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Preface

This book and its companion volumes constitute the Proceedings of the 13th In-
ternational Conference on Neural Information Processing (ICONIP 2006) held in
Hong Kong during October 3–6, 2006. ICONIP is the annual flagship conference
of the Asia Pacific Neural Network Assembly (APNNA) with the past events held
in Seoul (1994), Beijing (1995), Hong Kong (1996), Dunedin (1997), Kitakyushu
(1998), Perth (1999), Taejon (2000), Shanghai (2001), Singapore (2002), Istanbul
(2003), Calcutta (2004), and Taipei (2005). Over the years, ICONIP has matured
into a well-established series of international conference on neural information
processing and related fields in the Asia and Pacific regions. Following the tradi-
tion, ICONIP 2006 provided an academic forum for the participants to dissem-
inate their new research findings and discuss emerging areas of research. It also
created a stimulating environment for the participants to interact and exchange
information on future challenges and opportunities of neural network research.

ICONIP 2006 received 1,175 submissions from about 2,000 authors in 42
countries and regions (Argentina,Australia, Austria,Bangladesh,Belgium,Brazil,
Canada, China, Hong Kong, Macao, Taiwan, Colombia, Costa Rica, Croatia,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy,
Japan, South Korea, Malaysia, Mexico, New Zealand, Poland, Portugal, Qatar,
Romania, Russian Federation, Singapore, South Africa, Spain, Sweden, Thai-
land, Turkey, UK, and USA) across six continents (Asia, Europe, North Amer-
ica, South America, Africa, and Oceania). Based on rigorous reviews by the
Program Committee members and reviewers, 386 high-quality papers were se-
lected for publication in the proceedings with the acceptance rate being less than
33%. The papers are organized in 22 cohesive sections covering all major topics of
neural network research and development. In addition to the contributed papers,
the ICONIP 2006 technical program included two plenary speeches by Shun-ichi
Amari and Russell Eberhart. In addition, the ICONIP 2006 program included
invited talks by the leaders of technical co-sponsors such as Wlodzislaw Duch
(President of the European Neural Network Society), Vincenzo Piuri (President
of the IEEE Computational Intelligence Society), and Shiro Usui (President of
the Japanese Neural Network Society), DeLiang Wang (President of the Inter-
national Neural Network Society), and Shoujue Wang (President of the China
Neural Networks Council). In addition, ICONIP 2006 launched the APNNA
Presidential Lecture Series with invited talks by past APNNA Presidents and
the K.C. Wong Distinguished Lecture Series with invited talks by eminent Chi-
nese scholars. Furthermore, the program also included six excellent tutorials,
open to all conference delegates to attend, by Amir Atiya, Russell Eberhart,
Mahesan Niranjan, Alex Smola, Koji Tsuda, and Xuegong Zhang. Besides the
regular sessions, ICONIP 2006 also featured ten special sessions focusing on some
emerging topics.



VI Preface

ICONIP 2006 would not have achieved its success without the generous con-
tributions of many volunteers and organizations. ICONIP 2006 organizers would
like to express sincere thanks to APNNA for the sponsorship, to the China Neural
Networks Council, European Neural Network Society, IEEE Computational In-
telligence Society, IEEE Hong Kong Section, International Neural Network Soci-
ety, and Japanese Neural Network Society for their technical co-sponsorship, to
the Chinese University of Hong Kong for its financial and logistic supports, and
to the K.C. Wong Education Foundation of Hong Kong for its financial support.
The organizers would also like to thank the members of the Advisory Committee
for their guidance, the members of the International Program Committee and
additional reviewers for reviewing the papers, and members of the Publications
Committee for checking the accepted papers in a short period of time. Partic-
ularly, the organizers would like to thank the proceedings publisher, Springer,
for publishing the proceedings in the prestigious series of Lecture Notes in Com-
puter Science. Special mention must be made of a group of dedicated students
and associates, Haixuan Yang, Zhenjiang Lin, Zenglin Xu, Xiang Peng, Po Shan
Cheng, and Terence Wong, who worked tirelessly and relentlessly behind the
scene to make the mission possible. There are still many more colleagues, asso-
ciates, friends, and supporters who helped us in immeasurable ways; we express
our sincere thanks to them all. Last but not the least, the organizers would like
to thank all the speakers and authors for their active participation at ICONIP
2006, which made it a great success.

October 2006 Irwin King
Jun Wang

Laiwan Chan
DeLiang Wang
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Abstract. Determining the relevant features is a combinatorial task in various 
fields of machine learning such as text mining, bioinformatics, pattern recogni-
tion, etc. Several scholars have developed various methods to extract the  
relevant features but no method is really superior. Breiman proposed Random 
Forest to classify a pattern based on CART tree algorithm and his method turns 
out good results compared to other classifiers. Taking advantages of Random 
Forest and using wrapper approach which was first introduced by Kohavi et. al, 
we propose an algorithm named Dynamic Recursive Feature Elimination 
(DRFE) to find the optimal subset of features for reducing noise of the data and 
increasing the performance of classifiers. In our method, we use Random Forest 
as induced classifier and develop our own defined feature elimination function 
by adding extra terms to the feature scoring. We conducted experiments with 
two public datasets: Colon cancer and Leukemia cancer. The experimental re-
sults of the real world data showed that the proposed method has higher predic-
tion rate compared to the baseline algorithm. The obtained results are compara-
ble and sometimes have better performance than the widely used classification 
methods in the same literature of feature selection. 

1   Introduction 

Machine learning techniques have been widely used in various fields such as text 
mining, network security and especially in bioinformatics. There are wide ranges of 
learning algorithms that have been studied and developed, i.e. Decision Trees, K 
Nearest-Neighbor, Support Vector Machine, etc. These existing learning algorithms 
do well in most cases. However, as the number of features in a dataset is large, the 
performance of these algorithms is degraded. In that case, the whole set of features of 
a dataset usually over-describes the data relationships. Thus, an important issue is 
how to select a relevant subset of features based on their criteria. A good feature se-
lection method should heighten the success probability of the learning methods [1, 2]. 
In other words, this mechanism helps to eliminate noises or non-representative fea-
tures which can impede the recognition process.  

Recently, Random Forest (RF) was proposed based on an ensemble of CART tree 
classifications [3]. This method turns out better results compared to other classifiers 
including Adaboost, Support Vector Machine and Neural Network. Researchers ap-
plied RF as a feature selection method [4, 5]. Some tried RF directly [4] and others 
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adapted it for relevance feedback [5]. The approach presented in [5] attempts to ad-
dress this problem with correlation techniques. In this paper, we introduce a new 
method of feature selection based on Recursive Feature Elimination. The proposed 
method reduces the set of features via feature ranking criterion. This criterion re-
evaluates the importance of features according to the Gini index [6, 7] and the correla-
tion of training and validation accuracy which are obtained from RF algorithm. By 
that way, we take both feature contribution and correlation of training error into ac-
count. We applied the proposed algorithm to classify several datasets such as Colon 
cancer and Leukemia cancer. The DRFE showed better classification accuracy than 
RF and sometimes it showed better results compared to other studies. 

The rest of this paper is organized as follows. In section 2 we describe feature se-
lection approaches. In Section 3 we briefly review RF and its characteristics that will 
be used in proposed method. The framework of proposed method is presented in Sec-
tion 4. Details of the new feature elimination method will be introduced in Section 5. 
Section 6 explains the experimental design of proposed method and the analysis of 
obtained results. Some concluding remarks are given in Section 7. 

2   Feature Selection Problem 

In this section, we briefly summarize the space dimension reduction and feature selec-
tion methodologies. Feature selection approach has been shown as a very effective 
way in removing redundant and irrelevant features, so that it increases the efficiency 
of the learning task and improves learning performance such as learning time, con-
vergence rate, accuracy, etc. A lot of studies have focused on feature selection litera-
ture [1, 2, 8-11]. As mentioned in [1, 2], there are two ways to determine the starting 
point in a searching space.  The first strategy might start with nothing and succes-
sively adds relevance features called forward selection. Another one, named back-
ward elimination, starts with all features and successively removes irrelevance ones.  

There are two different approaches used for feature selection, i.e. Filter approach and 
Wrapper approach [1, 2]. The Filter approach considers the feature selection process as 
precursor stage of learning algorithms. The most disadvantage of this approach is that 
there is no relationship between the feature selection process and the performance of 
learning algorithms. The second approach focuses on a specific machine learning algo-
rithm. It evaluates the selected feature subset based on the goodness of learning algo-
rithms such as the accuracy, recall and precision values. The disadvantage of this ap-
proach is high computation cost. Some researchers tried to propose methods that can 
speed up the evaluating process to decrease this cost. Some studies used both filter and 
wrapper approaches in their algorithms called hybrid approaches [9, 10, 12-14]. In these 
methods, the feature criteria or randomly selection methods are used to choose the can-
didate feature subsets. The cross validation mechanism is employed to decide the final 
best subset among the whole candidate subsets [6].     

3   Random Forest 

Random Forest is a special kind of ensemble learning techniques [3]. It builds an 
ensemble of CART tree classifications using bagging mechanism [6]. By using  
bagging, each node of trees only selects a small subset of features for the split, which 
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enables the algorithm to create classifiers for high dimensional data very quickly. One 
have to specify the number of randomly selected features (mtry) at each split. The 
default value is sqrt(p) for classification where p is number of features. The Gini 
index [6, 7] is used as the splitting criterion. The largest possible tree is grown and not 
pruned. One should choose the big enough number of trees (ntree) to ensure that 
every input feature is predicted at least several times. The root node of each tree in the 
forest keeps a bootstrap sample from the original data as the training set. The out-of-
bag (OOB) estimates are based on roughly one third of the original data set. By con-
trasting these OOB predictions with the training set outcomes, one can arrive at an 
estimation of the predicting error rate, which is referred to as the OOB estimate of 
error rate. 

To represent what is the out-of-bag (OOB) estimate method, we assume a method 
for building a classifier from training set. We can construct classifiers H(x, Tk) based 
on bootstrap training set Tk from given training set T. The out-of-bag classifier of 
each sample (x, y) in training set is defined as the aggregate of the vote only over 
those classifiers for which Tk does not contain that sample. Thus the out-of-bag esti-
mation of the generalization error is the error rate of the out-of-bag classifier on the 
training set. 

The Gini index is defined as squared probabilities of membership for each target 
category in the node.  

21
( ) 1 ( )

2 j
j

gini N p ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑  (1) 

where p(ωj) is the relative frequency of class ωj at node N. It means if all the samples 
are on the same category, the impurity is zero; otherwise it is positive value. Some 
algorithm such as CART [6], SLIQ [18], and RF [3, 7] were used Gini index as split-
ting criterion. It tries to minimize the impurity of the nodes resulting from split.  In 
Random forest, the Gini decrease for each individual variable over all trees in the 
forest gives a fast variable important that is often very consistent with the permutation 
importance measure [3, 7].  

4   Proposed Approach 

The proposed method used Random Forest module to estimate the performance con-
sisting of the cross validation accuracy and the importance of each feature in training 
data set. Even though RF robust against over-fitting problem itself [3, 6], our ap-
proach can not inherit this characteristic. To deal with the over-fitting problem, we 
use n-fold cross validation technique to minimize generalization error [6].  

The Feature Evaluation module computes the feature importance ranking values 
according to the obtained results from Random Forest module (see Equation 2). The 
irrelevant feature(s) are eliminated and only important features are survived by mean 
of feature ranking value. The survival features are again used as input data of Random 
Forest module. This process is repeatedly executed until it satisfies the desired  
criteria.  
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Fig. 1. The main procedures of our approach 

The set of features, which is a result of learning phase, is used as a filter of test 
dataset in classification phase.  The detail of proposed algorithm will be presented in 
next section. The overall procedure of our approach is shown in Fig. 1. 

5   Dynamic Recursive Feature Elimination Algorithm 

When computing the ranking criteria in wrapper approaches, they usually concentrate 
much on the accuracies of the features, but not much on the correlation of the fea-
tures. A feature with good ranking criteria may not create a good result. Also the 
combination of several features with good ranking criteria, may not give out a good 
result. To remedy the problem, we propose a procedure named Dynamic Recursive 
Feature Elimination (DRFE). 

1. Train data by Random Forest with the cross validation 
2. Calculate the ranking criterion for all features Fi

 rank where i=1..n (n is the 
number of features). 

3. Remove feature by using DynamicFeatureElimination function (for computa-
tional reasons, it may be more efficient if we remove several features at a 
time) 

4. Back to step 1 until reach the desired criteria. 

In step 1, we use Random Forest with n-folders cross vadilation to train the classi-
fier. In the jth cross validation, we will obtain a turtle (Fj, Ajlearn, Ajvalidation) that 
are the feature importance, the learning accuracy and the validation accuracy, respec-
tively. We will use those values to compute the ranking criterion in step 2. 

The cores of our algorithm are presented in step 2. In this step, we use the results 
from step 1 to build ranking criterions which will be used in step 3. The ranking crite-
rion of feature ith is computed as follow  

,
1

( )

| |

learn validationn
j jrank

i i j learn validation
j j j

A A
F F

A A ε=

+
= ×

− +∑  (2) 
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where j=1,.., n is the number of cross validation folders, Fi,j, Aj
learn and Aj

validation are 
the feature importance in terms of the node impurity which can be computed by Gini 
inpurity, the learning accuracy and the validation accuracy of feature j-th obtained 
from RandomForest module, respectively. ε is the real number with very small value. 
The first factor (Fi,j) is presented the Gini decrease for each feature over all trees in 
the forest when we train data by RF. Obviously, the higher decrease of Fi,j is obtained, 
the better rank of feature we have [3, 6] . We use the second factor to deal with the 
overfitting issue [6] as well as the desire of high accuracy. The numerator of the fac-
tor presents for our desire to have high accuracy. The more this value we get, the 
better the rank of the feature is. We want to have a high accuracy in learning and also 
want not too fit the training data which called overfitting problem. To solve this issue, 
we applied the n-folder cross validation technique [6]. We can see that the less differ-
ence between the learning accuracy and the validation accuracy is, the result is the 
more stability of accuracy. In the other words, the target of denominator is to reduce 
overfitting problem. In the case that the learning accuracy is equal to the validation 
accuracy, the difference is equal to 0, we use ε with very small value to avoid the 
fraction coming to ∞. We want to choose the feature with both high stability and high 
accuracy. To deal with this problem, the procedure choose a feature subset only if the 
validation of this selected feature subset is higher than the validation of the previous 
selected feature set. This heuristic method ensures that the feature set we chose al-
ways have better accuracy. As a result of step 2, we have an ordered-list of ranking 
criterion of features.  

In step 3, we propose our feature elimination strategy based on backward approach. 
The proposed feature elimination strategy depends on both ranking criterion and vali-
dation accuracy. The ranking criterion makes the order of features be eliminated and 
the validation accuracy is used to decide whether the chosen subset of features is 
permanently eliminated. In normal case, our method eliminates features having the 
smallest value of ranking criterion. The new subset is validated by RandomForest 
module. The obtained validation accuracy plays a role of decision making. It is used 
to evaluate whether the selected subset is accepted as new candidate of features. If the 
obtained validation accuracy is lower than the previous selected subset accuracy, it 
tries to eliminate other features based on their rank values.  

This iteration is stopped whenever the validation accuracy of the new subset is 
higher than the previous selected subset accuracy. If there is no feature to create new 
subset and no better validation accuracy, the current subset of features is considered as 
the final result of our learning algorithm. Otherwise the procedure goes back to step 1. 

6   Experiments 

We tested the proposed algorithm with several datasets including two public datasets 
(Leukemia and Colon cancer) to validate our approach. In this section, we represent 
the description of used datasets, our experimental configurations, and some evalua-
tions about the experimental results. 

6.1   Datasets 

The colon cancer dataset contains gene expression information extracted from DNA 
microarrays [1]. The dataset consists of 62 samples in which 22 are normal samples 
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and 40 are cancer tissue samples, each has 2000 features. We randomly choose 31 
samples for training set and the remaining 31 samples were used as testing set. 
(Availble at: http://sdmc.lit.org.sg/GEDatasets/Data/ColonTumor.zip).  

The leukemia dataset consists of 72 samples divided into two classes ALL and 
AML [15]. There are 47 ALL and 25 AML samples and each contains 7129 features. 
This dataset was divided into a training set with 38 samples (27 ALL and 11 AML) 
and a testing set with 34 samples (20 ALL and 14 AML) (Availble at: 
http://sdmc.lit.org.sg/GEDatasets/ Data/ALL-AML_Leukemia.zip). 

6.2   Experimental Environments 

Our proposed algorithm was coded using R language (http://www.r-project.org; R 
Development Core Team, 2004), and RandomForest packages (from A. Liaw and M. 
Wiener) for random forest module. All experiments are conducted on a Pentium IV 
1.8 GHz personal computer. The learning and validation accuracies were determined 
by means of 4-fold cross validation. The data was randomly split into a training set 
and a testing set. In this paper, we used RF with the original dataset as the base-line 
method. The proposed algorithm and the base-line algorithm were executed with the 
same training and testing datasets to compare the efficiency of the two methods.  

 
Fig. 2. The comparison of classification accuracy between DRFE (dash line) and RF (dash-dot 
line) via 50 trials with parameter ntree = {500, 1000, 1500, 2000} in case of Colon dataset 
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6.3   Experimental Results and Analysis 

6.3.1   Colon Cancer 
The data was randomly divided into a training set of 50 samples and a testing set of 12 
for 50 times, and our final results were averaged over these 50 independent trials (Fig. 
2). In our experiments, we use the default value for the ntry parameter (see Sec. 3) and 
the ntree parameter was tried with different values of 500, 1000, 1500, and 2000. 

The summary of classification results are depicted in Table 1. The classification 
accuracy of the proposed algorithm is significantly better than the baseline one. Table 
2 presents the average number of selected features obtained from all experiments. As 
mentioned above, several features are eliminated each iteration because of speed-up 
(Sec. 5). The proposed method achieves accuracy of 85.5% when performing on 
about 141 genes predictors retained after using the DRFE procedure. This number of 
genes only makes up about 7.1% (141/2000) of the overall genes. The method not 
only increases the classification accuracy but also reduces the standard deviation 
values (Table 1). 

Table 1. The average classification rate of Colon cancer over 50 trials (average % of 
classification accuracy ±standard deviation) 

Tree number 500 1000 1500 2000 
RF only 75.6±8.9 76.0±9 79.3±6.8 78.0±7.1 
DRFE 83.5±5.6 85.5±4.5 84.0±5.1 83.0±6.0 

Some studies have done in terms of feature selection approaches. The comparison 
of those studies’ results and our approach’s result are depicted in Table 2. Our method 
sometimes showed better results compared to the old ones. In addition, the standard 
deviation values of the proposed method are much lower than both RF (see Table 1) 
and other methods (Table 2). It shows that the proposed method turned out more sta-
ble results than previous ones.   

Table 2. The best prediction rate of some studies in case of Colon dataset 

Type of classifier Prediction rate (%) 
GA\SVM [9] 84.7±9.1 
Bootstrapped GA\SVM [10] 80.0 
Combined kernel for SVM [16] 75.33±7.0 
DRFE 85.5±4.5 

6.3.2   Leukemia Cancer 
As mentioned in Sec. 6.1, the Leukemia dataset is already divided into training and 
testing set. To setup the 50 independent trials, we randomly selected 4000 features 
among 7129 given set of features. In this experiment, the ntree parameter was set to 
1000, 2000, 3000, and 4000. By applying DRFE, the classification accuracies are 
significantly improved in all 50 trials (Fig. 3). 
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Fig. 3. The comparison of classification accuracy between DRFE (dash line) and RF (dash-dot 
line) via 50 trials with parameter ntree = {1000, 2000, 3000, 4000} in case of Leukemia dataset 

The summary of classification results are depicted in Table 3. In those experi-
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(Step=50). Our proposed method achieved the accuracy of 95.94% when performing 
on about 55 genes predictors retained by using DRFE procedure. This number of 
obtained genes only makes up about 0.77% (55/7129) of the whole set of genes. 

Table 3. Classification results of leukemia cancer (average % of classification accuracy 
±standard deviation) 

Tree number 1000 2000 3000 4000 
RF only 77.59±2.6 77.41±1.9 77.47±2.5 76.88±1.9 
DRFE 95.71±3.1 95.53±3.3 95.94±2.7 95.76±2.8 

And again, we compare the prediction results of our method and some other stud-
ies’ results performed on Leukemia dataset (Table 4). The table shows the classifica-
tion accuracy of our method is much higher than these studies’ one. 
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Table 4. The best prediction rate of some studies in case of Leukemia data set 

Type of classifier Prediction rate (%) 
Weighted voting[8] 94.1 
Bootstrapped GA\SVM [10] 97.0 
Combined kernel for SVM [16] 85.3±3.0 
Multi-domain gating network [17] 75.0 
DRFE 95.94±2.7 

7   Conclusions 

In this paper, we introduced the novel method in terms of feature selection. The RF 
algorithm itself is particularly suited for analyzing high-dimensional dataset. It can 
easily deal with a large number of features as well as a small number of training sam-
ples. Our method not only employed RF by mean of conventional REF but also made 
it fluently adapt to feature elimination task by using the DRFE procedure. Based on 
the defined ranking criterion and the dynamic feature elimination strategy, the pro-
posed method obtains higher classification accuracy and more stable results than the 
original RF. The experiments achieved a high recognition accuracy of 85.5%±4.5 
when performing on Colon cancer dataset with only a subset of 141 genes and the 
accuracy of 95.94%±2.7 in case of Leukemia cancer using a subset of 67 genes. The 
experimental results also showed a significant improvement in the classification accu-
racy compare to the original RF algorithm especially in case of Leukemia cancer 
dataset.   

Acknowledgement 

This research was supported by RIC (Regional Innovation Center) in Hankuk Avia-
tion University. RIC is a Kyounggi-Province Regional Research Center designated by 
Korea Science and Engineering Foundation and Ministry of Science & Technology.  

References 

1. Kohavi, R. and John, G.H.: Wrappers for Feature Subset Selection, Artificial Intelligence 
(1997) pages: 273-324 

2. Blum, A. L. and Langley, P.: Selection of Relevant Features and Examples in Machine 
Learning, Artificial Intelligence, (1997) pages: 245-271 

3. Breiman, L.: Random forest, Machine Learning, vol. 45 (2001) pages: 5–32. 
4. Torkkola, K., Venkatesan, S., Huan Liu: Sensor selection for maneuver classification, 

Proceedings. The 7th International IEEE Conference on Intelligent Transportation Sys-
tems (2004) page(s):636 - 641  

5. Yimin Wu, Aidong Zhang: Feature selection for classifying high-dimensional numerical 
data, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, vol. 2 (2004) Pages: 251-258 



10 H.-N. Nguyen and S.-Y. Ohn 

 

6. Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification (2nd Edition), John Wiley & 
Sons Inc. (2001) 

7. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Regression 

Trees, Chapman and Hall, New York (1984) 
8. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, J. P., Mesirov, J., Coller, 

H., Loh, M. L., Downing, J.R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E.: Mo-
lecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expres-
sion Monitoring,” Science, vol. 286 (1999) pages: 531-537. 

9. Fröhlich, H., Chapelle, O., and Schölkopf, B.: Feature Selection for Support Vector Ma-
chines by Means of Genetic Algorithms, 15th IEEE International Conference on Tools 
with Artificial Intelligence (2003) pages: 142 

10. Chen, Xue-wen: Gene Selection for Cancer Classification Using Bootstrapped Genetic 
Algorithms and Support Vector Machines, IEEE Computer Society Bioinformatics Con-
ference (2003) pages: 504 

11. Zhang, H., Yu, Chang-Yung and Singer, B.: Cell and tumor classification using gene ex-
pression data: Construction of forests, Proceeding of the National Academy of Sciences of 
the United States of America, vol. 100 (2003) pages: 4168-4172 

12. Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection, Proceedings of 
the 18th  ICML ( 2001) 

13. Ng, A. Y.: On feature selection: learning with exponentially many irrelevant features as 
training examples”, Proceedings of the Fifteenth International Conference on Machine 
Learning (1998) 

14. Xing, E., Jordan, M., and Carp, R.: Feature selection for highdimensional genomic mi-
croarray data”, Proc. of the 18th ICML (2001) 

15. Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., and Levine, A.: 
Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Nor-
mal Colon Tissues Probed by Oligonucleotide Arrays, Proceedings of National Academy 
of Sciences of the United States of American, vol 96 (1999) pages: 6745-6750. 

16. Nguyen, H.-N, Ohn, S.-Y, Park, J., and Park, K.-S.: Combined Kernel Function Approach 
in SVM for Diagnosis of Cancer, Proceedings of the First International Conference on 
Natural Computation (2005) 

17. Su, T., Basu, M., Toure, A.: Multi-Domain Gating Network for Classification of Cancer 
Cells using Gene Expression Data, Proceedings of the International Joint Conference on 
Neural Networks (2002) pages: 286-289 

18. Mehta M., Agrawal R., Rissanen J.: SLIQ: A Fast Scalable Classifier for Data Mining, 
Proceeding of the International Conference on Extending Database Technology (1996) 
pages: 18-32 



Gene Feature Extraction Using T-Test Statistics
and Kernel Partial Least Squares

Shutao Li1, Chen Liao1, and James T. Kwok2

1 College of Electrical and Information Engineering
Hunan University

Changsha 410082, China
2 Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

shutao li@yahoo.com.cn, lc337199@sina.com, jamesk@cs.ust.hk

Abstract. In this paper, we propose a gene extraction method by us-
ing two standard feature extraction methods, namely the T-test method
and kernel partial least squares (KPLS), in tandem. First, a preprocess-
ing step based on the T-test method is used to filter irrelevant and noisy
genes. KPLS is then used to extract features with high information con-
tent. Finally, the extracted features are fed into a classifier. Experiments
are performed on three benchmark datasets: breast cancer, ALL/AML
leukemia and colon cancer. While using either the T-test method or
KPLS does not yield satisfactory results, experimental results demon-
strate that using these two together can significantly boost classification
accuracy, and this simple combination can obtain state-of-the-art per-
formance on all three datasets.

1 Introduction

Gene expression studies by DNA microarrays provide unprecedented chances be-
cause researchers can measure the expression level of tens of thousands of genes
simultaneously. Using this microarray technology, a comprehensive understand-
ing of exactly which genes are being expressed in a specific tissue under various
conditions can now be obtained [3].

However, since the gene dataset usually includes only a few samples but with
thousands or even tens of thousands of genes, such a limited availability of
high-dimensional samples is particularly problematic for training most classifiers.
As such, oftentimes, dimensionality reduction has to be employed. Ideally, a
good dimensionality reduction method should eliminate genes that are irrelevant,
redundant, or noisy for classification, while at the same time retain all the highly
discriminative genes [11].

In general, there are three approaches to gene (feature) extraction, namely,
the filter, wrapper and embedded approaches. In the filter approach, genes are
selected according to the intrinsic characteristics. It works as a preprocessing step
without the incorporation of any learning algorithm. Examples include the near-
est shrunken centroid method, TNoM-score based method and the T-statistics

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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method [8]. In the wrapper approach, a learning algorithm is used to score the
feature subsets based on the resultant predictive power, and an optimal feature
subset is searched for a specific classifier [4]. Examples include recursive feature
elimination, and genetic algorithm-based algorithms.

In this paper, we propose a new gene extraction method based on the filter ap-
proach. First, genes are preprocessed by the T-test method to filter irrelevant and
noisy genes. Then, kernel partial least squares (KPLS) is used to extract features
with high information content and discriminative power. The rest of this paper is
organized as follows. In Section 2, we first review the T-test method and KPLS.
The new gene extraction method is presented in Section 3. Section 4 then presents
the experimental results, which is followed by some concluding remarks.

2 Review

In the following, we suppose that a microarray dataset containing n samples is
given, with each sample x represented by the expression levels of m genes.

2.1 T-Test Method

The method is based on the t-statistics [7]. Denote the two classes as positive
(+) class and negative (−) class. For each feature xj , we compute the mean μ+

j

(respectively μ−j ) and standard deviation δ+j (respectively δ−j ) for the + class
(respectively, − class) samples. Then a score T (xj) can be obtained as:

T (xj) =
|μ+

j − μ−j |√
(δ+

j )2

n+
+

(δ−
j )2

n−

,

where n+ and n− are the numbers of samples in the positive and negative classes
respectively.

2.2 Kernel Partial Least Squares (KPLS)

Given a set of input samples {xi}n
i=1 (where each xi ∈ R

m) and the correspond-
ing set of outputs {yi}n

i=1 (where yi ∈ R). Here, only one-dimensional output is
needed because only two-class classification is considered. With the use of a kernel,
a nonlinear transformation of the input samples {xi}n

i=1 from the original input
space into a feature space F is obtained, i.e. mapping φ : xi ∈ R

m → φ(xi) ∈ F .
The aim of KPLS is then to construct a linear PLS model in this kernel-induced
feature space F . Effectively, a nonlinear kernel PLS in the original input space is
obtained and the mutual orthogonality of the score vectors can be retained.

Let Φ be the n×m′ matrix of input samples in the feature space F , and its
ith row be the vector φ(xi)T . Let m′ be the dimensionality of φ(xi), which can
be infinite. Denote φ′ the n×m′ deflated dataset and Y ′ the n×1 deflated class
label. Then the rule of deflation is



Gene Feature Extraction Using T-Test Statistics and KPLS 13

φ′ = φ− t(tTφ), (1)
Y ′ = Y − t(tTY ).

Here, t is the score vector (component) which is obtained in the following way.
Let w and c be the weight vectors. The process starts with random initialization
of the Y-score u and then iterates the following steps until convergence:

1: w = XTu/(uTu);
2: ‖w‖ → 1;
3: t = Xw;
4: c = Y T t/tT t;
5: u = Y c/(cT c);
6: Repeat steps 1.-5.

The process is iterated for Fac times. Subsequently, the deflated dataset can be
obtained from the original dataset and the PLS component, while the deflated
class label be obtained from the original class labels and the PLS component.

Denote the sequence of t’s and u’s obtained n × 1 vectors t1, t2, . . . , tFac

and u1, u2, . . . , uFac, respectively. Moreover, let T = [t1, t2, . . . , tFac] and U =
[u1, u2, . . . , uFac]. The “kernel trick” can then be utilized instead of explicitly
mapping the input data, and results in: K = ΦΦT , where K stands for the n×n
kernel matrix: K(i, j) = k(xi, xj), where k is the kernel function. K can now be
directly used in the deflation instead of φ, as

K ′ = (In − ttT )K(In − ttT ). (2)

Here, K ′ is the deflated kernel matrix and In is n-dimensional identity matrix.
Now Eq.(2) takes the place of Eq.(1). So deflated kernel matrix is obtained by the
original kernel matrix and the PLS component. In kernel PLS, the assumption
that the variables of X have zero mean in linear PLS should also hold. The
procedure must be applied to centralize the mapped data in the feature space
F as:

K = (In −
1
n

1n1T
n )K(In −

1
n

1n1T
n ).

Here, 1n is the n × 1 vector with all elements equal to one. Given a set of test
samples {zi}n

i=1 (where zi ∈ R
m), its projection into the feature space is

Dp = KtU(T TKU)−1,

where Dp = [d1, d2, . . . , dni ]T is a nt × p matrix, the columns of Dp are the p
KPLS components and the rows of Dp are the nt test samples in the reduced-
dimensional space.Kt is the nt×n kernel matrix defined on the test set such that
Kt(i, j) = k(zi, xj). T TKU is an upper triangular matrix and thus invertible.
The centralized test set kernel Gram matrix Kt can be calculated by [10,9]

Kt = (Kt −
1
n

1n1T
n )K(In −

1
n

1n1T
n ).



14 S. Li, C. Liao, and J.T. Kwok

3 Gene Extraction Using T-Test and KPLS

While one can simply use the T-test method or KPLS described in Section 2
for gene extraction, neither of them yields satisfactory performance in practice1.
In this paper, we propose using the T-test and KPLS in tandem in performing
gene extraction. Its key steps are:

1: (Preprocessing using T-test): Since the samples are divided into two classes,
one can compute the score for each gene by using the T-statistics. Those
genes with scores greater than a predefined threshold T are considered as
discriminatory and are selected. On the other hand, those genes whose scores
are smaller than T are considered as irrelevant/noisy and are thus eliminated.

2: (Feature extraction using KPLS): The features extracted in the first step are
further filtered by using KPLS.

3: (Training and Classification): Using the features extracted, a new training
set is formed which is then used to train a classifier. The trained classifier
can then be used for predictions on the test set.

A schematic diagram of the whole process is shown in Figure 1.

Fig. 1. The combined process of gene extraction and classification

4 Experiments

4.1 Setup

In this section, we evaluate the performance of the proposed gene selection
method on three benchmark datasets:

1. Breast cancer dataset: It contains 7,129 genes and 38 samples. 18 of these
samples are ER+ (estrogen receptor) while the remaining 20 are ER− [12].

1 This will be experimentally demonstrated on several benchmark datasets in Section 4.
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Table 1. Parameter used in the classifiers

breast cancer leukemia colon cancer
K in K-NN 3 13 14

number of hidden units in NN 3 3 3
soft-margin parameter (C) in SVM 1 10 100

Table 2. Testing accuracies (%) when either the T-test or KPLS is used

breast cancer leukemia colon cancer
T-test only T = 1000 86.8 97.2 82.3

T = 2200 76.3 93.1 79.0
T = 2500 65.8 95.8 82.3

KPLS only γ = 2 89.5 93.1 88.7
γ = 5 89.5 93.1 85.5

Table 3. Testing accuracy (%) on the breast cancer dataset

T γ Fac K-NN NN SVM
500 100 10 94.7 97.4 97.4

15 94.7 97.4 97.4
20 76.3 97.4 97.4

200 10 94.7 100.0 100.0
15 94.7 100.0 100.0
20 84.2 100.0 100.0

300 10 94.7 100.0 100.0
15 92.1 100.0 100.0
20 86.8 100.0 100.0

1000 100 10 92.1 100.0 100.0
15 89.5 100.0 100.0
20 94.7 100.0 100.0

200 10 94.7 100.0 100.0
15 97.4 100.0 100.0
20 97.4 100.0 100.0

300 10 92.1 100.0 100.0
15 92.1 100.0 100.0
20 97.4 100.0 100.0

1500 100 10 81.6 86.8 86.8
15 84.2 86.8 84.2
20 81.6 89.4 86.8

200 10 81.6 84.2 84.2
15 81.6 86.8 81.6
20 84.2 86.8 84.2

300 10 81.6 81.6 84.2
15 81.6 81.6 84.2
20 81.6 84.2 84.2
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Table 4. Testing accuracy (%) on the leukemia dataset

T γ Fac K-NN NN SVM
2000 100 10 97.2 98.6 98.6

15 95.8 98.6 98.6
20 97.2 98.6 98.6

200 10 97.2 98.6 98.6
15 98.6 98.6 98.6
20 95.8 98.6 98.6

300 10 97.2 98.6 98.6
15 98.6 98.6 98.6
20 98.6 98.6 98.6

2500 100 10 94.5 98.6 98.6
15 95.8 98.6 98.6
20 91.7 98.6 98.6

200 10 94.4 100.0 100.0
15 97.2 100.0 100.0
20 83.3 100.0 100.0

300 10 94.4 100.0 100.0
15 94.4 100.0 100.0
20 83.3 100.0 100.0

3000 100 10 95.8 100.0 100.0
15 90.3 100.0 100.0
20 86.1 100.0 100.0

200 10 95.8 100.0 100.0
15 90.3 100.0 100.0
20 79.2 100.0 100.0

300 10 95.8 98.6 98.6
15 90.3 98.6 98.6
20 76.4 98.6 98.6

2. Leukemia dataset: It contains 7,129 genes and 72 samples. 47 of these sam-
ples are of Acute Myeloid Leukemia (AML) and the remaining 25 are of
Acute Lymphoblastic Leukemia (ALL) [5].

3. Colon cancer dataset: It contains 2,000 genes and 62 samples. 22 of these
samples are of normal colon tissues and the remaining 40 are of tumor
tissues [1].

Using the genes selected, the following classifiers are constructed and compared
in the experiments:

1. K-nearest neighbor classifier (k-NN).
2. Feedforward neural network (NN) with a single layer of hidden units. Here,

we use the logistic function for the hidden units and the linear function for the
output units. Back-propagation with adaptive learning rate and momentum
is used for training.

3. Support vector machine (SVM). In the experiments, the linear kernel is
always used.
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Table 5. Testing accuracy (%) on the colon cancer dataset

T γ Fac K-NN NN SVM
1700 100 2 87.1 88.7 90.3

5 88.7 88.7 88.7
10 87.1 88.7 88.7

200 2 87.1 88.7 90.3
5 88.7 88.7 88.7
10 87.1 88.7 88.7

300 2 87.1 90.3 90.3
5 88.7 82.3 90.3
10 83.9 90.3 90.3

2200 100 2 87.1 91.9 90.3
5 91.9 87.1 90.3
10 90.3 91.9 91.9

200 2 87.1 88.7 90.3
5 91.9 87.1 90.3
10 90.3 90.3 90.3

300 2 87.1 90.3 90.3
5 91.9 87.1 90.3
10 87.1 90.3 90.3

2500 100 2 88.7 88.7 88.7
5 87.1 79.0 87.1
10 82.3 82.3 85.5

200 2 88.7 87.1 88.7
5 87.1 85.5 87.1
10 80.7 83.9 80.7

300 2 88.7 90.3 88.7
5 87.1 83.9 87.1
10 82.3 83.9 85.5

Each of these classifiers involves some parameters. The parameter settings used
on the different datasets are shown in Table 1. Because of the small training set
size, leave-one-out (LOO) cross validation is used to obtain the testing accuracy.
Both gene selection and classification are put together in each LOO iteration,
i.e., they are trained on the training subset and then the performance of the
classifier with the selected features is assessed with the left out examples.

4.2 Results

There are three adjustable parameters in the proposed method:

1. The threshold T associated with the T -test method;
2. The width parameter γ in the Gaussian kernel

k(x, y) = exp(−‖x− y‖2/γ),

used in KPLS;
3. The number (Fac) of score vectors used in KPLS.
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Table 6. Testing accuracies (%) obtained by the various methods as reported in the
literature

classifier breast cancer leukemia colon cancer
Adaboost (decision stumps) [2] - 95.8 72.6

SVM (quadratic kernel) [2] - 95.8 74.2
SVM (linear kernel) [2] 97.4 94.4 77.4
RVM (linear kernel) [6] 94.7 94.4 80.6

RVM (no kernel) [6] 89.5 97.2 88.7
logistic regression (no kernel) [6] - 97.2 71.0

sparse probit regression - 95.8 84.6
(quadratic kernel) [6]

sparse probit regression 97.4 97.2 91.9
(linear kernel) [6]

sparse probit regression 84.2 97.2 85.5
(no kernel) [6]

JCFO (quadratic kernel) [6] - 98.6 88.7
JCFO (linear kernel) [6] 97.4 100.0 96.8

proposed method 100.0 100.0 91.9

As a baseline, we first study the individual performance of using either the
T-test method and KPLS for gene extraction. Here, only the SVM is used as the
classifier. As can be seen from Table 2, the accuracy is not high. Moreover, the
performance is not stable when different parameter settings are used.

We now study the performance of the proposed method that uses both the
T-test method and KPLS in tandem. Testing accuracies, at different parameter
settings, on the three datasets are shown in Tables 3, 4 and 5, respectively. As
can be seen, the proposed method can reach the best classification performance
of 100% on both the breast cancer and leukemia datasets. On the colon cancer
dataset, it can also reach 91.9%.

Besides, on comparing the three classifiers used, we can conclude that the
neural network can attain the same performance as the SVM. However, its train-
ing time is observed to be much longer than that of the SVM. On the other hand,
the K-NN classifier does not perform as well in our experiments.

We now compare the performance of the proposed method with those of the
other methods as reported in the literature. Note that all these methods are
evaluated using leave-one-out cross-validation and so their classification accura-
cies can be directly compared. As can be seen in Table 6, the proposed method,
which attains the best classification accuracy (of 100%) on both the breast can-
cer and leukemia datasets, outperforms most of the methods. Note that the Joint
Classifier and Feature Optimization (JCFO) method [6] (using the linear ker-
nel) can also attain 100% on the Leukemia dataset. However, JCFO relies on
the Expectation-Maximization (EM) algorithm [6] and is much slower than the
proposed method.
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5 Conclusions

In this paper, we propose a new gene extraction scheme based on the T-test
method and KPLS. Experiments are performed on the breast cancer, leukemia
and colon cancer datasets. While the use of either the T-test method or KPLS for
gene extraction does not yield satisfactory results, the proposed method, which
uses both the T-test method and KPLS in tandem, shows superior classification
performance on all three datasets. The proposed gene extraction method thus
proves to be a reliable gene extraction method.
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Abstract. There have been a great deal of research on learning from imbalanced
datasets. Among the widely used methods proposed to solve such a problem, the
most common are based either on under or over sampling of the original dataset.
In this work, we evaluate several methods of under-sampling, such as Tomek
Links, with the goal of improving the performance of the classifiers generated by
different ML algorithms (decision trees, support vector machines, among others)
applied to problem of determining the structural similarity of proteins.

1 Introduction

There are several aspects that can have impact on the performance of classification
systems. One of the them regards the non-uniform distribution of instances among the
classes. When such a difference in the instance distributions per class is large, we have
the problem of imbalanced dataset [1]. In this case, the classifiers generated, via the
Machine Learning (ML) algorithms, often have difficulty in classifying the concept
associated with minority class (the class with the smallest number of instances).

There have been a great deal of research on this area of learning from imbalanced
datasets [2,3,4,5]. Among the widely used methods proposed to solve such a problem,
the most common are based either on under or over sampling of the original imbalanced
dataset. In this work, we evaluate several methods of under-sampling with the goal
of improving the performance of the classifiers generated by different ML algorithms
applied to problem of determining the structural similarity of proteins [6,7,8].

More specifically, we address the problem of recognizing structural class in protein
folds by using ML algorithms such as: Decision Trees, Naive Bayes Classifiers, k-
Nearest Neighbor, Support Vector Machines and Artificial Neural Networks. Proteins
are said to have a common fold, which is a common three-dimension (3-D) pattern, if
they have the same major secondary structure1 in the same arrangement and with the

1 Secondary structure refers to local structural elements such as hairpins, helixes, beta-pleated
sheets, among others.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 21–29, 2006.
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same topology [9]. In our analysis, the focus is on structural predictions in the context
of a particular classification of the 3-D folds, by using the taxonomy of the Structure
Classification of Protein (SCOP) database [10].

The SCOP database is a hierarchical classification of known protein structures, or-
ganized according to their evolutionary and structural relationship. Such a database is
divided into four hierarchical levels: class, fold, superfamily, and family. In our work,
we will focus on class level, at which the proteins are labeled according to the following
structural classes: all-α, all-β, α/β, α+β, and small.

The current datasets, as explained in Section 2.2, formed based on the previous clas-
sification are clearly imbalanced. For example, in the dataset presented in [8], the major-
ity class (α/β) contains 203 instances, whereas two classes is composed of, respectively,
only 46 and 45 instances (α+β and small). In fact, experimental works have shown that
a significant number of proteins in class α+β is incorrectly classified as either from
class all-β or from class α/β [11].

2 Material and Methods

In order to minimize the problems caused by the non-uniform distribution of instances
in our data set, we will apply to it - priori to the learning phase - different under-
sampling techniques: Random, Tomek Links, One-sided selection (OSS), Neighbor-
hood Cleaning Rule (NCL) and Condensed Nearest Neighbor Rule (CNN). Also, we
proposed a modification to the original CNN.

We constrain our analysis to under-sampling techniques for some specific charac-
teristics of our dataset. For example, as it will be explained in Section 2.2, one of the
properties of the dataset we analyze is that the similarity degree in terms of sequence of
the proteins is set to be less than 40%. Thus, such a requirement makes it inviable the
use of over-sampling techniques (e.g., creating new instances by interpolation), for this
property could be violated.

2.1 Under-Sampling Techniques

In this work, we evaluate six different methods of under-sampling to balance the class
distribution on the training dataset. The methods used are described next.

– Random. This is a non-heuristic method that aims to balance class distribution
through the random elimination of instances belonging to the majority class.

– Tomek Links [12]. Tomek links can be defined as follows. Given two instances
xi and xj belonging to different classes, and d(xi,xj) is the distance between xi

and xj . A (xi,xj) pair is a Tomek link if there is no instance xk, such that d(xk,xi)
< d(xi,xj) or d(xk,xj) < d(xi,xj). If two instances (xi,xj) form a Tomek link,
then either one is noise or both ones are borderline. Tomek links can be used as
an under-sampling method or as a data cleaning method. As an under-sampling
method, only instances belonging to the majority class are eliminated, and as a data
cleaning method, instances of both classes are removed.

– Condensed Nearest Neighbor Rule (CNN) [13]. CNN is used to find a consistent
subset of instances, not necessarily the smallest one. A subset T ′ ⊆ T is consistent
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with T if using a 1-Nearest Neighbor (1-NN), T’ correctly classifies the instances in
T. The rationale is to eliminate the instances from the majority class that are distant
from the decision border, for they could be considered less relevant for learning.

An algorithm to create a subset T’ from T as an under-sampling method is the
following [5]. First, randomly draw one instance from the majority class and all
instances from the minority class. Add these instance to T’. Afterwards, build a
1-NN with the instances in T’, and classify the instances in T. Every misclassified
instance from T is moved to T’.

– Complement Condensed Nearest Neighbor Rule (CNNc). We proposed a modi-
fication to the original CNN. In our method, CNNc, in contrast to the CNN, every
correctly classified instance from T is moved to T’. The aim to remove instance
close to the decision border, which could confuse the learning algorithm.

– One-sided selection (OSS) [14]. OSS aims at creating a training dataset composed
only by ”safe instances. In order to do so, this technique removes instances that
are noisy, redundant, or near that decision border. As the other under-sampling
techniques previously described, OSS removes only instances from the majority
class.

– Neighborhood Cleaning Rule (NCL) [15]. NCL is a modification of the Wilson’s
Edited Nearest Neighbor Rule (ENN). ENN [16] removes instances whose class
label differs from the class given by a 3-NN.

For a two-class problem the algorithm can be described in the following way.
For each instance xi in the training set, its three nearest neighbors are found. If xi

belongs to the majority class and the classification given by the 3-NN contradicts
the original class of xi, then xi is removed. If xi belongs to the minority class and
its 3-NN misclassifies xi, then the nearest neighbors that belong to the majority
class are removed.

2.2 Datasets

We use the dataset2 in [8]. This dataset is a modification of the one created and used
in [7]. Ding and Dubchak’s dataset3 is formed by a training set (Ntrain) and a test set
(Ntest). The training set was extracted from the (PDB selects) sets [17] and comprises
313 proteins from 27 most populated SCOP folds (more than seven instances for each
fold). For this set, all the pairwise sequence identities are less than 35%. The test set was
extracted from the PDB 40D [10]. Such a set contains 386 representatives (excluding
the sequences already in the training set) of the same 27 SCOP folds with the pairwise
sequence identities less than 35%.

The features used in the learning system were extracted from protein sequences ac-
cording to the method described in [18]. In that work, they considered several features
for predicting protein folds using global description of the chain of amino acids repre-
senting proteins. Such descriptors were computed from physical, chemical, and struc-
tural properties of the constituent amino acids: hydrophobicity, polarity, polarizability,
predicted secondary structure, normalized van der Waals volume and amino acid com-
position of the protein sequence.

2 http://www.brc.dcs.gla.ac.uk/˜ actan/eKISS/data.htm
3 http://www.nersc.gov/˜cding/protein/
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These descriptors essentially represent the frequencies with which such properties
change along the sequence and their distribution in the chain. Each of this properties
is described by a vector with 21 continuous attributes (with exception of the amino
acid composition, for there are only 20 amino acids). In our work, in order to form
an input pattern, we use all descriptors with all their features at once and one at-
tribute representing the length of the protein, that is, our input vector has 126
attributes.

It is important to point out that [8] cleaned their data set in relation to previous
dataset in [7] by removing errors from both training and testing examples. Also the
authors applied the protein fold classification according to SCOP 1.61 [10] and Astral
1.61 [19] with sequence identity less than 40% (November 2002). After performing this
stage, the resulting data set contained 582 instances distributed in 25 SCOP folds or, in
a higher hierarchical level, four SCOP structural classes (all-α, all-β, α/β, α+β) plus a
class for those proteins not in any of the former classes (small) - Table 1. In our work,
we will use this data set with the four SCOP classification (plus the additional class
small) as the classes to be learned by our ML techniques.

Table 1. Number of instances per class

Structural Class #Instances
all-α 111
all-β 177
α/β 203
α+β 46
small 45
Total 582

2.3 Evaluation

The comparison of two supervised learning methods is, often, accomplished by analyz-
ing the statistical significance of the difference between the mean of the classification
error rate, on independent test sets, of the methods evaluated. In order to evaluate the
mean of the error rate, several (distinct) datasets are needed. However, the number of
datasets available is often limited. One way to overcome this problem is to divide the
data sets into training and test sets by the use of a k-fold cross validation procedure
[20,21,22].

This procedure can be used to compare supervised methods, even if only one data
set is available. The procedure works as follows. The data set is divided into k disjoint
equal size sets. Then, training is performed in k steps, each time using a different fold as
the test set and the union of the remaining folds as the training set. Applying the distinct
algorithms to the same folds with k at least equal to 10, the statistical significance of
the differences between the methods can be measured, based on the mean of the error
rate from the test sets [20,21,22]. Besides the mean of the global classification error
rate, we evaluate the mean of the classification error rate for the majority and minority
classes.
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3 Experiments

In our experiments, in order to generate the new training sets, each one of the under-
sampling techniques was applied to the different partitions obtained with the 10-fold
stratified cross validation (always keeping one of the 10 partitions unmodified - the one
to be used as test set). Based on this, for each ML algorithm, we had eight experiments:
one with the original dataset [8] (without the use of the under-sampling technique) and
seven experiments (one for each under-sampling technique).

In this work, in order to deal with problems with more than two class, we will follow
the strategy in [5]: we will refer as majority class the composition of instances of classes
all-α, all-β and α/β, whereas the minority class will be composed by instances of the
classes α+β, and small. As a computing tool to implementation of the techniques of data
pre-processing, we used Matlab 7.0.4 Released 14 and for running the ML algorithms,
the software Weka 3.4 [21].

The values for the parameters of the ML algorithms were chosen as follows. For ex-
ample, for an algorithm with only one parameter, an initial value for such a parameter
was chosen followed by the run of the algorithm. Then, experiments with a larger and
smaller value were also performed. If with the initially chosen value the classifier ob-
tained had the best results (in terms of validation error), then no more experiments were
performed. Otherwise, the same process was repeated for the parameter value with the
best result so far.

Using the previous procedure, we arrived to the following values for the parameters
(the parameters not mentioned were set to their default values) of the ML algorithms
for each of the dataset considered (WEKA implementation):

– Naive Bayes Classifier (NB): KernelEstimator = true.
– k-Nearest Neighbor (k-NN): distance Weighting = 1/distance.
– Decision Tree (DT): all parameters were set to their default.
– Artificial Neural Network (multi-layer perceptron with backpropagation) (NN):

maximum number of iteration = 1000, momentum = 0.9, size of the validation set
= 10%, for all the seven datasets; number of hidden neurons for the original, CNN
and OSS datasets was set to 30; for the Tomek Links, Random and NCL datasets
to 20; and for the case of CNNc dataset to 5. Learning rate for the Random, CNN,
NCL and OSS datasets was set to 0.001; for the original and CNNc datasets to 0.1;
and for Tomek Links dataset to 0.01.

– Support Vector Machines (SVM): c was set to 1 to all the seven datasets. The
parameter expoent was set to 1 for the original, Random, CNN, CNNc and OSS
datasets, and to 2 for the NCL and Tomek Links datasets.

4 Results

Table 2 illustrates the results4 obtained with original dataset and the application, pri-
ori to learning, of the six different under-sampling techniques: Random, Tomek Links,

4 Mean and standard deviation of the classification error rate for each of the five ML algorithms
used.
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CNN, CNNc, NCL e OSS. For the original dataset, according to the values in this table
and hypothesis tests, we can conclude that SVM presented a significantly smaller error
rate (17.01%) when compared to each of the other methods. With respect to the other
learning algorithms, the null hypothesis was rejected in favor of NN when compared,
respectively, to NB, k-NN, and DT. The hypothesis null was also rejected in favor of
NB when compared to k-NN and DT. In contrast, there was no evidence to state the
difference of performance between k-NN and DT.

Table 2. Mean (standard deviation) of the global classification error rate

DT k-NN NB SVM NN

Original Dataset 24.58 ± 5.94 24.74 ± 5.20 21.65 ± 4.24 17.01 ± 3.00 18.32 ± 3.15
Random 35.91 ± 7.37 32.65 ± 6.15 34.39 ± 5.91 26.27 ± 4.29 26.28 ± 4.41
Tomek Links 24.41 ± 4.31 26.17 ± 5.40 22.60 ± 3.95 19.07 ± 4.22 18.73 ± 5.17
CNN 37.47 ± 7.13 34.71 ± 5.49 25.59 ± 7.43 25.43 ± 5.06 23.72 ± 5.21
CNNc 32.61 ± 9.08 36.18 ± 8.88 32.74 ± 6.27 31.57 ± 9.09 30.53 ± 9.56
NCL 26.99 ± 6.28 30.45 ± 4.32 25.05 ± 7.84 21.18 ± 3.33 21.36 ± 5.60
OSS 29.16 ± 5.19 33.67 ± 6.03 25.90 ± 6.57 23.21 ± 5.51 23.05 ± 4.34

Tables 3 and 4 illustrate, respectively, the mean (standard deviation) of the classifica-
tion error rate for the minority and majority classes. Here, we consider as majority, due
to the quantity of instances, the class α/β. Whereas, as minority, we consider the class
α+β, despite of it having one more instances that the class small - also, as observed in
first section of this paper, experimental works have shown that a significant number of
proteins in class α+β is incorrectly classified as either from class all-β or from class
α/β [11].

Table 3. Mean (standard deviation) of the classification error rate for α + β

DT k-NN NB SVM NN

Original Dataset 74.50 ± 25.65 82.50 ± 13.39 76.50 ± 18.86 72.00 ± 24.15 69.00 ± 15.78
Random 50.00 ± 23.33 70.00 ± 24.73 55.00 ± 28.23 48.00 ± 29.77 45.00 ± 26.88
Tomek Links 62.50 ± 13.52 75.00 ± 12.39 67.50 ± 19.76 50.50 ± 16.08 54.50 ± 15.87
CNN 61.50 ± 15.86 76.00 ± 11.25 57.50 ± 16.63 69.50 ± 10.88 62.50 ± 9.52
CNNc 41.50 ± 18.46 63.00 ± 22.63 37.50 ± 15.83 37.00 ± 17.48 20.00 ± 15.29
NCL 44.40 ± 13.33 72.00 ± 15.07 58.50 ± 12.04 43.00 ± 13.63 40.50 ± 12.17
OSS 56.00 ± 13.38 70.50 ± 20.79 55.50 ± 17.47 52.50 ± 19.47 40.50 ± 17.27

According to the previous tables, as well as hypotheses tests, one can observe, for
example, that the results obtained with the Random technique were comparable to those
achieved with the OSS technique. Despite of not using any heuristic, the Random tech-
nique has the merit to remove with the same probability any kind of instances (noise,
redundant data and so on).

The application of the Tomek Links under-sampling techniques generated often the
dataset with which the ML algorithms obtained the smallest global classification error
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Table 4. Mean (standard deviation) of the classification error rate for α/β

DT k-NN NB SVM NN

Original Dataset 20.76 ± 9.35 5.93 ± 6.11 8.39 ± 7.33 11.85 ± 5.88 9.40 ± 5.45
Random 35.43 ± 8.24 29.36 ± 5.30 21.24 ± 13.08 36.50 ± 10.66 19.31 ± 10.22
Tomek Links 16.79 ± 8.08 6.43 ± 4.72 11.86 ± 7.44 8.88 ± 6.11 11.88 ± 6.88
CNN 36.50 ± 18.78 24.55 ± 14.42 13.38 ± 10.51 15.26 ± 6.65 20.21 ± 6.43
CNNc 29.17 ± 12.88 32.50 ± 18.69 17.40 ± 16.83 27.02 ± 15.85 25.26 ± 17.46
NCL 20.29 ± 10.57 3.93 ± 3.86 12.21 ± 7.45 9.86 ± 6.00 6.93 ± 4.70
OSS 33.28 ± 9.83 25.50 ± 10.52 14.60 ± 9.45 14.86 ± 7.53 18.31 ± 6.84

rate. Besides, the dataset formed with this technique produced the smallest classification
error rate for the majority class α/β, when compared to those obtained with the other
under-sampling techniques. However, in terms of the classification error rate for the
minority class α+ β, the Tomek Links techniques showed a very poor result.

The NCL technique showed the more consistent results for the criterion analyzed
(improvement in the accuracy of the classifiers built). One of the reasons for this could
be the fact that such a technique can be more robust to remove noisy instances. In fact,
differently from the other under-sampling techniques used, the classifiers built with this
NLC dataset, when compared to the original dataset, showed a reduction of both the
error in the minority class (about 30%) and in the majority class (around 3%) - the other
under-sampling techniques in general caused an increase in incorrect classification rate
related majority class when compared to the original data base (about 4% greater).

In contrast to the NCL technique, the dataset generated with the CNNc, when pre-
sented to the ML algorithms, achieved the largest global and majority class classifi-
cation error rates. Nevertheless, the classifiers built using the dataset created with this
technique presented the smallest classification error rate for the minority class.

Among all the under-sampling techniques applied to our dataset, the CNN technique
presented the worst results. One of the reasons for this is the fact that the CNN technique
eliminates instances from the majority class that are distant from the decision border, for
they could be considered less relevant for learning. In the case of the dataset analyzed
in this paper, even the instances distant from the decision border seem to give important
information for the induction of the classifier.

5 Final Remarks

In this work, we evaluated several under-sampling techniques for balancing datasets.
In general, the ML algorithms that received as inputs the pre-processed datasets (ap-
plication of one of the under-sampling techniques) produced classifiers that were more
accurate with respect to minority class (α+ β). From a mean of the classification error
rate of 75% for the minority class for all classifiers (Table 3 - original dataset), the use
of under-sampling techniques reduced this rate in 54.2%. However, the under-sampling
techniques led to an increase of the mean of the classification error rate to 19.40% - on
average - for the majority class for all classifiers. Likewise, these techniques led to an
increase of global classification error rate from an average of 21.24% to 27.73%.
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Based on the previous results, one can observe that, in a general way, there is a trade-
off between the errors for majority and minority classes. Nevertheless, the decrease in
the classification error rate for the class α + β (21% on average) is significantly larger
than the increase of classification error rate for the class α/β (around 8%). The NCL
technique was the one to create the datasets with which the ML methods got the best
results. It was able to reduce the classification errors for both majority and minority
classes. However it was not able to reduce the global error due to the increase of wrong
classification of other classes, mainly of the class all-β.

Probably, the decision of not removing any instance of the minority class instances
(even noisy ones) could have influenced in the results. However, the small quantities of
instances of that class led us to such a decision (as in [23]). Furthermore, the fact that
our dataset presents many classes (five) could make harder the learning process. This
happens because the system, after de application of pre-processing techniques, could
turn different the concept of minority and majority classes - on literature the under-
sampling techniques application for problems with two unbalance classes, being rare
its application to many classes problems.
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Abstract. Prediction of protein interactions is one of the central problems in 
post–genomic biology. In this paper, we present an association rule-based pro-
tein interaction prediction method. We adopted neural network to cluster pro-
tein interaction data, and used information theory based feature selection 
method to reduce protein feature dimension. After model training, feature asso-
ciation rules are generated to interaction prediction by decoding a set of learned 
weights of trained neural network and by mining association rules. For model 
training, an initial network model was constructed with public Yeast protein in-
teraction data considering their functional categories, set of features, and inter-
action partners. The prediction performance was compared with traditional 
simple association rule mining method. The experimental results show that pro-
posed method has about 96.1% interaction prediction accuracy compared to 
simple association mining approach which achieved about 91.4% accuracy. 

1   Introduction 

It is known that protein–protein interactions (PPIs) are fundamental reactions in the 
organisms and play important roles by determining biological processes. Therefore, 
comprehensive description and analysis of PPIs would significantly contribute to the 
understanding of biological phenomena and problems. After the completion of the 
genome sequence of yeast (Saccharomyces cerevisiae), researchers have undertaken 
the task of functional analysis of the yeast genome comprising more than 6,300 pro-
teins [1], and abundant interaction data have been produced by many research groups. 
Thus, fresh methods to discover novel knowledge from the interaction data through 
the analysis of these data are needed. 

A variety of attempts have been tried to predict protein functions and interactions 
with various data such as gene expression, PPI data, and literature analysis. Analysis 
of gene expression data through clustering also adopted to predict functions of un-
annotated proteins based on the idea that genes with similar functions are likely to be 
co-expressed [2, 3]. Park et al. [4] analyzed interactions between protein domains in 
terms of the interactions between structural families of evolutionarily related domains. 
Iossifov et al. [5] and Ng et al. [6] inferred new interaction from existing interaction 
data. Even though there are many other approaches for analyzing and predicting pro-
tein interactions, however, many approaches to protein interaction analysis suffered 
from high dimensional property of data which have thousand of features [7]. 
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In this paper, we propose an adaptive neural network based feature association 
mining method for PPI prediction. We used additional association rules for interaction 
prediction those are generated by decoding set of learned weights of neural network. 
We presumed that association rules decoded from neural network would make the 
prediction procedure more robust for unexpected error factors by accounting rela-
tively robust characteristic of neural networks (e.g., error factors would be false posi-
tive or negative interactions those are provided to the prediction model). 

Basically, we use adaptive resonance theory (ART) [8] as an adaptive neural net-
work clustering model to build prediction model. We used ART-1 [9], modified ver-
sion of ART [10], to cluster binary vectors. The advantage of using ART-1 algorithm 
for grouping of feature abundant interaction data is that it adapts the changes in new 
protein interactions without losing key information learned from other interactions 
trained previously. We assumed ‘protein–protein interaction’ of yeast as ‘feature–to–
feature’ association of each interacting proteins. To analyze PPIs with respect to their 
interaction class with their feature association, we use as many features as possible 
from several major public databases such as (Munich Information Center for Protein 
Sequences) MIPS and SGD (Saccharomyces Genome Database) [11, 12] to build rich 
feature vector for each protein interaction. We used the same approach of Rangarajan 
et al. [13] for clustering model design and we also use the same feature selection filter 
of Yu et al. [14] to reduce computational complexity and improve the overall learning 
performance by eliminating non-informative features. 

