methods. Such methods have been developed to speed up
the exponentiation algorithm by searching in the exponent large windows of bits
equal to zero. Contrary to the m-ary algorithm, sliding window methods relax the
splitting of the exponent into sliding windows. There are two variants known as
the Constant Length Non-zero Window (CLNW) technique due to Knuth [3] and
the Variable Length Non-zero Window (VLNW) technique due to Bos and Coster
in [2]. Both of these techniques try to minimize the number of multiplications in
the square-and-multiply algorithm by performing some precomputations. These
techniques have been described and analyzed by Koç in [4,5] and allow 5 to
8% of the multiplications to be avoided compared to the binary exponentiation
algorithm.

The CLNW method consists in splitting the exponent as follows: a non-zero
window will always be of length m, for a given parameter m, often equal to 4 in
practice, and the zero windows are of variable length. For the exponentiation,
precomputations have to be done for all the 2m−1 values of the m non-zero
windows (with a bit 1 in low order since the parsing is done from the least
significant bit to the most significant one).

The Variable Length version is an optimization of it and is more tricky to
detail. The rule is to split the exponent into zero windows of length at least a

Power Attack on Small RSA Public Exponent 343

given value and non-zero windows of length at most another given parameter.
We can show that the number of leaking bits during a SPA attack will be the
same for both techniques and so we only focus on the CLNW variant.

Figure 2 details the sliding window exponentiation algorithm. Such a method
assumes that the exponent is split into windows. This splitting may be done
either with the m-ary, CLNW or VLNW method, depending on the splitting
criteria used. The exponentiation just uses squarings and multiplications with
precomputed values.

– Inputs: x, e, N, m
– Output: y = xe mod N

1. Compute and store xw for all odd integer w ∈
{1, . . . , 2m − 1}

2. Parse e into zero and non-zero windows Fi of length
L(Fi) at most m for the non-zero windows and for i =
0, 1, . . . k − 1. The parsing algorithm may be CLNW
or VLNW.

3. y ← xFk−1 mod N (which is a precomputed value)
4. for i = k − 2 downto 0

– y ← y2L(Fi) mod N
– if Fi
= 0, then y ← y · xFi mod N

5. return y

Fig. 2. The Sliding Window Algorithm

2.3 SPA Information Leakage

To mount the attack described in section 3, the underlying assumption will
be that the attacker knows partial information on the exponent used during the
RSA signature or decryption. To this end, we will assume that we can distinguish
squares from multiplies.

The optimized exponentiation algorithms such as m-ary, CLNW or VLNW
leak some information about the exponent. For example, the CLNW algorithm,
as described in section 2.2, consists in splitting the exponent into non-zero win-
dows of fixed length. For all these windows, some precomputations are made
to reduce the total cost of the exponentiation. If no protection against SPA at-
tacks is used, an attacker may be able to distinguish the squaring operations
from the multiplications. Each time the number of squarings is greater than the
length of the window, the attacker can deduce that there are some 0 bits in the
exponent. The position is deduced from the total number of previous multipli-
cations and squarings. When a multiplication is detected, the attacker knows
that there is a non-zero window of exactly m bits. In this window, the lowest
order bit is 1 and the other ones are unknown. Thus, in the worst case, when
there are are only non-zero windows, the attacker learns one bit of the exponent
over m. These bits are the least significant ones (equal to 1) of the non-zero
windows.

344 P.-A. Fouque et al.

Thus, if m = 4, the attacker learns 25% of the bits of the exponent in the
worst case. In practice, we obtain 40% of the bits of each randomized exponent.
For m = 3, we obtain 50% of these bits.

For the attack to be successful in the case e = 216 + 1, the attacker has to
obtain a given number of windows of two bits. Note that if the attacker learns
3 consecutive bits, the two overlapping windows of two bits can be used in the
attack. Simulations show that for a 1024-bit modulus, the CLNW methods for
parameter m = 4 may leak 200 such windows if squarings and multiplies are
distinguishable. For 2048-bit modulus, 400 windows are obtained. For m = 3,
we obtain 250 2-bit windows for 1024-bit modulus and 500 for 2048 ones.

3 Recovering a Private RSA Exponent from Partial
Information on Randomized Versions of it

We focus in this section on the special case e = 3. In this context, additional
and free information can be deduced from the public key. This gives the attacker
the knowledge of some bits on the private key “for free”. Although this does not
allow an adversary to break RSA cryptosystems in general, such information
is very useful when combined with a side channel attack on some particular
implementation of the exponentiation.

3.1 Free Information

Let N be an RSA modulus, e the public exponent and d the private one.
The first remark is that the modulus N is a good approximation of ϕ(N) =

(p−1)×(q−1) = N−p−q+1 on essentially the n/2 most significant bits. Since
the number of these bits depends on a carry propagation, with high probability,
the n/2− 10 bits of high order of ϕ(N) are those of N . To simplify, we consider
that the n/2 bits of high order of ϕ(N) are known and equal to those of N .

Secondly, when e = 3, the n/2 most significant bits of d are also known.
Indeed, d satisfies the relation

ed = 1 + kϕ(N) (1)

for some positive integer k. Let us choose a representative of d in [0, ϕ(N)− 1].
Since k×ϕ(N) = ed− 1 < ed, then k < e: if e = 3, then k = 1 or k = 2. In fact,
3 divides neither p nor q and since 3 is invertible mod ϕ(N), 3 also divides
neither p − 1 nor q − 1. Thus, p �= 0 mod 3, p − 1 �= 0 mod 3 (resp. for q), and
finally, p = 2 mod 3 and q = 2 mod 3. Consequently, ϕ(N) = 1 mod 3. Finally,
since k = −1/ϕ(N) mod 3, then k = 2 mod 3, and finally k = 2. Therefore,

3d− 2ϕ(N) = 1 (2)

and

d̃ =
⌊

1 + kN

e

⌋
=
⌊

1 + 2N

3

⌋
is a good approximation of d on the half bits of high order. Equation (2) will be
extensively used in the cryptanalysis described above.

Power Attack on Small RSA Public Exponent 345

3.2 Recovering the RSA Private Key

We consider the countermeasure consisting in randomizing the private exponent
d. Thus for each exponentiation, an equivalent exponent di is first computed as
di = d + λi × ϕ(N), for a random value λi of � bits. Typically, � = 20 or � = 32.
Furthermore, an optimized exponentiation algorithm, such as the CLNW or
the VLNW method, is supposed to be used. In this context, as described in
section 2.3, we suppose that the attacker knows a fraction 1/r of the bits of the
private exponents used, randomly distributed amongst the n + � bits of each
exponent. We also suppose that these bits are available for ω different exponents
di. The position of the known bits differ from one exponent to another. These
bits are obtained by signing or decrypting ω messages whose value does not
matter for the attack. This is a model for the side channel attack.

In the rest of this paper, the following notations will be used:

– for an integer x of n bits, the i-th bit of x is denoted by x[i]. The integer x
can then be written as an n-bit string x = x[n− 1]x[n− 2] . . . x[0];

– for a randomized exponent di of n bits, [di] is a vector of length n such that
for all j ∈ {0, . . . , n− 1}:

[di][j] = di[j] if the bit di[j] is known
= 2 otherwise

– for a vector [di] of length n and integers a and b such that 0 ≤ a ≤ b ≤ n−1,
[di]a,b is the extracted vector for the positions a to b;

– for integers x and di of n bits, we write [di]
.= x if di and x matches on all

the known bits of di. That is, for all 0 ≤ j ≤ n− 1 such that [di][j] �= 2, we
have di[j] = x[j].

For example, for an 8-bit value x = 01010101 = x[7]x[6] . . . x[1]x[0] for which
the bits known are in positions 1, 4, 5 and 7, [x] = [0, 2, 0, 1, 2, 2, 0, 2] and [x]3,6 =
[2, 0, 1, 2].

We first show how partial knowledge of the randomized exponents di allows
the attacker to recover the λi values used to generate them from d. We then
show in a second step how to recover the entire private exponent d from the
partial leakage on the randomized exponent and from the known bits of d.

Step 1: Recovering the λi. The strategy to recover the random values λi

used to mask the private exponent d is to use the known approximation of d and
ϕ(N) to compute all the possible values

d̃j = d̃ + j ×N

for all j ∈ [0, 2�−1]. On the n/2 high order bits, d̃j is equal to dj = d+j×ϕ(N).
Indeed, dj = d̃j + j(p + q − 1) and since j(p + q − 1) is a number of at most
(n/2+�) bits, the two (n+�)-bit values have near half of the most significant bits
in common with high probability. Only if a carry propagates, some bits will not
be equal. However, if two random bitstrings are added, a carry will be absorbed

346 P.-A. Fouque et al.

with probability 1/4 at a step. Consequently, with probability 1−(3/4)10 ≈ 0.94,
the carry coming from the least significant half bits will not propagate after the
(n/2 + � + 10)-th bit.

Given these 2� values and the known bits of the ω randomized exponents di,
the attacker is now able to recover the corresponding λi values. For each value
di, he knows a ratio 1/r of the bits. In particular this applies for the n/2 high
order ones. He then looks for a matching value from the computed d̃j on these
bits. When he finds j such that di equals d̃j on the known bits, he deduces that
λi = j. The detailed algorithm is given in figure 3.

– Inputs: [di]n/2+�,n+� the known bits of high order of di for all i ∈ {1, . . . , ω}
– Outputs: the value λi such that di = d + λi × ϕ(N), for all i ∈ {1, . . . , ω}

1. For j = 0 to 2� − 1, d̃j ← d̃ + j × N
2. For i = 1 to ω,

j ← 0
While (j < 2�)

If [di]n/2+�+10,n+�
.= d̃jn/2+�+10,n+� then λi ← j, break;

else j ← j + 1;
3. Return λi for all i ∈ {1, . . . , ω}.

Fig. 3. The attacker strategy to recover the λi corresponding to each di

Some optimizations may be implemented depending on the value �, and the
best time-memory trade-off for the attacker. However, as long as the random
values λ are relatively small, for example of at most 20 bits, the exhaustive
search of figure 3 is clearly practical.

At the end of this step, the attacker has thus recovered each random value
used to randomize the private exponent for ω RSA executions.

Let us now present some analysis of the success probability of the first step.
For each given di, we compare it with the 2� values of d̃j . Let us denote by Badi

the event “a bad value λ is associated with di”. If we assume that the bitstrings
di and d̃j are uniformly distributed, we match a false j to λi with probability
less than (1/2)(n/2−α)/r where α depends on the carry propagation during the
computation of d̃j . As seen above, α may be upper bounded by 10 with high
probability.

As we have 2� comparisons corresponding to all the d̃j , the probability of Badi

is upper bounded by 2�/2(n/2−α)/r. Therefore, we get

Pr[∃i 1 ≤ i ≤ ω : Badi] ≤ 2�ω

2(n/2−α)/r

For n = 1024, r = 5, � = 32, α = 10 and ω ≈ 64, we get a probability of a
good association for each di of 1− 1/263. Such an estimation does not take into
account imperfect input data.

Power Attack on Small RSA Public Exponent 347

Step 2: Recovering ϕ(N) and d. The attacker’s goal is now to recover the
entire private key. To this end, he makes an exhaustive search, 8 bits per step,
on the bits of ϕ(N). He will now use the known least significant bits of di to
recover d.

First, the attacker recovers the 8 least significant bits of ϕ(N). This is per-
formed by guessing ϕ(N) mod 28. From this guess, he computes the correspond-
ing guess for d mod 28 from the equation 2:

d mod 28 =
1 + 2ϕ(N)

3
mod 28

Then with high probability there exists i s.t. some of the 8 least significant bits of
di are known from the side channel attack. For this value di, the corresponding λi

gives us some constraints on the low order bits of the value d+λi×ϕ(N) mod 28.
If the constraints on the corresponding di value cannot be met, another guess
for ϕ(N) mod 28 is made. Otherwise, if for all i ∈ {1, . . . , ω}, no incompatibility
has been discovered, the guess is the good one with high probability. The attack
can then be extended with a guess for ϕ(N) mod 216 and so on. Figure 4 details
the algorithm to recover ϕ(N) mod 28k from ϕ(N) mod 28(k−1).

Note that in practice the attacker should deal with imperfect input data since
these data are collected in a side channels context. Thus, candidates that match
a sufficiently high fraction of these data should be accepted: this may be done
by implementing a more complex version of the Boolean function OK.

We need to estimate the average number of false candidates at each step. We
have 28 values for each d̄ and we have 8/r bits on each 8-bit window for each d̄i

– Inputs:
• {([di], λi)}1≤i≤ω the list of the known bits for each di and the correspond-

ing λi value
• a candidate for ϕ(N) mod 28(k−1)

– Output: a list of candidates for ϕ(N) mod 28k

1. For j = 0 to 28 − 1,
(a) yj ← ϕ(N) mod 28(k−1) + j · 28(k−1);

/* yj is a candidate value for ϕ(N) mod 28k */

(b) d̄ ← 1+2yj

3 mod 28k;
/* d̄ is the corresponding candidate for d mod 28k */

(c) OK ← true;
(d) i ← 1;
(e) While (OK = true) and (i ≤ ω)

d̄i ← d̄ + λi × yj mod 28k;
if [dj]0,8k−1

.= d̄i then i ← i + 1;
else OK ← false;

(f) if OK = true, add yj to the list of candidates for ϕ(N) mod 28k;
2. Return the list of candidates for ϕ(N) mod 28k

Fig. 4. The attacker strategy to recover ϕ(N) mod 28k from ϕ(N) mod 28(k−1)

348 P.-A. Fouque et al.

where 1/r is the ratio of known bits deduced from the side channel attack. As
the correct value for d̄ allows ω correct values d̄i for all i to be computed, then on
average the number of false candidates is

(
1/28/r

)ω×28 if all the experiments are
independent and the bitstrings uniformly distributed. Thus, the average number
of candidates tends to 1 as the number of false candidates tends to 0 and the
correct candidate matches the input data, or eventually almost fit the input
data.

4 Extension for e = 216 + 1

In case e = 3, one knows that k = 2. For each measure using a random value λ,
as shown in previous section, some bits in the upper half of⌊

1 + kN

e

⌋
+ λN (3)

are known: this allows us to retrieve λ with an exhaustive search. For other
values of e, this approach cannot work directly as k is not known anymore. In
this section, we show how to extract k and λ from only one measure yielding
some bits of the randomized exponent, when e is not too large, the typical case
being e = 216 + 1. Once k is found, the attack can proceed exactly as described
in Step 2 of the attack of section 3.

4.1 Finding k and λ by Exhaustive Search

The value (3) can be used to perform a direct exhaustive search of k and λ from
one exponentiation measure. One has 0 < k < e and 0 ≤ λ < 2�: if e is u-bit
long, there are 2u+� candidates to try, and the exhaustive search yields only the
correct values with good probability if the number of known bits in equation (3)
is above u + �. For the typical values of u = 16 and � = 20, this approach
requires to perform 236 additions of large integers, assuming the values of λN
for 0 ≤ λ < 2� and kN

e for 0 < k < e are precomputed. The aim is to recover k
more efficiently.

4.2 Finding Matching Pairs of Values of k and λ

From now on, we consider a unique measure of an RSA signature or decryption
with randomized exponent. Let δ denote the randomized exponent used during
the exponentiation considered. One has:

δ = d + λ× ϕ(N)

As before, the most significant half U(d) of the private exponent d is equal to
U
(⌊ 1+kN

e

⌋)
except maybe on a few least significant bits. U(δ) can likewise be

approximated by U
(⌊1+kN

e

⌋)
+ U(λN). Our goal is to recover k and λ.

Power Attack on Small RSA Public Exponent 349

If U(δ) were completely known, the exhaustive search on both k and λ could
be transformed it into a list matching problem: indeed, correct values of k and
λ correspond to matching elements in the lists

L1 =
{

U(δ)− U

(⌊
1 + kN

e

⌋) ∣∣∣∣ 0 < k < e

}
and L2 =

{
U(λN) | 0 ≤ λ < 2�

}
However, since only some bits of δ are known, some further work is required

to find matching elements. In the next paragraphs, we show how to associate
with each candidate value of k a partially known value for δ− ⌊1+kN

e

⌋
, and then

how to find matches between the list of these partially known values and L2.

Step 1a: Compute Partial Values for δ −
⌊

1+kN
e

⌋
. In the following, b(k)

denotes
⌊1+kN

e

⌋
.

For each candidate value of k, some bits of δ− b(k) can be computed. Indeed,
assume that two consecutive bits δi, δi+1 of δ are known as a result a side-channel
attack like the one of paragraph 2.3. Let bi and bi+1 the corresponding bits of
b(k), and ci, ci+1 the corresponding carry bits in δ − b(k). The bits δi, δi+1, bi,
bi+1 are known while the carries are unknown. The subtraction looks as follows :

δi+1 δi

− bi+1
ci+1← bi

ci←
.

Assume that bi = 1⊕ δi. Then one has:

δi+1 0
− ...← bi+1

1← 1 ci←
1⊕ δi+1 ⊕ bi+1 1⊕ ci

or
δi+1 1

− ...← bi+1
0← 0 ci←

δi+1 ⊕ bi+1 1⊕ ci

Therefore whenever bi = 1 ⊕ δi, the (i + 1)-th bit of δ − b is equal to
bi ⊕ δi+1 ⊕ bi+1 which is a known value.

To compute partial values for δ − b(k), first mark the (possibly overlapping)
windows of two consecutive known bits in the upper half of δ. Assume there are
v such windows.

For each value of k in [1, e−1], compute the value b(k) =
⌊1+kN

e

⌋
. Depending

on the bits of b(k) aligned with the marked windows in δ, some bits of δ − b(k)
can be computed according to the rules above : in each 2-bit window, the most
significant bit of δ − b(k) can be computed with probability 1/2, according to
bi = 1⊕ δi. A sequence (sk) of v known or unknown bits in δ− b(k) is therefore
obtained.

Step 1b: Find Matches for Partial Values. Associate to each value of λ
the sequence tλ of the values of the most significant bits of λN in the targeted
2-bit windows of δ (remember that there are v such windows). The correct value
for k and λ yields a match between tλ and the known bits in sk. If there are
sufficiently many windows, only the correct values gives a match.

350 P.-A. Fouque et al.

For each value of k, let L(k) denote the set of all λ such that tλ matches sk.
Assuming L(k) can be built efficiently, the exhaustive search for (k, λ) proposed
in subsection 4.1 can be improved by adding an early elimination step where
pairs (k, λ) s.t. λ /∈ L(k) are discarded. If L(k) is small enough, this reduces the
complexity of the exhaustive search. We therefore focus on efficiently computing
the set L(k).

A direct approach to the construction of L(k) consists in considering every
possible value of the unknown bits of sk. For each of them, the set of the matching
tλ can be computed. Since each of the v bits in sk is known with probability
1/2, the number of possible values for the unknown bits in sk is the product of
v independent random variables that are equal to 2 with probability 1/2 and to
1 with probability 1/2. This number is therefore equal on average to (3/2)v.

For u = 16, v = 40, there are about 216 × (3/2)40 ≈ 239.4 completions of the
sk, for all values of k, 0 < k < e. Therefore, whatever the method used to find
the corresponding tλ for each of these completions, at least 239.4 operations are
required to build all lists L(k) this way.

This approach can however be refined by splitting sk into subpieces before
exploring the possible values of the unknown bits. From now on, we assume that
v = 2�; the attack is even faster for higher values v which correspond to cases
where more information is available.

First, precompute the lists Ll(α) = {λ | the left half of tλ is equal to α} for
0 ≤ α ≤ 2� and the lists Lr(β) = {λ | the right half of tλ is equal to β} for
0 ≤ β ≤ 2�. This requires 2× 2� operations on large integers.

Then for a candidate k, if α1, . . . , αn (resp. β1, . . . , βm) are the values of the
left (resp. right) half of sk obtained by filling the unknown bits with any possible
value,

L(k) =

[
n⋃

i=1

Ll(αi)

]
∩
[

m⋃
i=1

Lr(βi)

]

On average, n ≈ m ≈ (3/2)v/2, and for any i, #Ll(αi) ≈ #Lr(βi) ≈ 2�−v/2 = 1.
Using suitable data structure (of size 2v/2) to be able to compute an intersection
in constant time, the formula above can therefore be evaluated using 2×(3/2)v/2

constant-size operations. This means that all the lists L(k) can be built using
only 2u × 2× (3/2)v/2 operations.

For u = 16, � = 20, v = 2� = 40, the total complexity is 228.7 operations. One
can show that cutting sk in two halves is optimal when v = 2�.

Assuming that the tλ and the completions of the sk are random, the birthday
paradox shows that the average number of elements in L(k) is (3/2)v×2�

2v . With
� = 20, v = 2�, #L(k) ≈ 23.4. Therefore after the above early elimination step,
219.4 pairs (k, λ) must be considered if u = 16, compared to 236 pairs before the
elimination step.

Overall, this improved attack retrieves k using 228.7 constant-size operations
and around 220 operations on large integers. We implemented the attack; it runs
in about one minute on an average PC.

Power Attack on Small RSA Public Exponent 351

In practice, as shown in section 2.3, the number of windows available is far above
what is needed: with a 1024-bit exponent and the exponentiation algorithm of
figure 2 with windows of size 4, one has approximately v = 100 windows of two
known consecutive bits in the upper half of δ. This extra information can be taken
into account to eliminate more pairs (k, λ). With v large enough, this filters out
all the wrong pairs, thereby eliminating the need for an exhaustive search phase.
On the other side, the complexity of the pair elimination phase is linear in v.

5 Practical Results

There are two limits for this attack: the first one is to have enough information
on one curve to be able to recover only one λ for each curve, the second one
is to have enough information on all the curves to recover only one possibility
for the least significant bits. The following tables will give some examples where
the attack is feasible or not. We can note that the attack is more efficient on
larger modulus size. Table 5 gives the results in the case e = 3. In that case,
only a ratio of bits has to be known in each randomized exponent. In practice, if
side channel attack is possible on a CLNW or VLNW splitting method, we may
obtain a better ratio than detailed in the table.

Modulus �, size 1/r, ratio of partially attack
size of random known information success
512 20 1/16 no
1024 20 1/16 yes

32 1/16 no
2048 20 1/32 yes

32 1/64 yes

Fig. 5. Practical results for e = 3

Modulus �, size number of 2-bit 1/r, ratio of partially attack
size of random windows known information success
512 20 40 1/16 no
1024 20 40 1/16 yes

32 64 1/16 yes
2048 32 64 1/32 yes

Fig. 6. Practical results for e = 216 + 1

Table 6 gives the results for e = 216 + 1. In that case, as explained in sec-
tion 4, the attack has better complexity if 2-bit windows are obtained for one
randomized exponent. Such information may be obtained with the CLNW or
VLNW splitting algorithms. For the optimized method to be more efficient than
exhaustive search, the number of 2-bit windows should be twice the length of
the random value λ used to randomized the private exponent.

352 P.-A. Fouque et al.

The fifth column is computed by using the formula n/(2r) " �. For each
parameter, 50 curves are sufficient in practice, without considering imperfect
input data.

In conclusion we can see that for classical size and reasonable information
leaking, the attack is feasible and of low complexity.

Acknowledgments

The authors would like to thank the anonymous referees for many useful com-
ments on the first version of this paper.

References

1. D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a fraction of
the private key bits. In K. Ohta and D. Pei, editors, Advances in Cryptology –
Asiacrypt’98, volume 1514 of LNCS, pages 25 – 34. Springer-Verlag, 1998.

2. J. Bos and M. Coster. Addition Chain Heuristics. In G. Brassard, editor, Advances
in Cryptology – Crypto 1989, volume 435 of LNCS, pages 400 – 407. Springer
Verlag, 1989.

3. D. E. Knuth. The Art of Computer Programming, Vol 2: Semi Numerical Algo-
rithms. Addison Wesley, 1969.

4. C. K. Koç. High Speed RSA Implementation. Technical report, Tech Rep. 201,
RSA Laboratories, 1994.

5. C. K. Koç. Analysis of Sliding Window Technique for Exponentiation. Computers
and Mathematics with Applications, 10(30):17 – 24, 1995.

6. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Others Systems. In N. Koblitz, editor, Advances in Cryptology – Crypto ’96,
volume 1109 of LNCS, pages 104 – 113. Springer-Verlag, 1996.

7. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power Analysis Attacks of Modu-
lar Exponentiation in Smartcard. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, volume 1717 of LNCS, pages 144
– 157. Springer-Verlag, 1999.

8. D. R. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming
Weight Discrete Logarithm Problem. Mathematics of Computation, 71:379 – 391,
2002.

9. C. D. Walter. Sliding Windows Succumbs to Big Mac Attack. In Ç. K. Koç and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of LNCS, pages 286 – 299. Springer-Verlag, 2001.

10. C. D. Walter. Seeing through MIST Given a Small Fraction of an RSA Private
Key. In M. Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 391 – 402.
Springer-Verlag, 2003.

A When Few Bits Are Missing

In this appendix, we show that when the number of missing bits is small, we
can recover missing bits of d by using a discrete log based algorithm. Stinson

Power Attack on Small RSA Public Exponent 353

describes and analyzes several algorithms due to Heiman and Odlyzko and Cop-
persmith in [8]. Let m be the number of missing bits of x = logα β and t is the
Hamming weight of x. Heiman and Odlyzko describe a meet-in-the-middle at-
tack. We search Y1 and Y2 ⊆ Zm such that αval(Y1) = β(αval(Y2))−1 mod N where
val(Yi) =

∑
j∈Yi

2j by ranging through all Y1 and Y2 such that |Y1| = |Y2| = t/2.
As there are

(
m
t/2

)
such sets Y1 and Y2, the space and time complexity of the

attack is of order O(
(

m
t/2

)
). Moreover, if we have only an upper bound t′ on t,

we have to run through all t = 1 to t = t′ and the time complexity becomes
O(
∑t′

t=1

(
m
t/2

)
) = O(t′

(
m

t′/2

)
).

Coppersmith’s algorithm, described in [8], allows one to lower the time com-
plexity to O(m

(m/2
t/2

)
) and the space complexity to O(

(m/2
t/2

)
). The idea is to use

an (m, t)-splitting system for Zm. Such combinatorial structure is a pair (X,B)
with the following properties:

1. |X | = m, and B is a set of subsets of size m/2 of X , called blocks
2. for every Y ⊆ X s.t. |Y | = t, there exists a block B ∈ B s.t. |B ∩ Y | = t/2

Coppersmith shows that there exists an (m, t)-splitting system of size m/2.
Therefore by picking Y1 ⊆ Bi for all Bi ∈ B and Y2 ∈ Zm \ Bi for any t-set Y2

in Zm \Bi the same algorithm finds the matching in time O(
(m/2

t/2

)
).

The last algorithm can be adapted to work mod N where N is a RSA mod-
ulus and when the missing bits are not consecutive. The memory complexity is
O(m

(m/2
t/2

)
) where t is the number of 1 bits among m bits.

Consequently, if we assume that in the m missing bits, one of two are a
one, then t = m/2. Therefore, the complexity is O(m2

(m/2
m/4

)
). Since,

(
N

N/2

) ≈√
2/π · 2N , then the complexity becomes O(m2 · 2m/2), and in practice, we can

only deal with m ≈ 128.

Unified Point Addition Formulæ and
Side-Channel Attacks

Douglas Stebila1,� and Nicolas Thériault2

1 Institute for Quantum Computing,
University of Waterloo, Waterloo, ON, Canada

dstebila@iqc.ca
2 Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, ON, Canada
ntheriau@math.uwaterloo.ca

Abstract. The successful application to elliptic curve cryptography of
side-channel attacks, in which information about the secret key can be
recovered from the observation of side channels like power consumption,
timing, or electromagnetic emissions, has motivated the recent develop-
ment of unified formulæ for elliptic curve point operations. In this paper,
we show how an attack introduced by Walter can be improved and used
against the unified formulæ of Brier, Déchène and Joye when it relies
on a standard field arithmetic implementation, both in affine and pro-
jective coordinates. We also describe how the field arithmetic might be
implemented to obtain more uniform operations that avoid this type of
attack.

Keywords: elliptic-curve cryptography, side-channel attacks, unified
point addition formulæ, projective coordinates.

1 Introduction

The study of elliptic curves in cryptography [1,2] has been ongoing for a number
of years. Elliptic curve cryptography offers higher security per key bit compared
to other public key cryptosystems and the smaller key size is more suitable for
implementation on small devices such as smart cards. In recent years, a new
class of attacks has been developed, called side-channel attacks [3], which use
information observed during the execution of the algorithm to help to determine
the secret key. There are two classes of side-channel attacks: simple side-channel
attacks, which analyze the trace of a single execution of a cryptographic proto-
col, and differential side-channel attacks, which compare the traces of multiple
executions of a protocol. The attack in this paper is only considered in a simple
side channel context.

The central operation in an elliptic curve cryptosystem is the point multiplica-
tion operation, in which a point is multiplied by a scalar. The basic method for
implementing point multiplication is the double-and-add technique, which uses

� Supported by NSERC, Sun Microsystems, CIAR, MITACS, CFI, and ORDCF.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 354–368, 2006.
c© International Association for Cryptologic Research 2006

Unified Point Addition Formulæ and Side-Channel Attacks 355

a binary representation of the scalar and performs a sequence of point additions
and point doublings depending on the bits of the scalar. In double-and-add point
multiplication, a point doubling is done for every bit of the key k, but a point
addition is done only when a bit of the key is 1. If, in a side-channel analysis,
a point addition is distinguishable from a point doubling, then the bits of the
secret key can be determined; this has been demonstrated experimentally using
timing [3], power analysis [4], and electromagnetic emissions [5]. Techniques for
counteracting this problem include: performing dummy operations, such as forc-
ing a point addition at each iteration [6]; using alternate point multiplication
algorithms, such as Montgomery point multiplication [7]; using alternate curve
parameterizations, such as the Jacobi or Hessian forms; and unifying the algo-
rithms for point addition and point doubling so that they use the same sequence
of field operations and hence are indistinguishable. It is this last technique that
we address in this paper.

A unified formula for point addition and point doubling for elliptic curves
in Weierstraß form, in which point addition and point doubling use the same
sequence of field operations, was first given by Brier and Joye [8] in affine and
projective form. Walter [9] demonstrated a theoretical side-channel attack on
an implementation of the formula of Brier and Joye that, instead of exploiting
any irregularity in the sequence of field operations performed, exploits an irreg-
ularity in the implementation of the field operations themselves in the context
of the unified point addition formula. A subsequent paper of Brier, Déchène,
and Joye [11] offers an infinite family of unified point addition formulæ in affine
form.

In this paper, we give a projective version of the unified point addition formulæ
of Brier, Déchène, and Joye. Whereas Walter’s attack used the occurrence of
the conditional subtraction in a Montgomery field multiplication, we note that
a conditional addition is often an integral step of field subtraction. A typical
algorithm for computing prime field subtraction is given in Fig. 1; the conditional
addition is step 2.1

Input: Integers c, d, q such that 0 ≤ c, d ≤ q − 1.
Output: Integer e such that e = c − d mod q and 0 ≤ e ≤ q − 1.

1. e ← c − d
2. if e < 0 then e ← e + q

Fig. 1. Field subtraction algorithm

We find that the ability to detect the occurrence of the conditional addition
in field subtractions in both the affine and projective form decreases the amount
of work necessary to recover the key. In the projective case in Montgomery
representation, the effect is substantial when combined with Walter’s original

1 Similarly, a field addition contains a conditional subtraction, however our techniques
of Sec. 5 do not make use of this conditional subtraction.

356 D. Stebila and N. Thériault

attack. This observation reinforces the fact that a secure implementation re-
quires constant-runtime field operations, not just unified point arithmetic. In
fact, security against side-channel attacks needs to be addressed at three levels:
the hardware level, the software level, and the algorithmic level.

We also provide some performance results for the various unified formulæ
and discuss the applicability of timing attacks. We find in timing experiments
that the runtime of a field subtraction with the conditional addition takes
substantially longer than without (520 ns versus 330ns) and thus seems
exploitable.

This paper is organized as follows: Section 2 provides a short introduction to
elliptic curve cryptography. In Sec. 3, we describe the unified formula of Brier
and Joye and describe an attack by Walter. In Sec. 4, we describe the family of
unified formulæ in affine coordinates given by Brier, Déchène, and Joye and give
our derivation of the formulæ for projective coordinates. In Sec. 5, we present an
extension of Walter’s attack, analyze its effect on the implementation of the for-
mulæ, and discuss countermeasures. Section 6 contains performance results and
discusses the possibility of timing attacks on double-and-add projective unified
point multiplication.

The attacks we discuss in this paper only apply to elliptic curves over prime
fields and do not apply to curves over binary fields. The countermeasures we
present are not intended to be secure against differential side channel attacks;
standard countermeasures for that context should still be applied.

2 Background

For fields IK of prime characteristic other than 2 or 3, the Weierstaß form of an
elliptic curve is given by the equation y2 = x3+ax+b, where a, b ∈ IK. The set of
points in IK×IK on the curve, joined with the point at infinity O, forms an abelian
group, denoted E(IK). Two points P = (x1, y1) and Q = (x2, y2), P �= −Q, can
be added to obtain a third point P + Q = (x3, y3), where x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1, and

λ =

{
y2−y1
x2−x1

, if P �= Q (addition)
3x2

1+a
2y1

, if P = Q (doubling)
. (1)

Because λ is defined differently depending on whether or not P = Q, the formula
for point addition differs from the formula for point doubling.

The formula given above uses affine coordinates. The formula for λ requires
an inversion, which can be computationally expensive in practice. This has mo-
tivated the development of formulæ using projective coordinates. In the ordinary
projective case, a point is represented by three coordinates, P = (X, Y, Z),
with x = X/Z and y = Y/Z. Denominators are used for all of the point
additions and point doublings comprising a point multiplication, and only at
the end is the inversion Z−1 computed to return the final result to affine
coordinates.

Unified Point Addition Formulæ and Side-Channel Attacks 357

3 Unified Formula of Brier and Joye

The formula for λ in (1) when P �= Q cannot be used for point doubling because
x1 = x2 in that case and the denominator is 0. Starting with the point addition
form of λ, Brier and Joye [8] use a series of algebraic manipulations to obtain a
form of λ that is defined for both point addition and point doubling:

λ =
(x1 + x2)2 − x1x2 + a

y1 + y2
, if y1 + y2 �= 0 . (2)

However, this formula for λ is not defined when y1 + y2 = 0 (see Section 4.1).
Brier and Joye subsequently derive a projective formula for point addition using
this unified value of λ, with xi = Xi/Zi, yi = Yi/Zi:

X3 = 2FW , Y3 = R(G− 2W)− L2 , Z3 = 2F 3 , (3)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 +
U2, M = S1 + S2, F = ZM, L = MF, G = TL, R = T 2 − U1U2 + aZ2, and
W = R2−G. This formula requires 13 field multiplications and 5 field squarings.

3.1 Walter’s Side-Channel Attack

Walter’s side-channel attack [9] is an attack that assumes the occurrence of
a conditional subtraction in a Montgomery modular multiplication operation
can be detected. This attack should be considered successful if a non-negligible
proportion of the keys can be computed significantly faster than they would
with an attack on the whole keyspace. We will see that in some cases, the attack
becomes practical as a (relatively) high proportion of keys can be found with
(relatively) few computations.

Walter considers the effect of being able to detect a conditional subtraction
in Montgomery modular reductions in a point multiplication using the unified
formula of Brier and Joye. For a point doubling using the projective formula of
(3), the computations of U1 and U2 are identical, as are the computations of S1
and S2. The occurrence of a conditional subtraction in the Montgomery multi-
plication for U1 must be the same as that for U2, for a point doubling. Thus,
if a conditional subtraction is observed in the computation of one of U1 or U2
but not the other, then a point doubling could not have occurred and the op-
eration must be a point addition. (The same argument allows the computations
of S1 and S2 to distinguish a point addition.) The probability that a conditional
subtraction occurs in the computation of one of U1, U2 but not the other (and
similarly for S1 and S2) is

pdiff = 2psub(1 − psub) ≈ 3
8

. (4)

where psub is the probability of a conditional subtraction occurring; for Mont-
gomery modular reduction in practice, usually psub ≈ 1/4. Hence, the probability

358 D. Stebila and N. Thériault

that the occurrence of conditional subtractions in the computations of U1, U2, S1,
and S2 can be used to distinguish a point addition from a point doubling is

pdist = 1− (1− pdiff)2 ≈ 39
64
≈ 0.61 . (5)

In the sequence of operations in a double-and-add point multiplication algo-
rithm, the position of a point addition determines the point doublings on either
side of it. Let n be the size in bits of the prime field. Given pdist, the expected
total number of determined operations is:

3
2
(n− 1)pdist − (n− 2)

(
1
2
pdist

)2

. (6)

The probabilistic analysis given above does not give the best estimate of the
number of determined operations. In experiments, Walter found that, with a
set of 512 samples, it is most efficient to just pick the sample that has the
greatest number of distinguished point additions. This approach, combined with
additional substring restrictions, can give effective keyspaces for a 192-bit prime
curve of size just 217.6, which can be easily searched. The analysis in Sec. 5 gives
a probabilistic argument that generalizes Walter’s experimental sampling.

4 Unified Formulæ of Brier, Déchène, and Joye

4.1 Affine Coordinates

The unified point addition formula of Brier and Joye from the previous section is
defined when y1+y2 �= 0, which always holds in the case of point doubling, but it
is not applicable to all possible point additions. Izu and Tagaki [10] showed that
in some settings these special cases of the point addition could be used to reveal
the key. Brier, Déchène, and Joye [11] developed an infinite family of unified
point addition formulæ which are defined for all points. We are most concerned
with the most efficient formula of the family, which has

λ=
(x1 + x2)2 − x1x2 + a + (−1)δ(y1 − y2)

y1 + y2 + (−1)δ(x1 − x2)
, y1 + y2 +(−1)δ(x1−x2) �= 0 , (7)

where δ = 0 when y1 + y2 + x1 − x2 �= 0 and δ = 1 otherwise (or a randomized
choice of δ when both choices give nonzero values). Unified point addition using
this λ requires 2 field multiplications, 2 field squarings, and 1 field inversion. Al-
though Brier, Déchène, and Joye give an infinite family of unified point addition
formulæ, which would allow a different λ value to be randomly chosen at each
point addition, we assume that the most efficient member, given in (7), is used
for each operation. If any fixed λ is used, then it may be that the attack in Sec. 5
can still be applied.

Unified Point Addition Formulæ and Side-Channel Attacks 359

4.2 Projective Coordinates

To mitigate the high cost of field inversion compared to the cost of field multipli-
cation, points can be expressed in projective coordinates so that field inversion
need only be done once per point multiplication rather than at each intermediate
point addition or point doubling.

We now describe an ordinary projective form of the unified point addition
formula given by λ as defined in (7). We begin by noting that since P+Q = Q+P ,
the value for y3 in point addition is symmetric and hence 2y3 = λ(x1 + x2 −
2x3) − (y1 + y2). Letting xi = Xi/Z, yi = Yi/Z and completing the square in
the numerator of λ, we obtain:

X3 = 2FW , Y3 = R(G− 2W)− LFM , Z3 = 2F 3 , (8)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 +
U2, M = S1 + S2, V = (−1)δ(U1 − U2), N = (−1)δ(S1 − S2), E = M + V, F =
ZE, L = FE, G = LT, R = T 2 − U1U2 + Z(aZ + N), and W = R2 − G. Note
that δ = 0 when S1 + S2 + U1 − U2 �= 0 and δ = 1 otherwise (or a randomized
choice of δ when both choices give nonzero values). This formula requires 16 field
multiplications and 3 field squarings.2

5 Extending Walter’s Attack

5.1 Conditional Modular Reduction Attack

Walter’s original attack in Sec. 3.1 assumed that the conditional subtraction
at the end of Montgomery multiplication could be detected. Under the same
assumption that a conditional subtraction (or addition) can be observed, we
note that such an operation at the end of a field addition (or subtraction) can
be detected. For field subtraction as given in Fig. 1, the conditional addition is
step 2.3

We will observe later in this section that there are some modular subtractions
in the unified point addition algorithms where, in the case of a point doubling,
the arguments are equal and hence the result of the subtraction is zero: when
c = d, we compute c− d mod q as c− d = 0. In this case, a conditional addition
in field subtraction is never performed. However, if we observe the occurrence of
a conditional addition for the operation c−d mod q, then it must be that d > c
and hence the operation in question must be a point addition.

2 The multiplication by (−1)δ in the computation of V and N can be implemented
with conditional branching (if statement).

3 In implementation, this is common. For example, the OpenSSL [14] library provides
a function BN mod sub quick which performs exactly the operations in Fig. 1, and
similarly for field addition. When reduction is done using the Extended Euclidean
Algorithm, as in OpenSSL’s BN mod sub function, and the value to be reduced is
strictly between −q and q, the sequence of steps performed is effectively the same
as Fig. 1 and includes a conditional addition.

360 D. Stebila and N. Thériault

5.2 Effect on Affine Formulæ of Sec. 4.1

The affine formulæ of Brier, Déchène, and Joye in (7) requires the computation of
y1−y2 and x1−x2. If all of the coordinates are distributed uniformly at random,
then the probability that a conditional addition is necessary in the computation
of y1 − y2 is 1/2, and similarly for x1 − x2. In this case, the probability that a
point addition can be identified is pdist = 1− (1− 1/2)2 = 3/4.

We first note that even when additions and doublings cannot be distinguished,
a side channel attack will reveal the number of operations performed in the
point multiplication. If the key length is known, then knowing the number of
operations gives the number of additions (since the number of doublings is fixed
by the key length). To simplify the analysis, we assume that the attack can only
be successful for keys of the most common length. This does not mean that the
attack cannot work for other key lengths, but rather that it is more difficult to
bound the work required to determine the key.

If q is between 3 · 2r−1 and 3 · 2r, then the most common key length is r and
occurs for pl=r ≥ 1/3 of the keys (integers) between 0 and q. This probability is
maximal if q is close to 2r+1, in which case pl=r ≈ 1/2 of the keys have length
r. If there are k additions of which k1 are not identified, then we can consider
the key-space to search as the set of sequences of r − k “zeros” and k “ones”.
These sequences are combined with the identified additions of the double and
add sequence to give a list of possible keys (the substring structure will often
remove a number of sequences). The number of possible keys is then bounded
by

(
r−k+k1

k1

)
, which in turn is bounded by

(
r
k1

)
(this estimate is usually very

pessimistic, but it has the advantage of being independent from the value of k).
If we assume that all keys of length r are possible (which is true if q ≥

2r+1− 1), the probability that a key of length r uses k additions is
(

r
k

) 1
2r . Given

a key with k additions, the probability that k1 of them are not identified is(
k
k1

)
(pdist)k−k1(1 − pdist)k1 . The probability that exactly k1 additions are not

identified in a key of length r is therefore

pk1 =
r∑

k=k1

(
r

k

)
1
2r

(
k

k1

)
(pdist)k−k1 (1− pdist)k1

=
r∑

k=k1

(1− pdist)k1

2r

(
r

k1

)(
r − k1

k − k1

)
(pdist)k−k1

=
(1 − pdist)k1

2r

(
r

k1

) r−k1∑
i=0

(
r − k1

i

)
(pdist)i

=
(

r

k1

)(
1− pdist

2

)k1 (1 + pdist

2

)r−k1

. (9)

Although the average number of unidentified addition is (1 − pdist)r/2 = r/8,
some keys will have fewer additions remaining to be identified.

For our 192-bit prime field example curve, we have r = 191 and we get an
average of 23.9 additions remaining to be identified, so the search space is still

Unified Point Addition Formulæ and Side-Channel Attacks 361

quite large. This analysis assumes that the additions in a point multiplication
are independent. This is not strictly true as x1 and y1 (the x and y coordinates
of the base point) are the same for all the additions.

In 1/m of point multiplications sP , the x-coordinate of the base point P will
take on a value between 0 and 1

mq and will have an average value of 1
2mq. We

take the notation that in the double-and-add point multiplication algorithm the
fixed base point P is the first argument of the unified point addition formula.
In the computation of x1 − x2 in (7), we assume that, over the course of a
point multiplication, x2 will behave as if it is uniformly distributed. Thus it
is expected for 1 − 1

2m of the point addition operations that x2 > x1 and a
conditional addition occurs. We do not put any condition on the y-coordinate of
P and assume that the size of y1 can be considered independent from the size
of x1. In this case, the probability that a point addition can be distinguished is
the probability that a conditional addition occurs in either the computation of
x1 − x2 or y1 − y2:

pdist = 1−
(

1−
(

1− 1
2m

))(
1− 1

2

)
= 1− 1

4m
(10)

Using pdist in (10) with 1/m = 1/8, the expected number of additions in our
example remaining to be identified decreases to 2.99. We can then conclude
that a significant proportions of keys of length r will be left with at 3 or fewer
unidentified additions (using the distribution in (9), we find that 1 in ≈ 24.6 of
all keys satisfy that condition). The number of possible keys is then bounded
(loosely) by

(191
3

) ≈ 220.1, for which an exhaustive search is quite feasible.

5.3 Effect on Projective Formulæ of Sec. 4.2

Just as for affine formulæ, there are two operations in the projective formulæ of
(8) where we can take advantage of the ability to detect a conditional addition
in a field subtraction. Without loss of generality, suppose δ = 0. Consider the
calculations V = U1 − U2 and N = S1 − S2. In the case of a point doubling,
U1 = U2 and S1 = S2, so no conditional addition will occur in the calculation
of either V or N . However, in the case of a point addition, we assume that U1
and U2 will behave as if they are independent and uniformly distributed over
0, . . . , p−1. So, with probability padd = 1

2 , U2 < U1 and a conditional addition is
needed in the computation of V = U1−U2 (similarly for N = S1−S2). Moreover,
we also assume that the occurrence of a conditional addition in the computation
of V is independent of the occurrence for N . If a conditional addition is observed
in at least one of these computations, then the operation is known to be a point
addition, revealing the key bit. The probability of distinguishing a point addition
is again 1− (1− padd)2 = 3/4. It should be noted that taking advantage of base
points of a special form is not possible here as U1, U2, S1 and S2 all depend on
both of the points of the addition, so for all practical purposes the probabilities
of identifying point additions are independent from each other.

If the field is implemented using Montgomery representation, Walter’s original
attack [9] on detecting conditional subtractions in Montgomery reductions still

362 D. Stebila and N. Thériault

applies to this projective formula. The detection of a conditional subtraction is
used to distinguish a point addition from a point doubling in the computation
of U1 compared to U2, and of S1 compared to S2. We can combine the two
sources of information (conditional additions in the field subtractions and dif-
ferences in conditional subtractions in the Montgomery reductions) to increase
the probability of success.

We now have four different conditional events which distinguish a point ad-
dition from a point doubling:

1. conditional subtraction in computation of one of U1, U2 but not the other,
2. conditional subtraction in computation of one of S1, S2 but not the other,
3. conditional addition in computation of V = U1 − U2, and
4. conditional addition in computation of N = S1 − S2.

Under the assumption that these events occur independently, the probability of
detecting a point addition given that the operation was a point addition is

pdist = 1− (1− padd)2(1− pdiff)2 . (11)

In practice, the coordinate values observed during a point multiplication do seem
to behave as if they are sufficiently uniformly distributed and, with respect to
the four conditional events above, sufficiently uncorrelated.

If we assume no special knowledge on the base point of the point multiplica-
tion, i.e. padd = 1/2 and pdiff ≈ 3/8, we get pdist ≈ 231/256 ≈ 0.902. For the
distribution obtained in (9), we average ≈ 0.049r unidentified additions.

If we look for base points of a special form as in Walter’s attack for the formulæ
of Brier and Joye, the increase in the probability of success is relatively small.
With a point of the form ∼ (1

16q, 1
16q, 15

16q
)
, we get pdiff ≈ 0.93 and the expected

number of unidentified addition decreases to ≈ 0.035r. This decrease is small
considering that we have to restrict ourselves to 1 in 512 points. In this case,
it is much more practical to consider all base points and take advantage of the
variability. For example, for a field of 192 bits, 15.4% of all point multiplications
have 6 or less unidentified additions, while the special base points (1 in 512)
have 6.7 unidentified additions on average.

Table 1 gives estimates for the attack at various field sizes. At each field size,
we give the average number of additions remaining to be identified. We give a
probabilistic analysis of the best sample we expect to find in the trace of 512
random point multiplications.4 In the probabilistic analysis, we determine an
upper bound on the number of unidentified additions for which the attack will
be considered successful, requiring a probability of success of at least 1 in 512.
For each case, we give a (loose) upper bound on the keyspace and a better
estimate using the approach described in Appendix A.

We also evaluate the costs of the attack when we give a bound on the maximum
number of additions remaining to be identified before the key is attacked (with 3
4 While the theoretical analysis in Section 5.2 only considers traces in which the key

has the most common length, the “best of 512” analysis takes into account keys of
all lengths (assuming failure of keys of length other than r).

Unified Point Addition Formulæ and Side-Channel Attacks 363

as an example). In this case, we give the expected number of point multiplications
that must be observed before finding such a key and a (loose) upper bound on
the size of the remaining keyspace. It is interesting to note that for the 521-bit
case, the expected number of keys required to obtain 3 unidentified additions
approximately balances the bound on the keyspace giving, in some sense, an
overall minimized complexity of attack. We also compare our results with those
of Walter [9]. We assume that general points are considered, so pdist ≈ 0.902,
that half the keys have size r (that is, q ≈ 2r+1) and that an attack on a key of
size different from r is always considered unsuccessful.

Table 1. Expected number of operations using conditional modular reduction attack,
using pdist as in (11)

Field size in bits (r + 1) 160 192 224 256 384 521

Average missing additions per point mult.: 7.76 9.33 10.89 12.45 18.70 25.43

Sampling best trace from 512 samples:
k required for prob. of success > 1/512: 2 2 3 4 8 13
Upper bound on keyspace for this k: 213.6 214.1 220.8 227.4 253.2 284.5

Estimated keyspace (Appendix A): 29.03 29.67 214.3 218.9 237.2 259.4

To obtain at most 3 unidentified additions:
Expected number of keys required: 22 67 217 746 217.1 225.2

Bound on keyspace: 219.3 220.1 220.8 221.4 223.1 224.4

Walter’s attack [9]:
Average missing additions: 19.2 23.0 26.6 41.5 57.9
Bound on keyspace (no restrictions): 233.2 242.8 252.4 291.4 2134.3

Bound using substring restrictions: 217.6 224.0 230.4 256.0 284.2

Just as in Walter’s analysis it may be possible to decrease the key space
remaining to be searched, for example by using substring restrictions on the
possible sequence of point additions and point doublings. This approach has
only a limited impact in our case, since the operations remaining to be identified
consist in a large number of doublings and a few additions.

5.4 Countermeasures to the Conditional Modular Reduction Attack

The success of the Conditional Modular Reduction attack depends on informa-
tion leaked on the size of intermediate values which is observed based on the field
subtraction having a conditional addition. If the field subtraction were to have con-
stant runtime, for example by inserting a dummy addition to offset the conditional
addition, then the attack would not apply. However, inserting dummy operations
may create additional risks in the setting of differential side-channel attacks.

A nicer countermeasure would be to program the subtraction of c− d mod q
as (2q + c − d) −mq, where m ∈ {1, 2} depends on the value of 2q + c − d, so
the time required for a field subtraction is constant. For the field addition, one

364 D. Stebila and N. Thériault

would replace c+d mod q by (q+c+d)−mq where m ∈ {1, 2}, and similarly for
Montgomery reduction (replacing c+d by the value of the Montgomery reduction
at the moment the conditional subtraction is used). These countermeasures still
require a conditional operation to be performed, based on the appropriate value
of m, but may have less of a detectable difference.

A third countermeasure consist in taking the field reductions (both Mont-
gomery reductions and addition/subtraction of a multiple of q) as independent
operations from the multiplications, squarings, additions and subtractions and
rewrite the unified formulæ in consequence. This means we will accept that some
of the values used during the computations may be greater than q. Although this
approach removes any danger of an attack based on variations in the field arith-
metic, it may have a negative impact on the efficiency, in particular when the
field size is close to a multiple of the word size.

At this point we should also note that choosing δ = 0 or δ = 1 requires the
comparison of two field elements, so at least these two must be fully reduced.
Since repeated operations or even a change from addition to subtraction could
potentially lead to an attack, we choose δ to ensure that 1

2 (x1 + x2 + y1 + y2) �=
x2−δ instead of y1 + y2 + (−1)δ(x1 − x2) �= 0 (the two conditions are equivalent,
but the computations required for the first test are more uniform).

For simplicity, we will assume the field is in Montgomery representation. We
distinguish Montgomery reductions and q-reduction where multiples of q are
added/subtracted. In an attempt to avoid possible extensions of the attack, we
err on the side of caution and implement the field operations as follows:

– Products (and squares) are not reduced unless stated.
– Sums are not reduced unless stated.
– Subtractions never contain a conditional addition (a fixed multiple of q is

always added to the first operand before doing the subtraction).
– If an integer is to be fully reduced, then it is at least as large as q.
– For the affine formula, inversion accepts any integer between 1 and 6q − 1

and coprime to q and returns an integer between 1 and q − 1.
– Montgomery reductions are allowed to return an output between 0 and 2q−1.

They accept inputs between 0 and 6q2 for affine coordinates (R > 6q) and
between 0 and 16q2 for projective coordinates (R > 16q).

– The multiples of q used in the formulæ are precomputed.

For the projective formula, we let the X , Y and Z coordinates be in the range
[0, 2q − 1]. Note that by construction (x1 + x2)2 ≥ x1x2.

6 Timing

The timings in this section were performed on a 900MHz UltraSPARC III using
the multi-precision integer and elliptic curve libraries from NSS 3.9 [15] with no
optimized assembly code. To obtain high-resolution timings, we used the Solaris
hrtime C library, which has a resolution of 100ns. We use the 160-bit prime
field curve secp160r2 [16].

Unified Point Addition Formulæ and Side-Channel Attacks 365

On our test system, the average time of a 160-bit prime field modular sub-
traction a− b mod q when a > b is about 320ns. When a < b, and hence when
a conditional addition is required, the average time is about 550 ns.

Table 2 gives performance timings for point operations using the unified point
addition and doubling formulæ from Section 4 as well as other schemes. Point
multiplications for all fomulæ except Jacobian projective and modified Jaco-
bian wNAF use the double-and-add technique. The timings in the table are the
average of 105 operations.

Table 3 gives average timings and standard deviations for point additions and
point doublings in the course of a single point multiplication. The results were
obtained by recording the time of each addition or doubling in a single point
multiplication using the double-and-add algorithm.

Table 2. Average point operation timings for secp160r2 curve

Formula Addition Doubling Multiplication

BDJ affine 126.5 µs 126.2 µs 29.03 ms
Affine 115.7 µs 118.4 µs 27.89 ms
BDJ projective 58.9 µs 58.5 µs 13.99 ms
BJ projective 49.8 µs 49.5 µs 11.76 ms
Jacobian projective 7.95 ms
Modified Jacobian wNAF, w = 5 6.22 ms

Table 3. Individual point operation timings from a single point multiplication for
secp160r2 curve

Formulæ Operation Average Standard Deviation

unified addition 126.528 µs 4.094 µs ≈ 3.2%
BDJ affine unified doubling 126.155 µs 3.700 µs ≈ 2.9%

difference 0.373 µs ≈ 0.3%
unified addition 58.992 µs 0.474 µs ≈ 0.8%

BDJ projective unified doubling 59.307 µs 0.448 µs ≈ 0.75%
difference 0.315 µs ≈ 0.53%

In the top half of Table 3, timings are given for point addition and doubling
using the affine formulæ of Brier, Déchène, and Joye. A unified doubling takes
slightly less time than a unified addition on average, but difference between the
two operations (0.3%) is one-tenth the size of the standard deviation of either
operation, so the timings of the two operations cannot be reliably distinguished.

In the bottom half of Table 3, timings are given for point addition and doubling
using the projective formulæ developed in Sec. 4.2. A unified doubling takes
slightly more time (0.53%) than a unified addition. The standard deviation of
either operation, at 0.8% for addition and 0.75% for doubling, is less than twice
difference.

366 D. Stebila and N. Thériault

For both the affine and projective formulæ of Brier, Déchène, and Joye in
Table 3, the average difference in timing between a point addition and point
doubling is too small compared to the standard deviation to be of practical use
on its own. However, we do not dismiss the fact that this information could be
helpful when combined with other side-channel information.

7 Future Work

The major drawback with our approach for the analysis is that we concentrate
on keys with a minimal number of unidentified additions, not necessarily on keys
for which the remaining keyspace is minimized. In general, binary keys where the
zeros only appear in small groups in the key are much easier to break than keys
with large groups of consecutive zeros since the first and last doubles coming
from a string of zeros in the binary representation are likely to be identified and
this is almost the same as identifying one of the zeros. For example, the 521-bit
key 10101 · · ·0101 with 16 unidentified additions has a much smaller remaining
keyspace than the 521-bit key consisting of 261 ones followed by 260 zeros for
which only 8 of the additions have not been identified, even though the number
of additions remaining to be located is divided by two in the second key.

A cost analysis that includes this idea would require a study of the distribution
of strings of zeros in the binary representation of the key, taking into account
the effect of unidentified additions. This is clearly beyond the scope of the work
presented here.

Acknowledgments. The authors wish to acknowledge the assistance of I. Déch-
ène of the University of Waterloo, N. Gura and S. Chang of Sun Microsystems
Labs, and the anonymous referees.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Miller, V.: Use of elliptic curves in cryptography. In Williams, H.C., ed.: Ad-
vances in Cryptology – Proc. CRYTPO ’85. LNCS, Vol. 218. Springer-Verlag (1986)
417–428

3. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Koblitz, N., ed.: Advances in Cryptology – Proc. CRYPTO ’96.
LNCS, Vol. 1109. Springer-Verlag (1996) 104–113

4. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In Wiener, M., ed.:
Advances in Cryptology – Proc. CRYPTO ’99. LNCS, Vol. 1666. Springer-Verlag
(1999) 388–397

5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In B.S. Kaliski Jr. and Ç.K. Koç and C. Paar, eds.: Cryptographic Hardware and
Embedded Systems – CHES 2002. LNCS, Vol. 2523. Springer–Verlag (2003), 29–45

6. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Çetin K. Koç, Paar, C., eds.: Cryptographic Hardware and Embedded
Systems (CHES) ’99. LNCS, Vol. 1717. Springer-Verlag (1999) 292–302

Unified Point Addition Formulæ and Side-Channel Attacks 367

7. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44 (1985) 519–521

8. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In Nac-
cache, D., Paillier, P., eds.: Public Key Cryptography – PKC 2002. LNCS, Vol.
2274. Springer-Verlag (2002) 335–345

9. Walter, C.D.: Simple power analysis of unified code for ECC double and add. In
Joye, M., Quisquater, J.J., eds.: Cryptographic Hardware and Embedded Systems
(CHES) 2004. LNCS, Vol. 3156. Springer-Verlag (2004) 191–204

10. Izu, T., Takagi, T.: On the Security of Brier-Joye’s Addition Formula for
Weierstrass-form Elliptic Curves Technical Report, Technische Universität Darm-
stadt, Available online:
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/

11. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve
cryptosystems. In Nedjah, N., de Macedo Mourelle, L., eds.: Embedded Cryp-
tographic Hardware: Methodologies and Architectures. Nova Science Publishers
(2004) 247–256

12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2004)

13. National Institute of Standards and Technology: Recommended elliptic curves for
federal government use (1999) Available online:
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf.

14. OpenSSL Project: OpenSSL v0.9.8 (2005) Available online:
http://www.openssl.org/.

15. Mozilla Foundation: Netscape Security Services (NSS) v3.9 (2005) Available online:
http://www.mozilla.org/projects/security/pki/nss/.

16. Certicom Research: SEC 2: Recommended elliptic curve domain parameters (2000)
Available online: http://www.secg.org/.

17. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of el-
liptic curve cryptography over binary fields. In Çetin K. Koç, Paar, C., eds.:
Crytpographic Hardware and Embedded Systems (CHES) 2000. LNCS, Vol. 1965.
Springer-Verlag (2000) 1–24

A Cost Estimates

A.1 Zeros in the Binary Expansion

As our attack looks for keys with few unidentified additions, it introduces a bias
in the expected number of zeros of the binary representation of successful keys
(increasing its value). This is because keys with fewer ones need fewer identified
additions to be successful, which makes them more likely to work then keys that
have more ones.

The solutions is to go back to the probabilities of Section 5.3 and to compute
the expected number of zeros under the condition that the attack is successful.
Computations for the key sizes considered in Table 1 show the increase to be
less than 5% of r/2 (the average expected value).

Also, the attack is considered successful for keys with fewer than k unidentified
additions, so the expected number of unidentified additions is slightly lower
than k, and once again the expected value can be found by going back to the

368 D. Stebila and N. Thériault

probabilities. Both of these numbers (which also give the expected number of
identified additions) are taken into account to produce the estimated keyspace.

A.2 Unidentified Substrings

To estimate the number of unidentified doublings, we introduce an approach
that could also be used to detail the lengths of the unidentified substrings.

We will consider the probabilities that would occur for a key of infinite length
that has the same proportion of zero bits and identified additions as our finite
key. These proportions will give us an estimate on the number of identified (and
unidentified) doublings in the finite key.

We use a state diagram consisting of six states, illustrated in Figure 2.

– The first three are doublings coming from moving from one bit of the key to
the next: D∗ (unidentified), D1 (identified, preceding an identified addition),
and D2 (identified, following but not preceding an identified addition);

– The remaining three correspond to bit operations (that is, depending on the
value of the bit): A (identified addition), A∗ (unidentified addition), and V
(absence of addition, for the bit “zero”).

D∗ D2 A D1

A∗

V

����
�

���
�

�
���

�
�

����
�

��	 �
�

���

�
�

��	

�

������������

Fig. 2. State diagram

To estimate the number of identified and unidentified doublings, we must find
which proportion of the doublings (r in total for the finite key) are in states D1
and D2. Every time we are in state D1, the next state must be A, so the time
spent in D1 is the same as the time spent in A, that is, it corresponds to the
number of identified additions. The only way to enter state D2 is from state A,
and the probability of moving to D2 when leaving A is the probability that the
next bit does not correspond to an identified addition.

If the r-bit key has m identified additions, then we can estimate the number
of identified doubling as

(
1 + r−m

r

)
m (the 1 is for moving from D1 to A and

r−m
r is the probability of moving to D2 when leaving A). The estimated costs

in Table 1 are then straightforward to obtain.

Read-Proof Hardware from Protective Coatings

Pim Tuyls, Geert-Jan Schrijen, Boris Škorić,
Jan van Geloven, Nynke Verhaegh, and Rob Wolters

Philips Research Laboratories, The Netherlands

Abstract. In cryptography it is assumed that adversaries only have
black box access to the secret keys of honest parties. In real life, however,
the black box approach is not sufficient because attackers have access to
many physical means that enable them to derive information on the
secret keys. In order to limit the attacker’s ability to read out secret
information, the concept of Algorithmic Tamper Proof (ATP) security
is needed as put forth by Gennaro, Lysyanskaya, Malkin, Micali and
Rabin. An essential component to achieve ATP security is read-proof
hardware. In this paper, we develop an implementation of read-proof
hardware that is resistant against invasive attacks. The construction is
based on a hardware and a cryptographic part. The hardware consists
of a protective coating that contains a lot of randomness. By performing
measurements on the coating a fingerprint is derived. The cryptographic
part consists of a Fuzzy Extractor that turns this fingerprint into a secure
key. Hence no key is present in the non-volatile memory of the device.
It is only constructed at the time when needed, and deleted afterwards.
A practical implementation of the hardware and the cryptographic part
is given. Finally, experimental evidence is given that an invasive attack
on an IC equipped with this coating, reveals only a small amount of
information on the key.

1 Introduction

Secure key storage is an important problem from a theoretical point of view as
well as from a practical point of view. Recently, the theory of this topic started
to develop in [1]. In the traditional cryptographic setting the attacker has only
black box access to the secret information (keys) of the honest parties. In [1]
this assumption was removed and the impact on the algorithmic aspects was
investigated. It was observed that this problem is highly non-trivial and that in
the most general setting no security can be guaranteed. The authors introduce
the notion of Algorithmic Tamper Proof (ATP) security and show that this can
only be achieved if the device has read-proof hardware together with a self-
destructing capability and some hardwired data which can not be tampered
with (Tamper Proof Hardware).

Read-proof hardware is hardware from which an enemy can not read any
information on the data stored in it. Tamper-proof hardware contains data that

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 369–383, 2006.
c© International Association for Cryptologic Research 2006

370 P. Tuyls et al.

can not be changed by an attacker. Clearly, to approach the black-box setting of
cryptography as closely as possible, the (secret) keys have to be stored in read-
proof hardware while public information such as algorithms and public keys have
to be stored in tamper-proof hardware.

In this paper, we focus on the practical implementation of read-proof hard-
ware. An attempt to translate the theoretical definition of read-proof hardware
into a practical realisation shows that the theoretical definition has a rich variety
of practical aspects. More specifically, it has been shown that there are many
practical ways for reading out information from storage media, and read-proof
hardware has to be resistant against all those methods. At a high level one can
distinguish between invasive physical attacks [2], side channel attacks [3], and
fault induction attacks [4]. An invasive physical attack is defined as an attack
where the enemy physically breaks into the device by modifying its structure.
A non-invasive physical attack is one where the attacker performs physical mea-
surements without modifications to the device’s structure. If the memory is not
protected, a non-invasive physical attack (e.g. optical scrutiny) suffices to read
out the memory. If the memory is covered with a protective layer, the attacker
may attack invasively, e.g. by chemically etching away the layer, drilling a hole,
or using a Focused Ion Beam (FIB), and then applying a microprobe. Once an
attacker is able to open up a device and investigate its memory (EEPROM,
ROM) he can (with reasonable efforts) obtain the keys. One of the main reasons
that this readout is possible, originates from the fact that the key is stored in
digital form as a string of zeros and ones. Since the state of a physical system
representing a zero is distinguishable from the state representing a one, the key
bits are observable.

We develop read-proof hardware resistant against invasive physical attacks,
and non-invasive optical attacks. In order to make read-proof hardware, we
build further on the idea of Physical Unclonable Functions introduced in [11]
and further extended in [17]. A Physical Unclonable Function consists of a phys-
ical object that is inherently unclonable (since it contains many uncontrollable
parameters during production). When a stimulus (usually called challenge) is
applied to the object, it reacts with a response that can be measured. This
challenge-response behaviour characterizes the structure completely. Further-
more the structure is tamper-evident, meaning that if the structure is physically
damaged (by an attack), its challenge-response behaviour changes noticeably.
Our solution for read-proof hardware is built on coating PUFs which can easily
be integrated with an IC. In contrast to the usual setting of PUFs, where it is
assumed that there is a huge number of challenge-response pairs, we only require
one challenge-response pair. It is clear however how our construction is extended
to many challenge-response pairs.

Read-Proof hardware in general and our construction in particular can be
applied for secure key storage in Smart-Cards, SIM-Cards, TPMs (Trusted Plat-
form Modules), DRM (Digital Rights Management) systems and in RFID
tags [16].

Read-Proof Hardware from Protective Coatings 371

1.1 Model

In our model, we build an IC equipped with read-proof hardware and ordinary
memory (ROM or EEPROM). The secret key K of the cryptographic algorithm
is extracted from the read-proof hardware only at the point in time when needed.
All other required cryptographic components (algorithms, public keys) are stored
in tamper-proof hardware and can not be changed by an attacker (but can be
read) 1. The enroller of the IC is considered to be trustworthy. He has a private
key sk with which he certifies the data in the IC. The attacker can get hold of
the device when it is in the field and can apply physical methods (invasive and
non-invasive) to investigate the device and try to retrieve information on the
secret key K.

We consider an adversary who has access to optical and invasive methods,

– Optical inspection equipment to look into memory cells (ROM).
– Etching methods (e.g. chemical) to remove protective layers.
– Focused Ion Beam to make holes in protective layers and allow for probing

(of e.g. buses, memory).

1.2 Contributions

We have the following contributions:

– We state the requirements for practical read-proof hardware. Additionally
we derive principles to satisfy these requirements. The main idea is not to
store a key in digital form in a memory, but to extract it from an unclonable
physical structure only at the point in time when needed. In this way the
time that the digital key is present in the device (and hence susceptible to
attack) is minimized.

– We describe a Coating PUF in detail (both the physics and the measurement
circuit) and argue that it is opaque and chemically inert.

– It is shown how a Coating PUF has to be integrated with an IC and the
required cryptographic primitives to meet the abovementioned goals. In par-
ticular, we present a new information reconciliation protocol on analog data
to derive a unique fingerprint from the coating in a reliable way.

– Experimental evidence is given which shows that protection against invasive
attacks is indeed obtained.

– Finally, when the read-proof coating hardware is combined with tamper-
proof data and with a self-destruction capability, our solution additionally
provides protection against fault attacks. This statement is based on the
analysis performed in [1].

1.3 Related Work

Since invasive attacks are sometimes performed by carefully removing protective
layers of the IC (e.g. by etching), the smart-card industry is working on protective
1 In this paper, we do not develop a hardware solution for tamper-proof hardware.

372 P. Tuyls et al.

layers and coatings that are difficult to remove (i.e. removing the layer implies
removing part of the IC, which renders the IC unusable). Additionally, sensors
are sometimes built into the IC to check for the presence of the protective layer.
If removal is detected, the IC will stop functioning and hence prevent an attacker
from learning its secrets through playing games with the device. Although such
coatings make life more difficult for the attacker, it turns out that in practice
an attacker can often still successfully remove a coating (and possibly fool the
sensors) and get access to the ICs interior. This is especially the case when
the attacker has access to Focused Ion Beam (FIB) equipment, which makes
it possible to reconnect wires in the interior of an IC [20]. The FIB is used to
influence the (yes/no) signal that indicates the presence of the protective coating.

A more secure form of protective coatings, which has the potential to protect
even against these sophisticated attacks, is the ‘active coating’ that was first
introduced in [13] and further investigated in [14]. Our solution extends this
work from the hardware point of view as well as from the cryptographic and
design point of view. Additionally, we provide experimental data that show that
our coating also provides protection against FIB attacks.

Another technology that is used to protect sensitive information stored in a
memory is memory encryption [21]. This technology protects information from
being exposed to an attacker who gets access to the memory. However, a key
is still needed to encrypt and decrypt that information. The problem is then
reduced to the secure storage of that secret key.

2 Read-Proof Hardware: Design and Requirements

2.1 Hardware Requirements

In order to protect stored keys against invasive physical attacks, we propose that
no key shall be stored in digital form in the memory of a device. Since there is no
digital key in the memory, it can not be directly attacked. Instead, we propose
to generate the key K only at the time when it is needed. The key is extracted
from a tamper evident physical structure, integrated with the IC, by applying a
challenge, measuring the response and carrying out the reconstruction phase of
the helper data algorithm. In our case we extract the key from the protective
coating, which behaves like a PUF (see Section 3). Additionally, we assume
that the device has some memory where the public information (algorithms,
public keys) is stored in a tamper proof way. Furthermore it has registers/RAM
for storage of the key K at the time when needed. In order to be resistant
against physical attacks, such a physical structure has to meet the following
requirements:

1. ‘Inscrutability’ including ‘opaqueness’. Measurements (both destructive and
non-destructive) must not reveal accurate information about the composition
of the physical structure.

2. The structure has to be unclonable. This requires two properties.
– Physical unclonability. It should be hard to make a physical copy, even

given accurate knowledge of the structure’s composition.

Read-Proof Hardware from Protective Coatings 373

– Mathematical unclonability. It should be hard to construct a mathemat-
ical model that has a non-negligible probability of correctly predicting
responses, even given accurate knowledge of the structure’s composition.

3. The structure has to be tamper evident. Physical damage should significantly
change the challenge-response behaviour of the structure.

Additionally, in order to be practically feasible, the following properties are
required.

– It has to be easy to challenge the structure and to measure its response.
– It has to be cheap and easy to integrate the structure in an IC.
– From a robustness point of view, it should additionally have excellent me-

chanical and chemical properties, so that it cannot be detached from the IC
(without causing damage to the coating and the IC).

2.2 Required Cryptographic Primitives

As mentioned before, the key is extracted from measurements on the coating.
Since measurements on a physical structure are inherently noisy, the responses
of such a structure can not be directly used as a secret key. This implies that
we need a helper data algorithm/fuzzy extractor [10,8] for reconstruction of
the secret keys. A fuzzy extractor consists of a pair of algorithms (G, W) and
two phases: an enrolment and a reconstruction phase. We will use the following
notation: x denotes the measurement value of a response during the enrolment
phase, while y denotes the corresponding value during the reconstruction phase.
During enrolment, the key K is created for the first time. The helper data
algorithm W (., .) is used during the enrolment phase and creates the helper
data w based on the measurement value x during enrolment and the randomly
chosen key K. The algorithm G(., .) is used during the key reconstruction phase
for reconstruction of the key K as follows: K = G(y, w).

As a second primitive, we need a standard signature scheme SS: (SKg, Sign, V),
where SKg is the secret-key generation algorithm, Sign the signing algorithm and
V the verification algorithm. The enroller runs SKg and obtains a secret-public
key pair (sk, pk). (This is a one-time action). The public key pk is hard-wired in
each IC (i.e. tamper-proof memory). With the secret key sk, the enroller signs
the helper data w and P (K) (where P is a one-way function). The signatures
σ(w) and σ(P (K)) are then stored 2 in EEPROM memory of the IC together
with the helper data w.

2.3 Procedure for Generation and Reconstruction

Creation and reconstruction of the secret key is done as follows. First, the global
statistical properties (noise level etc) of the behavior of the physical structure are
2 Instead of storing σ(P (K)), it is more secure to store σ(P (K), x̃) where x̃ is addi-

tional unpredictable key material that is obtained from the PUF (if necessary derived
from the response of a second challenge). We have chosen not to include this in the
notation throughout the paper for the sake of transparency.