This paper is organized as follows. In Section 2, we introduce feature selection fil-
ter and describe overall architecture of ART-1 based protein interaction clustering 
model. In Section 3, we present detailed neural network training method with PPI data 
and the decoding method of association rules extracted from trained network. In Sec-
tion 4, we present the representation scheme of protein interaction for neural network 
input, association mining, and experimental results. Finally, concluding remarks and 
future works are given in Section 5. 

2   Feature Dimension Reduction and Protein Cluster Learning 

Feature Dimension Reduction by Feature Selection 

A set of massive features for each protein and interacting pairs are built by utilizing 
several public protein databases [11, 12, 15, 16, 17]. Generally, feature selection is 
necessary when dealing with such high dimensional (feature dimension) data. In our 
study, set of features having no information of its association with other proteins are 
removed by applying feature selection. To filter out non-informative features we 
applied entropy and information gain-based measure, symmetrical uncertainty (SU-
value), as a measure of feature correlation [18]. The procedures of the correlation-
based feature dimension reduction filter of Eom et al. [7] used for our application. 

Enriching Protein Features by Neural Network-Based Cluster Learning 

We use ART-1 neural network to group the class of PPIs by their 13 functional classes 
and the class of interacting counterparts. In our ART-1 based clustering, a protein 
interaction is represented as a prototype vector that is a generalized representation of a 
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set of features of each interacting proteins. The degree of similarity between the mem-
bers of each cluster can be controlled by changing the value of the vigilance parameter 
ρ. We analyzed the cluster formed by using the ART-1 technique by varying the vigi-
lance parameter between the values 0.2 and 0.8. Figure 1 represents the architecture of 
ART-1 based clustering model and the PPIi stand for each protein interaction and it 
includes set of features of two interacting proteins. The overall procedure for clustering 
protein interactions with the ART-1 based clustering model is described in the Appen-
dix. The basic layout of this procedure is identical with the work of Rangarajan et al. 
[13]. The set of weights of trained neural network were decoded as a form of associa-
tion rule with the ‘weight-to-rule’ decoding procedures described in Figure 3 to enrich 
the protein features. 

1 2 nc
. . .

1 2 3 nf
.  .  .G1

G2

PPI1= [    0       1        1                          1    ]

PPIn= [    1       1        0                          0    ]

.  .  .

.  .  .

…

ρ

Vigilance parameter
F1

F2

Gain Control 1

Gain Control 2

Top-down weights tij

Bottom-up weights bij

A Set of training protein-protein interactions  

Fig. 1. The schematic architecture of neural network (ART-1) based clustering model (More 
detailed model constructions are described in [19]) 

3   Rule Extraction from Trained Neural Network 

Learning Feature Associations with Neural Network 

A supervised artificial neural network (ANN) uses a set of training examples or re-
cords. These records include N attributes. Each attribute, An (n = 1, 2, … , N), can be 
encoded into a fixed length binary substring {x1 . . . xi . . . xm(n)}, where m(n) is the 
number of possible values for an attribute An. The element xi = 1 if its corresponding 
attribute value exists, while all the other elements = 0. Then, the proposed number of 
input nodes, I, in the input layer of ANN can be given by 

1 ( )N
nI m n==∑ . 

The input attributes vectors, Xm, to the input layer can be rewritten as Xm = {x1 . . . 
xi . . . xI}m,  m = (1,2,…, M) where M is the total number of input training patterns. 
The output class vector, Ck(k = 1, 2, . . . ,K), can be encoded as a bit vector of a fixed 
length K as follows 

1{ }k k KC ψ ψ ψ… …  where K is the number of different possible 

classes. If the output vector belongs to classk then the element ψk is equal to 1 while 
all the other elements in the vector are zeros. Therefore, the proposed number of  
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output nodes in the output layer of ANN is K. Accordingly the input and the output 
nodes of the ANN are determined and the structure of the ANN is shown in Figure 2. 
The ANN is trained on the encoded vectors of the input attributes and the correspond-
ing vectors of the output classes. The training of ANN is processed until the conver-
gence rate between the actual and the desired output will be achieved. The conver-
gence rate can be improved by changing the number of iterations, the number of hid-
den nodes (J), the learning rate, and the momentum rate. 
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Fig. 2. The structure of the artificial neural network for feature association learning. The two 
weight groups (WG1 and WG2) are decoded into association rule after network training. 

By ANN training, two groups of weights are obtained. The first group, (WG1)i,j, is 
the weights between the input node i and the hidden node j. The second group, 
(WG2)j,k, is the weights of the hidden node j and output node k. A sigmoid is used for 
the activation function of the hidden and output nodes. Then, the total input to the j–th 
hidden node (IHNj) and the output of the j–th hidden node (OHNj) are given by 

,
1

( 1)
I

j i i j
i

IHN x WG
=

=∑ , 
1 ,( 1)

1
.

1
I
i i i j

j x WG
OHN

e =⎡ ⎤−⎣ ⎦
=

∑+
 (1) 

Nextly, the total input to the k–th output node, IONk, is given by 
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Then, the final value of the k–th output node, ψk, is given by 
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The function, ψk = f(xi, (WG1)i,j, (WG2)j,k) is an exponential function in xi since 
(WG1)i,j, (WG2)j,k are constants and its maximum output value is equal to one. Then, 
we can say that “An input vector, Xm, belongs to a classk iff ψk∈ Cm = 1 and all other 
elements in Cm = 0.” 

 

Fig. 3. The rule decoding procedures from the selected best chromosome 

Deriving Association Rules from Trained Network with GA-Based Decoding 

To extract relations (rules) among the input attributes, Xm relating to a specific classk 
one must find the input vector, which maximizes ψk. This is an optimization problem 
and can be stated as ψk(xi) by considering binary data feature vector x. In ψk(xi), xi are 
binary values (0 or 1). Since the objective function ψk(xi) is nonlinear and the con-
straints are binary, it is a nonlinear integer optimization problem. Genetic algorithm 
(GA) can be used to solve this optimization problem by maximizing the objective 
function ψk(xi). In this paper, we used conventional generational-GA procedures with 
this objective function ψk(xi) to find the best chromosome which provided as an input 
of neural network and produce best network output (i.e. highest prediction accuracy). 

With the given parameters, 
- A: set of attributes.   - α: set of attributes (conditional), β: set of result attributes (re-

sult). 
- n: the number of total attribute, γ: the length of feature n. 

    - G: set of the best b chromosome, g: a chromosome in G. 
    - b: the number of total chromosome (|G| = b). 

- μ: the number of total rule found by association rule mining. 
 

Repeat Step 1 to Step 5, for all g in G. 
 

1. Create temporary empty rule t: {α} → {β}, and Set α = β = φ. 
 

2. Divide best chromosome into 2n segments.  
(Each segment in 1 to n is corresponds to each attribute of An for condition of rule). 
(Each segment in n+1 to 2n is corresponds to each attribute of An for result of rule). 

 

3. For all i, i = 1 to n. 
3.1 For all j, j = 1 to γ. 

3.1.1 If the corresponding bit of conditional chromosome is equal to ‘1’, 
       α ← α ∪ Aj. 

3.2 Connect all feature in α with operator ‘AND’. 
 

4. For all i, i = n+1 to 2n. 
4.1 For all j, j = 1 to γ. 

4.1.1 If the corresponding bit of result chromosome is equal to ‘1’, 
β ← β ∪ Aj. 

4.2 Connect all feature in β with operator ‘AND’. 
 

5. For all k, k = 1 to μ. 
        5.1 If any R(k) ≡ t then R ← R – R(k) else R ← R ∪ t. 
 

Return final rule set R  
(R = rules mined by association mining + rules decoded by top b chromosome decoding). 
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After we obtain best chromosomes which produces best network output, we de-
coded these chromosome into the form of association rules (here, we call this associa-
tion rule as ‘neural feature association rule’ because they are extracted from trained 
neural network). To extract a rule for classk from the best chromosomes selected by 
GA procedures, we decoded them with several procedures presented in Figure 3. 

4   Experimental Results 

Protein Interopaction as Binary Feature Vector 

An interaction is represented as a pair of two proteins that directly binds to each other. 
This protein interaction is represented by binary feature vector of interacting proteins 
and their associations. Figure 4 describes this interaction representation processes. 
Interactions prepared through these processes are provided to the neural network-
based clustering and to the prediction model to group each protein interaction class 
and learn the association of features which generalize the interactions. Then, the con-
structed cluster prototype is used to predict the classes of protein interactions pre-
sented in the test step. The 13 functional categories of interacting protein from MIPS 
[11] which is known for the most reliable curated protein interaction database in cur-
rent literature are used to evaluate the category classes clustering accuracy. 
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…
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Fig. 4. The feature vector representation of protein interactions. Each interaction is represented 
as a binary feature vector (whether the feature exists or not). The feature dimension reduction 
filter (FDRF) marks those features as ‘don’t care’ which have SU value less than given SU 
threshold δ to remove non-informative features so as to improve the performance of clustering 
model. The marked features are regarded when train clustering model. The resulting vectors of 
interactions are provided to the neural network learning model as network input, describe in 
Figure 2, for model training, testing, and generation of neural feature association rules. 

Data Sets 

Each yeast protein has various functions or characteristics which are called ‘feature.’ In 
this paper, set of features of each protein are collected from public genome databases 
[11, 12, 15, 16, 17]. We use similar features of protein interaction of Oyama et al. [20] 
which include EC numbers (from SWISS-PROT), SWISSPROT/PIR keywords, 
PROSITE motifs, bias of the amino acids, segment cluster, and amino acid patterns, 
etc. A major protein pairs of the interactions are also obtained from the same data 
source of Oyama et al. [20]. These dataset include various experimental data such as 
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YPD and Y2H by Ito et al. [16] and Uetz et al. [17]. Additionally, we used SGD to 
construct more abundant feature set [12]. Table 1 shows the statistics of each interac-
tion data source and the number of features before and after the application of FDRF. 

Table 1. The statistics for the dataset 

Data Source # of interactions # of initial features # of filtered features 
MIPS [11] 10,641 
YPD [15] 2,952 
SGD [12] 1,482 

Y2H (Ito et al.) [16] 957 
Y2H (Uetz et al.) [17] 5,086 

6,232 
(total) 

1,293 
(total) 

Experiment Procedures 

First, we predicted the classes of new PPIs with neural network for their 13 functional 
categories obtained from MIPS [11]. The accuracy of class prediction is measured 
whether the predicted class of interaction is correctly corresponds to the class of 
MIPS. After this step, we constructed feature association rule from this trained neural 
network with similar procedure with Figure 3. 

Next, we trained another neural network with PPI data represented as binary fea-
ture vector according to the method in Figure 4. After the model training, we ex-
tracted again feature association rules from the model with the procedure in Figure 3. 
Then we predicted test PPIs with these two set of association rules and measured the 
prediction accuracy of each approaches with 10-fold cross-validation. 

Results 

Table 2 show the interaction prediction performance of various combination of 
associantion mining, information theory based feature filtering, and exploitation of 
rules derived from trained neural network. 

Table 2. The comparison of prediction accuracies of the proposed methods. The effect of the 
FDRF-based feature selection and neural network-based are shown in terms of prediction accu-
racy. For filtered interaction vectors by FDRF, the feature association-based prediction model 
with neural association rule (☆) shows the best performance (Asc: association rule based pre-
diction. FDRF + Asc.: prediction based on association rule mined from filtered feature vectors. 
Asc. + N-Asc.: rule based prediction with association rule and the rule derived from trained 
neural network. FDRF + Asc. + N-Asc.: combination of all methods). 

Number of interactions 
Prediction method Training set 

Size 
Test set 

(T) 
Predicted correctly 

(P) 

Accuracy 
(|P|/|T|) 

Asc. (△) 4,628 463 423 91.4 % 
FDRF + Asc. (▽) 4,628 463 439 94.8 % 
Asc. + N-Asc. (◇) 4,628 463 432 93.3 % 

FDRF + Asc. + N-Asc. (☆) 4,628 463 445 96.1 % 
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In Table 2, simple association mining approach (△) achieved the lowest perform-
ance. The number of total feature used in this approach was 6,232. This is quite high 
feature dimension. So, we can guess that it may includes lots of non-informative and 
redundant features and these features may affect the prediction accuracy in negative 
way by interfering correct rule mining. This assumption confirmed by investigating 
the result of second approach, FDRF + Asc. (▽), association mining with non-
informative and redundant feature filtering. This feature filtering approach improved 
overall prediction performance about 3.4% than the first approach. But the third 
approach, Asc. + N-Asc. (◇), prediction with the rules from association rule mining 
and the rule derived from trained neural network only improved overall prediction 
performance about 1.9% than the first approach. 

This result can be explained again with the feature dimension problem. In this third 
approach, there also exist redundant and non-informative garbage features which 
decrease the prediction performance. But in this approach, eventhough there still lots 
of garbage features, the over all performance improved about 1.9%. This is the effect 
of the rule exploitation derived from trained neural network. This inference can be 
confirmed again by investigating the result of fourth approach, FDRF + Asc. + N-Asc 
(☆), prediction with the rule from association mining and the rule derived from 
trained neural network along with feature filtering. Non-informative and redundant 
features are filtered out in this approach. Consequently, this approach improved over 
all prediction accuracy up to about 4.7%. These results are outperform other several 
approaches including k-NN (86.4%), support vector machine (93.3), structure and 
sequence conservation-based prediction (88.5%), and generative stochastic model 
with MCMC estimation (94.8%) in prediction accuracy [21]. 

Thus, we can say that both the information theory-based feature filtering and the 
exploitation of the rule derived from trained neural network and conventional associa-
tion rule mining methods are helpful for improving overall performance of feature-to-
feature association-based PPI prediction. By considering these experimental results, 
the proposed approaches will be useful as a data preprocessing and prediction 
methods especially when we handle the data which have many features. 

5   Conclusions 

We presented neural network based protein interaction learning and association rule 
mining method from feature set and trained neural network model for PPI prediction 
task. Also we applied information theory-based feature selection procedure to im-
prove the performance of trained feature association learning model. The proposed 
method (combination of all methods) achieved accuracy improvement about 4.7%. 
From the experimental results, it is suggested that the neural network-based feature 
association learning model could be used for more detailed investigation of the PPIs 
by learning the hidden patterns of the data having many features and implicit associa-
tions among them. From the results, we can conclude the proposed method is suitable 
for efficient analysis of PPIs through learning their hidden ‘feature associations.’ 

However, to overcome the false positive rates of current public interaction database 
is one of the important issues for more reliable prediction. The computational com-
plexities caused by using neural network and GA is another issues to resolve for effi-
cient predictions. Also, more biological features such as pseudo amino acid  



38 J.-H. Eom and B.-T. Zhang 

composition or protein localization facts will be also helpful for improving overall 
prediction accuracy and should be considered in the future works. 
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Appendix 

The procedures of ART-1 based protein interaction clustering. 

 

Given array of input protein interaction vectors PPI and vigilance parameter ρ, 
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    1.1 Set the value of gain control G1 and G2, 

2

1 1

1   0     0
,

0    
Iif input PPI and output from F Layer

G G
for all other cases

≠ =⎧
= ⎨
⎩

 

    1.2 Set all nodes in F1 layer and F2 layer to 0. 
    1.3 Set all weight of top-down weight matrix, 1jit = . 

    1.4 Set all weight of bottom-up weight matrix, 

          ( )1 ( 1)ij fb n= +  (nf = the size of the input feature vector). 

    1.5 Set the vigilance parameter ρ  (0.2 to 0.7). 
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2.6 Update weight of top-down weight matrix with IPPI  and node k. 
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2.7 Create a new node in F2 layer 
      2.7.1 Create a new node l. 
      2.7.2 Initialize top-down weight tli to the current input feature pattern. 
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Abstract. This paper presents the use of neural networks for the predic-
tion of protein Secondary Structure. We propose a pre-processing stage
based on the method of Cascaded Nonlinear Components Analysis (C-
NLPCA), in order to get a dimensional reduction of the data which may
consider its nonlinearity. Then, the reduced data are placed in predictor
networks and its results are combined. For the verification of possible im-
provements brought by the use of C-NLPCA, a set of tests was done and
the results will be demonstrated in this paper. The C-NLPCA revealed
to be efficient, propelling a new field of research.

1 Introduction

This paper investigates the use of artificial neural networks (NNs) as pre-proces-
sing stage in the prediction/classification of protein Secondary Structure, from
Blast profiles [1] gotten through their sequence of amino acids. This classifica-
tion serves to reduce searching space in other methods of prediction of protein
Tertiary Structure that, in turn, is strictly related with their functionality [10].

Considering the large dimension of the data to be treated, a stage of pre-
processing can increase the performance of the predictor. [5] use the traditional
techniques of Principal Components Analysis (PCA) for dimensional reduction,
showing that pre-processing methods aiming at the dimensional reduction of the
data can contribute enough for the improvement of the classifications supplied
for the predictors systems.

This paper suggests the use of a pre-processing stage of data, considering,
of original form, the use of neural networks through of the Cascaded Nonlinear
Components Analysis (C-NLPCA) method in the pre-processing of data [2]. The
use of this method is concerned with the utilization of the nonlinear potential
of neural networks, in order to acquire useful information for the classification
phase, together with the reduction. Moreover, the use of the C-NLPCA prevents
the occurrence of an undesired simplification of the variability of data, which
could be caused by the use of a linear method such as the PCA.

Aiming at validation of the proposal, once data are reduced, these serve as
input for three neural networks with different topologies, trained by the Resilient
Propagation (RPROP) method [13] in epoch, each NN independently finds the
classification of Secondary Structure for each amino acid. Then, these classifica-
tions are combined for the attainment of better results.
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This paper has 7 sections. Firstly we present an overview of Problem of Pre-
diction of Protein Secondary Structure. Blast Profiles are detailed in section 3.
The fourth section is dedicated to introduce our pre-processing method for data
reduction, following by the classifier explanation, in section 5. Our implementa-
tion, tests and results are analyzed in the sixth section, finally we present the
conclusion and future works.

2 The Prediction of Secondary Structure

The proteins are responsible for the structural and architectural function of the
cell and they are composed by the numerous amino acids join themselves by pep-
tide bonds (chains) [10]. The sequence of amino acids and its peptide bonds is
called Primary Structure. While that the Secondary Structure corresponds to the
foldings occurred for the establishment of hydrogen bonds between distant amino
acids. The knowledge of the Secondary Structure of a protein serves to reduce
the searching space of its Tertiary Structure, space configuration of the protein,
therefore, facilitating in the briefing of its functionality. The detailed knowledge of
proteins, in turn, would allow to to discover alternative treatments for diverse dis-
eases. Thus, the problem of prediction of protein Secondary Structure consists of,
from its Primary Structure (sequence of amino acids), classifying each of its con-
stituent amino acids in one of the recurrent substructures in the three-dimensional
conformation of the protein which can be grouped in:α-helixes, β-sheets and coils.

Related Works. The algorithms that simulate the folding of the sequences,
developed until the moment, can not accurately simulate the laws that control
this process. Therefore, Artificial Neural Networks (NNs) show as a promising
method and come frequent being used, demonstrating good results [4,6,14].

[12] presented a study to choose the best configuration of NN for prediction
of Secondary Structure. The proposed solution suggests that the sequences of
proteins must be covered by overlapped windows, being the prediction related
with the central element of the window. From the success reached by [12], other
solutions had been searched, applying different algorithms of training, topologies
of NN, and treatment of the input data [14]. A significant advance was achieved
with the use of more biological information as input for the NNs, more specifi-
cally with the use of sequence profiles of proteins as input for the prediction. In
contrast of sequences that supply local information only, the profiles looking for
distant relations between diverse sequences of a bank. An example of this profit
can be evaluated in predictor PHD [15], which used frequency profiles as input.

Amongst most recent publications, the significant improvement obtained
through the alteration of the type of input data are detached, introducing more
divergent information, particularly the PSI BLAST profiles. This type of input
was proposed initially by Jones in predictor PSIPRED [6]. The PSI BLAST [1]
can find distant homologous in sequences of proteins stored in a data base.

Another existing predictor is CONSENSUS, which was developed by [3]. This
predictor compares and combines four others: DSC [8], PHD [15], NSSP [17],
and PREDATOR [3], without making reductions of data. While that, [5], taking
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into account the high dimension of the data to be treat, used a technique of
statistical reduction of input data, applying the Principal Components Analysis
(PCA) in the PSI BLAST profiles. The results were compared with the studies
of [3], and the constructed new predictor by [5] presented better results.

Considering all predictors that use PSI BLAST profiles as input data, the
GMC [4] is the predictor that has presented the best performance. However this
one does not use dimensional reduction methods.

3 Using Blast Profiles in the Prediction

The proposal of this study is to evaluate the improvements that the use of a
nonlinear method for dimensional reduction of data can bring in the prediction
of Secondary Structure. Therefore, a similar procedure to those of [5], which
used a linear method, was carried through. In summary, a sequence of proteins
is presented to the PSI BLAST and the matrix of scores produced by this is
re-passed to a pre-processing stage. In such a stage, the input data are reduced
and, to follow, passed to the three classifiers, which receive the same input val-
ues. The results obtained by the classifiers are, then, presented for the stage of
combination of rules, which gives the final classification.

Attainment of Blast Profiles. The Primary Structure of a protein can be
represented by a sequence of characters (strings) of variable size, where each
character represents one of the 20 amino acids. The order where these amino
acids are displayed in the sequence represents the occurred polypeptide bonds.

The 396 sequences of proteins present in the CB396 [11] are submitted to
PSI Blast research. The software Position Specific Iterated - Basic Local Align-
ment Search Tool (PSI Blast) [1] searches for similar proteins in the data base
selected, i. e., formed by similar sequences of amino acid, taking into account
the order of their position in the sequence. The result of this search is organized
through an increasing order of similarity; this method is called alignment.

The system also returns as output PSI Blast profiles. Each amino acid that
composes the protein occupies a position in the sequence. Thus, all the amino
acids in this position, in all the sequences that compose the alignment, are com-
pared, and specific values are attributed according to the occurrences found,
these values forms the PSI Blast profile. The searched protein receives a score
that is stored in the PSSM Position Specific Score Matrix. Such a matrix has
the dimension p×n, where p represents 20 amino acids and n the number amino
acid that composes protein. These PSSM matrices are re-passed to the reduction
stage, which will be described in the next section.

4 Dimensional Reduction

Supposing that neural networks can be used as a good approach to classify
protein Secondary Structures [4,6,14], the selection of relevant information on the
input sequences of the classifier neural networks and its process of codification
are crucial steps for the effective prediction of the NN. Neural Networks with
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few inputs have few weights to be adjusted, lead to the best generalizations, to
a faster training, and prevent saturation.

Regarding this, the performance of the predictor NN can be increase, reducing
the number of its inputs. A reduction stage can improve the performance, elim-
inating redundant information present in the data base. We proposed the use
of Cascaded Nonlinear Components Analysis (C-NLPCA), an approach based
on neural networks for dimensional reduction of large data set. In our approach
C-NLPCA receives the PSSM score matrix eliminating redundant information
presented in this matrix. Thus, the PSSM score matrix of each protein is cov-
ered by overlapped windows of size w, displaced until reaching the original size
of the protein. The dimension of each window is p = 20 ∗ w (representing the
frequencies of 20 existing amino acids x w amino acids belonging to the win-
dow). The reduction stage reduces from p to k the number of data (dimension of
the window). Later, each set of k components is forwarded to the classification
stage, which has the task to predict the corresponding Secondary Structure to
the central amino acid of the window.

4.1 Principal Components Analysis (PCA)

The PCA is a technique that can be used to supply to a statistic analysis of the
data set, being used as pre-processing stage to the prediction [5]. This analysis is
concerned with the extraction of the factors that better represent the structure
of interdependence between variables of large dimensions. Therefore, all the vari-
ables are analyzed simultaneously, each one in relation to all the others, aiming
at determining factors (principal components) that maximize the explanation of
variability existing in the data. However, the PCA is indicated for the analysis
of variables that have linear relations. Each principal component brings statistic
information different from the others. However, the first principal components
are such more relevant that we can even disdain the others [7].

The Expectation Maximization (EM) algorithm can be used to extract the
linear principal components, see [16] for more details. This algorithm has O(knp)
complexity, where k represents the number of auto-vectors to be learned. The al-
gorithm EM has the following steps: X=(CTC)−1CTY ; Cnew =Y XT (XXT )−1

Y represents the input matrix, with dimension 20×n;X represents the matrix
of unknown states, k× n, k = number of principal components; C is the matrix
of the k principal components. The steps of the algorithm EM are repeated until
occurring convergence of the matrix of components C, so that n must always be
bigger than k.

4.2 Cascaded Nonlinear Components Analysis (C-NLPCA)

Nonlinear behavior of input data, in the problem of Secondary Structure pre-
diction, can be noticed by the good performance of neural networks in this
application [4,6,14]. We intend also to extend this nonlinear treatment for the
pre-processing stage. In this paper, it is suggested the use of C-NLPCA, see
details in [2], to provide a nonlinear mapping of the data, since linear methods,
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such as the PCA, may introduce undesirable simplifications in the analysis of
variables with nonlinear relations. In previous work, we have proposed the C-
NLPCA method. It is based on the cascading in layers of NLPCAs simple NNs
[9], aiming the nonlinear treatment of the data of high dimension.

The NLPCA Analysis. Neural networks for the analysis of nonlinear principal
components, called NLPCAs, are Multi-Layers-Perceptron NNs composed by five
layers: input(pneurons),hiddenofcodification(mneurons),bottleneck(rneurons),
hiddenofdecoding (mneurons) andoutput (pneurons).Neurons of the codification
and decoding layers use nonlinear functions, while those of input, bottleneck and
output use linear functions of activation. The inputs in a p-dimensional space,
when forward to the bottleneck layer, are mapped by the r-dimensional space
before reproducing the outputs. After the stage of training, the activation values
of the bottleneck layer neuron supply the nonlinear principal components.

The NLPCA neural network is auto-associative and it is trained to get a
mapping between input and output, which minimize the function:
min
∑n

i=1 |
−→
Xi −

−→
X ′

i|, where
−→
X ′

i is the output of the NN for each −→Xi input.
The output produced by the expansion will contain the cumulative error of

n samples, so the −→Xi −
−→
X ′

i residue value can be used for the attainment of the
second principal component and, thus, successively.

From NLPCAs sets to C-NLPCA System. Due to the intrinsic problems of
saturation of the neural networks, the applicability of the NLPCA is restricted
to the cases where p� n1. In order to avoid such limitation, we have proposed
an architecture where NLPCAs are grouped in layers, see [2] for more details. In
the reduction stage, data of p initial dimensions are grouped in a series of small
NLPCAs neural networks of p′ dimensions. Each NLPCA reduces its respec-
tive inputs of p′ for 1 dimension. The reduced data (principal locals) again are
grouped and reduced successively in subsequent layers. Such layers are called re-
duction layers. Next, the bottleneck neuron of the last C-NLPCA neural network
will supply the first global principal component (C-NLPC) of the set of input
of p dimension. Such NLPCA neural network is called by bottleneck layer. This
treatment process of information in diverse NNs and its respective combinations
are called cascading.

The Expansion Stage. After of the successive reduction layers and of the
bottleneck layer, a set of MLP neural networks composes the expansion stage.
The output values gotten by bottleneck NLPCA are used as input for MLP NNs
with 1 input neuron and p′ output neurons. These NNs, designated as expansion
NNs, go being disposed successively, layer to layer, until the reproduction of
output sets whose final dimension is equal to the presented to the system: p.
The expansion layers are symmetrical to the reduction layers, being that during
the expansion, there is not a training of neural networks; only the value of the

1 A more formal relation can be established in function of parameters number (weights
and bias) of NLPCA and of the number of the samples n presented to the NN. This
relation establishes that 2pm + 2mr + 2m + r + p ≤ n.
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principal component is propagated using a NN composed by the three last layers
of each symmetrical NLPCA of the reduction.

Since every principal local are combined successively, in the stage of reduction,
the C-NLPCA considers all the relations of neighborhood between the variables.
As well as the relations between all the windows that compose PSSM matrix of
a given protein are also analyzed in their use as samples in the training.

5 Classification

Aiming at the validation of use of the C-NLPCA in the pre-processing stage
of predictors, we have also implemented a classification stage [4]. The proposed
classifier associates three MLPs NNs with distinct topologies, objectifying the
choice of a better local minimum. The distinction of the NNs is associated with
the amount of neurons of the hidden layer. Each output value is associated
according to established norms in the stage of combination of rules. The training
of NNs is made by epoch, based on the Resilient Propagation - RPROP [13].

The combination of the three neural networks of different topologies intends
to improve the prediction of the Secondary Structures [3]. The rules used for
the classification of results are such: Voting, Average, Product, Maximum and
Minimum [5]. After the combination of NNs, the results are evaluated using a
reduced variation of the Jack-Knife process applied to subgroups of proteins, see
[5] for more details. The exactness of each of each subgroups is measured by the
value of Q3, obtained through the equation Q3 = correct number aminoacids

total number aminoacids ×100.

6 Tests and Results

A tool in C++ was developed aiming at to implement the pre-processing stage in
C-NLPCA and the classifier neural networks. Profiles of window of size w = 13
were analyzed, resulting in data of dimensions of 260 elements (13 ∗ 20 amino
acid) to be processed and reduced. The reduced data were placed in predictor
NNs with 30, 35 and 40 neurons in the hidden layer.

For the effect of comparison with other studies and in function of the char-
acteristics of the presented data, the k = 80 first principal components were
extracted. Thus, a dimensional reduction from 260 to r = 1 was gotten 80 times,
being that, in each repetition, the residue is normalized and injected as input for
the calculation of the next component. Several tests are done, regarding the per-
formance of the proposal. The obtained results confirm the effectiveness of the
method. The table 1 shows a comparison between our proposal (with C-NLPCA
reduction) and others.

The results obtained by the adopted predictor in this work using the reduction
by the C-NLPCA presented better results than the GMC (without dimensional
reduction) and PCA methods. This is due to the fact that the dimensional re-
duction took into account the nonlinearity of data, besides providing a more
effective training of the classificatory neural network. From original 260 compo-
nents (p = 260), the nonlinear reduction process have resulted in 80 Cascaded
Nonlinear Principal Components (C-NLPCs). Figure 1 shows the value of each
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Table 1. The best result of our
C-NLPCA Approach

Method Q3
PHD [15] 71.9%
DSC [8] 68.4%

PREDATOR [3] 68.6%
NNSSP [17] 71.4%

CONSENSUS [3] 72.9%
GMC [4] 75.9%
PCA [5] 73,8%

C-NLPCA 76.1%

Table 2. The values of the 80 PCs

Fig. 1. The values of the 80 C-NLPCs Fig. 2. The values of the 80 PCs

one C-NLPC. We can compare them with Linear Principal Components (PCs),
see figure 2. A more smoothed variability is found in C-NLPCs than PCs.

Regarding the classifier stage, the combination rules had contributed in the
increase of precision of the results. Figure/table 2 shows that the application
of the “average rule” have gotten the best results. The neural network with
the most neurons in the hidden layer (NN3 in figure/table 2) presents a better
performance in relation to others.

7 Conclusions

This paper presented a study on computational methods for the classification of
protein Secondary Structures in: α-helixes, β-sheets and coils. It was investigate
the use of the C-NLPCA method as dimensional reduction stage of the input
data of the classifiers.

The protein Primary Structures contained in CB396 bank were submitted
to the software PSI Blast that located distant homologous proteins. From the
alignment of these proteins, the PSI Blast generated a PSSM scores matrix.
Such a matrix was passed to a reduction stage and the reduced data were passed
through classifier NNs with different topologies, whose outputs were combined.
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The obtained results with C-NLPCA confirm the effectiveness in the dimen-
sional reduction of data for the prediction of Secondary Structures. Fact that
stimulates researches on the application of this method. Studies can be done
concerning the topology of the neural networks used in C–NLPCA. As well as,
the way of attaining C-NLPCs of higher order.
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Abstract. Because the lengths of nucleotide sequences for microorganisms are 
various, it is difficult to directly compare the complete nucleotide sequences 
among microorganisms. In this study, we adopted a method that can convert 
DNA sequences of microorganisms into numerical form then applied Fourier 
transform to the numerical DNA sequences in order to investigate the distribu-
tions of nucleotides. Also, a visualization scheme for transformed DNA se-
quences was proposed to help visually categorize microorganisms. Furthermore, 
the well-known neural network technique Self-Organizing Map (SOM) was ap-
plied to the transformed DNA sequences to draw conclusions of taxonomic rela-
tionships among the bacteria of Bacillus genus. The results show that the rela-
tionships among the bacteria are corresponding to recent biological findings. 

Keywords: DNA sequence, Bacillus, Fourier transform, Self-organizing map. 

1   Introduction 

The classification of bacteria may lead to the understanding of evolution of microor-
ganisms. Before the advances in molecular biology, biologists had difficulties in  
differentiating microorganisms or inferring their evolutionary relationships with mor-
phological features or microbial fossils [1]. Until 1965, Zuckerandl and Pauling [2] 
suggested that molecules can be documents of evolutionary history for cellular life-
forms. Later in 1977, Woese and Fox [3] selected macromolecule,16S ribosomal 
RNA (rRNA), to establish and infer phylogenetic relationships among microorgan-
isms. Based on differentiating the similarities and differences in 16S rRNA, Woese 
and his colleagues showed that root of lifeforms can be categorized into a three-
domain system: Eucarya, Archaea, and Bacteria [4].  

However, there are still some criticisms that argue inconsistent decisions made by 
Woese and his colleagues on categorizing organisms [5]. Also, some research based 
on the analysis of other genes and proteins found different topology of phylogenetic 
tree [6]. These research suggested that adopting a single gene, rRNA, to infer phy-
logenetic relationships is unable to fulfill the requirements of phylogenetic classifica-
tion. Moreover, Delong and Pace [1] expected that comparative information on the 
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genome structure, content, and organization may help obtain more understanding the 
evolutionary processes of microorganisms. 

To understand genome structure, as we known, the biological organisms are fre-
quently assumed to have the different coding structure of nucleotide sequences. In 
other words, it is possible to analyze the coding structure of nucleotide sequences to 
mine the classification information of microorganisms. However, the lengths of nu-
cleotide sequences for microorganisms are various. It is difficult to directly compare 
the complete nucleotide sequences among microorganisms. If we would like to com-
pute a DNA sequence at once, transformation of nucleotides will be a necessary ac-
tion to transfer the DNA sequence into a numerical form with fixed length. In order to 
systematically transform DNA sequences, some researchers have investigated the 
method of power spectrums of nucleotides in DNA sequences, and reveals useful 
information and structures of genomes [7-9]. For this reason, it may carry out micro-
organism classification based on the power spectrums of complete DNA sequences. 
Since biological organisms may differ on the spectral densities of nucleotides that 
reflect the topological state of genomic DNA, a procedure for classifying microorgan-
isms will be viewed as a meaningful issue to be studied. Some researchers [10,11] 
have provided a simple classification of archaea and bacteria based on the discussions 
of peak intensities at 10-11 bp periodicities in the nucleotide spectrums. The results of 
those studies roughly show classification of bacteria can be discriminated by compar-
ing the differences among 10-11 bp periodicities in the power spectrums of nucleotide 
sequences. However, those processes of bacterial classification are rather heuristic 
than systematic. To discriminate or categorize microorganisms, SOM may be helpful 
here, because it can partition data into arbitrary groups without any a-priori knowl-
edge or statistical assumption and is able to evaluate the distances among data and 
groups to visually investigate the similarity. And therefore, in this study, an integrated 
procedure, which provides an innovative method for microorganism classification, 
based on the combination of Fourier transform for DNA sequences and Self-
Organizing Map to verify the classification of microorganisms and visually map the 
relationships among microorganisms. 

2   Fourier Transform for DNA Sequences 

A DNA sequence can be regarded as a combination of 4 nucleotides: A (adenine), C 
(cytosine), G (guanine), and T (thymine), and hence a DNA sequence with N nucleo-
tides can be initially represented as a 1 N×  vector 

[ ] ; k 0... 1kD w N= = −  (1) 

where kw  denotes the symbol of the kth nucleotide. Furthermore, D can be translated 

to numerical form Ed by 

[ ] { }; 1 if , or 0; k 0... 1 and A,C, G, T .d dk dk k dkE s s w d s N d= = = = = − ∈  (2) 
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Based on Eq. (2), it will be easy to obtain AE , CE , GE  and TE for nucleotides A, 
C, G and T respectively [12].  

The power spectrums for the numerical representation of nucleotides dE  is de-
fined as ( ) ( ) ( ) ( )2

d j d j d j d jP f V f V f V f
∗

= = , where 

( ) ( )
1

0

1
exp 2

N

d j dk j
k

V f s ikf
N

π
−

=
= −∑  (3) 

is the Fourier transform of dE , and the frequency fj is calculated by 

, 0... 1,j

j
f j N

N
= = −  (4) 

and the corresponding periodicity gj for fj is  

1
j

j

g
f

= . (5) 

Instead of computing Fourier transform for a complete DNA sequence at once, a 
complete DNA sequence can be sliced into M small trunks with equal size of N, that 
can be determined according to the user’s option with the consideration with power of 
2, for the computation of Fourier transform. And thereafter averaged power spectrums 
can be computed from the M number of [ ( )jd fP ], where j = 0...N-1. Based on the 
characteristics of Fourier transform, [ ( )jd fP ] will be an N-dimension symmetric vec-
tor. In practice, we also take N/2 scalars, ( )1fPd

 ... ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

Nd fP , from [ ( )jd fP ] for the com-
putation of averaged power spectrums. Note that the first scalar ( )0fPd

 is discarded 
because f0 = 0 and g0  will be undefined.  

According to Eq. (1), for example, the vector D for an organism can be represented 
as D = [A, G, C, T, T, T, T, C, A, …, A, G, T, G, A, T, T, T, T, C]. Then the vector D 
for the organism can be further transformed to a binary form EA by applying Eq. (2) 
and represented as EA = [1, 0, 0, 0, 0, 0, 0, 0, 1, …, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]. 

To verify the rationality and feasibility for the proposed procedure, we took data (it 
can be obtained from www.ncbi.nlm.nih.gov) to perform the analysis. As listed in 
Table 1, the sample materials consist of the complete DNA sequences from the 12 
bacteria belonging to Bacillus genus, which consists of bacteria that usually cause 
acute fatal disease. 

In this study, we took N = 2048 and consider a sequence if it has a length of 
2048 bp or larger. Then, we use N=2048 to slice a complete DNA sequence into M 
small pieces. Then, the M slices of the DNA sequence were averaged. Let dnp de-
notes the average power spectrum of nucleotide d for the nth organism in Table 1. 
The matrix of average power spectrum for the 12 organisms can be obtained by the 
Eq. (6) 

[ ].T
dnd pQ =  (6) 
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Table 1. DNA sequences of 12 bacteria belonging to Bacillus genus 

No. Bacteria Label Accession No. Bases 
(bps) 

1 Bacillus anthracis A2012 B1 AAC01000001 5093554 
2 Bacillus cereus ATCC 14579 B2 AE016877 5411809 
3 Bacillus anthracis str. Ames B3 AE016879 5227293 
4 Bacillus cereus ATCC 10987 B4 AE017194 5224283 
5 Bacillus anthracis str. Sterne B5 AE017225 5228663 
6 Bacillus licheniformis ATCC 

14580 
B6 AE017333 4222645 

7 Bacillus anthracis str. 'Ames 
Ancestor' 

B7 AE017334 5227419 

8 Bacillus thuringiensis serovar 
konkukian str. 97-27 

B8 AE017355 5237682 

9 Bacillus subtilis subsp. Sub-
tilis str. 168 

B9 AL009126 4214630 

10 Bacillus clausii KSM-K16 B10 AP00627 4303871 
11 Bacillus halodurans C-125 B11 BA000004 4202352 
12 Bacillus cereus E33L B12 CP000001 5300915 

Because the power spectrums converted from Fourier transform is symmetric, 
which means that we do not have to use the all 2048 power spectrums, the matrix Qd 
shall be a 121024×  matrix with the consideration of half number of power spectrums. 
After Qd is obtained, the visual representation of Qd is constructed.   

3   Self-Organizing Map and Data Visualization 

As shown above, using Fourier transform DNA sequences may be converted to multi-
dimensional and numerical data. For a better understanding of differences among the 

12 organisms, SOM is performed on each dnp , which denotes the averaged power 

spectrums of nucleotide d for the nth organism in Table 1. SOM may be helpful here, 
because it can partition data into arbitrary groups without any a-priori knowledge or 
statistical assumption and is able to evaluate the distances among data and groups to 
visually investigate the similarity. On the other hand, since the topic about SOM is 
widely known in the field of ANN research and the general procedure for performing 
SOM can be found in Kohonen's publications as well as almost every book on ANN 
[13], we are not going to discuss details about the implementation of SOM in this 
study. 

Despite the ability of categorizing data into clusters, the nature of SOM is to pro-
ject multi-dimensional data onto a two dimensional map. For displaying the two di-
mensional map of SOM, a U-matrix [14] is an enhanced visualization tool that not 
only projects high dimensional data onto a two dimensional map but also represents 
distance structure and topological relationships among data. In a U-matrix the  
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distance or similarity measurement between two adjacent neurons is obtained and the 
distance between two adjacent neurons is presented in the U-matrix. Usually, the 
distance or similarity measurement is defined as a Euclid distance. For a SOM with 
the topology of hexagonal m× n output neurons, the dimension of U-matrix is (2m-1) 
×  (2n-1). Figure 2 shows the structure and representation of a U-matrix. In Fig. 1, 
d(A, B), d(A, C), and d(B, C) are the distance or similarity measures between neu-
rons. Practically, using colors or grayscales to differentiate the lengths of distance, we 
can visualize the topological structure and relationships among the neurons, and 
therefore help find the meaningful clusters. 

In order to construct the graph of U-matrix, software package developed by Ve-
santo and his colleagues [15] for the calculations and visualization of SOM is utilized 
in this study. This software package is a toolbox that implements SOM and its visu-
alization in Matlab scientific computing environment. In the next section, the pro-
posed methods and tools utilized in this study are combined to differentiate the mi-
croorganisms of Bacillus genus. 

 

Fig. 1. The construction of a U-matrix for representing distance structure and topological rela-
tionships in a SOM 

4   Results 

In a DNA sequence, the base pairs A-T (adenine-thymine) and C-G (cytosine-
guanine) are the widely known fact that the pair of nitrogenous bases connects the 
complemen-tary strands of DNA. In other words, the distribution and construction of 
nucleotides A should be identical to nucleotides T. Also, the distribution and con-
struction of nucleotides C should be identical to nucleotides G. In other words, we 
don't need to observe the distributions of all 4 nucleotides. In this study, we chose A 
and C to demonstrate visuals. With the proposed procedures to transform the 12 DNA 
sequences into numerical forms, SOMs with topology of 3 × 4 hexagonal lattices are 
applied to the numerical forms of DNA sequences in order to investigate the similar-
ity among the 12 microorganisms. Fig. 2 and 4 represent QA and QC, which illustrate 
visualizations for the power spectrums of nucleotides A (adenine) and C (cytosine) on 
the 12 microorganisms of Bacillus genus, respectively. Note that the grayscale bars 
located at the right side of Fig. 2 and 4 show the range of the measurements. These 
diagrams can visually help recognize the structural differences among the 12 micro-
organisms.  
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Fig. 3 and 5 show the distance structure and clustering relationships of nucleotides 
A and C on the 12 microorganisms. Note that white circles on the U-matrix graphs 
represent neurons that they are possible clustering cells (centers) for the 2 different 
types of nucleotides. Numbers marked in the cells of 2 U-matrix graphs demonstrate 
the distance measures among neurons, and the grayscale bars located at the right side 
of U-matrix graphs show the visual measurements for the graphs. As shown in the U-
matrix graphs, the darker hexagons represent shorter distance among neurons. Based 
on the U-matrix visualization, brighter or lighter the hexagons imply higher the 'walls' 
that usually divide data into clusters. And therefore, we draw some dot lines to help 
distinguish areas separated by 'walls'. 

5   Discussions 

In Fig. 3, the suggested clusters provided by the U-matrix of nucleotide A can be 
concluded that B1, B2, B3, B4, B5, B7, B8, and B12 form a cluster, B6 and B9 form 
the second cluster, and B10 and B11 form the third cluster. Beyond that, in Fig. 5, 
which is the U-matrix of nucleotide C, provides slightly different clustering relation-
ships. From right to left, we can observe that the hexagons are partitioned into 4 major 
regions. B1, B2, B3, B4, B5, B7, B8, and B12 are in a region that the measures of 
distance are relatively small. Then, as mentioned above, hexagons colored with light 
gray imply that there are 'walls' that divide data into clusters. In Fig. 5, B11 is sepa-
rated from the cluster formed by B6, B9, and B10. 

Apparently, no matter which nucleotide is applied to the method proposed in this 
paper, the U-matrices of nucleotides A and C, all suggest that bacteria B1, B2, B3, 
B4, B5, B7, B8, and B12 are very similar to each other. This result is corresponding 
to recent biological findings that these 8 microorganisms are members of the Bacillus 
cereus group of bacteria and have been shown that Bacillus anthracis and Bacillus 
thuringiensis should be considered as a direct lineage of Bacillus cereus by some 
biological and chemical analysis [16]. In particular, bacteria B6 and B9, which are 
Bacillus licheniformis and Bacillus subtilis, respectively, are close to each other based 
on the U-matrices of nucleotides A and C. Rey and his colleague [17] suggested that 
the two bacteria have extensive organizational similarity and should be considered 
that the two bacteria are in the same evolutional lineage.  

Although in Fig. 3 the bacteria Bacillus clausii (B10) and Bacillus halodurans 
(B11) are categorized in the same cluster, in Figure 5 the two bacteria are relatively 
different. Based on the analysis in nucleotides C, Bacillus clausii and Bacillus 
halodurans seem to be two different species. Yet we find no biological research pa-
pers that consider putting Bacillus clausii and Bacillus halodurans together to investi-
gate their evolutional relationships. Even then, it is noticeable that Bacillus clausii and 
Bacillus halodurans are relatively close to each other based on the analysis of nucleo-
tide A. And, based on the analysis of nucleotidee C, Bacillus clausii (B10) seems to 
be close to Bacillus licheniformis (B6) and Bacillus subtilis (B9). Anyway, we found 
that clustering results for Bacillus clausii and Bacillus halodurans make unclear or 
incomprehensible. We suggest that the relationships between the two bacteria need to 
be studied further in some biological methods. 
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Fig. 2. Power spectrums for nucleotide A (adenine) on the 12 microorganisms of Bacillus genus 

 

Fig. 3. U-matrix of nucleotide A for representing distance structure and clustering relationships 
of the 12 microorganisms 
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Fig. 4. Power spectrums for the nucleotide C (cytosine) on the 12 microorganisms of Bacillus 
genus 

 

Fig. 5. U-matrix of nucleotide C for representing distance structure and clustering relationships 
of the 12 microorganisms 
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6   Conclusions 

In this article, we proposed a method that combines Fourier transform and SOM to 
achieve the clustering analysis for microorganisms. Besides, a meaningful contribu-
tion, which is the clustering analysis of biological organisms, can be made by using 
Fourier transform and SOM to a complete DNA sequence without biochemical or 
biological procedures. In this study we found some significance. It will be given as 
follows: (1) The technique of power spectrum analysis effectively shrinks the dimen-
sions of complete bacteria DNA sequences for the proposed procedure. (2) Instead of 
observing the spectral densities with traditional wave-like diagrams, Figures as Fig. 2 
and 4 can provide an aspect that we can observe the distributions among the power 
spectrums of complete DNA sequences via a bird's eye view, which may be more 
intuitive and effective. (3) The taxonomic relationships among different microorgan-
isms of Bacillus genus we demonstrated in this paper are comparable to biological 
research findings. 
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Abstract. The need for assessing the depth of anesthesia during surgical opera-
tions has existed since the introduction of anaesthesia, but sufficiently reliable 
method is still not found. This paper presents a new approach to detect depth of 
anaesthesia by using recurrence quantification analysis of electroencephalogram 
(EEG) and artificial neural network(ANN). The EEG recordings were collected 
from consenting patient prior to incision during isoflurane anaesthesia of differ-
ent levels. The four measures of recurrence plot were extracted from each of 
eight-channel EEG time series. Prediction was made by means of ANN. The 
system was able to correctly classify purposeful responses in average accuracy 
of 87.76% of the cases. 

1   Introduction 

Anesthesia has been defined as the state in which, as a result of a drug-induced un-
consciousness, the patient neither perceives nor recalls noxious stimulation. There-
fore, an adequately anesthetized patient is unconscious, analgesic, and amnesic. In 
operation, depth of anesthesia(DOA) is always assessed by anaesthesiologists subjec-
tively by means of observing the blood pressures(BP), heart rate(HR), somatic 
movement, facial grimacing, lacrimation and diaphoresis. The presence of some cer-
tain signs, such as movement, a rise in blood pressure, tearing, sweating, techycardia, 
pupillary dilation, indicates the inadequate level of anaesthesia. However, these clini-
cal signs may be absent due to the use of some drugs, such as muscle relaxants, 
opioids, cholinergic and β-adrenergic antagonists, vasodilators, and antihypertensive 
agents. For lack of a reliable monitor of anesthetic depth, inadequate levels of anaes-
thesia occasionally occur, the overall incidence of recall most frequently stated is 
approximately 1%, cases of intraoperative awareness have been reported in the litera-
ture[1][2]. A new non-invasive monitoring technique for detection of DOA would be 
extremely valuable. 

Since anesthesia can directly affect the brain’s function, the central nervous system 
has been the center of attention during anaesthetic course, so analysis of the brain's 
neuroelectrical signals, such as electroencephalogram (EEG), seems to be a good 
choice to look for a correlation between the states of anesthesia and some characteris-
tic parameters of the signals. Over the years, numerous efforts have been made by 
EEG analysis, such as time/frequency domain analysis[3-5], bispectral analysis[6,7], 
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time-frequency distribution (wavelet transform)[8], however, the use of EEG as a 
measure of adequacy of anesthesia has achieved limited success.  

In this paper, a new method is introduced to monitor DOA by using recurrence 
quantification analysis(RQA) of EEG and artificial neural network(ANN). The rest of 
this paper is organized as follows: the clinical EEG data acquisition under different 
levels of anesthetic concentrations is described first. And then, the reseach method is 
introduced. After a short review of the basic concept of recurrence plot (RP), some 
measures of the complexity is defined based on RP. After that we apply a four-layer 
ANN as a non-linear identifier for estimating DOA, according to the extracted meas-
ure values from RP of the EEGs. Clinical experiments were used to validate the DOA 
estimator design in real-time. 

2   Materials and Data Acquisition 

The data were obtained from experiments on 98 consenting patients(ASA grade I~II). 
The patients, 56 men and 42 women, ranging in age from 26 to 63 years(37.8±9.3), 
were scheduled for elective noncranial surgery. Patients must be excluded from the 
study if they had a history of hypertension, seizure disorder, or other chronic neu-
rologic or psychiatric illness, or if they were taking antihypertensive medications.  

Anesthesia was induced with propofol, followed by a muscle relaxant to facilitate 
intubation, and maintained with isoflurane in oxygen. The traditional physiological 
signs, electrocardiogram (ECG), the arterial blood pressure (BP), heart rate (HR), 
arterial oxygen saturation, End-tidal CO2(EtCO2, by capnograph) were monitored 
and all gases(carbon dioxide, isoflurane, oxygen, nitrous oxide) were continuously 
monitored by mass spectrometer in all the experiments. The arterial pressure and 
heart rate were measured every minute non-invasively using a Dinamap moni-
tor(Critikon). ECG was monitored using a Mennen Horizon monitor(USA). 

A definition of the level of anesthesia from non-EEG criteria is very necessary for 
our study. During and after skin incision, which is a standard stimulation to test an-
aesthitic effect, each patient was observed carefully for 2 min to detect purposeful 
movement, changes in hemodynamic parameters and respiratory pattern. A gross 
purposeful movement, usually of the head and limbs, or grimace was considered a 
positive response, the EEG recording preceding the incision was then labelled as 0.0 
for the responder. The response was also estimated as a positive one, in any two of the 
following three cases, when there were no movement and grimace, but  

(1) a significant HR response (rise was greater than 15%); 
(2) a significant BP response(rise was greater than 15%); 
(3) a spontaneous change in respiratory pattern(change in EtCO2 was more than 

12mm Hg). 

where the response was negative one, the EEG recording preceding the incision was 
labelled as 1.0 for non-responder. 

The initial surgical incision was made after return of neuromuscular function as de-
termined by a peripheral nerve stimulator and at least 30-min after induction of anes-
thesia, and after at least 10 min at a different end-tidal isoflurane concentrations of 
1.0MAC(37 patients), 1.2MAC(33 patients) or 1.4MAC(28 patients).  
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The EEG was monitored using a HXD-I(E) (China) monitor for 2 min before inci-
sion. Eight channels of EEG were recorded using Ag/AgCl electrodes (Fp1, Fp2, C3, 
C4, T3, T4, O1 and O2, they were placed in accordance with the international stan-
dard 10~20 system, with the reference points at left earlobe and right earlobe). The 
EEG data were filtered with a high-pass filter at 0.4Hz and a low-pass filter at 70Hz, a 
50Hz notch filter was also employed, and sampled at 250Hz, digitized to 12bits. The 
impedance on each of the EEG channel was required to be less than 2KΩ at the start 
of each experiment. From 98 patient experiments, 98 distinct EEG recordings were 
collected prior to incision during different isoflurane anaesthesia levels, including 31 
responder and 67 non-responder recordings. Each EEG recording was 2 min 
long(30,000 points). 

3   Method 

The proposed approach includes three different procedures. First, RPs are computed 
from each of eight-channel EEG time series, and then the complexity measures are 
extracted from every RP map. At last, prediction was made by ANN. 

3.1   Recurrence Plot  

A recurrence plot (RP) is a two-dimensional squared matrix with black and white dots 
and two timeaxes, where each black dot at the coordinates (t1, t2) represents a recur-

rence of the system’s state )( 1txi at time t2: 

),)()((),( 2121 txtxttR −−Θ= ε   mtx ℜ∈)(  (1) 

where m is the dimension of the system (degrees of freedom), ε  is a small thresh-

old distance, ⋅  is a norm (e.g., the Euclidean norm) and )(xΘ  is the Heaviside 

function[9]. 

3.2   Recurrence Quantification Analysis 

Recurrence plots contain subtle patterns that are not easily ascertained by qualitative 
visual inspection. Zbilut and Webber have presented the recurrence quantification 
analysis (RQA) to quantify an RP [10], they define quantitative parameters using the 
recurrence point density and the diagonal structures in the recurrence plot, and Mar-
wan et al. extend the definition on the vertical structures[11]. In our study, four of 
them are chosen to analyze. These measures are described briefly as follows:  

1) Recurrence rate(RR), quantifies a percentage of the plot occupied by recurrent 
points, 

∑
=

=
N

ji
jiR

N
RR

1,
,2

1
 (2) 

2) Determinism(DET), quantified a percentage between the recurrent points that 
form upward diagonal line segments and the entire set of recurrence points. 
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The diagonal line l consists of two or more points that are diagonally adjacent 
with no intervening white space, P(l) denote the number of lines with length l, 
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3) Laminarity(LAM), quantified a percentage between the recurrence points form-
ing the vertical line structures and the entire set of recurrence points, P(v) de-
note the number of lines with length v, 

∑
∑ ==

N

ji ji

N

vv

R

vvP
LAM

, ,

min
)(

 (4) 

4) V-Entropy (V-ENTR), quantified a Shannon entropy of vertical line segment 
distributions, 
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where p(l) represents probabilities distribution of vertical line structures. the base of 
log here is taken to two, so L-ENTR and V-ENTR are in unit of bit. 

A computation of RPs and these measures in small EEG windows moving along 
the recording time, using these values as the inputs to ANN, makes the real-time 
evaluation of DOA possible. 

3.3   Artificial Neural Networks 

In our study, the input to the ANN will be the 32 measure values(4 from one-channel 
EEG), extracted from the eight-channel corresponding EEG recordings with label 1.0 
(for nonresponder) or 0.0 (for responder). Compared with three-layer(one hidden 
layer) ANNs, the four-layer ANN(two hidden layers) has a certain advantage in esti-
mating DOA(see Table 2). The number of the second hidden units and the optimum 
number of clusters are determined according to analysis of input and output feature 
space[12, 13] and pseudo F-statistic(PFS) clustering technique[14]. The optimum 
structure of ANN is determined as 32-9-2-1. We build up the network in such a way 
that each layer is fully connected to the next layer. 

Training and test of ANN used ‘leave-one-out’ strategy. That is, to train the ANN 
on samples from n–1 rats and test on samples from the remaining one. This process is 
repeated n times and each time a different rat is left behind [15]. 

4   Results 

The RP of the EEG recorded was computed and mapped for each patient with a time 
series of 512 points. Fig 1(a)~(c) show the RPs of three reponders with 1.0, 1.2, 1.4 
MAC, respectively. (d)~(f) show the RPs of three non-reponders with 1.0, 1.2, 1.4 
MAC, respectively. 
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Fig. 1. RP of typical patients, including three responders with 1.0 MAC (a), 1.2 MAC (b), 1.4 
MAC (c), and three non-responders with 1.0 MAC (d), 1.2 MAC (e), 1.4 MAC (f) 
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The results of testing our proposed system are shown in Table 1. In total, five re-
sponse states are misclassified as non-response, and seven non-response states are 
misclassified as response. For response prediction, the average accuracy is 87.76%. 
We tested our system using different ANNs, for four-layer (32-9-2-1) and three-layer 
(32-9-1) ANNs, the accuracy is 87.76% and 83.67%, respectively(see Table 2). 

It would be informative to briefly compare our system with the commonly used 
spectral analysis methods, such as the bispectral analysis (BIS)[6, 7], the spectral edge 
frequency (SEF) and the median frequency (MF) [16, 17]. For different prediction 
schemes, the comparison of performances are shown in Table 2.  

Table 1. Testing results for proposed system, which employs four-layer ANN 

Level of 
anesthesia 

Size of 
training 

set 

Number of  
patients 

Misclassified 
rate for re-

sponse state 

Misclassified 
rate for non-

response  state 
Accuracy 

1.0MAC 97 37 4/21 2/16 83.78% 

1.2MAC 97 33 1/7 3/26 87.88% 

1.4MAC 97 28 0/3 2/25 92.86% 

Table 2. Comparison of performances of different prediction schemes 

Predicting schemes Other conditions 
Types of ANN 

employed 
Average 
accuracy 

RQA using ANN 

98 patients and 98 
EEG recordings at 
different anesthetic 

levels 

Four-layer ANN 
(32-9-2-1) 

Three-layer ANN 
(32-9-1) 

87.76% 
 

83.67% 

Spectral analysisa BIS  83% 

Spectral analysisa 
BIS 
SEF 
MF 

 
84% 
79% 
68% 

a These results are cited from the references, paper [7] and [18], respectively, compared with 
our conclusion. 

The accuracy for BIS, SEF and MF methods is 84%, 79% and 68%, respec-
tively[7]. Another accuracy 83% was given out by another researcher, Sebel[18], also 
using bispectrum method. Some of the results are cited from the references (paper [7] 
and [18]) for comparison.    
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5   Discussion 

RP is a valuable graphical tool for assessing the geometry of the dynamics exploiting 
non-linear dependencies specially in non-stationary time-series, therefore, it is par-
ticularly useful in the analysis of physiological data. These plots disclose distance 
relationships between points on a dynamical system providing a faithful representa-
tion of the time dependencies (correlations) contained in the data[9]. 

The passed studies show that adequacy of anesthesia is a complicated concept and 
it is difficult to accurately evaluate DOA by a single parameter[19]. The recurrence 
plot represents the recurrence of the phase space trajectory to a certain state, which is 
a fundamental property of deterministic dynamical systems[20, 21]. The chaotic or 
quasi-random behavior of EEG signals gives us the possibility to quantitatively study 
functional changes of the brain by means of RQA. In this paper, we propose a new 
approach to predict response to incision during anaesthesia using RQA. Compared 
with other schemes, our designed system has a better performance and the RQA is a 
potential way to assess the anaesthetic adequacy. The reason for this maybe is that our 
scheme combines the different nonlinear methods and enables the system to address 
the non-analytical, non-stationary, non-linear dynamical properties of the EEG. Our 
studies further indicate that, in most cases, the EEG contains sufficient information to 
estimate the DOA, the key is whether or not the method used is suited to the nature of 
the EEG signal properly.  

The anesthetic dose versus the depth of anesthesia curve is highly nonlinear [22] 
which motivated the use of NN’s as the basic classifiers in our scheme. Owing to the 
restricted experimental conditions, we have only 98 recordings from 98 patients for 
training and testing ANN. A good way to tackle such a dilemma would be to use the 
‘leave-one-out’ method [15], it is a standard method to evaluating classification sys-
tems, especially in the case of small samples for training and test. As the training and 
test samples belong to different patents, there is not any bias in the results. 

In summary, this study shows that recurrence quantification analysis of EEG is a 
good candidate for characterizing patients’ brain activity under different depths of 
anesthesia. The measures will help us to better understand the non-linear dynamic 
character of brain’s consciousness during anesthesia and enhance our ability to as-
sess the DOA. Although the results of this initial study are significant, nevertheless, 
the work reported here is still preliminary. Our clinical experimental scheme may be 
further improved and our study has been limited to consider only isoflurane anaes-
thesia. Additional clinical studies need to be carried out on a wide patient population 
to further evaluate the proposed design, especially with different inhalational anaes-
thetic agents and with opioid anaesthesia, where awareness during surgery is a major 
concern.  
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Abstract. Automated detection of epileptic seizures is very important for an 
EEG monitoring system. In this paper, a continuous wavelet transform is 
proposed to calculate the spectrum of scalp EEG data, the entropy and a scale-
averaged wavelet power are extracted to indicate the epileptic seizures by using 
a moving window technique. The tests of five patients with different seizure 
types show wavelet spectral entropy and scale-averaged wavelet power are 
more efficiency than renormalized entropy and Kullback_Leiler (K-L) relative 
entropy to indicate the epileptic seizures. We suggest that the measures of 
wavelet spectral entropy and scale-averaged wavelet power should be contained 
to indicate the epileptic seizures in a new EEG monitoring system. 

Keywords: Epileptic seizure; Wavelet analysis; Spectral entropy; EEG. 