374 P. Tuyls et al.

determined. In particular, the entropy of the output of the physical structure
is estimated and the secrecy capacity CS = I(X ; Y) (mutual information) of
the channel describing the noisy observation is estimated 3. This can be done
using the methods described in [18]. These parameters determine the choice of
an appropriate helper data algorithm/fuzzy extractor (G, W).

Enrollment. This phase consists of two steps.

1. Generation of a key K ∈ {0, 1}k and helper data w by running the enrolment
phase of the helper data/Fuzzy Extractor pair (G, W) on the measurement
outcome X : (K, w) ← Enrollment(X).

2. The IC interprets K as a private key and generates the corresponding public
key P (K). Then the IC outputs (w, P (K)). The enroller signs these data
and stores the signatures σ(w), σ(P (K)) in the IC’s EEPROM.4

Reconstruction. The IC performs the following steps.

1. It retrieves w, σ(w) from EEPROM and checks the signature σ(w) by running
V on w and σ(w). If the signature is not ok, the IC shuts down permanently.
Otherwise, it continues.

2. The IC challenges its physical structure and obtains the measurement value
y (note that typically y �= x due to noise).

3. The data w and y are processed by the helper data algorithm G. This yields
the key K ′ ← G(y, w).

4. The IC computes P (K ′). Then it runs V on P (K ′) and σ(P (K)) using the
public key pk. If the signature is ok, the IC proceeds and K can be used as
a private key. Otherwise, the IC shuts down permanently.

3 Physical Unclonable Functions

In this section, we describe the physical component of read-proof hardware.
Opaque physical systems that are produced by an uncontrollable production
process, i.e. one that contains uncontrollable randomness, turn out to be good
candidates for PUFs.

3.1 Coating PUFs

Coating PUFs are PUFs in the form of a protective coating that covers an IC.
The coating consists of a matrix material which is doped with random dielectric
particles. By random dielectric particles we mean several kinds of particles of
random size, shape and location with a relative dielectric constant εr differing
from the dielectric constant of the coating matrix. This is depicted in Fig. 1.

3 This is a one-time event that is performed during a pre-processing step.
4 Alternatively, K is used as a symmetric key. The IC outputs K and the enroller

stores σ(P (K)) in the EEPROM. The circuit that outputs K is destroyed after this
procedure.

Read-Proof Hardware from Protective Coatings 375

We used a mixture of T iO2 and T iN particles in a matrix of aluminophos-
phate. This composition of the coating gives it the following properties. (i) The
T iN -particles absorb light (from infrared up to ultraviolet) and hence make the
coating opaque. Moreover they are conductive and very hard. (ii) The T iO2-
particles also absorb UV-light. (iii) The aluminophosphate matrix is very hard
and chemically relatively inert. From this material the coating gets its protection
against chemical substances. We note that the coating can be easily sprayed on
top of the IC.

The top metal layer of the IC contains an array of sensors that are used to
measure the local capacitance values of the coating. An example of a comb-
shaped sensor structure is depicted in Fig. 2. Sufficient randomness in the mea-
sured capacitance values is obtained only if the dielectric particles are not much
bigger than the distance between the sensor parts. The measurement circuit is
integrated on the IC, so the measurements are done from within the IC. The
measured capacitance values form the responses of this system and are protected
against inspection from outside by the coating. Measuring the Coating PUF from
the outside gives different capacitance results since the measurements are very
sensitive to the precise locations of the dielectric particles. It is derived from the
entropy formula in [5], that a coating PUF contains 6.6 bits of entropy per sensor.

Fig. 1. Schematic cross-section of a Coat-
ing PUF IC. The upper metal layer con-
tains aluminium sensor structures (Al)
that are used to measure the local capac-
itance of the coating.

Fig. 2. Top-view microscope image of a
single comb-shaped sensor structure (alu-
minum) in the top metal layer of the IC

Fig. 3. Cross-sectional microscope image
of a coating PUF IC. The sensors are lo-
cated in metal layer 5 (M5).

4 Robust Fingerprint Extraction: Information
Reconciliation

In this section, we describe the algorithmic part of our architecture. In order
to derive secure keys from a physical source two steps are typically needed:

376 P. Tuyls et al.

Information Reconciliation and Privacy Amplification. The Information Recon-
ciliation phase is basically an error correction step. The Privacy Amplification
step guarantees that the extracted key is highly secure [6]. In this Section, we
focus on the Information Reconciliation procedure. Since the capacitances ob-
tained from a measurement are analog values we present an Information Recon-
ciliation protocol for the analog case. This leads to a unique digital fingerprint
that characterizes the coating.

4.1 Measurement Method

We have developed an on-chip measurement circuit that measures capacitance
values at several sensors. The measurement principle is based on a period-
modulated oscillator circuit, similar to Smartec’s commercially available Univer-
sal Transducer Interface (UTI) [15], in which the oscillating frequency depends
on the capacity at the sensor. A multiplexer circuit allows for the selection of
one of several sensors. In order to derive measurement results that are insensitive
to temperature and supply voltage variations, a ‘three signal technique’ is used
(see also [15]). Based on this technique, we calculate a relative capacitance value
at sensor i as follows:

Ci − C0

Cref − C0
. (1)

Here, Ci with i = 1, . . . , M , is a counter value that corresponds to the number
of clock cycles that has occurred within 1024 oscillations of the measurement
circuit when the i-th sensor is selected (note that M is the number of capaci-
tance sensors). This counter value is related to the capacitance of the i-th sensor
since this capacitance determines the oscillation frequency of the measurement
circuit. The value C0 is a reference counter value that is measured when no
sensor is connected to the measurement circuit. Hence, the difference Ci − C0
is proportional to the capacitance of the coating directly above the i-th sensor.
The Cref is a counter value from a (pre-defined) reference sensor. By taking the
quotient (1) we remove temperature and voltage fluctuations.

4.2 Fingerprint Extraction: Information Reconciliation on Analog
Data

In order to use the coating as a source of cryptographic keys, we start with
an information reconciliation phase to derive a unique fingerprint K ∈ {0, 1}k

from the noisy measurements of the coating. In order to extract highly secure
keys, it is advantageous to have the distribution of those fingerprints as close
to the uniform random distribution on {0, 1}k as possible. In order to extract
noise-robust and highly random fingerprints at the same time from the analog
coating measurements, we first apply a histogram equalisation to the analog data,
making the distribution almost uniform. Then, the ‘helper data’ are defined in
the transformed domain.

Read-Proof Hardware from Protective Coatings 377

Notation and Assumptions. We define the i.i.d. real stochastic variables
Fi := Ci − C0 and Fref := Cref − C0, which are a property of the coating alone.
Numerical instances of Fi are denoted as fi.

The randomized manufacturing process of the coating gives rise to a prob-
ability distribution ρ(Fi) for a capacitance value Fi at location i. Note that
ρ is the ‘true’ capacitance distribution, i.e. without any noise. We incorporate
temperature effects by postulating that Fi represents the true capacitance at a
fixed reference temperature T0. For any different temperature T , the capacitance
changes to Fi ·m(T), where m is a function satisfying m(T0) = 1.

The distribution ρ has an average µ and a standard deviation σ. We assume
that ρ is public knowledge and hence available to attackers. In order to equalize
the distribution ρ, we define the cumulative distribution function q as

q(f) =
∫ f

0
dxρ(x). (2)

Note that the stochastic variable q(F) ∈ [0, 1] is uniformly distributed. A noisy
capacitance measurement at temperature T and location i results in a stochastic
variable F ′

i , F ′
i = Fim(T)+Ni, where the noise Ni is independent of T , i and Fi

and also independent of previous measurements. We assume that Ni is gaussian
with zero mean and fixed variance σN # µ.

In order to deal with the noise, we define quantisation intervals as follows. The
f -axis is divided into L equiprobable parts with boundaries at tj , j = 0, . . . , L.
The boundaries are placed according to tj = q−1(j/L). Here q−1 is the inverse
function of q.

Enrolment. Enrolment occurs under tightly controlled circumstances. The tem-
perature is T0. For each IC the following steps are performed.

– The capacitance values fi for i = 1, . . . , M and fref are measured. The value
fref is stored in the IC for later use as a normalising factor.

– For each capacitance fi (i = 1, . . . , M) the quantised value Ii ∈ {0, . . . , L−1}
is determined, Ii = �L q(fi)�.

– Helper data Wi is computed as follows, Wi = Ii + 1/2− Lq(fi). The helper
data {Wi} is stored in the EEPROM of the IC.

– From the set {Ii} a codeword in an error-correcting code is created as follows.
We will assume that L has the form L = 2a. In this case it is advantageous to
assign to each quantised value Ii ∈ {0, . . . , L−1} a code word from a binary
Gray code. The Gray code has the nice property that the Hamming distance
between two neighbouring code words equals one. In this way a measurement
error I ′i = Ii ± 1 has the effect of flipping only a single bit in the code word.
By concatenating the Gray codes from all the sensors a string X is obtained
of length n = M log L. A secret K ∈ {0, 1}k is randomly generated. Then,
using the ‘XOR-trick’ as described in [9,16] a codeword cK ∈ {0, 1}n of an
error-correcting code C is computed. Further helper data w called ‘conversion
data’ are derived that map X onto cK . The conversion data w are stored in
the IC’s EEPROM.

378 P. Tuyls et al.

– The total set of helper data that has to be signed and stored in EEPROM
is given by, ({Wi}, w, fref).

Key Reconstruction. At a later time, the IC reconstructs the key from noisy
capacitance measurements combined with the enrolment/helper data. The tem-
perature is not controlled.

– The IC measures noisy values f ′
i , i = 1, . . . , M and f ′

ref and looks up the
values fref , {Wi} and w from memory.

– For each i = 1, . . . , M the IC computes a reconstruction of Ii as follows,

I ′i =
⌊
Lq(fref

f ′
i

f ′
ref

) + Wi

⌋
. (3)

– From the values I ′i the IC constructs a string Y by concatenating Gray codes
in the same way as was done during enrolment. Then it applies the mapping
w to Y . Finally it performs the decoding step of the ‘XOR-trick’ (for details
see the extended version). This yields the secret key K, provided that the
number of measurement errors does not exceed the correction capacity of
the error-correcting code C.

Properties of the Method. The helper data method described above has the
following properties (for details we refer the reader to the extended version of
this paper).

– The noise in I ′i is linear in L, leading to a practical bound on the number of
quantization intervals. To reduce the probability pE of a quantization error
to 10%, we need L < 8.8 in our experimental ICs.

– The maximum length of a secret key extracted from the coating is M log L ·
[1− h(pE)].

– As long as the attacker does not have better knowledge of ρ than the manu-
facturer, the helper data {Wi} do not leak any information about the key K.

5 Experimental Results

We have produced a batch of ICs containing the coating and the measurement
circuit of Section 3. The top metal layer of the IC contains 31 sensor structures.
Each sensor structure has a capacitor area of 120× 120 µm2. The top of the ICs
is covered with a coating. The coating consists of a mono-aluminum phosphate
matrix that is doped with TiN and TiO2 particles.

5.1 Capacitance Measurements

We have measured the capacitances from 36 different ICs. On each IC, one of
the 31 sensors is used as a reference sensor which leads to the value Cref . The C0
value comes from an internal measurement in which the measurement circuit is
not connected to a sensor. The measurements at the 30 remaining sensors form

Read-Proof Hardware from Protective Coatings 379

the Ci values. We compute the stabilized capacitance value Bi of sensor i as
follows:

Bi = fref
f ′

i − (1
M

∑M
i=1 f ′

i)
f ′
ref

(4)

Note that this method differs slightly from Eq. (1). In Eq. (4) we subtract the
average of f ′

i over the IC in order to compensate for unwanted coating thickness
variations that are caused by the manufacturing process.

Fig. 4 shows the Bi measurements 5 of 30 sensors, measured at 6 different
ICs. In the extended version of the paper, we show the influence of temperature
variations on the values of f ′

i and Bi.

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

sensor number

B
i

Fig. 4. Measured stabilized capacitance
values Bi at 30 sensors of 6 different ICs

0 0.2 0.4 0.6 0.8 1
0

50

100

W
ith

in
−

cl
as

s
di

st
rib

ut
io

n,
 c

ou
nt

 (
%

)

Fractional Hamming Distance

Distribution of Hamming distances

0 0.2 0.4 0.6 0.8 1
0

10

20

B
et

w
ee

n−
cl

as
s

di
st

rib
ut

io
n,

 c
ou

nt
 (

%
)

Fig. 5. Histogram of fractional hamming
distances between fingerprints derived
from the same IC (within class) and be-
tween fingerprints derived from different
ICs (between-class)

The capacitance measurements show an average within class standard de-
viation of of σN = 0.97 and an average between class standard deviation of
σBi = 18.8. In our practical setup we derive 3 bits per sensor, which gives the
best results w.r.t. robustness.

5.2 Fingerprints

By way of example, we show key extraction from our experimental data according
to the method of Section 4.2 . First the distribution ρ was estimated empirically
by measuring all 30 sensors on 36 ICs. The interval q(f) ∈ [0, 1] was divided
into L = 23 = 8 intervals. We used a Gray code to make a 3-bit encoding of
5 Note that Bi is dimensionless since fi is the difference between two counter val-

ues (see section 4.1). Measurements of similar coating and sensor structures with a
Hewlett Packard 4192 impedance analyzer show that the average capacitance value
is around 0.18 pF (i.e. corresponding to Bi = 0 in Fig. 4).

380 P. Tuyls et al.

each integer Ii. In this way we derived fingerprints of 90 bits. Histograms of the
fractional Hamming distances between the extracted fingerprints for both the
within- and between-class distribution are shown in Fig. 5. The between-class
distribution is centered around a fractional Hamming distance of 0.5, which
means that the fingerprints derived from 2 different ICs will on average differ in
50% of the bits.

It turns out that bit strings derived from the same IC (within-class distribu-
tion) have fewer than 4 errors. Hence, an error-correcting code that corrects 4/90
of all bits is suitable in this case. Using an optimal error correcting code (i.e. one
that achieves maximal key length), one would get a key length of approximately
k = 66.4 bits. In practice one can e.g. use a BCH code which turns 63 bits of
the 90 into a key of 45 bits. The remaining bits can be turned into additional
key material with a second error-correcting code. The practical choice of the
error-correcting code has to be optimized. This is not the subject of this paper.

5.3 Attack Detection

Physical attacks in which the coating is damaged are detected from the capaci-
tance measurements. A well-known method for getting access to internal circuit
lines of an IC, is by making a hole through the IC with a Focused Ion Beam
(FIB). Afterwards the hole is filled with metal such that a surface contact is
created. This can be used by the attacker for easy access to an internal line (e.g.
for eavesdropping on a signal). In Section 5.3, we show the effect of a FIB attack
with gallium particles.

A FIB was used to create two holes in one of the Coating PUF ICs by shooting
gallium particles on two areas of size 100µm x 100µm and depth of around 1.5µm
in a coating of thickness 6µm, see Fig. 6.

Fig. 6. Top view of a Coating
PUF IC in which two holes have
been shot with a Gallium FIB

0 5 10 15 20 25 30 35
−60

−50

−40

−30

−20

−10

0

10

20

30

Sensor nr.

∆ f
i

Fig. 7. Differences in capacitance f ′
i between

measurements of Coating PUF IC 89 before and
after the Gallium FIB attack

Fig. 7 shows the effect of the FIB attack on the measured capacitances f ′
i .

After the FIB attack, several sensors measure a significant change in capacitance
value. This is due to the fact that ions are implanted into the coating, which

Read-Proof Hardware from Protective Coatings 381

Table 1. Change of capacitance measured by the sensor lying under the area of impact
of the beam

Beam type Hit area Depth ∆f

Gallium 100µm x 100µm 1.5µm -40
Gallium 15µm x 15µm 4µm -34
Argon 100µm x 100µm 1.5µm -28

changes its behaviour non-locally. The derived fingerprint after the FIB attack
differs in 14 of the 90 bits. Table 1 summarizes the direct effect of Gallium FIB
and Argon beam attacks on a single sensor.

6 Security of the Coating: Experimental Evidence

Since the coating is opaque, optically looking into the digital memory is very
hard without damaging the coating. Furthermore, since the coating is tough and
chemically inert, it is very hard to remove mechanically or chemically. Next,
we discuss some more advanced attacks and show the resistance of the coating
against these attacks.

6.1 Impact of FIB Attack on the Keys

We discuss an attack, where the attacker first uses a FIB to make a hole in the
coating. Then, he makes the IC start the key reconstruction phase described
in Section 2.3. During the reconstruction phase, he uses his micro-probe(s) to
retrieve the key bits. We denote the measurement values after the FIB-attack by
a random variable Z and the key extracted after the FIB-attack by K ′. During
step 4 of the reconstruction phase, the IC checks whether the extracted key K ′

is correct by running the algorithm V on P (K ′) and σ(P (K)). If the signature
is not ok, the device is destructed. Hence, the attacker gets the information that
the extracted key K ′ is incorrect. We assume furthermore that the attacker can
capture the noisy measurement Z by using his microprobe 6 (note that this is a
worst case assumption). It is natural to investigate how much uncertainty there
still remains about the original key K.

In the extended version, we construct a model that represents the FIB damage
as an additional bit error rate ε on top of the already present bit error rate α
due to measurement noise, with ε > α. This effectively leads to a noisy channel
X → Z with combined error rate χ = α(1− ε)+ ε(1−α) as seen by the attacker.
The amount of uncertainty he has about K can be expressed as a number Nc of
‘candidate’ keys, which turns out to be of order

Nc = O
(
2n(h(χ)−h(Rα))

)
, (5)

6 Since he also gets the helper data w from the ROM, this implies that he can
reconstruct K′.

382 P. Tuyls et al.

where R is a constant larger than 1 and the function h is defined as h(p) =
−p log p− (1 − p) log(1 − p). With the ICs that we have, the parameters α, Rα
are given by α = 1/30, Rα = 4/90. The values for ε range from ε = 8/90 to
ε = 14/90. Therefore we take an average value ε = 11/90. In practice one would
like to have a key of length 128 bits. Given these error rates that would require
n = 174 (then I(X ; Y) = 128). Substituting this value of n into Eq. (5), we
obtain Nc = 251.

7 Conclusions and Future Work

In this paper we have given an implementation of read-proof hardware. The
main idea is: “thou shalt not store secret keys in digital memory”. The key
should be derived from a protective coating containing a lot of randomness.
The key is obtained from capacitance measurements on the coating. In order to
extract the key from the measurement values, we have developed a secure helper
data algorithm that is implemented on the IC. We have provided experimental
evidence that our construction is secure against invasive physical attacks such
as attacks with a Focused Ion Beam.

One of the main open questions that remains is the resistance of this construc-
tion against side-channel attacks. In order to thwart those attacks, the crypto-
graphic part has to be implemented in a side channel resistant way (which can
be done with existing methods). Currently, it is being investigated whether the
measurement circuit itself is susceptible to side-channel attacks such as Electro-
magnetic Analysis, Power Analysis and Timing analysis. Although no leakage
has been reported yet, countermeasures against leakage of the measurement cir-
cuit are being considered.

Another open question is to investigate whether this technique can also be
applied at the back of the IC to provide protection against backside attacks.

References

1. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali and T. Rabin, Algorithmic
Tamper-Proof Security: Theoretical Foundations for Security against Hardware
Tampering, In Theory of Cryptography, First Theory of Cryptography Confer-
ence, TCC 2004, Cambridge, MA, USA, February 19-21, volume 2951 of LNCS,
pages 258-277, Springer-Verlag.

2. R. Anderson and M. Kuhn, Low Cost Attacks on Tamper Resistant Devices, In
M. Lemmas et al., editor, Proceedinggs of Security Protocols, 5th International
Workshop, volume 1361 of Lecture Notes in Computer Science, pages 125-136,
Paris, France, April 1997, Springer-Verlag.

3. P.C. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, Proceedings of the 19th
International Conference on Cryptology, Advances in Cryptology, volume 1666 of
LNCS, pages 388-397, 1999, Springer Verlag.

4. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Crypto Systems
Advances in Cryptology, Crypto 97.

Read-Proof Hardware from Protective Coatings 383

5. B. Škorić, S. Maubach, T. Kevenaar, P. Tuyls, Information-theoretic analysis of
coating PUFs, http://eprint.iacr.org/2006/101, accepted for publication in the
Journal of Applied Physics.

6. C.H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, Generalized Privacy
Amplification, In IEEE Transactions on Information Theory, vol 41, 6, pages 1915-
1923, 1995.

7. H. Bar-El, Known Attacks Against Smartcards, Discretix Technologies Ltd. http://
www.infosecwriters.com/text resources/pdf/Known Attacks Against Smartcards.
pdf

8. Y. Dodis and M. Reyzin and A. Smith, Fuzzy Extractors: How to generate strong
keys from biometrics and other noisy data, In C. Cachin and J. Camenisch Editors,
Proceedings of Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science,
pages 523-540, Springer-Verlag

9. A. Juels and M. Wattenberg, A fuzzy commitment scheme, 6th ACM Conference
on Computer and Communication Security, pp.28-36, 1999.

10. J.P. Linnartz, P. Tuyls, New Shielding Functions to Enhance Privacy and Prevent
Misuse of Biometric Templates, AVBPA 2003, LNCS 2688, pp.393-402.

11. R. Pappu, Physical One-way functions, Ph.D. thesis, MIT, 2001.
12. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical One-way functions, Science

Vol.297, 2002, pp.2026-2030.
13. R. Posch, Protecting Devices by Active Coating, Journal of Universal Computer

Science, vol.4 no.7, 1998.
14. G.A. Kamendje, R. Posch, Intrusion aware CMOS Random Pattern Generator

for Cryptographic Applications, In Peter Rossler and Andreas Dorderlein Edi-
tors, Proceedings of Austrochip 2001, Vienna, Austria, 12 October 2001 ISBN
3-9501517-0-2.

15. Smartec, Universal Transducer Interface evaluation board, Specifications v3.0,
http://www.smartec.nl/pdf/Dsuti.pdf .

16. P. Tuyls, L. Batina, RFID tags for Anti-Counterfeiting, RSA 2006 conference, San
Jose, USA, Feb. 13-17, 2006.

17. P. Tuyls, B. Škorić, Secret Key Generation from Classical Physics, In Mukherjee
et al. editors, AmIware, Hardware Technology Drivers of Ambient Intelligence,
Philips Research Book Series, Kluwer, pages, 421-447,2005.

18. T. Ignatenko, G.J. Schrijen, B. Škorić, P. Tuyls, F. Willems, Estimating the Secrecy-
Rate of Physical Uncloneable Functions with the Context-Tree Weighting Method,
accepted at ISIT 2006

19. M. Witteman, Smart card security analysis, IPA Spring Days on Security,
Kapellerput, Heeze, April 18-20, 2001. http://www.win.tue.nl/ipa/archive/
springdays2001/witteman.ppt

20. M. Witteman, Advances in Smartcard Security, Information Security Bulletin,
July 2002, pp.11-22. http://www.riscure.com/articles/ISB0707MW.pdf

21. J. Yang, L. Gao, Y. Zhang, Improving Memory Encryption Performance in Secure
Processors, IEEE. Trans. Computers, vol 53, 5, 1-11, 2005.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 384 – 398, 2006.
© International Association for Cryptologic Research 2006

Path Swapping Method to Improve DPA Resistance
of Quasi Delay Insensitive Asynchronous Circuits

Fraidy Bouesse, Gilles Sicard, and Marc Renaudin

TIMA Laboratory, 46 avenue Félix Viallet F38031 Grenoble, France
Fraidy.Bouesse@imag.fr

Abstract. This paper presents a Path Swapping (PS) method which enables to
enhance the security of Quasi Delay Insensitive Asynchronous Circuits against
Power Analysis (PA) attack. This approach exploits the logical symmetries of
the QDI asynchronous blocks, particularly its data-path redundancies, to make
all electrical curves used when implementing a PA attacks useless. Indeed, the
idea is to average the electrical signatures of a block by randomly exchanging
its data-paths during processing. To be able to implement this approach, we
adopted a formal model of QDI circuits. Firstly, this formal model enables the
designer to formally verify the symmetry of all paths in order to apply a path
swapping method. Secondly, it offers the possibility to model the electrical
signature of QDI asynchronous circuits. Finally, applying DPA on this formal
model allows us to evaluate, in an early phase of the design, the circuit’s
sensitivity to the relevancy of the approach. Electrical simulations performed on
a DES crypto-processor confirm the efficiency of the technique.

Keywords: QDI Asynchronous circuits, Power analysis, Path Swapping (PS).

1 Introduction

One of the most difficult task when designing secure systems is to protect devices
from so-called side-channel attacks such as power analysis attacks (DPA, SPA),
electromagnetic attacks, timing attacks and differential fault analysis. Since the
discovery of these attacks, self-timed circuits have demonstrated their inherent
capabilities to increase the security of chips. In fact, the Differential Power Analysis
attack, firstly introduced by Paul Kocher [1], uses the correlation between the data
processed by the circuitry and an observable power consumption to reveal the
confidential information. Secret keys are retraced from the device by observing and
monitoring the electrical activity of a device and performing advanced statistical
computations.

Additionally to its absence of clock signal which demonstrates the practical way to
eliminate a global synchronization signal, self-timed logic is well-known for its
ability to decrease the consumption and smooth the current profile. Simon Moore et
al. described in [2] techniques for improving chip security against side channel
attacks. Their approach to improve chip DPA resistance is focused on the use of an
alternative data encoding scheme such as one-hot data encoding (1-of-N codes). In the
same design context, the Balsa synthesis system was modified to generate circuits
with enhanced security against side-channel attacks [3]. The countermeasures that

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 385

used Self-timed circuit properties are all focused on balancing the operation through
special DI Coding scheme. Moreover, Paul Kocher also developed some
countermeasures based on the same properties [4], and a new design concept has been
presented in [5] by Danil Sokolov et al. who used standard dual-rail logic with a two
spacer protocol working in a synchronous environment. The results obtained by
exploiting Self-timed logic have been reported in several papers. J. Fournier et al.
evaluated and demonstrated in [6] that Speed Independent asynchronous circuits
increase resistance against side channel attack and the concrete results of the
effectiveness of the QDI asynchronous logic against DPA has been reported in [7].

However, all these papers concluded in terms of DPA that there still exists some
residual sources of leakage which can be used to succeed an attack. These residual
sources of leakage that are still observable when implementing a DPA attack on
balanced QDI asynchronous circuits are addressed by G.F. Bouesse et al. in paper [8].
They show that, the residual sources of leakage of a balanced QDI circuits come from
the back end steps which introduce some electrical dissymmetries, especially through
the routing capacitances. The solutions implemented in paper [8] and also mentioned
in paper [2] in order to remove electrical dissymmetries, consist in constraining the
placement and routing. They defined a place and route methodology which enables the
designer to control the net capacitances. Contrary to the previous proposed
countermeasures mentioned above, the approach described in this paper does not try
to get rid of these residual sources of leakage, but instead makes it not exploitable by
the DPA attack.

The PS (path swapping) method takes advantage of the structural symmetries that
exist in QDI asynchronous circuits or those proposed in [2][3]. In fact, in such circuits
many identical structures called paths exist that can be alternatively used to compute a
given function. Therefore, the idea is to randomly choose one of the possible paths to
compute the function which hence averages the electrical signature over all the paths.
The issue lies in succeeding to do so with minimum overhead.

The paper is organized as follows. Section 2 recalls the asynchronous properties
that are used to increase DPA resistance, especially the N-rail Quasi Delay Insensitive
asynchronous logic together with the four-phase protocol. Section 3 introduces the
path swapping technique and section 4 presents the formal approach chosen to
implement this technique. The specification of the formal model adopted to represent
the circuits is first described, and then formal DPA resistance criteria at logical and
electrical levels are defined using this circuit model. It enables us to formally justify
the path swapping technique. The approach is validated with the case study described
in section 5 and results obtained using electrical simulations are reported in section 6.
Section 7 concludes the paper.

2 Previous Works: QDI Circuits and Security

QDI asynchronous circuits represent a class of circuits controlled by the data
themselves. In fact, an asynchronous circuit is composed of individual modules
communicating to each other by means of point-to-point communication channels.
Therefore, a given module becomes active when it senses the presence of incoming
data. It then computes them and sends the result to the output channels. Communi-
cations through channels are governed by a handshaking protocol which requires a

386 F. Bouesse, G. Sicard, and M. Renaudin

bi-directional signalling between senders and receivers (request and acknowledge).
Among the main classes of handshaking protocols [9] we only consider and describe the
four-phase protocol (fig.1) which has an interest in security.

D ata

Ack

C om . "n" C om . "n+1"

Inv alid D ataValid D ata

Phase 1 Phase 4Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Phase 1 Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Inv alid D ataValid D ata

Phase 1 Phase 4Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Phase 1 Phase 3Phase 2

Valid D ata

Fig. 1. Four-phase handshaking protocol

The four-phase protocol protocol requires a return to zero phase for both
data/requests and acknowledgements. Contrary to synchronous circuits where the
shape of the current (current peaks) depends on the previous states and data values,
QDI asynchronous logic using a four-phase protocol re-initializes all previously
activated nodes before processing a new data. This behaviour enables the designer to
precisely control the transitions involved in a given computation. Moreover, because
it is based on hazard free logic QDI asynchronous circuits eliminate all current
variations caused by glitches.

The implementation of a four-phase handshaking protocol requires sensing the
presence of data in phase 1 and their absence in phase 3. In order to do so, dedicated
logic and special encoding are necessary for sensing data validity/invalidity and for
generating the acknowledgement signal. Considering that one bit has to be transferred
through a channel using the four phase protocol, one has to encode three different
values: invalid, valid at ‘1’, valid at ‘0’. Two wires (A0, A1) are then required to
encode the three states. This technique is called dual-rail encoding. The
acknowledgement signal is generated by taking advantage of the data-encoding. As
depicted in figure 2, a Nor gate is usually used to sense the dual-rail encoding output
for generating the completion signal.

Dual-rail encoding is easily extended to N-rails. It is called 1-of-N encoding. This
encoding data scheme is useful to reduce the number of electrical transitions involved
in a given computation. For the sake of DPA resistance, 1-of-N encoding ensures that
the same number of transitions is required to encode the values 0 to N-1 and
guarantees a constant Hamming weight.

As an example, consider the xor function. Figure 2 shows a dual-rail xor gate
implementation. All computations of this dual-rail xor gate involve a fixed and
constant number of transitions regardless of the input data. Hence, the opportunity to
have data independent power consumption i.e. not correlated to the processed data
seems achievable and this is exactly the goal pursued.

However, the QDI implementation of a function is not always balanced. In such
cases, the gate structure is modified to ensure that all data-paths and control paths can
be balanced and do involve a constant number of transitions [2].

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 387

Ci_ack

Ci1

Ci0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Ai0

Bi1

OR

OR

ac
k_

A
 ;

ac
k_

B

Cr

Cr

OR

Net_00

Net_01

Net_02

Net_03

Net_04

Net_05

Net_06 Net_07

Combinational part I Half-bufferpart II

Ci0

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ci_ack

Ci1

Ci0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Ai0

Bi1

OR

OR

ac
k_

A
 ;

ac
k_

B

Cr

Cr

OR

Net_00

Net_01

Net_02

Net_03

Net_04

Net_05

Net_06 Net_07

Combinational part I Half-bufferpart II

Ci0

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Fig. 2. Dual-rail gate with four-phase protocol
(Cr = Muller gate with a reset)

C211

C212

C313

C414

E1
OR221

OR222

CR231

CR232

NOR241

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level 1 Level 2 Level 3 Level 4

Ci_ack

V2

V3

V4

E1

V5

V6

V7

V8

V9
E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level 1 Level 2 Level 3 Level 4

Ci_ack
V1

C211

C212

C313

C414

E1
OR221

OR222

CR231

CR232

NOR241

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level 1 Level 2 Level 3 Level 4

Ci_ack

V2

V3

V4

E1

V5

V6

V7

V8

V9
E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level 1 Level 2 Level 3 Level 4

Ci_ack
V1

Fig. 3. Annotated directed graph GXor=(V,E)
of the Dual-rail Xor gate of fig.2

To summarize, the use of QDI logic together with a four-phase protocol and 1-of-N
data encoding enables:

o to control the current by removing all spurious transitions (hazard free logic).
o to equalize the number of transitions using a constant hamming weight

representation of data.
o to control the type of all transitions.
o to reduce the dependence between data and power consumption using symmetrical

structures of data and control paths.

As described in [2][4] all these properties are suited to implement secure chips
against DPA. The design methodology developed in this paper is based on these
properties of QDI asynchronous logic, particularly the data path symmetries. They are
exploited to randomly average electrical signatures so that the electrical
dissymmetries described in [8] and amplified after the back end steps become useless.
We now analyse this point by introducing the path swapping method.

3 Contribution: Path Swapping Method

The goal of this new design approach is to eliminate the electrical effects which
enable to succeed the DPA attack on QDI circuits. To do so, we do exploit the circuit
structure which exhibits a lot of symmetries. Indeed, in the blocks of such circuits
there exist many identical physical paths from their primary inputs to their primary
outputs. The idea is to randomly choose one of the possible paths to compute the
function. More formally, let’s define nc as the number of output channels using 1-of-N
data encoding. Each output channel i has N rails. We can represent the logical
equation of each rail by fij(Ax) and its dynamic current profile by Pij(t/Ax) when the
input value Ax is computed. The value Ax is one element of Ei, the set of all possible
input values which activate the channel i. The indexes i and j identify the channel
number and the rail number respectively. For each rail there is a data-path from the
primary output rail considered to the primary inputs (N data-paths).

388 F. Bouesse, G. Sicard, and M. Renaudin

If all data-paths are logically symmetric, it means that:

)/(...)/(

)(...)(

1

1

xiNxi

xiNxiix

AtPAtPand

AfAfEA

≠≠

==∈∀
(1)

This equation (1) shows that for any input value Ax of a QDI asynchronous block
we can acquire N different electrical signatures, corresponding to the same computed
logical function. The principle of this new design method is to randomly choose
among the possible fij functions and therefore their corresponding electrical signatures
in order to make the DPA attack inefficient. To illustrate this, let’s now consider the
simple xor function and the implementation depicted in figure 2. First, note that this
circuit is balanced in the sense that the computation of the xor function always
involves the same switching sequence of gates.

Nor gate C gateOr gate C gate r →→→

Besides, the structure is symmetric in the sense that there exist two identical
logical paths between the outputs and the primary inputs.

3121
12

11
C gate

C

:path datafirst -

CrgateOrgate
gate

→→

3222
14

13
C gate

C

:path data second -

CrgateOrgate
gate

→→

Moreover, each path can be split into two execution-paths which represent an
exclusive path that can be used to process a rail.

312112

312111

Cr gate Or gate C gate -

Cr gate Or gate C gate -

railoutput first theof paths-execution *

→→
→→

322214

322213

Cr gate Or gate C gate -

Cr gate Or gate C gate -

railoutput second theof paths-execution *

→→
→→

Therefore, as shown in figure 4, different sets of inputs and outputs can be applied
in such a structure. For the sake of DPA resistance, it is worthwhile to observe that for
constant values at the inputs four different electrical signatures can be obtained using
inputs and outputs permutations. We call this method path swapping because
interchanging the inputs and/or outputs leads to swap the execution from logical paths
to other logical paths inside the circuit.The realization of this technique requires the
use of multiplexers/demultiplexers and a random number generator (RNG).
Multiplexers/Demultiplexers are used to permute inputs/outputs and are controlled by
the random number generator. The use of a random number generator guarantees an
equiprobable and unpredictable distribution function of inputs/outputs. Considering
the example illustrated in figure 5, if M data have to be computed, the random number
generator must ensure to randomly activate each execution-path M/4 times. The
specifications of the random number generator and of the Multiplexers/
Demultiplexers blocks are addressed in section 4.6. The path swapping method can
only be efficiently implemented with design logic which offers an opportunity to
implement symmetrical and balanced circuits as it is the case with QDI asynchronous
circuits. This type of logic enables to implement the PS method with a minimum area
overhead and by slightly changing the performance of the circuit.

To apply this technique to QDI asynchronous circuits, we have specified a formal
design approach which enables us to formally verify the symmetry of the circuit and
formally verify at each design level the relevancy of the path swapping approach.
This design approach is based on a formal representation of QDI circuits.

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 389

Ci_ack

OR

OR

ack_A ; ack_B

Cr

Cr

OR

Combinational Half-buffer

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ai0

Case 1

Bi0

Ai1

Bi1

Ai0

Case 2

Bi1

Ai0

Bi0

Ai1

Case 3

Bi0

Ai0

Bi1

Ai1

Case 4

Bi1

Ai1

Bi0

Ai0

Case 5

Ai0

Bi1

Ai1

Bi0

Case 6

Ai1

Bi0

Ai0

Bi1

Case 7

Ai0

Bi0

Ai1

Bi1

Case 8

Ai1

Bi1

Ai0

Bi0

Bi0

Bi1

Ai1

Bi1

Ai1

Bi0

Ai0

Bi0

Ai1

Bi1

Ai0

Bi1

Bi0

Ai1

Ai0

Bi0

Ai1

Bi1

Ai1

Bi1

Ai0

Bi0

Ai0

Bi1

Ai1

Bi0

Ai1

Bi0

Ai0

Bi1

Ai0
Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Ci1

Ci0

Ci1

Ci0

This example illustrates all possible
permutations of the inputs and outputs
that can be applied on a dual-rail xor
gate. The first case corresponds to a
standard implementation and can be
used as a reference one. In the
second case, only the rails of the input
channel Bi(Bi0,Bi1) are swapped which
also requires a permutation of the
output rails. In the third case, the rails
of input channel Ai(Ai0,Ai1) are
swapped and this requires a
permutation of the output rails. Both
input channel rails Bi(Bi0,Bi1) and
Ai(Ai0,Ai1) are swapped in the fourth
case without any permutation of the
output rails. In the other cases the rails
of the input channel Bi(Bi0,Bi1) are
permuted with rails of the input
channel Ai(Ai0,Ai1).

Ci_ack

OR

OR

ack_A ; ack_B

Cr

Cr

OR

Combinational Half-buffer

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ai0

Case 1

Bi0

Ai1

Bi1

Ai0

Case 2

Bi1

Ai0

Bi0

Ai1

Case 3

Bi0

Ai0

Bi1

Ai1

Case 4

Bi1

Ai1

Bi0

Ai0

Case 5

Ai0

Bi1

Ai1

Bi0

Case 6

Ai1

Bi0

Ai0

Bi1

Case 7

Ai0

Bi0

Ai1

Bi1

Case 8

Ai1

Bi1

Ai0

Bi0

Bi0

Bi1

Ai1

Bi1

Ai1

Bi0

Ai0

Bi0

Ai1

Bi1

Ai0

Bi1

Bi0

Ai1

Ai0

Bi0

Ai1

Bi1

Ai1

Bi1

Ai0

Bi0

Ai0

Bi1

Ai1

Bi0

Ai1

Bi0

Ai0

Bi1

Ai0
Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Bi1

Ai1

Bi0

Ai0

M
ux

4_
1

Ci1

Ci0

Ci1

Ci0

Ci1

Ci0

Ci1

Ci0

This example illustrates all possible
permutations of the inputs and outputs
that can be applied on a dual-rail xor
gate. The first case corresponds to a
standard implementation and can be
used as a reference one. In the
second case, only the rails of the input
channel Bi(Bi0,Bi1) are swapped which
also requires a permutation of the
output rails. In the third case, the rails
of input channel Ai(Ai0,Ai1) are
swapped and this requires a
permutation of the output rails. Both
input channel rails Bi(Bi0,Bi1) and
Ai(Ai0,Ai1) are swapped in the fourth
case without any permutation of the
output rails. In the other cases the rails
of the input channel Bi(Bi0,Bi1) are
permuted with rails of the input
channel Ai(Ai0,Ai1).

Fig. 4. Path Swapping method applied to the Dual-rail Xor gate

4 Formal Model of QDI Asynchronous Circuits

The formal model we have adopted to automate and verify at each design phase all
QDI properties described above is based on the digraph (directed graph) theory.

4.1 Digraph of QDI Asynchronous Circuits

A digraph is a graph in which the edges are directed from the initial vertex (a) to the
terminal vertex (b). If G=(V,E) is a digraph, then V and E are respectively the set of
vertices and the set of edges of the digraph G. For the purpose of representing the
QDI asynchronous circuits as a digraph, we define the two following rules:

* All gates of the circuit are considered as the elements of the set V (vertices).
* All interconnections are considered as the elements of the set E (directed edges).

For example let’s consider the block of figure 2. Its representation in the form of a
digraph GXor=(V,E) is presented in figure 3. Each vertex (Vi) and directed edge Ei are
respectively annotated by the name of the corresponding gate and interconnection. All
dotted lines represent primary inputs and outputs of the block.

=

000000000V

100000000V

100000000V

010000000V

001000000V

000101000V

000100100V

000010010V

000010001V

VVVVVVVVV

M

9

8

7

6

5

4

3

2

1

987654321

BG

a- Boolean Matrix

=

000000000V

2NOR00000000V

2NOR00000000V

0CR20000000V

00CR2000000V

0002OR02C000V

0002OR002C00V

00002OR002C0V

00002OR0002CV

VVVVVVVVV

M

9

418

417

326

315

22144

22133

21122

21111

987654321

AG

b- Matrix annotated with labels

Fig. 5. Matrix of the digraph GXor=(V,E)

390 F. Bouesse, G. Sicard, and M. Renaudin

There are several different ways to represent a graph. The two common ways are as
an adjacency list or as an adjacency matrix. The adjacency list is appropriate for
software implementations. However, for the sake of clarity, we use in this paper an
adjacency matrix representation.

4.1.1 Adjacency Matrix
The adjacency matrix of a digraph G is the n-by-n matrix (MG(n,n)) where n is the
total number of vertices of the graph G. If there is an edge from vertex (a) to vertex
(b), then the element ((a),(b)) of the matrix is 1, otherwise it is 0. It is called the
boolean matrix of G (MBG(n,n)) (figure 5-a). In order to represent in the Boolean
matrix the input vertices which are defined as the terminal vertices of all input edges
(inputs dotted lines in fig. 3), we define the following property:

* For any element (a) of the set V, if ((a),(a))=1, then the vertex (a) is considered
as an input vertex.

From this boolean matrix of the digraph G, we can associate an annotated matrix
(MAG(n,n)) of the annotated digraph G, where the directed edge between vertex (a)
and vertex (b) are represented by the name of the terminal vertex as illustrated in
figure 5-b. The number of elements in each row “i” gives the number of elements
connected to a vertex (Vi) and the number of elements in each column “j” gives the
number of inputs of the vertex (Vj), except for the output vertices. In fact, output
vertices which generate the output signals are differently labelled in the matrix (in
bold) in order to facilitate their identification. This makes easier finding the sub
digraphs which compute each output rail of the block, and then to evaluate their data-
path symmetries.

4.2 Logical Symmetry of Data-Paths

The data-path symmetries are analyzed by extracting in the digraph all subdigraphs
that generate each output rail. This extraction is done by the exploration of the matrix
of the block. The exploration starts by the identification of all output vertices, then
collecting for each identified vertex, all its ascendant vertices. Each vertex output is
then considered as an anti-root of the tree towards which directed edges are oriented.
Let’s consider the matrix of the digraph of figure 5-b. The matrix of the subdigraph
GCi0=(VCi0,ECi0) of rail Ci0 and the matrix of the subdigraph GCi1=(VCi1,ECi1) of rail
Co1 are presented in figure 6.

=

0000V

CR2000V

02OR2C0V

02OR02CV

VVVV

M

8

326

22144

22133

8643

1AGCO

a- rail Ci1

=

0000V

CR2000V

02OR2C0V

02OR02CV

VVVV

M

7

315

21122

21111

7521

0AGCO

b- rail Ci0

Fig. 6. Matrix of the subdigraph of the digraph G

To be able to define the symmetry of the data-paths between N-rail of the encoding
bit, let us introduce the notion of execution-path.

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 391

* The execution-path is defined as any exclusive path that can be used to process
one output rail.

One property of the QDI asynchronous logic is to offer the opportunity to use
convergence gates. At each cycle, these gates guarantee the exclusivity of one of its
inputs, i.e only one input of the convergence gate is activated. This property enables
us to deduce the execution-paths by the exploration of the matrix. The OR gate of
both subdigraphs is used as a convergence gate. It means that for each output rail
there are two execution-paths described by the subdigraphs and their equivalent
matrices in figure 7.

EGC(1)=(GE1,EE1) with GE1={V1,V5,V7} and EE1={E1, E5}
EGC(2)=(GE2,EE2) with GE2={V2,V5,V7} and EE2={E2, E5}
EGC(3)=(GE3,EE3) with GE3={V3,V6,V8} and EE3={E3, E6}
EGC(4)=(GE4,EE4) with GE3={V4,V6,V8} and EE3={E4, E6} 000

200

022
)(

l

k

j

lkj

iEGC

V

CRV

ORCV

VVV

M =

Fig. 7. Subdigraphs EGC(i) and their equivalent matrices MEGC(i). (VJ,Vk,Vl) [(V1,V5,V7);
(V2,V5,V7);(V3,V6,V8);(V4,V6,V8)]

One way to formally analyze the data-path symmetry is to analyze the symmetry of
each execution-path, by processing the digraph isomorphism.

4.2.1 Isomorphism of a Digraph
Two digraphs G1 and G2 are isomorphic if there is a one-to-one correspondence
between their vertices and directed edges. If there is a directed edge between two
vertices of G1, then there is a directed edge between the two corresponding vertices in
the digraph G2. More formally,

* For any directed edge ((a),(b)) of G1, G2 is isomorphic to G1 if and only if
F((a),(b)) is a directed edge of G2 (F is an isomorphic function).

In terms of matrices, if A1 and A2 are respectively the matrices of G1 and G2, the
digraph G1 is isomorphic to the digraph G2 if there is a classification of the vertices of
G2 such as the boolean matrix of A1 and A2 are equal.

* If A1=A2 then G1 and G2 are isomorphic

Thus, the analysis of the data-paths symmetries is equivalent to determinate the
isomorphism of block subdigraphs (each subdigraph represents one execution-path of
the block).

* Data-paths are symmetrical at logical level if and only if their digraphs are
isomorphic

Therefore, blocks are balanced if their data-paths are symmetric. If not, the module
is said unbalanced. From the previous example, as the matrices EGCo(1), EGCo(2),
EGCo(3) and EGCo(4) are equal, then their digraphs are isomorphic, so that the digraph
GXOR(V,E) is a balanced structure. However, the QDI implementation of a function is
not always balanced, in such a case, the digraph is analyzed and modified to ensure
that all data and control paths are balanced [2][10]. The directed graph representation

392 F. Bouesse, G. Sicard, and M. Renaudin

adopted in this design flow is well suited to formally analyze the design symmetries.
It offers the opportunity to formally analyze the data-paths symmetries of the design
and then balance the asymmetric data-paths if necessary. After that, we apply the path
swapping method and formally verify that the structure of the circuit is still well
balanced at the logical level.

Let’s then apply the DPA attack on this type of circuit in order to evaluate the
chip’s DPA sensitivity. This starts by defining the electrical model of balanced QDI
asynchronous logic.

4.3 Electrical Model of Balanced QDI Asynchronous Logic

The electrical model of balanced QDI asynchronous circuit used in this paper is based
on the model developed in [8]. It proposes a current model of QDI block
implementing a fix number of logical transitions regardless of the input data. As it
represents about 85% of the CMOS gate power dissipation, the paper only considers
the Dynamic power dissipation (Pd) which is defined as the power required to charge
and discharge the capacitive load of the gates. Hence, the block dynamic current
profile is expressed by:

)()()(
11

tPtItP dni

N

j
ij

Nc

i
dc

ij

+=
==

 with
dt

dV
CtI =)((2)

Iij(ti) represents the dynamic current dissipated by the jth gate of level i and Pdn is
a dynamic noise function. Nc is the number of gates along the critical data-path. It
represents the maximum number of gates in series in the execution path of the block
and also corresponds to a number of logical level used to divide a block in Nc logical
levels as illustrated in the digraph representation (figure 6). Nij is the number of gates
switching at each logical level (Nc). The values Nc and Nij are determined by a simple
analysis of the block digraph representation. C is the total charge of the output gate
node, defined by: C=Cl+Cpar+Csc in which Cl, represents the load capacitance (gate
and routing capacitance), Cpar is the parasitic capacitance, and Csc is the Short-circuit
equivalent capacitance. Let’s again consider the block of figure 4. We deduce through
the digraph exploration the values of Nc and Nij : Nc=4 ; N11=N21=N31=N41=1.

Therefore, the block dynamic current at each phase (evaluation phase and return to
zero phases) is given by:

())()()()()()(4413j32j21j1 tPtItItItItP dnxordc ++++= (3)

Equation (3) represents, in a first approximation, the profile of the dynamic current
of the Dual-rail Xor gate.

This formal current modelling can be extended to all balanced QDI asynchronous
block. Its application enables to evaluate with high accuracy the effectiveness of our
new secure design approach on balanced QDI asynchronous circuits.

4.4 Applying DPA on the Formal Model

We have adopted the formalization proposed by Thomas S. Messerges et al. in [11] to
apply DPA on this formal model. Before that, let’s first review the basis of the attack.

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 393

DPA attack is performed by computing M random values of plain-text-input (PTIi).
For each of the M plain-text-input, a discrete time power signal Sij and cipher-text-
output are collected. The index i of power signal Sij corresponds to the PTIi that
produced the signal and the j index corresponds to the time of the sample. According
to a DPA algorithm, the Sij are split into two sets by a separating function D.

{ }00 == DSS ij
 { }1DSS ij1 == (4)

The average power signal of each set is given by:

=

=
0

10
0

1
][

n

i
ijS

m
jA

=

=
1

11
1

1
][

n

i
ijS

m
jA (5)

Where |mo| and |m1| represent the number of power signals Sij respectively in set S0
and S1. The DPA bias signal is obtained by:

][][][10 jAjAjT −= (6)

If the DPA bias signal shows important peaks, it means that there is a strong
correlation between the D function and the power signal. Selecting an appropriate D
function is then essential in order to guess a good secret key.

Let us apply this DPA attack to a balanced QDI asynchronous design without
activating the path swapping technique. Choosing an XOR for the D function implies
to analyse the electrical signature of an Xor gate [8]. Then, the average current signal
of both sets of equation (5) is written as follows:

())()()()()()(
2

1
][4413312211121110 tItItItItItItA nxor +++++=

())()()()()()(
2
1

][4413322221141131 tItItItItItItA nxor +++++=
 (7)

Where In(t) is a noise signal. The electrical signature is given by:

++++

−++++==

41

41
41

32

32
32

22

22
22

14

14
14

13

13
13

41

41
41

31

31
31

21

21
21

12

12
12

11

11
11

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C]t[T]t[S

as
ijij

ij

t

V

dt

dVout

∆
∆≅ this expression becomes

(8)

∆
−

∆
∆+

∆
−

∆
∆+

∆
−

∆
−

∆
+

∆
∆=

32

32

31

31

22

22

21

21

14

14

13

13

12

12

11

11

t

C

t

C
.V

t

C

t

C
.V

t

C

t

C

t

C

t

C
.V]t[S

(9)

∆t represents the physical time taken by the gate to charge/discharge its output
node. This time also depends on the value of C. Recalling that C=Cl+Cpar+Csc.

Contrary to synchronous design where the DPA attack reveals path dissymmetry of
the attacked bit (Ci), DPA on the balanced QDI asynchronous design reveals path
dissymmetry of all rails that are used to encode the attacked bit. The DPA on dual-rail
xor gate requires comparing the electrical behaviour of paths which compute rail Ci0
and rail Ci1. As it is shown in equation 9, the main dissymmetries of such a balanced

394 F. Bouesse, G. Sicard, and M. Renaudin

QDI structure are located on load capacitances which involve gates delay variations
between their different paths. Let’s now apply the same DPA attack on a dual-rail Xor
gate implementing the path swapping. As all data-paths are used to compute outputs,
the average current signal of each set of equation (5) contains all gates’ currents of the
structure. Then, its expression is given by:

))()()()()()()()()()((
4

1
][][44133222211411333122111211110 tItItItItItItItItItItAtA nxorxor +++++++++== (10)

This nullifies the electrical signature of the dual-rail Xor gate.

0][≈=tS (11)

Equations (10) and (11) clearly demonstrate that the differential power analysis on
such a symmetric data-paths is completely unusable when using the path swapping
method.

4.5 The Swapping Function

As illustrated above, implementing a DPA attack on bit encoded with 1-of-N encoded
data, means analysing the electrical difference between its N data-path rails. This fact
enables us to reduce the number of possible permutations which are useful to
implement the path swapping method. Indeed, let’s consider the attacked bit Ci of a
selection function D encoded with 1-of-N. Ei represents the set of input values which
activate the rail i of Ci and mi represents the number of these input values (elements)
in each set Ei. There are two possible approaches to implement the swapping function:
a nondeterministic approach and a deterministic approach.

• The nondeterministic approach: in this approach the number of possible input
permutations for each input element is computed by the following expression:

=

=
N

i
iPE mP

1

 PPE: number of possible permutation of one
input element (12)

This number highlights two points: first, the elements of the same set Ei can be
permuted between them and second, this approach requires for each input element
Ai of Ei (Ai ∈ Ei), the use of PPE PPE-to-1 multiplexers (PPE inputs and 1 output).
Hence, the number and the type of multiplexers required for the bit Ci is given by:

rsMultiplexetoPPN PEPECi
)1(2 −−= (13)

This number can be reduced if the permutations inside each set Ei are
proscribed:

= ≠=
→+=

N

i

N

ijj
jiC rsMultiplexemmN

i
1 ;1

1)1((14)

If all mi are equal (each set Ei has the same number of elements), then:

rsMultiplexemPPN iPEPECi
1)1(→+−= (15)

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 395

For example, if N=2 and sets E0 and E1 have respectively m0=2 and m1=2 as
shown in figure 4, we obtain 4 4-to-1 multiplexers which can be reduced to 4 3-to-
1 multiplexers.

• The deterministic approach: the goal of this approach is to constrain the
permutation function in order to optimize the use of multiplexers and to guarantee
the security. The idea here is to permute one element of set Ei with one element of
each of the other sets. Therefore, each element can be permuted N times (as we
have N sets) and it requires for the bit Ci, PPE N-to-1 multiplexers:

rsMultiplexetoNPN PECi
1−−= (16)

Considering the previous example, we obtain 4 2-to-1 multiplexers.

Even if the swapping function is known, it does not affect the efficiency of the
approach because it is randomly executed. In fact, the choice of data-path used to
process the data remains random. This point enables us to considerably optimize the
use of multiplexers. In addition to this, some optimizations can be applied according
to the regularity and the symmetry of the architecture. It is not necessary to implement
multiplexers with each block of the architecture (see the case study on paragraph 5).
These analyses are also available when using some demultiplexers and can be
extended on all data-paths.

4.6 Discussion

Nevertheless, the security brought by this new design approach is fully efficient if and
only if these two conditions are fulfilled:

* Randomizing the path swapping: the objective is to ensure unpredictable
apportionment of path swapping inside a block. The attack is still possible if the
hacker knows the random function generator. Indeed, the analysis can be focused on
set of data that are processed by the same random value. For example, if the random
function is always switching between two cases (case 1 and 2 as described in figure
4). Performing the attack on the first case is equivalent to attack a balanced QDI
asynchronous circuit (without path swapping). The situation is the same if one
output rail of the bit attacked is always computed in the same data-path. Then, the
random generator must be an unpredictable and equiprobable function. The
implementation of such a random function is out of the scope of this paper.

* Implementing multiplexers and demultiplexers in the architecture. One way to
break the random function generator is to apply DPA attack on these blocks. For
example, if the multiplexer of channel Ai (encoding with two rails: Ai0 and Ai1)
presents a significant signature when its rails are swapped, the random function
which controls this multiplexer can be predicted. A particular care must be done
when implementing these functions [12].

5 Case Study: DES Crypto-Processor

A chosen example to validate this design approach is a DES algorithm. The
asynchronous DES crypto-processor is implemented using a four-phase protocol,

396 F. Bouesse, G. Sicard, and M. Renaudin

1-of-N encoded data and balanced data-paths. The architecture used is an iterative
structure, based on three self-timed loops synchronized through communicating
channels: one loop for the ciphering data-path, the second loop for the key data-path
and the third one for the control data-path (a finite state machine) which controls the
data-paths along its sixteen iterations (figure 10).

The implementation of multiplexers/Demultiplexers in each block of the
architecture could significantly increase the chip’s area. This can be done efficiently
by taking advantage of the implemented algorithm. As the DES algorithm uses only
four simple types of functions (permutation, Xor, Substitution, Expansion and
reduction functions), we only need to implement Multiplexers/Demultiplexers on
registers and on the Substitution box (blocks in bold on figure 8). The Substitution
function (SBOX) is selected because it is a surjective function (irreversible function).

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

Fig. 8. DES architecture

Table 1. A new ordering of the SBOX1

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output
values

Cx / Rx

Column number

Row number

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output
values

Cx / Rx

Column number

Row number

Indeed, because it is a one way function, it is difficult to trace the information
when its inputs/outputs are permuted. Each Substitution Box (SBOX) of the DES
algorithm receives 6 bits (64 possible values) in their inputs and generates 4 bits on
their outputs (16 possible values), so that, one output value can be selected by 4
different input values [13]. With the dual-rail encoding of the data for each SBOX, we
have 8 sets (output rails) of 32 input elements. Applying a nondeterministic
permutation, leads to implement 64 64-to-1 multiplexers which is not efficient in
terms of area. We used a deterministic implementation exploiting the maximum
redundancy of the Substitution function. Let’s consider the first substitution box of
the DES algorithm. To be able to efficiently swap data-path rails of the SBOX1, we
gathered in the same set all input values which generate an output value and its
opposite value. For example all input values which generate the output value ‘0’ and
its inverse output ‘F’ are gathered in the same set E0 as illustrated in table 1.

This representation enables us to observe that, it is only possible to permute in each
set, the input values which have the same row number. Therefore it requires 32 2-to-1
multiplexers which increases the SBOX1 area by 30%.

 Path Swapping Method to Improve DPA Resistance of QDI Asynchronous Circuits 397

6 Validations: Electrical Simulations

The technology used for implementing the design is the HCMOS9 (0.13µm) from
STMicroelectronics. All electrical simulations are performed with Nanosim with an
asynchronous DES gate Netlist.

The electrical simulation offers the possibility to analyze without disturbing signals
(noise), the electrical behaviour of the design with more details. Hence, the number of
necessary messages (M) is minimal. In order to easily evaluate the relevancy of this
new countermeasure, the path swapping method is only implemented in the first
Substitution function (SBOX1) and to four bits of Register L (figure 8). These four
bits are combined with the output bits of the first Substitution function (SBOX1) by
an Xor function in block Xor32. To reproduce the effects of back end steps during
simulations, a dissymmetry is introduced between rails which compute the fourth bit
of the SBOX1. In fact, the load capacitance (C) of the first rail (S4(0)) is set to 32
femto-farads. This value includes the gate, the routing, the parasitic and the short-
circuit capacitances. It has been estimated after a pre-place and route step with Silicon
Ensemble. The defined D function for processing the attack is as follows:

 D(C4,P6,K0)= SBOX1(P6⊕K0)

The attack is done on the fourth bit of the SBOX1 with 64 curves (64 plain-text-
inputs). As a reference, the attacks were realized without activating the
countermeasure by switching off the random number generator. The results of the
attack are displayed in figure 9. The DPA bias signal (S) is clearly observable when
the correct key is guessed.

S Correct key

Wrong key

A0A1

A0

A1

S

(a) (b)
Correct key

S Correct key

Wrong key

A0A1

A0

A1

S

(a) (b)
Correct key

Fig. 9. Electrical Signature when performing DPA attack on bit 4 of the SBOX1. Loading
charge difference of both rails of this bit is 32 femtoF. Only the first round is considered. (a) –
path swapping is not activated (b) – path swapping is activated.

The result of the attack when the countermeasure is activated is illustrated in figure
9-b. The DPA bias signal is completely removed as predicted by the equation (11).

All results present in this paragraph demonstrated the relevancy of using the path
swapping method on QDI asynchronous circuits which have their data-paths balanced
and symmetric.

398 F. Bouesse, G. Sicard, and M. Renaudin

7 Conclusion

This paper presented a new design technique for enhancing QDI asynchronous
circuits’ resistance against DPA attack. This design approach which is called Path
Swapping exploits all properties of QDI asynchronous logic which are suited to
design secure chips, particularly the logical data-path symmetries.

The results obtained from electrical simulations of a DES crypto-processor proved
the efficiency of the Path Swapping method in terms of DPA resistance. Current works
are focused on the realization of a prototype in order to perform analysis on silicon.

References

[1] P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis," Advances in Cryptology -
Crypto 99 Proceedings, LNCS Vol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[2] Simon Moore, R. Anderson, P. Cunningham, R. Mullins, G.Taylor, “Improving Smart
Card Security using Self-timed Circuits”, Eighth International Symposium on
Asynchronous Circuits and systems (ASYNC2002). 8-11 April 2002. Manchester, U.K.

[3] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside and S. Temple,
“SPA - A Synthesisable Amulet Core for Smartcard Applications”, Proceedings of the
Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC 2002).
Pages 201-210. Manchester, 8-11/04/2002. Published by the IEEE Computer Society.

[4] J. Joshua, P. Kocher, J. Benjamin, Balanced Cryptographic computational method and
apparatus for leak minimization in smartcards and others Cryptosystems,
EP1088295/WO9967766.

[5] Danil Sokolov, Julian Murphy, Alex Bystrov and Alex Yakovlev,”Improving the
Security of Dual-Rail Circuits”, CHES 2004, LNCS 3156, pp 282-297, 2004.

[6] J. J. A Fournier, Simon Moore, Huiyun Li, Robert Mullins, and Gerorge Taylor,”Security
Evaluation of Asynchronous Circuits”, CHES 2003, LNCS 2779, pp 137-151, 2003.

[7] F. Bouesse, M. Renaudin, B. Robisson, E Beigne, P.Y. Liardet, S. Prevosto, J. Sonzogni,
“DPA on Quasi Delay Insensitive Asynchronous circuits: Concrete Results”, DCIS 2004
Bordeaux, France, November 24-26, 2004.

[8] G.F. Bouesse, M. Renaudin, S. Dumont, F. Germain, « DPA on Quasi Delay Insensitive
Asynchronous Circuits: Formalization and Improvement », DATE 2005, Munich, p.424.

[9] Marc Renaudin, “Asynchronous circuits and systems: a promising design alternative”,
Microelectronic for Telecommunications : managing high complexity and mobility”
(MIGAS 2000), special issue of the Microelectronics-Engineering Journal, Elsevier
Science, Vol. 54, N° 1-2, December 2000, pp. 133-149.

[10] F. Bouesse, M. Renaudin, F. Germain, “Asynchronous AES Crypto-processor Including
Secured and Optimized Blocks”, the Journal of Integrated Circuits and Systems (JICS),
Volume 1, ISSN 1807-1953,March 2004.

[11] T. S. Messerges and E. A. Dabbish, R. H. Sloan, “Investigations of Power Analysis
Attacks on Smartcards”, USENIX Workshop on Smartcard Technology, Chicago,
Illinois, USA, May 10-11, 1999.

[12] P. Maurine, J.B. Rigaud, F. Bouesse, G. Sicard, M. Renaudin, “Static Implementation of
QDI Asynchronous Primitives”, 13th International Workshop on Power and Timing
Modeling, Optimization and Simulations, PATMOS2003.

[13] NIST, Data Encryption Standard (DES), FIPS PUB 46-2.

Automated Design of Cryptographic Devices
Resistant to Multiple Side-Channel Attacks

Konrad Kulikowski, Alexander Smirnov, and Alexander Taubin

Department of Electrical and Computer Engineering, Boston University,
8 Saint Mary’s Street, Boston, MA 02215, USA

{konkul, alexbs, taubin}@bu.edu

Abstract. Balanced dynamic dual-rail gates and asynchronous circuits
have been shown, if implemented correctly, to have natural and efficient
resistance to side-channel attacks. Despite their benefits for security ap-
plications they have not been adapted to current mainstream designs
due to the lack of electronic design automation support and their non-
standard or proprietary design methodologies. We present a novel asyn-
chronous fine-grain pipeline synthesis methodology that addresses these
limitations. It allows synthesis of asynchronous quasi delay insensitive
circuits from standard high-level hardware description language (HDL)
specifications. We briefly present a proof of concept differential dynamic
power balanced micropipeline library cells that are approximately 6 times
more balanced than the best (differential dynamic) cells designed using
previous balancing methods. An implementation of the Advanced En-
cryption Standard based on these balanced cells and synthesized using
our tool flow shows a 6.6 times throughput improvement over the syn-
chronous automatically pipelined implementation using the same TSMC
0.18µm technology synthesized from the same HDL specification.

1 Introduction

Strong cryptographic algorithms have been designed to withstand rigorous crypt-
analysis. However, if the overall cryptographic system is considered, including
the physical implementation, the strong notions of security are far from guar-
anteed. Numerous attacks have been developed that exploit physical properties
of implementations and information leaked through side channels, i.e. channels
other than the data channel. By exploiting the information leaked through side-
channels an attacker, with the help of statistical methods can quickly compromise
the system. Side-channel attacks (and especially a combination of several such
attacks) are often much more powerful than classical cryptanalysis.

In this paper we present a design methodology and a practical commercial
quality Electronic Design Automation (EDA) flow which addresses the current
practical and physical limitations. Our methodology provides tool support for
the complete design cycle of secure cryptographic hardware which is capable of
eliminating practically all sources of non-invasive side-channel information while
allowing for very high performance of the implementation as well as low design
time. It is based on asynchronous fine-grain pipelining with power-balanced cells

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 399–413, 2006.
c© International Association for Cryptologic Research 2006

400 K. Kulikowski, A. Smirnov, and A. Taubin

to combine high performance with the best available power analysis resistance
and excellent fault attack countermeasures. Our tool flow is based on off-the-shelf
commercial EDA tools and does not require any specialized asynchronous design
training or modifications of the original specification. Our flow is customizable
through library approach to use various micropipeline implementations. Area
and performance can be tuned as in other commercial quality synchronous syn-
thesis flows.

The benefits of our methodology stem from two critical differences from pre-
vious implementations and are a direct consequence of the fine-grain structure
of the final implementations. Fine-grain micropipeline cells are suitable for au-
tomatic ASIC synthesis from HDL specifications. Efficiently implemented using
dynamic differential dual-rail circuitry micropipelines make it possible to auto-
mate normally custom power ballanced circuits design.

Using our methodology we have designed a complete hardware implemen-
tation of Advanced Encryption Standard (AES) [1]. Our AES implementation
was synthesized for balanced library using our EDA tools. It combines differen-
tial power analysis (DPA) attack resistance with high performance. To satisfy
the tight time-to-market and ease of design constraints our EDA flow accepts
standard HDL input behavior specifications. Our design flow is complete. It in-
corporates off-the-shelf industrial tools with our scripts and reimplementation
engine.

In this paper we first (Section 2) review previous work and some weaknesses
and limitations of existing approaches. In Section 2 we also shortly introduce
the key concepts of asynchronous design. The next two sections describe the
keys for the success or our approach. Section 3 describes the main idea behind
asynchronous fine-grain pipelining, implementation basis and automated design
flow which allows asynchronous design using standard methodologies currently
used in practically all automated synchronous design flows. Section 4 describes
some details of the design and considerations of a dedicated balanced library
cells for asynchronous fine-grain pipelining which are easily customizable and
can be adapted to many existing balanced gate styles. Section 5 shortly describes
performance characteristics of AES implementation and Section 6 presents short
conclusions and future tasks.

2 Motivation

2.1 Dynamic Logic and Security

Some of the most promising methods for DPA resistance are based on specially
designed balanced dynamic gates like those from [2]. Recent results on DPA
resistance based on special power-balanced cells [2,3] show a significant reduction
in the power consumption fluctuations. Specially designed custom cells have
great potential since instead of masking or hiding they remove power related
sources of side-channel information that can be used for an attack.

However, most of gate-level approaches, such as those from [2,3] have no
countermeasures against glitch and fault-injection attacks and require additional

Automated Design of Cryptographic Devices 401

protection. More importantly, since differential and dynamic (DD) approaches
from [2,3] require dynamic (domino) logic cell design. The usage of DD gates is
limited to custom or semi-custom design that greatly limits the perceived uni-
versality of DD based circuitry. The following are two major reasons why EDA
support of dynamic logic based design is very difficult for synchronous method-
ology [4,5]. First, each synchronous dynamic gate requires a clock input and
uses both levels of clock signal – it means that from the point of view of EDA
tools each gate behaves like a flip-flop. Second, due to early/late arrival, charge
sharing, clock distribution problems with small clocking granularity and uncer-
tainty about worst case delay makes static timing analysis (STA) of dynamic
circuits very problematic. STA is core part of any synchronous EDA approach.
As a result no EDA tool support is available for synchronous design based of
dynamic logic. As these problems make power balanced dynamic circuitry prac-
tically unavailable for rapid ASIC development the researchers resort to less
secure (e.g. less balanced) but easier to implement solutions based on standard
static non-balanced gate libraries (see e.g. motivation to use WDDL from [6]).

Our approach incorporates dynamic gate balancing techniques and methods
with asynchronous design principles to address the timing and clock related
problems associated with current and future balanced dynamic gate designs and
to enable their use in automatic standard-cell based design flow.

2.2 Asynchronous Circuit Design

Many of the properties which many designs try to artificially add to synchronous
designs are natural in some styles of asynchronous circuits. Some of the benefits
previously noted include:

– Electromagnetic (or power) signature is strongly reduced by replacing a syn-
chronous processor with an asynchronous one (no clock harmonics). Remov-
ing clock results in significantly flatter noise and electro magnetic interference
(EMI) spectrum across the frequency domain (10dB drop according [7]).

– Absence of clock hardens triggering data detection at specific points of the
data processing flow.

– With no clock glitch attacks are infeasible.
– In synchronous implementations, power supply fluctuations are used to force

the circuit into an erroneous state allowing the use of differential fault anal-
ysis (DFA) attacks. Asynchronous circuits are much less sensitive to DFA
attacks since the supply voltage drop gracefully slows down the circuit rather
than leading to errors.

– Recent research suggests that asynchronous implementations have better re-
sistance to power analysis and fault injection than synchronous counterparts.
However, known implementations are still susceptible to information leakage
both in power signature [8] and under fault injection. Contrariwise, balanced
dual-rail domino with completion detection library - cell design that we chose
for implementation of asynchronous fine-grain pipelining eliminates a side-
channel for DPA [8,9].

402 K. Kulikowski, A. Smirnov, and A. Taubin

– Comparison of electromagnetic analysis (EMA) results for synchronous and
asynchronous implementations indicates that synchronous devices have data
dependent EM emission, while non-pipelined asynchronous devices have data
dependent timing visible with differential EMA (DEMA) [10].

– Asynchronous multi-dimensional (e.g. 3D) pipelined array architectures [11]
can eliminate data dependent timing and thereby secure implementations
against DEMA and differential timing analysis (DTA).

Various asynchronous design styles differ in the tradeoff between locality of
timing assumptions and design cost (see e.g. [12]). Quasi-delay-insensitive (QDI)
circuits [13] partition wires into critical and non-critical. Forks on critical wires
are considered safe if they are isochronic – the skew is less than the minimum
gate delay.

Universality and flexibility along with ease of design is a critical requirement
necessary for the integration of any approach. QDI implementations appear to
be the most appropriate – class of asynchronous circuits that can be synthesized
automatically from large high-level behavior specifications. Return to zero hand-
shaking protocol with dual-rail one-hot data encoding that switche the output
from data to spacer and back regardless for every data portion is the most com-
mon QDI implementation. The most efficient QDI implementations are based on
differential dynamic logic. That makes it easy to incorporate existing dynamic
domino style power balanced structures in the QDI templates.

2.3 EDA Support for Asynchronous Design

QDI based approach developed by TIMA group [14] is based on complex static
library cells (built from basic gates like C-elements [15] etc.). These cells are
not compatible with e.g. SABL [2]. In addition, TIMA tool flow [16] uses a non-
standard language extension (channels) of HDL that require rewriting of design
specifications.

Most importantly, none of known asynchronous EDA tools address fine-grain
asynchronous dynamic logic pipelining which is of major importance for security
and high performance. Fine-grain asynchronous pipelining seems to be the only
way to move most promising DPA resistant (differential dynamic well balanced
gates like SABL) into engineering practice since it seems to be the only way to
provide EDA tool support for dynamic logic based styles.

In a summary, differential dynamic well balanced gates seem to be the best
choice to design secure hardware resistant to side-channel attacks. Because of
the time-to-market pressure without a solid EDA support any methodology for
secure hardware design is likely to remain unused. QDI implementation method-
ology is able to play a key role by making dynamic cell libraries acceptable for
EDA. Fine-grain asynchronous pipelining is a way to develop commercial quality
tool support for QDI cell libraries. It becomes possible based on synchronous-to-
asynchronous directed translation (SADT) approach. The main idea of SADT
is to start from conventionally synthesized synchronous circuit, and directly re-
place the global clock network with a set of local handshake circuits. This way

Automated Design of Cryptographic Devices 403

synthesis is performed by commercial synthesis tools originally developed for
synchronous circuits. Since in dynamic logic each gate is a subject of clocking,
fine-grain asynchronous pipelining by inserting local handshake control on the
level of inter-gate communication (gate level pipelining) leads not only to conve-
nient assimilation of differential dynamic balanced cell designs but also to high
throughput solutions. In the next sections we explain how these necessary com-
ponents lead to fine-grained structures and how they allow synthesis and other
tool support.