1   Introduction 

It is known that continuous EEG recordings are widely applied to analyze / diagnose 
epilepsy patients [1], in particular automated detection of the epileptic seizures is very 
helpful and efficient for epilepsy diagnosis, unlike traditional methods that a trained 
technician reviews the entire EEG manually. Currently, various methods have been 
proposed, including linear methods [2], nonlinear methods [3-5], computational 
intelligence [6] and information theory [7]. The spectral analysis based method still is 
the most reliable for the detection of epileptic seizures. Since poor frequency 
resolution of the discrete Fourier transform (DFT), wavelet-based techniques are 
receiving growing interest given their ability to provide comparable spectral statistics 
that are local in time. At present, wavelet techniques become one of the most 
attractive methods to detect epileptic seizures [8-11]. Unfortunately, most of wavelet 
methods just focus on the energy information in the time frequency domain.   

In this paper, spectral entropy of neural activity at the time –frequency domain is 
proposed to indicate the epileptic seizures. Traditionally, the entropy can characterize 
the degree of randomness of time sequence and quantify the difference between two 
probability distributions. Generally speaking, entropy is a measure of the uncertainty 
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of a random process, or a complexity measure of a dynamical system [12]. In [7,13], 
renormalized entropy and Kulback-Leibler (K-L) entropy for EEG signals are 
proposed; it is found that there is a decrease of the renormalized and K-L entropy 
during the epileptic seizures. The following two disadvantages limit the detection of 
seizure. The spectral estimation with Fourier transform is possible to result in some of 
spouse information for a complex nonstationary EEG data. The second disadvantage 
of the renormalized entropy and K-L relative entropy is needed to determine a 
reference segment for each case. This paper presents wavelet spectral entropy and 
scale-averaged wavelet power to indicate the epileptic seizure. The five case studies 
showed that this method is better to indicate the epileptic seizures than renormalized 
and K-L entropy in EEG. 

2   Methods 

Wavelet analysis is a powerful tool to analyze EEG data. Projecting a time series into 
a time–scale space, the dominant modes of variability and its variation over time can 
be explored [14]. Previous works show Morlet wavelet transform can efficiently 
represent neural activity [15]. A Morlet wavelet function )(0 tψ  is written as 

2/4/1
0

2
0)( tti eet −−= ωπψ . (1) 

where 0ω  is the wavelet central angle frequency, often 60 ≥ω , which is an optimal 

value to adjust the time – frequency resolution [16]. Given )(0 tψ , a family of 

wavelet can be generated by a dilation, ),0(),/(
2

1
)( 0 +∞∈= sstts ψψ , s is 

called scale. Wavelet )(tsψ  can be taken as a parametric filter that is specified by the 

scale parameter s; and the duration of its impulse response increases with the increase 
of s. 

Continuous wavelet transform (CWT) are performed through the convolution of a 

parent wavelet function )(tsψ with the analyzed signal x(t); it is: 

∫
−= dt
s

t
tx

s
sW s )()(

1
),( * τψτ . (2) 

where s and τ  denote the scale and translation; * denotes complex conjugation. By 
adjusting the scale s, a series of different frequency components in the signal can be 

extracted. The factor s is for energy normalization across the different scales. 
Through wavelet transforms, the information of the time series x(t) is projected on the 
two dimension space (scale s and translation τ ). 

Given an EEG time series, X={xn}, n = 0 … N-1, with equal time spacing dt, the 
continuous wavelet transform of the discrete sequence is defined as the convolution of 

xn with a scaled and translated version of )(0 tψ ; it is given by 
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where * denotes the complex conjugate. Changing the wavelet scale s and translating 
along the localized time index n , a map can be constructed to show the amplitude of 
any feature versus the scale at a short time. Large values of the map (wavelet 
coefficients) reflect the combined effect of a large fluctuation of the time series and of 
a good matching of shape between the series and the wavelet function. 

If a vertical slice through a wavelet plot is a measure of the local spectrum, the 
time-averaged wavelet spectrum over a certain period is 

∑
=

=
2

1

22 )(
1

)(
n

nn
s

a
s nW

n
nW . (4) 

where the index n is arbitrarily assigned to the midpoint of n1 and n2; and na=n2-n1+1 
is the number of points averages over. By repeating (4) at each time step, we create a 
wavelet plot smoothed by a certain window. We define the global time-average of the 
instantaneous wavelet spectrum as follows: 

∑
−

=

==
1

0

22 )(
1

)()(
N

n
s nW

N
sWsI . (5) 

Where I(s) is called wavelet spectrum, which is the expected value of the global time-
average of the instantaneous power of Ws(n). The entropy concept is applied to measure 
the fluctuation of wavelet spectrum, which is called wavelet spectrum entropy. 

To examine fluctuations in power of a time series over a range of scales (a band), a 
scale-averaged wavelet power is defined as the weighted sum of the wavelet power 
spectrum over scales sj1 to sj2: 

∑
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jj j

jn
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n s

sW

C

dd
W . (6) 

where, dj is scale step; dt is the time space of the time series; the Cd is scale 
independence and is a constant for each wavelet function. The scale-averaged wavelet 
power is a time series of the average variance in a certain frequency band, which can 
be used to examine modulation of a time series. 

In the following section, the wavelet spectrum entropy and scale-averaged wavelet 
power are used to analyze the epileptic EEG signals; these two feature values are 
taken as the indications of the epileptic seizures simultaneously. These two features 
contain the change degree and distribution of signal power at the time – scale domain. 

3   Results and Discussions 

The EEG data analyzed in this paper are derived from Dr. Alpo Vaerri (Tampere 
University of Technology). Sampling frequency of the EEG data is 200 Hz. The data 
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is recorded by four bipolor montage, which are located in F8-C4, F7-C3, T6-02, and 
F5-01. EEG data of five patients with different epileptic seizures were collected by 
sampling frequency of 200 Hz. EEG of patient 1 contains petit mal epileptic 
discharges, patient 2’s EEG contains irregular type epileptic discharges, patient 3’s 
EEG contains three type epileptic discharges, patient 4’s EEG contains epileptic 
seizures with EMG activity on the EEG, and patient 5’s EEG contains psychometric 
epileptic seizures. 
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Fig. 1. (a) EEG recorded from the F8-C4 electrode of patient 1 (petit mal epileptic discharges); 
(b) Renormalized entropy (solid line) and K-L relative entropy (dot line) calculated with FT; (c) 
The normalized wavelet spectrum entropy (solid line) and scale - averaged wavelet power 
entropy (dot line) by using Morlet wavelet transform 

This paper uses wavelet spectrum entropy and scale-averaged wavelet power to 
indicate the epileptic seizures. An EEG data is divided into consecutive segments of 
length N=512 with a 50% overlap. Fig. 1 shows an EEG signal of patient 1, a petit 
mal epileptic seizure occurs at the 30 second. In Fig. 1 (b), K-L relative entropy can 
indicate the petit mal epileptic seizures occurred at the 30 second, however, the spikes 
that occurs after 90 second are detected as well. The renormalized entropy cannot 
give significant indications for these seizures. Fig. 1 (c) shows the wavelet spectrum 
entropy and scale - averaged wavelet power based on Morlet wavelet that can indicate 
the seizure at the second of 30. The epileptic seizure occurs at the second 12 is also 
indicated, unlike the K-L relative entropy and renormalized wavelet spectrum. The 
scale-averaged wavelet power can basically indicate other petit mal epileptic seizures 
as well, although it is not clearer than K-L relative entropy. This is due to the fact that 
the renormalized entropy and K-L relative entropy have a reference segment for the 
case. If we can select a reference segment well, a good result could be obtained, 
otherwise the result is so much bad. This selection is not a very easy task in the 
practical implement because of the variation of cases. 
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Fig. 2. (a) EEG recorded from the F8-C4 electrode of patient 2 (irregular type epileptic 
discharges); (b) Renormalized entropy (solid line) and K-L relative entropy (dot line) calculated 
with FT; (c) The normalized wavelet spectrum entropy (solid line) and scale-averaged wavelet 
power (dot line) by using Morlet wavelet transform 

Fig. 2 shows the EEG signal of patient 2 with irregular type epileptic seizure. The 
EEG signal contains two irregular epileptic seizures during the 50-60 and 105-110 
second. Fig. 2 (c) shows the normalized wavelet spectrum entropy and scale-averaged 
wavelet power can indicate these two seizures clearly. However, the renormalized 
entropy and K-L relative entropy fail to indicate these two seizures in Fig. 2 (b). This is 
resulted by the selection of the reference segment before running the detection method. 

EEG of a patient with mixed epileptic seizures is shown in Fig. 3 (a). Most of the 
seizures of the patient could be indicated with the normalized wavelet spectrum 
entropy, seeing Fig. 3 (c), but the seizure occurs during 130-140 second. The scale-
averaged wavelet power can indicate these seizures well, like the K-L relative 
entropy. Renormalized entropy only indicates the a few seizures, however. 

Fig. 4 shows an epileptic EEG data of patient 4 with EMG activity. The patient 
occurs EMG activity during the 50-80 and 150-160 second, respectively. Fig. 4 (b) 
and (c) show the renormalized entropy, K-L relative entropy and normalized wavelet 
spectrum entropy did not overcome the effect of the EMG activity. However, that 
scale-averaged wavelet power is able to overcome this effect of the EMG activity, 
seeing the dot line in Fig. 4 (c), meanwhile the epileptic seizures are indicated 
completely. Fig. 5 (a) shows the EEG of a patient with psychomotor epileptic 
seizures. Seeing Fig. 5 (b) and (c), the normalized wavelet spectrum entropy is the 
best to indicate the seizures among other entropy. It is found that two hidden seizures 
that occur at the second 20 and 58 could be indicated by the normalized wavelet 
spectrum entropy (seeing the solid line of Fig. 5 (c)). 

In this paper, we employ the wavelet spectrum entropy and scale-averaged wavelet 
power based on the Morlet wavelet transforms to indicate the seizures of five patients. 
It is found that theses two feature values could indicate the epileptic seizures 
effectively. Some of hidden seizures could be indicated, but also the effect of EMG 
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Fig. 3. (a) EEG recorded from the F8-C4 electrode of patient 3 (mixed epileptic seizures); (b) 
Renormalized entropy (solid line) and K-L relative entropy (dot line) calculated with FT; (c) 
The normalized wavelet spectrum entropy (solid line) and scale-averaged wavelet power (dot 
line) by using Morlet wavelet transform 
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Fig. 4. (a) EEG recorded from the F8-C4 electrode of patient 4 (epileptic seizures with EMG 
activity); (b) Renormalized entropy (solid line) and K-L relative entropy (dot line) calculated 
with FT; (c) The normalized wavelet spectrum entropy (solid line) and scale- averaged wavelet 
power (dot line) by using Morlet wavelet transform 

activity to detection of epileptic seizure could be avoided for scale-averaged wavelet 
power. It is noticed that the renormalized entropy and K-L relative entropy two 
methods need a segment of EEG as a reference. In the future work, we will combine 
the normalized wavelet spectrum entropy and scale-averaged wavelet power to come 
up with a new detection method of epileptic seizures in extracranial EEG. 
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Fig. 5. (a) EEG recorded from the F8-C4 electrode of patient 5 (psychomotoric epileptic 
seizures); (b) Renormalized entropy (solid line) and K-L relative entropy (dot line) calculated 
with FT; (c) The normalized wavelet spectrum entropy (solid line) and scale-averaged wavelet 
power (dot line) by using Morlet wavelet transform 
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Abstract. In this paper, the kurtosis-based method for the classification of 
mental activities is proposed. The EEG signals were recorded during 
imagination of left or right hand movement. The kurtosis of EEG and its 
dynamic properties with respect to time are analyzed. The experiment results 
show that the kurtosis can reflect the EEG pattern changes of different motor 
imageries. According to the analysis and experiment results, a kurtosis based 
classifier for the classification of left and right movement imagination is 
designed. This classifier can achieves near 90% correct rate. As the kurtosis is 
computationally less demanding and can also be estimated in on-line way, so 
the new method proposed in this paper has the practicability in the application 
of brain-computer interface. 

Keywords: EEG; kurtosis; motor imaginary; classification. 

1   Introduction 

The study of brain computer interface (BCI) is a hotspot in the field of biomedical 
engineering. Until now, about 40 research groups around the world are carrying out 
BCI research. The contents of BCI researches are to build the communication directly 
between human brain and computer (or other instruments) so that to realize the 
control of brain over apparatuses. EEG or ERP signals is commonly used as the 
carrier of control commands[1].  

The research in this paper is concerned with the EEG pattern extraction during left 
and right hand movement imagination. Until now, these are some reports about this 
research. In the published papers, the researchers have selected different EEG patterns 
and adopted different methods for the classification of the left and right hand 
movement, such as : adaptive AR parameters, AR spectrum, mu and beta rhythm[2]-[7], 
etc. In this paper, the high order cumulant of EEG signal is investigated when the 
subject are imaging the left or right hand movement. The research in this paper shows 
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that the distribution of normalized 4th order cumulant (kurtosis) of EEG on the scalp is 
changing obviously with different movement imagination (imaging left or right hand 
movement). For the purpose of dynamic estimation of kurtosis, we adopt a window 
sliding along the EEG data sequence to calculate the kurtosis of multi-channel EEG 
signals. Comparing the two kurtosis time courses of EEG in C3 and C4 while the 
subject is imaging the hand movement, we find that the kurtosis changes obviously 
with different imagination task. Based on these phenomena, we propose a 
classification algorithm based on kurtosis to classify the left and right hand movement 
imagination. For 160 trials of motor imagination, the rate of accurate classification is 
near 90%. Furthermore, the kurtosis estimation is in online way, so the computation is 
less demanding. We conclude that the kurtosis based classification method has the 
advantages in real time computation and classification.  

2   The Online Estimation of Kurtosis  

For a random signal x(n) with zero mean, its kurtosis is defined as:  
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we commonly use finite length samples of x(n) to estimate the 2th and 4th order 
moments in Eq.1. Assume N is the length of samples, then:  
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But in many cases, the sample x(1), x(2),…,x(N) is not fixed but new observations 
keep on coming. So we need an online estimation method of moments and kurtosis. 
Considering the requirement of the data analysis in this paper, two kinds of on line 
estimation methods are investigated. 

2.1   The Online Estimation of Kurtosis Based on Sliding Analytic Window  

Assume the length of the analytic window is N, n is the discrete time index. So the 
data samples in the window at time n is x(n-N+1),…,x(n-1),x(n). For the new 
incoming sample of x(n+1), it is not difficult to get the online estimation of 2th and 4th 

moments at time n+1: 
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Where: m2(n) and m4(n) denote the 2th and 4th moments at time n. 
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Combining Eq.1 and Eq.3, we can get the online estimation of kurtosis: 
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2.2   The Online Estimation of Kurtosis with Increasing Window Length  

Another way for online estimation of kurtosis and moments is to fix the left side of 
the analytic window and the kurtosis is updated with the new incoming sample, (that 
means the length of the analytic window are increasing with the new incoming 
samples), the formulas for moment estimation are as follows: 
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Combining eq.1 and eq.5, we get another formula for online kurtosis estimation: 
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It is easy to find that either of Eq.(4) and (5) needs much less computation than 
directly estimating it in common way. In real world application, we can combine the 
two formulas to estimate the kurtosis and moments. For example, at the beginning of 
online data processing, the data length is less than the length of analytic window, so 
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formula (6) can be used to estimate the kurtosis and moments , when data length is 
increasing to be or greater than the length of the analytic window, formula (5) can be 
used. 

3   The Kurtosis Analysis and Classification of EEG During 
Imagination of Left and Right Hand Movement  

3.1   EEG Data Description 

The EEG data is from the Graze university of technology. The experimental 
procedure is as follows. The subjects were sitting in a relaxing chair looking at the 
centre of a monitor placed in front of them. The task was to control a feedback bar by 
means of imagery left or right hand movements. The order of left and right cues was 
random. The total time of data acquisition of each trial is 9s. During the first 2s, the 
subjects were quiet and didn’t do any imagination. At t=2s an acoustic stimulus 
indicates the beginning of the trial, the trigger channel went from low to high, and a 
cross “+” as displayed for 1s; then at t=3s, an arrow (left or right) was displayed as 
cue. At the same time the subject was asked to move a bar into the direction of the 
cue. The data acquisition stopped at t=9s. Three bipolar EEG channels were measured 
over C3, Cz and C4. The EEG was sampled with 128Hz, it was filtered between 0.5 
and 30Hz.  

Fig.1 (a) (b) are two typical EEG signals while the subject imagines left and right 
hand movement respectively. It has been shown that the imagination of either a left or 
right hand movement results in an amplitude attenuation (desynchronization) of μ 
rhythm at the contra-lateral sensorimotor representation area and in some cases, in an 
amplitude increase(synchronization) at the ipsilateral hemisphere. We call these 
phenomena the event-related (de) synchronization (ERD, ERS), which are the base of 
an EEG-based brain computer interface(BCI). The brain states associated with motor 
imagery are transformed into control signals to implement the communication 
between brain and computer or other apparatuses.  

0 2 4 6 8
-0.5

0

0.5

0 2 4 6 8
-0.5

0

0.5

0 2 4 6 8
-0.5

0

0.5

 
time (s) 

(a) 

0 2 4 6 8
-1

0

1

0 2 4 6 8
-0.5

0

0.5

0 2 4 6 8
-0.5

0

0.5

 
time (s)  

(b) 

Fig. 1. Two trials of EEG of movement imagination， EEG channels are C3(top)，
CZ(middle)，C4(bottom) respectively. (a)imagining left hand movement ; (b)imagining 
right hand movement 
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3.2   The Kurtosis of EEG During Imagination of Left and Right Hand Movement 

The online estimation formula (4) is used to analyze the kurtosis of channel C3 and 
C4 in Fig.1. The length of window N=384. Fig.2 shows the time course of kurtosis 
(solid line for channel C3 and dotted line for Channel C4).  

Comparing the time course of kurtosis of C3 and C4 in Fig.2(a),(b), while 
imagining the left hand movement, kurtosis of channel C3 is smaller than it of 
channel C4 in Fig.2(a) and vice versa while imagining the right hand movement 
(Fig.2(b)). The experiment results show that online kurtosis can reflect the changes of 
motor imagination tasks. 
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Fig. 2. Time course of kurtosis of EEG signals(C3, C4), the length of sliding window is 384: 
(a) imagining left hand movement; (b)imagining right hand movement 

160 trials with class labels (‘+’ , ‘o’ for right and left) are employed to study the 
universality of using kurtosis for discrimination of left and hand movement. The 
length of window is 512 samples (4 seconds) and the time scope for analysis is 
between 3s and 8s. Only channels C3, C4 are analyzed. The experimental procedure 
is as follows: For each trial, after filtering the EEG signal with the bandpass filter  
(8-12Hz). The window of N=512 is sliding along EEG samples and the kurtC3(t), 
kurtC4(t) of the 512 samples contained in the window is calculated at each time t, then 

time(s) 
(a) 
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we combine kurtC3(t), kurtC4(t) to be a 2-dimensional kurtosis vector kurt(t)=[kurtC3 
(t)，kurtC4(t)]

T. For 160 trials, we can get 160 kurtosis vectors totally at each time 
sample t. Fig 3 (a),(b),(c) show the scatter maps of the kurtosis vectors at t=4s, 6s, 8s 
respectively. Under the diagonal line in Fig.3 is the region of kurtC3(t)>kurtC4(t), and 
vise versa. According to the three scatter maps, we can see that, with the increment of 
time, the scatter map is becoming more and more consistent with the true labels of left 
and right hand movements.  
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Fig. 3. The scatter maps of 4th order cumulants of (C3 ,C4) EEG signals at t=4s,6s,8s 
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Fig. 4. Time courses of classification error rate for different length of analytic windows 

For the purpose of choosing the best window’s length N and the best decision time 
t in classification, a simple kurtosis-based classifier is proposed as follows: 
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In following experiments, the kurtosis of C3 and C4 from 160 trials is computed 
based on a window moving along the EEG samples from 0 to 9s. Then based on 
Eq.(7) , the classification error rate at each time point t is calculated. The length of 
window N is from 384 to 640 (3 to 5s), the interval of increment of N is 32 (0.25s).  

Four representative time courses of the error rate with N=448, 512, 576, 640 (3.5, 
4, 4.5, 5s) respectively are illustrated in Fig4. Comparing 4 time courses of error rate 
in Fig 4, we can see that the best decision time is between 6-8s. error rate reaches its 
minimal value at this time interval. Among all of the results with different N. The best 
result is achieved while N=576 at t=7.84s, and the minimal error rate is 11.25% 
(Fig.4c). 

4   Discussion 

It is worth while to mention that the power (second order moment)-based method is 
commonly to be used for the μ rhythm detection. But compared with the kurtosis 
based method, the former is not able to perform as good as the latter, especially in 
noisy environment. In our research, by using power-based method, we can only get 
82.5% correct classification rate. Furthermore, the online estimation of window-based 
kurtosis proposed in this paper is easy to implement. So, we think that kurtosis-based 
classifier can be used for online detection of movement imaginations.  

In our study, we also pick up the 18 trials which are not be classified correctly by 
kurtosis-based method and try to use other methods to classify them, such as power 
spectrum comparison, AR model based method, etc. But the results are not improved. 
By observing the EEG waveform of 18 trials, most of them don’t contain ERD (RES) 
or contain very weak ERD (ERS) phenomena. We think that may be caused by the 
fatigue or distraction of subjects during the process of EEG data acquisition.  
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Abstract. Previous works showed that the joint use of Principal Com-
ponent Analysis (PCA) and Independent Component Analysis (ICA)
allows to extract a few meaningful dominant components from the EEG
of patients in coma. A procedure for automatic critical epoch detection
might support the doctor in the long time monitoring of the patients,
this is why we are headed to find a procedure able to automatically
quantify how much an epoch is critical or not. In this paper we propose
a procedure based on the extraction of some features from the dominant
components: the entropy and the kurtosis. This feature analysis allowed
us to detect some epochs that are likely to be critical and that are worth
inspecting by the expert in order to assess the possible restarting of the
brain activity.

1 Introduction

Previous works showed that the joint use of Principal Component Analysis
(PCA) and Independent Component Analysis (ICA) allows to extract mean-
ingful dominant components (DCs) from the Electroencephalogram (EEG) of
patients in coma [1]. The EEG is a technique that measures the electric field
produced by the bioelectric impressed current density, associated with neuronal
activity, through a set of scalp electrodes properly placed over the head [2]. The
visual inspection of the EEG is worldwide accepted as a key step in the cerebral
death assessment of patients in coma, because the EEG is strictly correlated
with the electric activity of the brain [3,4]. The bioelectric pattern of the patient
in coma is monitored for a long time in order to detect any electrical activity
of the brain. In case no cerebral electrical spontaneous activity is observed, the
patient will be thought to be dead.

Assessing the cerebral death may be troublesome because of the artifacts:
artifacts are signals not related to the cognitive activity, they are generated
by external factors (electrical line noise, interference) or by non-cognitive inner
factors (muscle activity, eye blinking, eye movements). They are superimposed
to the signals we want to analyse and it stand to reason that they are very
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unwelcome, especially if the signal we want to analyse is weak, such as the
signals from patients in coma. Moreover, the intensive care environment, that
is the typical environment which the coma signals are recorded in, is full of
many electromedical working equipments [5,6], thus the external artifacts are
very likely to occur.

Previous work showed that we can extract, from coma EEG, a few dominant
components including almost the whole information content of the EEG itself
[1]. This extraction is based on the joint use of PCA and ICA. The recording
is divided into data segments (epochs) than each epoch is processed. PCA con-
centrates most of the information content in a few principal components and
provides information about the dimension of the embedding space, then ICA is
carried out in order to extract the independent components. This algorithm can
concentrate the information content in a few dominant components, thus each
epoch can be represented by them [7,8,9].

Since the time duration of the coma EEG may be very long, we headed to
investigate a procedure for the automatic detection of the critical EEG epochs,
in order to support the doctor in the long time monitoring. An automatic crit-
ical epoch detection procedure is supposed to label the epochs that the expert
should pay particular attention to, so that he can figure out whether the detected
activity is related to artifacts or to brain activity.

Thus we are headed to find a procedure able to automatically quantify how
much an epoch is critical or not. In this paper we propose a method based on the
extraction of some features from the dominant components: the entropy and the
kurtosis. This feature analysis allowed us to detect some epochs that are likely
to be critical and that are worth inspecting by the expert.

The paper is organized as follows: the second section explains how the domi-
nant components are extracted from the EEG, the third section explains why we
propose the entropy and the kurtosis as markers for the critical epoch detection,
the fourth section reports the results and the last section reports the conclusions.

2 PCA and ICA for Dominant Components Extraction

Before processing the dataset by PCA and ICA, we divided the dataset 1sec
non overlapping segments (epochs) and we extracted the dominant components
from each epoch. PCA is a classic technique that, given a set of multidimensional
observed variables, yields a smaller set of variables, with less redundancy, that are
supposed to provide a reliable compressed representation of the data. Essentially,
a set of correlated variables is transformed into a set of uncorrelated variables
that are ordered by reducing variance. The uncorrelated variables are linear
combinations of the original variables, and the last variables of this set can be
removed with minimum loss of the information carried by the original data.

PCA is commonly used to reduce the dimensionality of a data set while re-
taining as much information as possible. PCA can be thought as a rotation of
the existing axes to new positions in the space defined by the original variables.
In this new rotation, there will be no correlation between the new variables.
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Therefore, PCA provides a representation of the distribution of the original
variables in the new multidimensional space. PCA can be performed finding
the eigenvalues of the covariance matrix of the data [10] and calculating the
information content ηi related to the i-th principal component (PC) by

ηi =
λi∑n

j=1 λj
(1)

where λi is the eigenvalue related to the i-th PC and n is the amount of the PCs
extracted from the n EEG rows.

ICA allows to find underlying factors from multivariate data. ICA extracts
components that are both statistically independent and nongaussian [10]. Given
N samples of the observed data vector x, whose elements are the mixtures
x1,x2, ...,xm, modeled by

x = As =
n∑

j=1

ajsj (2)

where A is the unknown m-by-n mixing matrix with column vectors aj , j =
1, 2, ..., n, and s is an unknown n-dimensional source vector containing the source
signals s1, s2, ..., sn, which are assumed to be statistically independent. In gen-
eral, the dimensionality m of the vector x and aj can be different from n. We
usually assume that the number of mixtures is at least equal to the number of
sources (m ≥ n), the mixing matrix A has full rank, and that at most one source
sj can be Gaussian [10]. ICA solves the Blind Source Separation (BSS) prob-
lem supposing that the sources are statistically independent from each other. In
particular ICA estimates a n-by-m unmixing matrix W so that

u = Wx =
m∑

j=1

wjxj (3)

where u is an estimation of the source vector s. This model can be used in
different situations, for example in multidimensional signal processing, where
each sensor detects an unknown superimposition of unknown source signals at
the time points t = 1, 2, ..., N . Many algorithms for ICA have been proposed in
the last years. We exploited the Bell-Sejnowski INFOMAX algorithm [11,12]. In
particular, we used the switching extended rule,

ΔW ∝ [I−K tanh(u)uT − uuT ]W (4)

where I is the n × n identity matrix and K is a n × n diagonal matrix, whose
elements are ki; for supergaussian sources ki = 1, while ki = −1 for subgaussian
sources. The ki are related to the sign of the ui kurtosis:

ki = sign(kurt(ui)) (5)

The performance of ICA can be improved by means of a PCA preprocessing
that makes the procedure less time consuming [10]. The PCA can be also used
in order to reduce the data dimensionality and/or to perform whitening process.
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3 Feature Extraction

Our goal is to automatically detect the critical epochs, in other words the epochs
that it is worth being inspected carefully. When a patient is in coma, it is hopeful
to detect any even tiny brain activity. The amplitude of the EEG of these patients
is very tiny, the typical brain waves are not visible, thus in case of restarting of the
brain activity, the epoch is supposed to have particular statistical characteristics
compared to the rest of the epochs. A critical epoch will be “more random”
because an unexpected event occurs, it will be “odd” with respect to the epochs
in which no activity is observed. Any activity is hopeful to be detected, even
some artifacts, for example the ocular or muscular artifacts. These artifacts are
characterized by a peaky distribution and could be detected by a measure of
the “peakyness”. The parameters that are able to estimate the randomness and
the peakyness are the entropy and the kurtosis, respectively. They have been
proposed for the detection of the artifacts in normal EEG [13], we propose to
use them for the detection of brain activity in coma EEG. In particular we
propose to use the Renyi’s definition of entropy. Since the dominant components
include most of the information content of the epochs, in order to extract the
features of each epoch we processed the corresponding dominant component.
Once the features were extracted, they were normalized and compared: if at least
one of the two features of a component (i.e. epoch) exceeded a fixed threshold, the
component was marked as critical. We proposed a threshold for the two features,
further investigation will be devoted to the optimization of this setting.

3.1 Kurtosis

Given a scalar random variable x, kurtosis has the following expression:

k = m4 − 3m2
2 (6)

mn = E{(x−m1)n} (7)

where mn is the n-order central moment of the variable and m1 is the mean.
Kurtosis is positive for “peaked” activity distributions, typical of eye blink, car-
diac artifacts and muscular artifacts; kurtosis is negative for “flat” activity dis-
tributions, typical of noise [13]. We estimated the kurtosis of each dominant
component and we normalized it to zero-mean and unit-variance with respect to
all the dominant components. The epochs associated with a component whose
entropy exceeded the 50% of the range of the normalized kurtosis, were marked
as critical.

3.2 Renyi’s Entropy

As a measure of randomness of the epoch, we used the differential entropy, in
particular we used the Renyi’s definition of entropy. For a random variable y,
whose pdf is fY (y), the Renyi’s entropy is defined as:

HRα(y) =
1

1− α log
∫ +∞

−∞
fα

Y (y)dy (8)
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HRα(y) =
1

1− α log{ 1
Nα

∑
j

[
∑

i

kσ(y − yi)]α−1} (9)

where α is the order of the entropy and the expression (9) comes from the
application of the kernel estimators [14]. If the random variable is concentrated
in small temporal intervals, its differential entropy is small, indeed the variables
whose probability densities take large values give a strong contribution to the
integral in the (8), thus their entropy is small. This feature of the entropy help
us to mark the signals which are concentrated in small temporal intervals with
high probabilities and, therefore, which are very likely to account for restarting
brain activity or artifacts. We estimated the Renyi’s entropy of each dominant
component, then we normalized these values to zero-mean and unit-variance
with respect to all the components (i.e. the epochs). The epochs associated with
a component whose entropy exceeded the 60% of the range of the normalized
entropies, were marked as very random epochs. The order of the entropy was
set at 2, in order to equally emphasize the sub-gaussian and the super-gaussian
components [14].

4 Results

4.1 EEG Data Description

The EEG was recorded in an intensive care environment. We data were acquired
through 19 electrodes placed on the scalp according to the international standard
10-20 by Jasper (the electrode montage and a 51 sec data segment is shown in
Figure 1), we chose a monopolar montage, with the reference electrode placed
in a neutral point of the scalp. The sampling rate was set at 256 Hz.

4.2 Dominant Components Extraction

The EEG recording was first divided into 1-sec epochs. For each epoch we per-
formed the PCA and then we estimated the information content of each com-
ponent. Looking at the PCs we can figure out which is the minimum dimen-
sion of the embedding space of our EEG data. Previous work showed that we
can completely embed the coma EEG data in a 2÷3 dimensional space [1].
Once we checked that we could embed our data in low-dimensional space, we
passed the whole dataset of principal components through ICA. The early two
or three ICs of each epoch could account for the whole information content of
the epoch itself, but we decided to test the procedure selecting only the first
component (the dominant component), because it accounted for most of the in-
formation. Thus the ICs were ordered according to their variance and the first
one was selected. Figure 1 shows the dominant components extracted from the
epochs.
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Fig. 1. (on the top) The electrode montage and a 51sec EEG segment from a patient
in coma. (on the bottom) The dominant components extracted from the 51 epochs.

4.3 Feature Extraction

The set of dominant components was processed according to feature extrac-
tion procedure described in Section 3. The Renyi’s entropy and the kurtosis
were computed for each dominant component (i.e. epoch), they were normalized
to zero-mean, unit-variance and amplitude in the range -1 to 1. If at a least
one of the two features of a certain component exceed the fixed threshold, the
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Fig. 2. The normalized kurtosis of the epochs. The kurtosis exceeds the threshold 0.5
for the epochs EP7, EP10, EP14, EP23, EP39.

Fig. 3. The normalized Renyi’s entropy of the epochs. The entropy exceeds the thresh-
old -0.6 for the epochs EP2, EP7, EP14, EP23, EP39.

component was marked and the corresponding epoch was thought to be critical.
The kurtosis was estimated according to the equations in Section 3.1 and the
results are plotted in Figure 2: the critical epochs (EPs) are EP7, EP10, EP14,
EP23, EP39. The Renyi’s entropy was computed according to the equations in
3.2 and the results are plotted in Figure 3: the critical epochs (EPs) are EP2,
EP7, EP10, EP14, EP23, EP39. We can point out that the epochs EP7, EP14,
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Fig. 4. The dominant components DC7, DC23, DC39 and the mapping of the critical
epochs. The dominant components are plotted in the bottom, the critical time point
of each epoch is highlighted with a red vertical dashed line. The EEG mapping at the
critical time points is shown on top.

Fig. 5. The dominant components DC2, DC10, DC14 and the mapping of the critical
epochs. The dominant components are plotted in the bottom, the critical time point
of each epoch is highlighted with a red vertical dashed line. The EEG mapping at the
critical time points is shown on top.

EP23, EP39 are critical according to both the measures. The dominant com-
ponents associated to the epochs EP7, EP23 and EP39 are shown in Figure
4 whereas the dominant components associated to the epochs EP2, EP10 and
EP14 are shown in Figure 5. These are the epochs which is worth inspecting
very carefully in order to figure out whether the detected waves are associated
to brain activity or to artifacts. The critical time point of each epoch is high-
lighted with a red vertical dashed line. Looking at the mapping of the EEG at
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the critical time points (Figures 4 and 5), we realized that there are two kind of
critical behaviour of the EEG signals: the first one is characterized by a relative
high amplitude in the frontal and occipital region and a low amplitude in the
central, fronto-temporal and parietal regions. The second kind of behaviour is
characterized by a concentration of the activity in the electrode P3.

5 Conclusions

This paper proposed a method, based on the joint use of PCA, ICA and higher
order statistics, for the automatic detection of critical epochs in EEG recordings
from patients in coma. The EEG was divided into non-overlapping epochs and
the joint use of Principal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA) extracted a few meaningful dominant components from
each epoch. Then, some higher order statistics (kurtosis and the Renyi’s en-
tropy) were extracted from each dominant component so that each epoch was
described by the set of features associated to the corresponding dominant com-
ponent. Once we got the features, we selected the epochs that were likely to be
critical according to a threshold. This feature extraction detected some epochs
that are worth inspecting by the expert in order to assess the possible restarting
of the brain activity. Future investigation will be devoted to the optimization of
the statistics and to the optimization of the threshold.
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Abstract. This paper investigates the use of sound and music as a means of rep-
resenting and analyzing multichannel EEG recordings. Specific focus is given 
to applications in early detection and diagnosis of early stage of Alzheimer’s 
disease. We propose here a novel approach based on multi channel sonification, 
with a time-frequency representation and sparsification process using bump 
modeling. The fundamental question explored in this paper is whether clinically 
valuable information, not available from the conventional graphical EEG repre-
sentation, might become apparent through an audio representation. Preliminary 
evaluation of the obtained music score – by sample entropy, number of notes, 
and synchronous activity – incurs promising results. 

1   Introduction 

The purpose of this paper is to investigate utilization of music and multimedia tech-
nology to create a novel procedure for EEG multichannel signals analysis that would 
be of clinical utility to medical practitioners and researchers. Sonification is the pres-
entation of information as non speech sounds. Vision is the most important sense for 
human perception of space, however audition also convey useful complementary in-
formation in the time domain. Standard visually-based methods of analysis involve 
sophisticated processing and filtering of the data, so that by definition some spatial 
multidimensional aspects are illuminated at the expense of others. This paper pro-
poses a flexible listening sonification system, by which one can adjust sonification to 
represent different electrodes and time-frequency dynamics: we may for instance con-
sider the brain as an orchestra, where brain regions would represent different musical 
instruments. From this point of view, analyzing multichannel EEG signals using 
sounds seems a natural method: using a sonification of EEG signals, we would per-
ceive simultaneously every channel, and analyze more tractably the time dynamics of 
the signals – hoping to gain new insights about the brain signals. However this meta-
phor stops here. As a matter of fact, in order to study EEG signals via a sonification 
process, three constraints for generating sounds should be taken into account: 

• it should not loose relevant information, 
• it should keep a biologic consistency with the original EEG signals (i.e. it 

should be biologically inspired), 
• it should be designed for multi-channel EEG, as it is for this use that it will 

prove the most worthwhile. 
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Because of these constraints, and because of the noises inherent to EEG signal, a 
direct playback of the EEG (also termed as ‘audification’) would give an inaccurate 
representation [1].  

The first constraint itself leads to a preliminary question: what will we consider as 
meaningful within EEG signals? Usually, EEG signals can be studied through several 
viewpoints, the most frequently investigated being: 

• EEG signal amplitude (usually in given frequency bands), 
• EEG signal oscillatory rhythms (time-frequency study), 
• EEG synchronization 

Furthermore, in order to preserve the consistency of the sonification with the EEG 
original signal, the sonification process should take into account the signals origin, i.e. 
brain areas the signals are recorded from (occipital, temporal, frontal, parietal, etc.), 
because these area are not involved in the same functional processes (since about 50 
years, we know and have had confirmations that brain areas are functionally organ-
ized to deal with several distinct functions). For multichannel EEG this constraint 
implies an audio representation where each electrode’s contribution can be identified. 
Finally, as human beings have to study the audio output, a tractable representation is 
mandatory, the last constraint will therefore be to produce sufficiently sparse musical 
scores.  Up to now, few possibilities of sonification for the analysis of EEG data have 
been addressed: ‘spectral mapping sonification’ in frequency domain, audio alarm for 
a surgical instrument [2];  synchrony study with ‘distance mapping sonification’ [1]; 
‘model based sonification’ for time-frequency (TF) analysis of epileptic seizures [3]; 
discrete frequency transform for brain computer interface [4] (see also this paper for a 
review about EEG sonification) – however to the best of our knowledge, none of 
these sonification process are able to solve all the constraints exposed above, which 
are required for a satisfactory EEG analysis method. The main purpose of this paper is 
to propose a new sonification satisfying these conditions, based on a sparse musical 
transformation of multichannel EEG that we will call bump sonification (BUS). 

In the course of a clinical study [5], EEG signals from elderly patients in the early 
stage of Alzheimer’s disease (AD) who developed AD within one year and a half, and 
from age matched controls were recorded in a ‘rest eyes-closed’ condition. We will 
present an application of BUS as a diagnosis method for the discrimination of these 
two groups of patients. 

2   BUS: A Sparse Time-Frequency Sonification Method 

From raw EEG signals, we seek to obtain a representation allowing the listening of 
EEG records obtained from a multi-channel EEG device. The Bump Sonification 
(BUS) method (Fig. 1) follows three steps: 

• preprocessing, including artifacts removal and dimensionality reduction 
based on Blind Source Separation (BSS) or Independent component 
analysis (ICA), 

• sparse TF representation, 
• music generation (midi files). 
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Fig. 1. BUS model. From EEG signals, features are extracted using a sparsification process. TF 
representation of the signal is obtained, and the features extracted are used to build a MIDI 
(“.mid”) music sonification file. Illustrations on the right side are obtained from a scalp EEG 
record (2 sec, sampling frequency 1KHz): from top to bottom the signal, its wavelet TF repre-
sentation, its bump model, and the final sonification are represented. 

The TF representation is obtain using wavelet transform, with complex Morlet 
function (Eq. 1), which is well highly redundant but however well suited for TF 
analysis of electrophysiological signals [6] because of its symmetrical and smooth 
Gaussian shape both in time and frequency domains. 

( ) ( ) ( )ftitAtw t πσ 2exp.2/exp. 22−=  (1) 

where t is time, f is frequency, σt is the time deviation, and A is a scalar normalization 
factor. After the wavelet transform, cft coefficients describing time t and frequency f 
are obtained along all T time steps and all F frequency steps. 

The main idea of the TF sparsification step (bump modeling [7],[8], Fig. 2) is to 
approximate a TF map with a set of elementary parameterized functions: a bump is 
adapted under constraints inside a TF window W, in order to minimize (using BFGS 
algorithm [9]) the cost function C: 

( )( )∑
∈

−=
Wft

ft tfzC
,

,
2

1 β  (2) 

where the summation runs on all pixels within the window, zft are properly normalized 
TF coefficients at time t and frequency f, and β(f,t) is the value of the bump function 
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at time t and frequency f. In the present application, the TF coefficients cft where nor-
malized to obtain zft z-score values by comparison with an average baseline, at each 
frequency bin f, from Control patients: 

t

c
zt fft

ft Σ
Μ−

=∀ ,  (3) 

where Mf is the average of baseline means mp along time for all Control patients p:  
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and Σf is the average baseline of standard deviations sp along time for all Control pa-
tients p:  
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This way, high normalized zft values represent patterns differing significantly from 
usual activity (which should convey the most significant information). 

Half ellipsoid functions were found to be the most suitable bump functions: 
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Fig. 2. Bump modeling, example. The TF map (top) is modeled by parameterized functions 
(right) into a more tractable model (bottom) highlighting the most prominent TF patterns. 

μf and μt are the coordinates of the centre of the ellipsoid, lf and lt are the half-lengths of 
the principal axes, a is the amplitude of the function, t is the time and f the frequency.  
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Thereafter, the most prominent TF features from the artifact free EEG signals are 
obtained. This BUS model is a general scheme, which was already successfully ap-
plied for a brain computer interface application [10]. We will focus here on the appli-
cation of BUS to the discrimination between PMCI and Control patients.  

3   Application of BUS to Multichannel EEG Signals Investigation 

3.1   General Method of Multi Channel Sonification  

When more than one channel is under investigation – for instance, if one seeks to in-
vestigate global EEG dynamics, or EEG long-distance synchrony – we propose an 
approach (Fig. 3) inspired by the brain areas functional significance: if one is to study 
brain dynamics via EEG sonification, then brain areas whose functionalities are close 
should be represented by sounds which should be close; whereas brain areas whose 
functionalities are remote should be represented by easily differentiable sounds. 
Therefore, for multi channel EEG representation, the music notes will be defined by 
the following parameters of the bumps: 

• Amplitude of the bump will be converted into a velocity of the note 
played (valued between 40 and 127), i.e. how loud the note is played; 

• Position of the electrode will be converted into the note pitch (in MIDI 
format, C4 note = pitch 60) scaled to a pentatonic scale (following pitch 
progressions such as 60-63-65-67-70) if there is many electrodes, depending 
on the electrode position on the head (close electrodes have close pitches, 
remote electrodes have distant pitches). 

• Position and width in time of the bump will be converted into onset and 
duration of the note (in ticks per square). 

 

Fig. 3. Multi channel EEG sonification example. This example is obtained from a 21 channel 
EEG lasting 20 sec, between 5 and 25 Hz. The huge amount of information is synthesized into 
a music score, and its listening highlights signal dynamics and synchrony. 
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This representation gives efficient representations of the brain dynamics. However, 
two caveats should be noticed: 

• if the number of electrodes is too high, too much musical information may be 
produced: the sounds generated would become cacophonic; 

• if the frequency span studied is to wide, too much musical information may 
be produced per channel, which leads to the same problem. 

These two situations are different in type, but similar in nature. To avoid cacoph-
ony, we propose the following solutions: 

• if the number of electrodes is too high, select the most representative elec-
trodes (usually, when several electrodes are used, the signal is redundant) – 
this may be also obtained by a mathematical reduction (such as ICA projec-
tion), however, as we stated in the introduction, the biological realism  
imposes the constraint to regroup only functionally close electrodes (i.e. 
electrodes belonging to the same brain area), for instance regrouping redun-
dant electrodes from frontal and occipital areas together would lead to a loss 
of synchrony information; the other solution would be to consider groups of 
electrodes; 

• if the frequency span to study is wide, dividing it into frequency sub-bands to 
simplify the music scores. 

3.2   Application  to Early Detection of Alzheimer’s Disease 

Mildly impaired patients progression towards AD (PMCI) and age-matched control 
subjects were recorded in a ‘rest eyes-closed’ condition, with electrodes located on 21 
sites according to the 10-20 international system. The first continuous artifact-free 20s 
interval of each recording were used to create two datasets: the PMCI group (n=22) 
and Control group (n=38). We assessed the capability of BUS to extract significant 
differences between dynamics of these groups. 

As our previous reports [11] about Alzheimer’s disease emphasized the importance 
of the theta range, and because this frequency band is slow (and will therefore give a 
more tractable representation than higher frequencies) we investigated the records 
from this database in the theta range (3.5-7.5 Hz), and applied the BUS method de-
scribed above to generate 60 music scores (22 MCI, and 38 Control music scores). 

We intended to highlight synchronization likelihoods uncovered in previous inves-
tigations in frontal and parietal areas [12], and therefore gathered the bump modeled 
from frontal areas (group1 = F3, F3, Fz) and parietal areas (group2=P3, P4, Pz). Low 
pitches (33, 35 and 37) were associated with group1, whereas high pitches (57, 60 and 
63) were associated with group2, following pentatonic scales. 

The model was assessed with mathematical complexity indexes as well as a per-
ception test in which participants were asked to identify patients with PMCI (pro-
gressive mild cognitive impairment) and Control (healthy) by auditory and visual 
displays. The results show a high degree of accuracy in the identification of PMCI 
patients from control (healthy) subjects by the auditory displays (see samples avail-
able on internet [13]). We thereafter tried to analyze these rhythms divergences, by  
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Table 1. Results of three measures applied to the music scores from PMCI and Control groups: 
sample entropy, number of notes, and synchronous activity. Central columns indicates mean 
and standard deviations of the measures, right column indicates the Mann-Whitney p-value 
(testing for significant differences of median, highly significant when p<0.01). Synchronization 
is the most discriminative feature (bold p-value) between PMCI and Controls. 

Feature PMCI Control Mann-Whitney 

p-value1 

Sa(2,1) 0.66±0.07 0.72±0.08 0.007 

No 73.9±28 50.6±26 0.001 

Sy (%) 3.52±1.04 5.10±1.96 4e10-4 

the computation of different measures of organization (Table 1): sample entropy 
(predictability of time series [14], Eq. 4-6), number of notes (Eq. 7), and synchroni-
zation (Eq. 8). 

• Sample entropy is defined by: 

( ) ( )BArmSa /ln, −=  (7) 

with 

( )( )( ) ( )rAmNmNA m2/1 −−−=  (8) 

and 

( )( )( ) ( )rBmNmNB m2/1 −−−=  (9) 

where N is the number of observations in the serie (here N is the total number of notes 
for the six electrodes),  Am(r) the probability that two sequences will match for m+1 
points, Bm(r) the probability that two sequences will match for m points, and r is the 
tolerance for accepting matches. We used Sa(2,1), therefore we looked upon organi-
zation along each different electrodes. 

• The number of notes is simply the overall number of notes for the six elec-
trodes. 

                                                           
1 For Sy, standard deviations are not similar in PMCI and Control sets, as Mann-Whitney test is 

restricted to similarly shaped distributions we therefore log-normalized in order to obtain 
closest standard deviations before calculation of the p-value. 
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NNo =  (10) 

• The synchronization measure (Fig. 4) is defined by Equation 5: 

NVSy /#=  (11) 

where #V is the number of notes which own at least one neighbor in the following 
200 msec (duplicates are withdrawn), which we deemed to be the largest biologically 
plausible time window for synchronous activity. We confirmed statistically signifi-
cant differences between Control and MCI databases with all these measures using 
the Mann-Whitney statistical test for median differences, the best result being for the 
synchronization measure.  

 

Fig. 4. Box plots of synchronization ratio in percentage, showing significant differences be-
tween Control (left) and PMCI (right) subjects 

4   Discussion 

We presented a biologically inspired method for multi channel EEG sonification, i.e. 
a method extracting TF components, and transforming these components into music, 
while keeping consistency with the EEG original signal. 

This method were proven to be useful on a validation study, where two sets of data 
(records from patients at the early stage of Alzheimer’s disease, and records from age-
matched controls) are analyzed in term of musical complexity, and can be discriminated 
by human hearing. The results obtained concerning the AD early stage diagnosis are 
consistent with previous studies: brain dynamics evolution related to AD has been 
reported in several studies using coherence [15], mutual information [16] and syn-
chronization likelihood [12],[17].  
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This sonification model can be fine-tuned for various frequency sub-bands and re-
flect unambiguously the oscillatory characteristics of MCI that may not be evident 
from a visual representation. The improvement of BUS resides in the fact that in con-
trast to visualization techniques, the temporal patterns extracted in the auditory do-
main by sonifications are usually better memorized by a trained neuroscientist than 
visual representations [1]. Our method merges multichannel EEG signals into a time-
frequency-space representation (space for electrodes position on the scalp) and is 
therefore well-suited in order to carry out neurobiological investigations of brain dy-
namics, not only from a spectral or temporal point of view, but also through other 
EEG features, such as long-distance synchronization activities [18]. Since the identi-
fication of AD in early stage through EEG recordings is a current priority in neurosci-
ence, sonification may become a valuable component in medical diagnosis. 

References 

1. Hermann, T., Meinicke, P., Bekel, H., Ritter, H., M¨uller H. M., Weiss, S., Sonifications 
for EEG data analysis. Proceedings of the 2002 International Conference on Auditory Dis-
play, Kyoto, Japan, July 2–5, 2002. 

2. Jovanov, E., Starcevic, D., Karron, D., Wegner, K., Radivojevic, V., Acoustic Rendering 
as Support for Sustained Attention during Biomedical Procedures. International Confer-
ence on Auditory Display ICAD'89, 1998, Glasgow. 

3. Baier, G., Hermann, T., The sonification of rhythms in human electroencephalogram. Pro-
ceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, 
2004, Sydney, Australia. 

4. Miranda, E. R., Brouse, A., Interfacing the Brain Directly with Musical Systems: On de-
veloping systems for making music with brain signals . Leonardo, 2005, 38(4):331-336. 

5. Musha, T., Asada, T., Yamashita, F., Kinoshita, T., Chen, Z., Matsuda, H., Masatake, U., 
Shankle, W.R., A new EEG method for estimating cortical neuronal impairment that is 
sensitive to early stage Alzheimer’s disease. Clinical Neurophysiology, 2002, 113(7): 
1052-1058.  

6. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J., Stimulus specificity of phase-
locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 
1996, 16:4240-4249.  

7. Vialatte, F., Modélisation en bosses pour l’analyse des motifs oscillatoires reproductibles dans 
l’activité de populations neuronales : applications à l’apprentissage olfactif chez l’animal et à 
la détection précoce de la maladie d’Alzheimer. PhD Thesis, Paris VI University, Paris, 2005. 
[Available from http://www.neurones.espci.fr/Theses_PS/VIALATTE_F. pdf] 

8. Vialatte, F.B., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., Dreyfus, G., A 
machine learning approach to the analysis of time-frequency maps, and its application to 
neural dynamics. Neural networks, in press. 

9. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes in C: 
The Art of Scientific Computing, 425 - 430. 1992, Cambridge Univ. Press, New York. 

10. Rutkowski T.M., Vialatte F., Cichocki A., Mandic D.P., Barros A.K., Auditory Feedback 
for Brain Computer Interface Management - An EEG Data Sonifcation Approach. 
KES2006 10th International Conference on Knowledge-Based & Intelligent Information & 
Engineering Systems, Bournemouth, England, in press. 



 Sparse Bump Sonification: A New Tool for Multichannel EEG Diagnosis 101 

11. Vialatte F., Cichocki A., Dreyfus G., Musha T., Rutkowski T., Gervais R. Blind source 
separation and sparse bump modelling of time frequency representation of EEG signals: 
New tools for early detection of Alzheimer's disease. IEEE Sign. Proc. Soc. Workshop on 
MLSP 2005, Mystic, USA, 27-32. 

12. Babiloni, C., Ferri, R., Binetti, G., Cassarino, A., Forno, G.D., Ercolani, M., Ferreri, F., 
Frisoni, G.B., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Rundo, F., Stam, C.J., 
Musha, T., Vecchio, F., Rossini, P.M., Fronto-parietal coupling of brain rhythms in mild 
cognitive impairment: A multicentric EEG study. Brain Research Bulletin, 2006, 69(1): 
63-73. 

13. Vialatte, F., MIDI multi channel EEG sonification of PMCI and Control subjects, (Fronto-
Parietal multichannel sonification). Riken BSI, april 2006. [Available from http://www. 
bsp.brain.riken.jp/~fvialatte/data/Iconip2006_midi/sample.htm.] 

14. Richaman J.S., Moorman J.R., Physiological time-series analysis using approximate en-
tropy and sample entropy, American journal of physiology Heart and circulatory physiol-
ogy, 2000, 278:H2039–H2049.  

15. Adler, G., Brassen, S., Jajcevic, A., EEG coherence in Alzheimer’s dementia. Journal of 
Neural Transmission ,2003, 110(9):1051-1058. 

16. Brinkmeyer, J., Grass-Kapanke, B., Ihl, R., EEG and the Test for the Early Detection of 
Dementia with Discrimination from Depression (TE4D): a validation study. International 
Journal of Geriatric Psyhiatry, 2004, 19:749-753. 

17. Stam, C.J., Montez, T., Jones, B.F., Rombout, S.A.R.B., van der Made, Y., Pijnenburg, 
Y.A.L., Scheltens, Ph., Disturbed fluctuations of resting state EEG synchronization in Alz-
heimer’s disease. Clinical Neurophysiology, 2005, 116:708–715. 

18. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., The brainweb: phase synchroniza-
tion and large-scale integration. Nature Reviews Neuroscience, 2001, 2(4):229-39. 



I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 102 – 109, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Effect of Diffusion Weighting and Number of Sensitizing 
Directions on Fiber Tracking in DTI 
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Abstract. Diffusion Tensor (DT) fiber tracking techniques offer significant 
potential for studying anatomical connectivity of human brain in vivo. And the 
reliability and accuracy of fiber tracking results depend on the quality of esti-
mated DT which is determined by parameters of image acquisition protocol. 
The aim of this paper is to investigate what echo-planar image (EPI) acquisition 
parameters: the number of sensitizing directions K and diffusion weighting b-
value gives the best estimation of DT and shorter scan time. We carried out 
tracking on synthetic dataset that was artificially corrupted by various levels of 
Gaussian noise to study the effects of K and b-value on fiber tracking results, 
and to evaluate the quality of estimated DT. It was found that when K value 
larger than 13 and b-value larger than 800 smm-2 best estimated DTs. And fur-
ther increments of K and b-value had no significant effect on quality of esti-
mated DT. 

Keywords: DT-MRI, DWI, DT, b-value, Gaussian noise, Fiber Tracking, fiber 
tracts. 

1   Introduction 

In recent years, Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is emerg-
ing as the only available medical image modality to non-invasively explore informa-
tion about location, direction and extent of white matter (WM) fiber tracts (consisting 
of million of parallel nerve fibers) of human brain in-vivo, which is based on local 
principles of anisotropic water diffusion direction. In brain white matter (WM), water 
molecules diffuse the fastest in the direction parallel to fiber tract and the slowest in 
the direction perpendicular to the boundary of fiber tract. This is termed as anisot-
ropic water molecular diffusion. Water diffusion in the presence of a strong magnetic 
gradient results in a loss of MR signal due to the de-phasing of spin coherence. The 
application of a pair of gradient to elicit differences in the water molecule diffusion 
among different biologic tissues is known as diffusion weighting [1]. DT-MRI con-
sists of acquiring Diffusion Weighting Images (DWI)  

iI , 1,2,... ; 6i K K= ≥ , which reflect relative amount of diffusion along the dif-

ferent diffusion-sensitizing directions 
ig , 6;,...2,1 ≥= KKi . In DT-MRI, diffusion 
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tensor D that characterizes anisotropic water diffusion within a macroscopic voxel is 
estimated from the set of at least 6 DWIs with non-collinear and non-coplanar diffu-
sion-sensitizing directions, which are uniformly distributed on a unit sphere surface, 

plus the non-diffusion weighting image 0I (i.e. b = 0) [1]: 

0 exp( D )T
i i iI I bg g= −  (1) 

where b-value renders the amount of diffusion weighting. Since D is a symmetric 3-
by-3 matrix, at least 6 DWIs are required to estimate it. However, due to artifacts 
caused by head motion, eddy current, etc., more than 6 DWIs are usually acquired, 
which allows robust estimation of diffusion tensors. It is expected that the quality of 
diffusion tensor data improves as the number of sensitizing direction increases. 

The Stejskal-Tanner pulsed-gradient spin echo scheme (see Figure.1) is the most 
commonly implemented on the clinical MR scanners to acquire DWIs. The Stejskal-
Tanner sequence uses a pair of gradient, systematically positioned around a 180 de-
gree refocusing pulse allowing for controlled diffusion weighting. Here, b-value is 
determined according to the Equation below [1]: 

)3/(222 δδγ −Δ= Gb  (2) 

whereγ is the gyromagnetic ratio; δ and G are the duration and strength of the sensi-

tizing pulsed gradient, respectively; and Δ  is the time interval between the two pulsed 
gradients. Since the intensity of MR signal increases as b-value increases, it is ex-
pected that larger b-value will lead to higher quality of estimated diffusion tensor. 

o90

G

o180 echo 

G

δ Δ
 

Fig. 1. The Stejskal-Tanner sequence used to acquire DW images 

The diffusion tensor may be represented as an ellipsoid with the principal axes 
lengths related to the tensor eigenvalues ( 321 λλλ ≥≥ ) and the directions given by 
the tensor eigenvectors ( 1 2 3, ,e e e ). It is commonly assumed that the eigenvector 

1e , also known as Principle Diffusion Direction (PDD), corresponding to the largest 
eigenvalue 1λ is tangent to fiber tracts. However, although diffusion data provide 
directional information concerning microscopic tissue fiber orientation at voxel scale, 
it does not provide explicit connectivity between voxels. Therefore, fiber tracking 
algorithms have been developed to trace WM fiber tracts by diffusion tensor data. The 
performance of those fiber tracking algorithms relies on the quality of the estimated 
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diffusion tensors. To evaluate the quality of estimated diffusion tensor based on dif-
ferent combination of K and b-value, we compared the similarity between fiber tracts 
reconstructed from noisy diffusion tensor data and the one reconstructed from noise-
free data. We generated a synthetic diffusion tensor dataset for this purpose. 

This paper is to investigate which combination of K and b-value gives the best es-
timation of diffusion tensor by using synthetic data. The synthetic data that simulate a 
helix were first built following the mathematical framework proposed by [2] and 
artificially corrupted by Gaussian noise. One of the most popular fiber tracking algo-
rithms, line propagation model [3], was then chosen to be assessed. The fiber tracts 
were reconstructed by propagating a line from a seed point based on PDD of each 
voxel. Finally, a fiber similarity measure was proposed to evaluate the quality of es-
timated diffusion tensor.   

2   Method 

2.1   Synthetic Data 

Synthetic dataset were generated to evaluate the effects of the number of sensitizing 
directions K and the b-value on the estimation of diffusion tensor. There are a number 
of reasons to use the synthetic data: (i) it is time-consuming to acquire DWIs with 
different combinations of K and b-value, especially when both factors are large, (ii) it 
is almost impossible to validate the fiber tracking result using real data due to lack of 
ground truth, and (iii) the signal to noise ratio of DWIs cannot be controlled for real 
data. For each combination of K and b-value, the synthetic data need to be tested at 
different levels of noise. Generally, the synthetic data can be built with known geome-
try of fiber tracts and controlled signal-to-noise ratio of DWIs. 

The diffusion tensor D is a symmetric 3-by-3 matrix and eigenvalue decomposition 
gives: 

1D=VPV−  (3) 

where V is the matrix whose columns are the eigenvectors (
1 2 3, ,e e e ); and P is di-

agonal matrix whose diagonal elements are the corresponding eigenvalues 

( 321 ,, λλλ ). Therefore, to build the synthetic diffusion tensor data, the eigenvalues 

and the corresponding eigenvectors should be provided for each voxel. However, this 
is very exhaustive (e.g. 40x40x40 3D scan consists of 6,4000 voxels ). A mathemati-
cal framework for the construction of synthetic diffusion tensor data proposed in [2] 
was used here. Instead of specifying the information for every voxel, the framework 
requires specifications only on points that lie on the skeleton of fiber tract; since this 
framework constructs the synthetic data in continuous coordinate system point is used 
here. Then, 3 eigenvectors and corresponding eigenvalues of other points can be 
computed based on the given information. Furthermore, this framework facilitates to 
build cylindrically symmetric fiber tract which is close to the physical structure of real 
fiber tract. This leads to a fiber tract that has the fastest water diffusion in the center 
and slower water diffusion as moving to its boundary (see Figure 2 (a)).  
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The skeleton of fiber tract is represented as a piecewise continuous 3D space curve. 
The helical geometry

1 1 2( ) ( sin(2 ), cos(2 ), )r t k t k t k tπ π= , [0,1]t ∈  is sampled at 

it ; Ni ,...,1= , to construct the skeleton. In general, PDD 
1e  at a point is given by 

weighted sum of PDD of those points that lie on the skeleton and are the closest to the 
given point. And the weight is the distance between two points. The other eigenvec-

tor
2e and

3e can be found by solving the equations 
1 2, 0e e =  and

1 2 3e e e× = . The 

eigenvalues are computed in the similar way.  
To build noisy synthetic diffusion tensor data, the noise-free DWIs are first gener-

ated using Eq. (1) with given K and b-value. In particular, non-diffusion weighting 
image, I0, is estimated from fractional anisotropy (FA) (Eq. (4)). Then, Gaussian noise 
was added to DWIs. Here, the signal-to-noise ratio is defined as ratio between the 
mean intensity of non-diffusion weighting image and the standard deviation of Gaus-
sian noise. Finally, the noisy synthetic diffusion tensor data can be re-estimated from 
noisy DWIs. Figure 2(b) shows one slice of noisy synthetic diffusion tensor data. 
Obvious difference can be observed compared to Figure 2(a) which shows one slice 
of noise-free synthetic tensor data. 

2 2 2
1 2 3

2 2 2
1 2 3

( ) ( ) ( )
1.5FA

λ λ λ λ λ λ
λ λ λ

− + − + −
=

+ +

 
(4) 

with 1 2 3

3

λ λ λλ + +=  

 
 

 
 
 
 
 

(a) (b)  

Fig. 2. Horizontal slice of synthetic diffusion tensor data showing fractional anisotropy map, (a) 
noise-free and (b) with noise; the brightness represents FA. 

2.2   Fiber Tracking 

The fiber tracking algorithm is a linear propagation approach called Fiber Assignment 
by Continuous Tracking (FACT) [3]. In brief, starting from user-defined seed points, 
fiber tracts are reconstructed from the diffusion tensor by propagating forward and 
backward, following the PDD. As given in Eq. (5), suppose the current point is

ip , 

the next point 1ip + along the path is calculated by adding the normalized PDD iu  
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( iu depends on which voxel
ip  is inside) multiplied by the step sizeα . The tracking 

process is terminated when fractional anisotropy (FA), or the angles between two 
consecutive PDD, C in Eq. (6), or occurrence of sudden transition on the fiber orienta-
tion, R in Eq. (7), is smaller than a certain threshold value. Note that, interpolation of 
diffusion tensor is not used because it will reduce the noise effect on the fiber tracking 
result. 

1i i ip p uα+ = +  (5) 

1, −= ii uuC  (6) 

∑∑
−

=

−

+=−
=

2

0

1

1

,
)1(

2 s

i

s

ij
ji uu

ss
R  (7) 

where iu is PDD of current voxel and s is the number of voxels in the neighborhood.  

2.3   Fiber Similarity 

The reconstructed fiber tract can be represented as piecewise continuous 3D space 
curve. There are two factors that affect the similarity between two such curves. The 
first factor is the length of corresponding portions of two curves. The points located 
on corresponding portion of one curve have symmetric one-to-one relationship with 
those points located on corresponding portion of another curve. The second factor is 
the average distance between corresponding portions. It is expected that similarity 
between two curves increases as the first factor increases or the second factor de-
creases. 

The most difficult problem in measuring fiber similarity between two tracts is the 
determination of corresponding portions of two curves. A weak symmetric one-to-one 

relationship is defined here. Suppose point 1x  from curve 1 has a corresponding point 

y from curve 2. And y has a corresponding point 2x from curve 1. If difference 

21 xx − is very small, then y and 1x are considered having symmetric one-to-one 

relationship. Then we can find out all pairs of point from two curves that satisfy the 
weak symmetric one-to-one relationship. The following explains how we define the 
similarity measure for two fiber tracts. The similarity between the reconstructed fiber 
using noise-free synthetic data, ( ): : 1,...s it x i M=  and the one using noisy syn-

thetic data, ( ): : 1,...,e jt y j N=  is here defined as: 
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where the function )(xNy x= returns the point y from et which is the closest to the 

point x from st , and similarly for )(yNx y= . P is the set of pairs of point from two 

tracts which have weak symmetric one-to-one relationship; 
st

L and
et

L are the length 

of two tracts; imin and imax are the minimum and maximum index of x in P; jmin and 
jmax are the minimum and maximum index of y in P; and C and ε are constant. Simi-
larity measure ranges between 0 and 1. 

3   Results 

Two noise-free 40x40x40 synthetic diffusion tensor dataset were built with the same 
skeleton of fiber tract but with different eigenvalues specified for points on the skele-

ton. Typically, for white matter, 321 λλλ => and the anisotropic ratio
1 2/λ λ is in the 

range [ ]2.0,10.0 [4]. For dataset 1, 12
321 126033 −=== smμλλλ ; for dataset 

2, 12
321 126066 −=== smμλλλ . The noisy synthetic diffusion tensor dataset 

were built for each noise-free dataset according to different combinations of K, b-
value and signal-to-noise ratios. The following combinations were studied: 

1. SNR = 8, 16, 32, 40, 55 
2. K = 6, 13, 18, 25 

3. b-value = 200, 500, 800, 1000, 1200 2smm−  

For each combination 10 fiber similarity measurements were taken. Then the mean 
and standard deviation of the measurements were calculated. The higher the fiber 
similarity, the better diffusion tensor estimation is.   

The experimental results, shown in Figure 3, confirm the previous expectation that 
the quality of estimated diffusion tensor improves, i.e., fiber similarity measurement 
increases, as K and b-value increases whatever SNR and anisotropic ratio of dataset 
are. However, the amount of improvement decreases when SNR becomes larger. For 
example (see Figure 3(a)), when SNR = 8, the fiber similarity increases from 

0168.01681.0 ± to 0564.04770.0 ± . And when SNR = 55, the fiber similarity 

increases from 0324.09439.0 ± to 0001.09994.0 ± . This implies that the effect  
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Fig. 3. Experimental results for three different combinations of K and b-value using (a) the 
synthetic diffusion dataset whose anisotropic ratio is 6, and (b) the synthetic diffusion dataset 
whose anisotropic ratio is 3. The mean values of 10 fiber similarity measurements are shown. 

of K and b-value on the quality of estimated diffusion tensor is negligible when SNR 
of DWIs is above certain value. It can be observed from Figure 3 that, once SNR is 
larger than 40, K and b-value could be set to the possible smallest value to save the 
scan time. Given a SNR, the amount of improvement on quality of diffusion tensor 
also reduces as K and b-value increase. It was also found that significant improve-

ment is achieved until K = 13 and b-value = 800 2smm−  for the two datasets whose 
SNR is below 40.  
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4   Conclusion 

We studied the effect of the number of sensitizing directions K and diffusion weight-
ing b-value for best estimation of diffusion tensor as well as the shortest scan time. 
Due to lack of ground-truth for real data, a synthetic diffusion tensor data was used 
with helical geometry and tested when corrupted by certain amount of Gaussian noise 
by using various combinations of K and b-values. The fiber tracking was then per-
formed on noise-free and noisy synthetic diffusion datasets. And a new measure was 
introduced to determine the similarity between the fiber tracts reconstructed from 
noisy data and the one reconstructed from noise-free data. Such fiber similarity was 
used to evaluate the quality of estimated diffusion tensor.  Finally, it was concluded 
that considering acquisition time as well as quality of estimated diffusion tensor, the 

best combination is K = 13 and b-value = 800 2smm− . In addition, if the SNR of real 
DWIs is larger than 40, effect of K and b-value are negligible. 
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Abstract. For the 3-D reconstruction of blood vessels skeleton from biplane 
angiography system, an efficient 3-D reconstruction method based on neural 
network(NN) is proposed in this paper. First, we find a set of 2-D 
corresponding points on the vessels’ skeleton in the matched image pair. 
Secondly, NN is utilized to build the relationships between the 3-D points and 
their projective 2-D points. Thirdly, by feeding the corresponding points we 
found into the NN, the 3D coordinates of the points on vessels can be obtained. 
At last we employ B-spline interpolation to improve reconstruction 
performance. Experiment results demonstrate the efficiency of the new method. 

Keywords: biplane angiography, 3-D reconstruction, neural network, B-spline. 

1   Introduction 

The recovery of 3-D blood vessels is an important application in medical image 
processing. In traditional way of realizing conversion from 2-D to 3-D points, a 
precise calibration is required to determine the relationships between the two cameras 
and the global coordinate system[1]. And 3D vessels reconstruction techniques follow 
a bottom up approach based on image feature extraction and reconstruction by 
interactively indicating corresponding point projections[2][3][4]. However, because 
the methods are based on optical and perspective geometry, the relationships between 
the 3-D points and their projective 2-D points are complex. And the realization of the 
algorithm is complicated. Moreover, its results cannot represent the blood vessels 
continuously and correctly because of the difficulties in precisely determining 
corresponding points. So we can’t use all of the points as processing cells.  

The purpose of this paper is to propose an efficient method for 3D reconstruction 
of blood vessels in order to avoid the problems mentioned above. Instead of finding a 
great deal of corresponding points, we only pick up parts of them on the vessels’ 
skeletons in the image pair and employ neural network (NN) to build the relationships 
between the 3-D points and their projective 2-D points . After feeding the image 
corresponding points which we have chosen into the input layer, the 3D position of 
these points can be computed by the NN we designed. Compared with the traditional 
way, the advantage of this method is that relationships between 2-D points and 3-D 
points can be established automatically by NN without explicitly deducing the exact 
functions explicitly. Moreover, employing NN is not only a process of reconstruction 
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but also an optimization technique. At last, through these points reconstructed, the 3-
D skeleton of the vessel is presented by a 3rd order interpolated B-spline[5]. We use 
rational B-spline preserved by perspective transformation, in order to keep the 
correspondence between the 3D curve and its two 2-D projections. Experiment results 
show that satisfying reconstruction performance can be obtained more efficiently.  

2   Description of Problem 

The Biplane angiography system is presented as Fig. 1. 

 

Fig. 1. Biplane angiography system 

iS is the focal-spot in system i . iD  is the distance ( )i iS O  from focal-spot to imaging-

plane(SID).A scene point P is expressed in system 1 as ( )1 1 1, ,x y z .The 

corresponding point ( )2 2 2, ,x y z  can be obtained by translation and then rotation as 

shown in Equ(1): 

2 1

2 1

2 1

  

x x

y y

z z

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥= × −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

R t ,
11 12 13

21 22 23

31 32 33

r r r

r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R  ; 
x

y

z

t

t

t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

t  .

 

 (1) 

Assuming that we have obtained two images from the system and known the 
projection angles LAO/RAO, CRAN/CAUD and 1 2O, OS S , then we can get the 

rotation matrix R and translation vector t  [6] .

 
According to perspective geometry, a projection of a given 3-D point onto 2-D 

point can be represented by: 
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Here we assume there are n points. ( ), ,j j j
i i ix y z  denotes the coordinate of the jth point 

on the vessels in  system i . ( ),j j
i iu v  is its corresponding 2-D coordinate in the 

projection plane i , it is located at the position where a ray from the focal spot through 
the object intersects the image plane. 

Then we obtain Equ.(3) from Equ.(1) and Equ.(2): 
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(3) 

After the geometry of the biplane imaging system ( R and t ) has been found,  

given the coordinates of a pair of matched points ( )1 1,j ju v , ( )2 2,j ju v in both image 

planes (the Epipolar geometry [7] is used to find them), their corresponding 3-D 

position ( ), ,j j j
i i ix y z  can be computed by employing Equ. (3). 

The process to get Equ.(3) from Equ.(1),(2) is not convenient because the 
knowledge based on optical and perspective geometry is rather complex. And Equ.(3) 
should return a least-squares solution. 

3   Reconstruction Based on Neural Network 

In order to Reconstruct the vessel tree, epipolar geometry algorithm[7] is adopted for 
explicitly matching each point on the tree axis. However, epipolar constraint is very 
sensitive if the perspective viewing angle is small, especially when the image is very 
noisy. So it is impractical to find all the corresponding points on vessels exactly. 
Otherwise, the result is rough and discontinuous.  

To avoid this, we find parts of corresponding points in the image pair to represent 
vessels’ skeleton. After that, in order to find the depth information conveniently, 
instead of the traditional way, we employ the NN system. The advantage is that the 
relationships between 2-D and 3-D points can be established automatically by NN 
without explicitly deducing the exact functions and NN can do reconstruction and 
optimize the result simultaneously. 

Here we construct a three-layers NN to perform the operation. The input layer has 

4 nodes corresponding to the values of the matched points ( )1 1,j ju v , ( )2 2,j ju v on the 
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image pair. The number of neurons for simulating the complex relationship between 
2-D image and 3-D space in the hidden layer is determined based on experiment. The 
output layer has 1 node corresponding to the 3-D points depth information j

iz . The 

architecture of the NN is given as Fig.2(a). Fig.2(b) shows a typical neuron in NN. iP  

( i =1…4) are the inputs, ( ,1)... ( , 4)w i w i are weights for ith neuron. if  is the transition 

function . iO  is the output. 

  
       (a)                                                                        (b) 

Fig. 2. (a)The architecture of neural network for 2D to 3D point conversion . (b) Construction 
of a neuron. 

In order to recover the vessels in system 1(Fig.1), network needs to be trained. 
First, we produce enough 3-D sample points between focal spot and image plane in 
system1. Secondly, according to the known projection angles LAO/RAO, 
CRAN/CAUD and distances 1 2O, OS S , R  and t  which can rotate and translate the 

points in system 1 to system 2 can be deduced[6] . After rotating and translating these 
points, we can get their corresponding 3-D positions in system 2. Next step, if 

iD (Fig.1) is known, projective 2-D points ( ),j j
i iu v  of these sample 3-D points in 

each image plane i   are obtained by Equ.(1). At the same time, the depth information  

1
jz  of the 3-D sample points in system1 and the coordinates of their corresponding 2-

D points are saved.  
After training, feeding the 2-D points on vessels we have chosen into the input 

layer, the NN can output the true depth information 1
jz  of 3-D points of the object in 

system 1. 
In Section 5, we test our method with different neural networks. 

4   B-spline Interpolation 

After reconstruction, the initial 3-D curve representing the vessel is built using a 3rd 
order interpolated B-spline[5] through these points. Since B-spline is continuous and 
smooth, a better visualization can be achieved. We use rational B-spline which is 
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preserved by perspective transformation, in order to keep the correspondence between 
the 3D curve and its two 2-D projections. 

5   Experiment 

We have tested the approach presented in this paper with a set of angiography images. 
Here we give an example of our experimental results. Fig.3(a) shows the DSA 
(Digital Subtraction Angiography) images of a vessel tree which are acquired with the 
angulations of LAO= o30 , CRAN= o45 , RAO= o60 , CAUD= o45 and the SID of each 
image system is the same. Resolution of images is 0.35 mm/pixel.  

  
(a) (b) 

Fig. 3.(a) Two DSA images from different projection angles of a vessel tree. (b) Their extracted 
centerlines. 

Fig.3(b) shows the skeleton images extracted from each view[8]. Only main 
vessels are focused on. 

We test our algorithm by BP net, RBF net and GRNNs net, with the structure 
described in section 3. In training, the number of sample points produced in 3D space 
is 200. The sum square error (SSE) expected is 0.5. 

For BP net, considering the time cost and reconstruction performance, we choose  
50 as the number of neurons in hidden layer. Levenberg-Marquardt algorithm is 
utilized to train the BP net. 

For RBF net, we don’t give the number of neurons in hidden layer. In training, the 
number will increase automatically until the net satisfies the SSE. The number of 
neurons during training is shown in Table 1. 

For GRNNs net, we only give the SSE. Comparison of the results using different 
neural networks are shown later. 

Table 1. The increasing number of neurons in RBF and corresponding training error(SSE) 

Neurons        0                25              50              75               100 
SSE          7.54813      5.60639     3.05885     2.10325       1.0891 
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Here we compare the reconstruction results by BP net with traditional way. 
Fig.4(a) is the recovered vessel by BP net. Fig.4(b),(c) show the projections on the 
two original images. Fig.5(a),(b),(c) show the vessel reconstructed in traditional 
way. 

 
  

(a) (b) (c) 

Fig. 4. (a) Reconstruction result using BP network. (b),(c) Projections on the two original 
image planes: True position of the vessel (real lines) and projections of the reconstruction result 
(dash lines). 

   
(a) (b) (c) 

Fig. 5. (a) Reconstruction result in traditional way. (b),(c) Projections on the two original image 
planes: True position of the vessel (real lines) and projections of the reconstruction result (dash 
lines). 

It can be observed from Fig.4 and Fig.5 that result by BP net has been improved 
significantly, compared with traditional way. 

Fig.6(a) shows one of the recovered vessels which employs all the points on the 
vessel. (b) shows the result when the vessel is reconstructed by parts of corresponding 
points and we improve the result by B-spline interpolation. We can see that the result 
in (a) isn’t as smooth and continuous as in (b). 
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                                 (a)                                               (b) 

Fig. 6. (a)One of the recovered vessels presented without B-spline.(b)One of the recovered 
vessels presented by B-spline. 

We define reconstruction errors in terms of the squares of Euclidean distances 
between the 2D input data and the projections of the calculated 3D data points onto 
the two image planes. 

' 2 ' 2
1 1 2 2( ) ( ) ( )i i i i iP p p p pε = − + − . (4) 

Equ.(4) denotes the square of the distance between the input image data and the 
position of the calculated 3D position of the ith point after it is projected onto the the 
two image planes 1,2.Where iP  denotes the sets of 3D object position vectors for 

i=1,2…n. 
Table 2 shows the differences between traditional way and the methods proposed 

in this paper. 

Table 2. Reconstruction errors compared between traditional way and  neural networks with B-
spline 

Traditional Way        BP          RBF        GRNNs 

Maximal error(mm)                   6.45                 4.88           4.75             6.0 
Minimal error(mm)                       0                      0                0                  0 
Average error(mm)                       0.86                 0.45           0.41             0.62 
Standard deviation(mm)               2.842               1.075         1.045           2.237 
Training time(s)                                            8               18                 5 

From Table 2, we can see that NN performs better than traditional way and BP net 
and RBF net yield better reconstruction performance than GRNNs method does. 
However, RBF net needs more neurons in hidden layer and more training time.  

We have tested our methods on a set of angiography images and get almost the 
same conclusion.  

6   Conclusion 

The proposed reconstruction algorithm based on neural network(NN) has several 
advantages over other traditional geometric methods. First, unlike geometric 
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approaches, the relationships between 2-D points and 3-D points can be established 
automatically by NN without explicitly deducing the exact functions. Another 
advantage is that NN can do reconstruction and optimize the result simultaneously.  

We test our method with a set of angiography images by Bp net, RBF net and 
GRNNs net. Compared with traditional way, all of them can improve reconstruction 
results. BP net and RBF net yield higher reconstruction accuracy than GRNNs 
method does. Otherwise, RBF net requires more neurons in hidden layer and more 
training time than BP net and GRNNs net. 

Another contribution of our method is that it needs only parts of the corresponding 
points to represent the vessel and B-spline is employed to improve the reconstruction 
performance. So we don’t need to find all the corresponding points on vessels. 

Moreover, this model is especially efficient in condition that a large number of 
points need to be recovered. The application of our algorithm in other systems for 
reconstruction from 2-D to 3-D is to be addressed in future work. 
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Abstract. The papers shows, through theoretical studies and simulations, that 
using the description of the plant by Takagi-Sugeno (T-S), it is possible to de-
sign a nonlinear controller to control the position of the leg of a paraplegic pa-
tient. The control system was designed to change the angle of the joint knee of 
60˚. This is the first study that describes the application of Takagi-Sugeno (T-S) 
models in this kind of problem.  

Keywords: Takagi-Sugeno Fuzzy Models, Nonlinear Control, Paraplegia, Re-
habilitation Engineering, Functional Electrical Stimulation. 

1   Introduction 

Several researchers have been used Functional Electrical Stimulation (FES) to restore 
some motion activities of persons with the spinal cord injured [1]. However, FES is 
not yet a regular clinical method  because the amount of effort involved in using ac-
tual stimulation systems still outweighs the functional benefits they provide. One 
serious problem using FES is that artificially activated muscles fatigue at a faster rate 
than those activated by the natural physiological processes.  Due these problems a 
considerable effort has been directed toward developing FES systems based on 
closed-loop-control. The movement is measured in real time with several types of 
sensors and the stimulation pattern is modulated accordingly [1].  

The dynamics of the lower limb were represented by a nonlinear second order 
model, which took account of the gravitational and inertial characteristics of the ana-
tomical segment as into well as the damping and stiffness properties of the knee joint.  

In this paper we present a Takagi-Sugeno nonlinear system with the aim of control-
ling the position of the leg of a paraplegic patient. The controller was designed in order 
to change the angle of the joint knee from 0˚ to 60˚ when electrical stimulation is  
applied in the quadriceps muscle. We considered the leg mathematical model  
proposed by [1]. The authors showed that for the conditions considered in their  
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experiments, a simple one-pole transfer function was able to model the relationship 
between stimulus pulse width and active muscle torque.  

2   Takagi-Sugeno Fuzzy Control 

In this section, we present a systematic procedure to design fuzzy control systems  
that involves the neuro-fuzzy model construction for nonlinear systems [2]. Muscle is 
a highly complex nonlinear system capable of producing the same output for a variety 
of inputs. A property exploited by physiologically activated muscle is its effort to the 
minimize fatigue [3]. Considering that when the quadriceps is electrically stimulated 
is present a nonlinear response, we used T-S fuzzy models in order to design a con-
troller to vary the angle of the knee. T-S fuzzy models have been used to represent 
fuzzy-neural-linear control systems, for stability analysis [4], [5]. 

2.1   Takagi-Sugeno Fuzzy Model  

The T-S fuzzy model is given in (2), and more details can be found in [6]. Let z the 
premise vector gives by. Now define 

( )( ) ( )( ) [ ]1 1
1

1

, 0 1, ,...,
r

Tpx xr
i i r

i

z R z t and z t Rα α α α α
=

∈ ≥ = = ∈∑  (1) 

A T-S continuous time fuzzy model is defined as follows. 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
1 1

, 1,2,..., ,

r r

i i i i

i i

x t z t A x t z t B u t

A x t B u t i r

α α

α α
= =

⎛ ⎞ ⎛ ⎞
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⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + =

∑ ∑  (2) 

where ( ) nx t R∈ is the state vector and ( ) mu t R∈  is the input vector. An analytical 

approach to obtain local models for a class of nonlinear systems is described in [6]. 

2.2   Dynamic Model Used in the Control of the Joint Knee Angle of Paraplegic 
Patients 

In this work, the mathematical model of the lower limb is the same proposed by [1]. 
This model relates the width of the applied pulse with the torque generated around the 
articulation of the knee. In [1] the authors considered the lower limb as an open kine-
matics chain composed of two rigid segments: the thighs, and the shank-foot complex, 
in showed Fig. 1. The equation that describes the dynamic of the junction of the knee is: 

( ) ,v v s aJ mglsen M B Mθ θ θ= − − − +  (3) 

where: J is the inertial moment of shank-foot complex, θ  is the knee joint angle  

(angle between shank and thigh in the sagittal plane), θ  is the knee joint angular 
velocity, vθ  is the shank angle (angle between shank and the vertical direction in the 
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sagittal plane), vθ  is the angular acceleration of the shank, m is the mass of shank-foot 

complex, g is the gravitational acceleration, l is the distance between knee and center 
of mass of shank foot complex, B  is the viscous coefficient, Ms is the torque due to 
joint stiffness component, Ma is the active knee torque produced by electrical stimula-
tion, Md is the torque due damping (component that depend respectively on the knee 
angle and angular velocity), Mi is the torque due inertial , Mg is the torque gravita-
tional, τ is the time control of the pole, G  is the static gain. 

 

Fig. 1. The lower limb parameters 

The dynamic equilibrium of these components around knee joint was represented 
by the following equation, [1], [7]: 

,i g s d aM M M M M= + + +  (4) 

( ).E
sM e θλ θ ω−= − −  (5) 

where λ and E are the coefficients of the exponential terms and ω   is the resting 
elastic knee angle. According [1], the torque that the muscle will be subject ( aM ) and 

the width of the pulses of the to electric stimulation (P) can be appropriately related 
by the following transfer function: 

( ) ( )
( ) .

1
aM s G

H s
P s sτ

= =
+

 (6) 

The authors consider the following values of τ  and G, obtained graphically in [1], 
as well as the other parameters of interest: 

 0.951 , 0.27[ . . / ], 2.918[ ]

41.208[ . / ], 2.024[1/ ], 42500[ . / ].

s B N m s rad rad

N m rad E rad G N m s

τ ω
λ μ

= = =
= = =

 (7) 



 Design of a Fuzzy T-S Controller to Vary the Joint Knee Angle of Paraplegic Patients 121 

Substituting sM  from (5) in (3), and considering from Fig. 1 that / 2vθ θ π= + .,we 

have 

21
sin

2
v

EE
v v v v amgl e e B M

J

π
θ πθ θ λ θ ω θ

−−
⎡ ⎤⎛ ⎞⎢ ⎥= − − + − − +⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (8) 

In the operation point, θv0=60º, considering (3) and (5), we have 
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(9a) 

 

(9b) 

 
For convenience, we make a change of variables so that (8) and (9) are rewritten in 

terms of ΔMa and Δθv,. The exact T-S fuzzy model was described using these new 
variables. Defining, 

, , ,

, .

v v vo v v vo v v

v v a a aoM M M

θ θ θ θ θ θ θ θ
θ θ
Δ = − = Δ + = Δ

= Δ Δ = −
 (10) 

We can rewriter the equation (8): 
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Then from (11), the state space variables are. 

1 1 2 3, , .v v ax x x M xθ θΔ = Δ = = Δ =  (12) 

From the equations (6), (9) and (10), we have. 

3 3 , .ao
N N

M
x x GP P P

G
τ = − + = −  (13) 

Rewriting (11) and (13) in the form of state variables, we can obtain: 
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In (13) ( )21 1f x  is given by the nonlinear equation: 

( ) ( ) 1 2
21 1 1 1 0

1

1
.

2

voE x

vo vo af x mglsin x e x M
Jx

πθ πθ λ θ ω
⎛ ⎞− + +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞⎢ ⎥= − + − + + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (15) 

In (15) we can observe that when the value of the state x1 is equal to zero, there is a 
problem in the determination of ( )21 1f x , because the denominator of the function 

tends to zero. This fact hinders the determination of the pertinences functions used in 
the description of the plant through exact Takagi-Sugeno fuzzy models [2]. To solve 
this problems we expanded (15) in Taylor series, since that the substitution of (9a) in 
(15) allows the cancellation of the sine and exponential terms when x1 is equal to zero. 
Expanding (15) in Taylor series, we eliminate the term in the denominator, avoiding 
the implementation problem in x1=0. Fig. 2 shows that the Taylor series of eleventh 
order is very close to the exact curve of the nonlinear function in the interval of [-1 1], 
corresponding to range of  -60˚ to 60˚. It is possible to obtain a more exact representa-
tion, increasing the order of the Taylor series. 
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Fig. 2. Exact and approximate curves of the nonlinear function ( )21 1f x  

3   Modelling and Controller Designs Using the Exact Model Fuzzy 
Takagi-Sugeno 

To determine the local models, using the exact modeling [2], the following class of 
nonlinear systems was considered: 
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where n and m are the number of states and inputs, respectively. To obtain the wide-
spread form, the following variables are considered: 

( ) ( )( ){ } ( ) ( )( ){ }
( ) ( )( ){ } ( ) ( )( ){ }

1 2

1 2

max , min ,

max , min .

ij ij ij ijx t x t
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a f x t a f x t

b g x t b g x t

≡ ≡

≡ ≡
 (17) 

In [1] it is demonstrated that, to represent the original system (17), through T-S fuzzy 
models in the form given in (2) and with the widespread form we need necessary 2s 
local models, where s is the number nonlinearities in the systems.  

3.1   Fuzzy Controller Design 

The concept of Parallel Distributed Compensation PDC [8] was used to design the 
fuzzy regulators in order to stabilize nonlinear systems described by T-S fuzzy mod-
els. The idea is to design a regulator for each rule of the fuzzy model. The global 
fuzzy is a fuzzy combination of each regulator. PDC offers a systematic procedure to 
design regulators. The local regulator design has the following form: 

Rule i: 

 IF            ( ) ( )1 1 ...i i
p pz t is M E E z t é M , 

             THEN      ( ) ( )iu t F x t= − . 

The fuzzy regulator is given by. 
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The objective of the  design of fuzzy regulator is to find the local feedback controllers 
[8], given by (17), such that controlled systems below is stable and presents a suitable 
performance. 
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where, ij i i jG A B F= − and 
3
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Theorem 1: The PDC Controller [9] that simultaneously considers the stability and 
the decay rate controller design βt for the controlled system (19), can be designed by 
solving the following Linear Matrix Inequalities (LMI’s): 

To maximize tβ  

X, M1, 2M ,Y0 

Subject to:    X>0, Y0 ≥ 0 
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where s is the maximum number of rules that can are simultaneously different from 
zero when these LMI’s are feasible the controller gains are given by Fi=MiX

-1, 
i=1,2,…,r. 

4   Results of Simulations 

The software MATLAB, with the LMI control toolbox, solves LMIs when they are 
feasible [10]. The model of the paraplegic problem is nonlinear, and folowing with 
the exact modeling method proposed in [2], it has two local models. The minimum 
and maximum values of range are -60˚ to 60˚. For the equation (16), the minimum 
and maximum value of the defined nonlinear function were determined: 

( )( )
( )( )

211 21 1

212 21 1

max{ } -0.033294,

min{ } -29.21650.

a f x t

a f x t

= =

= =
 (20) 

Therefore we found two local models starting from the maximum and minimum 
values of the equation (15) following the method given in [2]: 
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For the method proposed in [2], 
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The local models considering (14) are equal to [2]. 
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The T-S fuzzy model is composed by, 
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The feedback gain (18), for the system vary from -60˚ to 60˚, obtained by the 
method of the Theorem 1, with tβ =0, were 
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To illustrate the validity of the designed control, that assures the stability of the sys-
tem, the simulation of the controlled system was made. Fig. 3 shows that the results. 
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The simulation results shown that the θv=60˚, that is the desired value. The setting 
time was approximate equal to 3 seconds e can be adequate. Note the input saturation 
between 0.5 and 1.0 seconds, because the pulse P≥0, [11]. 

5   Conclusion 

The control system considers all nonlinearities of the plant and satisfies the specified 
project restrictions: positive and limited pulse width, warranty of stability (the project 
uses Lyapunov functions and speed of the transient response. The design was based 
on  LMIs, then it is possible to still add other specifications in the design of the con-
trol system, for instance, constrains in the input and output signals and the considera-
tion of uncertainties in the parameters of the plant.  
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Abstract. Presence of mass in breast tissues is highly indicative of breast 
cancer. The research work investigates the significance of neural-association of 
mass type of breast abnormality patterns for benign and malignant class 
characterization using auto-associator neural network and original features. The 
characterized patterns are finally classified into benign and malignant classes 
using a classifier neural network. Grey-level based statistical features, BI-
RADS features, patient age feature and subtlety value feature have been used in 
proposed research work. The proposed research technique attained a 94% 
testing classification rate with a 100% training classification rate on digital 
mammograms taken from the DDSM benchmark database.  

Keywords: Digital mammography, neural networks, auto-associator network, 
classifier. 

1   Introduction 

Practice of computational intelligence techniques in medical field have strengthened 
and improved the current medical decision support system. With advances in 
technology, digital mammography has taken over conventional mammography which 
opened up a new door for breast cancer treatment by facilitating computer aided 
detection and diagnosis (CAD) of cancerous breast tissues. Currently digital 
mammography is the most reliable and appealing screening technique for early breast 
cancer detection in women. A space occupying lesion mass is a localized sign of 
breast cancer [1]. Masses are described by their shape and margin characteristics, and 
present with wide range of shapes, sizes and contrasts. Masses having irregular shapes 
and spiculated or indistinct margins suggest a higher possibility of malignancy 
compared with circumscribed oval and round shaped masses [2,3] . Resultant detected 
suspicious abnormalities of mammographic screening are further classified into 
benign and malignant either via ultra sound or biopsy.   

Early detection of breast cancer increases the treatment options and the average 
survival rate in sufferers. Interpretation of mammograms for early stage suspicious 
abnormalities is repetitive and fatiguing task often leading to human errors either 
missing malignant cases or more benign biopsies. Practical studies have proved that 
CAD has efficiently detected early stage breast abnormalities, which were missed by 
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radiologists in first pass mammographic interpretation [4, 5]. The advantages and 
challenges of early detection of breast cancer motivates researchers to discover an 
intelligent system which can interpret mammograms repetitively with accuracy and 
uniformity as well as, and conceivably better than, the current human process. Along 
with skilled radiologists, a computer supported detection and classification technique 
can effectively improve and accelerate the overall interpretation process. 

Literature shows many research methods have been proposed and investigated by 
researchers for computerized detection and classification of breast abnormalities in 
digital mammograms. The sole aim of computer aided classification systems is to 
assist decision making by radiologists of the detected suspicious lesion as malignant 
or benign. Statistical methods, fuzzy logic, wavelet transforms, and artificial neural 
networks (ANNs) are the most common methods that have been used and explored by 
researchers for reliable classification of breast abnormalities.  

Baker et al. [6] investigated ANN classifier based on BI-RADS features. Wei et al. 
[7] investigated the use of global and local multi resolution texture features with linear 
discriminant analysis (LDA) for identifying masses in digital mammograms. Sahiner et 
al. [8] characterized mammographic masses using texture features derived from spatial 
grey level dependency (SGLD) matrices and Run-Length Statistics (RLS) matrices and 
LDA classifier. Bovis et al. [9,10]  used SGLD texture features for classification of 
masses and normal breast tissue on mammograms of MIAS database. They evaluate 
the performance of Back-Propagation Neural Network (BPNN) and Radial Basis 
Function (RBFNN) for classification. Christoyianni et al. [11] presented a novel 
method for detection of circumscribed masses in mammograms using radial basis 
function neural network (RBFNN) with set of decision criteria. They used MiniMIAS 
database consists of 22 mammograms containing circumscribed lesions. The lesion 
sizes vary from 18 pixels- 198 pixels in radius. Edwards et al. [12] proposed a 
Bayesian artificial neural network (BANN) technique to estimate the decision variables 
for classifying computer detected benign and malignant mass lesions and false positive 
computer detections. The BANN differs from a conventional ANN in that the error 
function used in training includes a regularization term, equivalent to a Bayesian prior 
probability on the neural network weight values, to panelize solutions which are more 
complicated that the training data justify [13]. The attempt is made to regularize 
training to improve the robustness of the classifier. 

Wide variation in abnormality structure and appearance in breast tissues and lack 
of individuality in abnormality patterns (malignant and benign) makes their 
classification more difficult. In practice, performance of a single classifier may not be 
satisfactory for reliable classification of breast abnormality because of ambiguity in 
data. Considering the vagueness of breast abnormality patterns researchers have 
researched and proposed various ensemble network models in an attempt to achieve a 
more accurate result. Wu et al. [14] used non-generative neural network ensembles 
for identifying breast masses. They used two fusion algorithms; weighted average 
(WA) and perceptron average (PA) to evaluate the performance of their ensemble 
network.  

The main objective of this paper’s research work is to investigate the neural 
network based pattern characterization and classification technique for reliable 



 Characterization of Breast Abnormality Patterns in Digital Mammograms 129 

classification of mass type of breast cancer abnormalities into benign and malignant 
classes. In the proposed research work characterization of breast abnormality patterns 
implies to more detailed and finer representation of benign and malignant patterns 
which enable classifier network to produce maximum classification. The proposed 
technique uses pre-processed digital mammogram images from Digital Database of 
Screening Mammography (DDSM). Grey level based statistical features, radiologists’ 
interpretation in terms of BI-RADS lexicon features, patient age feature and subtlety 
value feature are used to characterize benign and malignant class patterns using auto-
associator neural network. Characterized patterns are finally classified into benign and 
malignant classes using feed forward neural network classifier.  

The remainder of this paper is broken down into 4 sections. Section 2 gives a 
detailed explanation of the proposed research methodology. Experimental results 
obtained with extracted features using the proposed research technique are presented 
in section 3. Section 4 covers a detailed analysis on the experimental results. In 
Section 5, conclusions are drawn. 

2   Research Methodology 

The proposed research methodology comprises four parts; acquisition of a digital 
mammograms from DDSM database, extraction of grey level based features from 
suspicious areas and BI-RADS features, patient age feature and subtlety value feature 
from associated files supplied along with mammogram in each DDSM case, neural-
association of extracted features to characterise benign and malignant patterns, and 
final classification of characterized (neural associative)  patterns into malignant and 
benign.  

2.1   Acquisition of Digital Mammograms 

Digital mammograms in this research work have been taken from Digital database for 
screening mammography (DDSM) benchmark database [15]. The DDSM database 
includes both calcification and mass types of abnormalities. Mammograms containing 
mass type of abnormalities have been used in this research work. Each case study 
includes two mammograms (mediolateral oblique (MLO) and cranio-caudal (CC) 
views) of each breast from a screening exam. Only CC view mammograms of right 
and left breast were used. The mammograms of selected cases were digitized using 
HAWTEK digitizer at 50 microns and 12-bit depth pixels (grey level range 0~4096). 
The malignant cases of training and testing dataset were selected as defined by the 
DDSM. The benign cases were selected randomly allowing inclusion of all kind of 
breast abnormality structures. 

2.2   Feature Extraction 

Features discussed below are used in the proposed research methodology to 
characterize breast abnormality class patterns in to malignant and benign classes. 
Figure 1 outlines the procedure of feature extraction of proposed research technique. 
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Fig. 1. Overview of feature extraction process 

Grey-level based statistical features 
The Grey-level based statistical features extraction is accomplished in two steps: 
extract suspicious (abnormality) areas from mammograms, and then extract grey level 
based features from extracted suspicious areas employing statistical formulas. Firstly 
all suspicious areas are derived using the outline marked by an expert radiologist in 
all digital mammograms [15]. Pixel level ‘ground truth’ information such as locations 
of suspicious areas, chain code values to define the boundary pixels of suspicious area 
along with starting pixel position is also provided in each DDSM case (figure 1). Grey 
level values of each suspicious area and the respective surrounding boundary area are 
extracted to calculate the feature values using statistical formulas. The extracted total 
14 grey level based statistical features includes Number of pixels, histogram, average 
grey, average boundary grey, contrast, difference, energy, modified energy, entropy, 
modified entropy, standard deviation, modified standard deviation, skew, and 
modified skew [16]. 

BI-RADS features 
The density of breast tissues and abnormality shape/type and its 
distribution/outline/margin inside breast tissues are the key factors radiologists 
consider when judging the likelihood of cancer being present. Abnormality 
assessment rank suggests the severity of abnormality. Considering their importance in 
the human interpretation process BI-RADS features have been used along with grey-
level features to achieve reliable classification of mass type breast abnormalities in 
digital mammograms. 

The DDSM case studies include associate patient information and abnormality 
interpretation results using the BI-RADS™ (ACR 1998) lexicon [15] from expert 
radiologists along with mammograms.  This information is stored in ‘.ics’ file and 
‘OVERLAY’ file of each case (Figure 1). Interpretation results include ACR breast 
density rating, an abnormality description and abnormality assessment rank. 

The morphological descriptors of mass abnormalities are the shape of abnormality 
and its margin. Hence the total four BI-RADS features are density, mass shape, mass 
margin, and abnormality assessment rank [6, 17]. Morphological descriptions of 
breast abnormality are encoded into numeric values to get real feature values. For 
example numeric value 1 is set to encrypt ‘round’ mass shape and 2 for ‘Oval’ shape 
and so on. The same process is used to encode mass margins.  
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Patient Age feature 
Each case in the DDSM contains information such as the patient age at time of the 
mammogram was taken. Various medical findings and past breast cancer statistics show 
that the risk of breast cancer increase with age. This makes patient age a very useful 
feature for medical practitioners to consider in diagnosis of breast cancer. Considering 
this patient age feature is used for neural classification of mass abnormality. 

Subtlety Value feature 
A subjective impression of the subtlety of an abnormality rated from 1 to 5 by an 
expert radiologist is considered as a subtlety value feature. 

2.3   Characterization (Neural-Association) of Breast Abnormality Class 
Patterns 

Capturing underlying distribution of data points is very important task in pattern 
recognition. Auto-associator neural network (AANN) can be used effectively for 
capturing the distribution of data. A three layer linear AANN performs Principle 
component analysis (PCA) on input features [18]. The AANN performs auto-
associative (identity) mapping, in which it tries to map the input vectors onto 
themselves at output layers as it has same input and output. Wide range of AANN 
structure can be found in literature based on the problem being solved. The basic 
Auto-Associator neural network (AANN) structure consists of the equal size of input 
and output layer with usually one or more hidden layers of smaller size than the input 
and output layer.  

In general, Auto-association targets the compression of input feature space. It 
encourages the network to get rid of redundancies in a set of input patterns and 
discover any structure present in the input so the input can be represented more 
abstractly and compactly. The pattern of hidden neuron activations must be efficient 
and concise if the hidden neurons are to successfully regenerate the input pattern on 
the output layer. However training of AANN remains a complicated issue as AANN’s 
ability to capture the distribution of training data is highly dependent on the size and 
structure of the AANN and the shape of activation function used for training [19]. 

The proposed technique focuses on characterization of breast abnormality patterns 
into benign and malignant classes using AANN. The dimension of hidden layer (no of 
hidden neurons) is not restricted to be of smaller size than input and output layer in an 
attempt to exploit the original extracted features. It aimed to regenerate the composite 
of its learned patterns most consistent with new information disregarding the 
compression of input data, and thus the regenerated patterns are capable of 
characterizing each class patterns in a given feature set. These characterized patterns 
further explored with classifier NN to obtain higher classification accuracy.    

Single hidden layer perceptron is used for the neural-association of breast 
abnormality patterns. An error-back propagation (EBP) learning algorithm with 
sigmoid transfer function is used to evaluate AANN training. Combination of all 
features are used as input and output for AANN training.  Network parameters such as 
learning rate, momentum, number of hidden neurons and iterations are adjusted 
during AANN training to obtain unique patterns for benign and malignant classes 
which enable the classifier NN to produce maximum classification. The detailed 
description and architecture of AANN used in this research work can be found in our 
previous work [20]. 
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2.4   Classification of Characterized Breast Abnormality Class Patterns 

Another single hidden layer Perceptron with  EBP learning algorithm is used to 
further explore the charectrised abnormality patterns for their final classfication into 
benign and malignant classes [20] . It has two output nodes in output layer, which 
represents each class. The desired output is set as (0.9, 0.1) for malignant class and 
(0.1, 0.9) for benign class. The classifier network is trained using the neural 
associative patterns (hidden neurons values) obtained from trained AANN. Classifier 
network is trained extensively trying various combination of network parameters to 
attain maximum classfication on unknow test breast abnormality patterns.  

3   Experimental Results 

The experimental dataset contains a total of 200 suspicious areas of mass type of 
abnormality, 100 (50 malignant, and 50 benign) for training and the same for testing. 
The proposed technique has been evaluted using 14 grey level features, 4 BI-RADS 
features, patient age feature and subtlety value feature. It is an attempt to evaluate the 
combination of human (abnormality interpretation in terms of BI-RADS lexicon) and 
non-human (grey level based statistical features) expertise for reliable classification of 
breast abnormalities in digital mammogram.  It is included as the main objective of 
CAD is to work along with radiologists to offer reliable and error-free reading of 
mammograms.   

Table 1 shows the results obtained with all features using proposed technique. Both 
networks AANN and classifier network, have been extensively trained on feature 
vector comprises of all features using various network configurations. The network 
configurations comprise different sets of hidden neurons (from 4 to 30 in even order) 
and iterations (from 5000 to 100000), and various learning rate and momentum values 
(0.1 to 0.9) to achieve reliable classification of breast abnormalities into malignant and 
benign classes. In result tables, ‘HN’ is used to represent the total number of hidden 
neurons and ‘IT’ represents the number of iterations, ‘LR’ represents the learning rate 
value and ‘MN’ represents the momentum values used in training of the particular NN.  

Table 1. Classification results with all features 

AANN Classifier NN Training Testing 
LR MN HN IT LR MN HN IT (%) (%) 
0.1 0.1 16 30000 0.1 0.1 28 40000 100 91 
0.1 0.1 16 30000 0.1 0.1 28 45000 100 90 
0.1 0.1 24 60000 0.1 0.2 10 30000 100 92 
0.1 0.1 14 80000 0.2 0.3 20 60000 100 91 
0.1 0.1 14 80000 0.2 0.3 20 80000 100 90 
0.1 0.1 24 60000 0.2 0.3 20 70000 100 92 
0.1 0.1 24 60000 0.2 0.3 20 80000 100 91 
0.2 0.3 28 80000 0.1 0.1 30 40000 100 92 
0.2 0.3 28 80000 0.1 0.1 30 50000 100 93 
0.2 0.3 28 80000 0.1 0.1 30 60000 100 94 
0.2 0.3 28 80000 0.1 0.1 30 65000 100 94 
0.2 0.3 28 80000 0.1 0.1 30 70000 100 93 



 Characterization of Breast Abnormality Patterns in Digital Mammograms 133 

The highest testing classification rate 94% is observed with the corresponding 
100% training classification rate with different NN configurations. Neural associative 
patterns, obtained from AANN trained on all features using 0.2 learning rate and 0.3 
momentum value attained 94% testing classification rate. AANN trained with 28 
hidden neurons for 80000 iterations. The classifier NN trained using 0.1 learning rate 
and 0.1 momentum value with 30 hidden neurons for 60000 and 65000 iterations 
attained a high testing classification rate. 100% training classification rate was 
observed with many network configurations. 

4   Analysis of Experimental Results 

Lack of individuality in breast abnormality patterns makes their characterization 
challenging.  In proposed technique AANN is used to characterize benign and 
malignant patterns using grey-level based statistical features, BI-RADS features, 
patient age feature and subtlety value feature. Figure 2 shows the characterized 
(neural associative) patterns obtained from AANN which attained the highest testing 
classification rate 94% with all features. The AANN is trained using 28 hidden 
neurons for 80000 iterations at 0.2 learning rate and 0.3 momentum value. Data 
values of hidden neuron no 20 to 28 is shown in figure-graph.  While carefully 
looking at Figure 2 and Figure 3, the graphical presentation of neural associative 
patterns shows the distinct range at hidden neuron number 25 for all benign patterns 
on given feature scale.  

 

Fig. 2. Neural associative malignant (solid 
line) and benign (dashed line) patterns 
distribution 

Fig. 3. Hidden neuron no. 25 values of 
malignant (+) and benign (.) patterns 

Figure 3 shows the detailed view of feature space of hidden neuron no. 25 of neural 
associative patterns attained using all features shown in figure 2. Malignant is forming 
a wide region on feature scale either falling in to benign region (overlapping) or 
making it a part of it (sub region). During analysis of overlapped malignant patterns, 
it has been observed that the same number of patterns have been falling in to benign 
region in many sets of experiments with different network configurations. This may 
be because of the quite similarity in benign and malignant type abnormalities.  
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The classification accuracy of proposed research technique to classify benign and 
malignant class patterns has been analysed. Table 2 shows the sensitivity and 
specificity results obtained with proposed technique. In result table, ‘Sn’ represents 
the sensitivity and ‘Sp’ represents the specificity obtained with particular network. 
Figure 4 shows the ROC curves obtained with the experimental results listed in table 
2. The highest 98% sensitivity observed with very low specificity 86%, which is not 
recommended. With the highest AZ value 0.951, the system with 96% sensitivity and 
92% sensitivity is more reliable as it is sensitive to malignant patterns and specific 
towards benign patterns. Benign patterns are forming a distinct region on feature 
scale; however their overall classification is lesser than malignant. The reason may be 
a malignant is forming a wide region on feature scale so network is not able to 
recognise benign patterns which have similar features values as malignant. Although 
benign classification is consistent with malignant, no big difference has been 
observed in experiential results. 

Quantitative comparison of pattern classification systems in digital mammography 
is a difficult task due to development and testing of such systems is usually done 
using different datasets and different kind of features. The results obtained with the 
proposed research methodology are compared with the other researchers.  Bovis et al. 
[10] attained 77% classification accuracy and 0.74 Az value with MLP on 161 breast 
images of MIAS dataset.  Wu et al. [14] used dataset containing 500 masses from the 
China Society for Industrial and Applied Mathematics. They reported highest 88.27% 
accuracy with the Perceptron Average (PA) fusion algorithm on imbalanced input 
 

Table 2. Sensitivity and Specificity results 

 AANN  Classifier NN  Testing (%) # 
LR MN HN IT LR MN HN IT Sn Sp Total 

1 0.1 0.1 24 60000 0.2 0.3 20 70000 98 86 92 
2 0.2 0.3 28 80000 0.1 0.1 30 40000 92 92 92 
3 0.2 0.3 28 80000 0.1 0.1 30 50000 94 92 93 
4 0.2 0.3 28 80000 0.1 0.1 30 60000 96 92 94 

 

Fig. 4. ROC curves for experimental results of Table 2 
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patterns. In comparison our proposed technique attained 94% testing classification 
accuracy on a mass dataset comprise of 100 suspicious areas for training and the same 
for testing (Table 1).  This shows the proposed technique is able to classify malignant 
and benign mass type of abnormalities in digital mammograms. 

5   Conclusions 

The proposed research technique investigates significance of auto-association in 
characterization of benign and malignant breast abnormality patterns. The highest 
94% classification accuracy with 96% sensitivity and 92% specificity on the mass test 
dataset is attained using the proposed technique. It is clear from experimental results 
and graphical presentation of benign and malignant neural associative patterns, that 
auto-association of breast abnormality patterns improves the characteristic of benign 
and malignant patterns and their classification accuracy.   

References 

1. Tourassi, G.D., Current Status of Computerized Decision Support Systems in 
Mammography, Studies in Fuzziness and Soft Computing, 2005, 184: p. 173-208. 

2. Bassett, L.W., 30F Imaging the Breast: Section 9 Principles of Imaging, in Cancer 
Medicine, 5th Edition, M.D. Robert C. Bast Jr., et al., Editors. 2000, the American Cancer 
Society and BC Decker, Inc. p. 420-427. 

3. Sampat, M., Markey M., & Bovik A., Computer-Aided Detection and Diagnosis in 
Mammography, in Handbook of Image and Video Processing. 2005, p. 1195-1217. 

4. Bird, R.E., Wallace, T.W., & Yankaskas, B.C., Analysis of Cancers Missed at Screening 
Mammography, Radiology, 1992, 184(3): p. 613-617. 

5. Birdwell, R.L., Ikeda, D.M., O'Shaughnessy, K.F. & Sickles E.A., Mammographic 
Characteristics of 115 Missed Cancers Later Detected with Screening Mammography and 
the Potential Utility of Computer-aided Detection, Radiology, 2001, 219(1): p. 192-202. 

6. Baker, J.A., Kornguth, P.J., Lo, J.Y., Williford, M.E., & Floyd, C.E., Jr., Breast Cancer: 
Prediction with Artificial Neural Network based on BI-RADS Standardized Lexicon, 
Radiology, 1995, 196(3): p. 817-822. 

7. Wei, D., Chan, H-P, Petrick, N., Sahiner, B., Helvie, M.A., Adler, D.D., & Goodsitt, 
M.M., False-Positive Reduction Technique for Detection of Masses on Digital 
Mammograms: Global and Local Multiresolution Texture Analysis, Medical Physics, 
1997, 24(6): p. 903-914. 

8. Sahiner, B., Chan, H-P, Petrick, N., Helvie, M.A., & Goodsitt, M.M., Computerized 
Characterization of Masses on Mammograms: The Rubber Band Straightening Transform 
and Texture Analysis, Medical Physics, 1998, 25(4): p. 516-526. 

9. Bovis, K. & Singh, S., Detection of Masses in Mammograms using Texture Features, 
proc. of the 15th International Conference on Pattern Recognition, 2000. 

10. Bovis, K., Singh, S., Fieldsend, J., & Pinder, C., Identification of Masses in Digital 
Mammograms with MLP and RBF Nets, proc. of the IEEE International Joint Conference 
on Neural Networks (IEEE-INNS-ENNS'2000). 2000. 

11. Christoyianni, I., Dermatas, E. & Kokkinakis, G., Fast Detection of Masses in Computer-
Aided Mammography, Signal Processing Magazine, IEEE, 2000, 17(1): p. 54-64. 



136 R. Panchal and B. Verma 

12. Edwards, D.C., Lan, L., Metz, C.E., Giger, M.L. & Nishikawa, R.M., Estimating Three-
Class Ideal Observer Decision Variables for Computerized Detection and Classification of 
Mammographic Mass Lesions, Medical Physics, 2004, 31(1): p. 81-90. 

13. Kupinski, M.A., Lan, L., Metz, C.E., Giger, M.L., & Nishikawa, R.M., Ideal Observer 
Approximation using Bayesian Classification Neural Networks, Medical Imaging, IEEE 
Transactions on, 2001, 20(9): p. 886-899. 

14. Wu, Y., He, J., Man, Y., & Arribas, J.I., Neural Network Fusion Strategies for Identifying 
Breast Masses, proc. of the IEEE International Joint Conference on Neural Networks 
(IEEE-IJCNN'2004), 2004. 

15. Heath, M., Bowyer, K., Kopans, D., Moore, R., & Jr. Kegelmeyer, P., The Digital 
Database for Screening Mammography, proc. of the Digital Mammography: IWDM 2000, 
5th International Workshop on Digital Mammography, 2001, Medical Physics Publishing. 

16. Verma, B. and Zakos J., A computer-aided diagnosis system for digital mammograms 
based on fuzzy-neural and feature extraction techniques, Information Technology in 
Biomedicine, IEEE Transactions on, 2001, 5(1): p. 46-54. 

17. Lo, J.Y., Gavrielides, M.A., Markey, M.K., & Jesneck, J.L., Computer-Aided 
Classification of Breast Microcalcification Clusters: Merging of Features from Image 
Processing and Radiologists, proc. of the SPIE Medical Imaging 2003, Image Processing, 
2003. 

18. Bishop, C.M., Neural Networks for Pattern Recognition, 1995, Oxford – Clarendon Press. 
19. Iversen, A., Taylor, N.K., and Brown, K.E., Classification and Verification through the 

Combination of the Multi-Layer Perceptron and Auto-Association Neural Networks, proc. 
of the IEEE International Joint Conference on Neural Networks (IEEE-IJCNN'2005), 
2005. 

20. Panchal, R. and Verma B., A Fusion of Neural Network Based Auto-associator and 
Classifier for the Classification of Microcalcification Patterns, proc. of the 11th 
International Conference on Neural Information Processing (ICONIP'2004), 2004. 



Evolving Hierarchical RBF Neural Networks for
Breast Cancer Detection

Yuehui Chen, Yan Wang, and Bo Yang

School of Information Science and Engineering
Jinan University, Jinan 250022, P.R. China

yhchen@ujn.edu.cn

Abstract. Hierarchical RBF networks consist of multiple RBF networks
assembled in different level or cascade architecture. In this paper, an
evolved hierarchical RBF network was employed to detect the breast
cancel. For evolving a hierarchical RBF network model, Extended Com-
pact Genetic Programming (ECGP), a tree-structure based evolutionary
algorithm and the Differential Evolution (DE) are used to find an op-
timal detection model. The performance of proposed method was then
compared with Flexible Neural Tree (FNT), Neural Network (NN), and
RBF Neural Network (RBF-NN) by using the same breast cancer data
set. Simulation results show that the obtained hierarchical RBF network
model has a fewer number of variables with reduced number of input
features and with the high detection accuracy.

1 Introduction

Breast cancer is the most common cancer in women in many countries. Most
breast cancers are detected as a lump/mass on the breast, or through self-
examination or mammography [1]. Screening mammography is the best tool
available for detecting cancerous lesions before clinical symptoms appear [7].
Surgery through a biopsy or lumpectomy have been also been the most com-
mon methods of removal. Fine needle aspiration (FNA) of breast masses is a
cost-effective, non-traumatic, and mostly invasive diagnostic test that obtains
information needed to evaluate malignancy. Recently, a new less invasive tech-
nique, which uses super-cooled nitrogen to freeze and shrink a non-cancerous
tumor and destroy the blood vessels feeding the growth of the tumour, has been
developed [2] in the USA.

Various artificial intelligence techniques have been used to improve the di-
agnoses procedures and to aid the physician’s efforts [3][4][5][6]. In our previ-
ous studies, the performance of Flexible Neural Tree (FNT) [11], Neural Net-
work (NN), Wavelet Neural Network (WNN) and an ensemble method to detect
breast-cancer have been evaluated [12].

Hierarchical RBF networks (HRBF) consist of multiple RBF networks assem-
bled in different level or cascade architecture in which a problem was divided and
solved in more than one step. Mat Isa et al. used Hierarchical Radial Basis Func-
tion (HiRBF) to increase RBF performance in diagnosing cervical cancer [14].
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The HiRBF cascaded together two RBF networks, where both networks have
different structure but using the same learning algorithms. The first network
classifies all data and performs a filtering process to ensure that only certain
attributes to be fed to the second network. The study shows that the HiRBF
performs better compared to single RBF. Hierarchical RBF network has been
proved effective in the reconstruction of smooth surfaces from sparse noisy data
points [15]. In order to improve the model generalization performance, a selec-
tive combination of multiple neural networks by using Bayesian method was
proposed in [16].

In this paper, an automatic method for constructing HRBF networks is pro-
posed. Based on a pre-defined instruction/operator set, the HRBF network can
be created and evolved. The HRBF network allows input variables selection. In
our previous studies, in order to optimize the Flexible Neural Tree (FNT) and
the hierarchical TS fuzzy model (H-TS-FS), the hierarchical structure of FNT
and H-TS-FS was evolved using Probabilistic Incremental Program Evolution al-
gorithm (PIPE) [10][11] and Ant Programming [13] with specific instructions. In
this research, the hierarchical structure is evolved using the Extended Compact
Genetic Programming (ECGP), a tree-structure based evolutionary algorithm.
The fine tuning of the parameters encoded in the structure is accomplished us-
ing the DE algorithm. The proposed method interleaves both optimizations.
The novelty of this paper is in the usage of hierarchical RBF network model for
selecting the important input variables and for breast cancel detection.

The paper is organized as follows. The RBF network is introduced in Section
2. An optimal design method for constructing the HRBF networks is described in
Section 3. Section 4 gives the simulation results. Finally in Section 5 we present
some concluding remarks.

2 The RBF Network

An RBF network is a feed-forward neural network with one hidden layer of RBF
units and a linear output layer. By an RBF unit we mean a neuron with multiple
real inputs x = (x1, . . . , xn) and one output y computed as:

y = ϕ(ξ); ξ =
‖x− c‖C

b
(1)

where ϕ : R → R is a suitable activation function, let us consider Gaussian
radial basis function ϕ(z) = e−z2

. The center c ∈ Rn, the width b ∈ R and an
n × n real matrix C are a unit’s parameters, || · ||C denotes a weighted norm
defined as ‖x‖2C = (Cx)T (Cx) = xT CT Cx.

Thus, the network represents the following real function f : Rn → Rm :

fs(x) =
h∑

j=1

wjse
−( ‖x−c‖C

b )2 , s = 1, . . . ,m, (2)

where wjs ∈ R are weights of s-th output unit and fs is the s-th network output.
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Fig. 1. A RBF neural network (left), an example of hierarchical RBF network (middle),
and a tree-structural representation of the HRBF network (right)

The goal of an RBF network learning is to find suitable values of RBF units’
parameters and the output layer’s weights, so that the RBF network function
approximates a function given by a set of examples of inputs and desired outputs
T = {x(t),d(t); t = 1, . . . , k}, called a training set. The quality of the learned
RBF network is measured by the error function:

E =
1
2

k∑
t=1

m∑
j=1

e2j(t), ej(t) = dj(t)− fj(t). (3)

3 The Hierarchical RBF Network

3.1 Encode and Calculation

A function set F and terminal instruction set T used for generating a HRBF
network model are described as S =F

⋃
T = {+2,+3, . . . ,+N}

⋃
{x1,. . . , xn},

where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i argu-
ments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking no arguments. The
output of a non-leaf node is calculated as a HRBF network model (see Fig.1).
From this point of view, the instruction +i is also called a basis function operator
with i inputs.

In this research, Gaussian radial basis function is used and the number of
radial basis functions used in hidden layer of the network is same with the
number of inputs, that is, m = n.

In the creation process of HRBF network tree, if a nonterminal instruction,
i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated and
used for representing the connection strength between the node +i and its chil-
dren. In addition, 2× n2 adjustable parameters ai and bi are randomly created
as radial basis function parameters. The output of the node +i can be calcu-
lated by using Eqn.(1) and Eqn.(2). The overall output of HRBF network tree
can be computed from left to right by depth-first method, recursively. Finding
an optimal or near-optimal HRBF network structure is formulated as a product
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of evolution. In our previously studies, the Genetic Programming (GP), Proba-
bilistic Incremental Program Evolution (PIPE) have been explored for structure
optimization of the FNT. In this paper, the ECGP is employed to find an optimal
or near-optimal structure of HRBF networks.

3.2 Tree Structure Optimization by ECGP

Finding an optimal or near-optimal HRBF is formulated as a product of evo-
lution. In our previously studies, the Genetic Programming (GP), Probabilistic
Incremental Program Evolution (PIPE) have been explored for structure op-
timization of the FNT [10][11]. In this paper, the Extended Compact Genetic
Programming (ECGP) [17] is employed to find an optimal or near-optimal HRBF
structure.

ECGP is a direct extension of ECGA to the tree representation which is based
on the PIPE prototype tree. In ECGA, Marginal Product Models (MPMs) are
used to model the interaction among genes, represented as random variables,
given a population of Genetic Algorithm individuals. MPMs are represented as
measures of marginal distributions on partitions of random variables. ECGP is
based on the PIPE prototype tree, and thus each node in the prototype tree
is a random variable. ECGP decomposes or partitions the prototype tree into
sub-trees, and the MPM factorises the joint probability of all nodes of the proto-
type tree, to a product of marginal distributions on a partition of its sub-trees.
A greedy search heuristic is used to find an optimal MPM mode under the
framework of minimum encoding inference. ECGP can represent the probability
distribution for more than one node at a time. Thus, it extends PIPE in that
the interactions among multiple nodes are considered.

3.3 Parameter Optimization with DE Algorithm

The DE algorithm was first introduced by Storn and Price in 1995 [8]. It re-
sembles the structure of an evolutionary algorithm (EA), but differs from tra-
ditional EAs in its generation of new candidate solutions and by its use of a
’greedy’ selection scheme. DE works as follows: First, all individuals are ran-
domly initialized and evaluated using the fitness function provided. Afterwards,
the following process will be executed as long as the termination condition is
not fulfilled: For each individual in the population, an offspring is created using
the weighted difference of parent solutions. The offspring replaces the parent if
it is fitter. Otherwise, the parent survives and is passed on to the next iteration
of the algorithm. In generation k, we denote the population members by xk

1 , xk
2 ,

. . . , xk
N . The DE algorithm is given as follows [9]:

S1 Set k = 0, and randomly generate N points x0
1, x

0
2, . . . , x

0
N from search

space to form an initial population;
S2 For each point xk

i (1 ≤ i ≤ N), execute the DE offspring generation scheme
to generate an offspring x(

ik + 1);
S3 If the given stop criteria is not met, set k = k + 1, goto step S2.
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The DE Offspring Generation approach used is given as follows,

S1 Choose one point xd randomly such that f(xd) f(xk
i ), another two points

xb, xc randomly from the current population and a subset S = {j1, . . . , jm}
of the index set {1, . . . , n}, while m < n and all ji mutually different;

S2 Generate a trial point u = (u1, u2, . . . , un) as follows:
DE Mutation. Generate a temporary point z as follows,

z = (F + 0.5)xd + (F − 0.5)xi + F (xb − xc); (4)

Where F is a give control parameter;
DE Crossover. for j ∈ S, uj is chosen to be zj ; otherwise uj is chosen a to
be (xk

i )j ;
S3 If f(u) ≤ f(xk

i ), set xk+1
i = u; otherwise, set xk+1

i = xk
i .