3 Asynchronous Micropipelines Synthesis

Register Transfer Level (RTL) synthesis model simplified the clocked circuits’
design and allowed design automation driving VLSI progress for more than a
decade. Synchronous-to-asynchronous directed translation (SADT), we believe,
is as important for asynchronous design automation as RTL for synchronous
EDA. With RTL design dominating the industry SADT model is especially ben-
eficial since (1) it offers support for existing specifications and (2) it is easily
incorporated into contemporary design flow using the best available RTL syn-
thesis engines. The handshake implementation and data channel organization is
thereby hidden from the designer. Like in RTL it is customizable through a cell
library approach.

Contrary to known approaches [16,17] which use HDL for micropipeline [18]
synthesis, our method is not an attempt to express asynchronous formal models
in terms of HDL. Our synthesis flow uses an off-the-shelf RTL synthesis engine as
a front-end to support regular HDL behavior specifications and the same engine
as a back-end to provide support for the variety of netlist specification formats
used by post-synthesis tools in ASIC design flow.

The main contribution of RTL model to EDA is based on a separation of op-
timization and timing (all sequential behavior is in an interaction between regis-
ters, all synthesis and optimization are only about combinational clouds). RTL
model (Fig. 1a) is based on global synchronization and timing assumption (com-
putations are complete in every stage before the next clock edge). During every
clock cycle every latch undergoes two phases: pass and store. Master-slave flip-
flop organization where master latch is clocked by one edge of clock signal and
slave latch by the opposite edge prevents the register from being transparent at
any given time. Similarly to pass and store of latches dynamic gates go through:
evaluate and precharge (reset). These stages map to asynchronous four-phase
handshake protocols [12] where the four phases are data request-acknowledge
(evaluate) and request-acknowledge reset. (Fig. 1b).

In addition to separation of optimization and timing SADT model contributes
separation of set and reset phases: for example each gate in Null Convention
Logic (NCL) [19] is sequential but can be presented as combinational – sep-
arately in set and reset phases. As a result in SADT flow logic optimization
remains separate from sequential behavior – the reason why SADT flows can
be based on standard synchronous RTL compilers. Likewise sequential behavior

404 K. Kulikowski, A. Smirnov, and A. Taubin

Fig. 1. Synchronous-Asynchronous Direct Translation: from synchronous (a) to de-
synchronized (b) and fine-grain pipelined (c) circuits

synthesized in RTL remains the same in a micropipeline. Only its implemen-
tation is changed from globally synchronized using global timing assumptions
to local handshake with none or local timing assumptions. This low-level se-
quential behavior implementation is done automatically and does not affect the
design specification. Final implementation (and this is the main difference from
RTL) will provide the result as soon as it can – not at the predetermined time
as with synchronous RTL. It will signal the data availability and wait for the
environment to acknowledge the data receipt to output the new result.

SADT flows differ in pipeline stage granularity. Inter-register handshake inser-
tion approach where clock connected to registers is substituted by handshaking
between the registers placed at the same points in the circuit (Fig. 1b) is used
by NCL [19] and De-synchronization [20] flows.

The main distinctive feature of our approach [21] is that in addition to replac-
ing global synchronization with local self-timed control we also remove function-
ally unnecessary synchronization and alter the granularity of pipelining (usually
significantly decrease it down to the gate level Fig. 1c).

There are several reasons for gate-level pipelining: overcoming parameter vari-
ations, lower completion detection overhead (see section 3.2 for details on com-
pletion detection) etc. Particularly, we would like to mention that lower pipeline
granularity is a way to improve performance. For security related applications
gate level pipelining allows development of small power balanced gates (as ex-
plained in section 4) that can be used to automatically synthesize DPA resistant
implementations.

The asynchronous mechanisms (including handshake communication) are hid-
den from the end circuit designer in the micropipeline cell library leaving the
handshaking implementation to the library designer.

3.1 RTL to Micropipeline Re-implementation in Our Synthesis
Flow

Micropipeline synthesis (as a particular case of SADT methodology) consists
of three main stages: RTL synthesis, re-implementation and final mapping ex-
plained as follows.

RTL implementation consists in synthesizing a synchronous implementa-
tion from HDL specification provided by the designer by a standard RTL synthe-
sis tool. The only difference from standard RTL synthesis is that virtual library

Automated Design of Cryptographic Devices 405

(imaginary) cells are used for synthesis. This step determines the implementa-
tion architecture. It can be tuned the same way it would be for RTL synthesis
to trade-off area, performance and dynamic power consumption.

Fig. 2. Micropipeline synthesis examples: clocked latch (top) and AND2 gate with a
fork (bottom)

Re-implementation takes the RTL netlist obtained in the previous step.
First, RTL functionality is identified. Every combinational gate or a clocked latch
(gi) is represented with a library cell (see examples in Fig. 2). Clocked flip-flops
are considered as pairs of sequentially connected latches (master gmi and slave
gsi) with alternative clock and are represented as two cells each. Every data wire
(any wire except for clock and reset) is mapped to a cell connection. This way
no additional data dependencies are added and no existing data dependencies
are removed. Initial state of state holding gates (D-latches and D-flip-flops) is
guaranteed by appropriate reset.

The algorithm is substitution based linear complexity assuming that for ev-
ery virtual library cell there exists a micropipeline library cell or a previously
synthesized module implementing functionality represented by the cell. This as-
sumption is satisfied by targeting RTL synthesis to the virtual library that is
functionally equivalent to the micropipeline library and by bottom-up synthesis
of hierarchical designs

Next deadlock freedom is ensured and the micropipeline netlist is optimized
using slack matching [22,23] and other optimizations.

Fig. 2 presents identification and micropipeline synthesis examples for a clocked
latch with fan-out of 1 and an AND2 gate with fan-out 2. The latch (Fig. 2a top) is
connected to reset with its preset pin meaning that it is initialized to ‘1’ in RTL im-
plementation. During micropipeline synthesis an identity stage is chosen from the
library that is initialized to dual-rail value of logical ‘1’. The combinational gate
labeled with function A&B is implemented by a micropipeline stage with equiv-
alent dual-rail functionality. The gate output depends on both inputs therefore
the inputs must be synchronized by a join module. Likewise the output is split to
X and Y what makes it necessary to synchronize the feedback acknowledgements
with a fork module.

406 K. Kulikowski, A. Smirnov, and A. Taubin

The nets not identified as special nets are treated as channels. Fig. 2 shows the
general case of channel expansion using request (req), acknowledgement (ack)
and dual-rail binary data wires. The join and fork module implementations are
protocol dependent.

We have proved that asynchronous fine-grain pipelined circuit generated by
our flow is live, safe and flow-equivalent to original specification (we borrow the
notion of flow-equivalence and a method of proof from [20]). Flow-equivalence
means that for each stage that corresponds to a latch in RTL implementation,
the value stored at the i-th pulse of the control signal is the same as the value
stored at the i-th cycle of the synchronous circuit.

3.2 Micropipeline Stages

Numerous protocols and implementation styles have been developed for asyn-
chronous micropipelines. The protocols fall into two groups [12]: bundled data
using delay element to match the delay of data propagation through combina-
tional logic and completion detection based. The latter encode data to include
a spacer (no data value) in addition to logical ‘1’ and logical ‘0’ (e.g. like in
dual-rail domino with data values “01” and “10” and the reset state “00”). Such
an encoding along with monotonic transitions makes it possible to distinguish
data from reset state by looking only at the data itself.

Data/spacer detection is called completion detection. For the above data en-
coding it can be implemented with a NOR gate per data channel. For multiple
channels synchronization of single channel completions is implemented by a latch
with the function g = x1 · x2 + g · (x1 + x2), known as a Muller’s C-element [15]
shown on Fig. 3 as a circle with “C” inside. With no global synchronization a
stage determines the time to precharge/evaluate by observing the feedback from
data consumers. It can precharge when all consumers evaluated and evaluate
when all of them precharged.

An example of dynamic implementation of a micropipeline stage cell imple-
menting the AND2 function is shown on the Fig. 3. (This particular exam-
ple illustrates the Reduced Stack Precharge Half-Buffer (RSPCHB) template
from [24]. Note that RSPCHB is not balanced. It was not targeted to secure
applications.) Block implementing the stage logical function is F . The rest of
blocks are typical for most of the stages. LReq and LAck are left and RReq
and RAck are right request and acknowledgement, ACK – handshake imple-
mentation, PC – phase (precharge/evaluate) control, CD –completion detection
and M stands for memory. ‘Staticizers’ (or keepers) formed by adding weak in-
verters as shown in Fig. 3, store the stage output value for an unlimited time
eliminating timing assumptions. At the same time keepers solve the charge shar-
ing problem and improve the noise margin of precharge style implementations.
The req line is used in some protocols to signal data availability to the following
stages while the ack – to indicate that the data portion has been consumed.
Depending on the communication protocol, some or all of the handshake events
can be transmitted over the data lines so req and/or ack lines may not be
needed.

Automated Design of Cryptographic Devices 407

Fig. 3. AND2 micropipeline stage dynamic implementation example

A dedicated micropipeline library with each cell representing an entire mi-
cropipeline stage localizes in-stage timing assumptions and power balancing in-
side the cell thereby leaving it to the library designer. With delay-insensitive
inter-stage communication the implementation functionality no longer depends
on place & route. Note (Fig. 3) that memory and logic function implementation
are of the same cost and speed as synchronous dual-rail domino counterparts.
The main sources of area overhead are the Muller C-element for handshake con-
trol implementation (ACK), completion detection circuitry (CD) and ack/req
synchronization (can be seen in Fig. 2).

3.3 Design Flow and EDA Support

Our synthesis flow consists of a reimplementation engine and a set of scripts re-
sponsible for implementing the user interface (commands) and interaction with
the RTL synthesis tool. The engine incorporates VHDL and Synopsys Liberty
parsers/generators to interface the design and library specifications with indus-
trial tools. The RTL synthesis tool currently used in the flow is Synopsys Design
Compiler R©. This set of tools is targeted at micropipeline synthesis but it also
automates some library installation tasks.

Library installation is executed once per library or every time the library
is modified. This step is essential for the flow flexibility to use variety of mi-
cropipeline libraries. The flexibility is achieved through abstracting from par-
ticular micropipeline style(s) by defining a stage-cell as a pre-designed module
implementing one or more functions of its inputs. Every data input or output is
considered as a channel consisting of encoded data and zero or more handshake
lines. On the example on the Fig. 2b a channel consists of dual-rail data, request
and acknowledgement lines.

Virtual library is an imaginary single-rail synchronous RTL library function-
ally equivalent to the micropipeline library. The virtual library is generated from
the micropipeline library during its installation. Cell AND2 on the Fig. 2a is a
virtual library cell generated for stage AND2 implementation (Fig. 2b) found

408 K. Kulikowski, A. Smirnov, and A. Taubin

in micropipeline library. Area and delay characteristics of the virtual library
cells are mapped from the corresponding micropipeline library cells to make
optimization during the RTL synthesis meaningful.

4 Cell Customization and Security Benefits

The previously described synthesis approach based on fine-grained templates
is in large part independent of the detailed implementation of the template
cell. Unlike other balanced asynchronous implementations and flows [14] which
are much more restrictive in the structures which can be used, this general
template is much more flexible and adaptable. Libraries optimized for balance,
performance, power, or overhead can all be incorporated to meet the security and
other design goals. Since the basic templates are based on differential dynamic
cells almost all of the existing or novel dynamic circuit structures can be easily
incorporated into an asynchronous standard-cell library. New circuit structures
do not have to be redesigned or invented for a particular application in order to
be incorporated into the flow, thus allowing reuse of intellectual property and
further decreasing development time and time-to-market of complex designs.

For example, SABL gates [2,3] can be easily adapted to the cells preserving all
of their balance properties and enhancing their fault resistance and robustness.
Addition of asynchronous control removes the clocking and timing difficulties
normally associated with the gates and enhances their security applications due
to the benefits of asynchronous behavior as mentioned in sec. 2. The function and
operation of the additional asynchronous wrapper is almost completely data in-
dependent and only the completion detection of wrapper requires a trivial power
balancing consideration which can be easily met with two additional minimal size
transistors [9]. By simply using an unmodified SABL gate as the functional block
of the asynchronous template and using the handshake circuitry of the template
(like that presented in section 3.2 and shown on the Fig. 3) for the generation of
the clock signal for the SABL gate as shown on the Fig. 4 a fully QDI balanced
gate results. The resulting gate has identical balance to that of the original SABL
gate.

Fig. 4. Incorporation of a SABL gate into the QDI template

Automated Design of Cryptographic Devices 409

Additionally, the explicit synchronization and completion detection of the
asynchronous template allows for fewer restrictions on the design of the bal-
anced functional block. Restrictions such as elimination of early propagation
effect [25] which need to be explicitly considered in synchronous implementa-
tions are automatically satisfied. Explicit input completion can be incorporated
to the design which coupled with the C-element will prevent evaluation until all
of the input data has arrived and is ready.

Furthermore, the timing and voltage tolerance of the QDI implementation
allows for more aggressive dynamic designs which can achieve better balance than
previous designs. A balanced library designed specifically for the fine-grained
asynchronous template called Balanced Symmetric with Discharge Tree (BSDT)
gates was fully incorporated into the flow. The gates showed approximately 6
times better balance than the synchronous SABL implementations (Fig. 5) [9].

Fig. 5. BSDT-style XOR and the Standard Deviation of the evaluation phase of SABL
and BSDT implementations

Current versions of the balanced library cells based on existing balanced dy-
namic functional blocks still require balanced routing considerations. However,
due to gate level asynchronous QDI nature of the method the resulting imple-
mentations are very tolerant of process/voltage variations. The natural tolerance
of the template can allow more aggressive dynamic balancing techniques which
can allow for routing independent gate design. We are currently developing a
balanced library design which does not require balanced routing considerations.

In addition to allowing a more robust design for dynamic balanced function
blocks the asynchronous handshake protocol and template adds natural fault re-
sistance to the design. For the balanced asynchronous gates presented in [9] out
of all the possible transistor level single stuck-at faults inside and outside of the
complete asynchronous gate not a single fault changes the Boolean function of
the gate. Almost 80% of the faults result in a pipeline stall which naturally pre-
vents further data processing and creates deadlock within the pipeline (Tab. 1).
That is the faults prevent or stop the necessary four phase handshake proto-
col between each gate thereby stalling the communication between dependent

410 K. Kulikowski, A. Smirnov, and A. Taubin

downstream gates and preventing any further data processing. To resolve the
deadlock the pipeline requires an explicit reset which will clear all intermedi-
ate faulty data values inside the pipeline removing the possible source of fault
attack information. Synchronous based balanced dynamic logic gates have no
comparable property. This additional property should make it much harder to
use invasive or semi invasive attacks on a circuit since almost all of the tampering
would be detected by a pipeline stall. Additional error detection based on other
high level fault-tolerant methods (i.e. error-detecting codes) [26] can be added
easily due to the HDL synthesis support. Only a modified HDL specification
incorporating fault-tolerance needs to be generated.

Table 1. Effects of stuck-at faults in asynchronous dual-rail gates

Pipeline stall No Logical effect on function Created an alarm state
Buffer 75% 21% 4%
AND 73% 16% 10%
XOR 73% 16% 11%

We are currently performing a full analysis of the side-channel information
leakage from sample implementations. Initial simulated power analysis attacks
on the Sbox of the Data Encryption Standard (DES) indicate that the beneficial
properties of the balanced dynamic gates and asynchronous circuits translate
to the proposed implementations. The DPA was applied similarly to the attack
performed on our previous balanced library implementation [8] and shows similar
simulation results.

Since the design is based on components of previously evaluated methods and
designs (i.e., QDI asynchronous design, dynamic balanced gates) it is expected
that the good properties of the individual components should be preserved as
indicated by the results of initial DPA simulations. Therefore with respect to
power, fault and EMI channels the methodology is expected to be as secure, by
construction, as the individual components prior to integration. We are currently
evaluating the details and possible weaknesses resulting from the combination
of the countermeasures but up to this point none have been found.

5 AES Implementations Comparison

To estimate efficiency of our flow [27] we compare performance of automatically
synthesized synchronous and asynchronous balanced and unbalanced fine-grain
pipelined implementations using our simple dynamic logic based micropipeline
libraries using TSMC 0.18µm technology (obtained through MOSIS). One of
the libraries – BSDT is a power balanced library implemented with minimum
transistor sizes. Another – MPCHB (modified PCHB from [24]) optimized for
performance.

The same RTL Electronic Code Book mode (unfolded 10-round) HDL spec-
ification of the AES has been used for all implementations. Synchronous RTL

Automated Design of Cryptographic Devices 411

implementation was synthesized with the Artisan Sage-XTM [28] standard cell li-
brary using the same (TSMC 0.18µm) technology. The non-pipelined implemen-
tation shows performance of 16MHz. Automatically pipelined (with Synopsys
Design Compiler R© ”pipeline design –period 0” command – maximum perfor-
mance setting) synchronous implementation – performed at 45MHz.

Our asynchronous fine-graine pipelined implementations exceeds 35Gbps
(298MHz*128bit where 128 bits is the input and cipher text word length) for
balanced and over 62Gbps (482MHz*128bit) for unbalanced implementations.

Compare these performance numbers with commercial ASIC implementations
like one from [29] available on the market today (25Gbps the word length of
256 bits – that scaled down to 12.5Gbps for the word length of 128 bits) or
the best known academic custom (manual) design (546MHz) [30]. Note that in
both cases there is no side-channel attacks protection. High performance and
protection level results cost significant area overhead – the area of protected
gate-level pipelined implementation approaches 30mm2. Thanks to resistance
to variation inherent to asynchronous micropipelines the implementation can
operate at lower voltage with lower speed and lower power consumption.

Finally, we would like to note that both the MPCHB and BSDT libraries are
under development and in the current stage feature logic gates (stages) up to 2
data inputs as well as the identity function (to be used for initialization and slack
matching) micropipeline stages along with synchronization cells and a minimal
set of standard logic cells. Design characteristics can be improved with better
optimized and richer micropipeline library.

6 Conclusions and Future Tasks

The lack of industrial quality electronic design automation flow has limited
the use of the most promising side-channel resistant circuit techniques: dy-
namic style balanced gates and asynchronous circuits. We have implemented
a design methodology based on dynamic asynchronous micropipelines which
allows full industrial quality EDA support without requiring additional train-
ing in asynchronous design. Moreover the methodology allows easy incorpora-
tion of existing synchronous dynamic gate designs and circuit structures. The
combination of asynchronous operation and balanced dynamic gates allows au-
tomated standard-cell library based design highly resistant to side-channel
attacks.

We recently discovered a new Combined Differential Power Analysis/Fault
Injection (DPA/FI) attacks (or power attacks on faulty hardware) [31]. Our
experiments indicate that this attack is potentially extremely dangerous since
even Differential Power Analysis resistant (power balanced) implementations are
vulnerable to DPA/FI attacks. No previous countermeasures have been specif-
ically considered against this type of attacks. However, methodology based on
asynchronous fine-grain pipelined power-balanced library is the approach which
could provide for a high level of resistance against these new attacks.

412 K. Kulikowski, A. Smirnov, and A. Taubin

Acknowledgements

This work was partially funded by Omnibase Logic Inc.

References

1. Fips pub 197: Advanced encryption standard, http://csrc.nist.gov.
2. Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differential

cmos logic with signal independent power consumption to withstand differential
power analysis on smart cards. In 28th European Solid-State Circuits Conference
(ESSCIRC 2002), 2002.

3. Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation. Design Automation and Test in
Europe Conference (DATE 2004), 2004.

4. David Chinnery and Kurt Keutzer. Closing the Gap between ASIC & Custom.
Tools and Techniques for Gigh-Performance ASIC Design. Kluwer Academic Pub-
lishers, 2002.

5. David Harris. Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers, 2001.
6. Kris Tiri, Wei Hwang, Alireza Hodjat, Lai Bo-Cheng, Yang Shenglin, P. Schau-

mont, and I. Verbauwhede. Prototype IC with WDDL and differential routing -
DPA sesistance assessment. In Chyptographic Hardware and Embedded Systems -
CHES, pages 354–365, Edinburgh, 2005. LNCS3659, Springer.

7. J. McCardle and D. Chester. Measuring an asynchronous processor’s power and
noise. In SNUG, 2001.

8. Konrad J. Kulikowski, Ming Su, Alexander Smirnov, Alexander Taubin, Mark G.
Karpovsky, and Daniel MacDonald. Delay insensitive encoding and power analy-
sis: A balancing act. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 116–125, 2005.

9. Daniel Jay MacDonald. A Balanced-Power Domino-Style Standard Cell Library for
Fine-Grain Asynchronous Pipelined Design to Resist Differential Power Analysis
Attacks. Master of Science Thesis, Boston University, 2005.

10. H. Li, A. Markettos, and S. W. Moore. Security evaluation against electromagnetic
analysis at design time. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2005.

11. A.Taubin, K. Fant, and J. McCardle. Design of delay-insensitive three dimension
pipeline array multiplier for image processing. ICCD, 2002.

12. Jens Sparsø and Steve Furber, editors. Principles of Asynchronous Circuit Design:
A Systems Perspective. Kluwer Academic Publishers, 2001.

13. Alain J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and
Communication, UT Year of Programming Series, pages 1–64. Addison-Wesley,
1990.

14. G. F. Bouesse, M. Renaudin, S. Dumont, and F.Germain. DPA on quasi delay
insensitive asynchronous circuits: Formalization and improvement. In DATE, 2005.

15. David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-
ings of an International Symposium on the Theory of Switching, pages 204–243.
Harvard University Press, April 1959.

16. M. Renaudin, P. Vivet, and F. Robin. A design framework for asynchronous/
synchronous circuits based on CHP to HDL translation. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
135–144, April 1999.

Automated Design of Cryptographic Devices 413

17. Catherine G. Wong and Alain J. Martin. High-level synthesis of asynchronous
systems by data-driven decomposition. In Proc. ACM/IEEE Design Automation
Conference, pages 508–513, June 2003.

18. Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
June 1989.

19. Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev.
Asynchronous design using commercial HDL synthesis tools. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
114–125. IEEE Computer Society Press, April 2000.

20. J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. De-synchronization:
synthesis of asynchronous circuits from synchronous specifications. IEEE Trans-
actions on Computer-Aided Design. (To appear).

21. A. Smirnov, A. Taubin, and M. Karpovsky. An automated fine-grain pipelining
using domino style asynchronous library. In ACSD 2005: Fifth International Con-
ference on Application of Concurrency to System Design, St.Malo, France, 2005.
IEEE CS Press.

22. Peter A. Beerel, Mike Davies, Andrew Lines, and Nam-Hoon Kim. Slack matching
asynchronous designs. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 184–194, March 2006.

23. Piyush Prakash and Alain J. Martin. Slack matching quasi delay-insensitive cir-
cuits. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 195–204, March 2006.

24. Recep O. Ozdag and Peter A. Beerel. High-speed QDI asynchronous pipelines. In
Proc. International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 13–22, April 2002.

25. K. Kulikowski, M. Karpovsky, and A. Taubin. Power attacks on secure hardware
based on early propagation of data. In 12th IEEE International On-Line Testing
Symposium, 2006.

26. K. Kulikowski, M. Karpovsky, and A. Taubin. Robust codes for fault attack resis-
tant cryptographic hardware. In Fault Diagnosis and Tolerance in Cryptography,
2nd International Workshop, pages 1–12, Edinburgh, 2005.

27. Weaver: GTL synthesis flow. http://async.bu.edu/weaver/.
28. TSMC 0.18µm process 1.8-volt Sage-X standard cell library databook, September

2003.
29. High performance AES cores for ASIC - http://www.heliontech.com, 2005.
30. A. Hodjat and I. Verbauwhede. Area-throughput trade-offs for fully pipelined 30

to 70 Gbits/s AES processors. IEEE Transactions on Computers, 55(4), 2006.
31. K. Kulikowski, M. Karpovsky, and A. Taubin. DPA on faulty cryptographic hard-

ware and countermeasures. In Fault Diagnosis and Tolerance in Cryptography, 3nd
International Workshop, 2006.

Challenges for Trusted Computing

Ahmad-Reza Sadeghi

Horst Görtz Institute for IT Security, Ruhr-University Bochum
sadeghi@crypto.rub.de

The Trusted Computing Group (TCG), an alliance of a large number of IT enter-
prises, has published a set of specifications aiming at cost-efficient extensions of
conventional computer architectures with security-related features and crypto-
graphic mechanisms. The TCG core specification concerns the Trusted Platform
Module (TPM) that acts as a root of trust of a computing platform and provides
cryptographic primitives which can be used to realize more sophisticated secu-
rity services. Currently, TPMs are implemented as dedicated chips mounted on
the motherboard of a computer and many vendors already ship their platforms
equipped with TPMs.

Trusted Computing (TC) is an emerging technology and several prominent re-
search and industrial projects are investigating trustworthy IT systems based on
TC with promising results. Nevertheless, for the employment in practice various
challenging technical and research problems are still to be solved including:

TPM complexity: The TPM specification contains a large number of commands
and parameters and seems unmanageable. A thorough analysis is still missing
to determine the minimal/essential set of functionalities for the TPM.

TPM compliance: Recent efforts show that the majority of TPMs available on
the market are non-compliant to the TCG specification. Currently, users of
TCG-enabled platforms have no efficient means to test the trustworthiness
of their TPM and/or its compliance.

Maintenance: Recovering sealed data and backups in case of modified platform
configurations as well as the migration of TPM states among platforms (with
possibly different trust level) demand for more satisfactory solutions.

Trust infrastructure: Distributed trusted computing needs an appropriate frame-
work for handling trust in practice (platform certificates, trusted channels,
attestation kernels, etc)

Attestation: Existing TCG attestation is not satisfactory and may need re-
thinking. In particular it discloses the system configuration raising privacy
concerns. A more general concept is property-based attestation that requires
attesting whether a computing platform (or an application) has the desired
security properties instead of attesting measurements (hash values) of the
corresponding binaries as proposed by the TCG. However, one still needs to
define and efficiently determine reasonable properties.

Trustworthy systems demand for a careful design and security analysis of trusted
computing components and their interfaces to provide multilateral security that
is essential in multiparty computation scenarios in practice such as home banking,
eGovernment, Grid computing, virtual data centers, etc.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, p. 414, 2006.
c© International Association for Cryptologic Research 2006

Superscalar Coprocessor for
High-Speed Curve-Based Cryptography�

K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede

Katholieke Universiteit Leuven / IBBT
Department Electrical Engineering - ESAT/SCD-COSIC

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{ksakiyam, lbatina, preneel, iverbauw}@esat.kuleuven.be

Abstract. We propose a superscalar coprocessor for high-speed curve-
based cryptography. It accelerates scalar multiplication by exploiting
instruction-level parallelism (ILP) dynamically and processing multiple
instructions in parallel. The system-level architecture is designed so that
the coprocessor can fully utilize the superscalar feature. The implemen-
tation results show that scalar multiplication of Elliptic Curve Cryptog-
raphy (ECC) over GF(2163), Hyperelliptic Curve Cryptography (HECC)
of genus 2 over GF(283) and ECC over a composite field, GF((283)2) can
be improved by a factor of 1.8, 2.7 and 2.5 respectively compared to the
case of a basic single-scalar architecture. This speed-up is achieved by ex-
ploiting parallelism in curve-based cryptography. The coprocessor deals
with a single instruction that can be used for all field operations such as
multiplications and additions. In addition, this instruction only allows
one to compute point/divisor operations. Furthermore, we provide also
a fair comparison between the three curve-based cryptosystems.

Keywords: Superscalar, instruction-level parallelism, coprocessor,
curve-based cryptography, scalar multiplication, HECC, ECC.

1 Introduction

Public-key cryptosystems form an essential building block for digital communi-
cation. Unlike secret-key algorithms that allow for a fast encryption of a large
bulk of data, the importance of Public-Key Cryptography (PKC) is to have se-
cure communications over insecure channels without prior exchange of a secret
key. In addition, PKC enables digital signatures as an important cryptographic
service. Diffie and Hellman introduced the idea of PKC [1] in the mid 70’s.

Implementing PKC is a challenge for most application platforms varying from
software to hardware. The reason is that one has to deal with very long num-
bers in conditions that are often constrained in area and power. For the choice
of the implementation platform, several factors have to be taken into account.

� Kazuo Sakiyama and Lejla Batina are funded by FWO projects (G.0450.04,
G.0141.03). This research has been also supported by IBBT-QoE and the EU IST
FP6 projects SCARD, SESOC, ECRYPT.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 415–429, 2006.
c© International Association for Cryptologic Research 2006

416 K. Sakiyama et al.

Hardware solutions provide the speed and more physical security, but the flex-
ibility is limited. For that property software solutions are needed, but a pure
software solution is not a feasible option in most resource-limited environments.
Hardware/software co-design potentially allows an efficient design platform that
explores trade-off between cost, performance and security.

The most popular and most widely used public-key cryptosystems are RSA [2]
and ECC [3,4]. In embedded systems, ECC is considered a more suitable choice
than RSA because ECC obtains higher performance, lower power consumption,
and smaller area on most platforms. Another appealing candidate for PKC is
HECC. Recently many good results appear for software and hardware imple-
mentations of HECC at the same time more theoretical work has shown HECC
to be also secure in the case of curves with a small genus [5].

A considerable amount of work has been reported on improving the perfor-
mance of Elliptic Curve (EC) scalar multiplication. The work can be classi-
fied into following categories: First of all, mathematical investigation has been
done for various types of elliptic curves such as Koblitz curves. Secondly, var-
ious algorithms for scalar multiplication have been proposed and criteria for
improvements include performance as well as side-channel security. One of the
best-known examples that meet requirements for both is the Montgomery’s pow-
ering ladder [6]. Lastly, architecture-level improvements can be considered from
a hardware implementations’ point of view. Our interest in this paper mainly
lies at this level.

The contribution of this paper is in accelerating curve-based cryptosystems
by deploying a superscalar architecture. The solution is algorithm-independent
and can be applied for any scalar multiplication algorithm. Some previous work
reported parallel use of modular arithmetic units for accelerating scalar multi-
plication [7,8,9,10,11,12]. In those papers, point/divisor doubling and addition
are reformulated so that they can take advantage of the parallel processing. One
original contribution is that our proposed architecture embeds an instruction
scheduler that explores the best level of parallelism and assigns tasks for the
processing units in an optimal way. In this way the parallelism within the oper-
ations can be found on-the-fly by dynamically checking the data dependency in
the instructions. We provide also a fair comparison between three cryptosystems,
ECC, HECC and ECC over a composite field. Namely, it is known that for HECC
of genus 2 one has the ability to work in the field of a size two times smaller
than the one for ECC obtaining the same level of security. On the other hand
using ECC over GF((2p)2), we end up with the same field arithmetic as HECC.
In this way, another contribution of this paper lies in the system architecture of
three curve-based cryptosystems enabling one to use the same amount of area.

The remainder of this paper is as follows. Section 2 gives a survey of relevant
previous work for curve-based cryptography implementations. In Section 3, some
background information on ECC and HECC is given. In Section 4 the architec-
ture for our proposed coprocessor is explained. The details of our implementation
are introduced in Section 5 and the results are shown for various implementation
options in Section 6. Section 7 concludes the paper.

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 417

2 Previous Work

This section lists some relevant previous work. As already mentioned, there is
a considerable amount of work done on hardware implementations, especially
for ECC [13,14], but more recently also some on HECC. Recent improvements
on HECC divisor operations’ formulae [15,16,17] resulted in several hardware
implementations featuring efficient HECC performances [18,11]. The first result
showing that HECC performance is comparable to the one of ECC is the work
of Pelzl et al. [19].

In 1989 Agnew et al. reported the first result for performing the elliptic curve
operations on hardware [20]. Since then a substantial amount of work dealt with
hardware implementations of ECC, the majority of that over binary fields. In
2000 Orlando and Paar proposed a scalable elliptic curve processor architecture
which operates over finite fields GF(2n) in [13]. Gura et al. [14] have introduced
a programmable hardware accelerator for ECC over GF(2n), which can handle
arbitrary field sizes up to 255.

There is not much previous work on hardware implementations of HECC.
The first complete hardware implementation of HECC was given by Boston et
al. [21]. They designed a coprocessor for genus two curves over GF(2113) and
implemented it on a Xilinx Virtex-II FPGA. The algorithm of Cantor was used
for all computations on Jacobians. On the other hand, the work of Elias et
al. [18] used Lange’s explicit formulae. The results reported were the fastest in
hardware at the time. Wollinger et al. investigated an HECC implementation
on a VLSI coprocessor. They compared coprocessors using affine and projec-
tive coordinates and concluded that the latter should be preferred for hardware
implementations [11].

While ECC applications are highly developed and widely used in practice, the
use of HECC is still mainly for research purposes. Previous work on exploring the
parallelism between the point/divisor operations has been done for both ECC
and HECC. Smart [7] showed that up to three field operations could be executed
in parallel for the Hessian form of an elliptic curve. On the other hand, the work
of Mischra investigated parallelism between divisor operations [10], both purely
on algorithmic level.

3 Curve-Based Cryptography

Here, we consider some background information for curve-based cryptography
over binary fields; for hyperelliptic curves we are interested only in genus 2
curves. We mention the basic algorithms and the structure of the operations.
Good references for the mathematical background are [22,23,24].

The main operation in any curve-based primitive is scalar multiplication.
The general hierarchical structure for operations required for implementations
of curve-based cryptography is given in Fig. 1(a). Point/divisor multiplication is
at the top level. At the next (lower) level are the point/divisor group operations.
The lowest level consists of finite field operations such as addition, multiplica-
tion and inversion required to perform the group operations. The only difference

418 K. Sakiyama et al.

Point/Divisor
Multiplication

Point/Divisor
Addition

Point/Divisor
Doubling

Finite Field
Addition

Finite Field
Multiplication

Finite Field
Inversion

Point/Divisor
Multiplication

Point/Divisor
Addition

Point/Divisor
Doubling

Finite Field Operation
E.g. AB+C mod P

Finite Field
Inversion

(a) (b)

Fig. 1. Scheme of the hierarchy for ECC/HECC operations

between ECC and HECC is in the middle level that in this case consists of differ-
ent sequences of operations. Those for HECC are more complex when compared
with the ECC point operation, but they use shorter operands. One can perform
inversion also with a chain of multiplications [25] and only provide hardware for
finite field multiplication and addition. The corresponding hierarchy is illustrated
in Fig. 1(b). We use this structure for our proposed coprocessor.

3.1 ECC over a Binary Field

ECC relies on a group structure induced on an elliptic curve. A set of points
on an elliptic curve (with one special point added, the so-called point at infinity
O) together with a point addition as a binary operation has the structure of
an abelian group. As we consider a finite field of characteristic 2, i.e. GF(2n),
a non-supersingular elliptic curve E over GF(2n) is defined as the set of solu-
tions (x, y) ∈GF(2n)×GF(2n) of the equation: y2 + xy = x3 + ax2 + b, where
a, b ∈GF(2n), b �= 0, together with O.

3.2 HECC

Let GF(2n) be an algebraic closure of the field GF(2n). Here we consider a
hyperelliptic curve C of genus g = 2 over GF(2n), which is given with an equation
of the form:

C : y2 + h(x)y = f(x) in GF(2n)[x, y], (1)

where h(x) ∈GF(2n)[x] is polynomial of degree at most g (deg(h) ≤ g) and f(x)
is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also, there are no
solutions (x, y) ∈ GF(2n)×GF(2n) which simultaneously satisfy the equation (1)
and the equations: 2v + h(u) = 0, h′(u)v − f ′(u) = 0. These points are called
singular points. For the genus 2, in the general case the following equation is
used y2 + (h2x

2 + h1x + h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.
D =

∑
mP P and its degree is deg(D) =

∑
mP . Let Div denotes the group of all

divisors on C and Div0 the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C is defined as quotient group J = Div0/P . Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 419

for some element f of the function field of C (div(f) =
∑

P∈C ordP (f)P). The
discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, u is monic of degree
2, deg(v) < deg(u) and u|f−hv−v2 (so-called reduced divisors). For implemen-
tations of HECC, we need to implement the multiplication of elements of the
Jacobian i.e. divisors with some scalar.

3.3 ECC over a Composite Field

With respect to cryptographic security it is typically recommended to use fields
GF(2p) where p is a prime. As an example we consider the case where p = 163.
As already mentioned, HECC on a curve of a genus 2 allows one to work in a
finite field where bit-lengths are shorter with a factor 2, when compared with
ECC. That means, for the equivalent level of security we should choose GF(283).
A similar situation we get when considering ECC over a field of a quadratic
extension of GF(283), so GF((283)2) =GF(283)[y]/g(y) and deg(g) = 2. In this
way one can obtain a speed-up and benefit even more from the parallelism. The
reason is that in composite field each element is represented as c = c1t+c0 where
c0, c1 ∈GF(283) and the multiplication in this field takes 3 multiplications and
4 additions in GF(283) [26].

3.4 Algorithms for Our Implementations

In our implementations scalar multiplication is achieved by use the NAF algo-
rithm [23]. In this way the scalar is decomposed as a NAF and scalar multipli-
cation is done with a series of addition/subtractions of elliptic curve points. We
also use projective coordinates for all implementations.