3.4 Procedure of the General Learning Algorithm

The general learning procedure for constructing the HRBF network can be de-
scribed as follows.

S1 Create an initial population randomly (HRBF network trees and its corre-
sponding parameters);

S2 Structure optimization is achieved by using ECGP algorithm;
S3 If a better structure is found, then go to step S4, otherwise go to step S2;
S4 Parameter optimization is achieved by DE algorithm. In this stage, the ar-

chitecture of HRBF network model is fixed, and it is the best tree developed
during the end of run of the structure search;

S5 If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step S6; otherwise go
to step S4;

S6 If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step S2.

3.5 Variable Selection Using HRBF Network Paradigms

It is often a difficult task to select important variables for a classification or re-
gression problem, especially when the feature space is large. Conventional RBF
neural network usually cannot do this. In the perspective of HRBF network
framework, the nature of model construction procedure allows the HRBF net-
work to identify important input features in building a HRBF network model
that is computationally efficient and effective. The mechanisms of input selec-
tion in the HRBF network constructing procedure are as follows. (1) Initially the
input variables are selected to formulate the HRBF network model with same
probabilities; (2) The variables which have more contribution to the objective
function will be enhanced and have high opportunity to survive in the next
generation by an evolutionary procedure; (3) The evolutionary operators i.e.,
crossover and mutation, provide a input selection method by which the HRBF
network should select appropriate variables automatically.
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Table 1. Comparative results of the FNT, NN, RBF [12] and the proposed HRBF
network classification methods for the detection of breast cancer

Cancer type FNT(%) NN(%) RBF-NN(%) HRBF(%)
Benign 93.31 94.01 94.12 96.83
Malignant 93.45 95.42 93.21 96.83

Table 2. The important features selected by the HRBF network

x0, x1, x2, x3, x6, x7, x9, x18, x20, x25, x27, x29

Fig. 2. The optimized HRBF network for breast cancel detection

4 Simulations

As a preliminary study, we made use of the Wisconsin breast cancer data set
from the UCI machine-learning database repository [18]. This data set has 30
attributes (30 real valued input features) and 569 instances of which 357 are of
benign and 212 are of malignant type. The data set is randomly divided into
a training data set and a test data set. The first 285 data is used for training
and the remaining 284 data is used for testing the performance of the different
models.

All the models were trained and tested with the same set of data. The instruc-
tion sets used to create an optimal HRBF network classifier is S = F

⋃
T= {+2,

. . . , +5}
⋃
{x0,x1, . . . , x29}. Where xi(i = 0, 1, . . . , 29) denotes the 30 input fea-

tures. The optimal hierarchical HRBF network for breast cancel detection prob-
lem is shown in Figure 2. The classification results for testing data set are shown
in Table 1. For comparison purpose, the detection performances of the FNT, NN
and RBF-NN are also shown in Table 1 (for details, see [12]). The important
features for constructing the HRBF network models are shown in Table 2. It
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Table 3. Comparison of false positive rate (fp) and true positive rate (tp) for FNT,
NN, RBF-NN [12] and hierarchical HRBF network

Cancer FNT NN RBF-NN HRBF
Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)
Benign 3.88 91.71 4.85 93.37 6.6 97.14 2.91 96.69
Malignant 2.76 86.41 4.97 96.12 9.2 96.87 3.31 97.09

should be noted that the obtained HRBF network classifier has smaller size and
reduced features and with high accuracy in breast cancel detection. Receiver
Operating Characteristics (ROC) analysis of the FNT, NN, RBF-NN and the
HRBF network model is shown in Table 3.

5 Conclusion

In this paper, we presented an optimized HRBF network for the detection of
breast cancel and compared the results with some advanced artificial intelligence
techniques, i.e., FNT, NN and RBF-NN. As depicted in Table 1, the prelimi-
nary results are very encouraging. The best accuracy was offered by the HRBF
network method followed by the RBF neural network for detecting benign types
and PSO trained neural network for detecting the malignant type of cancer.
An important advantage of the HRBF network model is the ability to reduce
the number of input variables as presented in Table 2. ROC analysis (Table 3)
illustrates that RBF neural network has the highest false positive rate and the
HRBF network model has the lowest false positive rates for detecting benign
and malignant cancer. The time required to construct these models are not very
much and hope these tools would assist the physician’s effort to improve the
currently available automated ways to diagnose breast cancer.
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Abstract. Ovarian cancer is a major cause of deaths worldwide. As a result, 
women are not diagnosed until the cancer has advanced to later stages. Accurate 
prognosis is required to determine the suitable therapeutic decision. Since ab-
normalities of hemostasis and increased risk of thrombosis are observed in can-
cer patient, assay involving hemostatic parameters can be potential prognosis 
tool. Thus a biological brain-inspired Complementary Learning Fuzzy Neural 
Network (CLFNN) is proposed, to complement the hemostasis in ovarian cancer 
prognosis. Experimental results that demonstrate the confluence of hemostasis 
and CLFNN offers a promising prognosis tool. Apart from superior perform-
ance, CLFNN provides interpretable rules to facilitate validation and justifica-
tion of the system. Besides, CLFNN can be used as a concept validation tool for 
ovarian cancer prognosis. 

1   Introduction 

Ovarian cancer is a major cause of cancer deaths worldwide. It ranks fourth as the 
cause of cancer deaths in US. A total of 20,180 new cases and 15,310 cancer deaths 
are anticipated in US alone in 2006 [1]. The similar observations can be found in 
Singapore, where ovarian cancer accounts for 4.4% of the cancer deaths in women, 
and it is the fourth most frequent cancer (5.4%) [2]. In the period from 1998-2002, 
ovarian cancer recorded a 385 cancer deaths, and 1,055 new cases [2]. Thus, many 
endeavors have been made; yet, the number of cancer deaths due to ovarian cancer is 
still high, and the 5-year survival rate for all stages remains at 30%-45% [3]. This 
high morbidity rate is because the ovarian cancer is not diagnosed until it has ad-
vanced to stages III and IV. Since the therapeutic decision is determined by the re-
sponse of the disease, accurate prognosis is needed to aid in making the right therapy 
decision. 

Abnormalities of hemostasis (stoppage of blood flow) and increased risk of 
thrombosis (presence of blood clot within blood vessel) have been reported in cancer 
patients (50% of all patients, and up to 95% of metastatic disease patients [4]). Thus, 
hemostatic parameters are potential indicators of disease free interval and long-term 
survival, as well as tumor growth and tumor angiogenesis [3]. Moreover, throm-
boembolism is the second most important cause of death in cancer patients [5]. This 
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happens because tumor cells can activate systemic coagulation, induce tissue factor 
production, and cause endothelial cells to express procoagulants, and hence, stimu-
late the extrinsic coagulation pathway [5]. These hemostasis pathways are often 
altered in patient with different types of malignancies, especially for gynecologic 
cancer [6]. 

Prognosis by means of hemostatic parameters is suitable for ovarian cancer be-
cause in advanced stage it shows hypercoagulation, increased platelets and enhanced 
fibrinolysis with further enhanced thrombin generation [3]. Furthermore, ovarian 
tumor demonstrates pronounced aberration of the coagulation and fibrinolysis activa-
tion markers such as D-Dimer and fibrinogen levels.  

Hence, the hemostasis is a promising prognostic tool to fight ovarian cancer. Un-
fortunately, there is high uncertainty in prognosis when hemostatic assay is used 
alone. This is because, the blood samples have high risk of contamination, and the 
threshold values to determine whether one is normal or cancerous varies from indi-
vidual to individuals, and from populations to populations. In addition, some of them 
are less specific [4]. Realizing this, hemostatic assay is used with computational intel-
ligence methods to provide accurate prognosis of ovarian cancer.  

Among the computational intelligence methods, Fuzzy Neural Network (FNN) is 
more suitable as ovarian cancer Clinical Decision Support System (CDSS): in contrast 
to statistical methods, it is autonomous and does not need the manual construction of 
knowledge. On the other hand, different from Artificial Neural Network (ANN), FNN 
has the capacity of offering interpretation and justification for their output. Of these 
FNN, biological brain-inspired FNN is more desirable because aside from the advan-
tageous traits mentioned, they provide human-like operations, and allow human to 
analyze or understand the system in their familiar terms.  

Thus, Complementary Learning Fuzzy Neural Network (CLFNN) [7] is proposed 
to complement hemostasis in ovarian cancer prognosis. Complementary learning 
refers to the learning from positive and negative samples, as well as the exploitation 
of the lateral inhibition between positive and negative classes. The lateral inhibition 
means: given a positive sample, only positive rules are activated, and at the same 
time, negative rules are inhibited, leading to a positive and correct decision. Such 
complementary learning can be observed in the human brain during pattern recogni-
tion task. Furthermore, CLFNN has been previously applied in ovarian cancer diagno-
sis and is found to perform competently. Hence, in this work, CLFNN is used with 
hemostatic assays in ovarian cancer prognosis. A representative of the CLFNN named 
Hierarchical Complementary Learning (HCL) is introduced. It births forth from the 
biological inspirations of complementary learning and the hierarchical category learn-
ing [8]. Since HCL does not take into account the relationship between the input fea-
tures, it is suitable in this task as the relationship between the hemostatic parameters is 
not well understood. 

The paper is organized as follows: Section 2 describes the dataset used in this 
study, the CLFNN (HCL) employed, as well as the experimental setup. Experimental 
results and analyses are given in Section 3. Section 4 concludes the work and dis-
cusses possible future work. 
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2   Materials and Methods 

2.1   Dataset  

The dataset is obtained from the Department of Obstetrics and Gynaecology, Yong 
Loo Lin School of Medicine, National University of Singapore. (http://www.nuh. 
edu.sg). There are a total of 149 subjects, and they are divided into cancer and control 
groups. The control group includes the normal patients and patients with benign cyst 
(88), whereas the cancer group contains patients from FIGO stages I-IV.  

The blood sampling was performed mainly in the morning, where nine parts of 
blood from a clean venupuncture were mixed with a part of 0.129 mol/L trisodium 
citrate contining 0.21 mol/L hydroxylehylpiperazine-ethnesulfonic acid in cold plastic 
tube. Subsequently, the blood was spun at 2000g for 15 minutes in a refrigerated 
centrifuge [5]. The biological assays used are: 

1. Plasma fibrinogen  
2. D-Dimer 
3. von Willebrand factor (vWF) 
4. Antithrombin III complex (TAT) 
5. Antithrombin III and plasminogen activities (ATIII) 
6. Prothrombin Fragment 1+2 (F1+2) 
7. Factor VII 
8. Tissue factor pathway inhibitor (TFPI) 

These assays were chosen because there are evidences that these assays are indica-
tive of ovarian cancer or survival outcome [9]. Evidence of tumor-associated activa-
tion of coagulation and fibrinolysis can be indicated by plasma fibrin split products. 
One example of this is D-Dimer [6], which is a stable end product of cross-linked 
fibrin degradation by plasmin [4]. D-Dimer is a good marker of ongoing fibrin forma-
tion and degradation in different disease and malignancies [6]. 

Von Willebrand factor (vWF) is directly involved in the mechanism of platelet 
thrombus formation. Although it has no direct role in coagulation, it is required for 
normal hemostasis, and elevated levels may cause thrombotic complications [3]. 

Both prothrombin fragment F1+2 and TAT are markers of in vivo hemostasis activa-
tion [10]. TAT is generated by the reaction between thrombin and ATIII, where frag-
ment F1+2 and the active thrombin are formed when prothrombin is cleaved — an 
important step in the coagulation cascade [10].  

Tissue factor that binds factor VII and its inhibitor TFPI are required to initialize 
blood coagulation by activating both factor X and factor IX. Hence, they are indica-
tive of the hemostasis as well [11]. 

The statistics of the data is summarized in Table 1. As shown in Table 1, the dif-
ference between control and cancer groups is significant for most of the assays. For 
example, the age of the control group is significantly younger than the cancer group, 
and the fibrinogen level of the control group is significantly lower than that of the 
cancer group. In other words, this suggests that performing prognosis using hemosta-
sis, improved results can potentially be achieved. 
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Table 1. Statistics of the attributes  

Group Age Fi 
g/L 

D-D 
ng/ml 

vWF 
iu/ml 

TAT 
µg/ml 

ATIII 
iu/ml 

F1+2 

nmol/L 
FVII 
% 

TFPI 
ng/ml 

µ 51.6 5 214K 1.9 13.3 0.9 1.5 111.8 75.1 
σ 14.1 2 656K 1.1 13.9 0.2 0.9 33.9 48.4 

Cancer 

R 16-81 1.2-
10.4 

96K-
486K 

0.4-5.4 2-68 0.5-1.3 0.11-5 43-236 20-352 

µ 41.7 3.8 788 1.3 6.8 1 1.1 103.2 65 
σ 14 1.3 1855 0.6 9.9 0.2 1.1 27.6 120 

Benign 

R 16-74 1.7-7.3 50-153 0-3.5 1-48 0.5-1.3 0.3-6.6 33-166 0-999 
p-value <0.001 <0.001 <0.02 <0.001 <0.01 <0.01 0.02 0.1 >0.1 

µ: Mean; σ: Standard deviation; R: Range; Fi: Fibrinogen; D-D: D-Dimer; FVII: Factor VII 

2.2   Hierarchical Complementary Learning 

The Hierarchical Complementary Learning (HCL) integrates the complementary 
learning and hierarchical organization. By functionally model the complementary and 
hierarchical category learning, better recognition performance may be obtained as the 
former exploits the characteristics of both positive and negative concepts, as well as the 
lateral inhibition between the two. On the other hand, the breaking down of complex 
concepts into simpler ones through the later, allows a simpler and closer representation 
of the problem dynamic. Hence, putting together complementary and hierarchical 
learning is beneficial. The resulting hybrid, HCL, can be described by the followings: 

Given dataset −+= DDD ∪ , where { }+++ = YXD ,  and { }−−− = YXD ,  are the 

positive and negative samples, respectively. HCL creates a rulebase R according to 
the dataset. Again, the rulebase R is made up of positive and negative rules, i.e. 

−+= RRR ∪ , where ∪
+

=

+ =
K

1k
krR  and ∪

−

=

− =
K

1k
krR , ]K,1[∈k  is the index for the 

rules, and K is the total number of rules, K = −+ += RRR = K+ + K-. Each rule rk is 

in the form delineated in Eq. 1. 

rk: IF x1 is A1k,…, xi is Aik,…, xI is AIk, THEN y1 is B(l1)k,   , ym is 
B(lm)k,…, yM is B(lM)k. 

(1) 

Thus, BA →:R ; A and B are the input and output fuzzy sets respectively. They 
defined the input and output linguistic terms. x is the input, and ]I,1[∈i  is the index 

of input dimension. xi refers to the input from the ith dimension. Likewise, y is the 
output,  ]M,1[∈m  is the output dimension, and ym is the output from mth dimension. 

]L,1[∈l  is the index for output linguistic terms B. Aik is the input linguistic term that 

links the input from ith dimension to the kth rule, similarly for output linguistic terms. 
Every linguistic term (represented by fuzzy set) characterizes a concept. The HCL 
infers based on the difference in firing strength between the positive and negative, as 
described in Eqs. 2 and 3. 
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* = + for positive, - for negative. 

Thus, when a sample +∈ Xx  is presented to HCL, the positive rules will have 
greater firing strengths than the negative rules, i.e. )()( xx −+ > RR μμ . Consequently, 

the positive rules are activated, and concurrently, negative rules are inhibited, leading 

to a positive decision, +∈Yy . This complementary learning mechanism exploits the 

lateral inhibition between positive and negative classes, which avoids possible confu-
sion in the inference process, and hence may promise better recognition performance. 
Note that this inference is done in a hierarchical manner, i.e., from the most relevant 
feature to the least relevant feature.  

In order to equip HCL an easy rule/knowledge extraction, HCL is designed as a 
five-layer FNN, with each layer corresponds to the elements of the fuzzy rule shown 
in Eq. 1. The architecture of HCL is given in Fig. 1. 

B

          x1                      xi                                                               xI

                    1 y1         m ym               M yM

A

R+
Lateral Inhibition 

R —

 

Fig. 1. Architecture of hierarchical complementary learning fuzzy neural network. Each layer 
corresponds to the elements of fuzzy rules: (1) input linguistic labels，X; (2) input linguistic 
terms, A; (3) rules, R; (4) output linguistic terms, B; (5) output linguistic labels, Y. 

The construction of the structure is autonomous. The HCL learning algorithm is 
outlined as follows: 

Given a training dataset { }T1 )(,...,)(,...,)( yx,yx,yx, tD = : 
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Step 1: Segregate the dataset D into +D  and −D . This is to functionally model and to 
facilitate the implementation of the segregation of positive and negative knowledge in 
human brain, where different brain areas are registered for recognition of different 
objects. 

Step 2: Rank the features, I],1[∈if , and put into Frank in descending order. In this 

work, Augmented Variance Ratio (AVR) is used (Eq. 4).  

∑
= ≠

−

= M

1 *
*

||minM

1

m mm
mm

m

b

S

SAVR

μμ

 
(4) 

where M = number of classes. Sm = within-class variance for mth class, Sb = between-

class variance, mμ  = mean for mth class. AVR is the ratio between inter-class vari-

ance and intra-class variance of the feature. The greater the AVR, the greater is the 
discriminative power of the feature. The features are added into a list Frank according 
to their ranking (most relevant feature first).  

Step 3: Select the feature/dimension fi, with the highest AVR score inside Frank, and 
then remove it from Frank. HCL classifies the data features by features. Thus, HCL 
maintains a feature list, F to store the features to be considered when performing the 
classification. If there is no existing rules, create rule with current sample, go to Step 
5. HCL uses trapezoidal fuzzy set as its membership function. They are centered on 
the sample xi initially, and subsequently adjusted according to the training sample. If 
there are existing rules, go to Step 4.  

Step 4: Select the rule that is nearest to this sample. If there is a perfect match, then no 
learning is required, go to Step 8. Else, determine if there is any sample belonging to 
other class in between the kernel of this nearest rule and the current sample. If not, 
then expand the kernel of the fuzzy set to incorporate this sample. Otherwise, create a 
new rule based on this sample. This is a functional model of how the chunking 
mechanism [12] is performed in human learning. Note that, Steps 3 and 4 are carried 
out separately and concurrently for positive and negative rules. Go to Step 5.  

Step 5: Combine the rules by chunking the fuzzy sets, as well as to remove redundant 
rule. This step is to ensure no redundant or irrelevant rules, as well as to decrease the 
number of rules in the system. After the chunking process, go to Step 6. The chunking 
procedure is summarized in Eq. 5, it essentially chunks two pieces of similar informa-
tion/fuzzy sets into a single unit [12]. 
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where [ ])(),( ** tvtu ikik
++ is the kernel of the nearest positive rule, and 

kkkk ≠≠ ',* . 

Step 6: Ensure the distinguishability of rules by resetting the kernel and support of the 
fuzzy sets. The strategy is that, given a fuzzy set, the system checks for the nearest 
two fuzzy sets (from the same class), and then adjust the support according to the 
kernel of the two nearest fuzzy sets (Eq. 6). Go to Step 7. 
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⎜
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LeftLeft ikik
 and ⎟

⎠
⎞

⎜
⎝
⎛ ++ )(),( ** tvtu

RightRight ikik
 are the kernel of the nearest 

rule smaller and greater than ( ))(),( tvtu ikik
++ , respectively, and kk ≠* . 

Step 7: Assess the rules. This requires the definition of the rule fitness. The rule fit-
ness is set to how many samples the rule correctly classifies in the training set. If the 
rule fitness is lower than a pre-defined threshold, the rule is removed. Go to Step 8. 

Step 8: Test if the training termination condition is met. In this work, the termination 
is determined by the user parameter, i.e. maximum number of features. Unfortunately, 
there is no systematic way of determining this parameter yet. If the termination condi-
tion is not met, go to Step 3 (Eq. 7).  
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2.3   Experimental Setup 

Ten-fold cross-validation is used to assess the performance of the system; that is, 90% 
of the data are used for training, and 10% of the data are used for testing. The proce-
dure is repeated for ten times, where each sample is used for testing exactly once. The 
task is to predict whether the cancer patients will survive a year after. All hemostatic 
assays in Table 1 (except age) are employed.  

The performance of the system is benchmarked against some popular decision sup-
port systems [13] such as C4.5, Multilayer Perceptron (MLP), Naïve Bayesian, Lin-
ear Discriminant Analysis (LDA). Note that the same experimental settings are used 
for all the methods presented. All simulations are run on Intel Pentium 4, 2 GHz ma-
chine with 1 GB RAM. The metrics used are (1) Recall – accuracy on training set; (2) 
Predict – accuracy on testing set; (3) sensitivity and specificity, as described in Eqs. 8 
and 9, respectively. In prognosis task, the positive refers to patients who do not sur-
vive, whereas the negative refers to the patients who are still alive. 
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samples positive ofnumber  Total

classifiedcorrectly  samples Positive
 y Sensitivit =  . (8) 

samples negative ofnumber  Total

classifiedcorrectly  samples Negative
 y Specificit =  . (9) 

3   Experiments and Results 

The ten-fold cross-validation performances of ovarian cancer prognosis using hemo-
stasis-HCL, as well as other methods, are summarized in Table 2. As can be seen 
from Table 2, the HCL outperforms others in ovarian cancer prognosis, attaining high 
sensitivity and specificity. HCL demonstrates competent recall and generalization 
abilities. This is because HCL considers positive and negative knowledge, as well as 
the difference of positive and negative in its decision making. Thus, through the ex-
ploitation of the lateral inhibition, it gives better performance over other methods. 
This also suggests there are significant differences between positive and negative 
samples, affirming the information shown in Table 1. The training duration of HCL 
seems longer than the others, because it analyzes the data feature by feature; this does 
not necessarily imply that the complexity of HCL is higher than the others. 

Table 2. Performance on ovarian cancer prognosis (desired value in bold) 

Method Recall (%)  Sensitivity (%) Specificity (%) Predict (%) Training 
time (s) 

C4.5 88.89 79.4 9.1 62.22 0.05 
MLP 91.11 88.2 45.5 77.78 0.44 
Naïve Bayesian 75.56 67.6 54.5 64.44 0.01 
LDA 75.56 80.55 10 65.22 0.03 
HCL 99.6 90 65 77.5 2.6 

One of HCL significant strengths is that, it provides fuzzy rules to explain its com-
putation. In contrast to MLP, LDA, or Naïve Bayesian, HCL offers means for user to 
understand the system. These fuzzy rules allow user to validate the system using their 
familiar terms. In comparison to the crisp rule generated by decision tree (C4.5), 
fuzzy rule is able to capture uncertainties that exists in the data, and hence, allows 
HCL to give a more stable solution than C4.5. In other words, a small perturbation in 
data would not cause a totally different HCL. In this task, the averaged number of 
rules generated by HCL and C4.5 are five and four respectively, suggesting that the 
rulebase of both are compact. Table 3 displays the example of the positive and nega-
tive rules generated by HCL and C4.5. 

As shown in Table 3, the HCL rule is as intuitive as the rules provided by decision 
tree. Yet another merit of fuzzy rule is that it allows encapsulation of unnecessary 
details from the user. Apart from that, fuzzy rule generated by HCL is more expres-
sive, as it allows the use of linguistic hedges such as “very”, “quite”, etc. These are 
described by the fuzzy sets/membership functions autonomously constructed by HCL  
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Table 3. Rules generated for ovarian cancer prognosis 

 HCL (Fuzzy rule) C4.5 (Crisp rule) 
Positive  IF ATIII is low, D-Dimer is quite high, 

Factor VII is very low, THEN die within a 
year. 

IF vWF > 2.36, Factor VII > 113, ATIII <= 
0.81, THEN die within a year. 

Negative IF ATIII is medium, D-Dimer is medium, 
Factor VII is quite low, THEN survive. 

IF vWF > 2.36, Factor VII > 113, ATIII > 
0.81, THEN survive. 

during learning. An example is given in Fig. 2, illustrating the fact that the fuzzy sets 
generated by HCL is highly distinguishable; this enables the unambiguous assignment 
of linguistic terms, and hence, improves the interpretability of the system.  

In addition, the rules generated by HCL can be used as a concept validation tool. In 
Table 3, it is implied that, when ATIII decreased, D-Dimer increased, and Factor VII 
is low, then the patient would likely not survive after the first 12 months. This sup-
ports the findings that there exists significant associations between preoperative he-
mostatic levels of ATIII, and D-Dimer and survival outcome by 12 months [3]; The 
rules also affirms that elevated D-Dimer levels were seen in those who died within 13 
months from the disease, and a decreased ATIII level was seen in those patients who 
died at 24 months compared to those patients still alive [5]. 
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Fig. 2. Membership function of D-Dimer (Dotted lines are negative rules, solid lines are posi-
tive rules) 

4   Conclusion 

The key to improved survival and patient outcome is the early detection and treat-
ment. Therefore, the right therapeutic decision is paramount and this can be obtained 
through the help of good prognosis system. As abnormal hemostasis is observed in 
ovarian cancer patients, hemostatic parameters are good indicators for ovarian cancer. 
However, hemostatic parameters vary across individuals and populations. Hence, 
CLFNN (HCL) is proposed to assist the hemostasis with prognosis. CLFNN is a  
functional model of a pattern recognition mechanism in human brain. CLFNN uses 

 
Non-overlapping 
and highly distin-
guishable fuzzy set.  
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positive, negative knowledge, as well as the lateral inhibition between the two classes 
of knowledge. By exploiting the lateral inhibition, superior performance in pattern 
recognition can be achieved, as affirmed by the experimental result. Furthermore, 
CLFNN offers intuitive rules autonomously, enabling user to validate and understand 
the system, in contrast to black-box CDSS such as MLP. Thus, the confluence of 
CLFNN and hemostasis displays a promising tool to fight ovarian cancer. However, 
the present HCL totally ignores the inter-feature relationship, which could be useful in 
recognition. In future, clustering on the feature and sample space will be imple-
mented, so that the inter-feature relationship can also be used for classification.   
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Abstract. Support vector machines (SVMs), originally designed for binary 
classification, have been applied for multi-class classification, where an effec-
tive fusion scheme is required for combining outputs from them and producing 
a final result. In this work, we propose a novel method in which the SVMs are 
generated with the one-vs-rest (OVR) scheme and dynamically organized by 
the naïve Bayes classifiers (NBs). This method might break the ties that fre-
quently occur when working with multi-class classification systems with OVR 
SVMs. More specifically, we use the Pearson correlation measure to select in-
formative genes and reduce the dimensionality of gene expression profiles 
when constructing the NBs. The proposed method has been validated on GCM 
cancer dataset consisting of 14 types of tumors with 16,063 gene expression 
levels and produced higher accuracy than other methods. 

1   Introduction 

In many works, SVMs have been used for multi-class classification that is an impor-
tant task in pattern recognition. Even though SVMs show excellent performance in 
many applications, it is required to formulate a multi-class SVM method since they 
are originally designed for binary classification [1]. There are some direct approaches 
for developing a multi-class extension of SVMs such as Vapnik or Crammer and 
Singer [2], but this leads to a complex optimization problem. Instead, many research-
ers prefer to use several binary SVMs, in which constructing a pool of SVMs and 
combining the outputs of the classifiers are important [3]. One-vs-rest (OVR), pair-
wise and complete codes are popular schemes to train a pool of SVMs, while majority 
voting, winner-takes-all, error-correcting coding are representative fusion methods. 

Hsu and Lin compared various schemes such as OVR, pair-wise and DAGSVM 
(directed acyclic graph SVM), where one-vs-rest and DAGSVM were more suitable 
for practical use than pair-wise [3]. Bredensteiner and Bennett combined the linear 
programming and quadratic programming based on SVM for multi-class problems 
[1], while Angulo et al. proposed K-SVCR (K classes-Support Vector Classification-
Regression) [4]. Sebald and Bucklew proposed M-ary SVM that uses only ┌log2(K)┐ 
SVMs (K: # of classes) [5], Gestel et al. used Bayesian decoding to compose  
LS-SVMs (Least Squares SVMs) that repeatedly infer the posterior multi-class prob-
abilities [6]. Crammer and Singer adopted output codes for combining the outputs of 
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multiple classifiers [2]. In the application of bioinformatics, SVMs have been applied 
for multi-class cancer classification by Lee [7] or Ramaswamy et al.[8] where Ramas-
wamy et al. used the OVR and winner-takes-all scheme. 

This paper proposes a novel multi-class classification approach integrating SVMs 
and NBs, especially applying to multi-class cancer classification based on gene ex-
pression. Since SVMs might manage the high dimensional data like gene expression 
profiles, the original training dataset is used to learn SVMs based on the OVR 
scheme. NBs are designed with the dataset consisting of genes selected by the Pear-
son-correlation measure, which organize the SVMs dynamically to classify a sample. 
OVR SVMs are sequentially evaluated by the probability of the classes from the 
NBs.  

The proposed method has been validated on the GCM cancer dataset [8] with three 
series of experiments. In the first experiment, the NB with Pearson-correlated features 
achieved an accuracy rate of 72.2%. In the second experiment, SVMs learned with the 
original training dataset achieved an accuracy rate of 76.9%. Finally, the proposed 
method, which integrates NBs and SVMs, produced an accuracy rate of 79.6%. This 
result indicates the benefits of the proposed method that integrates NBs and SVMs 
effectively. 

2   Background 

2.1   Cancer Classification Based on Gene Expression 

Microarray technology recently developed produces large volume of gene expression 
profiles and provides richer information on diseases. It simultaneously monitors the 
expression patterns of thousands of genes under a particular experimental environ-
ment. With the technology, many researchers have been studying cancer classifica-
tion using gene expression profiles. Researchers in pattern recognition have devel-
oped and applied several machine learning techniques to many clinical problems by 
constructing classifiers or predictive models from the data, yielding promising  
results [9]. 

Especially the classification of cancers from gene expression profiles is actively 
investigated in bioinformatics. It commonly consists of feature selection and pattern 
classification as shown in Fig. 1. In advance, feature selection methods select infor-
mative features useful to categorize a sample into predefined classes from lots of gene 
expression profiles. Pattern classification is composed of learning a classifier with 
those features and categorizing samples with the classifier [9]. 

Gene expression profiles provide useful information to classify different forms of 
cancers, but the data also include useless information for classification. Therefore 
only relevant one for the classification of cancers should be extracted from them. It is 
well known that the irrelevant or redundant data degrade the accuracy of classifica-
tion, so constructing an appropriate gene subset is essential to learn a good classifier. 
Moreover, it is also important to find a small subset of genes sufficiently informative 
to distinguish cancers for diagnostic purposes [10].  
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Fig. 1. Classification of gene expression profiles 

2.2   Multi-class Classification Using SVMs 

SVMs, well researched in statistical learning theory, have been actively investigated 
in pattern classification and regression. SVMs map an input sample to a high  
dimensional feature space and try to find an optimal hyperplane that minimizes  
the recognition error for the training data using the non-linear transformation  
function [4]. 
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Let n be the number of training samples. For the sample xi with the class-label 
ci∈{1,-1}, the SVM calculates 
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Coefficient αi in Eq. (2) is non-zero when xi is a support vector that composes the 
hyperplane; otherwise it is zero. The kernel function K(x, xi) can be easily computed 
by an inner product of the non-linear mapping function. Table 1 shows some repre-
sentative kernel functions, including the linear, polynomial, Gaussian, and sigmoid 
functions. 
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Table 1. Kernel functions of SVMs 

Linear Polynomial Gaussian Sigmoid 
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Since SVMs are basically binary classifiers, a decomposition strategy for multi-
class classification, such as OVR, pairwise or complete-code methods, is required [2]. 
As a representative scheme, the OVR strategy trains M (# of classes) SVMs, where 
each SVM classifies samples into the corresponding class against all the others. The 
decision function ƒj (x) of the jth SVM replaces ci of Eq. (2) with ti as follows: 
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After constructing SVMs, a fusion method is required to combine the multiple out-
puts of them. Popular methods for combining multiple outputs include majority vot-
ing, winner-takes-all, error-correcting codes (ECCs), behavior knowledge space 
(BKS) and decision templates. 

1) The majority voting method: For a sample, this method simply counts the votes re-
ceived from the individual classifiers, and selects the class with the largest number 
of votes. An analytic justification may be given by the well-known Condorcet’s 
theorem, while a theoretical study can be found in [12]. Although it is simple to 
achieve good performance, this method cannot handle cases where classifiers tie. 

2) The winner-takes-all method: In order to resolve problems caused by majority vot-
ing, this method classifies a sample into the class that receives the highest value 
among the L classifiers for the M-class problem. This is often known as maximum 
where indi,j(x) is an indicator function with 1 if the label i is the positive class of 
the jth SVM, -1 if it is the negative class, and 0 if it is otherwise. 
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3   A Hybrid Classifier for Multi-class Cancer Classification 

Contrary to conventional methods that use static classification, we propose a hybrid 
classifier that considers the probability of classes obtained by NBs to manage the 
ambiguity of OVR SVMs. Tie cases, which frequently occur when using OVR SVMs 
for multi-class classification, might decrease classification performance. The pro-
posed method manages this possibility by organizing OVR SVMs based on the sub-
sumption architecture. The subsumption architecture is a representative method used 
to select a proper action when there are multiple actions activated [13], while the 
order of the models is determined by NBs in this paper. 



Multi-class Cancer Classification with OVR-SVMs Selected by Naïve Bayes Classifier 159 

N
B

s w
ith P

earson-
correlated features

O
V

R
 S

V
M

s
G

en
e 

ex
pr

es
si

on
 p

ro
fil

es

 

Fig. 2. Overview of the proposed method 

The proposed method consists of NBs and OVR SVMs as shown in Fig. 2. NBs es-
timate the posterior probability for classes prob = {p1, p2, ..., pm} by using the training 
dataset that only includes Pearson-correlated genes, while OVR SVMs classify sam-
ples by using the original training dataset based on the OVR scheme as explained in 
Section 2. The margin of a sample o-svm = {ma1, ma2, ..., mam} is produced by classi-
fying with OVR SVMs. In order to manage ambiguity in cases of ties (multiple SVMs 
satisfy) and rejections (no SVM satisfies), in this paper, the proposed method sequen-
tially selects OVR SVMs, where the evaluation order is determined by the posterior 
probability of each class that NBs produces. The corresponding OVR SVM of a more 
probable class takes precedence in the subsumption architecture over the others. 

When classifying a sample, the method first estimates the probability of each class 
by using NBs, and then organizes OVR SVMs as the subsumption architecture accord-
ing to the probability. Finally, a sample is evaluated sequentially until an OVR SVM is 
satisfied. When an OVR SVM is satisfied, the sample is classified into the correspond-
ing class, while it is classified into the class of the highest probability when no OVR 
SVMs are satisfied. Fig. 3 shows the pseudo code for the proposed method. Ordering 
OVR SVMs properly for an input sample produces dynamic classification. 

DNA microarray data includes the expression information of thousands or even 
tens of thousands of genes. Since it is hard to design NBs that includes all the genes, a 
subset of informative genes is selected by using the feature selection process based on 
Pearson correlation. Cutting down the number of features to a sufficient minimum is 
often required to improve classification performance [9].  
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prob[m] = { p1, p2, ..., pm}   // prob[] is calculated by NBs 
order[m] = {0, 1, 2, ..., m-1} 
o-svm[m] = { ma1, ma2, ..., mam}   // o-svm[] is obatined by OVR SVMs 
 
// determine the order of OVR SVMs to evaluate 
for(i=0; i<m; i++) 
for(j=i+1; j<m; j++) 
    if(prob[i] < prob[j]) 
    { 
      int iTemp = prob[i]; prob[i] = prob[j];  prob[j] = iTemp; 
      iTemp = order[i]; order[i] = order[j]; order[j] = iTemp; 
    } 
 
// classify with OVR SVMs according to the subsumption architecture 
if(prob[order[0]] < r1)  // r1 is a rejection threshold 

return reject; 
for(i=0; i<m; i++) 
{ 

if(o-svm[order[i]] >= a)     // a is a threshold 
{ 

      if(o-svm[order[i]] < r2)  // r2 is a rejection threshold 
return reject; 

      return order[i]; 
}} 
return order[0]; 

Fig. 3. Pseudo code for probabilistically ordering OVR SVMs 

 

Fig. 4. Negatively correlated features 
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We define two ideal markers, obtained a standard of good features, and utilize the 
features by scoring the respective similarity with each ideal marker (as shown in 
Fig. 4). Two ideal markers are negatively correlated to represent two different aspects 
of classification boundaries. The first marker is high in class A and low in class B, and 
the second marker is low in class A and high in class B. The first marker is a binary 
vector which consists of 1 for all the samples in class A and 0 for all the samples in 
class B, while the second marker is another binary vector which is composed of 0 for 
all the samples in class A and 1 for all the samples in class B. Since the feature selec-
tion method is originally designed for binary classification, we select features based 
on the OVR scheme. Ten genes are selected for each class: the first 5 for the ideal 
marker 1 and the rest for the ideal marker 2. When there are m classes, total m×10 
genes are used to construct NBs. 

The similarity between an ideal marker ideal and a gene g can be regarded as a dis-
tance, while the distance represents how far they are located from one another. A gene 
is regarded as an informative gene if the distance is small, while the gene is regarded 
as an uncorrelated gene if the distance is large. Pearson correlation is used to measure 
the similarity as follows: 
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All conditional probabilities in Fig. 2 are estimated from the training set. Ai is the 
ith state of a feature A, and count(Ai) is the number of samples whose state is Ai. The 
conditional probability P(Ai) can be estimated with equation (6). 
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If A has a parent node B, P(Ai|Bj) can be estimated by the equation (7). 
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The probability of each class is calculated by inference using the ten features as 
evidence as follows: 

),...,|( 1 nFFCP  (8) 

over a class C and F1 ~ Fn. Using the Bayes theorem [20], we can rewrite it as: 

),...,(

)|,...,()(
),...,|(

1

1
1

n

n
n FFP

CFFPCP
FFCP =

 
(9) 



162 J.-H. Hong and S.-B. Cho 

In practice, we are only interested in the numerator of the fraction, since the de-
nominator does not affect C. Feature Fi is conditionally independent from the other 
feature Fj for j ≠ i, so the probability of a class is described by expression (10) 
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4   Experimental Results 

4.1   Dataset 

We verify the proposed method with GCM cancer dataset consisting of 144 train sam-
ples and 54 test samples with 16,063 gene expression levels GCM [8,14], which is a 
popular microarray dataset for multi-class cancer classification. There are 14 different 
tumor categories including breast adenocarcinoma, prostate, lung adenocarcinoma, 
colorectal adenocarcinoma, lymphoma, bladder, melanoma, uterine adenocarcinoma, 
leukemia, renal cell carcinoma, pancreatic adenocarcinoma, ovarian adenocarcinoma, 
pleural mesothelioma, and central nervous system. Since the dataset provides only a 
few samples but lots of features, it is a challenging job for many machine learning 
researchers to construct a good classifier. Ramaswamy et al. produced an accuracy of 
78% [8], while Li et al. yielded an accuracy of 63.3% [14]. We select 140 genes for 
learning NBs based on Pearson correlation. The linear kernel is used as a basis kernel 
function of SVMs. The values of all samples are normalized from 0 to 1. 

4.2   Results and Analysis 

Table 2 shows competitive results of the proposed method with several traditional 
approaches. SVMs with the winner-takes-all strategy produced 75.9% classification 
accuracy, while NBs with Pearson-correlated features yielded an accuracy of 72.2%. 
The product-based fusion of SVMs and NBs obtained an accuracy of 66.7%, whereas 
the proposed method produced 79.6% classification accuracy that is higher than the 
others.  

Table 2. Classification accuracy for GCM cancer dataset 

Method
(feature #)

MLP (140) 
SVMs 

(16,063) 
NBs (140)

Product 
(SVMs+NBs)

Proposed 
method 

Accuracy
46.5% 
(±2.1) 

75.9% 72.2% 66.7% 79.6% 

We analyzed samples classified by SVMs and NBs as shown in Table 3. Only 2 
samples were failed to classify correctly by both methods, while the proposed method 
correctly classified 5 samples among 7 samples that are failed by SVMs. A confusion 
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matrix for the test set is presented in Table 4. From this table, we can see that lung, 
colorectal, uterus, mesothelioma and CNS have been classified 100%, prostate, lym-
phoma and leukemia 83%. 

Table 3. Analysis of classification results 

SVMs (correct/incorrect): 
Proposed method O X 

O 38 (38/0) 7 (5/2) 
NBs 

X 7 (3/4) 2 (0/2) 

Table 4. Confusion matrix for the test set (0: Breast, 1: Prostate, 2: Lung, 3: Colorectal, 4: 
Lymphoma, 5: Bladder, 6: Melanoma, 7: Uterus__Adeno, 8: Leukemia, 9: Renal, 10: Pancreas, 
11:  Ovary, 12: Mesothelioma, 13: CNS) 

% 0 1 2 3 4 5 6 7 8 9 10 11 12 13 n 
0 75          25    4 
1  83          17   6 
2   100            4 
3    100           4 
4   17  83          6 
5   33   67         3 
6       50    50    2 
7        100       2 
8  17       83      6 
9        33  67     3 

10    33  33     34    3 
11    25   25     50   4 
12             100  3 
13              100 4 
n 3 6 6 6 5 3 2 3 5 2 3 3 3 4 54 

5   Conclusion 

Multi-class classification is a challenging task in pattern recognition, where various 
approaches have been investigated especially using SVMs. Since SVMs are basically 
binary classifiers, it is necessary to formulate a fusion method. In this work, we pro-
posed a hybrid classifier that integrates SVMs and NBs learned based on the OVR 
scheme. GCM cancer dataset, a popular multi-class benchmark dataset in bioinfor-
matics, has been used to verify the proposed method. Since the dataset has an amount 
of genes, we reduced the dimensionality by using a feature selection method with 
Pearson correlation. The proposed method showed better performance than SVMs and  
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NBs when working individually or combined by the product strategy. As the future 
work, we will demonstrate the proposed method with other popular benchmark data-
sets of multi-class.  
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Abstract. Breast cancer is one of the leading causes of mortality among 
women, and the early diagnosis is of significant clinical importance. In this pa-
per, we describe several linear fusion strategies, in particular the Majority Vote, 
Simple Average, Weighted Average, and Perceptron Average, which are used 
to combine a group of component multilayer perceptrons with optimal architec-
ture for the classification of breast lesions. In our experiments, we utilize the 
criteria of mean squared error, absolute classification error, relative error ratio, 
and Receiver Operating Characteristic (ROC) curve to concretely evaluate and 
compare the performances of the four fusion strategies. The experimental re-
sults demonstrate that the Weighted Average and Perceptron Average strategies 
can achieve better diagnostic performance compared to the Majority Vote and 
Simple Average methods. 

1   Introduction 

Breast cancer is one of the leading forms of cancer diagnosed among women in the 
United States [9]. The latest surveillance investigation indicates this type of cancer 
accounts for an estimated 32% incidence rate and an estimated 15% mortality rate in 
2005, ranking second only to lung carcinoma [9]. The most common and palpable 
signs of cancer are lumps or masses detected in the breast, and the benign masses are 
frequent in a majority of cases [12]. Studies have shown that early diagnosis by means 
of breast imaging, including digital mammography, ultrasound imaging, and magnetic 
resonance imaging (MRI), could help prognosis and increase therapeutic options [4]. 
In this paper, we are considering the binary classification problem of distinguishing 
benign or malignant breast lesions. In order to improve the biopsy yield ratio, tech-
niques and systems are being developed for computer-aided diagnosis, to effectively 
assist radiologists and physicians in screening and diagnosis [1]. 

Recently, artificial neural networks have been applied to classifying mammo-
graphic masses for early-stage breast cancer detection and diagnosis [21], which 
would help reduce the number of unnecessary surgical biopsies. Artificial neural 
networks, with the properties of experience-based learning and generalization ability, 
are regarded as one of the emerging computational technologies for solving complex 
problems that might not have a tractable solution provided by traditional methods. 
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However, when given a complex data set, different neural classifiers typically pro-
vide diverse generalizations by determining different boundaries. The variety of per-
formance would be dramatically influenced by a number of factors, including differ-
ent network architectures, learning styles (supervised or unsupervised), network archi-
tecture (the number of layers and hidden nodes involved, type of activation functions, 
and degree of connectivity), training parameters (weights initialization, learning rates, 
and training epochs), and so forth. 

Previous research showed that an ensemble of neural networks may significantly 
improve the generalization capability of an intelligent system [10], [18]. Other than 
solely toiling over the training data toward an expected generalization, a group of 
Component Neural Networks (CNNs) could work collectively with given fusion 
strategies to ameliorate the classification capability, and then hopefully solve an entire 
complex problem. The ensembles of neural networks can be divided into two main 
categories: Generative and Nongenerative methods [11]. The Generative methods 
generate a series of CNNs whose training sets are determined by the performance of 
former ones (e.g. Boosting [5]), or based on the bootstrap sampling data sets (e.g. 
Bagging [2]). The Nongenerative ensembles combine their well-devised CNNs to 
comprehend the entire problem and drive a comprehensive decision with the fusion 
strategies. The research focus has recently been shifted from practical applications of 
ensembles towards investigating why ensembles and fusion strategies may work so 
well and in which situations some methods may outperform the others [14], [23]. In 
the following sections, we will focus on the Nongenerative ensemble methods in the 
context of distinguishing between malignant and benign breast lesions. 

The rest of this paper is organized as follows. Section 2 and Section 3 describe the 
optimal Multilayer Perceptron (MLP) architecture selection and several linear fusion 
strategies applied in our experiments. Section 4 presents the empirical results of breast 
cancer diagnosis. Section 5 discusses some technical details of linear fusion strategies. 
Conclusion and directions for the future work are presented in Section 6. 

2   Optimal MLP Architecture Selection Based on Regularization 

The implementation of the optimal MLP architecture selection in our work contains 
two steps: First, search the minimum risks associated with a series of MLP structures 
based on parameter regularization and cross-validation; later select the optimal MLP 
architecture according to the dynamics of the minimum-risk ranking. 

Interpreted as a nonlinear system, a MLP maps the input features x, P N×∈ℜx  by fol-
lowing the rule: ( , )O x w , P M×∈ℜO . Referring to Hornik et al. [8], we consider the 

MLP with N input nodes, K hidden nodes in only one hidden layer, and M output nodes 
(herein denoted as (N-K-M) architecture.) Let ,k mw  be the weight between m-th output 

node and k-th hidden node, and ,n kw  be the weight between the k-th hidden node and n-
th input node. The MLP architecture is selected by minimizing a scalar risk function 

( , )R w λ , which is the sum of a performance-loss function ( )E w , and a complexity-cost 

function ( )C w  parameterized by a linear regularization vector λ , i.e., 

T( , ) ( ) ( )R E C= +w λ w λ w  (1) 
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where the parameter λ  represents the relative importance of the complexity-cost in 
respect of the performance-loss.  

For regression and signal processing problems, the loss function is normally meas-
ured by mean squared errors between the expected targets tp and the estimated outputs 
over training patterns, i.e., 
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1 1 1
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where ( )pe w  denotes the error between the expected targets and estimated outputs. 

There are some complexity regularization methods, well-known as Weight Decay 
[7] and Weight Elimination [19]. Here we only consider the Weight Decay proposed 
by Hinton et al. [7]. In the Weight Decay, the complexity cost is defined as squared 
norm of the synaptic weights, including the input-to-hidden and hidden-to-output 
weights. Thus the regularization term in the risk function is 
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For architecture selection purpose, the Cross-Validation approach [3], [16] is em-
ployed to validate the optimal network architecture with the best-performance pa-
rameter estimates. Normally, data for regression and classification problems may 
involve a training set and a testing set, and in the L-fold cross-validation method, all 
the available training set of P patterns would be randomly split into L disjoint subsets 
of approximately equal size, i.e. 

1 V
L l
lP P== ∪  and 

V V: i ji j P P∀ ≠ = ∅∩ . Training and 

validation are repeated for a total of L trials, in the l-th iteration using the subset 

V\ lP P  for training and the other subset 
V
lP  for validation. The performance-loss of L-

fold cross-validation is estimated by the average of validation mean squared errors: 
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Using the second order information during regularization [3], the parameter vector 
λ  would converge through the gradient descent path of the network risk: 

( 1) ( )
V ˆ( )i i η+ = − ⋅∇ Γλλ λ w  (6) 

where is 0η >  is the convergence update rate. Note that during the i-th iteration the 

synaptic weights ŵ  (or to be explicitly written as ˆ ( )w λ ) is an implicit function of 
( )iλ , since λ  could only be optimized after the settlement of synaptic weights ŵ . In 

case of linear regularization, the gradient of the cross-validation error is 
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Following the differential chain rule, the gradient vector of the cross-validation er-
ror can be derived:  

( )
T

V Vˆ ˆ( ) ( )
ˆ ( )

l l l ll
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∂ ∂ ∂
w ww

w λ
λ λ w
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where Tl∂ ∂w λ  is the derivative matrix of synaptic weights. To get this derivative 

matrix, we consider the Taylor expansion of scalar risk function around ( )iλ : 
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where ( )( )io −λ λ  represents a high-order small value which could be ignored when 

estimated. Note that when regularization parameter vector λ  meets the optimal scene 
(i.e. both the gradient of the cross-validation error and network risk cannot be updated 
further), derived from (9), we have  
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Combining (1), (3), (4), and (7), we may develop  
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Finally, substituting (11) into (8) gives  
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where 2 T
V ˆ ˆ( ) ( , )l lH R= ∂ ∂ ∂w w λ w w is the Hessian matrix of the risk function, and 

V ˆ( )l lE∂ ∂w w  could be estimated during training over the validation subset. 

3   Linear Fusion Strategies for Combining Neural Classifiers 

There are several Non-generative neural networks fusion strategies that have proved 
to be effective in improving the classification performance [10], [22]. In general, 
they can be differentiated into two styles: Fixed and Trained rules [15]. Fixed rules, 
e.g. Majority Vote (MV) [18] and Simple Average (SA) [14], do not need any train-
ing phase in the fusion. Trained rules, on the other hand, like Weighted Average 
(WA) [15] and Perceptron Average (PA) [22], require a learning phase to initialize 
and adjust fusion parameters. For the MV fusion, the class which receives the larg-
est number votes among the CNNs is chosen as the consensus or majority decision. 
For the SA and WA fusions, the CNNs are linearly combined to form an overall 
decision. In this investigation, we use the both fixed and trained fusion methods to 
effectively improve performance of multiple classifier systems for breast cancer 
diagnosis. 
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Simple Average (SA). For the SA fusion, the outputs of the independently trained 
CNNs are assumed to be scalar-valued and then linearly combined with the equal 
fusion coefficients to form an overall output. Assume a fusion combines the outputs 
of total K CNNs, with normalized fusion coefficients αk, and we have 

1
ˆ( ) ( , ), 0

K

p k k p kk
F α α

=
= ⋅ ≥∑x O x w  (13) 

1
1, 1,2, ,

K

kk
k Kα

=
= =∑ …  (14) 

where ˆ( , )k pO x w  denotes the output of the k-th CNN for a given p-th input pattern 

vector xp. For the SA fusion, the fusion coefficients are αk = 1/K. 

Weighted Average (WA). In the WA fusion [17], for a one-dimensional input xp, the 
estimation of the a posteriori probability of the i-th class from the output of the k-th 
CNN is denoted as ˆ ( )i

k pp x . According to Roli et al. [15], it can be expressed as 

ˆ ( ) ( ) ( )i i i
k p k p k pp p ε= +x x x  (15) 

where ( )i
k pp x  is the a posteriori probability of the i-th class, and ( )i

k pε x  denotes the 

estimation error. Assume that the class boundaries provided from the approximate a 
posteriori probabilities are close to the optimal Bayes boundaries [17]. According to 
Tumer et al. [17], if the estimation errors ( )i

k pε x  on different classes are independent 

and identically distributed (i.i.d.) variables with zero mean and variance 2
εσ , the ex-

pectation of the added errors (the error in addition to the Bayesian one) can be ex-
pressed as 2addE sεσ= , where s  is a constant term depending only on the values of 

probability density functions at the optimal decision boundary. Using (14) and (15), 
under the hypothesis that the output of the network approximates the posterior prob-
abilities of the classes, the a posteriori probability of the linear fusion is 

1
ˆ ( ) ( ) ( ) ( ) ( )

Ki i i i i
ave p ave p k k p ave p pk

p p pα ε ε
=

= + ⋅ = +∑x x x x x  (16) 

where ( )i
pε x  denotes the estimation fusion. In the case of uncorrelated estimation 

errors, the expectation add
aveE  of the added error of the WA fusion is [15] 

2

1

Kadd add
ave k kk

E E α
=

= ⋅∑  (17) 

Considering (13), the fusion coefficients that minimize add
aveE  are [17] 

( ) ( )
1

1
1 1

K add add
j k jk

E Eα
−

=
= ⋅∑  (18) 

In other words, the optimal fusion coefficients are inversely proportional to the ex-
pectation errors of each CNN.  

Perceptron Average (PA). When the data are statistical independent Gaussian 
distributed, the operation of the Bayes classifier reduces to a linear classifier, which  
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is equivalent to the perceptron having exponential family activation functions [6]. 
Note that the WA fusion is “parametric,” because its derivation is contingent on the 
assumption that the underlying distributions of the estimation errors εk(xp) on 
different classes are Gaussian, which may limit its area of applications. On the other 
hand, the perceptron convergence algorithm is “non-parametric” in the sense that it 
makes no assumptions concerning the form of the underlying distributions [6]. It 
operates by concentrating on errors that occur where the distributions overlap. It may 
therefore work well when the input patterns are generated by some nonlinear 
physical mechanisms whose distributions might be heavily skewed and non-
Gaussian. With such a concept, we may utilize the perceptron convergence algorithm 
to train the linear fusion to obtain the optimal fusion coefficients assigned to each 
output of the CNNs. In the PA fusion, the bias b(n)(xp) over the p-th input pattern at 
the n-th training epoch is treated as an additional coefficient driven by a fixed input 
equal to +1. Let D(n)(xp) denote the desired fusion output at the n-th training epoch, 
we have: 

( )
1 if belongs to

( )
1 if belongs to

pn
p

p

malignant
D

benign

+⎧⎪= ⎨−⎪⎩

x
x

x
 

(19) 

Thus, the fusion coefficients and bias are updated by following the rule: 

( )( 1) ( ) ( ) ( ) ( ) ˆ( ) sgn ( ) ( , )n n n n n
k k p p k pD Fα α+ ⎡ ⎤= + − ⋅⎣ ⎦x x O x w  (20) 

( )( 1) ( ) ( ) ( )( ) ( ) ( ) sgn ( )n n n n
p p p pb b D F+ ⎡ ⎤= + −⎣ ⎦x x x x  (21) 

4   Experimental Results 

4.1   Data Description 

The data set applied in our experiments was obtained from the Wisconsin Diagnostic 
Breast Cancer Database described by Mangasarian et al. [13]. The data set contains 
569 instances (357 benign cases and 212 malignant cases) with thirty real-valued 
input features, including the mean, standard error, and “worst” or largest (mean of the 
three largest values) of ten cell nucleus attributes (i.e. radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave, points, symmetry, fractal dimension). 
In the experiments, we split the whole data set into two sets: training set and testing 
set, each involving 200 instances and 369 instances, respectively. And we divided the 
thirty input features into three parts: Mean, Standard Error, and Largest Deviation 
features of the ten cell nucleus attributes correspondingly sent to three CNNs (labelled 
CNN-1, CNN-2, CNN-3) which to be independently trained by the Resilient Back-
propagation, Scaled Conjugate Gradient, and Levernberg-Marquardt algorithms. All 
the input features were normalized to zero mean and unity standard deviation in order 
to accelerate the backpropagation learning process. And the MLP performance was 
validated with the 10-fold cross validation. 
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Fig. 1. The convergence of regularization parameter vector λ = [λNK, λKM]T through the gradi-
ent descent path of the network risk (the track points are depicted as “+”). The current MLP 
architecture is (10-4-1) and trained by the Resilient BP algorithm. 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Hidden Neurons of MLP

R
is

k 
(M

ea
n 

V
a

lu
e 

± 
D

ev
ia

tio
n)

CNN-1
CNN-2
CNN-3

 

Fig. 2. MLP risk dynamics curves and MSE performance independently carried out by different 
algorithms for the CNNs in breast cancer diagnosis 

4.2   Results of Optimal MLP Architecture Selection 

Referring to (1), the risk exported from a MLP would be jointly affected by the syn-
aptic weights and regularization parameter vector λ. In order to achieve the optimal 
architecture for a particular task, we first relax the number of the hidden nodes at the 
range from 1 to 10, and then search the most appropriate parameter vector λ which 
minimizes the risk associated with each certain network structure. In this case, we will 
have a series of 10 dynamic networks which reach the minimum risks within their 
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own structures. On comparison of the risk dynamics, the optimal MLP architecture 
could be found. In Fig. 1, we can observe that the regularization parameter vector λ 
converges through the gradient descent risk path on the network (10-4-1) for CNN-1. 
By locating the regularization parameter vector λ after convergence (referring to (6)), 
we will find the minimum risk on each network structure. Later, the optimal MLP 
architecture can be obtained according to the risk dynamics curve varying from a 
series of hidden nodes (see Fig. 2). The optimal structures for CNN-2 and CNN-3 are 
(10-5-1) and (10-2-1), respectively. Their regularization convergence situations are 
quite similar to the one of CNN-1, and are not illustrated again. 

4.3   Results of Breast Lesion Classification Via Linear Fusion Strategies 

Table 1 and Table 2 show the weighted coefficients and diagnostic results of the four 
fusion strategies. Note that absolute errors are the misclassification cases in percent-
age terms, and for relative error ratios, the averaged error of the CNNs is regarded as 
1.0000, and the reported error of each fusion is in fact the ratio over that of the aver-
aged value of the CNNs. In Table 2, we find that MV and SA are at the same degree, 
when WA and PA are at a lower level in terms of relative error ratio. 

Table 1. Normalized fusion coefficients assigned to the CNNs in different fusion strategies 

Weighted Coefficients Fusion Strategy 
CNN-1 CNN-2 CNN-3 

MV Fusion N/A N/A N/A 
SA Fusion 0.3333 0.3333 0.3333 
WA Fusion 0.3727 0.2037 0.4236 
PA Fusion 0.3401 0.2081 0.4518 

Table 2. Diagnostic performances of different fusion strategies 

 MSE Absolute Error (%) Relative Error Ratio 
CNN averaged 0.3577 8.9431 1.0000 

MV Fusion 0.3111 7.7778 0.8697 
SA Fusion 0.2883 7.2087 0.8061 
WA Fusion 0.2060 5.1491 0.5758 
PA Fusion 0.1951 4.8780 0.5454 

Measures of overall error of classification as percentage provide limited indications 
in a medical diagnostic method. Especially in breast cancer diagnosis, a misidentifica-
tion between benign mass and malignant tumor has their different costs [4]. The pro-
vision of separate correct classification rates for each class, such as Sensitivity/True 
Positive (TP) rate (the percentage of cancer correctly diagnosed) and Specificity (the 
percentage of benign lesions correctly diagnosed), can facilitate improved analysis. A 
Receiver Operating Characteristic (ROC) curve is a plot of operating points showing 
the possible tradeoff between the classifier’s TP rate versus its False Positive (FP) rate 
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(1-Specificity) [20]. A summary measure of effectiveness of classifier is given by the 
ROC Area Under Curve (AUC). Here we show two zoomed ROC plots in Figures 3 
(a) and (b), because if we move out the range of 0.03 to 0.3 in the horizontal axis, all 
four fusion ROCs tend to converge with no apparent significant differences. It is clear 
from Fig. 3 that the PA fusion’s ROC covers a larger area (AUC = 0.9801) than the 
second ranking one of the SA fusion (AUC = 0.9775). It is interesting that the WA 
fusion strategy just covers the smallest area under the ROC, and the further discussion 
is provided in Section 5. 
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(a)                                                                        (b) 

Fig. 3. ROC curves of all four fusion strategies in breast cancer diagnosis: (a) panoramic 
curves, and (b) zoomed curves from the range of 0.03 to 0.3 in the horizontal axis 

5   Discussion 

For the MV fusion, assuming that only two classes are considered, and we restrict the 
choice of the number of CNNs (N) to an odd number. The MV fusion will assign the 

wrong class to input vector x  if at least 1
2

N +  CNNs incorrectly vote for it. It is there-

fore possible that the consensus decision might be worse than that of the best individ-
ual CNN. So the decision of MV fusion might not be always superior to all the indi-
vidual CNNs. 

The SA fusion is widely used due to its simplicity and effectiveness, which has 
been demonstrated in several experimental studies. However, it might suffer from 
individual classifiers whose performances are significantly diverse. In our experi-
ments, the SA fusion was poor at fusing the individual CNNs, i.e., the relative error 
ratio of the SA fusion is 0.2303 and 0.2607 above those in the WA and PA fusions, 
respectively (see Table 2). 

For the WA fusion, we note in Fig. 3 (a) that the ROC curve of the WA fusion as-
cends slowly (even behind the MV and SA fusions) from 0 to 0.02 in the horizontal 
axis. We believe that the preliminary assumption of Gaussian distributions for the 
estimation errors on different classes in the WA fusion results in this phenomenon in 
the ROC curve, especially when a casualty of training data sizes. 
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The PA fusion can achieve the lowest absolute error and relative error ratio in our 
experiments, but it is vastly inferior to the WA when a moderate FP rate is tolerable. 
This could be the direction for us to improve the PA fusion in the future work. 

6   Conclusion 

In this paper, we presented the MLP architecture selection method based on parameter 
regularization and cross-validation, and four linear fusion strategies for combining the 
component MLP classifiers. The numerical experiments reveals the pitfalls of the 
MV, SA, and WA fusion strategies in solving the classification of breast lesions, and 
also exhibits the advantages of the PA fusion strategy, which achieves the lowest 
absolute error and relative error ratio, and has the top ranking AUC in its ROC versus 
the other linear fusion strategies. The development of new adaptive weighted average 
algorithm and the nonlinear fusion strategies will be the next step of our work. 
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Abstract. Traditional Chinese Medicine (TCM) is one of the most important 
complementary and alternative medicines. Due to the subjectivity and fuzziness 
of diagnosis in TCM, quantitative model or methods are needed to facilitate the 
popularization of TCM. In this article, a novel quantitative method for 
syndrome differentiation based on BNs is proposed. First the symptoms are 
selected by a novel mutual information based symptom selection algorithm 
(MISS) and then the mapping relationships between the selected symptoms and 
key elements are constructed. Finally, the corresponding syndromes are output 
by combining the key elements. The results show that the diagnostic model 
obtains relative reliable predictions of syndrome, and its average predictive 
accuracy rate reach 91.68%, which testifies that the method we proposed is 
feasible and effective and can be expected to be useful in the modernization of 
TCM. 

Keywords: Traditional Chinese Medicine (TCM), Quantitative diagnosis, 
Bayesian networks, Symptom selection, Syndrome differentiation. 

1   Introduction 

Traditional Chinese Medicine (TCM) is one of the most important complementary 
and alternative medicines. With a history of over 23 centuries, TCM has formed an 
integrated medical system which diagnoses, treats, and prevents diseases. On one 
hand, TCM can diagnose diseases at an earlier stage and subsequently prevent the 
state of illness from deteriorating by adjusting the balance within the body in time. On 
the other hand, TCM causes little pain, no injury and treats the human body as a 
whole. Therefore, TCM has been accepted gradually and applied more frequently in 
the world. 

Syndrome differentiation is a method of understanding and diagnosing disease by 
the theories of TCM. The overall guiding principles for clinical treatment are based 
on the results of syndrome differentiation. Traditional diagnosis in TCM requires long 
experiences and a high level of skill, and is subjective and deficient in quantitative 
diagnostic criteria. This seriously affects the reliability and repeatability of diagnosis 
and limits the popularization of TCM. So the focal problem that needs to be solved 
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urgently is to construct quantitative methods or models to differentiate syndrome 
automatically. Recently, a few researchers developed some methods and systems to 
modernize TCM. But most of them are built incorporating totally or partially rule-
based reasoning model [1], which are lack of the feasibility of implementing all 
possible inference by chaining rules and limits their practical applications in clinical 
medicines. 

In TCM, fuzziness and uncertainty are inherent issues in the procedure of 
diagnosis. An attraction tool for managing various forms of uncertainty is Bayesian 
networks (BNs) [2], [3], [5], which is able to represent knowledge with uncertainty 
and efficiently performing reasoning tasks. Comparing with other methods that also 
can handle uncertainty quite adequately, such as fuzzy logic [4], belief functions [3] 
etc., BNs have several advantages. Firstly, it is based on a rigorous theory with a vast 
amount of known results, which prompted some researchers to claim that probability 
is the only sensible description of uncertainty and is adequate for all purposes. 
Secondly, BNs describe causal relationships in graphics mode, which is prone to 
comprehend and can be used to predict the consequences of intervention. Thirdly, it is 
often insensitive to imprecision in the numerical probabilities. In view of the 
advantages, we utilize BNs to construct a model for quantitative diagnosis in TCM. 

In this article, we proposed a new quantitative method for syndrome differentiation 
based on BNs. Firstly the symptoms are selected by a novel mutual information based 
symptom selection algorithm (MISS). Secondly, the mapping relationships between 
the selected symptoms and key elements are constructed. Finally, the corresponding 
syndromes are output by combining the key elements. The performance of the method 
was evaluated. The results show that the methodology we proposed is feasible and 
effective and can be expected to be useful in the modernization of TCM. 

2   United System of Syndrome Differentiation 

This method is characterized by the concept called ‘key elements for syndrome 
differentiation’ [11]. The key elements were abstracted from some key words in 
routine TCM diagnostic theories and could be grouped into two categories: some 
were named as key element of disease location, which indicate the place where 
diseases occur, such as heart and kidney, and the others were named as key element of 
disease character, which reflect the pathological state of the body or possible causes 
that make disease break out, such as qi deficiency, blood stasis and so on.  

In our method, the standard syndrome-name database was created, in which the 
names of those syndromes frequently appearing in practice were standardized by 
combing the key elements in accordance with certain principles and rules in expertise. 
The name of one syndrome always includes at least one key element of disease 
location and one key element of disease character. 

The process of syndrome differentiation includes two phases. Firstly, the key 
elements are diagnosed by fusing the symptoms. Secondly, the corresponding 
syndromes that consist of these key elements are activated from the standard 
syndrome-name database. 
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3   Diagnosis Using Bayesian Networks  

The architecture of the model for pulse diagnosis is given (see Fig. 1). The 
probabilistic reasoning module consists of discovering dependency relationship 
module, parameter learning and reasoning module.  

The algorithms of automatic learning BNs from data can be grouped into two main 
categories: methods based on conditional independence tests and methods based on 
scoring metrics. The computational complexity of the algorithms based on 
independence tests increases exponentially with the number of variables and even 
may lead to unreliable results, unless huge amounts of data are available. The 
algorithms based on scoring metrics are characterized by the specific scoring metric 
and the search procedure. However, they may not find the optimal solutions, but the 
local one. Based on the algorithms of these two categories, the algorithms utilizing 
hybrid methodology are investigated, among which GBPS algorithm is one of the 
most effective hybrid learning algorithms. By modifying the search procedure 
algorithm, a new hybrid leaning algorithm [6] for dependency relationship discovery 
and parameter learning was used, which was developed by our research group and 
named as GBPS* algorithm. In [6], we have proved that GBPS* algorithm is more 
accurate and efficient than GBPS. Given the parameterized model, the reasoning 
module is implemented via Clique Tree Propagation algorithm (CTP) [7], which 
allows computation sharing among multiple queries and satisfies the requirement of 
syndrome differentiation. 

In addition, we use Markov blanket [3] to perform causal inference. A Markov 
blanket is the minimum set of nodes that renders node X  conditionally independent 
of all other nodes in the directed graph. The Markov blanket of a node X  consists of 
the parents of X , the children of X , and the parents of the children of X . We can 
get rid of all nodes outside Markov blanket of X  to obtain simplified BNs without 
influencing predictive accuracy rate (PAR).  

Reasoning
Module

Parameter
Learning

Discovering
Dependency
Relationship

Module Sydrome

Probabilistic Reasoning Module
Based On BNs

Symptom
Selection
Module

symptoms

 

Fig. 1. The architecture of the model for quantitative syndrome differentiation 

4   Symptom Selection 

In TCM, there are often so many symptoms that make patient cases high dimensional. 
High dimension is a great obstacle for the construction of probabilistic reasoning  
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model (PRM). For a certain type of syndrome, such as blood stasis syndrome, the 
numbers of symptoms that appear in clinic are more than hundreds, which makes the 
reasoning based on BNs intractable. In order to reduce the dimensionality and 
improve the prediction performance of system, variable selection is requisite. In order 
to achieve simplicity and scalability, many researchers use variable ranking as a 
baseline method [8] for variable selection, among which mutual information based 
feature selection (MIFS) [9] is one of the most effective algorithms. MIFS algorithm 
selects an informative subset to be used as input data for the model to be built on the 
basis of the mutual information criterion. The result of symptoms selection using 
MIFS algorithm are influenced directly by a parameter β , which is usually 

determined by testing methods. In this article, we determine β  based on the expertise 

(prior knowledge) of TCM and propose a novel mutual information based symptom 
selection algorithm (we named it MISS), which is inspired by the idea of image 
template matching. The symptoms that are relevant to the interested syndrome are 
predefined by expertise and denoted as the template TM  and the symptoms selected 

under different β  are the sequences to be matched. The procedure of MISS can be 

summarized five steps, as described follows: 

Step 1: Assume F={initial symptom set}, { }φ=S , the number of variables denote 

by Va. For each Ffi ∈ , compute the mutual information );( ifCI . Choose the 

symptom if that maximize );( ifCI . Set { }ifS ← , { }ifFF \←  

Step 2: Assume FD and SD are the dimensions of the set F and S. For 

each ∈β {0,0.2,0.4,0.6,0.8,1}, compute );( ij ffI , where Sfi ∈ , Ff j ∈ . Choose the 

symptom if that produces )),(/),((max
1
∑

=

−
SD

i
ijSj

j
ffIDfCI β . Set { }ifSS ∪← ββ , 

{ }ifFF \← , where SDi ,...,2,1= , FDj ,...,2,1=  

Step 3: If aS VD < , turn to step 2; else output βS  as the sequence to be  

matched 
Step 4: Number each symptoms that included in βS and TM with a digital code, 

respectively. Store these codes as characteristic gray set of βS and TM , denote by 

oM and iI , where 6,...,2,1=i , respectively. Let iI be the template characteristic 

sequences and oM  be the characteristic sequences to be matched. Construct the 

similarity measure: 

∑
∈

∈
−=

o
iMa

Ib
i baMIh min),(  (1) 

Choose iI , where 6,...,2,1=i , that minimize ),( MIh i  and output the corresponding 

set βS  containing the selected symptoms 
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5   Experiment Results 

5.1   Sample Database 

A total of 802 patient records constitute the database, which were gleaned from 
Xiyuan Hospital of China academy of TCM. The database consists of three parts: 
symptoms, key elements and syndromes. All attributes are expressed in linguistic 
reports. The majority of the symptoms, such as amnesia, take four values: absent, low, 
medium and high. Some of the attributes, for example hesitant pulse, take two values: 
absent and present. The rest take three values: baddish, medium and better. The 
diagnostic results are given by one group of clinical physicians with three members. 
In addition, we assign 0 to the missing values that contained in databases, so we do 
not consider handling missing values. The syndromes and the corresponding key 
elements are listed in Table 1. 

Table 1. Syndromes, key elements and corresponding sample number 

Syndrome Key elements Sample number 
qi deficiency and blood 
stasis syndrome 

qi deficiency, blood stasis 528 

qi stagnation and blood 
stasis syndrome 

qi stagnation, blood stasis 103 

meridian blocking and 
blood stasis syndrome 

meridian blocking, blood stasis 171 

5.2   Evaluation of MISS Algorithm and the Syndrome Differentiation System 

In the paper, a stratified k -fold cross validation technique [10] ( k = 5, named CV-5) 
is used to evaluate the performance of MISS algorithm and syndrome differentiation 
model.  

The experiments include three procedures: Firstly, use GBPS* algorithm to learn 
BNs, and their variants incorporating MIFS, MISS and without feature selection 
procedure, which are denoted by BN-M1, BN-M2 and BN-UNSELECT, respectively. 
Secondly, for BN-M1, BN-M2 and BN-UNSELECT, perform CTP algorithm to 
establish the reasoning models, the results denoted by R-M1, R-M2 and  
R-UNSELECT, respectively. Thirdly, validate the reasoning models using CV-5. 

In the process of constructing PRM, the irrelevant attributes may produce so much 
interferential interdependence relationships that the practitioners and even experts 
cannot recognize all of them. It is a great obstacle to construct PRM based on BNs 
with so many attributes. As described in the section 4, we propose MISS algorithm to 
solve this problem. An illustrating example is given as following, in which a key 
element ‘blood stasis’ and its corresponding 112 symptoms in the database are 
selected. The corresponding Markov blanket for ‘blood stasis’ is shown as Fig. 2, 
from which we can see that the directed acyclic graph encodes dependency and 
conditional independency relationships among symptoms and between symptoms and 
the key element. After the procedure of symptom selection using MISS algorithm, 
most attributes are eliminated, such as age, gender, occupation and so on. Only 26 
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attributes survive. Meanwhile, some symptoms, such as tongue petechiae, hesitant 
pulse, cramp and so on, which have been validated to be correlative with ‘blood 
stasis’, are selected and are included in directed acyclic graph. Some attributes, such 
as ‘vertigo’ and ‘amnesia’, are preserved after the procedure of MISS algorithm but 
not included in Markov blanket of ‘blood stasis’, which is also accordant with the 
experiences of TCM. Moreover, some dependency relationships that were usually 
neglected by experts of TCM are also discovered. For example, ‘chest pain’ and 
‘chest distress’ are also dependent on ‘blood stasis’ as shown in Fig. 4. It has been 
demonstrated by experts of TCM that most of the results are consistent with expertise, 
which also proves that the probabilistic reasoning models in our system are effective 
for discovering dependency relationship between symptoms and key elements.  

In our method, the key elements whose probabilities exceed the thresholds set by 
experts are selected. Then the syndromes that contain these key elements are queried 
and output from standard syndrome-name database. Furthermore, the occurrence 
probability of each syndrome is computed by multiplying the probabilities of its 
corresponding key elements, under the assumption that these key elements are 
independent. Finally, the syndrome whose probability is the greatest is selected and 
output as the final result (see Table 3).  

Impatience and
Iritability

Fatigue and
Weakness

Tongue Petechiae
Tongue Suatance

Purple

Sublingual
Varicosity

Hesitant
Pulse Dizziness

Lips Numbness

Cramp Blood Stasis

Gore of
Menstrual

Development
Condition

Chest Distress

Chest Pain

Sign of Palate
Mucous Membrane

Numbness of
Extremities

 

Fig. 2. The Markov blanket of the key element-blood stasis 

Table 2. Predictive results of key elements 

Key elements R-UNSELECT R-M1 R-M2 
qi deficiency 0.7146 ± 0.1343 0.9033 ± 0.0279 0.9316 ± 0.0430 
qi stagnation 0.6190 ± 0.0674 0.8095 ± 0.0952 0.8690 ± 0.0790 
blood stasis 0.7860 ± 0.0726 0.9203 ± 0.0417 0.9594 ± 0.0272 
meridian blocking 0.5786 ± 0.0474 0.8571 ± 0.1178 0.9072 ± 0.0889 
Average PAR 0.6745 0.8726 0.9168 

The predictive accuracies of R-M1, R-M2 and R-UNSELECT of the key elements 
are displayed in Table 2. It can be seen that R-M1 and R-M2 outperform R-SELECT 
greatly and R-M2 achieves the highest PAR, which demonstrate that MISS algorithm 
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is efficacious for symptom selection. The average PAR of R-M2 for the four key 
elements is 91.68%, especially for blood stasis is 95.94%. The result also validate that 
the probabilistic reasoning models based on BNs are reliable and effectual for 
syndrome differentiation. 

Table 3. The results of syndrome differentiation for three cases 

 Key elements and 
syndromes diagnosed 
by expert 

Key elements and their 
probability predicted by 
the system 

Syndromes and their 
probability predicted by the 
system 

Case 1 qi stagnation and blood 
stasis syndrome 
 (qi stagnation; blood 
stasis ) 

qi deficiency : 0.37 
qi stagnation: 1 
meridian blocking: 0.4 
blood stasis: 1 

0.37 qi deficiency and blood 
stasis syndrome  
(qi deficiency; blood stasis ) 
0.4 meridian blocking and 
blood stasis syndrome 
(meridian blocking; blood 
stasis 
1 qi stagnation and blood 
stasis syndrome  
(qi stagnation; blood stasis ) 

Case 2 qi deficiency and blood 
stasis syndrome 
(qi deficiency; blood 
stasis ) 

qi deficiency : 0.95 
qi stagnation: 0.71 
blood stasis: 1 

0.71 qi stagnation and blood 
stasis syndrome  
(qi stagnation; blood stasis ) 
0.95 qi deficiency and blood 
stasis syndrome  
(qi deficiency; blood stasis ) 

Case 3 meridian blocking and 
blood stasis syndrome 
(meridian blocking; 
blood stasis ) 

qi deficiency : 0.33 
qi stagnation: 0.78 
meridian blocking: 0.96 
blood stasis: 1 

0.33 qi deficiency and blood 
stasis syndrome  
(qi deficiency; blood stasis ) 
0.78 qi stagnation and blood 
stasis syndrome  
(qi stagnation; blood stasis ) 
0.96 meridian blocking and 
blood stasis syndrome 
(meridian blocking; blood 
stasis ) 

6   Conclusion 

TCM is one of the most important complementary and alternative medicines. But the 
complexity and elusiveness of diagnostic method confine its development and 
generalization. To facilitate the popularization of TCM, we propose a novel 
quantitative method based on BNs to predict syndrome automatically. The method 
utilizes BNs instead of using rules, which differentiates from other existing 
quantitative methods in TCM. Furthermore, a novel feature selection algorithm is 
proposed to attack the problem of large number of symptoms in the domain of TCM 
diagnosis. The feature that differentiates the feature selection algorithm from other 
methods is that it is based on prior knowledge of TCM, which can provide the 
diagnosis with more reasonable explanations. The experiment results validate that the 
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methodology we proposed is effective. Note that, the feature of our model is that it 
can keep enhancing the predictive accuracy of syndrome by learning the experiences 
of experts of TCM 
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Abstract. In intrusion detection systems, sequences of system calls executed by 
running programs can be used as evidence to detect anomalies. Markov chain is 
often adopted as the model in the detection systems, in which high-order 
Markov chain model is well suited for the detection, but as the order of the 
chain increases, the number of parameters of the model increases exponentially 
and rapidly becomes too large to be estimated efficiently. In this paper, one-
class support vector machines (SVMs) using high-order Markov kernel are 
adopted as the anomaly detectors. This approach solves the problem of high 
dimension parameter space. Experiments show that this system can produce 
good detection performance with low computational overhead. 

1   Introduction 

A lot of efforts have been put on developing intrusion detection systems (IDSs), 
because network intrusions are becoming top priority security issues for nowadays 
computer systems. There are two general approaches to detect intrusions: misuse 
detection and anomaly detection. Misuse detection techniques store signature patterns 
of known intrusions, match activities in a computer system with known intrusion 
patterns, and report an intrusion when finding a match. Anomaly detection techniques 
establish a profile to record a subject’s normal activities, compare the observed 
subject’s activities with its normal profile, and report intrusions when the observed 
subject’s activities deviate significantly from its normal profile. Forrest and others 
introduced an anomaly detection method based on monitoring the system calls [1]. 
They scan traces of system calls in a running process and build up a database of all 
unique sequences of a given length k. Once a database is constructed for a given 
program, the database is used to monitor the ongoing behavior of the processes 
invoked by that program. Sequences do not occur in the normal database are 
considered to be anomalies. 

Many other approaches have been proposed to build up the detection models from 
system call sequences, including data mining method [2], frequency based method 
[3], automation based method [4], Bayesian network [5], and Hidden Markov Model 
(HMM) [6]. 

HMM has been proved to be a good tool to model normal behaviors of privileged 
processes for anomaly detection using system calls. The major drawback of HMM 
approach is that it demands excessive computing resources in the HMM training 
process. 
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Ju et al. proposed a high-order Markov chain model for computer intrusion 
detection [7]. Their idea is that a simple Markov chain, where the next call depends 
solely on the current one, seems too crude for such an application, and so high-order 
model, in which the next call depends on the recent history, say of last three calls, 
seems more appropriate as a modeling tool. The problem is that this approach would 
lead to a very high dimension parameter space. Let N be the number of distinct calls 
and l be the index-order of the Markov chain. The parameter-space dimensionality is 
Nl(N-1). They adopted a Mixture Transition Distribution (MTD) approach to 
overcome the problem. 

In recent years, support vector machines (SVMs) have received considerable 
attention because of their superior performance in pattern recognition [8]. The major 
task of the SVM approach lies in the selection of its kernel. A valid kernel has to be a 
positive definite function, i.e., satisfying Mercer’s condition. Mercer’s condition tells 
us whether or not a kernel is actually a dot product in a given space. The well-known 
kernels include polynomial kernel, radial basis kernel, sigmoid kernel and so on. But 
these kernels are not good kernels for the recognition of sequence data, because they 
lack of sequence information. A kind of sequence kernel has been proposed to 
describe the similarities between sequence data, such as spectrum kernel [9], 
mismatch kernel [10], all-subsequences kernel [11] and gap weighted kernel [12]. 
These kernels evaluate the similarities between sequences according to the extent of 
sharing common subsequences. 

In this paper, we discuss the SVMs using high order Markov kernel to detect 
anomalies in system calls, in which the similarity between sequences is evaluated 
according to the probabilistic properties in sequences, not the extent of sharing 
common subsequences. In this approach, the high order Markov chain is adopted to 
model normal behaviors of privileged processes for anomaly detection using system 
calls, but the parameter-space dimensionality is greatly reduced. First, we introduce 
the one-class SVMs for anomaly detection. Second, we introduce Markov chain 
model and Markov kernel. Finally, experimental results are presented to show the 
performance of the above kernel in anomaly detection. 

2   Anomaly Detection with SVMs 

Anomaly detection or novelty detection can be viewed as one-class classification. 
One strategy is to find a hyperplane in feature space such that most of the data will lie 
beyond that hyperplane, while at the same time the hyperplane has maximal distance 
to the origin [13]. 

Given a set of training data x1,x2,…,xn ∈χ, where n∈R is the number of 
observations and χ is some set. Let Φ be a feature map χ→F, i.e., a map into a dot 
product space F such that the dot product in F can be computed by kernel K(x,y) = 
Φ(x)⋅Φ(y). To separate the data set from the origin, the task is to minimize the 
objective function 

 (1) 1
2

1

min
n

i
i

w w C ξ ρ
=

⋅ + −∑
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subject to w⋅Φ(xi) ≥ ρ - ξi, ξi ≥ 0, i=1,…,n, where C is a positive constant. The dual 
formulation amounts to minimization of 

1
2

,

( ) ( , )i j i j
i j

W K x xα α α= ∑  
(2) 

respect to αi and subject to 0 ≤ αi ≤ C, i = 1,…,n, and ∑i αi =1. 
After the optimal values of αi have been found, the decision function is based on 

the sign of 

f(x) = w⋅Φ(x) - ρ = ∑i αi K(xi,x) - ρ (3) 

where w = ∑i αiΦ(xi) and ρ can be recovered by ρ = ∑j αj K(xj,xi) for any vector xi 
with i∈ I:={i: 0 < αi < C}. The vectors xi corresponding to αi > 0 are called support 
vectors. In practice, many vectors xi are not support vectors, the computation of 
function f(x) is efficient. 

In practice, the kernel value K(x,y) can be interpreted as a measure of similarity 
between x and y. In the recognition of sequence data, the support vector anomaly 
detector could perform better if the kernel could reflect the sequence information. 

3   Markov Chain Model and Markov Kernel 

Markov chain model is a probabilistic model used in many recognition problems. In 
this paper, we consider the first-order Markov chain [14] and the high-order Markov 
chain [15] for intrusion detection. 

Let Xt be a random variable taking values in the finite set {1,…,m}. The first-order 
Markov hypothesis says that the present state at time t is only dependent on the state 
at time t-1. Thus we have. 

P(Xt = i0| Xt-1 = i1, Xt-2 = i2,…, X0 = it)  

= P(Xt = i0| Xt-1 = i1) = P(Xt = j| Xt-1 = i) = pij 
(4) 

where pij is the probability that the system is in state j at time t given the system is in 
state i at time t-1. Equation (4) specifies that a state transition from time t-1 to time t 
is independent of time. The Markov chain model can be defined by a transition 
probability matrix P, each of whose rows sums to 1, 
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 (5) 

and an initial probability distribution 

Q = [ q1 q2 … qm] (6) 
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where qi is the probability that the system is in state i at time 0, and 

1

1
m

ij
j

p
=

=∑ , 1≤i≤m (7) 

To increase the model flexibility, a high-order Markov chain model is assumed, 
where the present state depends not only on the last single state, but on the last l 
observations. Thus we have 

P(Xt = i0| Xt-1 = i1, Xt-2 = i2,…, X0 = it) = P(Xt = i0| Xt-l = il, …, Xt-1 = i1) 0li ip=  (8) 

For instance, the transition matrix corresponding to l=2 and m=3 is 

111 112 113

211 212 213

311 312 313

121 122 123

221 222 223

321 322 323
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The number of possible combinations of l successive observations is equal to ml. 
Whatever the order is, there are (m-1) independent probabilities in each row of the 
matrix P, since each row is a probability distribution summing to 1. The total number 
of independent parameters in matrix P is equal to ml(m-1). To compute these 
parameters, we assume 

0 - -1 1 0number of  transitions of , , ,
li i t l l t tn X i X i X i= = = =  (10) 

in the observations. The maximum likelihood estimate of the corresponding transition 
probability is then 
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where 

1 0

0 1
l l

m

i i i i
i

n n+
=

=∑  (12) 

In the intrusion detection systems based on monitoring the UNIX system calls, 
there are about 182 system calls (i.e. m=182). The transition probability matrix of  
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2-order Markov chain will have 5995444 (=1822(182-1)) parameters. Our approach to 
overcome the dimension problem has two key components: (a) use support vector 
machine to perform anomaly detection, (b) define a kernel on sequence data based on 
high-order Markov chain model. 

Let X and Y be two random variables taking values in the finite set {1,…,m}. In 
this study, two transition probability matrices P={pij}1≤i≤ml, 1≤j≤m and Q={qij}1≤i≤ml, 1≤j≤m 
of the l-order Markov chain model corresponding to X and Y are learned from training 
data that provide two observation sequences of system calls. The Markov kernel 
K(X,Y) is defined as 

1 1

( , )
lm m

ij ij
i j

K X Y p q
= =

=∑∑  (13) 

where pij and qij are computed with equations (11) and (12). Because there are few 
common subsequences in two system call sequences, most items pijqij in above 
summation are 0. The kernel computation can be efficient. 

Let cstr be the set of common subsequences in X and Y, nx and ny be arrays 
recording the numbers of subsequence occurrences in X and Y respectively. For an n-
length sequence s, s_ denotes the subsequence composed of the first n-1 elements in s. 
The procedure of computing the kernel K(X,Y) based on l-order Markov model is as 
follows. 

Procedure K(X,Y) 
1. r=0,v=0,cstr={}; 
2. for each (l+1)-length subsequence sx in X, do 
3. if sx is equal to the ith member of cstr, then 
4.  nx[i]++; 
5. else if (oy = number of times sx occurs in Y) > 0, then 
6.  cstr = sctr ∪ sx, nx[r]=1, ny[r]=oy, r++; 
7. for i=0 to r-1, do 
8. s = the ith member of cstr; 
9. a = number of times s_ occurs in X; 
10. b = number of times s_ occurs in Y; 
11. v += (nx[i]⋅ny[i])/(a⋅b); 
12.K(X,Y) = v; 
13.End 

Let n be the length of sequences X and Y, the time complexity for searching 
subsequences in X and Y from step 2 to step 6 is O((n-l)2l). The time complexity for 
counting the occurrences of subsequences in X and Y from step 7 to step 11 is O((n-
l)l). Therefore the total time complexity of the above procedure is O((n-l)2l). 

It is noticed that the Markov kernel is similar to spectrum kernel [9]. Let Σ be a 
finite alphabet, Σn the set of all finite sequences of length n from Σ. Given a number 
p≥1, The feature map Φp(s) is defined as  

Φp(s) = (φu(s))u∈Σ
p, (14) 

where φu(s) is the number of times u occurs in s. The p-spectrum kernel of sequence s 
and t is defined as 
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( , ) ( ) ( ) ( ) ( )
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p p p u u
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K s t s t s tφ φ
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= Φ ⋅Φ = ⋅∑  
(15) 

The form of every item in the summation is similar to formula (11), but the 
denominator is removed. 

Both Markov kernel and spectrum kernel express the similarity between two 
sequences, but they are different. The former emphasizes the probability properties of 
two sequences, but the later emphasizes the common subsequences in two sequences. 
Therefore, they suit with different applications. 

4   Experiments 

In the experiments, the data are taken from the UNM data sets for sendmail which are 
available at http://www.cs.unm.edu. The traces were obtained at UNM using Sun 
SPARCstations running SunOs 4.1.1 and 4.1.4. The obtained traces are broken into 
100-length sequences, in which two adjacent sequences have 10 overlapped calls. We 
use the normal data sets “plus”, “bounce”, “bounce-1”, and “bounce-2” to build up a 
normal database. The test data sets consist of normal sets including “plus”, “bounce”, 
“bounce-1”, and “bounce-2”, and anomalous sets including “sm-280”, “sm-314”, 
“sm-10763”, “sm-10801” and “sm-10814”. The support vector machines are 
described in Section 2. The detection performance is described with detected anomaly 
rate, which is defined by 

detected number of anomalous sequences 

number of all sequences in the trace
R =  (16) 

The number of support vectors, SV, and detected anomaly rates for various testing 
traces using Markov kernel with different Markov chain orders are shown in Table 1, 
and those using p-spectrum kernel with different p are shown in Table 2. 

The experiments show that the Markov kernel has better detection performance 
than the spectrum kernel, and the high-order Markov kernels have better detection 
performance than the first order Markov kernel. The normal database includes 970 
100-length sequences, but there are only a few support vectors after training. 
Therefore the detection procedure is very efficient. 

5   Conclusion 

Markov chain model is often used in network anomaly detection. The first-order 
Markov chain, where the next call depends solely on the current one, seems too crude 
for such an application, and so high-order model, in which the next call depends on 
the last several calls, seems more appropriate as a modeling tool. But the approach 
with high-order model would lead to a very high dimension parameter space. We 
have presented a Markov kernel based on high-order Markov chain model and used 
this kernel in support vector machines to detect network intrusion. With this 
approach, the high efficiency in the training and detecting procedure is achieved. 
Further work will focus on the more efficient computation of the Markov kernel. 
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Table 1. The detected anomaly rates of SVMs using Markov kernel based on high-order 
Markov model for testing traces 

Data sets 1-order 
(SV=30) 

2-order 
(SV=26) 

3-order 
(SV=32) 

4-order 
(SV=29) 

5-order 
(SV=29)

6-order 
(SV=29) 

Bounce 0/8 0/8 0/8 0/8 0/8 0/8 
bounce-1 0/3 0/3 0/3 0/3 0/3 1/3 
bounce-2 0/8 0/8 0/8 0/8 0/8 1/8 

plus 0/963 7/963 7/963 7/963 7/963 13/963 
sm-280 0/16 2/16 2/16 4/16 5/16 5/16 
sm-314 1/16 3/16 3/16 4/16 5/16 5/16 

sm-10763 1/4 2/4 2/4 2/4 2/4 3/4 
sm-10801 1/4 2/4 2/4 2/4 2/4 3/4 
sm-10814 1/4 2/4 2/4 2/4 2/4 3/4 

Table 2. The detected anomaly rates of SVMs using spectrum kernel for testing traces 

Data sets p=2 
(SV=7) 

p=3 
(SV=9) 

p=4 
(SV=12) 

p=5 
(SV=16) 

p=6 
(SV=19)

p=7 
(SV=20) 

Bounce 0/8 0/8 0/8 0/8 0/8 0/8 
bounce-1 0/3 0/3 0/3 1/3 0/3 0/3 
bounce-2 0/8 0/8 0/8 1/8 0/8 0/8 

plus 0/963 0/963 1/963 0/963 0/963 0/963 
sm-280 1/16 1/16 1/16 1/16 1/16 1/16 
sm-314 1/16 1/16 1/16 1/16 1/16 1/16 

sm-10763 1/4 1/4 1/4 2/4 2/4 2/4 
sm-10801 1/4 1/4 1/4 2/4 2/4 2/4 
sm-10814 1/4 1/4 1/4 2/4 2/4 2/4 
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Abstract. We developed earlier version of realtime intrusion detection
system using emperical kernel map combining least squares SVM(LS-
SVM). I consists of two parts. One part is feature extraction by empiri-
cal kernel map and the other one is classification by LS-SVM. The main
problem of earlier system is that it is not operated realtime because LS-
SVM is executed in batch way. In this paper we propose an improved real
time intrusion detection system incorporating earlier developed system
with incremental LS-SVM. Applying the proposed system to KDD CUP
99 data, experimental results show that it has a remarkable feature fea-
ture extraction, classification performance and reducing detection time
compared to earlier version of realtime ntrusion detection system.

Keywords: machine learning, IDS, feature extraction.

1 Introduction

Intrusion detection aims to detect intrusive activities while they are acting on
computer network systems. Most intrusion detection systems(IDSs) are based on
hand-crafted signatures that are developed by manual coding of expert knowl-
edge. The major problem with this approach is that these IDSs fail to generalize
to detect new attacks or attacks without known signatures. Recently, there has
been an increased interest in data mining based approaches to building detec-
tion models for IDSs. These models generalize from both known attacks and
normal behavior in order to detect unknown attacks. Several effective data min-
ing techniques for detecting intrusions have been developed[1][2][3], many of
which perform close to or better than systems engineered by domain experts.
However, successful data mining techniques are themselves not enough to create
effective IDSs. Despite the promise of better detection performance and gener-
alization ability of data mining based IDSs, there are some difficulties in the
implementation of the system. We can group these difficulties into three general
categories: accuracy(i.e., detection performance), efficiency, and usability. In this

� This study was supported by a grant of the Korea Health 21 R&D Project, Ministry
of Health & Welfare, Republic of Korea (A05-0909-A80405-05N1-00000A).

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 192–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Improved Realtime Intrusion Detection System 193

paper, we discuss the accuracy problem in developing a real-time IDS. Another
issue with an IDS is that it should operate in real-time. In typical applications
of data mining to intrusion detection, detection models are produced off-line
because the learning algorithms must process tremendous amounts of archived
audit data. An Effective IDS should work in real-time, as intrusions take place,
to minimize security compromises. Feature selection therefore is an important
issue in intrusion detection.

Principal Component Analysis(PCA)[4] is a powerful technique for extract-
ing features from data sets. For reviews of the existing literature see [5][6][7].
Traditional PCA, however, has several problems. First PCA requires a batch
computation step and it causes a serious problem when the data set is large.
The second problem is that, in order to update the subspace of eigenvectors
with another data, we have to recompute the whole eigenspace. The finial prob-
lem is that PCA only defines a linear projection of the data. It has been shown
that most of the data in the real world are inherently non-symmetrical and
therefore contain higher-order correlation information that could be useful[8].
For such cases, nonlinear transforms are necessary. Recently the kernel trick has
been applied to PCA and is based on a formulation of PCA in terms of the dot
product matrix instead of the covariance matrix[9]. Kernel PCA(KPCA), how-
ever, requires storing and finding the eigenvectors of an N × N kernel matrix
where N is a number of patterns. It is an infeasible method when N is large. This
fact has motivated the development of on-line way of KPCA method which does
not store the kernel matrix. It is hoped that the distribution of the extracted
features in the feature space has a simple distribution so that a classifier can do
a proper task. But it is pointed out that features extracted by KPCA are global
features for all input data and thus may not be optimal for discriminating one
class from others[9]. In order to solve this problem, we developed the two-tier
based realtime intrusion detection system. Proposed real time IDS is composed
of two parts. The first part is used for on-line feature extraction. The second
part is used for classification. Extracted features are used as input for classifica-
tion. We take on-line Least Squares Support Vector Machines(LS-SVM)[10] as
a classifier. This paper is composed of as follows. In Section 2 we will briefly
explain the on-line feature extraction method. In Section 3 KPCA is introduced
and to make KPCA on-line, empirical kernel map method is is explained. Pro-
posed classifier combining on-line LS-SVM with the proposed feature extraction
method is described in Section 4. Experimental results to evaluate the perfor-
mance of the proposed system is shown in Section 5. Discussion of the proposed
IDS and future work are described in Section 6.

2 On-Line Feature Extraction

In this section, we will give a brief introduction to the method of on-line PCA
algorithm which overcomes the computational complexity and memory require-
ment of standard PCA. Before continuing, a note on notation is in order. Vec-
tors are columns, and the size of a vector, or matrix, where it is important, is



194 B.-J. Kim and I.K. Kim

denoted with subscripts. Particular column vectors within a matrix are denoted
with a superscript, while a superscript on a vector denotes a particular observa-
tion from a set of observations, so we treat observations as column vectors of a
matrix. As an example, Ai

mn is the ith column vector in an m × n matrix. We
denote a column extension to a matrix using square brackets. Thus [Amnb] is an
(m× (n+ 1)) matrix, with vector b appended to Amn as a last column.

To explain the on-line PCA, we assume that we have already built a set of
eigenvectors U = [uj], j = 1, · · · , k after having trained the input data xi, i =
1, · · · , N . The corresponding eigenvalues are Λ and x̄ is the mean of input vector.
On-line building of eigenspace requires to update these eigenspace to take into
account of a new input data. Here we give a brief summarization of the method
which is described in [12]. First, we update the mean:

x′ =
1

N + 1
(Nx+ xN+1) (1)

We then update the set of eigenvectors to reflect the new input vector and
to apply a rotational transformation to U . For doing this, it is necessary to
compute the orthogonal residual vector ĥ = (UaN+1 + x)− xN+1 and normalize
it to obtain hN+1 = hN+1

‖hN+1‖2
for ‖ hN+1 ‖2> 0 and hN+1 = 0 otherwise. We

obtain the new matrix of Eigenvectors U
′
by appending hN+1 to the eigenvectors

U and rotating them :
U ′ = [U, hN+1]R (2)

where R ∈ R(k+1)×(k+1) is a rotation matrix. R is the solution of the eigenprob-
lem of the following form:

DR = RΛ′ (3)

where Λ′ is a diagonal matrix of new Eigenvalues. We composeD ∈ R(k+1)×(k+1)
as:

D =
N

N + 1

[
Λ 0
0T 0

]
+

N

(N + 1)2

[
aaT γa
γaT γ2

]
(4)

where γ = hT
N+1(xN+1 − x̄) and a = UT (xN+1 − x̄). Though there are other

ways to construct the matrix D[13][14], the only method ,however, described in
[12] allows for the updating of the mean.

2.1 Eigenspace Updating Criterion

The on-line PCA represents the input data with principal components ai(N) and
it can be approximated as follows:

x̂i(N) = Uai(N) + x̄ (5)

To update the principal components ai(N) for a new input xN+1 , computing
an auxiliary vector η is necessary. η is calculated as follows:

η =
[
UĥN+1

]T
(x− x′) (6)
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then the computation of all principal components is

ai(N+1) = (R′)T
[
ai(N)

0

]
+ η, i = 1, · · · , N + 1 (7)

The above transformation produces a representation with k + 1 dimensions.
Due to the increase of the dimensionality by one, however, more storage is re-
quired to represent the data. If we try to keep a k-dimensional eigenspace, we
lose a certain amount of information. It is needed for us to set the criterion on
retaining the number of eigenvectors. There is no explicit guideline for retaining
a number of eigenvectors. In this paper we set our criterion on adding an Eigen-
vector as λ

′

k+1 > 0.7λ̄ where λ̄ is a mean of the λ. Based on this rule, we decide
whether adding u

′

k+1 or not.

3 On-Line KPCA

A prerequisite of the on-line eigenspace update method is that it has to be
applied on the data set. Furthermore it is restricted to apply the linear data.
But in the case of KPCA this data set Φ(xN ) is high dimensional and can most
of the time not even be calculated explicitly. For the case of nonlinear data set,
applying feature mapping function method to on-line PCA may be one of the
solutions. This is performed by so-called kernel-trick, which means an implicit
embedding to an infinite dimensional Hilbert space[11](i.e. feature space) F .

K (x, y) = Φ(x) · Φ(y) (8)

Where K is a given kernel function in an input space. When K is semi positive
definite, the existence of Φ is proven[11]. Most of the case ,however, the mapping
Φ is high-dimensional and cannot be obtained explicitly. The vector in the fea-
ture space is not observable and only the inner product between vectors can be
observed via a kernel function. However, for a given data set, it is possible to ap-
proximate Φ by empirical kernel map proposed by Scholkopf[15] and Tsuda[16]
which is defined as ΨN : Rd → RN

ΨN (x) = [Φ(x1) · Φ(x), · · · , Φ(xN ) · Φ(x)]T

= [K(x1, x), · · · ,K(xN , x)]
T (9)

A performance evaluation of empirical kernel map was shown by Tsuda. He
shows that support vector machine with an empirical kernel map is identical
with the conventional kernel map[17].

4 Proposed System

In previous Section 3 we proposed an on-line KPCA method for nonlinear feature
extraction. It is hoped that the distribution of the mapped data in the feature
space has a simple distribution so that a classifier can classify them properly.
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But it is point out that extracted features by KPCA are global features for all
input data and thus may not be optimal for discriminating one class from others.
For classification purpose, after global features are extracted using they must be
used as input data for classification.

Recently LS-SVM method developed by Suykens is computationally attractive
and easier to extend than SVM. But the existed LS-SVM algorithm is trained
off-line in batch way. Off-line training algorithm is not fit for the realtime IDS.
In this paper we take on-line LS-SVM algorithm because proposed realtime IDS
to be more realistic. Proposed real time IDS is composed of two parts. First
part is used for on-line feature extraction. To extract on-line nonlinear features,
we propose a new feature extraction method which overcomes the problem of
memory requirement of KPCA by on-line eigenspace update method incorporat-
ing with an adaptation of kernel function. Second part is used for classification.
Extracted features are used as input for classification. We take on-line Least
Squares Support Vector Machines(LS-SVM)[19] as a classifier.

5 Experiment

To evaluate the classification performance of proposed realtime IDS system,
we use KDD CUP 99 data[18]. The following sections present the results of
experiments.

5.1 Description of Dataset

The raw training data(kddcup.data.gz) was about four gigabytes of compressed
binary TCP dump data from seven weeks of network traffic. This was processed
into about five million connection records. Similarly, the two weeks of test data
yielded around two million connection records. Each connection is labeled as
either normal, or as an attack, with exactly one specific attack type. Each con-
nection record consists of about 100 bytes. Attacks fall into four main cate-
gories(DOS, R2L, U2R, Probing).

It is important to note that the test data(corrected.gz) is not from the same
probability distribution as the training data, and it includes specific attack types
not in the training data. This makes the task more realistic. The datasets contain
a total of 24 training attack types, with an additional 14 types in the test data
only.

5.2 Experimental Condition

To evaluate the classification performance of proposed system, we randomly split
the the training data as 80% and remaining as validation data. To evaluate the
classification accuracy of proposed system we compare the proposed system to
SVM. Because standard LS-SVM and SVM are only capable of binary classifi-
cation, we take multi-class LS-SVM and SVM. A RBF kernel has been taken
and optimal hyper-parameter of multi-class SVM and LS-SVM[20] was obtained
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by 10-fold cross-validation procedure. In [19] it is shown that the use of 10-fold
cross-validation for hyper-parameter selection of SVM and LS-SVMs consistently
leads to very good results.

In experiment we will evaluate the generalization ability of proposed IDS on
test data set since there are 14 additional attack types in the test data which
are not included int the training set. To do this, extracted features by on-line
KPCA will be used as input for multi-class on-line LS-SVM. Our results are
summarized in the following sections.

5.3 Evaluate Feature Extraction and Classification Performance

Table 1 gives the result of extracted features for each class by on-line KPCA
method.

Table 1. Extracted features on each class by on-line KPCA

Class Extracted features
Normal 1,2,3,5,6,7,8,9,10,11,12,14,16,17,18,20,21,23,25,27,29,31,32,34,38,39,41
Probe 3,5,6,24,32,38
DOS 1,3,8,19,23,28,33,35,36,39,41
U2R 5,6,15,18,25,32,33,39
R2L 3,5,6,32,33,34,35

Table 2 shows the results of the classification performance by standard SVM
using all features. Table 3 shows the results of the classification performance
and computing time for training and testing data by proposed system using ex-
tracted features. We can see that using important features for classification gives
similar accuracies compared to using all features and the training, testing time
is proper enough for realtime IDS. Comparing Table 2 with Table 3, we obtain
following results. The performance of using the extracted features do not show
the significant differences to that of using all features. This means that proposed
on-line feature extraction method has good performance in extracting features.
Proposed method has another merit in memory requirement. The advantage of
proposed feature extraction method is more efficient in terms of memory require-
ment than a batch KPCA because proposed feature extraction method do not
require the whole N × N kernel matrix where N is the number of the training
data. Second one is that proposed on-line feature extraction method has similar
performance is comparable in performance to a batch KPCA.

5.4 Suitable for Realtime IDS

Table 3 shows that proposed system operates in a very quick manner whereas
traditional batch system requires tremendous computational time when new
training data is added. Furthermore classification accuracy of proposed system
is similar to using all features. This makes proposed IDS suitable for realtime
IDS.
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Table 2. Classification Performance by SVM using all features

Class Accuracy(%)
Normal 98.55
Probe 98.59
DOS 98.10
U2R 98.64
R2L 98.69

Table 3. Performance of proposed system using extracted features

Class Accuracy(%) Training Time(Sec) Testing Time(Sec)
Normal 98.54 3.12 0.9
Probe 98.64 20.25 1.14
DOS 98.48 10.79 1.10
U2R 98.91 1.2 0.84
R2L 98.74 5.7 0.6

5.5 Comparison with Batch Way LS-SVM

Recently LS-SVM is a powerful methodology for solving problems in nonlinear
classification problem. To evaluate the classification accuracy of proposed system
it is desirable to compare with batch way LS-SVM.

Table 4. Performance comparison of proposed method and batch way LS-SVM. Using
all features.

Normal Probe DOS U2R R2L
batch LS-SVM 98.76 98.81 98.56 98.92 98.86

proposed system 98.67 98.84 98.48 98.86 98.82

Generally the disadvantage of incremental method is their accuracy compared
to batch method even though it has the advantage of memory efficiency and
computation time. According to Table 4 we can see that proposed method has
better classification performance compared to batch way LS-SVM. By this result
we can show that proposed realtime IDS has remarkable classification accuracy
though it is worked by incremental way.

6 Conclusion and Remarks

This paper was devoted to the exposition of a new technique on realtime IDSs .
Proposed on-line KPCA has following advantages. Firstly, The performance of
using the extracted features do not show the significant differences to that of us-
ing all features. This means that proposed on-line feature extraction method has
good performance in extracting features. Secondly, proposed method has merit
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in memory requirement. The advantage of proposed feature extraction method is
more efficient in terms of memory requirement than a batch KPCA because pro-
posed feature extraction method do not require the whole N × N kernel matrix
where N is the number of the training data. Thirdly, proposed on-line feature
extraction method has similar performance is comparable in performance to a
batch KPCA though it works incrementally.

Our ongoing experiment is that applying proposed system to more realistic
world data to evaluate the realtime detection performance.
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Abstract. To make network intrusion detection systems can be used in Gigabit 
Ethernet, a distributed neural network learning algorithm (DNNL) is put for-
ward to keep up with the increasing network throughput.  The main idea of 
DNNL is splitting the overall traffic into subsets and several sensors learn them 
in parallel way.  The advantage of this method is that the large data set can be 
split randomly thus reduce the complicacy of the splitting algorithm. The ex-
periments are performed on the KDD’99 Data Set which is a standard intrusion 
detection benchmark.  Comparisons with other approaches on the same bench-
mark show that DNNL can perform detection with high detection rate.  

Keywords: Intrusion detection system; Neural network; Distributed learning. 

1   Introduction 

The main shortcoming of IDS is false alarm which is caused by misinterpreting nor-
mal packets as an attack or misclassifying an intrusion as normal behavior.  This 
problem is more severe under fast Ethernet and results in that network IDS (NIDS) 
can’t be adapted to protect Backbone network.  Since network traffic bandwidth is 
increasing at an exponential rate, it’s impossible to keep up with the speed of net-
works by just increase the speed of processors.   

To resolve the problem and make NIDS can be used in Gigabit Ethernet, the ideal 
policy is using distributed and parallel detecting method.  The main idea of distributed 
NIDS is splitting the traffic data and forwarding them to detection sensors, thus these 
sensors can analyze the data in parallel way.  Paper [1] presents an approach which 
allows for meaningful slicing of the network traffic into portions of manageable size.  
However, their approach uses a simple Round-Robin algorithm for load balancing. 
The splitting algorithm of [2] ensures that a single slice contains all the evidence 
necessary to detect a specific attack, making sensor-to-sensor interaction unnecessary. 
Although the algorithm can dynamically balance the sensors’ loads by choosing the 
sensor with the lightest load to process the new connection’s packets, it still may lead 
to some sensor lose packet if the traffic of one connection is heavy.  Paper [3] designs 
a flow-based dynamic load-balancing algorithm, which divides the data stream based 
on the current value of each analyzer’s load function. The incoming data packets, 
which belonged to a new session, are forwarded to the analyzer that has least load 
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currently. Paper [4] presents an active splitter architecture and three methods for im-
proving performance. The first is early filtering/forwarding, where a fraction of the 
packets is processed on the splitter instead of the sensors. The second is the use of 
locality buffering, where the splitter reorders packets in a way that improves memory 
access locality on the sensors. The third is the use of cumulative acknowledgments, a 
method that optimizes the coordination between the traffic splitter and the sensors.  
The load balancer of SPANIDS[5] employs multiple levels of hashing and incorporates 
feedback from the sensor nodes to distribute network traffic over the sensors without 
overloading any of them.  Although the methods of [3], [4] and [5] reduce the load on 
the sensors, it complicates the splitting algorithm and makes the splitter become the 
bottleneck of the system.  This distributed learning algorithm can also be used in 
mobile agent [6], distributed data mining [7], distributed monitoring [8] and ensemble 
system [9]. 

In this paper a distributed neural network learning algorithm (DNNL) is presented 
which can be used in distributed anomaly detection system.  The idea of DNNL is 
different from the common distributed intrusion detection system.  The rest of this 
paper is organized as follows.  Section 2 describes the main idea of DNNL and details 
the basic learning algorithm.  The experimental results on datasets KDDCUP99 are 
given in Section 3, and conclusions are made in Section 4. 

2   DNNL 

The main idea of DNNL is: first, split the large sample data into small subnets and 
forward these slice to distributed sensors; then each sensor’s neural network begin to 
be trained by the data in parallel until all of them are stable; last, a central learning is 
carried on the learning result of each slice data.   

2.1   Competitive Learning Algorithm Based on Kernel Function 

To prevent the knowledge included in different data slice is ignored, DNNL adopts 
the resonances mechanism of ART and adds neurons whenever the network in its 
current state does not sufficiently match the input.  Thus the learning results of the 
sensors contain the integrity or part knowledge and the whole knowledge can be 
learned by the last training.   

2.1.1   Hebb Learning 
In DNNL the learning algorithm is based on the Hebbian Postulate “When an axon of 
cell A is near enough to excite a cell B and repeatedly or persistently takes part in 
firing it, some growth process or metabolic change takes place in one or both cells 
such that A’s efficiency, as one of the cells firing B, is increased.” 

The learning rule for a single neuron can be derived from an energy function de-
fined as 

( ) ( ) 2

22
wxww

αψ +−= TE  (1) 
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where w is the synaptic weight vector (including a bias or threshold), x is the input 

to the neuron, ( )ψ is a differentiable function, and 0≥α is the forgetting factor.  

Also, 

( ) ( )vf
dv

v
y == ψd

 (2) 

is the output of the neuron, where xwTv =  is the activity level of the neuron. Tak-
ing the steepest descent approach to derive the continuous-time learning rule 

( )w
w

w E
t

∇−= μ
d

d
 (3) 

where 0>μ is the learning rate parameter, we see that the gradient of the energy 

function in (1) must be computed with respect to the synaptic weight vector, that is, 

( ) ( ) wwww ∂∂=∇ EE .  The gradient of (1) is  

( ) ( ) wxw
w

ww αα +−=+
∂
∂−=∇ y
v

vfE  (4) 

Therefore, by using the result in (4) along with (3), the continuous-time learning rule 
for a single neuron is  

[ ]wx
w αμ −= y
td

d
 (5) 

the discrete-time learning rule (in vector form) is  

( ) ( ) ( ) ( ) ( )[ ]tttytt wxww αμ −+++=+ 111  (6) 

2.1.2   Competitive Mechanism Based on Kernel Function 
To overcome the problem induced by traffic splitter, the inverse distance kernel func-
tion is used in Hebb learning.  The basic idea is that not only the winner is rewarded 
but also all the losers are penalized in different rate which is calculated by the inverse 
distance function and its input is the dissimilarity between the sample data and  
neuron. 

The dissimilarity measure function is Minkowski metric:   

( )
pl

i

p

iiip yxwd
1

1

, ⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

yx  (7) 

where ix , iy are the i th coordinates of x and y , li ,,1= , and 0≥iw is the 

i th weight coefficient.   
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When the neuron is active ( 1=y ), then the learning rule of thi neuron is  

( ) ( ) ( ) ( )[ ]tttt iiii wxww −+∗+=+ 11 γμ  (8) 

where,  

( )⎩
⎨
⎧

≠=−
=

=
jimidK

ji

i
i  and ,,1others,    ,

,   winner           ,1
γ  (9) 

and ( )idK  is the inverse distance kernel, 

( )
p

i
i

d
dK

+
=

1

1
 (10) 

If the winner’s dissimilarity measure ϑ<d  (ϑ is the threshold of dissimilarity), 
then update the synaptic weight by learning rule (8), else add a new neuron and set the 
synaptic weight xw = .   

2.2   Post-prune Algorithm 

Neural network may also bring the overfitting problem.  In decision tree learning, it 
uses post-prune method to prevent overfitting.  DNNL also performs the post-prune 
whose strategy based on the distance threshold to overcome this problem.  If two 
weights are too similar they will be substituted by a new weight.  The new weight is 
calculated as  

( ) ( )212211 tttt oldoldnew +×+×= WWW  (11) 

where 1t  is the training times of 1oldW , 2t  is the training times of 2oldW .   

The prune algorithm is shown below: 

Step0: If old weights muster (oldW) is null then algo-
rithm is over, else go on; 

Step1: calculate the distance between the first weight 
(fw) and the other weights; 

Step2: find the weight (sw) who is the most similar to 
fw; 

Step3: if the distance between sw and fw is bigger than 
prune threshold then delete fw from oldW and add 
fw into new weights muster (newW) go to step 0; 
else go on; 

Step4: get fw's training times value (ft) and sw's 
training times value (st); 

Step5: calculate the new weight (nw) and nw's training 
times value (nt), nw=(fw * ft + sw * 
st)/(ft+st), nt=ft + st; 

Step6: delete fw and sw from oldW, and add nw into 
newW, go to step 0. 
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2.3   Learning Algorithm of DNNL 

The main learning process of DNNL is: 

Step0: Initialize learning rate parameter μ , the 

threshold of dissimilarity ϑ ; 

Step1: Get the first input x and set xw =0 as the ini-

tial weight; 
Step2: If training is not over, randomly take a feature 

vector x  from the feature sample set X and 
compute the dissimilarity measure between x and 
each synaptic weight use (7); 

Step3: Decide the winner neuron j and tests tolerance: 

If ( ϑ>=jd ) add a new neuron and sets synaptic 

weight xw = , goto Step2; else continue; 

Step4: Compute iγ  by using the result of inverse dis-

tance ( )idK ; 

Step5: Update the synaptic weight as (8) , goto Setp2. 

After divided the large data set into small slices, each sensor trains its neural net-
work follow the above algorithm, then building new data set randomly under the 
threshold of dissimilarity ϑ  (the amount of new data set is less than the original data 
set) and learn knowledge from them, last using post-prune algorithm to prune the 
similar weights. 

3   Experiments 

In KDDCUP 99 data set, a smaller data set consisting of the 10% the overall data set 
is generally used to evaluate algorithm performance.  The smaller data set contains of 
22 kinds of intrusion behaviors and 494,019 records among which 97,276 are normal 
connection records.  The test set is another data set which contains 37 kinds of intru-
sion behaviors and 311,029 records among which 60,593 are normal records. 

3.1   Performance Measures 

The recording format of test results is shown in Table 1. False alarm is partitioned 
into False Positive (FP, normal is detected as intrusion) and False Negative (FN, 
intrusion is not detected). True detect is also partitioned into True False (TF, 
intrusion is detected rightly) and True Negative (TN, normal is detected rightly). 

Definition 1. The right detection rate of thi  behavior ∑
=

=
n

j
ijii RTTR

1

, where iiT  is 

the value lies in table1’s thi  row and thi  column.   
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Table 1. Recording format of test result 

Detection Results 
 

Normal Intrusion-1 Intrusion-2 ┅ Intrusion-n 
Normal TN00 FP01 FP02 ┅ FP0n 

Intrusion-1 FN10 TP11 FP12 ┅ FP1n 
Intrusion-2 FN20 FP21 TP22 ┅ FP2n 

┇ ┇ ┇ ┇ ┇ ┇ 
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Intrusion-n FNn0 FPn1 FPn2 ┅ TPnn 

Definition 2. The right prediction rate of thi  behavior ∑
=

=
n

j
jiii RTPR

1

, where iiT  

is the value lies in table1’s thi  row and thi  column; jiR  is the value lies in table1’s thj  

row and thi  column. 

Definition 3. Detection rate ( DR ) is computed as the ratio between the number of 
correctly detected intrusions and the total number of intrusions.  If regard Table’s 

record as an ( ) ( )11 +×+ nn metric R , then ∑∑∑∑
= == =

=
n

i

n

j
ij

n

i

n

j
ij RRDR

0 01 1

. 

Definition 4. False positive rate ( FPR ) is computed as the ratio between the number 
of normal behaviors that are incorrectly classifies as intrusions and the total number 
of normal connections, according to the Table’s record 

0000
11

TNiFPiFPFPR
n

i

n

i

+= ∑∑
==

. 

3.2   Experiment Results 

To test the performance of DNNL, we first divided the 494,019 records into 50 slices, 
each slice contains 10,000 records except the last contains 4,019 records.  After the 
training on the distributed learning result, the knowledge is represented by 368 neu-
rons.There are 37 kinds of intrusion behaviors in the test set.  We first separate them 
into four kinds of attacks: 

Probe: {portsweep, mscan, saint, satan, ipsweep, nmap} 
DOS: {udpstorm, smurf, pod, land, processtable, warezmaster, apache2, mailbomb, 

Neptune, back, teardrop} 
U2R: { httptunnel, ftp_write, sqlattack, xterm, multihop, buffer_overflow, perl, 

loadmodule, rootkit, ps} 
R2L: { guess_passwd, phf, snmpguess, named, imap, snmpgetattack, xlock, send-

mail, xsnoop, worm} 
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The test results are summarized in Table 2. 

Table 2. Testing Results 

Detection Results  
Normal Probe DOS U2R R2L TR 

Normal 58120 927 649 64 833 96.0% 
Probe 357 3546 174 21 118 85.1% 
DOS 256 5092 223518 52 435 97.2% 

U2R 143 39 0 23 23 10.1% 

R2L 14443 14 1 271 1460 9% 

A
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PR 79.3% 36.9% 99.6% 5.3% 50.9%   

Comparing the result with the first winner of KDD CUP 99 we can find the TR  of 
DNNL is almost equal to the first winner.   There are two reasons lead to the low TR  
of U2R and R2L: first, the size of attack instance that pertained to U2R and R2L is 
much smaller than that of other types of attack; second, U2R and R2L are host-based 
attacks which exploit vulnerabilities of the operating systems, not of the network 
protocol. Therefore, these are very similar to the “normal” data.  Table 3 shows the 
DR and FPR  of the first and second winner of the KDD CUP 99 competition, other 
approaches[19] and DNNL.  From the comparison we can find that DNNL provides 
superior performance.  

Table 3. Comparison with other approaches 

     Performances 
Algorithms 

Detection Rate 
(DR) 

False Positive 
Rate (FPR) 

Winning Entry 91.9% 0.5% 
Second Place 91.5% 0.6% 

Best Linear GP - FP Rate 89.4% 0.7% 
Best GEdIDS - FP Rate 91% 0.4% 

DNNL 93.9% 0.4% 

4   Conclusion 

The bandwidth of networks increases faster than the speed of processors. It’s impos-
sible to keep up with the speed of networks by just increase the processor’s speed of 
NIDSs. To resolve the problem, this paper presents a distributed neural network learn-
ing algorithm (DNNL) which can be used in the anomaly detection methods. The 
main contribution of this approach is: reducing the complexity of load balancing 
while still maintains the integrity of the network behavior, putting forward a dissimi-
larity measure method for categorical and numerical features and increasing the speed 
of the whole systems. In the experiments, the KDD data set is used which is the 
common data set used in IDS research papers.  Experiment results demonstrate the 
performance potential of this approach.  Future work includes the design and investi-
gation of techniques to make DNNL can be easily used in large scale data (labeled or 
unlabeled) analysis. 
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Abstract. The data mining techniques used for extracting patterns that represent 
abnormal network behavior for intrusion detection is an important research area 
in network security. This paper introduces the concept of gravitation and gravi-
tation field into data classification by utilizing analogical inference, and studied 
the method to calculate data gravitation. Based on the theoretical model of data 
gravitation and data gravitation field, the paper presented a new classification 
model called Data Gravitation based Classifier (DGC). The proposed approach 
was applied to an Intrusion Detection System (IDS) with 41 inputs (features). 
Experimental results show that the proposed method was efficient in data classi-
fication and suitable for abnormal detection using netowrk processor-based 
platforms.  

Keywords: Data Classification, Network Intrusion Detection, Data Gravitation 
based Classifier, Network Processor. 

1   Introduction 

Intrusion detection system (IDS) is an important component of today’s network secu-
rity framework. Its main idea is to differentiate between normal activities of the net-
work system and behavior that can be classified as suspicious or intrusive. IDS ap-
proaches can be divided into two main categories: misuse or anomaly detection [1]. 
Anomaly detection systems assume that an intrusion should deviate the system behav-
ior from its normal pattern. This approach can be implemented using variety of data 
classification approaches such as statistical methods, neural networks, predictive 
pattern generation and association rules. 

The classification model in an IDS is usually constructed according to a given 
training set. Once the model has been built, it can map a test data to a certain class in 
the given class set. Many classification techniques including decision tree [2,3], neu-
ral network (NN) [4], support vector machine (SVM) [5, 6], etc. have been proposed. 
Among these techniques, decision tree is simple and easy to be comprehended by 
human beings. It can get high classification efficiency, but its classification accuracy 
is usually lower than neural network. Neural network has been proved to be an ap-
proach that can get high accuracy in many classification tasks, however, its training 
efficiency is usually a problem. SVM is a new machine learning method developed on 
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the Statistical Learning Theory, which is gaining popularity due to many attractive 
features, and promising empirical performance. But SVM is based on the hypothesis 
that the training samples obey a certain distribution, this restricts its application scope. 
Rough set [7] is also been applied to data classification in recent years, it was used for 
feature selection [8] or hybridize with other classification methods [9,10,11,12]. 

Y. Shi et al. presented a novel data preprocessing technique called shrinking [13]. 
This technique optimizes the inner structure of data inspired by the Newton's Univer-
sal Law of Gravitation. In [14], a dimension deduction approach for multi-
dimensional data analysis was also presented according to shrinking technique. A 
spatial clustering algorithm called GRAVIclust was proposed in [15]. This algorithm 
uses a heuristic to pick the initial cluster centers and utilizes centre of cluster gravity 
calculations in order to arrive at the optimal clustering solution. Although both of the 
two former approaches are focus on the clustering problem, they both had been in-
spired by the concepts of physical gravitation. The natural principles of gravity was 
further applied to another research area in [16].  