Furthermore, we have rewritten the formulae from [23,16] for EC point oper-
ations and HECC divisor doubling, respectively to obtain an optimal usage of
our new datapath. We use the same approach to get the formulae for HECC
divisor addition in the case of mixed coordinates. Our datapath performs one
basic operation, AB + C or A(B + D) + C over a binary field. This operation
can be used for the sequence of point/divisor operations. For example, by using
A(B + D) + C operation the formulae for HECC divisor addition include 48
instructions instead of 44 multiplications and a lot of additions.

4 Architecture of the Curve-Based Coprocessor

4.1 System Architecture

The proposed architecture of the curve-based cryptosystems is composed of the
main controller, several Modular Arithmetic Logic Units (MALUs) and the
coprocessor memory that shares intermediate variables between the MALUs
(i.e. the so-called shared memory). The block diagram of the cryptosystem is

420 K. Sakiyama et al.

IBC

32-bit
instructions

32-bit data

Instruction Bus

Program
ROM

Main CPU

Memory Mapped I/O

MALU

Coprocessor Memory

SRAM

MALU MALU MALU

IQB

µ-code
RAM

Data Bus

Buffer
Full

DBC

FSM

Coprocessor

Fig. 2. Block Diagram for the system architecture with the curve-based coprocessor

illustrated in Fig. 2. The configuration of the coprocessor is flexible to provide
from the smallest to the fastest implementation depending on a target applica-
tion. Some components can be added or removed as will be explained next.

The main CPU communicates with the coprocessor through memory-mapped
I/O (e.g. SRAM interface) and has three types of 32-bit in- and outputs; one of
them is a signal that tells the controller to stop sending instructions when the
instruction buffer is full. A 32-bit input/output passes data back and forward
between the main CPU and the coprocessor and a 32-bit output is used to send
instructions. The data transfer between the main CPU and the coprocessor is
controlled by a Data Bus Controller (DBC). When using SRAM attached to the
main CPU for storing intermediate variables for HECC/ECC operations, the
coprocessor can be constructed without use of the coprocessor memory. Alterna-
tively, for the purpose of reducing the I/O transfer overhead, the data memory
can be embedded in the coprocessor. In this case, the path through the DBC is
only activated when an initial point and the parameters of an elliptic curve are
sent to the RAM, or when the result is retrieved.

Instructions are sent to the MALU either from the main CPU or from pre-set
micro codes in the µ-code RAM. When the main CPU is in charge of dispatching
instructions, the IBC block can be detached from the coprocessor. In this case,
it occurs that the throughput of issuing instructions is not high enough for the
MALU(s) to be utilized effectively. On the contrary, when the µ-code RAM
is used for assisting the main CPU, the Instruction Bus Controller (IBC) can
handle one instruction per cycle. For instance, the sequence of point doubling is
stored in the µ-code RAM and the main CPU calls it as an instruction. Thus
multiple MALUs can be activated in parallel without any instruction stalls.
During point multiplication, the IBC keeps on reading instructions from the µ-
code RAM and stores them to an Instruction Queue Buffer (IQB) unless the
IQB is full. The IBC checks if there is instruction-level parallelism (ILP) by

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 421

aiB(x)

miP(x)

T(x)

ci

ak

mk

ck+1

Tnext(x)

aiB(x)

miP(x)

T(x)

ci

ak

mk

ck+1

Tnext(x)

In
te

rc
on

ne
ct

io
n

In
te

rc
on

ne
ct

io
n

…

… …

(b)(a)

d

n

Fig. 3. Reconfigurable datapath for GF(2n) operation. (a) MSB-first bit-serial
polynomial-basis multiplier. (b) Scalability of the MALU.

checking the data-dependency of instructions in the IQB and forwards them to
the MALU(s) (see Section 4.2 and 4.4).

4.2 Modular Arithmetic Logic Unit

In this section the architecture for the MALU is briefly explained. The datap-
ath of the MALU is an MSB-first bit-serial polynomial-basis GF(2n) multiplier
as illustrated in Fig. 3(a). This is a hardware implementation that computes
A(x)B(x) + C(x) mod P (x) where A(x) =

∑
aix

i, B(x) =
∑

bix
i, C(x) =∑

cix
i and P (x) =

∑
pix

i. The proposed MALU computes A(x)B(x) + C(x)
mod P (x) by following the steps: The MALU sums up three types of inputs
which are aiB(x), miP (x) and T (x), and then outputs the intermediate result,
Tnext(x) by computing Tnext(x) = (T (x) + aiB(x) + miP (x))x + ci−1 where
mi = tn ⊕ aibn. By providing Tnext as the next input T and repeating the same
computation for n times, one can obtain the result. The detailed explanation
is also discussed in [27]. Moreover, by providing B(x) + D(x) in place of B(x),
an operation, A(x)(B(x) +D(x)) + C(x) mod P (x) can be also supported. This
operation requires additional XORs and selector logics for registers storing the
coefficients of B(x) or (B(x) + D(x)).

The proposed datapath is scalable in the digit size d (in vertical direction
in Fig. 3(b)) which can be decided by exploring the best combination of per-
formance and cost. The field size n is determined by the key-length. It can be
achieved also by interconnecting several MALUs in horizontal direction. Hence,
various implementation options can be chosen with the MALU. For instance,
the coprocessor can support arbitrary field sizes up to 335 when using four sets
of the MALU whose field size is 83.

4.3 The MALU Instruction

Here, a new instruction called MALUn is defined. It is worth mentioning that
this is the only instruction that operates on the datapath.

MALUn(A, B, C, D) = A(x)(B(x) + D(x)) + C(x) mod P (x). (2)

422 K. Sakiyama et al.

EXIF/DMALU#0

1 4(3*) 1 ~ 4** Clock cycle

EXIF/D

EXIF/D

EXIF/D

R0 W0 IF/D

IF/D

MALU#3

MALU#1

MALU#2

⎡n/d⎤

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

IF/D

W3
IF/D

R0

R1

R2

R3

R0

R1

R2

R3

R0

R1

R2

R3

W1

W2

R0

R1

R2

R3

R0

R1

R2

R3

…

Fig. 4. Example of four parallel issue of instructions in case of allocating four MALUs.
(IF/D: Instruction Fetch/Decode, EX: Execution of MALU, R/W: Read/Write from/to
the coprocessor memory). *The read cycle differs from the type of operation. **The
write cycle depends on the number of instructions issued in parallel.

When using A(x)B(x) + C(x) mod P (x) operation, one can ignore D(x) as
D(x) = 0. The whole procedure to execute MALUn starts from an instruction
fetch and decode (IF/D). Then, variables for A(x), B(x), C(x) and D(x) are
loaded via RAM (R) for the succeeding execution stage. The result is stored
to RAM (W) in the last step. Note that the data at different addresses can be
read in parallel for the different MALU by replicating RAM (i.e. four clones of
single-port RAMs in case of using four MALUs). The write cycle is determined
by the number of instructions that can be issued in parallel. When using multiple
MALUs, the write operations from every MALU are done at the different cycle
to escape memory-write conflicts. This is illustrated in Fig. 4.

4.4 Dynamic Scheduling

ILP is exploited for all instructions as long as two or more instructions are
buffered in the IQB. Here, we introduce our strategy to find ILP. A MALUn

instruction has four source operands and outputs the result to RAM, i.e. MALUn

deals with five types of addresses in the case of operating A(x)(B(x) + D(x)) +
C(x) mod P (x). Here, let A, B, C, D be the addresses for four inputs and R be
the address where the result is stored. They are expressed as follows:

MALUn : R = A, B, C, D. (3)

The MALUn also refers to P (x) that is stored in RAM. Including out-of-
order execution, the following two types of dependencies are possible between
two instructions, MALUi

n and MALUj
n (i and j are labels indicating order of

instruction in the IQB). By checking the following two dependencies for all i and
j that satisfy i < j < ILPD, where ILPD is the size of the instruction window,
one can determine the number of instructions to be issued in parallel.

Read-After-Write (RAW) Dependency check for in-order execution
(Ri = Aj, Ri = Bj, Ri = Cj , Ri = Dj): If the result of the instruction MALUi

n,
Ri is input for the following instructions, the instruction MALUi

n cannot be
issued until the preceding instruction completes the operation.

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 423

Table 1. Primary instructions for the coprocessor

INSTRUCTION DESCRIPTION OPERATION
STORE(@dst) Data storing to the coprocessor R@dst <= din;
LOAD(@src) Data loading from the coprocessor dout <= R@src;

MALU(@dst,@src1-4) Operate MALUn R@dst <= MALU(R@src1-4)
HECCPD() HECC divisor doubling P <= 2P

RAW Dependency check for out-of-order execution (Rj = Ai, Rj = Bi,
Rj = Ci, Rj = Di): In case that all conditions are not true, the instruction
MALUj

n cannot be issued until the instruction MALUi
n finishes. The example

using the actual sequence of EC point doubling is shown in the Appendix.
The proposed architecture needs no check for Write-After-Read and Write-

After-Write dependencies contrary a general superscalar machine. This is be-
cause MALUn is a fixed-length multi-cycle instruction and hence we can skip
those dependencies in the sequence of point/divisor operations. Suppose the size
of the instruction window is ILPD, the number of conditions to check becomes
4(ILPD − 1)2. The hardware complexity for ILP expands with a large ILPD,
but instead further parallelism can be expected.

5 Implementation

5.1 Instruction Sets for the Coprocessor

Table 1 shows some of the primary instructions for the co-processor. The in-
put registers of the MALU are set via data-bus ports. In case of using a 32-bit
CPU such as the ARM, setting a register whose address is src1 requires three
STORE(@dst) instructions for HECC over GF(283). After all operands are set
in corresponding registers, a MALU(@dst,@src1-4) operation is executed. When
using the µ-code configuration, it is possible to define an instruction that con-
sists of a series of MALU(@dst,@src1-4) operations. In this paper, point/divisor
operations are all composed of the MALU instruction (see the Appendix).

5.2 System Configurations

The system configurations are explored in two steps. First, in order to make the
best use of the superscalar coprocessor, four different coprocessor configurations
are explored as listed in Fig. 5(a). This is the so-called vertical exploration of
the hardware/software co-design. Secondly, the performance comparison is made
with HECC, ECC and ECC over a composite field by changing the number of
MALUs. Thus the coprocessor is also investigated from a parallel processing
point of view (horizontal exploration).

5.3 Design Environment

The proposed design is constructed on GEZEL hardware/software co-design
environment with the ARM Instruction Set Simulator (ISS) [28].

424 K. Sakiyama et al.

38 38

676767670 0

187

2,859

0

2,672

0

100

200

300

400

500

TYPE I TYPE II TYPE III TYPE IV

System Configuration

R
eq

ui
re

d
C

lo
ck

 C
yc

le
s

[K
]

I/O Transfer Overhead + Others
Coprocessor Data Memory
Datapath

of
MALUs

µ -code
RAM

Copro.
Mem.

TYPE I 1

TYPE II 1 X

TYPE III 1 X

TYPE IV 1 X X

(a)

(b)

Fig. 5. (a) Coprocessor configurations for the vertical exploration. (b) Required clock
cycles of HECC scalar multiplication for different coprocessor configuration (d = 12).

The platform provides cycle-accurate simulations for various hardware/
software system configurations. As mentioned in Section 4, the coprocessor is
attached to the memory-mapped interface of the ARM. Thus, various types of
system configurations are examined to verify the functionality and estimate the
performance in a system-level. The GEZEL codes are automatically translated
into VHDL codes that can be used for an FPGA prototype.

6 Results

6.1 Vertical Exploration of System Architecture with Coprocessor

Fig. 5(b) compares the performance of HECC scalar multiplication for different
system configurations. For the case of the TYPE I and II, the I/O transfer
overhead between the main CPU and the coprocessor is the majority of the
cycles (about 97%). The reason for this is that the temporary data variables
are stored in the memory of the main CPU and travel through the CPU to
the coprocessor for processing. As for the TYPE III, the I/O transfer overhead
is reduced significantly due to the effect of the data memory allocated in the
coprocessor. However, the I/O overhead is still dominant because the main CPU
issues instructions via the slow communication channel. The parallel processing
feature is hence useless to improve the performance in such system settings. Note
that the ratio of the I/O transfer overheads is reduced ostensibly by introducing
smaller d since the datapath performs in more clock cycles. In this way, it is
important to find the best digit size, d that can hide the I/O transfer overhead
with the TYPE III. This paper, however, focuses on the TYPE IV for a deeper
investigation of the parallelism in order to obtain high performance. Because the
TYPE IV assures the highest parallelism regardless of the value of d.

6.2 Performance Comparison Between Three Cryptosystems

Fig. 6 shows the required cycles for various implementations based on the TYPE
IV configuration. The building block of the datapath is the MALU whose field

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 425

20,000

40,000

60,000

80,000

100,000

R
eq

u
ir

ed
 C

lo
ck

 C
yc

le
s (a) (b)

2xMALU83

1xMALU163

2xMALU163

3xMALU83
4xMALU83

1xMALU83

1xMALU163

2xMALU163

3xMALU83

2xMALU83

ECC over GF((283)2)
HECC over GF(283)
ECC over GF(2163)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Size of instruction window to search ILP (ILPD)

4xMALU83
4xMALU83

1xMALU83

Fig. 6. Required clock cycles of scalar multiplication for different ILPD (d = 12). (a)
Operation form is AB + C. (b) Operation form is A(B + D) + C.

size is 83 or MALU83. Up to four clones of the MALU83 are embedded in the
coprocessor to observe the performance improvement with the superscalar ar-
chitecture. For ECC, a pair of MALU83 is equivalent to one MALU163 in terms
of hardware cost. The overall performance improves as increasing the number
of MALU83 for both of the operation type. Also a large ILPD helps exploiting
more parallelism and leads to a higher performance. The results show the effec-
tiveness of an operation whose form is A(B+D)+C especially for the ECC over
a composite field. In our case, the performance of ECC is better than others on
equivalent hardware resources. The results are also summarized in Table 2.

In order to investigate the performance bottle-neck of HECC and ECC, the
required clock cycles in scalar multiplication is split into two factors; one is for
the memory access and another is for the data processing of the datapath. As
can be seen from the Fig. 7, operation form, A(B + D) + C introduces more
memory accesses while the data can be processed in less clock cycles. Overall

Table 2. Required clock cycles of scalar multiplication for d = 12 and ILPD = 6.
Figures in parenthesis are the speed-up ratio based on the smallest configuration.

Operation: AB + C A(B + D) + C
Coprocessor HECC ECC ECC HECC ECC ECC

Configuration GF(283) GF(2163) GF((283)2) GF(283) GF(2163) GF((283)2)
1×MALU83 105,237 - 108,603 98,856 - 98,688

(1.00) (1.00) (1.06) (1.10)
2×MALU83 58,917 50,112 66,193 54,909 48,849 61,941

=1×MALU163 (1.79) (1.00) (1.64) (1.92) (1.03) (1.75)
3×MALU83 45,606 - 56,267 42,029 - 49,849

(2.31) (1.93) (2.50) (2.18)
4×MALU83 39,247 30,396 56,437 39,115 27,981 43,594

=2×MALU163 (2.68) (1.65) (1.92) (2.69) (1.79) (2.49)

426 K. Sakiyama et al.

67 58

30 36
21 18 20

38
41

25 13
21 21 8

0

20

40

60

80

100

Coprocessor Configuration

R
eq

ui
re

d
C

lo
ck

 C
yc

le
s

[K
]

Coprocessor Data Memory

Datapath

1xMALU83 2xMALU831xMALU83

HECC HECCHECC

Operation: A(B+D)+COperation: AB+C
1xMALU163 2xMALU1633xMALU83 4xMALU83

HECCECC HECC ECC

Fig. 7. The profile graphs of the required clock cycles in ECC/HECC scalar multipli-
cation for different hardware settings of the coprocessor (d = 12)

the proposed superscalar feature can reduce the clock cycles in both of the
coprocessor memory access and the datapath operation. The memory accesses
of HECC become dominant as introducing more parallelism. On the other hand
the memory accesses in ECC is less than 30 % of the total clock cycles. This
fact explains the reason that scalar multiplication of HECC is eventually slower
than that of ECC on equivalent hardware resources.

6.3 Prototype Results on FPGA

Based on the performance observation, the coprocessor is prototyped with the
system configuration of d = 12 and ILPD = 6 on Virtex-II PRO (XC2VP30).
The operation that the MALU supports is A(B + D) + C. The the coprocessor
memory consist of several 32×84-bit single-port RAMs and each RAM is assigned
to each MALU83. The µ-code program is implemented as an LUT ROM. As

Table 3. Performance Comparison of HECC/ECC implementations on FPGAs

Ref. Field Target Area fmax Perform. Polynomial Comments
Design Platform [slices/gates] [MHz] [µsec] P (x)
HECC
This 2,446 989 1×MALU83
work GF(283) Virtex-II Pro 4,749 100.0 549 Arbitrary 2×MALU83

6,586 420 3×MALU83

[11] GF(281) Virtex-II Pro 4,039 57.0 787 Fixed 2×MULT,1×INV
7,737 60.7 387 3×MULT,2×INV

ECC
This GF(2163) Virtex-II Pro 4,749 100.0 488 Arbitrary 1×MALU163
work 8,450 280 2×MALU163

1,554 Arbitrary López-Dahab
[14] GF(2163) Virtex E 19,508 66.5 143 Fixed: x163 + x7 scalar mult.

+x6 + x3 + 1
[13] GF(2167) Virtex E 3,002 (+ 76.7 210 Fixed: López-Dahab

10 BRAMs) x167 + x6 + 1 scalar mult.
[29] GF(2191) Virtex E 19,626 (+ 9.99 59.26 Fixed: López-Dahab

26 BRAMs) x191 + x9 + 1 scalar mult.

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 427

shown in Table 3, our HECC results show a better trade-off between cost and
performance than the previous work. With regard to ECC implementation, our
result is based on the IEEE-P1363 compliant sequence [23] and is not as fast as
some previous work [13,29]. However considering the flexibility in our proposed
coprocessor, the difference can be regarded as small.

7 Conclusions

This paper introduced a superscalar coprocessor that could deal with three
different curve-based cryptosystems. The implementation results showed that
scalar multiplication of ECC over GF(2163), HECC of genus 2 over GF(283)
and ECC over a composite field, GF((283)2) was improved by a factor of 1.8,
2.7 and 2.5 respectively compared to the case of a basic single-scalar architec-
ture. This speed-up was achieved by vertical and horizontal exploration of the
system architecture to exploit parallelism in curve-based cryptography. In our
design, ECC showed better performance than others on the same amount of
hardware resource. All operations in three curve-based cryptosystems were per-
formed with only one instruction that could be flexibly defined as AB + C or
A(B + D) + C.

Acknowledgement

The IBBT - QoE project is co-funded by the IBBT (Interdisciplinary Institute
for BroadBand Technology), a research institute founded by the Flemish Gov-
ernment in 2004, and the involved companies and institutions [30].

References

1. W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

2. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

3. N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203–209, 1987.
4. V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,

Advances in Cryptology: Proceedings of CRYPTO’85, number 218 in LNCS, pages
417–426. Springer-Verlag, 1985.

5. N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In C. S.
Laih, editor, Proceedings of Advances in Cryptology - ASIACRYPT: 9th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, number 2894 in LNCS, pages 75–92. Springer-Verlag, 2003.

6. P. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
7. N.P. Smart. The Hessian form of an elliptic curve. In Ç.K. Koç, D. Naccache,

and C. Paar, editors, Proceedings of 3rd International Workshop on Cryptograpic
Hardware and Embedded Systems (CHES), number 2162 in LNCS, pages 121–128.
Springer-Verlag, 2001.

428 K. Sakiyama et al.

8. M. Joye and S.-M. Yen. The Montgomery powering ladder. In B.S. Kaliski Jr.,
Ç.K. Koç, and C. Paar, editors, Proceedings of 4th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), number 2523 in LNCS,
pages 291–302. Springer-Verlag, 2002.

9. T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against
side channel attacks. In D. Naccache and P. Paillier, editors, Proceedings of 5th In-
ternational Workshop on Practice and Theory in Public Key Cryptosystems (PKC
2002), number 3027 in LNCS, pages 280–296. Springer-Verlag, 2002.

10. P. K. Mishra and P. Sarkar. Parallelizing explicit formula for arithmetic in the
jacobian of hyperelliptic curves. In J. Hartmanis G. Goos and J. van Leeuwen,
editors, Proceedings of ASIACRYPT 2003, number 2894 in LNCS, pages 93–110.
Springer-Verlag, 2003.

11. T. Wollinger. Software and Hardware Implementation of Hyperelliptic Curve Cryp-
tosystems. PhD thesis, Ruhr-University Bochum, 2004.

12. A. Hodjat, L. Batina, D. Hwang, and I. Verbauwhede. A hyperelliptic curve crypto
coprocessor for an 8051 microcontroller. In Proceedings of The IEEE 2005 Work-
shop on Signal Processing Systems (SIPS’05), pages 93–98, 2005.

13. G. Orlando and C. Paar. A high-performance reconfigurable elliptic curve processor
for GF(2m). In Ç.K. Koç and C. Paar, editors, Proceedings of 2nd International
Workshop on Cryptograpic Hardware and Embedded Systems (CHES), number 1965
in LNCS, pages 41–56. Springer-Verlag, 2000.

14. N. Gura, S.C. Shantz, H. Eberle, D. Finchelstein, S. Gupta, V. Gupta, and
D. Stebila. An end-to-end systems approach to elliptic curve cryptography. In
B. Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Proceedings of 4th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), LNCS
2523, 2002.

15. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication and Computing, 15(5):295–328, 2005.

16. B. Byramjee and S. Duquesne. Classification of genus 2 curves over F2n and
optimization of their arithmetic. Cryptology ePrint Archive: Report 2004/107.

17. T. Lange and M. Stevens. Efficient doubling on genus two curves over binary fields.
In H. Handschuh and M.A. Hasan, editors, In Selected Areas in Cryptography: SAC
2004, volume 3357 of LNCS, pages 170–181. Springer-Verlag, 2004.

18. G. Elias, A. Miri, and T. H. Yeap. High-performance, FPGA based hyperellip-
tic curve cryptosystem. In In Proceedings of the 22nd Biennial Symposium on
Communications, 2004.

19. J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosys-
tems: Closing the performance gap to elliptic curves. In C. Walter, Ç.K. Koç,
and C. Paar, editors, Proceedings of 5th International Workshop on Cryptograpic
Hardware and Embedded Systems (CHES), number 2779 in LNCS, pages 351–365.
Springer-Verlag, 2003.

20. G.B. Agnew, R.C. Mullin, and S.A. Vanstone. A fast elliptic curve cryptosystem.
In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology: Proceedings
of EUROCRYPT’89, number 434 in LNCS, pages 706–708. Springer-Verlag, 1989.

21. N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus two hyperelliptic curve
coprocessor. In B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Proceedings of
4th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), number 2523 in LNCS, pages 400–414. Springer-Verlag, 2002.

22. N. Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, first edition, 1998.
23. I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. London

Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

Superscalar Coprocessor for High-Speed Curve-Based Cryptography 429

24. A. Menezes, Y.-H. Wu, and R. Zuccherato. An Elementary Introduction to Hy-
perelliptic Curves - Appendix, pages 155–178. Springer-Verlag, 1998. N. Koblitz:
Algebraic Aspects of Cryptography.

25. T. Itoh and S. Tsujii. Effective recursive algorithm for computing multiplicative
inverses in GF(2m). Electronics Letters, 24(6):334–335, 1988.

26. R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, second edition, 2000.

27. K. Sakiyama, B. Preneel, and I. Verbauwhede. A fast dual-field modular arithmetic
logic unit and its hardware imlementation. In Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS’06), pages 787–790, 2006.

28. P. Schaumont. Gezel version 2. http://rijndael.ece.vt.edu/gezel2/.
29. Nazar A. Saqib, Francisco Rodŕıguez-Henriquez, and Arturo Dı́az-Pérez. A re-

configurable processor for high speed point multiplication in elliptic curves. In
International Journal of Embedded Systems 2005, volume 1, No. 3/4, pages 237 –
249, 2005.

30. https://projects.ibbt.be/qoe/.

A Dynamic Scheduling for EC Point Doubling

The first two instructions have a RAW dependency with t1. ECDB04 has no
RAW dependency upon the first three instructions in in-order and out-of-order
execution, and therefore it can be issued prior to the first three instructions.

Table 4. Example of parallelized out-of-order instruction sequence for EC point dou-
bling in case of three consecutive point doublings (i.e. P ⇐ 23P , where P (X1, Y1, Z1)).
The ECDBs in italic are instructions from preceding and succeeding point doublings.

Original Sequence Parallelized Out-of-order Sequence
Address: R A B C D

ECDB01: MALUn(t1, X1, X1, 0, 0) ECDB08 & ECDB04
ECDB02: MALUn(t2, t1, t1, 0, 0) ECDB09 & ECDB06
ECDB03: MALUn(t4, Y1, Z1, t1, 0) ECDB10 & ECDB01
ECDB04: MALUn(t3, Z1, Z1, 0, 0) ECDB02 & ECDB03
ECDB05: MALUn(Z1, X1, t3, 0, 0) ECDB05 & ECDB07
ECDB06: MALUn(t5, d6, t3, X1, 0) ECDB08 & ECDB04
ECDB07: MALUn(t3, t5, t5, 0, 0) ECDB09 & ECDB06
ECDB08: MALUn(X1, t3, t3, 0, 0) ECDB10 & ECDB01
ECDB09: MALUn(t1, X1, Z1, 0, t4) ECDB02 & ECDB03
ECDB10: MALUn(Y1, t2, Z1, t1, 0) ECDB05 & ECDB07

Hardware/Software Co-design of Elliptic Curve
Cryptography on an 8051 Microcontroller

Manuel Koschuch, Joachim Lechner, Andreas Weitzer, Johann Großschädl,
Alexander Szekely, Stefan Tillich, and Johannes Wolkerstorfer

Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

{manuel.koschuch, joachim.lechner, andreas.weitzer}@student.tugraz.at
{jgrosz, aszekely, stillich, jwolkers}@iaik.tugraz.at

Abstract. 8-bit microcontrollers like the 8051 still hold a considerable
share of the embedded systems market and dominate in the smart card
industry. The performance of 8-bit microcontrollers is often too poor
for the implementation of public-key cryptography in software. In this
paper we present a minimalist hardware accelerator for enabling elliptic
curve cryptography (ECC) on an 8051 microcontroller. We demonstrate
the importance of removing system-level performance bottlenecks caused
by the transfer of operands between hardware accelerator and external
RAM. The integration of a small direct memory access (DMA) unit
proves vital to exploit the full potential of the hardware accelerator. Our
design allows to perform a scalar multiplication over the binary extension
field GF(2191) in 118 msec at a clock frequency of 12 MHz. Considering
performance and hardware cost, our system compares favorably with
previous work on similar 8-bit platforms.

1 Introduction

Embedded systems made up of hardware and software components constitute
the fastest growing segment of the semiconductor industry with products rang-
ing from mobile phones over MP3 players to automotive braking systems. The
traditional design techniques (i.e. separate treatment of hardware and software)
do not cope with the complexity of today’s embedded systems and the steadily
increasing time-to-market pressure. Sloppily speaking, “building a machine and
seeing whether it works” is not feasible due to unpredictable design times when
heterogeneous applications are getting integrated to create a complex system
[23]. A promising approach to deal with the complexity of modern embedded
systems is hardware/software co-design, i.e. the concurrent (or simultaneous)
design of hardware and software components with the goal to meet system-level
objectives [5]. This includes the analysis of different boundaries and interfaces
between hardware and software and the evaluation of design alternatives in a
reasonable amount of time [8].

Hardware/software co-design is gaining in importance since the boundary
between hardware and software becomes more and more blurred. One factor

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 430–444, 2006.
c© International Association for Cryptologic Research 2006

Hardware/Software Co-design of ECC on an 8051 Microcontroller 431

behind this trend is the advent of flexible architectures that combine general-
purpose processors with custom, customizable, or reconfigurable logic. In recent
years, major FPGA vendors started to offer special devices consisting of a pro-
cessor core, on-chip memories, peripherals, and large amounts of reconfigurable
logic for the implementation of application-specific hardware. In addition, some
of these devices contain application-specific building blocks like fast multipliers
for digital signal processing (e.g. Altera Stratix). Therefore, devices consisting
of a processor core, application-specific parts, and reconfigurable logic are an
ideal co-design platform for heterogenous embedded systems that may comprise
several applications domains such as signal processing, networking, and security.
Recently, the security domain has attracted particular interest since more and
more embedded devices store or transmit sensitive data. This makes a strong
case for applying hardware/software co-design techniques to the implementation
of cryptographic primitives [20,21].

In this paper we investigate the co-design of elliptic curve cryptography on
embedded 8-bit platforms, in particular on the 8051 microcontroller. Elliptic
curve cryptography (ECC) is highly computation-intensive as it involves arith-
metic operations in finite fields of large order (typically about 160 bits) [3]. The
results from previous work [12,16,24] show that a “pure” software implemen-
tation of ECC does not allow to reach sub-second performance on a standard
8051 clocked at 12 MHz. Therefore, some kind of hardware acceleration of the
performance-critical operations carried out in ECC is necessary. Elliptic curve
cryptography offers a multitude of implementation options for both field and
curve (group) arithmetic, respectively [13]. In addition, a number of different
boundaries between hardware and software are possible, which allows a system
designer to find the proper trade-off between performance and silicon area. One
could, for instance, implement the point addition/doubling in hardware and the
rest in software [15]. An alternative approach is to implement the field arith-
metic in hardware and the curve/point arithmetic in software [1,2,7,14]. Fur-
thermore, hardware acceleration at the granularity of instruction set extensions
for the finite field multiplication has also been investigated [6,11,17]. Besides
the hardware/software boundary, the interface between hardware accelerator
and host processor is essential for the system performance, especially for “low-
cost” accelerators without local storage since they require a high number of data
transfers.

We have co-designed an elliptic curve cryptosystem over binary extension
fields using the Dalton 8051 [22] as host controller which executes the software
part of our design. The hardware part consists of an elliptic curve acceleration
unit (ECAU) and an interface with direct memory access (DMA) to enable fast
data transfer between the ECAU and the external RAM (XRAM) attached to the
8051 microcontroller. Our design goal is to achieve a maximum of performance
with a “minimalist” hardware accelerator—the ECAU—composed of a bit-serial
multiplier for binary extension fields of order≤192 bits and a supporting register
infrastructure. The ECAU allows to perform a full scalar multiplication over the
field GF(2191) in about 118 msec, assuming that the Dalton 8051 is clocked

432 M. Koschuch et al.

with 12 MHz. A scalar multiplication over the field GF(2163) takes less than
100 msec, which is more than 25 times faster than the co-design for hyperelliptic
curve cryptography (HECC)1 presented by Batina et al. at CHES 2005 [2]. The
hardware cost of the ECAU and the DMA controller is 12,65k gates altogether
when synthesized with a 0.35 µm standard cell library.

1.1 Improvements over Previous Work

During the past five years, numerous papers dealing with the hardware/software
co-design of (hyper)elliptic curve cryptography on 8-bit platforms (e.g. AVR or
8051) have been published [1,2,6,7,14,15,17]. However, the co-design approach
for ECC presented in this paper differs from previous work in two important
aspects. First, we pay special attention to the efficient implementation of the
data transfer between the hardware accelerator and the external RAM attached
to the 8051. Second, our approach uses a (limited) scalable hardware accelerator
able to perform field arithmetic in all binary fields GF(2m) with m ≤ 192 and
not just in a single field.

The efficiency of the data transfer between ECAU and XRAM impacts the
overall performance since the ECAU is a low-cost hardware accelerator, which
means that it does not contain local storage for intermediate results. Conse-
quently, all intermediate results occurring during a scalar multiplication have to
be transferred between the ECAU and the XRAM2. Unfortunately, a standard
8051 only provides 8-bit I/O ports and a serial interface for the communication
with the “world outside,” both of which are rather slow. There are two principal
options to alleviate the communication bottleneck. One possibility is to equip
the ECAU with local storage for the intermediate results. The second option is
to design a dedicated interface with direct memory access (DMA). We opted for
the latter since the former would entail a considerable increase in silicon area. In
addition, we have also integrated an I/O register into the ECAU which allows
to overlap data transfer and computation phases.

A second point in which our co-design approach differs from previous work is
scalability, i.e. the ability to process operands of any size without the need to
modify or re-design a given implementation [19]. The ECAU contains a 192-bit
multiplier that can be used for any binary extension field GF(2m) of degree up
to 192, e.g. for the field GF(2191) or GF(2163). This means that our system is
limited scalable similar to the cryptographic processor described in [9], but does
not provide the high scalability of the ECC hardware from [19]. We emphasize
that attaining scalability in hardware/software co-design affects all abstraction
levels and layers between hardware and software (including the operand trans-
fers), and is not a “pure” hardware design issue as in [19]. For instance, when

1 Batina et al. presented a hyperelliptic curve cryptosystem of genus 2 over the field
GF(283). The security level of this HECC system is approximately 166 bits, and thus
it is comparable to the ECC system over the field GF(2163) that we have used.

2 We store the intermediate values in the XRAM since the internal RAM of a standard
8051 microcontroller has a size of only 128 bytes (see Appendix A).

Hardware/Software Co-design of ECC on an 8051 Microcontroller 433

using a “small” field like GF(2163), only 21 bytes per operand need to be trans-
ferred between ECAU and XRAM. Furthermore, all software routines have an
additional parameter specifying the degree m of the field. To the best of our
knowledge, this paper presents the first hardware/software co-design approach
for elliptic curve cryptography providing a certain level of scalability.

2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) has a number of advantages over the tradi-
tional public-key cryptosystems based on the integer factorization problem or
the discrete logarithm problem in finite fields. The most important advantage
is the absence of a subexponential-time algorithm that could solve the discrete
logarithm problem in a properly selected EC group. As a consequence, elliptic
curve cryptosystems can use much shorter keys, which results in faster imple-
mentations and lower memory and bandwidth requirements [3].

Formally, an elliptic curve cryptosystem operates in a group of points on an
elliptic curve defined over a finite field. Most practical ECC implementations
use special types of finite fields to improve performance; among these special
field types are binary extension fields GF(2m), prime fields GF(p), and optimal
extension fields (OEFs), i.e. extension fields GF(pm) whose characteristic p and
extension degree m are specifically selected [13]. The latter two field types allow
for efficient software implementation, especially on processors equipped with a
fast integer multiplier. For hardware implementation, on the other hand, binary
extension fields GF(2m) are generally the better choice. Therefore, we shall only
consider binary extension fields in the rest of this paper.

An elliptic curve over a binary field GF(2m) can be defined as the set of all
solutions (x, y) ∈ GF(2m)×GF(2m) to the (affine) Weierstraß equation

y2 + xy = x3 + ax2 + b with a, b ∈ GF(2m) (1)

A tuple (x, y) ∈ GF(2m)×GF(2m) satisfying Equation 1 is called a point on the
curve. The set of all points, together with a special point O (referred to as the
“point at infinity”), allows to form an Abelian group with O acting as identity
element. The group operation is the addition of points, which can be performed
through arithmetic operations (addition, multiplication, squaring, and inversion)
in the underlying field GF(2m) according to well-defined formulae [13].

A basic building block of all elliptic curve cryptosystems is scalar multiplica-
tion, an operation of the form k · P where k is an integer and P is a point on
the curve. In its simplest form, a scalar multiplication can be realized through
a sequence of point additions and doublings, respectively. There exist a number
of advanced algorithms for point multiplication; one of the most efficient was
proposed by López and Dahab in [18]. Their algorithm requires to carry out
4�log2 k�+6 additions, 2�log2 k�+4 multiplications, 2�log2 k�+2 squarings and
2�log2 k�+1 inversions in the underlying finite field GF(2m) to obtain the result
of k · P [18, Lemma 4].

434 M. Koschuch et al.

Table 1. Overview of arithmetic operations when using LD projective coordinates

Operation #Field Add # Field Mul # Field Sqr # Field Inv
Point addition (Madd) 2 4 1 0
Point doubling (Mdouble) 1 2 4 0
Conv. affine to proj. coord. 1 0 2 0
Conv. proj. to affine coord. 6 10 1 1
Scalar multiplication k · P 3�log2 k�+7 6�log2 k�+10 5�log2 k�+3 1

Inversion is generally the most demanding—and hence slowest—arithmetic
operation in GF(2m). Therefore, it is prudent to use an algorithm for scalar
multiplication that minimizes the number of inversions. If the points on the
curve are represented in projective coordinates [3], then the inversion operation
can be almost completely avoided at the cost of additional field multiplications
and some extra storage for auxiliary variables. Only one inversion is needed for
the re-conversion from projective to affine coordinates. The point addition and
doubling in López-Dahab (LD) projective coordinates can be calculated as shown
in Algorithm Madd and Mdouble in [18, Appendix A], respectively. Table 1 spec-
ifies the overall number of field arithmetic operations for point addition, point
doubling, re-conversion from projective to affine coordinates, and a full scalar
multiplication. A special property of the LD scalar multiplication algorithm is
the fact that it performs exactly one Madd and one Mdouble operation for each
bit of the scalar k. Consequently, the total number of Madd/Mdouble operations
depends only on the bitlength of k, but not on its Hamming weight, i.e. the
number of “0” and “1” bits in the binary representation of k. This property
helps to prevent certain side-channel attacks like simple power analysis (SPA)
attacks and timing attacks [13].