This paper introduces the concept of gravitation and gravitation field into data clas-
sification by utilizing analogical inference, and studied the method to calculate data 
gravitation. Based on the theoretical model of data gravitation and data gravitation 
field, the paper presented a new classification model called Data Gravitation based 
Classifier (DGC). The proposed approach was applied to the intrusion detection prob-
lem with 41 features. Experimental results show that the proposed method is efficient 
in data classification for network intrusion systems. 

2   Data Gravitation and Data Gravitation Field [17] 

Definition 1. (Data Particle): Data particle is defined as a kind of data unit that has 
“Data Mass”. Data particle is made up of a group of data elements in data space that 
have a certain relationship between them. The “mass” of a data particle is the number 
of data elements that the data particle contains. An data particle composed by only 
one data element is called “atomic data article”. The data mass of an atomic data 
particle is 1. 

Definition 2. (Data Centroid): Suppose x1, x2, . . . , xm  ( xi =< xi1, xi2, . . . , xin >, i = 1, 
2, . . . , m) are a group of data elements in n-dimensional data space S, P is a data 
article built up by x1, x2, . . . , xm. Therefore, the data centroid of P, xi =< x01, x02, . . . , 
x0n > is the geometrical center of x1, x2, . . . , xm. It can be described with following 
formula: 

,1
0 m

x
x

m
i ij

j

∑
= =   i=0, 1, . . . , m;   j=0, 1, . . . n (1) 

Since data particle has data mass and data centroid, so data particle can be de-
scribed by a pair expression < m, x >, after the class information (feature y) has been 
added, it can be described as a triple expression < m, x, y > where m is the data mass 
of the data particle and x is the data centroid. 
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Definition 3. (The Law of Data Gravitation): Data gravitation is defined as the simi-
larity between data. It is a kind of scalar quality without direction. The data gravita-
tion can be described as: 

2
21

r

mm
F =    (2) 

Where F is Gravitation between two data particles;  m1 is Data mass of data particle 1; 
m2 is Data mass of data particle 2; r is The Euclidian distance between the two data 
particle in data space. 

The data gravitations from data particles in the same class also obey the superposi-
tion principle: 

Lemma 1. (Superposition Principle): Suppose P1, P2, . . . , Pm are m data particles in the 
same data class, the gravitations they act on another data element are F1, F2, . . . , Fm, 

and then the composition of gravitations is: ∑=
=

m

i
iFF

1
. 

Definition 4. (Data Gravitation Field): Data particles act on each other by data 
gravitation, and form a field that congests the whole data space. This field is named as 
data gravitation field. Because data gravitation can belong to different data classes, 
when data gravitation field is discussed, it refers to the field that is formed by the 
same kind of data gravitations. 

Field strength is a key factor of data gravitation field. Field strength of an ap-
pointed point equals the composition of data gravitations that all data elements belong 
to the same data class act on an atomic data particle on the appointed point. Similar to 
the isopiestic surface in physical field, all points in data gravitation field that have 
equivalent field strength form a surface in data space, and this surface is called isopi-
estic surface in data gravitation field. 

3   Data Classification Based on Gravitation 

Based on the data gravitation and data gravitation field, a new classification scheme 
can be given. The main ideas of this classification scheme are: 

1) A training data particle set is formed according to the training data set. The cal-
culation of data particles obeys some certain principles. 

2) All test data in the test set are treated as atomic data particles. And any data par-
ticle in training data particle set has data gravitation on any test atomic data par-
ticle. 

3) Gravitations between training data particles and test atomic data particles obey 
the Law of Data Gravitation. 

4) Once training data particle set has been built, the data gravitation field in the 
data space has also been built and data gravitation field strength on any position 
in the data space can be calculated. 

5) The degree of a test data element belongs to a data class is determined by the 
data gravitation field strength on the test data's position, and the gravitation 
field refers to the field produced by the before-mentioned data class. 
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3.1   Principle of Classification 

Lemma 2. Suppose c1, c2 are two data classes in training data set. For a given test data 
element P, the gravitation c1 acts on P is F1, and F2 is the gravitation c2 acts on P. If 
F1> F2, then the degree of P belongs to c1 is stronger than that to c2. 

Fig.1 describes the principle of classification. 
Suppose T={<x1, y1>, <x2, y2>, . . . ,<xl, yl>} is a training set in n-dimensional 

data space, y∈{c1, c2, . . . , ck}, ci represents data class i, k is the number of data 
classes, l is the number of training samples. A new set of training data particles is 
created from the original training set. The new training data particle set is T’={<m1, 
x1’, y1>, < m2, x2’, y2>, . . . ,< ml, xl’, yl>}, where l' is the number of data particles, 
l’ ≤ l, xi' is the centroid of data particle i, mi is the data mass of data particle i. 

After the training data particle set has been built, the strength of data gravitation 
field on any position in data space can be calculated. So when a test data element is 
given, which data class it belong to can be determined by the field strength of the data 
class. 

Suppose c1, c2, . . . , ck are the data classes in training set, they have l1, l2, . . . , lk 
samples (data elements), the training data particle set created from training set has 
l1’+ l2’+ . . . + lk’ data particles, where li’ is the number of data particles which belong 
to data class i. A given test data can be treated as an atomic data particle P, the cen-
troid is its position x.  

 

Fig. 1. Classification Based on Data Gravitation. The strength of gravitation determines which 
class a test data element belongs to. The black dots denote data particles in class c1. The circles 
denote data particles in class c2 . 

The gravitation that data class i act on it is: 

∑
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Where mij is the data mass of data particle j in data class i, xij is its centroid. 
If Fi’=max{F1, F2, . . . , Fk}, then according to lemma 2, the test data element be-

longs to data class i'. 
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3.2   Principle to Create Data Particle 

The simplest method to create data particle is to treat a single data element as one data 
particle. By means of this, a training sample in training data set can create a data par-
ticle. This method is simple and easy to realize, but the shortage of the method is also 
obvious: The calculation will grow up tremendously with the expanding of the train-
ing data set and the efficiency of classification will be reduced smartly. 

Another method to create data particle is the Maximum Distance Principle (MDP), 
the algorithms can be found at [17]. 

4   Data Classification in Intrusion Detection 

The data for our experiments was prepared by the 1998 DARPA intrusion detection 
evaluation program by MIT Lincoln Lab[19]. This data set has 41 features and five 
different classes named Normal, Probe, DoS, U2R and R2L. The training and test set 
comprises of 5092 and 6890 records respectively. As the data set has five different 
classes we performed a 5-class binary classification. The normal data belongs to class 
1, Probe belongs to class 2, DoS belongs to class 3, U2R belongs to class 4 and R2L 
belongs to class 5. 

4.1   Feature Selection 

Feature selection is very important in data mining because the quality of data is an 
important factor which can affect the success of data mining algorithms on a given 
task. According to the lemma and method in CLIQUE clustering algorithm, we stud-
ied a effective feature selection principle by utilizing the Lemma of Monotonic-
ity[20].Table 1 gives the result of feature selection using this algorithm.  

Table 1. The feature selection result 

CLASS IMPORTANT VARIABLES (FEATURES) 
Class 1 3,10,23…26, 29,30,32,33,34,35, 38…41 
Class 2 3,23,24,25,27,29, 30,32,33,34,35,36,38,40 
Class 3 1,3,5,6,10,11,22…41 
Class 4 3,23,24,33 
Class 5 2,3,23,24,33 

4.2   Classification Algorithm and Experiment Results 

Suppose the number of data elements in the test data set is m, the whole detection 
algorithm can be described as follows[17]: 

1). Select important features using the Lemma of Monotonicity; 
2). Build up the training data particle set; 
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3). for i=1 to m 
Calculate the gravitations that normal training set acts on the test data ti; 
Calculate the composition of normal gravitations Fn; 
Calculate the gravitations that anomaly training set acts on the test data ti; 
Calculate the composition of normal gravitations Fa; 
if Fa > Fn then 

 ti is an anomaly data. 
else 

 ti is a normal data. 
end if 

end for 

For comparison purpose, two other classic classification methods named ID3 [2]  
and C4.5 [21] were applied in the experiment. A neural network classifier trained by 
MA with flexible bipolar sigmoid activation functions was constructed using the same 
training data sets and then the neural network classifier was used on the test data set 
to detect the different types of attacks. All the input variables were used for the ex-
periments. 

Table 2 depicts the detection performance of the NN by using the original 41 vari-
able data set, the table also shows the detection results using C4.5 decision tree. The 
data from the table shows that DGC can get higher detection performance than NN 
and C4.5 do, except U2R and R2L attacks. 

Table 2. Detection accuracy using DGC, NN,and C4.5 classification models 

ATTACK CLASS DGC NN C4.5 
Normal 99.93% 96.82% 82.32% 
Probe 97.69% 95.00% 94.83% 
DOS 97.92% 88.40% 77.10% 
U2R 99.59% 99.79% 99.83% 
R2L 98.59% 98.92% 94.33% 

IXP-2400 PC Server Web Server

Xscale-Core DGC-based
Packet

Micro-Engines

SDRAM

ClassifierEthernet
PCI Sockets

Web-based
User Interface

Data Sets

DISK Administrators
 

Fig. 2. Prototype Platform based on IXP-2400 Network Processor 
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4.3   A Prototype Platform Based on Network Processor 

To test the classification method under a real IDS environment, we are constructing a 
prototype platform using a PCI-based Radisys ENP-2611 network processor develop-
ing board. In the test platform, an IXP-2400 network processor with eight micro-
engines is adopted to give fast processing of the Ethernet packets. The data sets gath-
ered are processed by the XScale embedded processor and a more powerful PC server 
with ENP-2611 attached. The feature collected from the network processor will be 
tested via the DGC module running on the PC server to determine if the network 
activity is normal or deviant. The micro-engines in the network processor can also 
discard the deviant packets with the same feature in the future according the decision 
of the DGC module. A web-based user interface is used for the administrative pur-
pose in the system. Figure 2 shows the architecture of the platform. 

5   Conclusion and Future Works 

The experiment results on the intrusion detection data set proved that the DGC model 
is very effective. As evident from Table 2, the DGC model gave the best accuracy for 
most of the data classes (except U2R and R2L). As demonstrated in the paper, the 
feature selection and the choice of training data set may influence the accuracy of clas-
sification. Now an improved method named WDGC (Weighted-feature DGC) is stud-
ied, which proposed the concept of weighted feature. By weighting every feature of 
target classification problem, the degree of importance of every feature can be obtained 
by its weight. Besides of this, a test prototype of Intelligent Intrusion Detection System 
which adopts the IXP-2400 network processor (NP) is also under development. 
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Abstract. We present a PCA-LVQ method and a balanced-training method for 
efficient intrusion alert clustering. For the network connection records in the 
rough 1999 DARPA intrusion dataset, we firstly get a purified and dimension-
reduced dataset through Principal Component Analysis (PCA). Then, we use 
the Learning Vector Quantization (LVQ) neural network to perform intrusion 
alert clustering on the purified intrusion dataset. To our best knowledge, this is 
the first attempt of using the LVQ neural network and the PCA-LVQ model on 
intrusion alert clustering. The experiment results show that the PCA-LVQ 
model and the balanced-training method are effective: the time costs can be 
shortened about by three times, and the accuracy of detection can be elevated to 
a higher level, especially, the clustering accuracy rate of the U2R and R2L 
alerts can be increased dramatically. 

1   Introduction 

Most current intrusion detection systems suffer from several deficiencies such as alert 
overload and the high false alarm rate. To overcome these shortcomings, the better 
intrusion detection method and the post-analysis of the intrusion alerts are both 
important. We focus on the intrusion alert analysis. In this research area, the 1999 
DARPA intrusion dataset is the de factor standard for the comparison of the different 
methods, and we also use this intrusion dataset for the comparability between our 
method and other methods. Most of other research [1,2,3,4] are directly done on the 
original 1999 DARPA intrusion dataset. However, from the viewpoint of information 
theory, the original intrusion dataset includes large volume of redundant and 
inessential information. The existence of these insignificant information will result in 
some adverse scenarios. On one hand, the system performance cost will be increased. 
Obviously, the processor cost and the memory requirement will be both increased 
with the existence of the overmuch information to be processed, thus, the whole 
system performance cost will be increased. On the other hand, the existence of 
inessential information will lower the accuracy of detection. So, in our opinion, to 
operate directly on the rough intrusion dataset is not an optimal method. 

Unlike other research, we propose a new hybrid method for intrusion alert analysis. 
We call it PCA-LVQ method. Concretely speaking, we first preprocess the rough 
intrusion dataset by performing principal component analysis. By doing so, the 
redundant and inessential information in the rough intrusion dataset will be 
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eliminated, and a purified intrusion dataset with the least essential information will be 
produced. Then, we will use the learning vector quantization neural network to 
analyze the dimension-reduced network connection record (which is also called 
intrusion alert in this context) in the purified intrusion dataset. By this PCA-LVQ 
method, we aim at obtaining the higher accuracy of detection with the lowered system 
performance costs than before. We will verify this method through some experiments. 

The remaining of this paper is organized as follows: Section 2 discusses the 1999 
DARPA intrusion dataset and its preprocessing by principal component analysis. In 
Section 3, we present a LVQ clustering algorithm and describe the algorithm in detail. 
The experiment results and the corresponding analysis are presented in Section 4. 
Finally, in Section 5, we conclude the paper. 

2   Intrusion Dataset and Principal Component Analysis 

The 1999 DARPA intrusion dataset is a well known dataset using for evaluating the 
intrusion detection systems. It is also called kddcup.data on its site [5]. This dataset 
was prepared by the DARPA Intrusion Detection Evaluation program operated by 
MIT Lincoln Laboratory. In the project, Lincoln labs acquired nine weeks of raw 
TCPdump data. The raw data were processed into network connection records, totaled 
about 5 million connection records. Each network connection record represents an 
attack type or normal network traffic. 

Here, it is important to note that the test data is not from the same probability 
distribution as the training data, and it includes some specific unknown attack types 
not in the training dataset.  The difference between the training data and the test data 
accords with the real network environment because unknown attack types are 
numerous and more dangerous in the real network environment. In fact, the ability to 
detect unknown attack types is very important. Concretely speaking, the training 
dataset includes 22 attack types, and the test dataset includes additional 17 new attack 
types besides these 22 attack types. All of these 39 attack types may be classified to 
categorized into 4 classes, i.e, R2L, DOS, U2R and Probing.  

These attack types and the normal network traffic are all represented by the 
network connection records, and each network connection record consists of 41 
features. However, not all the information will be useful for analysis. Of all these 
features, which are the most useful, which are less important, and which may be 
inessential? The problem is significant because the elimination of useless features has 
at least two advantages. Firstly, the computation speed can be increased because the 
information to be processed has decreased along with the elimination of the 
inessential features. Secondly, the accuracy of detection can be improved. As 
discussed in our previous work[6], the overmuch features will make the alert 
threshold much higher，this is because the intrusion detection system can give an 
alarm only when all these features are present. The higher alert threshold will result in 
the increase of false negative rate, that is to say, some attack will be misclassified as 
normal. By eliminating the inessential features, the alert threshold can be maintained 
at an acceptable level.  

According to the analysis above, we consider that identifying key features is 
necessary and beneficial. Unlike literature [7], in which Support Vector Machine 
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(SVM) is used for feature ranking, and for each attack type, one special SVM model 
is used for the feature extraction. Although SVM has its virtues, it doesn’t meet our 
requirements here. So, we adopt another useful method called Principal Component 
Analysis (PCA) to fulfill the task of feature ranking and extraction. 

Principal component analysis has proven to be an especially useful technique for 
dimension reduction and multivariate analysis. Its many application areas include data 
compression, image analysis, visualization, pattern recognition and time series 
analysis. An important virtue of PCA is that the extracted components are statistically 
orthogonal to each other. Orthogonality of components results in speedup in training 
and robust convergence as shown in [8]. So, our PCA-LVQ method is reasonable and 
feasible, we expect that our learning vector quantization neural network can work 
much better based on the production of PCA. 

According to the literature [9], the most common definition of PCA is that, for a 

set of observed vectors  }{ iv , },...,2,1{ Ni ∈ , the q principle axes }{ jw , },..,2,1{ qj ∈  

are those orthonormal axes onto which the retained variance under projection is 

maximal. It can be shown that the vectors jw are given by the q dominent 

eigenvectors (i.e. those with largest associated eigenvalues) of the covariance matrix 

∑ −−=
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T
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))((  such that jij wCw λ= , where v  is the simple mean. The 

vector )( vvWu i
T

i −= , where ),...,,( 21 qwwwW = , is thus a q-dimensional reduced 

representation of the observed vector }{ iv . 

For the connection records in the 1999 DARPA intrusion dataset, the purpose of 
performing principal component analysis is to find the principal components of the 
connection records, i.e., the feature vector that can describe the connection records 
exactly and sufficiently, but not redundantly. In mathematical terms, we wish to find 
the principal components of the distribution of the connection records, or the 
eigenvectors of the covariance matrix of the set of the connection records [9]. 
Through PCA, the dimension of the feature vector should be smaller than the 
dimension of the raw connection record. The reduction of vector dimension will not 
only reduce the processor cost and the memory requirement, but also can categorize 
the connection records with higher accuracy. The feature vector can be thought of as a 
set of features which together characterize the difference between the connection 
records. Then, the difference between the different connection records will be learned 
by the LVQ neural network. After learning, the LVQ neural network can distinguish 
the connection records from each other correctly. 

By virtue of principal component analysis and security domain knowledge, 12 
principal features are selected for representing the connection records. So, the 
connection record can be represented by a 12-dimension feature vector CR, as follows: 

CR=(src_bytes,dst_bytes,flag,service,root_shell,su_attempted,num_failed_logins,
is_guest_login,count,srv_count,serror_rate,rerror_rate) 

These 12 features include the inbeing property of a certain connection record, the 
statistical property of the connection records within a time window and some features 
which are security conscious. So, theoretically speaking, the feature vector should 
represent the connection record well. We will verify this through some experiments. 
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3   LVQ Clustering Algorithm for Intrusion Alert Analysis 

Closely related to SOM but not identical, LVQ is a supervised competitive neural 
network model[10,11]. It uses pre-assigned cluster labels to the training samples, to 
maximize correct data classification. Unlike SOM, where clusters are generated 
automatically based on samples similarity, here the clusters are predefined. In our 
case the cluster labels are the attack types. 

We select LVQ for several reasons. Firstly, LVQ has higher classification accuracy 
than SOM. As a supervised competitive ANN model, LVQ uses pre-assigned cluster 
labels to training samples, which can minimize the average expected misclassification 
probability. Secondly, it is well known that SVM is not applicable to the scenarios 
that involve large number of samples, so SVM is not very applicable to the real 
production environment. However, LVQ has no obstacle in dealing with the large 
dataset. We know that alert overload is very pervasive, and LVQ has the potential to 
be used in the real production environment. Thirdly, the optimized LVQ algorithm 
can learn faster than the BP model which often suffers from the slow learning process 
and the difficulty in reaching convergence. In view of the reasons above, we think 
that applying LVQ on intrusion alert analysis is feasible and helpful, and we will 
verify this through some experiments. 

We formally describe the LVQ clustering algorithm as follows. 

LVQ Clustering Algorithm 
INPUT: Sample pattern vectors ( )110 ,...,, −= nXXXX  

OUTPUT: Codebook ( )CYYYY ,...,, 10=  

Step1: Initialization and normalization. 

Initialize iY  with c sample pattern vectors randomly selected. Normalize iX . 

Step2: Find the winner w*.  

For iX  and ∀  YYk ∈ ,
ki YX −  are computed, and w* will be judged as the 

winner iff the following equation is correct: 

{ }ki
k

wi YXYX −=− min  (1) 

Step3: Weight vector update with the Prize-Punishment learning algorithm.  

wltYtY ll ≠=+ ),()1(  (2) 

( ) [ ] )()()()()()(11 tXttstYttstY ww ηη +−=+  (3) 

where )(ts is the prize-punishment factor, )(tX is the input vector at time t, and 

)(tη  is the learning rate . 

Step4: Repeat Step2 and Step3 until convergence. 
END 

By equation 1, the target cluster of the input vector iX  
has been decided as the 

codeword wY , then the corresponding weights will be updated. By equation 2 and 
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equation 3, we can see that only the winner’s weights should be updated. Also by 
equation 3, the Prize-Punishment learning procedure has been embodied by the prize-
punishment factor )(ts clearly, which can be assigned to 1 if the classification is 

correct and -1 if the classification is wrong. The learning rate )(tη  is a descending 

function of time t to stipulate faster convergence. In our case, we define )(tη as the 

following recursion, and the initial value was set as 0.35 (Selected through some 
experiments). 

)1(1
)1(

)(
−+

−=
t

t
t

η
ηη  (4) 

By equation 4, we stipulate that )(tη  is descending monotonously. In comparison 

with literature[10], in which some additional measures must be adopted to 
prevent )(tη  from increasing beyond the original value, our method is more succinct 

and helpful to faster convergence. 
In our case, we use LVQ to categorize the connection records into different clusters 

correctly. As discussed in section 2, we know that the network connection records can 
be divided into five different classes, i.e., Normal, Probing, DOS, U2R and R2L. So, 
after performing LVQ clustering algorithm on the network connection records, five 
cluster centers should be created. That is to say, ideally, each connection record 
should only belong to one of the five classes and congregate into a certain cluster 
center only. For this purpose, there needs exist two phases, namely training phase and 
clustering phase. 

During the training phase, by using some connection records as the training data of 
the supervised competitive LVQ neural network model, the Euclidean space 12

CRR  will 

be “forcefully” divided into five subspace (five clustering centers), and each subspace 
consists of one type of connection records. In another words, the training phase is also 
the partition phase of the Euclidean space 12

CRR  based on the Euclidean distance 

similarities. After training, the following equations should be correct: 

{ }12
2

12
2

1212
Pr

1212 ,,,,/ LRRUDOSobingNormalCR RRRRRR =φ  (2) 

φ=∧∧∧∧ 12
2

12
2

1212
Pr

12
LRRUDOSobingNormal RRRRR  (3) 

The equation 5 and equation 6 together stipulate that the ideal training phase 
should divide the Euclidean space 12

CRR  into five subspaces which will not overlap 

each other. After training, the knowledge on adscription of the connection records has 
been stored by the weights. 

During the clustering phase, the validity of the LVQ clustering algorithm will be 
tested. Firstly, the 12 features computed by PCA will be extracted from some network 
connection records, then, the connection records can be described as a 12-dimension 
feature vector X . As input, X will be submitted to the LVQ neural network and 
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processed, finally clustered into one item of the finite set 
{ }12

2
12

2
1212

Pr
12 ,,,, LRRUDOSobingNormal RRRRR . More formally, we describe the problem as follows: 

Given codebook { }12
22Pr ,,,, RYYYYYYC LRRUDOSobingNormal ∈=  and the input vector X  to 

be clustered, LVQ will look for a certain codeword Y  from C and stipulate the 
correctness of the following equation: 

{ }XYXYCYCY −≤−⇒∈∀∧∈ ''  (4) 

By equation 7, for any connection records X to be clustered, the codeword Y, 
which has the least Euclidean distance with X will be computed. Then the connection 
record X will be clustered to the cluster center represented by codeword Y. 

4   Experiment Results and Analysis 

In several previous research, especially in the literature[3], there exists an obvious 
problem, namely, the detection accuracy of the U2R alerts and the R2L alerts is very 
low (usually less than 5%), but the accuracy for other alert types is high(often more 
than 90%). We think that one possible reason for this difference is that the alert types 
distribution in the 1999 DARPA intrusion dataset is not very balanced. For example, 
in the training dataset, the network connection records labeled as “Normal” take up  
about 20%, but “U2R” and “R2L” take up only 0.01% and 0.23% respectively. In 
view of this, we adopt a new method in selecting the training samples during the 
training phase. Concretely speaking, we select 50 connection records as the training 
samples of the alert type “U2R”(this alert type has only 52 samples in the training 
dataset ), and we select 200 network connection records as the training samples for 
other alert types respectively. By doing so, the basic balance of the alert types 
distribution can be reached, and we think that these training samples are enough to 
establish an effective clustering model. 

In order to verify our methods, we have two tasks. Firstly, we use the LVQ model 
without PCA in the experiment 1 to test whether the LVQ model is useful for 
intrusion alert analysis. Then, we use the PCA-LVQ model in the experiment 2 to find 
the advantages of integrating PCA with LVQ. To describe the experiment results 
more clearly, we define a measure criterion. If M alerts should belong to clusterBi and 
our method put N alerts of M into other clusters, then we define the clustering 
accuracy rate (CAR) as (M-N)/M. 

For each alert type (we consider “Normal” as a special “alert type” here for 
convenience), we select 200 connection records from the test dataset respectively as 
the test samples. Each group of 200 connection records consists of two parts: 50 
known-type alerts which appear in both the training dataset and the test dataset, and 
150 unknown-type alerts which appear only in the test dataset. Here, the application 
of the unknown-type alerts is to test the generalization ability of the LVQ neural 
network. After performing the corresponding experiments, we get the experiment 
results as follows. 
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Table 1. LVQ model without PCA 

    clustered as 
 
actually as 

NormalC  obinglCPr DOSC  
LRC 2

 
RUC 2

CAR 

Normal 192  5 3  96% 
Probing 2 178  17 3 89% 
DOS 7  193   96.5% 
R2L 7  16 164 13 82% 
U2R 12 14  21 153 m

ea
su

re
   

 c
ri

te
ri

on
 

76.5% 

From Table 1, we can see that the clustering accuracy rate for the R2L alerts and 
U2R alerts are increased at a large extent, respectively as 82% and 76.5%. The results 
show that our balanced-training method is effective. For other alert types, namely 
Probing, DOS and Normal, the clustering accuracy rate is neither below the accuracy 
rate shown in other research 

Table 2. PCA-LVQ model 

   clustered as 
 
actually as 

NormalC  obingCPr DOSC  
LRC 2

 
RUC 2

CAR 

Normal 197  2  1 98.5% 
Probing 3 191  6  95.5% 
DOS 1  199   99.5% 

R2L 37  16 143 4 71.5% 
U2R 44  25 2 129 

m
ea

su
re

   

64.5% 

According to Table 2, in comparison with the LVQ model, the PCA-LVQ model 
can get higher clustering accuracy rate for the connection records which represent 
DOS, Probing and Normal respectively. This shows that the PCA-LVQ model is 
effective. On the other hand, the clustering accuracy rate of R2L alerts and U2R alerts 
in the PCA-LVQ model is a little lower than that in the PCA model. The part reason 
of this decrease is that the detection of R2L attack and U2R attack depends heavily on 
the content features within the connection records, but the 12 features extracted 
include only few content features. Although, the clustering accuracy rate of the R2L 
and U2R alerts in the PCA-LVQ model is still acceptable and much higher than 
previous 5%, this also shows that our balanced-training method is feasible and 
effective 

Besides, with the dimension reduction and the betterment of the original LVQ 
algorithm, the time cost for both the training phase and the clustering phase are 
shortened, as shown in Table 3. 
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Table 3. Time costs comparison 

      time costs 
model 

training time clustering time 

LVQ  ~1min37sec ~45sec 
PCA-LVQ ~35sec ~14sec 

5   Conclusions 

In this paper, we present a PCA-LVQ model for intrusion alert clustering and verify 
the model through some experiments. Altogether, the results are encouraging. Firstly, 
the time costs for both the training phase and the clustering phase are shortened 
attributed to the dimension reduction through principal component analysis. Secondly, 
the balanced-training method results in the much higher clustering accuracy rate of 
the alert type R2L plus U2R than before. Thirdly, the overall clustering accuracy rate 
has been increased to a satisfactory level. 

One shortage of our research is that the experiments are operated on the offline 
intrusion dataset. Although the standard 1999 DARPA intrusion dataset has verified 
the effectiveness of the PCA-LVQ model, it is not yet an applied tool that can detect 
intrusions in real time. So, our future research is to develop a real-time intrusion alert 
analysis system based on the research in this paper.   
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Abstract. In the past a few years, many watermarking approaches have been 
proposed for solving the copyright protection problems, most of the watermark-
ing schemes employ gray-level images to embed the watermarks, whereas the 
application to color images is scarce and usually works on the luminous or indi-
vidual color channel. In this paper, a novel intensity adaptive color image wa-
termarking algorithm based on genetic algorithm (CIWGA) is presented. The 
adaptive embedding scheme in color image’s three component sub-images’ 
wavelet coefficients, which belong to texture-active regions, not only improves 
image quality, but also furthest enhances security and robustness of the water-
marked image. Then a novel watermark recovering method is proposed based 
on neural networks, which enhance the performance of watermark system suc-
cessfully. The experimental results show that our method is more flexible than 
traditional methods and successfully fulfills the compromise between robust-
ness and image quality. 

1   Introduction 

With the widespread use of digital multimedia and the development in computer in-
dustry, digital multimedia contents suffer from infringing upon the copyrights with 
the digital nature of unlimited duplication, easy modification and quick transfer over 
the Internet [1]. As a result, copyright protection has become a serious issue. Hence, 
in order to solve this problem, digital watermarking technique has become an active 
research area [2] [4].  

In the past a few years, most of the watermarking schemes employ gray-level images 
to embed the watermarks, whereas their application to color images is scarce and usu-
ally works on the luminous or individual color channel. Fleet [3] embedded watermarks 
into the yellow-blue channel’s frequency domain. Kutter et al. [5] proposed another 
color image watermarking scheme that embedded the watermark into the blue-channel 
of each pixel by modifying its pixel value. But they didn’t notice that the capacity of 
hiding information in different color channel is varied with the image changing. In this 
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paper, a novel watermarking embedding method based on genetic algorithm (GA) is 
proposed. GA is applied to analyze the influence on original image when embedding 
and the capacity of resisting attacks in every channel. Then the optimized intensity is 
selected for every color channel. Using GA can improve image quality and furthest 
enhance security and robustness of the watermarked image simultaneously. This algo-
rithm fulfills an optimal compromise between the robustness and image quality. 

This paper is organized as follows: the watermark embedding algorithm and ex-
traction algorithm are described in Section 2 and Section 3, respectively. Experimen-
tal results are presented in Section 4. Section 5 depicts the watermark recovering 
method. Finally, conclusions are given in Section 6. 

2   The Embedding Algorithm 

2.1   The Host Image Analyzing 

Every host image has its own gray information and characteristics. Based on human 
visual system’s characteristic, the human eyes have different sensitivity to noise in 
areas with different luminance and texture. So we consider analyzing the host image 
before watermark embedding to ensure the imperceptibility of the proposed water-
marking scheme. 

For the purpose of well presenting the feature of the host image, we propose a 
method that fully makes use of the characteristics of singular value and variance. 
Variance measures the relative contrast and smoothness of the intensity in a region 
while singular values, which are obtained from the SVD, stand for the luminance of 
the region. We employ these characteristics to analyze the host image. The method is 
described as follows: 

1. Separate three component sub-images Red, Green and Blue from host image I. 
2. Divide each component sub-image into un-overlapped 8×8 sub-blocks in spatial 

domain. 
3. Compute each image sub-block’s variance V and find the maximum value V_max 

among them. Define the normalized variance as max_/1 VVA = . 

4. Perform SVD on each sub-block and then computer E of the obtained S matrix. 

[ ] ( )  ,  ISVDVSU =    

 ( ) ( )2,2/1,1 SSE =  
(1) 

where U, S and V are the three result components of SVD transformation. S(1,1) 
and S(2,2) denote the two maximum values in the diagonal matrix S. 

5. Find the maximum value of E marked as E_max and define the normalized E as 
max_/2 EEA = . 

6. Calculate activity factor of each sub-block as 2211 AAA ×+×= γγ , where 

1γ and 2γ are the weights of A1 and A2 with 121 =+ γγ . 

7. Sort all the sub-blocks’ activity factors in decreasing order. The sub-blocks, which 
have large magnitude of activity factors have complex texture and median lumi-
nance and are suitable for embedding watermark with imperceptibility. 
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After analyzing the host image using our method, we have obtained the activity 
factors of all the sub-blocks. According to the activity factors, we can select the best 
sub-blocks which have good visual masking effect to embed watermark.  

2.2   Intensity Optimizing Using GA  

For the selected sub-blocks, the discrete wavelet decomposition is adopted in fre-
quency domain to embed watermarks. The multi-resolution feature and compatibility 
to JPEG-2000 compression standard [7] of wavelet transform make the embedded 
watermark robust to compression operation. Intensity optimal selecting algorithm is 
described as follows: 

1. Transform the selected sub-blocks using discrete wavelet transform. Select coef-
ficients to embed watermark W. 

2. Insert watermark signal at coefficients called cow _ using additive modulation. 

Every component sub-image of the color image has its own embedding intensity 

as iα( ) . wcow_ denotes the wavelet coefficients after embedding. 

( ) { }3 ,2 ,1    __ ∈×+= iWicowcow w α . (2) 

3. Perform the inverse discrete wavelet transform on wcow_ . 

4. Embed the watermarked sub-images back into the original host image to get the 
watermarked color image I’. 

5. Apply the attacking schemes on I’, and then adopt the GA training process to 
search for the optimal intensity for each channel. 

The flowchart for illustrating intensity optimal selecting algorithm using GA is 
shown in Fig. 1. 

Not all watermarking applications require robustness to all possible signal process-
ing operations. In addition, the watermarked image after attacking needs to be worthy 
of using or transmitting. Therefore, some attacks like image-cropping is not employed 
in our GA training procedure [8]. In this paper, three major attacking schemes are 
employed, namely, additive noise attack, median filtering attack, and JPEG attack 
with quality factor of 50%. The quality of watermark extracted from embedded image 
I’ is measured by the normalized correlation (NC). The NC between the embedded 

watermark ( )jiW ,  and the extracted watermark ( )jiW ,'  is defined as, 
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The watermarked image’s quality is represented by the peak signal-to-noise ratio 
(PSNR) between the original color image I and watermarked image I’, as follows, 
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Fig. 1. The flowchart of intensity optimizing algorithm 

After obtaining the PSNR of the watermarked image and the three NC values after 
attacking, we are ready to adopt the GA training process. The fitness function in the 
mth iteration is defined as: 

)(
3

1
 ,∑

=

+−=
i

immm NCPSNRf λ , (5) 

where mf is fitness value, λ  is the weighting factor for the NC values. Because the 

PSNR values are dozens of times larger than the NC values in the GA fitness func-
tion, the NC values are magnified with the weighting factors λ  in the fitness func-
tion to balance the influences caused by both the imperceptibility and robustness 
requirements. 

2.3   Watermark Embedding 

The first five steps of watermark embedding algorithm are the same as intensity 
optimal selecting algorithm, and then the obtained optimal intensity is used  
to form watermarked image. Fig. 2 is the block-diagram of the embedding  
algorithm.   



 A Novel Color Image Watermarking Method Based on GA and Neural Networks 229 

 

Fig. 2. The block-diagram of embedding algorithm 

3   Watermark Extracting 

Watermark extraction algorithm is the exact inverse process of embedding algorithm. 
The watermark can be extracted just when we get the optimal intensity as the secret 
keys. 

4   Experimental Results 

The performance of digital watermarking system can be characterized by the follow-
ing aspects: imperceptibility, security and robustness. All these aspects are evaluated 
by experimental results respectively in our study. In our simulation, ‘Lena’ image and 
‘Baboon’ image with the size of 256×256 are taken as test images and watermark 
with size of 64×64 is shown in Fig. 6(d). The result images of test image ‘Lena’ and 
‘Baboon’ are shown in Fig. 3(b) and Fig. 4(b).  

When free of any attacks, the PSNR of the watermarked image ‘Lena’ is 35.8487, 
NC is 1 and the PSNR of the watermarked image ‘Baboon’ is 36.3028 and NC is 1. 

In the GA training process, ten individuals are chosen for every iteration. The 
crossover operation is selected as scattered function in the MATLAB Genetic  
 

 

Fig. 3. (a) Original host image ‘Lena’, (b) Result image watermarked 
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Fig. 4. (a) Original host image ‘Baboon’, (b) Result image watermarked 

Algorithm Toolbox. The selection operation is selected as stochastic uniform function 
and the mutation operation is Gaussian function with the scale value 1.0 and the 
shrink value 1.0. The training iterations are set to 200. The fitness values converge 
after 200 iterations, and the optimized intensity with the optimal fitness value is 62, 
64, and 94 for R, G and B channel respectively. 

The result images under different attacks and the watermarks exacted are depicted 
in Fig. 5. Seen from Table 1, the conclusion can be drawn that our algorithm is robust 
to attacks encountered always in image processing and transmission. 

 

Fig. 5. (a) Result image of watermarked ‘Baboon’ under additive noising attack, (b) Water-
marked image under filtering attack, (c) Watermarked image under compressing attack, (d) 
Original watermark, (e-g) Extracted watermarks from (a-c) using our method, respectively. (g) 
Extracted watermark from (c) using Kutter’s method. 
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Table 1. Experimental results under different attacks of our scheme (measured by NC) 

Attack Type Baboon Lena Airplane 

Attack-free 1 1 1 
Additive noising 0.9137 0.9139 0.9479 

Filtering 0.9320 0.9536 0.9139 
JPEG  QF=80 0.9957 0.9830 0.9957 
JPEG  QF=50 0.9801 0.9547 0.9861 
JPEG  QF=30 0.9639 0.9390 0.9752 

To evaluate the robustness of the proposed watermarking scheme, Kutter’s algo-
rithm is simulated as comparison. The results under several attacks of Kutter’s algo-
rithm are shown in Table 2. 

Table 2. Experimental results under different attacks of Kutter’s scheme (measured by NC) 

Attack-free Noising Filtering JPEG  QF=80 JPEG  QF=50 JPEG  QF=30 

0.9684 0.9546 0.9362 0.6386 0.5925 0.5071 

Compared with Table 1, it can be concluded that our algorithm is more robust than 
Kutter’s, especially in resisting additive nosing and JPEG compressing. 

5   Watermark Recovering 

From the experimental results above, the conclusion can be drawn that our algorithm 
is robust to many kinds of attacks. In order to get better capability, a watermarking 
recovering method is proposed based on neural networks. Neural networks can distin-
guish the prototype of extracting watermark even when it is not clear under sharp 
attacking. Back-propagation (BP) neural networks are employed to identify the char-
acteristic of extracting watermark, which is extracted using principal components 
analysis (PCA). 

5.1   Neural Network Training 

Attacking original watermark with different kinds of attacks to get a set as the training 
set of the neural networks. Then PCA is employed to analyze watermarks, and the 
above ten eigenvalues are chosen as the input in training pattern. Every node in output 
layer represents different watermarks. The eigenvalue as input vector is defined by 

( )nk aaaP ,,, 21= , and the desired output for the neural networks corresponding 

to the input is defined by ( )qk yyyT ,,, 21= , where n and q stand for the number 

of input and output nodes respectively, and k is the number of training patterns. The 
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structure of the neural networks is depicted in Fig. 6. The neural networks include an 
input layer with ten nodes, a hidden layer with twenty hidden nodes, and an output 
layer with q nodes, which can be varied with the number of watermarks’ type.  

 

Fig. 6. The structure of the neural networks used in our watermark techniques 

5.2   Watermark Recovering Based on the Trained Neural Networks 

The trained neural networks perform a highly adaptive capacity in identifying water-
marks. Taking an extracted watermark from an embedding image after attacking as a 
test image, the above ten eigenvalues are chosen as the input, the prototype of at-
tacked watermark can be recognized clearly using neural networks. In the experi-
ments, even NC of the test watermark is 0.3628, which is shown in Fig. 7(a), the 
trained neural networks also can associate its original watermark, as shown in 
Fig. 7(b). So it can conclude that the proposed watermark recovering method is an 
important complementation in watermark system. 

 

Fig. 7. (a) Test watermark, (b) Original watermark of (a) 

6   Conclusion 

A novel embedding intensity adaptive CIWGA is proposed in this paper. A color 
image is divided into three channels firstly. Then genetic algorithm is applied to ana-
lyze the influence on the original image when embedding and the capacity of resisting 
attacks in every channel. At last, the watermark is embedded in R, G and B channels 
respectively. Using genetic algorithm is not only able to improve image quality, but 
also furthest enhance security and robustness of the watermarked image. Using neural 
networks, the proposed watermark recovering method enhances the performance of 
watermarking technique successfully. This algorithm fulfills an optimal compromise 
between the robustness and image quality. 
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Abstract. This paper proposes a new watermarking scheme in which a logo wa-
termark is embedded into the discrete wavelet transform (DWT) domain of the 
color image using Back-Propagation Neural networks (BPN). In order to 
strengthen the imperceptibility and robustness, the original image is trans-
formed from RGB color space to brightness and chroma space (YCrCb). After 
transformation, the watermark is embedded into DWT coefficient of chroma 
component, CrCb. A secret key determines the locations in the image where the 
watermark is embedded. This process prevents possible pirates from removing 
the watermark easily. BPN will learn the characteristics of the color image, and 
then watermark is embedded and extracted by using the trained neural network. 
Experimental results show that the proposed method has good imperceptibility 
and high robustness to common image processing attacks. 

1   Introduction 

With the rapid development of computer and communication networks, the digital 
multimedia reproduction and distribution are becoming extremely easier and faster. 
However, these advances also afford unprecedented opportunities to pirate 
copyrighted digital multimedia products. As a result, the watermarking technique, 
which embeds a watermark into digital multimedia products for detecting and tracing 
copyright violations, has recently become a very active area of multimedia security 
[1]. The watermarking techniques can be classified into two classes depending on the 
domain of watermark embedding, i.e. a spatial domain [2] and a frequency domain 
[3], [4]. Kutter, M., et al. [2] presented to embed the watermark by modifying a 
selected set of pixels in the blue channel because the human eye is less sensitive to 
changes in this color channel. The blue channel, however, is the frailest to JPEG 
compression among the three-color channels, so the hided watermark information is 
easy to be lost. Mei R.-M., et al.  [3] proposed a scheme of hiding watermark 
information in the low frequency coefficients of 8×8 discrete cosine transform (DCT) 
blocks of the red, green and blue components. Bami, M., et al. [4] proposed a scheme 
that the red, green and blue channels were transformed by full-frame DCT and 
selected the low frequency coefficients to hide watermark. Because the loss of the 
energy of the red and blue components is very high when the RGB true color image 
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has been JPEG compressed, the watermark information embedded in the red and blue 
components is easy to be lost, and difficult to be extracted. Moreover, the DCT 
transform has blocking phenomena. Recently, quantization index modulation 
(QIM)[5], [6], [7], [8] technique is widely used in watermarking technique, and this 
technique is very robust to various attacks such as JPEG compression, SPIHT 
compression [9], noise insertion, low-pass filtering, resize and so on. 

In this paper, a new watermark embedding/extracting algorithm using error back-
propagation neural network (BPN) is introduced. DWT is used to overcome the 
problems in DCT, and quantization method is adopted to increase robustness against 
attacks. First, the original color image is transformed from RGB color space to 
YCrCb color space, where the luminance channel is defined as Y and the 
chrominance channel is defined as Cr and Cb. According to human visual system 
(HVS), luminance channel is more sensitive than chrominance channel. With this 
reason, watermark is embedded into the chrominance channel. To embed the 
watermark, 4-level DWT transformation is performed on Cr and Cb, and watermark is 
embedded into LL4 low frequency band. When embedding watermark, a secret key is 
used to determine the watermark embedding position, and after that, embed and 
extract the watermark by using the trained BPN. 

The experimental results show that the watermarked image has at least 38dB in 
peak signal-to-noise ratio (PSNR). Also, the performance characteristics are 
compared with other algorithms and the proposed algorithm shows a good result. 

 2   Related Theories 

2.1   Discrete Wavelet Transform (DWT) 

With 2-D signals such as images, the DWT is typically applied in a separable fashion 
to each dimension. This may also be represented as a four-channel perfect   
reconstruction four-subband, as shown in Fig. 1. In this paper, the linear-phase 2/2 
biorthogonal filters are selected, and for robustness, watermark is embedded into LL4 
subband that is low frequency components. 

LH3
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HL2 HH2

LH1

HH1HL1

LL4

HL4

LH4

HH4

 

Fig. 1. Four-level DWT 

2.2   The Error Back-Propagation Neural Network (BPN) 

The BPN is a kind of supervised learning neural network. It is one of the most 
frequently used learning techniques in neural networks. The principle behind the BPN 
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involves using the steepest gradient descent method to reach a small approximation. A 
general model of the BPN has an architecture like that depicted in Fig. 2. There are 
three layers including input layer, hidden layer, and output layer. Two nodes of each 
adjacent layer are directly connected to one another, which is called a link. Each link 
has a weighted value, which represents the relational degree between two nodes. A 
training process described by the following equations updates these weighted values: 

))(()1(

)()( ,

tnetfto

totnet

jactj

i
jijij

=+

−=∑ θα
 (1) 

where net j(t) is the activation value of the node j in iteration t , oj(t+1)is output of the 
node j in iteration t +1,  fact(x) is called the activation function of a node, which 
usually is a sigmoid function in hidden layers and a pureline function in output layer. 
Generally, all initial weight values αi,j are assigned using random values. In each 
iteration process, all αi,j are modified using the delta rule according to the learning 
data. The trained neural network can memorize the characteristics of the learning data, 
and predict a new output due to the adaptive capability of it. BPN will be used to 
learn the characteristics of image for improving the performance of the proposed 
watermarking scheme in the section 3.  

Input layer Hidden layer Output layer

 

Fig. 2. Architecture of a BPN 

2.3   The BPN Neural Network Training Procedures 

The BPN neural network training procedures are as Fig.3 below. 
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Fig. 3. BPN training procedures 
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In the figure, C1(i,j) and C2(i,j) is the LL4 coefficient when DWT transform is 
performed on Cr and Cb respectively. The coefficient C(i,j) is selected using random 
sequence with a special secret key. Q is the Quantization value. The output of the 
equation Round(C(i,j)/Q), which is represented as P, is used as an input value for the 
BPN, and T, which is the selected original value of C(i,j), is used as a desired  output 
value for the BPN neural network. The structure of BPN network presented in the 
paper is 1-65-1, which is obtained as an optimal neural network structure from many 
experiments. The hidden layer uses sigmoid function, and the output layer uses 
pureline function. The training method is Levenberg-Marquardt rule. The training 
error is set to 0.005 and the number of maximum learning iteration is set to be 5000. 
The training is finished when either training error is smaller than 0.005 or the iteration 
is reached to the maximum iteration number. Fig.4 shows the training error in each 
step when the BPN is trained using a 512×512 size Lena color image. The BPN 
trained by this method will be used to embed and extract the watermark.  

0 50 100 150 200 250
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

252 Epochs

T
ra

in
in

g-
B

lu
e

  G
o

a
l-B

la
ck Performance is 0.00443093, Goal is 0.005

 

Fig. 4. The training process of BNP 

3   Watermark Embedding and Extracting 

Generally, a watermark algorithm includes 3 steps: watermark generation, embedding, 
and extraction. In this paper, a logo image, which can be easily distinguished by eyes, 
is embedded as a watermark. The proposed watermark technique is a kind of blind 
watermarking algorithm, which embed/extract the watermark into/from the DWT 
domain of chrominance component of the color image. 

3.1   Watermark Embedding 

Fig.5 below is the block diagram of the watermark embedding procedure. The trained 
BPN in the figure is discussed in section 2.3. 

The embedding procedures are as follows:  

Step1: Transform an original color image from RGB color space to YCrCb color 
space and perform the 4-level DWT transform on the chrominance components, Cr 
and Cb. In the figure above, C1(i,j) and C2(i,j) is the LL4 subband when DWT 
transform is performed on Cr and Cb respectively. 
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Step2: Select the position of watermark embedding coefficient C(i,j) (C1(i,j) or 
C2(i,j)) using random sequence with a secret key. 

Step3: Quantize the DWT coefficient C(i,j) by Q, and use that value as the input of 
BPN then get the output T'. 

Step4: Embed the watermark according to the equation 2 below which uses the 
output value T' and the Q.  
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where w  is the watermark, and Q is a quantization value. A Q*
4
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 should be given to 

each coefficient to provide the tolerance for )/),(( QjiCRound  not to be changed 

after watermark embedding. This also provides the tolerance for )/),(( QjiCRound  

not to be changed when extracting watermark. The value, Q*
4

1
, is determined to be 

most robust against attacks. 
Step5: To get Cr’ and Cb’ , perform the IDWT on C1’ and C2’ respectively where 

watermark is embedded. The transformation of YCr’Cb’ color space into R’G’B’ 
color space results in the watermarked image. 
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Fig. 5. Watermark embedding procedure 

3.2   Watermark Extracting 

The watermark extracting procedures are the converse procedures of watermark 
embedding, shown in Fig.6. The BPN here is trained neural network, which is 
discussed in section 2.3, and Q is the quantization value. 

Step1: Transform the watermarked color image from R’G’B’ color space to YCrCb 
color space and then perform a 4-level DWT transform on the chrominance 
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components, Cr and Cb. In the figure above, C1(i,j) and C2(i,j) is the LL4 subband 
when DWT transform is performed on Cr and Cb respectively. 

Step2: Select the position of coefficient C(i,j) (C1(i,j) or C2(i,j)), where watermark 
is embedded using random sequence with the same secret key, which is used in 
watermark embedding sequence. 

Step3: Quantize the DWT coefficient C(i,j) by Q, and use it as input value of the 
trained BPN to get the output T'. 

Step4: Extract the watermark using the equation 3 below, using the output T' and 
coefficient C(i,j).   
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Step5: The correlation between the original watermark and the extracted watermark 
is calculated to detect the existence of the watermark. The similarity between the 
original watermark w and the extracted watermark w’ is quantitatively measured by 
the bit correlation ratio (BCR), defined as follows: 
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where wi,j  is the original watermark bit, w’i,j is the extracted watermark bit, and ⊗ is 
the exclusive OR. 
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Fig. 6. Watermark extraction procedure 

4   Experimental Results 

In this paper, 24 bits in the RGB space 512×512×3 size Lena, baboon and Flowers 
color images are used as cover images, and a 32×32 size logo image, which can be 
easily distinguished by eyes, is used as watermark. Fig.7 shows the images used in 
this experiments and the watermark in use. 
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(a)  Lena (b)  Baboon  (c)  Flowers (d)  Watermark  

Fig. 7. Experiment images and watermark 

The image quality metric is based on the PSNR. PSNR is defined as  
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where f is the original image, g is the watermarked image, m*n is the image size. 
Fig.8 shows the relationship between the embedding quantization step-size Q and 

PSNR. The PSNR of the watermarked image is decreasing with increasing Q, but the 
PSNR is bigger than 38dB in any case. This proves that the watermarked image has a 
good PSNR. 

To test the robustness of the proposed method, experimental images are attacked by 
JPEG/SPIHT compressions, noise addition, low-pass filtering, and resize. The water-
mark was extracted from several JPEG compressed watermarked images with various 
compression quality factors and their corresponding BCR values are listed in Table 1. 
Table 1 shows that the extracted watermark is still recognizable when the compres-
sion quality factor reaches 30, which means the proposed method has good robustness 
to JPEG compression.  

 

Fig. 8. The relationship between Q and PSNR 
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Finally, the performance comparison was performed between the proposed method 
and one proposed in QIM method. In QIM method, watermark is embedded into 
DWT coefficient of chroma component, CrCb. The two methods have the same test 
conditions including the same test color image "baboon", the same amount of embed-
ding information (1024 bits i.e. a binary pattern watermark 32×32). Comparison  
results are summarized in Table 2. According to this table, the BCR values of the 
extracted watermarks by the proposed method are always higher than QIM method. 
These results prove that the proposed method has superior performance. 

Table 1. BCR values of the extracted watermarks (%) 

Lena Baboon Flowers Image 
JPEG 
Quality factor PSNR=38.46 [dB] PSNR=39.02[dB] PSNR= 38.57[dB] 

100 99.95 99.93 98.80 

90 99.54 99.70 96.79 

80 98.92 99.51 96.43 

70 97.26 99.31 96.19 

60 98.73 98.72 94.83 

50 96.28 98.41 94.24 

40 95.31 95.24 94.23 

30 89.81 93.62 91.05 

Table 2. Comparison(BCR) results between QIM method and presented method 

QIM method The proposed method Method 
 

Attacks PSNR=40.07 [dB] PSNR=40.21[dB] 

No attack 100 99.98 

JPEG (Quality factor=40) 91.53 93.02 

SPIHT (1:60) 86.28 89.28 

Noise (Gaussian) 85.84 87.32 

Low-pass filtering 96.14 97.75 

Resize (384×384) 89.49 91.60 

5   Conclusions 

A new watermarking method for color image has been proposed. The proposed 
method embeds a logo watermark into the DWT coefficient of chroma component 
CrCb of the color image. A secret key determines the locations in the image where the 
watermark is embedded. This process prevents possible pirates from easily removing 
the watermark. The embedding scheme has good quality of the watermarked image in 
terms of PSNR. This method also utilizes back-propagation neural networks (BPN), 
which is used to learn the characteristics of the original image. Due to the learning 
and adaptive capabilities of the BPN, the embedding/extracting strategy can greatly 
improve robustness to various attacks. Experimental results illustrate that the 
performance of the proposed technique is superior to other methods in the literature.  
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Abstract. In order to enhance robustness and security of the embedded 
watermark, proposed a novel blind digital watermark algorithm based on neural 
network and chaotic map Firstly, a better chaotic sequence is generated by 
Cellular Neural Network (CNN) and Chebyschev map, using the chaotic 
sequence encrypted the watermark and its spectrum is spread. Then, BPN is 
trained to memorize the relationship among pixels of each sub-block image. 
Furthermore, the adaptive embedding algorithm is adopted to enhance the 
characters of the watermarking system. Simulation results are given which 
show that this scheme is practical, secure and robust. 

Keywords: watermark, chaotic map, neural network. 

1   Introduction 

With the fast and steady development of network and multimedia technology, digital 
media grows also rapidly and achieves exciting success. However, how to protect the 
copyright of digital products has become a great challenge. Toward this goal, many 
techniques have been proposed in the last decade, in which digital watermarking is 
quite efficient and promising [1],[2],[3]. 

There are a number of desirable characteristics that a digital watermarking 
technique can offer, including security, imperceptibility, and robustness. Roughly 
speaking, the digital watermarking technology includes spatial-domain methods and 
transform-domain methods. Embedding the watermark into the transform-domain 
generally helps to increase the imperceptibility, security, and robustness. Therefore, 
this approach is very common, where DFT, DCT, DWT are three main transform 
methods used[4],[5]. 

Watermarking methods that do not require the original signal for watermark 
detection are called oblivious or blind methods [5]. In this paper, a blind robust 
watermarking scheme over the spatial domain is proposed. First, the watermark is 
encrypted and its spectrum is spread using a chaotic sequence. Then, the host image is 
divided distinct into 3×3 blocks, and a neural network is constructed to memorize the 
relationship among the pixels in a sub-block image. Finally, embed the masked binary 
watermark into the host image through changing the value of central pixel in each 
sub-block. The extraction is the inverse processing. 
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2   The Chaotic Watermarks Generating 

2.1   Cellular Neural Network (CNN) 

The researches have found that Cellular Neural Network (CNN) has a complex 
Dynamic behavior [6]. It is extensively applied in fields of pattern recognition, image 
processing and the solving partial differential equation. CNN is easy realized by using 
VLSI circuit because of its regular structure and each cell only coupled with adjacent 
cells. 

Here, we select a three-order CNN dynamic model with full connection: 
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Where jx  is a states variable, jy  is a cell output. jy  is related to jx  and defined as 
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Let three cell-template parameters are [7]： 
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Fig. 1. Different chaotic attractors of 3-order CNN model. (a) a1 = 3.86, s11 = -1.55, s12 = 
8.98, s32 = -14.25; (b) a1 = 3.85, s11 = -1.55, s12 = 8.76, s32 = -14.35; (c) a1 = -4.198, s11 = 
2.365, s12 = 7.45, s32 = -10.98. 
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In Fig.1., we can obtain chaotic attractor with different property by assigning 

different values to parameters 1a , 11S , 12S and 32S . These chaotic attractors can be 

generated in a large scale, the complexity of output sequence in subsequent encryption 
system is enhanced, and the systematic security is evidently enhanced as well. 

2.2   Chebyschev Map 

A particularly interesting candidate for chaotic sequences generators is the family of 
Chebyschev polynomials, whose chaoticity can be verified easily with many other 
properties are accessible to rigorous mathematical analysis. The independent binary 
sequences generated by a chaotic Chebyshev map [8],[9] were shown to be not 
significantly different from random binary sequences. For this reason, a kth-order 
Chebyshev map [9] is employed for the design of the intended image encryption 
scheme. This map is defined by 

3,2,1,11)),arccos(cos()( 1 =≤≤−=+ nxxkxf nnn  . (4) 

Here, the map is chaotic for 2≥k and we use 4=k in this study. Fig.3. shows two 
time series of this map, with initial values differed only by 510− ; indicating that the 
map can generate good chaotic (pseudorandom) sequences satisfying a basic 
requirement of a cryptosystem that demands such randomness. Fig. 2. further shows 
its statistical correlation curves. 

 

Fig. 2. The statistical correlation curves of a chaotic Chebyshev sequence: (a) Auto-correlation 
curve of the chaotic sequence when the initial value of 0.60000; (b) Cross-correlation curve of 
two chaotic sequence when their initial values are 0.60000 and 0.60001, respectively 

2.3   Chaotic Sequence Generated 

In order to improve the complexity and the period of the chaotic Sequence under the 
finite-precision circumstances, the chaotic sequence is generated combining three-
order CNN and Chebyshev map, Fig. 4. is the structure of chaotic sequence 
generator. 
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Fig. 3. Two time series of the Chebyshev Fig. 4. Chaotic sequence generator with slightly 
different initial values 

In Fig. 4., the chaotic sequence is defined as: 
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We can obtain a binary sequence ∞
=0))}(({ n

n

t xfθ  from Eq.(5). 

We use the binary chaotic sequence )(xiθ to mask the watermark image [10], and 

then using Eq.(6) creates the masked watermarking bits 

)(' xww tθ⊕=  . (6) 

3   Neural Network Training 

We establish the relationship among the contiguous pixels in a sub-block image using 
the BPN model [11]. For a selected pixel Ii,j , the network is trained with its 3×3 
neighbors , i.e. let Ii-1,j-1, Ii-1,j, Ii-1,j+1, Ii,j-1, Ii,j+1, Ii+1,j-1, Ii+1,j, Ii-1,j+1 as input vector and the 
value of pixel Ii,j as output value. We construct three layer BPN with 8, 10 and 1 
neurons in the input, hidden and output layer respectively, and the sigmoid, pure-
linear function are used for recognition. It states that there is tight correlation among 
the pixels in a sub-block image and the BPN can approach the relationship greatly.  

4   Decision of Watermarking Strength 

In [12], describes several methods of deciding watermarking strength based on human 
visual system and neural network. To achieve maximal watermarking while 
remaining invisible to the human eyes, we using a adaptive approach based on signal-
noise-ratio(SNR) [13]: 
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Where '

,, , yxyx pp is the pixel value of original image and watermarked image, 

respectively. For a given image and the value of SNR, we can obtain the strength of 
superposition correspondingly. 

Due to the fact of difference of pixel value, there will be visible for human eyes in 
some square when a fixed embedding strength on the whole image is used, but in 
some other square the embedding strength will be too small to preserve the robust 
properties. So, in our scheme, the original image is divided into 3×3 blocks, and for 
each sub-block the strength of embedding is calculated as follows: 

102
,

'
,, 10

SNR

x y yxyxyx ppp
−

×∑ ∑=−=δ  . (8) 

5   The Proposed Algorithm 

5.1   Watermark Embedding 

Step 1. Encrypting the original watermark with chaotic sequence as mentioned in 
Section 2. 
Step 2. Establish and training the BPN model for the host image as mentioned in 
Section 3. 
Step 3. Embedding the watermark: if the watermark wi,j is corresponding to the pixel 
Ii,j, changing the value of Ii,j to '

, jiI , such that '

, jiI >Bi,j or '

, jiI >Ii,j+δ, where Bi,j is the 

output of BPN in sub-block Ii,j and δ is defined in Eq.(9) and Eq.(10). Otherwise, for 
embedding wi,j=0, let the '

, jiI <Bi,j or '

, jiI <Ii,j-δ, i.e.: 
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5.2   Watermark Extracting 

The watermark extracting is inverse process of embedding. According to the model of 
BPN and the secret key, the masked watermark can be retrieved as follows: 
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Where '

, jiI , '

, jiB is the watermarked image and the output of BPN. Performing as 

Eq.(9), the original watermark 'w can be obtained approximately. 
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6   Simulation Results 

In order to obtain a quantitative measure to the watermarked results, some measures 
are defined as follows. In this paper, the similarity between detected watermark and 
embedded watermark are used as the standard, it is defined as: 
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Where W  is the original watermark, *W is the extracted watermark. If *WW = , then 
sim=1.The experimental results are shown as Fig. 5. 

 
(a)                                 (b)                               (c)                             (d) 

Fig. 5. (a) Original image; (b) Original watermark; (c) Watermarked image; (d) Detected 
watermark from (c) 

 

Fig. 6. Cropped for Fig.5(c) (32pixels; 64pixels; 128pixels) 

Table 1. Detector watermark from cropped image 

Cropped length 40 350 250 

Value of sim 0.867 0.746 0.608 

 

Fig. 7. Detected watermark from Fig. 5(c). added Gaussian noise(variance are2,4,8) 
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Table 2.  Detected watermark from image added Gaussian noise 

Gaussian noise 2 4 8 
Value of sim 0.852 0.686 0.611 

 

Fig. 8. Detected watermark from Fig.5(c). compressed with JPEG(80/70/60) 

Table 3. Detected watermark from image compressed with JPEG 

Compression ratio 80 70 60 
Value of sim 0.867 0.685 0.568 

7   Conclusion 

A blind watermarking scheme based on neural network and chaotic map has proposed 
in this paper. Due to the neural network memorizing the characteristics of the 
relations between the original image and the watermarked image, our scheme doesn’t 
require that the original image and watermark in the extraction process. From value of 

)(xsim we have discussed above, the scheme is strongly resistant to attack such as 

low-pass filter, noise and JPEG compression. 
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Abstract. In the analysis of biological data artificial neural networks are a use-
ful alternative to conventional statistical methods. Because of its advantage in
analyzing time courses the Multilevel Hypermap Architecture (MHA) is used
for analysis of stimulus related data, exemplified by fMRI studies with auditory
stimuli. Results from investigations with the MHA show an improvement of dis-
crimination in comparison to statistical methods. With an interface to the well
known BrainVoyager software and with a GUI for MATLAB an easy usability of
the MHA and a good visualization of the results is possible.