The elements of a binary extension field GF(2m) can be represented by binary
polynomials of degree up to m− 1. Addition in GF(2m) is simply a logical XOR
operation, while the multiplication of two field elements is performed modulo an
irreducible polynomial p of degree m. Hardware multipliers for GF(2m) produce
the product of two field elements by generation and addition of partial products
as well as generation and addition of multiples of p. Squaring in GF(2m) is a
special case of multiplication and can be implemented in hardware in one clock
cycle when p is fixed and has a low weight. Finally, the inversion can be realized
either by using the extended Euclidean algorithm (EEA) or with help of Fermat’s
theorem by calculating a−1 = a2m−2 mod p, which results in a sequence of field
multiplications and squarings, respectively. Therefore, a “minimalist” hardware
accelerator should be able to perform addition and multiplication in GF(2m).

3 Hardware/Software Boundaries and Trade-Offs

Efficient software implementation of ECC on 8-bit platforms is a challenging
task, in particular if the order of the underlying field is beyond 160 bits. Recent
research has shown that highly-optimized software implementations can reach

Hardware/Software Co-design of ECC on an 8051 Microcontroller 435

sub-second performance on the ATmega128 [12], but not on a standard 8051
microcontroller, at least not if the order of the finite field is 160 bits or more
[12,16,24]. The main reason is the rather poor performance of a standard 8051
in relation to the ATmega128 (see Appendix A). Hardware/software co-design
offers numerous possibilities for speeding up ECC at the cost of a moderate
increase in silicon area. A survey of the recent literature allows to identify three
basic co-design approaches for enabling ECC on 8-bit processors. In this section
we discuss the different hardware/software boundaries and analyze the pros and
cons of these approaches.

One way to partition between hardware and software is to assign a full point
addition/doubling operation to the hardware part and the rest to the soft-
ware part. A concrete implementation following this approach was reported by
Janssens et al. in [15]. They implemented the field arithmetic operations in
hardware, together with local RAM for storing intermediate results and dedi-
cated state machines to control the point addition/doubling operations. While
this approach is very fast (there are no operand transfers during a point addi-
tion/doubling), it suffers from high hardware cost. Furthermore, implementing
the point addition/doubling in hardware does not allow to respond to progress
in ECC, e.g. when more efficient addition/doubling formulae are developed.

A second way to draw the line between hardware and software is to offload
the field arithmetic operations from the host processor and execute them in a
dedicated hardware accelerator like a co-processor. All other operations, i.e. point
addition/doubling and scalar multiplication, are implemented in software and
executed on the host processor. In general, this approach offers high flexibility,
including the ability to integrate the latest countermeasures against side-channel
attacks into the algorithm for scalar multiplication. On the other hand, this
approach may entail a significant communication overhead, especially when the
accelerator hardware does not provide local storage for auxiliary variables. The
fastest implementations following this approach have been reported by Ernst et
al. [7] and Aigner et al. [1]. The latter implements all field arithmetic operations
in hardware (including squaring and inversion) and uses affine coordinates. Other
implementations are described in [17] and in [2,14], whereby the latter two are
based on hyperelliptic curve cryptography (HECC). Detailed performance figures
of all these works can be found in Table 5 in Section 5. Our co-design for ECC
presented in the next section also follows this approach.

Finally, the boundary between hardware and software can also be defined at
the level of custom instructions that are specifically designed to accelerate the
field arithmetic, most notably the field multiplication [11]. Hardware/software
co-design at the granularity of instruction set extensions provides the highest
flexibility and requires the least amount of extra hardware of all approaches dis-
cussed in this section. It was demonstrated in [6] that instruction set extensions
enable an ATmega128 to execute a scalar multiplication over GF(2163) in 290
msec (at a clock frequency of 8 MHz). However, it is highly questionable whether
similar performance can be reached on a standard 8051 microcontroller where
one instruction cycle takes 12 clock cycles (see Appendix A).

436 M. Koschuch et al.

4 Implementation Details

In the following, we describe the hardware accelerator that we implemented to
enable fast ECC on the Dalton 8051 microcontroller [22]. We begin with a system
overview. Then, the Elliptic Curve Acceleration Unit (ECAU), the interface to
the external RAM (XRAM), and the system software are presented.

4.1 System Overview

The overall system structure is depicted in Figure 1. It consists of four major
parts: The Dalton 8051 microcontroller core, the Elliptic Curve Acceleration Unit
(ECAU) with a separate datapath and control unit, and the DMA interface to
the XRAM.

External
RAM

DMA
Dalton
8051

ECAU
datapath

ECAU
control

EC Acceleration Unit (ECAU)

Fig. 1. System block diagram

The control unit inside the ECAU is responsible for generating appropriate
control signals for the ECC datapath and provides busy signals to the DMA
interface. The ECAU and the DMA interface support operand lengths of up to
192 bits, but can be configured at runtime for smaller operands.

4.2 Elliptic Curve Acceleration Unit (ECAU)

Figure 2 shows the internal architecture and the I/O interface of the ECAU. The
heart of our EC accelerator is the GF(2m) arithmetic unit, which consists of a
bit-serial polynomial multiplier with interleaved reduction and several registers
for operands and the result. Furthermore, the GF(2m) arithmetic unit can also
be used for the addition (i.e. XOR) of two field elements.

The I/O register decouples the ECAU from the DMA interface, which makes
it possible to transfer data while the unit is performing a multiplication. The
DMA interface shifts data in and out of the I/O register in blocks of 8 bits each.
All other registers are accessed via the I/O register and support parallel data
transfer through an internal 192-bit bus.

Hardware/Software Co-design of ECC on an 8051 Microcontroller 437

Multipliplier (a) Multiplicand (b)

I/O register

Result (r)

GF(2m)
arithmetic unit

Irreducible poly. (p)

Fig. 2. Elliptic Curve Acceleration Unit

The datapath of the GF(2m) arithmetic unit, shown in Figure 3, is based on
the structure proposed in [10]. It supports addition and multiplication in binary
extension fields GF(2m) with m ≤ 192 and puts no restriction on the form of the
irreducible polynomial, i.e. it works with any irreducible polynomial. The control
signal add/mul allows to switch between addition and multiplication mode.

In order to perform an addition, the first operand must be present inside
the result register. This is almost always the case during a scalar multiplication
since one of the two operands is the result of the previous arithmetic oper-
ation (addition or multiplication). The second operand needs to be stored in
the multiplicand register b. The GF(2m) arithmetic unit operates in addition
mode if the add/mul signal is set to 0 and the multiplier bit input is 1. This
selects the upper inputs of the multiplexers and disables the reduction modulo
the irreducible polynomial p. The addition in GF(2m) is nothing else than a
simple bit-wise XOR of the coefficients and the sum is written back to the result
register.

add/mul

r190r191

b191

p191

multiplier bit

b190

p190

... logical AND ... logical XOR

r1 r0

b1

p1

b0

p0

Fig. 3. Datapath of the GF(2m) arithmetic unit for operands up to 192 bits

438 M. Koschuch et al.

The multiplication in GF(2m) is realized through an MSB-first bit-serial mul-
tiplier with interleaved reduction modulo the irreducible polynomial. Before a
multiplication can be started, the result register must be cleared and the two
operands need to be present in the multiplicand and multiplier register, respec-
tively. To enable the multiplication mode, the add/mul signal must be set to 1.
The control logic then causes the multiplier register to perform a 1-bit left-shift
operation in each cycle, which delivers one bit of the multiplier polynomial a to
the multiplier bit input, starting with the most significant bit am−1.

The partial products are calculated by a bit-wise logical AND operation be-
tween the multiplier bit and each bit of the multiplicand polynomial b. To get
the final result of the multiplication, a total of m partial products need to be
summed up. Together with the generation and addition of partial products, the
bit-serial multiplier performs 1-bit left-shift operations and reduces the interme-
diate result modulo the irreducible polynomial p in each cycle. The reduction
modulo p is performed by adding p to the intermediate value stored in the result
register whenever its most significant bit (MSB) is 1. An MSB of 1 means that
the intermediate result would have a degree of m after the next 1-bit left-shift
operation, and therefore the irreducible polynomial p must be added to reduce
the intermediate result to a degree of at most m− 1 (see [10] for details). Note
that the addition of the partial product, the 1-bit left-shift operation of the
intermediate result, and reduction step (i.e. the conditional addition of p) are
taking place simultaneously in each clock cycle. After the final coefficient of the
multiplier polynomial has been processed, the result of the multiplication resides
within the result register (after m clock cycles).

Because a required reduction is detected by checking if r191 = 1, all argu-
ments in the registers need to be left aligned. For example, if the field GF(2191)
is used, then all operands need to be shifted left by one bit, and for GF(2163)
by 29 bits. However, these shift operations have to be carried out only once at
the beginning of the scalar multiplication. All field arithmetic operations during
a scalar multiplication are performed with the shifted operands.

4.3 Interface with Direct Memory Access (DMA)

The 8051 itself has too little internal RAM to hold the operands and auxiliary
variables needed during a scalar multiplication. Since the Dalton 8051 needs 17
clock cycles for each instruction cycle, it would require at least 17 · 192/8 = 408
cycles to transfer one 192-bit operand from XRAM to the ECAU and another
408 cycles to transfer the result back into XRAM (assuming only one instruc-
tion cycle for XRAM access). This is unreasonably slow compared to the m
clock cycles needed for a multiplication in GF(2m) and the single-cycle exe-
cution of a field addition. Therefore, we propose to use a DMA controller to
facilitate fast data transfers between the ECAU and XRAM, bypassing the slow
8051.

In order to load a whole 192-bit operand, one just needs to provide the start
address of the argument in the XRAM and then start the DMA controller. The
controller transfers the whole operand byte by byte in 85 clock cycles to the

Hardware/Software Co-design of ECC on an 8051 Microcontroller 439

Table 2. ECAU instructions and their execution times

Command Cycles Description
MUL m + 4 Result ← Multiplicand × Multiplier mod p
ADD 4 Result ← Result + Multiplicand
LOAD IOR 4 I/O register ← Result register
CLEAR RR 4 Result ← 0
LOAD MDR 4 Multiplicand ← I/O register
LOAD MR 4 Multiplier ← I/O register
LOAD IPR 4 Irreducible Polynomial (p) ← I/O register

I/O register. If operands shorter than 192 bits are used (e.g. 163 bits), then the
interface automatically clears all unused bits in the I/O register and aligns the
operand to the most significant byte. However, bit-wise alignments have to be
done in software.

4.4 Software

To control the ECAU, three special function registers (SFRs) are used. The
degree m of the binary field is set via the bitlength register. The status register
provides feedback about the current operation status of the ECAU and the DMA
interface. A third SFR is used to send instructions to the ECAU. Table 2 shows
all implemented instructions and their respective timings.

In order to take advantage of the additional hardware, the software must
be adapted accordingly. We have developed assembler-optimized functions that
use our hardware extensions. Wherever possible, data transfers to the I/O reg-
ister are interleaved with ECAU operations. By careful examination of the
dataflow during a scalar multiplication, transfer delays can be reduced to a
minimum.

5 Implementation Results

In order to determine the size of the new hardware units, we have synthesized
the extended Dalton 8051 with a 0.35 µm standard-cell library from Austria Mi-
crosystems. The targeted delay for the critical path was set to 83 nsec (12 MHz).
The minimal possible critical path delay is about 13 nsec (77 MHz), whereby
the critical path is located within the ALU of the Dalton 8051. Our additional
units (DMA, ECAU) could be clocked at significantly higher frequencies than
the microcontroller.

Table 3 lists the size of the original Dalton 8051 microcontroller, the DMA
unit, and the components of the ECAU (control logic, datapath logic, as well
as datapath flip-flops). The size is given in absolute values in µm2 as well as in
gate equivalents (GE). The GE count has been derived from the absolute size
of the component divided by the size of a NAND gate with the lowest driving
strength from the used library.

440 M. Koschuch et al.

Table 3. Hardware size and maximal clock frequency of the extended system

Size Size Max. Freq.Component
µm2 GE MHz

8051 core (excl. IRAM, ROM) 272,145 4,984 77
8051 IRAM (as flip-flops) 647,574 11,860
DMA 56,202 1,029

333
ECAU control 39,203 718
ECAU datapath logic 228,246 4,180
ECAU datapath FFs 366,912 6,720
Total 1,610,282 29,491 77

Table 4. Execution times of operations for scalar multiplication over GF(2191)

Operation Cycles
Transfer of one 191-bit operand 85
Addition in GF(2191) excluding operand transfers 4
Multiplication in GF(2191) excl. operand transfers 195
Point addition (Madd) including operand transfers 2,623
Point doubling (Mdouble) incl. operand transfers 2,623
Full scalar multiplication over GF(2191) 1,416,000

Note that the internal RAM (IRAM) of the 8051 has been implemented as flip-
flops for our synthesis. In practice a part of the IRAM could be implemented with
SRAM macros in order to save silicon area. The enhanced 8051 microcontroller
has a size of about 30,000 GEs. The additional components for ECC are about
75% of the original Dalton 8051’s size and account for about 43% of the extended
system.

Table 4 shows the execution times for diverse arithmetic operations with 191-
bit operands. Table 5 compares the performance of ECC multiplication with
related work. Systems built around an AVR microcontroller are faster than sys-
tems using an 8051, which is caused by the generally better performance of AVR
devices (see Appendix A). The work by Aigner et al. uses affine coordinates
and has an additional squaring and inverter unit which can perform a squaring
operation in one clock cycle and an inversion in 2m clock cycles.

Batina at al. use in their work a HECC system of genus two over the field
GF(283), which provides roughly the same level of security as 163-bit ECC. Our
work reaches significantly better performance compared to Batina et al. mainly
due to efficient operand transfer between ECAU and XRAM thanks to direct
memory access. Hodjat et al. try to circumvent the performance bottleneck by
using a local storage unit of 256 bytes, which needs additional silicon area.

Table 6 compares our implementation with related work in terms of hardware
and code size. Our work needs more silicon area than the design by Batina
et al., but achieves a 16-fold better area-delay product. Also our code size is
considerable smaller, which directly translates into savings in silicon area when
the program code is stored in on-chip ROM.

Hardware/Software Co-design of ECC on an 8051 Microcontroller 441

Table 5. Performance comparison with ECC/HECC scalar multiplication of related
work. The first six table entries refer to “pure” software implementations and the rest
to hardware/software co-designs.

Security Field Freq Performance
Reference Target Platform

Level Type MHz msec cycles
Woodb. [24] 8051 (SLE44C24S) ECC 134 bit GF(pm) 12.00 1,830.0 21.96M
Kumar [16] 8051 (CC1010) ECC 134 bit GF(pm) 3.69 2,999.8 11.06M
Gura [12] 8051 (CC1010) ECC 160 bit GF(p) 14.74 4,580.0 67.53M
Gura [12] 8051 (CC1010) ECC 192 bit GF(p) 14.74 7,560.0 111.48M
Gura [12] AVR (ATmega128) ECC 160 bit GF(p) 8.00 810.0 6.48M
Gura [12] AVR (ATmega128) ECC 192 bit GF(p) 8.00 1,240.0 9.92M
Ernst [7] a AVR (AT94K) ECC 113 bit GF(2m) 12.00 1.2 14.40k
Kumar [17] AVR (AT94K) ECC 163 bit GF(2m) 4.00 113.0 452.00k
Janssens [15] AVR (AT94K) ECC 192 bit GF(2m) 10.00 45.0 450.00k
Eberle [6] AVR (ATMega128) ECC 163 bit GF(2m) 8.00 290.0 2.32M
Aigner [1] a 8051 (SLE66CX) ECC 191 bit GF(2m) 10.00 44.3 443.86k
Batina [2] 8051 (Dalton) HECC 166 bit GF(2m) 12.00 2,488.0 29.86M
Hodjat [14] 8051 (Dalton) HECC 166 bit GF(2m) 12.00 656.0 7.87M
This work 8051 (Dalton) ECC 163 bit GF(2m) 12.00 99.2 1.19M
This work 8051 (Dalton) ECC 191 bit GF(2m) 12.00 118.0 1.42M

a Estimated performance figures.

Table 6. Comparison of hardware cost, code size, and XRAM requirements

Size Area-delay product Code size XRAMComponent
(norm.) Size (norm.) × msec Bytes Bytes

Dalton 8051 1.00
Batina [2] 1.15 2,861.2 11,524 936
This work (163 bit) 1.75 173.6 2,568 384
This work (192 bit) 1.75 206.5 2,568 336

6 Conclusions

In this paper we have presented a hardware/software co-design approach for
enabling ECC on 8-bit platforms using a minimalist hardware accelerator. We
have demonstrated the importance of a thorough analysis of the overall system
performance to remove bottlenecks. Communication overhead due to operand
transfers has been minimized by integration of a small DMA unit and through
the inclusion of an additional I/O register into the hardware accelerator. With
the help of our simple and fast finite field arithmetic unit, we can support scalar
multiplication over binary fields of degree up to 192. At the cost of about 12.65k
gates in hardware, ECC scalar multiplication requires 118 msec over GF(2191)
and 99.2 msec over GF(2163) on our enhanced 8051 system when clocked with
12 MHz. Considering performance gain in relation with hardware overhead, our
solution relates very well to previous work on comparable 8-bit platforms.

442 M. Koschuch et al.

Acknowledgements. The research described in this paper was supported by
the Austrian Science Fund under grant P16952-NO4 “Instruction Set Extensions
for Public-Key Cryptography” and in part by the European Commission through
the IST Programme under contract IST-2002-507932 ECRYPT. The information
in this paper reflects only the authors’ views, is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

References

1. H. Aigner, H. Bock, M. Hütter, and J. Wolkerstorfer. A low-cost ECC coprocessor
for smartcards. In Cryptographic Hardware and Embedded Systems — CHES 2004,
LNCS 3156, pp. 107–118. Springer Verlag, 2004.

2. L. Batina, D. Hwang, A. Hodjat, B. Preneel, and I. Verbauwhede. Hardware/soft-
ware co-design for hyperelliptic curve cryptography (HECC) on the 8051 µP. In
Cryptographic Hardware and Embedded Systems — CHES 2005, LNCS 3659, pp.
106–118. Springer Verlag, 2005.

3. I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

4. J. Catsoulis. Designing Embedded Hardware. O’Reilly Media, 2002.
5. G. De Micheli and R. K. Gupta. Hardware/software co-design. Proceedings of the

IEEE, 85(3):349–365, Mar. 1997.
6. H. Eberle et al. Architectural extensions for elliptic curve cryptography over

GF(2m) on 8-bit microprocessors. In Proceedings of the 16th IEEE International
Conference on Application-Specific Systems, Architectures, and Processors (ASAP
2005), pp. 343–349. IEEE Computer Society Press, 2005.

7. M. Ernst et al. A reconfigurable system on chip implementation for elliptic curve
cryptography over GF(2n). In Cryptographic Hardware and Embedded Systems —
CHES 2002, LNCS 2523, pp. 381–399. Springer Verlag, 2002.

8. R. Ernst. Codesign of embedded systems: Status and trends. IEEE Design & Test
of Computers, 15(2):45–54, April-June 1998.

9. J. R. Goodman. Energy Scalable Reconfigurable Cryptographic Hardware for Porta-
ble Applications. Ph.D. Thesis, Massachusetts Institute of Technology, 2000.

10. J. Großschädl. A low-power bit-serial multiplier for finite fields GF(2m). In Proceed-
ings of the 34th IEEE International Symposium on Circuits and Systems (ISCAS
2001), vol. IV, pp. 37–40. IEEE, 2001.

11. J. Großschädl and G.-A. Kamendje. Instruction set extension for fast elliptic curve
cryptography over binary finite fields GF(2m). In Proceedings of the 14th IEEE
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2003), pp. 455–468. IEEE Computer Society Press, 2003.

12. N. Gura et al. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In
Cryptographic Hardware and Embedded Systems — CHES 2004, LNCS 3156, pp.
119–132. Springer Verlag, 2004.

13. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

14. A. Hodjat, D. Hwang, L. Batina, and I. Verbauwhede. A hyperelliptic curve crypto
coprocessor for an 8051 microcontroller. In Proceedings of the 19th IEEE Workshop
on Signal Processing Systems (SIPS 2005), pp. 93–98. IEEE, 2005.

Hardware/Software Co-design of ECC on an 8051 Microcontroller 443

15. S. Janssens et al. Hardware/software co-design of an elliptic curve public-key
cryptosystem. In Proceedings of 15th IEEE Workshop on Signal Processing Systems
(SIPS 2001), pp. 209–216. IEEE, 2001.

16. S. S. Kumar et al. Embedded end-to-end wireless security with ECDH key ex-
change. In Proceedings of the 46th IEEE Midwest Symposium on Circuits and
Systems (MWSCAS 2003), vol. 2, pp. 786–789. IEEE, 2003.

17. S. S. Kumar and C. Paar. Reconfigurable instruction set extension for enabling
ECC on an 8-bit processor. In Field Programmable Logic and Application — FPL
2004, LNCS 3203, pp. 586–595. Springer Verlag, 2004.

18. J. López and R. Dahab. Fast multiplication on elliptic curves over GF (2m) without
precomputation. In Cryptographic Hardware and Embedded Systems, LNCS 1717,
pp. 316–327. Springer Verlag, 1999.

19. E. Savaş, A. F. Tenca, and Ç. K. Koç. A scalable and unified multiplier architecture
for finite fields GF(p) and GF(2m). In Cryptographic Hardware and Embedded
Systems — CHES 2000, LNCS 1965, pp. 277–292. Springer Verlag, 2000.

20. P. Schaumont and I. Verbauwhede. Domain specific tools and methods for ap-
plication in security processor design. Design Automation for Embedded Systems,
7(4):365–383, Nov. 2002.

21. P. Schaumont and I. Verbauwhede. Domain-specific codesign for embedded secu-
rity. Computer, 36(4):68–74, Apr. 2003.

22. University of California at Riverside. Synthesizable VHDL Model of 8051. Available
for download at http://www.cs.ucr.edu/∼dalton/i8051/i8051syn/.

23. W. H. Wolf. Hardware-software co-design of embedded systems. Proceedings of the
IEEE, 28(7):967–989, July 1994.

24. A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart
cards without coprocessors. In Smart Card Research and Advanced Applications,
pp. 71–92. Kluwer Academic Publishers, 2000.

A 8-bit Architectures for Embedded Systems

Most previous work dealing with co-design of ECC for embedded systems used
either an 8051-compatible microcontroller or an AVR-based processor to execute
the software. Both the 8051 and the AVR platform possess a significant share
of the worldwide smart card market and other security-critical segments of the
embedded systems industry, e.g. sensor nodes.

A.1 The 8051 Microcontroller

The 8051 is an 8-bit microcontroller originally developed by Intel for use in
embedded systems. After its launch in 1980, the 8051 has quickly gained pop-
ularity in the 1980s and early 1990s, and is today generally considered as the
most widely used microcontroller of all times. There exist more than 20 inde-
pendent manufacturers of 8051-compatible microcontroller cores; among these
are leading semiconductor vendors like Atmel, Infineon, and Philips.

A typical 8051-compatible microcontroller includes 128 bytes of internal data
RAM (IRAM), 4 kB of internal program memory (ROM), four 8-bit I/O ports
and a serial port, two 16-bit timers/counters, and optionally an extended data

444 M. Koschuch et al.

RAM (XRAM). Numerous enhanced variants of the “original” 8051 have been
developed during the past 25 years. For instance, the 8052 features 256 bytes
of internal RAM instead of 128 bytes, 8 kB of ROM instead of 4 kB, and a third
16-bit timer. Other 8051 derivatives, such as the Infineon SLE44/SLE66 fami-
lies of smart card controllers, have additional 16-bit instructions and extended
addressing modes for smart card applications. Both the SLE44 and the SLE66
are referred to as 16-bit smart card controllers in the data sheets, but they are
fully opcode-compatible to the original 8051.

The 8051 has probably the widest range of derivatives of any embedded
microcontroller on the market today, and, as a consequence, the performance
of the different 8051 devices varies significantly, even when running at the same
clock frequency. Each instruction executed on an original 8051 microcontroller
takes either 1, 2, or 4 instruction cycles to complete, whereby a single instruction
cycle corresponds to 12 clock cycles. Therefore, the original 8051 is rather slow
as it can execute at most 1 million instructions per second when clocked with
12 MHz. Newer variants of the 8051 run at six, four, two, or even one clock cycle
per instruction cycle, and are able to operate at clock frequencies of 100 MHz
or even more. For example, the Infineon SLE66 executes instructions at a rate
of two clock cycles per instruction cycle, and thus it is up to six times faster
than a standard 8051 at the same clock frequency. On the other hand, the Dal-
ton 8051 [22] requires 17 clock cycles per instruction cycle, which means that
the Dalton is even slower than the original 8051 developed some 25 years ago.

A.2 The ATmega128 Microprocessor

The AVR is an 8-bit RISC architecture with 32 general-purpose registers and
separate memories for program and data (Harvard architecture). All instructions
have a fixed length of 16 bits. The AVR instruction set is more regular than that
of the 8051, but not completely orthogonal. Arithmetic/logical instructions have
a two-operand format and allow to carry out operations between two registers
or between a register and an immediate (constant) value.

The AVR implementations by Atmel, such as the ATmega128, feature a two-
stage pipeline and execute most instructions in a single clock cycle. Multiply
instructions need a second cycle to complete. Any access to RAM requires two
cycles, while reading from program memory takes three cycles. The ATmega128
has 4 kB SRAM, 128 kB Flash memory, and 4 kB EEPROM. It can be clocked
with frequencies of up to 16 MHz and achieves throughputs approaching 1 MIPS
per MHz. Thus, the ATmega128 outperforms the original 8051 by more than an
order of magnitude at the same clock frequency. It was stated in [4] that, for
certain applications, an AVR core can be a whopping 28 times faster than an
8051 running at the same clock frequency. This must be taken into account
when comparing the execution times of elliptic curve cryptosystems on these
two platforms. Furthermore, the ATmega128 has certain architectural features
(e.g. large number of general-purpose registers, two-cycle multiply instruction)
which facilitate the efficient software implementation of long integer arithmetic
operations used in ECC.

FPGA Implementation of Point Multiplication
on Koblitz Curves Using Kleinian Integers

V.S. Dimitrov1,�, K.U. Järvinen2, M.J. Jacobson, Jr.3,
W.F. Chan3, and Z. Huang1

1 Department of Electrical and Computer Engineering, University of Calgary, 2500
University Drive NW, Calgary, Alberta, Canada T2N 1N4

(dimitrov, huangzh)@atips.ca
2 Signal Processing Laboratory, Helsinki University of Technology, Otakaari 5A,

02150, Espoo, Finland
kimmo.jarvinen@tkk.fi

3 Department of Computer Science, University of Calgary, 2500 University Drive
NW, Calgary, Alberta, Canada T2N 1N4
(chanwf, jacobs)@cpsc.ucalgary.ca

Abstract. We describe algorithms for point multiplication on Koblitz
curves using multiple-base expansions of the form k =

∑±τa(τ − 1)b

and k =
∑±τa(τ −1)b(τ 2 − τ −1)c. We prove that the number of terms

in the second type is sublinear in the bit length of k, which leads to the
first provably sublinear point multiplication algorithm on Koblitz curves.
For the first type, we conjecture that the number of terms is sublinear
and provide numerical evidence demonstrating that the number of terms
is significantly less than that of τ -adic non-adjacent form expansions. We
present details of an innovative FPGA implementation of our algorithm
and performance data demonstrating the efficiency of our method.

1 Introduction

In 1985, Koblitz [1] and Miller [2] independently proposed the use of the additive
finite abelian group of points on elliptic curves defined over a finite field for
cryptographic applications. The Koblitz curves [3], or anomalous binary curves,
are

Ea : y2 + xy = x3 + ax2 + 1 (1)

defined over F2, where a ∈ {0, 1}. The number of points on these curves when
considered over F2m can be computed rapidly using a simple recurrence relation,
and there are many prime values of m for which the number of points is twice
a prime (when a = 1) or four times a prime (when a = 0). Five Koblitz curves
are recommended for cryptographic use by NIST [4].

The main advantage of Koblitz curves is that the Frobenius automorphism
of F2 acts on points via τ(x, y) = (x2, y2) and is essentially free to compute.
Because τ satisfies (τ2 + 2)P = µτ(P) for all points P ∈ Ea(F2m) where µ =
(−1)1−a, we can consider τ as a complex number satisfying τ2 − µτ + 2 = 0,

� Chan, Dimitrov and Jacobson are supported in part by NSERC of Canada.

L. Goubin and M. Matsui (Eds.): CHES 2006, LNCS 4249, pp. 445–459, 2006.
c© International Association for Cryptologic Research 2006

446 V.S. Dimitrov et al.

i.e., τ = (µ+
√−7)/2. Thus, computing kP, where k ∈ Z and P ∈ Ea(F2m), can

be done using a representation of k involving powers of τ instead of the usual
binary representation using powers of 2, yielding a point multiplication algorithm
similar to the binary “double-and-add” method in which the point doublings
are replaced by applications of the Frobenius [3,5]. Solinas [5] shows how the
non-adjacent form (NAF) and window-NAF methods mentioned earlier can be
extended to τ -adic expansions. The resulting point multiplication algorithms
require on average (log2 k)/3 point additions or (log2 k)/(w + 1) point additions
using width-w window methods requiring precomputations based on P. A recent
result of Avanzi et. al. [6] reduces this to (log2 k)/4 at the cost of one additional
point halving, but the practicality of this method has not yet been demonstrated.

Recently, double-base integer representations have been used to devise effi-
cient point multiplication algorithms [7,8,9]. For example, it can be shown that
the number of terms of the form ±2a3b required to represent k is bounded by
O(log k/ log log k). These representations can be computed efficiently and the
resulting point multiplication algorithms are the only known methods for which
the number of required point additions is sublinear in log k.

In this paper, we extend the double-base idea to τ -adic expansions for point
multiplication on Koblitz curves by representing k as a sum of terms ±τa(τ−1)b.
Our algorithm requires no precomputations based on the point P, no point dou-
blings, and fewer point additions than τ -adic NAF (τ -NAF) for the five recom-
mended Koblitz curves from [4]. Our algorithm for computing the double-base
representation of k is very efficient; it requires only the unsigned τ -adic expansion
of k plus a few table-lookups. A precomputed table of optimal representations
for a small number of τ -adic integers is required, but these are independent of
the multiplier k and the base point P. We have developed a novel FPGA im-
plementation of both the conversion and point multiplication algorithms that
demonstrates the efficiency of our method.

We conjecture that the average density of our representations is sublinear
in log k, and provide extensive numerical evidence showing that the density is
lower than that of τ -NAF expansions. Although we do not have a proof that the
number of point additions required by our algorithm is sublinear, we provide a
proof that sublinearity is obtained using similar expressions involving three bases
of the form ±τa(τ − 1)b(τ2 − τ − 1)c. This work represents the first rigorously-
proven sublinear point multiplication algorithm using complex bases.

Avanzi and Sica [10] have reported independently on a provably sublinear
point multiplication algorithm using bases τ and 3. However, it is not clear how
their algorithm performs in practice, and their proof has been shown to have a
gap [11].

The remainder of the paper is organized as follows. In Sec. 2 we present
our provably sublinear point multiplication algorithm. We present a similar al-
gorithm using only two complex bases in Sec. 3. Although we cannot prove
sublinearity for this algorithm, we conjecture that the density of the represen-
tations is in fact sublinear, and provide numerical evidence in Subsection 3.2
indicating that the density of our representations is lower than that of τ -NAF

FPGA Implementation of Point Multiplication on Koblitz Curves 447

representations. A description of our FPGA implementation and numerical data
demonstrating its efficiency are presented in Sec. 4. Finally, we conclude with
an outlook on possible directions for further research.

2 Multi-dimensional Frobenius Expansions

We start with the following three definitions:

Definition 1. A complex number, ξ of the form e + fτ, e, f -integers is called a
Kleinian integer [12].

Definition 2. A Kleinian integer ω of the form ω = ±τx(τ − 1)y, x, y ≥ 0 is
called a {τ, τ − 1}-Kleinian integer.

Definition 3. A Kleinian integer ω of the form ω = ±τx(τ − 1)y(τ2 − τ −
1)z, x, y, z ≥ 0 is called a {τ, τ − 1, τ2 − τ − 1}-Kleinian integer.

The main idea of the new point multiplication algorithm over Koblitz curves
is to extend the existing and widely-used τ -NAF expansion of the scalar to a
new form which will speed up the computations. The improvements obtained
in the paper are based on the following representation, which we will call two-
dimensional or three-dimensional Frobenius expansions (or {τ, τ − 1}-expansion
and {τ, τ − 1, τ2 − τ − 1}-expansion, for short):

k =
d∑

i=1

siτ
ai(τ − 1)bi , si = ±1, ai, bi ∈ Z≥0, (2)

k =
d∑

i=1

siτ
ai(τ − 1)bi(τ2 − τ − 1)ci , si = ±1, ai, bi, ci ∈ Z≥0 . (3)

Such representations are clearly highly redundant. If we rearrange the summands
in the above formula, then, using two bases, we can represent the scalar k as

k =
max(bi)∑

l=1

(τ − 1)l

⎛⎝max(ai,l)∑
i=1

si,lτ
ai,l

⎞⎠ (4)

where max(ai,l) is the maximal power of τ that is multiplied by (τ − 1)l in (2).
Using three bases, we can represent k as

k =
max(ci)∑

l2

(τ2 − τ − 1)l2

max(bi)∑
l1=1

(τ − 1)l1

⎛⎝max(ai,l1,l2)∑
i=1

si,l1,l2τ
ai,l1,l2

⎞⎠ (5)

where max(ai,l1,l2) is the maximal power of τ that is multiplied by (τ − 1)l1

(τ2 − τ − 1)l2 in (3).

448 V.S. Dimitrov et al.

Algorithm 1. Point multiplication using {τ, τ − 1}-expansions.
Input: k, P
Output: Q = kP

P0 ← P
Q ← O
for i = 0 to j do

S ← ri(k)Pi {One dimensional τ -NAF corresponding to (τ − 1)l in (4)}
Pi+1 ← τPi − Pi

Q ← Q + S

Alg. 1. computes kP given a {τ, τ − 1}-expansion of k. The corresponding
algorithm for {τ, τ −1, τ2− τ −1}-expansions will be described later, along with
a proof that the number of point additions is sublinear in log k. Essentially, kP
is computed via a succession of one-dimensional τ -adic expansions.

The representation of k given in (4) is the cornerstone of our algorithm, so
some comments on it are in order.

1. The multiplications by τ−1 cost one Frobenius mapping (free in our compu-
tational model) and one point subtraction. The multiplications by τ2− τ −1
cost two Frobenius mappings and two point subtractions. Therefore, the
total number of point additions/subtractions, AS(k), is given by

AS(k) = d + max(bi)− 1

in the case of {τ, τ − 1}-expansions and

AS(k) = d + max(bi)max(ci)− 1

in the case of {τ, τ − 1, τ2 − τ − 1}-expansions. The smallest possible value
of max(bi) and max(ci), 0, corresponds to the classical (one-dimensional)
τ -NAF expansion, for which it is known that the expected number of point
additions/subtractions is (log2 k)/3. It is clear that by allowing larger values
for max(bi) and max(ci) one would decrease the corresponding number of
summands, d. Therefore, it is vital to find out the optimal values for max(bi)
as a function of the size of the scalar.

2. Finding an algorithm that can return a fairly short decomposition of k as
the sum of {τ, τ − 1}-Kleinian integers is absolutely essential. The most
straightforward idea seems to be the greedy algorithm described in Alg. 2..
A greedy algorithm for computing {τ, τ−1, τ2−τ−1}-expansions is an easy
generalization of this algorithm.

The complexity of the greedy algorithm depends crucially on the time spent
to find the closest {τ, τ − 1}-Kleinian integer to the current Kleinian integer.
Unfortunately we were not able to find a significantly more efficient method to
do this than precomputing all Kleinian integers ±τx(τ − 1)y for x, y less than
certain bounds and finding the closest one using exhaustive search. In the next
subsection, we present an efficient algorithm for computing {τ, τ−1}-expansions

FPGA Implementation of Point Multiplication on Koblitz Curves 449

Algorithm 2. Greedy algorithm for computing {τ, τ − 1}-expansions.
Input: A Kleinian integer ξ = e + fτ
Output: {ω1, . . . , ωd}, a {τ, τ − 1}-expansion of ξ

i ← 1
while ξ
= 0 do

Find ωi = ±τai(τ − 1)bi , ai, bi ≥ 0, the closest {τ, τ − 1}-Kleinian integer to ξ.
ξ ← ξ − ωi

i ← i + 1

with slightly more weight than those produced by the greedy algorithm and an
algorithm for computing {τ, τ − 1, τ2 − τ − 1}-expansions with weight provably
sublinear in log k.

2.1 Comparison to Double-Base Number Systems

The similarities between (2) and the double-base number system (DBNS), in
which one represents integers as the sum or difference of numbers of the form
2a3b, a, b non-negative integers (called {2, 3}-integers), are apparent. In the case
of DBNS, one can prove the following result:

Theorem 1. Every positive integer, n, can be written as the sum of at most
O(log n/ log log n) {2, 3}-integers and (one) such representation can be found by
using the greedy algorithm.

The key point in proving this theorem is the following result of Tijdeman [13].

Theorem 2. Let x and y be two {2, 3}-integers, x > y. Then there exist effec-
tively computable constants, c1 and c2, such that

x

(log x)c1
< x− y <

x

(log x)c2
.

The proof of Theorem 1 uses only the first inequality.
Theorem 2 provides a very accurate description of the difference between two

consecutive {2, 3}-integers. More to the point, it can be generalized easily to
any set of {p1, p2, · · · , ps}-integers if ps is fixed. The proof depends on the main
result of [14] from the theory of linear form in logarithms.

Theorem 3. Let a1, a2, · · · , ak be nonzero algebraic integers and b1, b2, · · · , bk

rational integers. Assume ab1
1 ab2

2 · · ·abk

k �= 1 and B = max(b1, b2, · · · , bk). Then
the following inequality holds:∣∣∣ab1

1 ab2
2 · · · abk

k − 1
∣∣∣ ≥ exp(−C(k) log a1 log a2 · · · log ak)

where C(k) = exp(4k + 10k3k+5).

The constant C(k) is huge, even in the case of linear forms in two logarithms,
approximately exp(6·109). By using some results aimed specifically at the case of

450 V.S. Dimitrov et al.

two logarithms [15], one can reduce C(k) to exp(107), but this is still enormous.
However, practical simulations suggest that this constant is likely to be much
smaller, perhaps less than 100.

There are two very essential points that are often overlooked in the formula-
tions of the above theorems [16]:

1. the estimates are correct if the algebraic numbers used are real,
2. if the algebraic numbers are complex, then the estimates provided remain

unchanged if one of them, say a1, has an absolute value strictly greater than
absolute values of the other algebraic numbers.

The latter point is what prevents us from applying Tijdeman’s Theorem 2 to
the case of a1 = τ, a2 = τ − 1. Thus, we are not in position to trivially extend
the proof of Theorem 1 to the case of {τ, τ − 1}-expansions of Kleinian inte-
gers. Nevertheless, extensive numerical simulations (by using several attempted
optimizations of Alg. 2.) has led us to the following conjecture:

Conjecture 1. Every Kleinian integer, ξ = a+ bτ, can be represented as the sum
of at most O (log N(ξ)/ log log N(ξ)) {τ, τ − 1}-Kleinian integers, where N(ξ) is
the norm of ξ.

A very recent paper by Avanzi and Sica [10] contains a proof that Conjecture 1
is true if one uses {τ, 3}-Kleinian integers under the unproven but reasonable
assumption that the irrationality measure of log2 3 and arg(τ)/π is 2. Unfor-
tunately, the proof, even with the assumption on irrationality measures, has a
gap [11]. The use of two complex bases, used in this paper, increases the theo-
retical difficulties in proving the conjecture, but provides much more practical
algorithms.

However, in the case of three bases we can prove without any assumptions the
following:

Theorem 4. Every Kleinian integer ζ = a + bτ can be represented as the sum
of at most O(log N(ζ)/(log log N(ζ))) {τ, τ − 1, τ2 − τ − 1}-Kleinian integers,
such that the largest power of both τ − 1 and τ2 − τ − 1 is O(logα N(ζ)) for any
real constant α where 0 < α < 1/2.

Proof. We assume that b = 0; otherwise, one applies the same proof for the real
and imaginary part of ζ, which leads to doubling the implicit constant hidden
in the big-O notation.

Let α be a real constant where 0 < α < 1/2. We determine the τ -adic repre-
sentation of a, the real part of ζ, using digits 0 and 1. The length of this expansion
is O(log N(ζ)). We break this representation into �log1−α N(ζ)� blocks, where
each block contains O(logα N(ζ)) digits. Each of these blocks corresponds to a
Kleinian integer ci + diτ, i = 0, 1, . . . , �log1−α N(ζ)�, where the size of both ci

and di is O(logα N(ζ)). Now, we represent each integer ci and di in double-base
representation using bases 2 and 3. According to Theorem 1, these numbers will
require at most

O (logα N(ζ)/(log logα N(ζ))) = O (logα N(ζ)/(log log N(ζ)))

FPGA Implementation of Point Multiplication on Koblitz Curves 451

summands of the form 2x3y where x, y ≥ 0 and x, y ∈ O(logα N(ζ)). Using the
fact that 2 = τ(1 − τ) and 3 = 1 − τ − τ2, we substitute the 2’s and 3’s in
the 2, 3-expansions of ci and di to obtain {τ, τ − 1, τ2 − τ − 1}-Kleinian integer
expansions of each ci + diτ, i = 0, 1, . . . , �log1−α N(ζ)�. To obtain the expansion
of ζ = a + bτ, we multiply each term of the form ±τx(τ − 1)y(τ2 − τ − 1)z

by τ i where i is the index of the corresponding block. Note that x, y, z ∈
O(logα N(ζ)). Since the number of blocks is �log1−α N(ζ)� and each block re-
quires O(logα N(ζ)/(log log N(ζ)) {τ, τ − 1, τ2 − τ − 1}-Kleinian integers, we
conclude that the overall number of Kleinian integers used to represent ζ is

O

(
logα N(ζ)

log log N(ζ)
log1−α N(ζ)

)
= O

(
log N(ζ)

log log N(ζ)

)
.

The exponents of τ − 1 and τ2 − τ − 1 are bounded by O(logα N(ζ)). ��
Theorem 4 is in fact constructive and leads to the following sublinear point
multiplication algorithm (Algorithm 3.).

Algorithm 3. Point multiplication algorithm using {τ, τ − 1, τ2 − τ − 1}-
expansions.
Input: An Kleinian integer ζ, a point P on a Koblitz curve, a real constant α with

0 < α < 1/2
Output: Q = ζP

Compute in succession for i = 0, 1, . . . , �logα N(ζ)� the points P
(1)
i = (τ − 1)P (1)

i−1

and P
(2)
i = (τ 2 − τ − 1)P (2)

i−1 where P
(1)
0 = P

(2)
0 = P.

Compute the points Qi1,i2 = P
(1)
i1

+ P
(2)
i2

for ii, i2 = 0, 1, . . . , �logα N(ζ)�.
Compute a {τ, τ − 1, τ 2 − τ − 1}-expansion of the form (5) using Theorem 4.
Apply in succession τ -NAF based point multiplications based on (5) to compute Q.

The analysis of Alg. 3. is simple. Step 1 requires O(logα N(ζ)) point addi-
tions and Step 2 requires O(log2α N(ζ)) point additions. Because α < 1/2, the
total number of point additions for Steps 1 and 2 is o(log N(ζ)). According to
Theorem 4, Step 3 requires O(log N(ζ)/(log log N(ζ))) point additions. The to-
tal number of point additions for Alg. 3. is therefore O(log N(ζ)/(log log N(ζ))).
Thus, one can compute kP in O(log k/(log log k)) point additions by computing
ζ ≡ k (mod (τm − 1)/(τ − 1)) and applying Alg. 3. to compute ζP.

Note that the first two steps of Alg. 3. are independent of k. If a fixed base
point P is to be used, the points Qi1,i2 may be precomputed.

The parameter α can be chosen in a variety of ways. The total number of
point additions required by all three steps is roughly logα N(ζ) + log2α N(ζ) +
2 logN(ζ)/(α log log N(ζ)); for 163 < N(ζ) < 571, taking α such that 0.365 <
α < 0.368 minimizes this quantity. Smaller values of α reduce the number of
points Qi1,i2 that must be precomputed and stored at the cost of increasing the
number of point additions that must be performed in Step 3. On the other hand,
larger values of α decrease the number of point additions in Step 3 at the cost
of having to precompute and store more points.

452 V.S. Dimitrov et al.

3 A Practical Blocking Algorithm

Although, as proved in Theorem 4, using {τ, τ − 1, τ2 − τ − 1}-expansions does
lead to a sublinear point multiplication algorithm, the resulting algorithm is
likely not suitable for practical purposes. Nevertheless, assuming the truth of
Conjecture 1, we can devise an efficient algorithm that computes {τ, τ − 1}-
expansions with sublinear density of Kleinian integers. This algorithm is based
on the following theorem.

Theorem 5. Assuming Conjecture 1, every Kleinian integer, ξ = a+bτ, can be
represented as the sum of at most O (log N(ξ)/ log log N(ξ)) {τ, τ − 1}-Kleinian
integers such that the largest power of τ − 1 is O (log N(ξ)/ log log N(ξ)) .

The proof, omitted for brevity, is quite similar to that of Theorem 4. The τ -adic
expansions of a and b are broken into log log N(ξ) blocks and the conjecture is
applied to each block. In fact, this observation gives us an efficient method to
compute {τ, τ − 1}-expansions with sublinear density under Conjecture 1. The
idea, described in Alg. 4., is to apply the blocking strategy described in the proof
and compute optimal {τ, τ − 1}-expansions for each block.

Algorithm 4. Blocking algorithm for computing {τ, τ − 1}-expansions.
Input: A Kleinian integer ξ = e+ fτ, block size w, precomputed table of the minimal

{τ, τ − 1}-expansion of every Kleinian integer
∑w−1

i=0 diτ
i, di ∈ {0, 1}

Output: List L of {τ, τ − 1}-Kleinian integers representing {τ, τ − 1}-expansion of ξ
L = ∅
Compute the τ -adic expansion of ξ =

∑l
i=0 diτ

i, di ∈ {0, 1}
for j = 0 to �l/w� do

{Process blocks of length w}
Find minimal {τ, τ − 1}-expansion of

∑w−1
i=0 di+jwτ i from the precomputed table

Multiply each term of the expansion by τ jw and add to L

There are four important points regarding the implementation Alg. 4.:

1. All powers of τ can be reduced modulo m, as (τm)P = P for all P ∈ Ea(F2m).
2. The bit-string dw−1 . . . d1d0 corresponding to any block can be used as an

index into the table of minimal {τ, τ − 1}-expansions.
3. One can choose the size of the blocks based on available memory. The

larger the block size, the lower the density of the {τ, τ − 1}-expansions
produced.

4. If the block size is not too big, one can precompute the minimal {τ, τ − 1}-
expansion of every Kleinian integer of the form

∑w−1
i=0 diτ

i, di ∈ {0, 1},
thereby ensuring as low a density as possible. This precomputation can be
done using exhaustive search and need only be done once per elliptic curve,
as it does not depend on k nor the base point P.

FPGA Implementation of Point Multiplication on Koblitz Curves 453

τ -adic expansion: 1 1 1 0 1 0 0 0 1 0 0 1 0 0
⇓ ⇓

Segment size = 7 : 1 1 1 0 1 0 0 0 1 0 0 1 0 0
⇓ ⇓

Table look-up: τ (τ − 1) + τ (τ − 1)6 τ 2(τ − 1)2

⇓ ⇓
{τ, τ − 1}-expansion: τ 7[τ (τ − 1) + τ (τ − 1)6] + τ 2(τ − 1)2

Fig. 1. Expansion of −104 + 50τ using Alg. 4

3.1 Example

Consider the representation of 6465 into a {τ, τ − 1}-expansion by using the
two different algorithm we have described. Assume that we intend to compute
(6465)P for some point P ∈ E1(F2163), so τ = (1 +

√−7)/2. As in the case of
computing the τ -NAF expansion, we first do a partial reduction of 6465 modulo
(τ163 − 1)/(τ − 1) as in [5], yielding ξ = −104 + 50τ. The greedy algorithm,
Alg. 2., returns

ξ = τ8(τ − 1) + τ2(τ − 1)2 + τ8(τ − 1)6 .

The blocking algorithm, Alg. 4., using a block size w = 7 returns the same
representation.

Fig. 1 illustrates the idea behind the blocking algorithm. The τ -adic expansion
of ξ is τ2 + τ5 + τ9 + τ11 + τ12 + τ13. This 14-bit expansion of ξ is broken into
two 7-bit blocks. The right block corresponds to τ2 + τ5, and τ2(τ − 1)2 is its
optimal {τ, τ−1}-expansion. The left block corresponds to τ2 +τ4 +τ5 +τ6, and
τ(τ − 1)+ τ(τ − 1)6 is its optimal expansion. Finally, multiplying the expression
for the left block by τ7 yields the {τ, τ − 1}-expansion of ξ.

To see the usefulness of this idea, notice that the {τ, τ−1}-expansion obtained
is very sparse. Of the 63 possible terms that could occur, assuming τ8 is the
maximum power of τ and (τ − 1)6 is the maximum power of τ − 1, only three
actually occur in the expansion. Furthermore, note that when computing kP
using this representation, each power of τ − 1 corresponds to a one-dimensional
τ -adic expansion, and that each of these is very sparse.

3.2 Numerical Evidence

In this section, we present results from software implementations of Alg. 2. and
Alg. 4. The objective is to compare the density of the {τ, τ − 1}-expansions
computed by our algorithms with τ -NAF expansions. Our algorithms and the
algorithm for computing the τ -NAF [5] of k were implemented in C, using the
GMP library for multi-precision integer arithmetic. Tests were run on an Intel
Xeon 2.8 GHz CPU running Linux.

Theorem 5 states that our conversion algorithm outputs expansions of k with
sublinear density even if the maximum power of τ − 1 is bounded by some con-
stant max(bi) as long as any sublinear expansion exists. For practical purposes,

454 V.S. Dimitrov et al.

we need to know what value of max(bi) gives us minimal weight expansions on
average. We computed the average number of point additions required to com-
pute kP using a {τ, τ − 1}-expansion of k, i.e., the number of non-zero terms
in the expansion plus max(bi)− 1. For each size of k between 160 and 600 bits,
the optimal value of max(bi) starts at 4 and increases to 12 as the bit length of
k increases. As shown in Sec. 4.4, max(bi) = 3 turns out to be optimal for our
FPGA implementation of point multiplication on E1(F2163).

In Table 1 we list the average number of point additions required to compute
kP on the five NIST-recommended Koblitz curves [4] when using τ -NAF, our
greedy {τ, τ − 1}-expansion algorithm (Alg. 2.), and our blocking-based Alg. 4.
using block lengths of w = 5, 10, 16 and max(bi) = 6. In all cases the data are
taken as the average over 500000 random values of k. Our algorithm requires
significantly fewer point additions than τ -NAF in all cases.

Table 1. The average number of point additions required to compute kP for the five
Koblitz curves in [4]

Alg. 2. Alg. 4. (blocking)
log2 k τ -NAF (greedy) w = 5 w = 10 w = 16

163 54.25 36.37 47.86 40.00 37.22
233 77.59 49.31 66.23 54.96 50.76
283 94.25 58.64 79.37 65.66 60.49
409 137.12 81.84 113.64 93.63 85.68
571 190.25 111.90 154.98 127.21 117.04

4 FPGA Implementation

An FPGA implementation was designed in order to investigate the performance
of the new algorithm in practice. The design implements kP on the NIST curve
K-163 defined by (1), where a = 1, over F2163 [4].

As the number of zero coefficients in a {τ, τ − 1}-expansion is large, a nor-
mal basis F2m was selected. In a normal basis, an element A ∈ F2m is rep-
resented as A =

∑m−1
i=0 aiα

2i

where ai ∈ {0, 1} and α2i �= α2j

for all i �= j
and α2m

= α. Thus, it is obvious that the squaring operation A2 is a cyclic
right shift of the bit vector (a0, a1, . . . , am−1) which is fast if implemented in
hardware.

Affine coordinates,A, and López-Dahab coordinates,LD [17], are used for rep-
resenting points on Ea(F2m). In A, a point P is represented with two coordinates
as P = (x, y), and, in LD, with three coordinates as P = (X, Y, Z). The LD triple
represents the point (X/Z, Y/Z2) in A [17]. Three elements x, y, ȳ = x+y ∈ F2m

are required to represent P and −P in A. A point addition in A is performed as
presented, e.g., in [18], and its cost is I+2M+S+8A where I, M, S, and A denote
inversion, multiplication, squaring, and addition in F2m , respectively. A point ad-
dition in LD is performed as presented in [19], and it requires 13M + 4S + 9A.
A point addition Q + P, where Q is in LD and P in A, is called the mixed

FPGA Implementation of Point Multiplication on Koblitz Curves 455

coordinate point addition, and it requires only 9M + 5S + 9A [20]. If the curve
is fixed and both P and −P are available, one multiplication and one addition
can be omitted resulting 8M + 5S + 8A. The A �→ LD mapping does not re-
quire any operations in F2m while LD �→ A requires I + 2M + S. The cost of
a Frobenius mapping is 3S in LD and 2S in A. An inversion in F2m is com-
puted as suggested by Itoh and Tsujii in [21]. The Itoh-Tsujii inversion requires
m − 1 squarings and �log2(m − 1)� + Hw(m − 1) − 1 multiplications, where
Hw(m − 1) is the Hamming weight of m − 1 [21]. Hence, I = 9M + 162S if
m = 163.

Different coordinates are used in Alg. 1. as follows: the point addition in A
is used in computing Pi so that the point addition in mixed coordinates can be
used in S ← S±Pi computations. Because the results of row multiplications are
in LD, the point addition in LD must be used for Q← Q + S computations.

The implementation was designed especially for Xilinx Virtex-II family FP-
GAs. The implementation includes a field arithmetic processor (FAP) for arith-
metic in F2m , control logic for controlling the FAP, and a converter for converting
k to a {τ, τ − 1}-expansion. The FAP is considered in Sec. 4.1, the control logic
in Sec. 4.2, and the conversion unit in Sec. 4.3.

4.1 Field Arithmetic Processor(FAP)

The FAP includes a multiplier, a squarer, an adder, a storage element and control
logic. A storage element for m-bit elements of F2m is required in order to store
points and temporary variables during computation of kP. As Xilinx devices offer
embedded memory blocks which can be used without consuming logic resources,
the storage element is implemented in BlockRAMs. One dual-port BlockRAM
can be configured into a 512 × 36-bit mode. All m bits of an element must be
accessed in parallel in the FAP architecture. Hence,

⌈
m
36

⌉
= 5 BlockRAMs are

required. Write and read operations require both one clock cycle, i.e. W = R = 1.

The squarer is a shifter which is capable of performing operations A2d

, where
A ∈ F2m and 0 ≤ d ≤ dmax = 26 − 1,. Thus, A2d

operations can be performed
with a cost of S. Addition in F2m is simply a bitwise exclusive-or (xor). Both
squaring and addition are performed in one clock cycle, i.e. S = A = 1.

Field multiplication is critical for the overall performance. The multiplier is a
digit-serial implementation of the Massey-Omura multiplier [22]. In a bit-serial
Massey-Omura multiplier, one bit of the output is calculated in one clock cycle
and, hence, m cycles are required in total. One bit ci of the result C = A×B is
computed from A and B by using an F -function. The F -function is field specific,
and the same F is used for all output bits ci as follows: ci = F (A≪i, B≪i), where
≪ i denotes cyclical left shift by i bits. [4,22]

In a digit-serial implementation, D bits are computed in parallel. Hence,
⌈

m
D

⌉
cycles are required in one multiplication. In this FAP, D = 24. The F -function
is pipelined in order to increase clock frequency by adding one register stage.
As loading the operands into the shift registers requires one clock cycle and
pipelining increases latency by one clock cycle, the latency is M =

⌈163
24

⌉
+2 = 9.

456 V.S. Dimitrov et al.

4.2 Control Logic

Logic controlling the FAP consists of a storage for k, a control finite state ma-
chine (FSM) and a ROM for control sequences.

The implementation handles k in a coded form. The coding is performed
using κ : {s, d} symbols, where s ∈ {0, 0̄, 1, 1̄} and 0 ≤ d ≤ dmax. 0̄ is a symbol
reserved for a row change not −0. Coding is started from the first non-zero
signed bit of the first row and it proceeds as follows: s is the signed bit starting
a symbol and d is the number of Frobenius mappings following s, i.e. the number
of consecutive zeros plus one (the Frobenius map associated with the start bit of
the next symbol). If the run of consecutive Frobenius maps is longer than dmax,
the run must be divided into two symbols and, for the latter one, s = 0. Each κ,
with the exception of the row change symbol, transforms into an operation S ←
τd(S + sP) on Ea(F2m). Let Z(k) denote the maximum number of consecutive
Frobenius mappings required by k. Then, the number of κ-symbols, e, required to
represent k, is given by e ≥ Hw(k) + j, with equality if and only if dmax ≥ Z(k).

Control FSM takes κ-symbols as input and, according to s and d of κ, it sets
addresses of the control sequence ROM. The control sequences controlling the
FAP consist of successive FAP instructions directly controlling the FAP. There
are separate control sequences for Pi+1 ← τPi−Pi computation (Frobenius map
and point addition in A), point addition and subtraction (point addition in the
mixed coordinates), Frobenius map, row change (point addition in LD), and
LD �→ A mapping. They are all stored in a ROM implemented in a BlockRAM.

If implemented so that, for each operation, the operands would be first read
from the memory, then the operation calculated and finally the result saved to
the memory, the latency of an operation would be the latency of the operation
(M, S or A) plus two clock cycles (R + W). However, different operations can
be performed with the same operands without reading the operands more than
once, and the operands of the next operation can be read while the previous
operation is performed if the result is not required in the next operation. When
the control sequences were carefully hand-optimized, different operations have
the following latencies: point addition in the mixed coordinates LM = 98, the
Frobenius map LF = 6, row change (point addition in LD) LLD = 153, the
computation of Pi LPi = 182, and the LD �→ A mapping LLD�→A = 160. The
first point addition of each row is simply S ← ±Pi and the first row change
operation is given by Q ← S. Both of these operations have a latency of LC = 6.
In the beginning, an initialization including, e.g., the transferring of P into the
FAP, needs to be performed. The latency of the initialization is LI = 10. Thus,
it follows that the latency of the computation of kP becomes

LkP = (Hw(k)−(j+1))LM+(j+2)LC+(e−j)LF +j(LLD+LPi)+LI+LLD�→A (6)

and, by assuming that dmax ≥ Z(k), i.e. e = Hw(k) + j, (6) simplifies to

LkP = 104 Hw(k) + 243 j + 84. (7)

FPGA Implementation of Point Multiplication on Koblitz Curves 457

4.3 Conversion Unit

The conversion unit, which converts an integer k into a {τ, τ − 1}-expansion, is
a straightforward implementation of Alg. 4., our blocking-based method.

The main part of this unit is an ALU, which has two integer multipliers, each of
which makes use of one 18-bit by 18-bit embedded multiplier to create 102-bit by
102-bit products. The ALU also includes adders, shifters and the rounding func-
tion required by the partial reduction algorithm [5]. The conversion unit uses the
ALU and two intermediate registers for reducing every integer k to an equivalent
r0+r1τ, then gets the τ -adic expansion by a shift-and-add circuit, which produces
one bit per cycle, from the least significant bit to the most significant bit.

For our implementation, we selected a block size of 10, so every 10 bits of
the τ -adic expansion are used as an index into a look-up table. This table has
one entry for each possible index (b9b8 . . . b0), bi ∈ {0, 1}, where each entry is
the optimal {τ, τ − 1}-expansion of

∑9
i=0 biτ

i allowing a maximum exponent
of 6 for τ − 1. At most 3 terms of the form ±τa(τ − 1)b are required for each
representation, so each entry in the table consists of three tuples of the form
(dn, in, jn) representing dnτ in(τ − 1)jn . Hence, each entry requires 27 bits and
the whole look-up table requires 27 KB RAM. Note that, according to the data
in Sec. 3.2, using a block size of 5 would still give us a significant improvement
over τ -NAF and in this case the table would require less than 1 KB.

Because integer operations are slower than the F2m operations in the FAP,
the conversion unit will be the bottleneck if the two units use the same clock.
So a dual-port RAM is used in order to separate these units into different clock
domains. The look-up results are written into the dual-port RAM using one port,
and the ECC processor will read them out from the another port later.

4.4 Results

The FPGA design was written in VHDL and implemented on a Xilinx Virtex-
II XC2V2000-6. The design was synthesized with Synplify Pro 8.0 and Xilinx
ISE 6.2 was used for the place & route. The design (excluding the converter)
requires 6,494 slices and 6 BlockRAMs on the XC2V2000-6, and it operates at
a maximum clock frequency of fmax = 128 MHz. The converter requires 2251
slices, 2 BlockRAMs and 2 multipliers. The maximum clock frequency is 88 MHz.
It takes 335 clock cycles, or 3.81 µs to convert one 163-bit integer.

Average timings of the design are presented in Table 2. The latency LkP is
given by (7), and timings are calculated using fmax. The time consumed in the
conversion is neglected. Table 2 shows that the best performance is achieved
when j = 3 which is smaller than estimated in Sec. 3.2, because the latencies of
point additions differ. In Sec. 3.2, all point additions were assumed equal.

Numerous publications considering implementation of elliptic curve cryptog-
raphy on FPGAs have been published, e.g., in [23,24,25,26]. To the best of the
authors’ knowledge, the only FPGA-based implementation using τ -NAF expan-
sions was presented by Lutz and Hasan [26] where a kP operation on E1(F2163)
was reported to require 75 µs on a Xilinx Virtex-E XCV2000E.

458 V.S. Dimitrov et al.

Table 2. Performance calculations of the FPGA implementation on a Xilinx Virtex-II
XC2V2000-6 with different values of j. Hw(k) for j > 0 are based on empirical data.
The numbers of point additions in the mixed coordinates, in A and in LD are denoted
as M, A and LD, respectively.

j Hw(k) M A LD LkP Time (µs)
0 54.33 53.33 0 0 5735 44.80
2 39.47 36.47 2 2 4675 36.52
3 36.18 32.18 3 3 4576 35.75
4 34.74 29.74 4 4 4669 36.48
5 33.42 27.42 5 5 4775 37.30
6 32.22 25.22 6 6 4893 38.23

5 Further Work

Our results demonstrate that {τ, τ − 1}-expansions lead to a competitive point
multiplication algorithm for Koblitz curves when the base point P is not fixed.
Nevertheless, there are a number of aspects we are continuing to explore.

The latency of a point multiplication using our FPGA implementation could
be significantly reduced at the expense of larger area requirements by computing
each row in parallel. This possibility will be studied in the future. In addition,
alternative choices of the bases, or even using three bases, may lead to further
improvements.

Our point multiplication algorithm does not require any precomputations in-
volving the base point P nor storage of additional points, and hence is well-suited
to applications where P is random. We are investigating the possibility of gen-
eralizing window methods, using two-dimensional windows, to our algorithm in
order to obtain further improvements when precomputations involving P are
permitted.

Although our numerical data suggests that the density of the {τ, τ − 1}-
expansions obtained by our conversion algorithm is sublinear in the bit length of
k, we do not yet have a proof of this fact. In addition, our conversion algorithm
requires a modest amount of storage. These precomputed quantities are inde-
pendent of both the base point P and multiplier k and can be viewed as part
of the domain parameters. Nevertheless, we continue to search for an efficient
memory-free conversion algorithm.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48 (1987) 203–209
2. Miller, V.: Use of elliptic curves in cryptography. In: CRYPTO ’85. Volume 218

of Lecture Notes in Computer Science (LNCS). (1986) 417–426
3. Koblitz, N.: CM-curves with good cryptographic properties. In: CRYPTO ’91.

Volume 576 of LNCS. (1992) 279–287
4. National Institute of Standards and Technology (NIST): Digital signature standard

(DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)

FPGA Implementation of Point Multiplication on Koblitz Curves 459

5. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes, and Cryptog-
raphy 19 (2000) 195–249

6. Avanzi, R., Heuberger, C., Prodinger, H.: Minimality of the Hamming weight of
the τ -NAF for Koblitz curves and improved combination with point halving. In:
SAC 2005. Volume 3897 of LNCS. (2005) 332–344

7. Dimitrov, V., Jullien, G., Miller, W.: An algorithm for modular exponentiation.
Inform. Process. Lett. 66 (1998) 155–159

8. Ciet, M., Sica, F.: An analysis of double base number systems and a sublinear
scalar multiplication algorithm. In: Mycrypt 2005. Volume 3715 of LNCS. (2005)
171–182

9. Dimitrov, V., Imbert, L., Mishra, P.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: ASIACRYPT 2005. Volume 3788 of
LNCS. (2005) 59–78

10. Avanzi, R., Sica, F.: Scalar multiplication on Koblitz curves using double bases.
Technical Report Number 2006/067, Cryptology ePrint Archive (2006)

11. Sica, F.: Personal communication. (2006)
12. Conway, J., Smith, D.: On quaternions and octonions. AK Peters (2003)
13. Tijdeman, R.: On integers with many small prime factors. Compos. Math. 26

(1973) 319–330
14. Baker, A.: Linear forms in the logarithms of algebraic numbers IV. Mathematica

15 (1968) 204–216
15. Mignotte, M., Waldshmidt, M.: Linear forms in two logarithms and Schneider’s

method III. In: Annales Fas. Sci. Toulouse. (1990) 43–75
16. Tijdeman, R.: Personal communication. (2006)
17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).

In: SAC ’98. Volume 1556 of LNCS. (1998) 201–212
18. Doche, C., Lange, T.: Arithmetic of elliptic curves. In Cohen, H., Frey, G.,

eds.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman &
Hall/CRC (2006) 267–302

19. Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in
GF (2n) using projective coordinates. Inform. Process. Lett. 76 (2000) 101–103

20. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Trans. Comput. 51 (2002) 972–975

21. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Inform. Comput. 78 (1988) 171–177

22. Wang, C., Troung, T., Shao, H., Deutsch, L., Omura, J., Reed, I.: VLSI architec-
tures for computing multiplications and inverses in GF (2m). IEEE Trans. Comput.
34 (1985) 709–717

23. Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfig-
urable implementation of elliptic curve crypto algorithms. In: IPDPS 2002. (2002)
157–164

24. Leong, P., Leung, K.: A microcoded elliptic curve processor using FPGA technol-
ogy. IEEE Trans. VLSI Syst. 10 (2002) 550–559

25. Eberle, H., Gura, N., Shantz, S., Gupta, V.: A cryptographic processor for ar-
bitrary elliptic curves over GF (2m). Technical Report SMLI TR-2003-123, Sun
Microsystems, Inc. (2003)

26. Lutz, J., Hasan, A.: High performance FPGA based elliptic curve cryptographic
co-processor. In: Proc. of the Int’l Conf. on Information Technology: Coding and
Computing. Volume 2. (2004) 486–492

Author Index

Abdulwahab, Wesam 134
Ahmadian, Mahmoud 285
Akishita, Toru 148
Aoki, Kazumaro 60
Aoki, Takafumi 187
Archambeau, C. 1, 30
Aumônier, Sébastien 216

Bachimanchi, Ramakrishna 119
Baier, Patrick 119
Batina, L. 415
Bonneau, Joseph 201
Bouesse, Fraidy 384
Brier, Eric 324
Bucci, Marco 232

Canovas, Cécile 174
Chan, W.F. 445
Chang, Donghoon 46
Chaves, Ricardo 298
Chee, Seongtaek 46
Chen, Zhimin 242
Chevallier-Mames, Benôıt 324
Ciet, Mathieu 324
Clavier, Christophe 324
Clédière, Jessy 174
Costigan, Neil 134

Dimitrov, V.S. 445

Fouque, Pierre-Alain 339

Gaj, Kris 119
Giancane, Luca 232
Gierlichs, Benedikt 15
Giraud, Christophe 216
Großschädl, Johann 270, 430

Homma, Naofumi 187
Hong, Deukjo 46
Hong, Seokhie 46
Huang, Z. 445

Imai, Yuichi 187

Jacobson Jr., M.J. 445
Järvinen, K.U. 445
Jeong, Kitae 46
Joye, Marc 160
Juels, Ari 231

Katagi, Masanobu 148
Khaleeluddin, Mohammed 119
Kim, Hyun 46
Kim, Jongsung 46
Kitamura, Izuru 148
Kohlbrenner, Paul 119
Koo, Bon-Seok 46
Koschuch, Manuel 430
Kulikowski, Konrad 399
Kumar, Sandeep 101
Kunz-Jacques, Sébastien 339
Kuzmanov, Georgi 298
Kwon, Soonhak 119

Lacoume, Jean-Louis 174
Le, Hoang 119
Le, Thanh-Ha 174
Lechner, Joachim 430
Lee, Changhoon 46
Lee, Jesang 46
Lee, Sangjin 46
Lemke-Rust, Kerstin 15
Lim, Jongin 46
Luzzi, Raimondo 232

Mangard, Stefan 76
Martinet, Gwenaëlle 339
Masoumi, Massoud 285
Mironov, Ilya 201
Moradi, Amir 91
Muller, Frédéric 339

Nagashima, Sei 187

Paar, Christof 15, 101
Paillier, Pascal 160
Peeters, E. 1, 30
Pelzl, Jan 101
Pfeiffer, Gerd 101

462 Author Index

Preneel, B. 415
Prouff, Emmanuel 216

Quisquater, J.-J. 1, 30

Raissi, Farshid 285
Renaudin, Marc 384
Robisson, Bruno 174

Sadeghi, Ahmad-Reza 414
Saeki, Minoru 255
Sakiyama, K. 415
Salmasizadeh, Mahmoud 91
Satoh, Akashi 187
Schaumont, Patrick 311
Schimmler, Manfred 101
Schramm, Kai 76
Schrijen, Geert-Jan 369
Scott, Michael 134
Servière, Christine 174
Shalmani, Mohammad T. Manzuri 91
Sicard, Gilles 384
Simpson, Eric 311
Škorić, Boris 369
Skorobogatov, Sergei 61

Smirnov, Alexander 399
Sousa, Leonel 298
Standaert, F.-X. 1, 30
Stebila, Douglas 354
Sung, Jaechul 46
Suzuki, Daisuke 255
Szekely, Alexander 430

Taubin, Alexander 399
Thériault, Nicolas 354
Tillich, Stefan 270, 430
Trifiletti, Alessandro 232
Tuyls, Pim 369

Valette, Frédéric 339
van Geloven, Jan 369
Vassiliadis, Stamatis 298
Verbauwhede, I. 415
Verhaegh, Nynke 369

Weitzer, Andreas 430
Wolkerstorfer, Johannes 430
Wolters, Rob 369

Zhou, Yujie 242

	Frontmatter
	Side Channels I
	Template Attacks in Principal Subspaces
	Templates vs. Stochastic Methods
	Towards Security Limits in Side-Channel Attacks

	Low Resources
	HIGHT: A New Block Cipher Suitable for Low-Resource Device

	Invited Talk I
	Integer Factoring Utilizing PC Cluster

	Hardware Attacks and Countermeasures I
	Optically Enhanced Position-Locked Power Analysis
	Pinpointing the Side-Channel Leakage of Masked AES Hardware Implementations
	A Generalized Method of Differential Fault Attack Against AES Cryptosystem

	Special Purpose Hardware
	Breaking Ciphers with COPACOBANA --A Cost-Optimized Parallel Code Breaker
	Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware

	Efficient Algorithms for Embedded Processors
	Implementing Cryptographic Pairings on Smartcards
	SPA-Resistant Scalar Multiplication on Hyperelliptic Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form
	Fast Generation of Prime Numbers on Portable Devices: An Update

	Side Channels II
	A Proposition for Correlation Power Analysis Enhancement
	High-Resolution Side-Channel Attack Using Phase-Based Waveform Matching
	Cache-Collision Timing Attacks Against AES
	Provably Secure S-Box Implementation Based on Fourier Transform

	Invited Talk II
	The Outer Limits of RFID Security

	Hardware Attacks and Countermeasures II
	Three-Phase Dual-Rail Pre-charge Logic
	Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage
	Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style

	Efficient Hardware I
	Instruction Set Extensions for Efficient AES Implementation on 32-bit Processors
	NanoCMOS-Molecular Realization of Rijndael
	Improving SHA-2 Hardware Implementations

	Trusted Computing
	Offline Hardware/Software Authentication for Reconfigurable Platforms

	Side Channels III
	Why One Should Also Secure RSA Public Key Elements
	Power Attack on Small RSA Public Exponent
	Unified Point Addition Formul{\ae} and Side-Channel Attacks

	Hardware Attacks and Countermeasures III
	Read-Proof Hardware from Protective Coatings
	Path Swapping Method to Improve DPA Resistance of Quasi Delay Insensitive Asynchronous Circuits
	Automated Design of Cryptographic Devices Resistant to Multiple Side-Channel Attacks

	Invited Talk III
	Challenges for Trusted Computing

	Efficient Hardware II
	Superscalar Coprocessor for High-Speed Curve-Based Cryptography
	Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller
	FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