The MHA is an extension of the Hypermap introduced by Kohonen. By means
of the MHA it is possible to analyze structured or hierarchical data (data with
priorities, data with context, time series, data with varying exactness), which is
difficult or impossible to do with known self-organizing maps so far.

1 Introduction

The analysis of stimulus related data is a common investigation method in neuroscience.
Any improvement of analytical methods can be helpful for better understanding the
complexity of the brain. In this sense also alternatives to common statistical methods,
like the proposed structured neural networks, should be investigated, especially their
usefulness in respect to the stimulus related data analysis.

One approach to explore stimulus related functional maps in the brain is the use
of functional Magnetic Resonance Imaging (fMRI). Besides statistical methods ([1])
recently artificial neural networks are used for analysis of fMRI data sets ([2,3,4,5]).
For our experiments with auditory stimuli the following structured neural network has
to be introduced. The Multilevel Hypermap Architecture (MHA [6]) is classified under
self-organizing neural networks and is an extension of the Hypermap introduced by
Kohonen. Instead of the two levels in the Hypermap, the data and context level, the
MHA supports multi-level data vectors. Structured or hierarchical data can be analyzed
with the MHA, that is:

– data with priorities, e.g. representation of hierarchical data structures in databases
– data with context (databases, associative memories)
– time series, e.g. language or image scenes

Support for both the classification of data and the projection of the structure in a com-
mon map is a benefit of MHA. This results in a hierarchy with redundancy, as in bio-
logical systems. An overview of our last works about MHA gives [7].

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 251–259, 2006.
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One type of Learning Vector Quantization (LVQ) is the Hypermap principle intro-
duced by Kohonen [8]. This principle can be applied to both LVQ and SOM algorithms.
In the Hypermap the input pattern is recognized in several separate phases: the recog-
nition of the context around the pattern to select a subset of nodes (cluster) is followed
by a restricted recognition in this subset. This architecture speeds up searching in very
large maps and may carry out stabilizing effects, especially if different inputs have very
different dynamic ranges and time constants [9]. One advantage of the MHA is the
storage of hierarchical relationships of data.

The modification and extension of the Hypermap, the Multilevel Hypermap Archi-
tecture (MHA), are described in [6,10,11].

In addition to older experiments ([12]) a new training strategy for the MHA is in-
troduced. The BrainVoyager software ([13]) is used for a better visualization of the
results.

2 Materials and Methods

Even it is already published ([6,10,11]), it will be useful for understanding, to explain
the learning algorithm of the MHA in more detail, before the fMRI environment is
explained.

2.1 The Multilevel Hypermap Architecture

The system model of the MHA is shown in Fig. 1. Instead of two levels proposed in the
Hypermap [8,14], the data and the context level, the MHA supports several levels of
data relationship and therefore the input vector consists also of an arbitrary number of
levels. In the MHA there is the same number of levels in the weight vector of each unit
and these levels are related to the corresponding levels of the input vector. A varying
number of levels for the units of the map is supported.

The MHA is trained with the different levels of the input vector, whose representation
is a hierarchy of encapsulated subsets of units, the so called clusters and subclusters,
which define different generalized stages of classification.

In order to make the learning algorithm and the classification behavior of the MHA
more clear, the following simple example should be used. Suppose stimulus related
parts of an input vector have a significant structure, this example is also a demonstration
of the ability of the MHA to deal with the multiple presence of such parts in the input
vector and to project their relationship in its hierarchical structure.

In our example the MHA has a dimension of 50 by 50 units and 3 levels. The dimen-
sion of the map is oversized to better demonstrate the discrimination properties of the
MHA. The 3 levels should be used for a classification of triples of the binary digits 0
and L to illustrate the ability of hierarchical clustering. Therefore the input vector has
3 parts, in which the binary digits are realized as ramp signals to be useful for the LVQ
based learning algorithm.

Suppose the values in one level of the input vector yi = f(i), which represent one
binary digit, are yi = c0i for the digit L and yi = c0(N − i) for the digit 0, whereby
i = 0, .., N and c0 > 0 constant. Therefore in each level are N + 1 values which form
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Fig. 1. Multilevel Hypermap Architecture

ramp signals as illustrated by altered colours in Fig. 2, increasingly for the binary digit
L and decreasingly for 0.

After beginning of training, on the first level all input vectors with the digit L and
all with 0 are separated in one cluster each, that means, on the first level of the MHA
only two clusters are formed. When the training process reaches the next level, this
separation procedure will continue for each cluster. Therefore, there are two subclusters
in each cluster related to the digits L and 0 respectively.

The formation of only two subclusters for each 2. level subcluster takes also place
on the 3. level of the MHA in the training process. The result will be a hierarchical
clustering of the input data. A computational result of the classification by the MHA
learning algorithm for our sample data is shown in Fig. 2.

To achieve the hierarchical relationship of clusters and subclusters in that way the so
called imprinting coefficient is crucial. Without imprinting there will be only indepen-
dent data relationships in respect to the levels of the MHA and no hierarchical structure.
In the case of our example this would mean that only two clusters on each level of the
MHA are found and the lower subclusters in the hierarchy will have no topological
relationship to the upper ones.

On the other hand this feature can be useful to train a multiple set of unrelated data
in one training process, each data set related to one level of the MHA.

2.2 The Learning Algorithm

The learning algorithm of the MHA as known from literature [6,10,11] is as follows.
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Fig. 2. Classification of a simple binary data set. Top left the input data represented by 8 vectors
with 3 levels each is shown. The binary content of each level is coded by 2 different colour sets
(ramp signal). The binary input triples are classified by the MHA in a hierarchical order (right).
On the first level there are only two best matching nodes for the digits 0 and L respectively. All
vectors starting with the same digit are kept in a cluster, as shown for the 4 vectors starting with 0
on the third level. In the error surface the triple 000 is indicated for illustration. In contrast to the
3-level MHA, a training without levels results in a map, where each vector is in a separate cluster
(see error map on the left).

Let the input vector of one level lj be xlj and one processing unit mi,lj then, in a
first phase, one has to find a first level with a subset Sj of nodes (cluster) for which

‖xlj −mi,lj‖≤δj, (1)

with δj being the threshold of that level. Then it is necessary to find the best match mc

for all nodes in the subset and to adapt the weights accordingly.
In the normal case (input learning) the adaptation of the weights is done by

mc,lj(t+ 1) = mc,lj(t) + α′(lj)α(t)[xlj (t)−mc,lj (t)], (2)

where
c = argmin

i
{‖xlj −mi,lj‖}, (3)

α′(lj) = e−‖li−lj‖, the ”imprinting” coefficient, (4)

and
α(t) = c0e

−D(t), D(t) distance function (5)
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The sizes of the thresholds δj should be decreased according to the order of the levels
to obtain encapsulated subsets Sj (subcluster). This behavior is mainly supported by the
”imprinting” coefficient α′(lj). Therefore the ”imprinting” coefficient is responsible
for the topological order of the subclusters in the MHA. Classification is achieved by
finding the best matching node for each level of the hierarchy and by determining the
square mean error of matching. In principle the algorithm handles different numbers of
levels in the input vector.

To give more variability to the training data it is possible to mask parts of the input
vector. The masked parts are ignored in the above algorithm and therefore don’t influ-
ence the result of the learning process. To hold the learning algorithm for performance
reasons as easy as possible all negative values of xlj (t) in (2) are interpreted as masked
values, i.e. only positive values of xlj (t) are processed in that adaptation step of the
learning algorithm.

Important for the occurrence of the hierarchical structure of clusters and subclus-
ters in that way is the so called imprinting coefficient (4). Without imprinting on the
lower level(s) the hierarchical relationship would disappear and there will be indepen-
dent data relationships on all levels of the MHA. On the other hand this feature can
be useful to train a multiple set of unrelated data in one training process; each data
set related to one level of the MHA. In contrast to the MHA it is impossible to de-
tect the hierarchical order using a conventional SOM or LVQ network. The classifi-
cation of data with hierarchies is of course the main advantage of the MHA learning
algorithm.

2.3 fMRI Data Analysis

In the auditory cortex of awake animals and humans responses to the same repetitive au-
ditory stimulus will strongly habituate, dishabituate and change with general alertness,
context, cognitive performances and learning. These non-stationarities are further com-
plicated by the fact that the representation of a given stimulus in an auditory cortex field
is not topographically stable over time. Several different acoustic stimuli (potpourri of
various sounds, series of tones with shifting frequency, tone pairs with different fre-
quencies) were used for the experiments with normal-hearing subjects. Subjects were
scanned in a Bruker Biospec 3T/60 cm system. For principal approach and details of
these experiments see also [15], [16].

Because the MHA supports several levels of data relationship and a hierarchical un-
supervised clustering it is an ideal candidate for the analysis of stimulus related data,
and so also for fMRI time series. The data was preprocessed with the well known Brain-
Voyager software [13] and VOI’s (volume of interest) were defined. Only the data of
these VOI’s, which represent the results of the usual statistical methods, was processed
by the MHA. In a first step of our analysis of acoustic stimulated fMRI data the MHA
was trained to learn the stimulus structure. With this pre-trained Hypermap the learning
of the VOI-based data was continued in order to build hierarchical clusters of peri-
odically similar data. Finally we compared our results with statistical tests (Pearson’s
cross-correlation).
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3 Main Results

As was expected and known from older experiments ([12]), the classification of the
fMRI data with the MHA shows similar results in comparison to the statistical tests.
But in average we get an improvement of discrimination of about 15 percent. Espe-
cially by masking the stimulus relevant regions in time course the improvement can be
achieved. Furthermore it is necessary to eliminate any artifacts and make a normaliza-
tion (baseline, amplitude) of the data before processing by the MHA.

In Fig. 3 results from tests with fMRI data are shown. In these tests both the number
of levels of the MHA and the masked parts of the input vector were varied. In our
investigations best results were realized with a 2-level MHA ( the second level is marked
by a green rectangle in Fig. 3) and by masking all not stimulus related regions in the
input vector (marked by red rectangles in Fig. 3).

Fig. 3. Results from fMRI data analysis with MHA. Top left window shows one of selected input
vectors. Red rectangles mark parts of the input vector which are masked, the green rectangle is
the part related to the level 2 of the MHA. The other left window shows the pre-trained values of
the MHA for that input vector and that level respectively. On the right the global error map of the
MHA after pre-training, in the background parts of the GUI for MATLAB are shown.

Even if not comparable directly because of the absence of a common evaluation cri-
terion, it is necessary to find a procedure for comparing the results of the used statistical
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methods with the MHA. This is done by creating a VOI from the results of the statistical
test, which represents the part of the brain where the activity correlates with the stimu-
lus. With the data of this VOI the MHA is processed and the results from this process
are transfered into another VOI. Comparing the mean time courses of both VOI’s leads
to the already stated result of an improvement of discrimination and a better selectivity
of the MHA method in contrast to our statistical tests. (see Fig. 4).

Fig. 4. Presenting results in BrainVoyager. VOI (in blue) represents stimulus corresponding vox-
els from MHA data analysis inside auditory cortex region T3 (VOI in yellow) of right hemisphere.
VOI signal courses are shown for both VOI’s, top (T3) and down (MHA) respectively, whereby
stimulus signals are in red regions. The black circles mark one of the regions, where the improve-
ment belonging to the stimulus discrimination is visible.

With the implementation of the MHA algorithm in MATLAB and the integration
of an interface to BrainVoyager it is possible to visualize the classified data in VOI’s.
Because the stimuli were presented periodically and these periods can be built up in the
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multi-level structure of the MHA, the non-stationarities in these periods were detected
in the hierarchy of clusters found in the MHA after training.

4 Conclusions

The results of our analysis of fMRI data sets by means of the MHA show, that it is
possible to analyze such periodically structured and hierarchical data, what is difficult
or impossible to do with other known self-organizing maps so far. Furthermore is the
MHA an useful complement to conventional statistical methods in this field. Because of
its character like a simultaneous auto-correlation and cross-correlation to the stimulus
it has a higher selectivity and discrimination than statistical methods. Even it seems to
be comparable in results, the MHA has in addition to standard ICA algorithms, which,
by definition, are not able to estimate statistically dependent sources ([17]), the power
(e.g. by parameterization, masking of data, a-priori-knowledge) to project these depen-
dencies in its hierarchical structure. The combination of masking the input vector with
the projection of the input vector to the hierarchical level based structure of the MHA
seems to be a powerful tool for analyzing stimulus related data, which was not proved
so far and which is actually the novelty contribution of the presented work. Therefore
the MHA should be also a preferred tool for the analysis of other kinds of stimulus
related data, like event related potentials (ERP).

One advantage of the MHA is the support for both, the classification of data and
the projection of the structure in one unified map. The resulting hierarchy has some
redundancy like in biological systems. In the previous years some real world applica-
tions using the MHA were reported in the literature. Beside our fMRI investigations a
system for speech processing and recognition [18] and an application which deals with
an implementation of the Modified Hypermap Architecture for classification of image
objects within moving scenes [19] are carried out.

It should be pointed out that the aim of the investigations was to test the MHA for
that kind of data in principle. To find new cortical mechanisms and relevant neuronal
structures with fMRI by using structured neural networks like MHA will belong to
further investigations.
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Abstract. Traditional text clustering methods require enormous computing 
resources, which make them inappropriate for processing large scale data 
collections. In this paper we present a clustering method based on the word 
category map approach using a two-level Growing Self-Organising Map 
(GSOM). A significant part of the clustering task is divided into separate sub-
tasks that can be executed on different computers using the emergent Grid 
technology. Thus enabling the rapid analysis of information gathered globally. 
The performance of the proposed method is comparable to the traditional 
approaches while improves the execution time by 15 times. 

1   Introduction 

The ever increasing amount of textual information available on the internet has made 
textual data clustering algorithms more appealing and promising. However, to cluster 
these billions of documents will require enormous processing power and resources, 
which is beyond the capability of typical local computing resources. Therefore, 
scalability has become an important issue for large-scale applications.  

The emergent technology of Grid Computing enables the sharing of distributed 
heterogeneous resources to solve computationally intensive and data intensive 
problems. Researches are now advancing to e-research, where normal research 
methods are augmented with internet tools to enhance efficiency and collaboration. 
Many projects have already been developed using the Grid in areas such as weather 
forecasting, finical modeling and earthquake simulation, to acquire various resources 
distributed at different locations, in order to satisfy their demands of huge 
computational exercises [3]. It is clear that text mining applications can also benefit 
from the Grid to improve scalability, if we can divide the clustering task into 
independent sub-tasks and execute them separately.  

The motivation of this work arises from the Australian Research Council funded  
E-Research project on “Collection, Sharing, Visualisation and Analysis of locally 
gathered information from geographically remote areas vulnerable to tidal waves”, 
where a proposed website will be open for public as a portal to collect substantiated 
reports of strange behavior in animals. These reports will then been analyzed, in 
conjunction with other source of information such as news articles to issue alert for 
further attention. The number of reports and news articles will grow larger as time 
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passes. Therefore a more scalable text mining technique is required to discover useful 
information from the rapidly expanding database, while capable of taking advantage 
of the available Grid resources through Globus services. 

In this paper we propose a document clustering approach based on the WEBSOM 
method using the scalable two-level Growing Self-Organising Maps (GSOM), which 
will provide us the prospect of utilizing Grid resources to cluster massive text data 
sets efficiently. 

The rest of the paper is organized as follows. Section 2 presents an overview of the 
GSOM algorithm, the traditional WEBSOM approach and our proposed scalable 
textual mining using GSOM. Benchmarking results and comparisons are presented in 
Section 3. Conclusion and future research efforts are given in Section 4. 

2   Background and Proposed Method 

Self-Organising Maps (SOM) [4] is an unsupervised neural network model that maps 
high dimensional input into a low dimensional topology such that similar clusters are 
close to each other on the map. Each node of the SOM has a weight vector associated 
with it and is randomly initialized. Each input vector is presented to the network and 
the node that is closest to the input vector will be updated to follow the input. The 
nodes around the winning node, typically determined by a Gaussian neighborhood 
function, will also adapt to the input to produce a smooth mapping.  

An extension of the SOM is the Dynamic Self-Organising Maps [5, 12, 15], which 
can grow into different shapes and sizes corresponding to the input. GSOM starts with 
a small number of nodes (e.g. seven nodes in case of a hexagonal map structure). The 
algorithm then goes through one growing phase, a rough tuning phase and a fine 
tuning phase. The rate of the growth and thus the final map size, is controlled by a 
Spread Factor (SF) vary between 0 and 1 (1 gives maximum growth) [14]. It is used 
to determine the growth threshold GT, which is given by:  

                                                       GT = -D × ln(SF)                                       (1) 

where D is the dimensionality of input vectors. Therefore, data analyst has the ability 
to choose from more abstract grouping to finer separation by using different values of 
SF (A detailed discussion of the effect of SF is presented later). In the growing phase, 
when the winning node is identified, the error value, i.e. the difference between the 
input vector and the weight vector, usually determined by Euclidean distance, is 
added to the error counter of that node. If the accumulated error for a given winning 
node is greater than GT, then a new node is created next to the winning node if it has 
free neighbour space, i.e. a boundary node. Otherwise, half of the accumulated error 
is distributed to all the neighbouring nodes. During both of the tuning phases, GSOM 
follows the update rules used by SOM.  

WEBSOM [6, 7] is an application of SOM that offers an alternative way to encode 
the text document compare to the traditional “bag of words” approach [11]. It uses the 
word category maps that utilize the contextual information to group similar words. 
Each word is given a unique random vector of size 90 and the immediate context of 
each word is formed by combines the vectors of the preceding and succeeding words. 
The average context value is calculated for all the instances of the word in the text 
collection. These word context vectors are then mapped onto a two-dimensional grid 
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using the SOM. Documents are then encoded as vectors of histogram of the word 
clusters formed earlier. These vectors serve as input to another SOM, which produces 
the document map that enables the visualisation of clusters. 

In the proposed work, GSOM is used instead of SOM in forming the word category 
maps and document map mentioned above. This is due to the fact that SOM requires 
the shape and size of the map to be defined in advance. Yet it is often the case that the 
number of classes in a data set is unknown and new information is added frequently. 
Therefore, SOM is less suitable in this situation as poorly defined parameters will give 
an unsatisfactory result. GSOM on the other hand, overcomes this problem since it 
only inserts a new node when required. This dynamic structure makes GSOM 
especially appropriate for rapidly changing document collections, as discussed in [8]. 

To make the clustering task scalable and efficient, we aim to achieve three goals [10]: 

• Divide the original task into sub-tasks such that the processing of each sub-
task is independent from the results of the others. 

• Both the number of sub-task and the input data supplied to each sub-task 
should be great enough to compensate for the communication overheads. 

• Data transfer between the central computer and each executing node should be 
minimized  

Therefore, we propose to split the initial single growing phase in GSOM into two 
separate growing phases. While the first growing phase is performed as a single 
process, the outcome is used to initiate the second growing phase running concurrently 
on different computer nodes, together with the remaining two tuning phases. This is 
intended to first obtain an abstract and rapid grouping of the entire input data during 
the first growing phase by using a low spread factor with GSOM. It produces a feature 
map that has a few condensed nodes with high level separation between them. The data 
obtained within each node can then be sent to different computers and refined 
independently. They will be process by another GSOM with a slightly higher spread 
factor in order to achieve finer clustering and follows the normal procedure of one 
growing and two tuning phases. All the resulting outputs will be passed back to the 
central computer and combined together for further processing.  
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Fig. 1. The effect of different Spread Factor on data set two during the generation of rough 
word category map 
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The choice of a suitable SF is a critical issue. It is evident from the Figure 1 that a 
high spread factor will demand a longer processing time for the central computer and 
generate excessive nodes (hence reduce the amount of data distributed to each node) 
that violates our second goal. Moreover, a SF that makes the feature map excessively 
abstract or refined can also reduce the clustering quality (Table 2). However, the 
selection of the exact values of SF is currently empirical, as it depends on the required 
level of abstraction for a given application, as well as a tradeoff between efficiency 
and quality. 

3   Results and Discussion 

The scalable GSOM approach is first compared with the traditional SOM and GSOM 
method to investigate its performance on cluster quality, and then the execution time 
is measured to evaluate its efficiency.  

3.1   Document Collections 

In this experiment, two sets of text collections were used. The first set consists of a 
small collection of 150 news articles across 5 areas extracted from the ABC news 
archive 1 , which were used to compare the cluster quality between the different 
approaches. The second set is composed of a subset of the forum articles obtained 
from the Usenet discussion group, which has been employed in WEBSOM studies in 
[1, 2]. This collection of documents was particularly interesting not only because it 
closely resembles the text form of the intended application, but also regarded 
challenging as all the documents were written in a very informal language that often 
hold all sorts of colloquial words and produces an even larger vocabulary. This set 
contains 2,000 articles in total and serves as the benchmark for the measuring the 
execution time.  

3.2   Preprocessing  

The documents were preprocessed to remove any non-textual content such as HTML 
tags, header information and user signatures, which results in an average text length 
of 200 words for the second data set. After removing from a list of 385 stop words, 
the vocabulary contains 26,869 words (both base and inflected forms). The words that 
appear less than 5 times and more than 500 times, which are regarded as less useful in 
distinguish between clusters, were also removed and the final vocabulary consists of 
5707 words.  

3.3   Cluster Evaluation Method 

We used the standard F-measure as in [9], to compare the quality between different 
outputs using SOM, GSOM and scalable GSOM. F-measure is a function of 
precision (p) and recall (r) that captures how well the clusters match the pre-defined 
categories.  

                                                           
1 http://www.abc.net.au/news/ 
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where a is the number of documents belong to class X in cluster Y and b is the total 
number of documents in cluster Y 
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The F value for each class over the entire collection is the maximum value for that 
class over all clusters. Finally, the weighted overall F value is:   
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where i is the number of classes and ctotal is the total number of documents in the 
collection. 

Table 1 below shows the result of applying different approaches on the first data set. 

Table 1. F-measure for ABC news archive collection 

Method F -measure 
SOM 0.49 

GSOM 0.51 
Scalable GSOM 0.50 

As can be seen from Table 1 that the quality of the resulting maps is comparable 
for all three methods. This gives us confidence that the scalable GSOM method will 
not compromise the performance of the WEBSOM approach. 

Since two GSOM feature maps will be generated (one for word category map (w) 
and one for document map (d)), two SFs will need to be selected. Table 2 below 
shows the results for using different SF on both maps. It is clear that in this case, if 
the feature map is too abstract (SF(w) = 0.2, SF(d) = 0.2) or refined (SF (w) = 0.8, 
SF(d) = 0.8), the performance of GSOM deteriorates.  

Table 2. Impact of SF on F-measure using GSOM 

SF(d)  = 0.2 
SF (w) 0.2 0.4 0.6 0.8 
F-measure 0.35 0.43 0.49 0.51 

SF(w) = 0.8  
SF (d) 0.2 0.4 0.6 0.8 
F-measure 0.51 0.52 0.43 0.39 
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3.4   Comparing Execution Time 

We observe that the phase of generating the word category map, which takes up more 
than 70% of the overall time in this case, is the bottleneck of the entire clustering 
process. (As the number of documents grows larger, the scalable method can also be 
applied to the phase of producing the document map.) Therefore, using the proposed 
scalable GSOM method, a rough word category map is generated first with a spread 
factor of 0.1, which results in 35 nodes in 65 seconds (see Figure 2). The size of the 
data for each node ranges from 747kB to 6,041kB. Each node is then refined 
separately using a GSOM again with a spread factor of 0.3 (An example is shown in 
Figure 3). On the other hand, the conventional GSOM uses a SF of 0.8 and runs as a 
single process. 

Table 3 below summarizes the results of using a single GSOM and the scalable 
GSOM for generating the word category map. Even though ideally the scalability of 35 
times should be achieved, the data is not evenly distributed to each node and the later 
task of producing the document map can not be realized without the results from all the 
nodes. Therefore, the running time shown for the scalable GSOM is the slowest time 
out of all 35 nodes, plus the time spent in generating the rough word map. 

Table 3. Execution time for generating the word map for Usenet articles 

method Total No. of nodes Time (s) 
GSOM 402 5407 

Scalable GSOM 752 347 

It is clear that the time needed for the scalable method is about 15 times less than 
the traditional way. The time improvement is very noticeable even for such a small 
collection of text items, thus the huge amount of documents in real life can benefit 
further from this approach. However, the scalable method is only tested in a simulated 
situation, which does not take into consideration of other factors such as 
communication delays and job queuing time when actually running on the Grid. In 
spite of this idealization, the scalable method still gives a very promising performance 
improvement and ample time to accommodate for the communication overheads. 

 
Fig. 2. The rough word category map 
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Fig. 3. An example of the refined node 3 from Figure 2 

4   Conclusion  

In this paper, we present a scalable GSOM method on text clustering that can take 
advantage of the Grid Computing technology. The test results indicate that the 
scalable method performs as well as the traditional methods while improves the 
execution time up to 15 times. This method is especially suitable to real-life 
application where the text database contains a huge collection and rapidly expanding. 
However, the GSOM maps separately generated by each node are not merged 
together to form a single map. This makes it hard to explore and visualize the final 
output across node boundaries. As a future development, it will be desirable to 
connect maps of different size and shapes to form a unified map, such that the results 
can be easily searched and browsed. Moreover, the method will be tested on the 
actual Grid to further evaluate its performance.   
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Abstract. In this paper, the discriminative training criterion of maximum-
minimum similarity (MMS) is used to improve the performance of text extrac-
tion based on Gaussian mixture modeling of neighbor characters. A recognizer 
is optimized in the MMS training through maximizing the similarities between 
observations and models from the same classes, and minimizing those for dif-
ferent classes. Based on this idea, we define the corresponding objective func-
tion for text extraction. Through minimizing the objective function by using the 
gradient descent method, the optimum parameters of our text extraction method 
are obtained. Compared with the maximum likelihood estimation (MLE) of pa-
rameters, the result trained with the MMS method makes the overall perform-
ance of text extraction improved greatly. The precision rate decreased little 
from 94.59% to 93.56%, but the recall rate increased a lot from 80.39% to 
98.55%. 

1   Introduction 

Text extraction from images is becoming a hot topic in pattern recognition and with 
many applications including content-based image indexing, automatic video logging 
and OCR systems. Text extraction from images is also challengeable because texts in 
an image are widely varied in direction, color, arrangement and background. 

Existing methods of text extraction can be classified into two categories: region-
based and texture-based [1]. Region-based methods extract texts by using the differ-
ence in color or gray scales between text regions and backgrounds. These methods 
often work with a bottom-up strategy, where sub-structures are identified and merged 
to mark text regions [2-3]. Texture-based methods are based on the observation that 
text in images has distinct textural properties from the background, in which the tex-
tural properties of a text region can be detected by Gabor filters and Wavelet [4-5]. 
The most of those methods are sensitive to the variations of text in font, color, and 
arrangement. Furthermore, multilingual text cannot be extracted by using a single 
method. 

Recently, the researchers introduced text extraction methods based on statistical 
modeling of neighboring character regions and reported promising results. Zhang and 
Chang [6] proposed a part-relation based approach for scene text detection, and  
reported their experiments on English text. Our previous work [7] presented a text 
extraction method based on the Gaussian Mixture modeling (GMM) of three 
neighboring characters, which can handle multilingual text and complicated cases 
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such as multicolor text, text arranged in a curve. The maximum likelihood estimation 
(MLE) of parameters of GMM in the method was found by the Expectation-
Maximization (EM) algorithm. The resultant precision rate is high, but the recall rate 
is imperfect. The maximum likelihood (ML) criterion belongs to informative training, 
in which the classifier performance is optimized indirectly. Contrarily, the discrimina-
tive training methods, such as the minimum classification error (MCE), aim to opti-
mize the classifier performance directly, which have been applied successfully in 
character recognition and speech recognition [8-10]. 

In this paper, we use a new idea of discriminative training, the maximum-minimum 
similarity (MMS) training criterion [11], to revise the initial parameters estimated 
from the EM algorithm, and subsequently improve the performance of our text extrac-
tion method. In the MMS training method, the recognizer performance is optimized 
through maximizing the similarities for positive samples, and minimizing those for 
negative samples. Based on this approach to discriminative training, we define the 
corresponding objective function for our text extraction method. Through minimizing 
this objective function by using the gradient descent method, the optimum parameters 
are obtained. In the experiments of text extraction, the overall performance of our text 
extraction method is improved greatly by the MMS training. Compared with the ML 
training, the precision rate decreased little from 94.59% to 93.56%, but the recall rate 
increased a lot from 80.39% to 98.55%. It shows that the MMS training is effective 
and promising. 

2   GMM Based Text Extraction 

The key of text extraction is to discriminate the region of characters from that of non-
characters. In this work, we use the relationship of three neighboring characters to 
solve this problem. The region of three neighboring characters is found to be distin-
guished from other regions by the following features: 

1x : the consistency of distances between centroids of characters. For most text 

strings in images, no matter characters are arranged in a line or in a curve, dis-
tances between adjacent characters are approximately equal.  

2x : the consistency of region areas of characters. Similar with distance between 

characters, region areas of neighboring characters are often approximately equal.  

3x : the region density . The region density of a character is usually different from 

that of other objects. We compute the mean region density of three neighboring 
characters as the third feature. 

Then the feature vector { }321 ,, xxx=x  of three neighboring characters is assumed 

to be of the distribution of Gaussian Mixture [12]. Let C  denote the case of three 

neighboring characters, K  be the number of components in GMM, kw , kμ  and kΣ  

be the weight, the mean vector and the covariance matrix of the k th Gaussian compo-

nent respectively, d is the dimension of the feature vector x , 1=∑ kw , then we have 
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kΣ  is assumed to be diagonal for simplicity, i.e. [ ]3
1=

=
jkjσkΣ .  

Using Bayes’ formula, we get 

( ) ( ) ( )
( )x

x
x

p

CPCp
CP =  . (3) 

It’s reasonable to use the posterior probability ( )xCP  as the similarity measure 

between x  and C . In Eq.(3), ( )Cp x  can be estimated from the samples of three 

neighboring characters, but it’s very difficult to learn ( )CP  and ( )xp  since contrary 

cases are too diverse to be handled. However, they are fixed for all observations of C  
by assuming x  is distributed uniformly, therefore 

( ) ( )CpCP xx ∝  . (4) 

It should be noted that Eq.(4) is the same as the well-known Bayes classification 
rule, but there are totally different meaning. In the Bayes classification rule, the rela-

tionship between ( )xCP  and ( )Cp x  is with respect to classes, where C  is vari-

able with different classes but x  is constant. Oppositely, in Eq.(4), the relationship 

between ( )xCP  and ( )Cp x  is with respect to observations, where x  is variable 

with different observations but C  is constant. 

According to Eq.(4), we can emulate ( )xCP  through embedding ( )Cp x  in a 

smooth, monotonically increasing function which takes value in ]1,0[ . We call the 

value of this kind of functions as the ‘pseudo-probability’, for computing which the 
following function is a good choice: 

( )( ) ( )( )CpCp xx βρ −−= exp1 . (5) 

where β  is a positive number.  

Consequently, for arbitrary { }321 ,, xxx=x , we compute the corresponding 

pseudo-probability by using Eq.(5), if the result is larger than 5.0 , x  is accepted as 
the case of three neighboring characters. 
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Based on the discrimination method above of three neighboring characters, texts in 
images are extracted in following steps. Firstly, the initial text regions are extracted 
and binarized using the method based on edge pixels clustering [13], which guaran-
tees the integrality of extracted text regions; secondly, each character in the binary 
image is treated as a connected component in it. In order to make this treatment  
reasonable for characters with separated parts, such as Chinese characters, the mor-
phological closing operation is performed to connect separated parts of a character. 
Considering diverse appearances of a character in images, several structuring ele-
ments with different directions and sizes are used in closing operations to generate 
several new binary images; finally, the connected components in these new binary 
images and the original binary image are labeled as character or non-character by 
using the GMM based method above. If a connected component in new binary images 
is labeled as character, we find the corresponding region of this connected component 
in the original binary image, and label all connected components in this region of 
original binary image as characters.  

For more details about the text extraction method described above, please refer to 
our paper [7]. 

3   Maximum-Minimum Similarity Training 

The unknown parameter set of the text extraction method described in Section 2 is 

Kkw kkk ...1},,,,{ == βΣμΛ  . (6) 

where the meaning of each parameter is the same as that in Eq.(2) and Eq.(5). 
In previous work [7], we used the EM algorithm to find the ML estimation of pa-

rameters in GMM, i.e. kkkw Σμ ,, , and set K  to 3 and β  to 1.020 through careful 

experiments. The resultant text extraction algorithm achieved the precision rate of 
94.59%, but the recall rate of which was only 80.39%. In this paper, we use the maxi-
mum-minimum similarity (MMS) training criterion to revise the parameters of our 
text extraction method and improve its effectiveness accordingly. 

The MMS training is a new idea of discriminative training, which focuses on the 
class separability of the similarity measure of a recognizer. We can imagine a perfect 
recognizer in which the similarities between observations and models from the same 
classes approximate to 1, and those for different classes approximate to 0. This means 
that the class separability and subsequent recognition rate of a recognizer can be op-
timized by producing class models to maximize similarities between class models and 
their positive samples, at the same time minimize similarities for their negative sam-
ples. Here the positive samples of a class model are its observation in the training 
data, and other training data is corresponding with its negative samples.  

More formally, let ( )Λx;f  be the similarity function for classification, in which 

the set of unknown parameters is Λ , x̂  be arbitrary positive sample, and x  be arbi-

trary negative sample, then the class separability of ( )Λx;f  is measured by 

( ) ( )[ ] ( )[ ]22 ;1;ˆ ∑∑ +−= ΛxΛxΛ ffF  . (7) 
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( ) 0=ΛF  means the hundred-percent class separability; the less ( )ΛF  is, the 

more class separability is. Consequently, we can obtain the optimum parameter set 
∗Λ  of the class model by minimizing ( )ΛF : 

( )ΛΛ F
Λ

∗ = minarg . (8) 

In this paper, ( )Λx;f  is defined by substituting Eq.(2) into Eq.(5), i.e.  
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where the unknown parameter set Λ  is given in Eq.(6). Moreover, there are only two 
classes in this paper: the region of three neighboring characters and other regions. So 
the positive samples are three neighboring connected components which are all char-
acters, and the negative samples are three neighboring connected components in 
which at least one connected component is non-character. The positive samples and 
negative samples are also called character samples and non-character samples respec-
tively in the following description. 

In Eq.(9), some parameters must satisfy certain constraints, which are transformed 
to unconstrained domain for easier implementation as in the MCE training method 
[8]. The constraints and transformation of parameters are listed as follows. 
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(2) 0>β∵ ，     ββββ ln
~

:
~ =→∴  .  

(3) 0>kjσ∵ ，    kjkjkjkj σσσσ ln~:~ =→∴  .  

Finally, the optimum parameter set of our text extraction method is searched by 

minimizing Eq.(7) through the gradient descent method. Let tα  and tΛ  be the step-

size and the parameter set in the t th iteration respectively, ( )tF Λ∇  be the partial 

derivative of ( )ΛF  with respect to all the parameters in tΛ , then  

( ) ttttttt gF αα −=∇−=+ ΛΛΛΛ 1  . (10) 

( )tF Λ∇  is simplified as tg  in Eq.(10) and the following description. According to 

Eq.(10), the MMS training procedure in our text extraction method is: 

Step1: Use all character samples (positive samples) and non-character samples (nega-

tive sample) to compute the partial derivative of ( )ΛF  with respect to each 

parameter. Let ψ  be arbitrary parameter in the parameter set, then we have 
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where 
( )
ψ∂

∂ Λx;ˆf
 and 

( )
ψ∂

∂ Λx;f
 are unified and simplified as 

( )
ψ∂

∂ Λf
, 

because their formulations are the same.  

Step2: Compute the step-size tα  using the Armijo-Goldstein method [14]. 

Step3: Update the parameters according to Eq.(10). 
Step4: Repeat Step 1 to Step 3 until convergence. Let ε  be an infinitesimal, the 

convergence condition is: 
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The partial derivatives of ( )ΛF  with respect to each parameter in above steps, i.e. 

( )
ψ∂

∂ Λf
, are given below, where ( )kkN Σμx ,  in Eq.(9) is simplified as )(xkN , k  

is the sequence number of the Gaussian component in the GMM, 3,2,1=j  is the 

sequence number of the element in the feature vector of three neighboring characters, 
as described in Section 2. 
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4   Experimental Results  

We tested the proposed text extraction method in real Chinese and English text of 
images both from ICDAR 2003 [15] and our database. We obtained character samples 
for training from 100 English text images and 100 Chinese text images, and non-
character samples for training from other 20 images. Another 30 images were used as 
the test set, in which 5 images without text and with cluttered background were in-
cluded for testing the robustness of the proposed method in rejecting false regions.  

We first get the ML estimation of parameters of GMM in our method by the EM 
algorithm, and set the number of components in GMM to 3 and β  to 1.020 through 

careful experiments. Based on estimated parameters, open and closed tests of text 
extraction were conducted and the corresponding results are listed in Table 1. In the 
ML training, 427 character samples for English text and 531 character samples for 
Chinese text were extracted manually from training images and used as the training 
data.  

Then the MMS training is used to revise the initial parameters. We manually ex-
tracted 5973 non-character samples from 20 images. These non-character samples are 
taken as negative samples, and character samples in the EM training as positive sam-
ples. Using these negative samples and positive samples, the parameters of GMM and 
β  were updated by the MMS training. Using the updated parameters, open and 

closed tests of text extraction were conducted again and the corresponding results are 
listed in Table 1 also.    

In Table 1, the recall rate and the precision rate are used to evaluate the perform-
ance of the proposed method. Let L  be the set of connected components correspond-
ing to true characters in the image, I be the set of connected components identified as 
characters by the text extraction process, then the recall rate R  and the precision rate 
P  were calculated as follows [16]:  

I

IL ∩
=P ,           

L

IL ∩
=R  . 

 

Furthermore, NT  in Table 1 represents the number of connected components corre-

sponding to non-characters.  
The data in Table 1 show that from the view of the overall performance, the MMS 

training behaved much better than the ML training in the experiments. For the train-
ing data, the precision rate is reduced from 96.08% to 95.40%, representing a 0.7% 
reduction. But the recall rate is increased from 81.25% to 98.09%, representing a 
20.7% increase. As for the test data, the reduction in the precision rate is 1.1%, but the 
increase in the recall rate is 22.6%. The reasons behind these data are summarized as: 
(1) parameter estimation and text extraction are separated in the ML training; the 
performance of text extraction is optimized indirectly. Contrarily, the MMS training 
serves the text extraction directly; (2) only character samples are involved to estimate 
the distribution of the character region in the ML training, but the MMS training con-
siders not only character samples but also non-character samples; (3) the MMS 
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method can estimate the parameters out of the class conditional probability distribu-
tion, i.e. β  in Eq.(9), but the ML method can not.  

Fig.1 shows some examples of the situation that texts are omitted after the ML 
training but extracted after the MMS training. Fig.1(a) and Fig.1(b) shows the text 
extraction results after the ML training and after the MMS training respectively, 
where the extracted texts were indicated by rectangles. However, some non-character 
regions are extracted as characters after the MMS training. Fig.2 shows two examples 
of this situation, where extraction errors are indicated by arrowheads. We expect to 
overcome this shortcoming and improve the extraction precision further by using 
more training samples in the next research. 

Tab1e 1. The experimental results after ML & MMS training 

Evaluations 
 
Training  
Algorithm  

 

L  

 

I   

 

IL∩  

 

NT  

 
P  

 
R  

ML (200 training 
images) 

1296 1096 1053 59 96.08% 81.25% 

ML (30 testing 
images) 

413 351 332 116 94.59% 80.39% 

MMS (220 train-
ing images) 

1417 1457 1390 152 95.40% 98.09% 

MMS (30 testing 
images) 

413 435 407 116 93.56% 98.55% 

      

(a)                          (b)                                (a)                            (b) 

      

(a)                            (b)                               (a)                            (b) 

Fig. 1. The extraction results of test images indicated by rectangles, (a) the extraction results 
after the ML training, (b) the extraction results after the MMS training 
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Fig. 2. The examples of false text extraction after the MMS training (false results are indicated 
by arrowheads) 

5   Conclusions 

This paper used the maximum-minimum similarity training criterion to estimate the 
parameters in the text extraction method based on Gaussian mixture modeling of 
neighbor characters. We defined the objective function for text extraction based on 
the MMS training, and used the gradient descent method to minimize the objective 
function and search the optimum parameters. The experimental results show that the 
parameters estimated by the MMS training are much better than those estimated by 
the ML training. The recall rate increased a lot and the precision rate decreased little. 
In the future work, we will use more training samples in the MMS training to improve 
the precision rate and the recall rate further. 
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Abstract. This paper describes an approach for visualization of patterns in large 
data sets. The data sets are combined from external exposure and internal stress 
factors on human health. For deduction of modes of action on human health, ex-
ternal and internal stress factors have to be combined and classified. The ap-
proach shown in this paper is based upon clustering algorithms. Relationships 
between cases ban be obtained by visual inspection of clustering results. 

1   Introduction 

During our epidemiological studies, which deal with the influence of indoor pollution 
on human health, we observed that several lifestyle activities such as renovation or 
smoking leave typical patterns in indoor air (patterns of volatile organic compounds 
(VOC)). Until now only single chemicals have been linked with the health effect. The 
problem is to judge the effect of mixtures or patterns of chemicals respectively. From 
that it is not clear, whether health effects are associated with these patterns. A first but 
key step is to find out more about this relationship. We investigated patterns of me-
tabolites, which are traceable after passage through human body from urine samples, 
too. By combining of both patterns (external and internal) we try to identify combina-
tions of compounds which hold harmful potential on human health. 

This paper describes an approach visualization of patterns in large data sets which 
are results of classification algorithms (i.e. from self organizing maps). These patterns 
are used to deduce on the relationships between external and internal stress influences 
on human health and the processes behind. 

Both stress patterns are described by a data vector for each individual case. After 
combining both vectors each case is represented by a data vector describing its situa-
tion. Combining is a simple case wise concatenate of the variables. Sequence is not 
important; it has only to be ensured that sequence is the same in all cases. 

The main focus of this investigation is to classify cases into several typical clusters 
and subsequently to find core properties of these clusters in order to understand the 
processes behind them. There is no single solution for a given classification task when 
using self organizing maps. Therefore a possibility to assess different solutions 
against each other was needed. 
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Visualization is necessary to check the solution provided by the clustering algo-
rithm. Because the data vectors to be classified are high dimensional and only similar 
but not equal, a proper method for visualization was needed.  

Table 1. Nomenclature 

abbreviation/term  
xij Element of input vector 
xij norm Element of input vector normalized to a closed {0;1}-interval 
I  case index 
J  Variable index 
max(xj) maximum value of a variable 
min(xj) minimum value of a variable 

2   Material and Methods 

In general our datasets are collected by LC-MS/MS methods from human urine sam-
ples (internal load) as well data collected by GC-MS from indoor air (external stress, 
exposure). The dataset used in the examples for this paper is based on volatile organic 
compounds from indoor air samples. 

For the clustering task we decided to use a method based on self organizing maps 
(SOM) [1-3], because they provide an efficient way to map from an n-dimensional 
space to a two-dimensional space and to visualize multivariate data afterwards. The 
self organizing map algorithm is a member of the class of the unsupervised artificial 
neural network algorithms. In contrast to supervised artificial neural network algo-
rithms, self organizing maps are able to extract typical features without any prior 
knowledge about the structure of the data. There are shortcut methods existing, which 
speed up the computation [4]. In this investigation we did not apply them. 

The term “property” has to be introduced for proper understanding of this paper. 
We use it for the entirety of variable values of a case. The property of a case is de-
fined as a distinct combination of variable values. 

3   Pattern Visualization 

Pattern visualization is done to get an impression on the assignment/layout of the 
cases into the classes together with their properties. 

Classification algorithms basing on self organizing maps do not necessarily lead to 
the same result. This is because the initial values in the algorithm are randomly cho-
sen. Cases with large differences are arranged into different classes reliably, but cases 
which are similar to multiple cases can be arranged to one class in the first try and 
into another class in the second try. This raises the question whether the achieved 
result is suitable for the requirements which were fixed in advance. Therefore we 
needed a solution for visualization of classification results, so that a human is able to 
assess the quality of the classification. 

Usually two dimensional representations are in use for this task, because they al-
low a precise representation of the relationships between a variable pair [5]. 
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3.1   Two Dimensional Visualization 

If only the relationship between a distinct pair of variables is of interest, then the two 
dimensional visualization of a distinct variable pair is suitable. The following exam-
ple shows the relationship between the two chemical compounds “Undecane” and 
“Methylbenzoate”. Both variables are normalized to a closed {0;1}-interval.  

 

Fig. 1. Visualization of a distinct variable pair for all cases in a two dimensional view (example) 

Pattern visualization can also be done as visualization of all variable values and 
cases in a three dimensional view and as visualization of a distinct variable pair for all 
cases in a two dimensional view. 

3.2   Three Dimensional Visualization 

The three dimensional view is useful if one needs an overview on the dataset and the 
relationships between the variables and cases. For a better visualization it is necessary 
to adopt the range of all variables to an common closed {0;1}-interval. Otherwise 
variables with small absolute values are nearly invisible. This is done similar to the 
normalization of the data set before the training of the self organizing map: 

)min()max(

)min(

jj

jij
ij xx

xx
normx

−
−

=  . (1) 

The visualization of the values can be done as surface plot (figure 1). This gives a 
good impression of the relative distribution of the values between classes and their cases. 
The visualization of missing values is difficult, because they produce holes in the surface 
which also affect neighbouring values and prevent from detecting the dependencies. 



 Visualization of Depending Patterns in Metabonomics 281 

 

Fig. 2. Visualization of variable values as 3D-surface (example) (cases are in column, variables 
are in row) 

Because of these problems we decided to visualize the values as bars. Missing val-
ues are clearly visible in this case (figure 2). 

 

Fig. 3. Visualization of variable values and cases as 3D-bars (example) (cases are in column, 
variables are in row) 

The ability to tilt and rotate the entire diagram is important to get an overview on 
the relation of the objects in three dimensional space which was projected to the two 
dimensional screen. 

3.3   Methods of Color Coding 

Color coding can be used for visualization of the values or for visualization of the 
classes. Color coding of different variables or cases fails, if there are a high number of 
variables or cases. In this case the number of available distinguishable colors is not 
sufficient for each different variable or case. 
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After several tries we decided to code the values by color, because this gives the 
best impression of the overall distribution. Simultaneously the different classes are 
visually subdivided by lines of equal small values (0.1), which are easily recognizable 
as borders. 

 

Fig. 4. Data set before training using a self organizing map (SOM) 

Figure 3 shows a data set before training (cases are unordered) whereas figure 5 
shows the same data set after classification using the SOM algorithm. 

 

Fig. 5. Visualization of variable values and cases as 3D-bars (example) (cases are in column, 
variables are in row) 
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The cases are now assigned to classes. One can clearly see the difference between 
both assignments. Visual inspection allows easier recognition of possible important 
variables in the space. 

After classification of the cases visualization can show the distribution of the cases 
with their variables in space as well as the most important variables together with 
their properties. The rows show the properties (in this example: chemical compounds) 
whereas the columns show the cases. On the left side there are two classes with nearly 
identical cases. These cases were scattered into the dataset to control the ability of the 
classification algorithm to concatenate these cases to classes. 

The empty columns represent the borders of the classes. The visualization of these 
borders is important for a good visual distinction between the classes. One can clearly 
see that the classes share similar properties; low values with few high concentrated 
compounds on the left sides; high concentrations on nearly all compounds on the right 
side. 

3.4   Calculation of Hypothetical Parameters 

Stress spectra of outer and inner burden are not of the same structure. For the analysis 
of the results of clustering it is important to gather deeper knowledge about the  
variable values behind each Kohonen neuron as well as the relation of these values 
between all Kohonen neurons. Because of the fact that the weight vectors of the  
Kohonen neurons contain normalized values in a closed {0;1}-interval these values 
must be ‘denormalized’ before considering on the absolute values of a variable.  
Denormalization means the opposite transformation than normalization (equation (1)) 
and transforms the values of the weight vector in a Kohonen neuron back to the origi-
nal co-domain of the underlying variable using the following equation. It can be  
obtained by re-arranging equation (1): 

)min())min()(max(*( jjjijij xxxnormxx +−=  . (2) 

4   Discussion 

A novel method for visualization of patterns has been introduced in this paper. The 
basic idea is to show dependencies between cases and classes as well as to verify the 
assignment made by a clustering algorithm in a prior step. 

Using the shown technique we were able to recognize dependencies between cases 
and to show the core properties of each class with respect to the arrangement of the 
whole data set. Among different visualization methods we got best results with 3D-
bars using color coding of values. 

It is important not only to identify similar cases (stacking into the same class by the 
clustering algorithm). Rather, one should know what the reason for this similarity is. 
This can be achieved by visualization of the data set and inspection of the variables 
which are similar. As result one can find out the reason for classifying of cases into 
the same class. 

Using this method we are able to discover the relevant variables for a given classifi-
cation. Another possible method for extraction of relevant variables is Principal Com-
ponent Analysis (PCA)[6;7]. Unlike the method shown here, PCA does not classify 
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cases into classes, rather it extracts the most important variables for describing a data 
set. Nevertheless, PCA results may also be visualized using the methods shown here. 
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Abstract. The feature selection is an important part in automatic text 
classification. In this paper, we use a Chinese semantic dictionary -- Hownet to 
extract the concepts from the word as the feature set, because it can better 
reflect the meaning of the text. We construct a combined feature set that 
consists of both sememes and the Chinese words, propose a CHI-MCOR 
weighing method according to the weighing theories and classification 
precision. The effectiveness of the competitive network and the Radial Basis 
Function (RBF) network in text classification are examined. Experimental 
result shows that if the words are extracted properly, not only the feature 
dimension is smaller but also the classification precision is higher, the RBF 
network outperform competitive network for automatic text classification 
because of the application of supervised learning. Besides its much shorter 
training time than the BP network’s, the RBF network makes precision and 
recall rates that are almost at the same level as the BP network’s. 

Keywords: text classification, concept feature, RBF network. 

1   Introduction 

Automatic text classification is a process which classifies the documents to several 
categories by their content. With the rapid development of the online information, 
automatic text classification becomes one of the key techniques for handling and 
organizing text data. It always includes two main parts: the feature selection and the 
classifier. Because of the huge data of the document sets, it is difficulty for reflecting 
the feature vector of documents, we need to construct a proper feature set which is 
easily process and has a considerable classification precision. Because the concept 
space is much smaller than the word one, and the components are comparatively 
independent, the concept features are much better to reflect the content of the 
documents. With the semantic analysis we can get a much better vector space [1], 
therefore we choose semantic features as the main components of our feature set. 

Many techniques can be used in feature selection to improve accuracy as well as 
reduce the dimension of the feature vector and thus reduce the time of computation  
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[2, 3]. These techniques include using concept frequency instead of original word 
frequency and Latent Semantic Indexing (LSI) [3]. However, after using these 
techniques, the feature matrix is still quite complicated and requires a robust classifier 
to deal with. 

Many classifiers have been applied to classify texts, including Vector Space 
Models, K-Means, Support Vector Machine (SVM), Naïve Bayes and so on [3]. 
Among many methods applied, several kinds of neural networks have shown 
attractive abilities. The competitive networks are used in text classification, including 
Learning Vector Quantization (LVQ) and Self-Organizing Maps (SOM) network [4, 
5]. These two are variants of the unsupervised competitive networks. Besides, the 
Radial Basis Function (RBF) network, which is characterized by its high speed of 
training, can also be used in text classification. 

In this paper we make a performance comparison between the competitive network, 
and RBF network in text classification. For unsupervised competitive network, we use 
the evaluation criterion, and define positive and negative accuracies and use their 
average to evaluate the performance of clustering. 

Table 1. Definition of positive and negative accuracy 

 Clustered together Not clustered together 
In same category A C 
In different category B D 

Positive Accuracy Ap=A/(A+C), and negative accuracy An=D/(B+D). Average 
Accuracy Aa=(Ap +An)/2. For the supervised classification networks, the factors we 
take into account are time, precision, recall and F1. Precision and recall are two 
widely used criteria of evaluation in text classification and text retrieval. Let us 
assume that P implies precision, R implies recall, Ai is the number of documents in 
category i, and Bi is the number of the documents classified by the classifier to 

category i, then 
i

ii
i B

BA
p

∩= , and 
i

ii
i A

BA
R

∩= . F1 is a criterion that combines 

precision and recall, 
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2   Concept Feature Extraction 

Hownet is an on-line common-sense knowledge base which unveil the inter-
conceptual relations and the inter-attribute relations of concepts as connoting in 
lexicons of the Chinese and their English equibalents [6]. Different from Wordnet, the 
concept definitions in Hownet are not in a tree form in which the distance between 
them can be directly calculated, instead, they are in multidimensional forms. The 
concept definition is a description of the word semantic, and one word may have 
several concept definitions, reflecting several different meanings. The definitions 
consist of a series of sememes, which refer to the smallest basic semantic unit, and 
these sememes are divided to nine main categories, such as Entity and Event 
categories, and they have Hypernym-Hyponym relations among them. 
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2.1   Tree Form of Sememes and Expression Power of Sememes 

As far as the sememes in Hownet have Hypernym-Hyponym relations, the father node 
is always abstract than the child node. The accessional tables in Hownet give the 
Hypernym-Hyponym relations of the 1505 sememes, and we can build several 
sememe trees for further process. In these trees, every node refers to one sememe, and 
its position shows its relation to other sememes. We take three factors into 
consideration for the expression power. First, the nodes in different level should have 
different expression power, the different value should be given when we extract them 
from the word. Second, if a sememe has more child nodes, its value should be more 
reduced, as it can be divided into several detailed concepts in Hownet, and its child 
nodes would be chosen to describe the word unless the concept is abstract. Third, the 
different sememe trees should have different expression powers, the different tree 
roots have the different original values. For example, the Attribute tree may has small 
expression powers, while Entity tree are strong in description and their root value is 
higher. The formula is shown as follows: 
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a)2/)0.1log((Deep[)(
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⋅=

k
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Where, k(m) is the expression power of sememe m; k is the node referring to m in the 
sememe tree; Wtreei is the root value of tree i which the node k is in; Deepk is the 
height of the node k. Because the difference among different levels would be too 
much if the height is used as their weighing value, therefore we use the logarithm 
value of the height. Meanwhile, as the range of the tree height is from 0 to 12, we 
divided the value by 2 in order to make the result better; Childk is the number of its 
child nodes, its range is from 0 to 9, and we set a mediating factor, b, to protect the 
calculation from invalid value; a is also a mediating factor, which avoid the result 
being too small. The reflection between the sememe m and the node k can be found in 
the corresponding table in our system, and the height and child node number are also 
described in an index table. 

2.2   Expression Power of Concept Definition 

As there are some sememes in Hownet which are abstract and occur in a lot of 
definitions of the words, and do not contain enough information to describe them, we 
need to separate the sememes into two kinds according to their expression power, the 
strong one and the weak one. If the definition of a certain word contains only weak 
ones, it means that it does not describe the word accurately and the information gain is 
not enough, thus we should not extract the words to their definition. To calculate the 
expression power of a definition, we set a threshold to filter the weak ones and reserve 
the word which cannot be extracted. In this way, the feature set consists of both words 
and sememes, the expression power of definition c can be calculated as follows: 

)(max)(f j
j

ckc = . (2) 

Where k(cj) is the weight of sememe j in concept definition c; (2) calculates the 
expression power of all the sememes, and chooses the highest value as the expression 
power of the definition. 
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2.3   Threshold in Concept Extraction 

To every definition, if its expression power is high enough, we can extract it from the 
word, otherwise, it should not be extracted. In order to decide when to extract it, we 
need a threshold to divide the definition into two parts, which can be extracted or 
cannot. When the definite value is higher than the threshold, this word is extracted 
and the sememes are added into the feature set. Otherwise, the original word is added 
instead. 

2.4   Combined Weighing Method: CHI-MCOR 

Analysis of feature set. When we extract the concept attribute to construct the feature 
set, we convert a lot of words into the concept features, and get rid of the influence of 
the synonymy and dependence, which makes the classification precision much higher. 
However, because of the mass of weak concept and the words which are not in the 
Hownet, some Chinese words are given a comparatively lower weight and become the 
middle or low occurring feature. There are still some specialty words and proprietary 
words which are only occur in one category and are not highly occurred in the whole 
documents, however these words are very important in classification. These words 
need a strategy to get a higher weight and contribute more in text classification, we 
propose the weighing methods. 

The comparing result of seven weighing methods. We select seven common 
weighing methods and test them, and focus mainly on their selection strategy and 
classification precision. The table 1 gives us the experimental results. From the 
analysis of the selected features, we find the following facts. 

Fact 1．The DF (Document Frequency), TF-IDF (Term Frequency-Inverse Document 
Frequency), CET (an improved method of Information Gain), CDW (Category-
Discriminating Word) and CHI ( χ  statistics) methods prefer the high-occurred words 

and they are greatly related. In our experiment, CHI is the best method. 

Fact 2．The MCOR (Multi-Class Odds Ratio) method mainly chooses the middle 
and low occurred features, so its classification precision is low when the reduction 
rate is high. But with the increase of the feature dimension, its precision is increased 
highly and when the feature dimension is above 4000, its precision is higher than 
CDW, CET, DF, TF-IDF and MI (Mutual Information) methods. 

Fact 3．The MI method mainly selects the high and middle occurred features, it can 
get a good classification precision but with the increase of the feature dimension, the 
precision is not improved visibly.  

The CHI selection method. The CHI weighing method’s formula is shown as follow: 
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Fig. 1. The average of seven different weighing methods. Y axis is the average precision, and x 
axis is the feature dimension of the training set. 

Where, N is the total document number of the training set, c is a certain category, t is a 
certain feature, A is the number of the document which belong to category c and 
contain feature t, B is those which do not belong to category c but contain feature t, C 
is those which belong to category c but do not contain feature t, D is those which do 
not belong to category c and do not contain feature t. 

The CHI method is based on such hypothesis: if the feature is highly occurred in a 
specified category or highly occurred in other categories, it is useful for classification. 
Because CHI take the occurrence frequency into account, it prefers to select highly 
occurred words, and ignored the middle and low occurred words which maybe 
important in classification.  

The MCOR selection method. The MCOR weighing method’s formula is shown as 
follow [1]: 

∑
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Where, P(Ci) is the occurrence probability of category Ci, P(t / Ci) is the occurrence 
probability of the feature t when category C is occurred, P(t / Celse) is the occurrence 
probability of the feature t when category C is not occurred. When P(t / Ci) is higher 
or P(t / Celse) is lower, the weight of MCOR is higher. Therefore, the MCOR selects 
the features which are mainly occurred in one category and nearly not occurred in 
other categories. Because it does not consider the occurrence frequency of the feature, 
it prefer to select the words which are middle or low occurred in the document while 
highly occurred words are always occurred in more than one categories.  

The Combined Method: CHI-MCOR. Because MCOR mainly selects the words 
whose occurrence frequencies are middle or low, its classification precision is low 
when the reduction is high. But with the increase of feature dimension, its precision is 
improved to an appreciable level. And CHI prefers to select the words whose 
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occurrence frequencies are high, and it is one of the best feature selection methods 
[1]. As a result, when we combine the both methods, we can make the advantages 
together and get a high classification precision [7]. Therefore, we give a combined 
weighing method based on CHI and MCOR, it is shown as follows [8]: 

.10),()1()()( <<−+= λλλ tVtVtV MCORCHI  (6) 

Where, VCHI is the weight of feature t when CHI method is used, VMCOR is that when 
MCOR method is used. 

When we analysis the weigh given by the both methods, we find that the average 
weight of the features are different. For example, when the reduction is 50%, the 
range of the CHI weight is (2.1, 6.81), while that of MCOR is (1.15, 1.76). Because 
CHI gives a much higher weight to all the features and its swing is wider, we should 
give a comparatively lower value to λ . If not, the value depends too much on CHI 
and the combined weigh method is meaningless. So we need a proper value of λ . In 
experience, we suppose that when the average weight of CHI and MCOR is the same, 
we can get the both advantage and the classification precision will be the highest. 
Therefore, we think that the best λ  is as follows:  
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2.5   Competitive Learning Network 

Competitive learning network usually consists of an input layer of N fan-out neurons 
and an output layer of K processing neurons. The neurons of output layer are full 
connected to that of input layer. The learning algorithm is shown as follows [4]: 

Step 1: Initialize the small random weights. 
Step 2: Each output neuron calculates the distance between the input vector and the 
weight vector connecting the input to it, if the ith index of the closest competitive 
neuron is found and set its output activation to 1, the activation of all other 
competitive neurons to 0. 
Step 3: The weight of the only winning neuron is updated so as to make the weights of 
the winning neuron closer to the current input pattern. Thus, the neuron whose weight 
vector was closest to the input vector is updated to be even closer. 
Step 4: Check if the stopping criterion is satisfied, if no more changes of the weight 
vectors or the maximum epochs is reached, then learning stop, else go to Step 2.  

The winning node is more likely to win the competition again when a similar input 
is presented, and less likely to win when a very different input is presented. Thus, the 
competitive network clusters the input data, the output vectors of resulting network 
represent to class indices. 

2.6   RBF Network Classifier 

In the RBF network, the activation function of the hidden nodes is Gaussian function 
[9], the input of the hidden node i is the product of threshold bi and the Euclidean 
distance between weight vector W and input vector X: 
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Where, Xq
j is the jth component of the qth input vector, Wji is the weight between the jth 

node in the input layer and the ith node in the hidden layer, bi is a threshold to control 
the accuracy of the Gaussian function. The output of the same node is shown as 
follows: 
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Instead of adjusting bi, we can use the parameter of spread in Neural Network 
Toolbox of Matlab 7.0 to control the performance of the network. The larger spread 
is, the smoother the function approximation will be. The activation function of the 
network output is linear. The RBF network has a strong capability of approximation 
to the kernel vector in a limited part of the whole net, its training is divided into two 
processes. The first is unsupervised learning, which adjusts the weight vector between 
the input and hidden layers. The other is supervised learning, which adjusts the weight 
vector between the hidden and output layers.  

3   Experiments 

3.1   Experimental Data 

The experimental corpus is based on 1204 documents from People’s Daily from 1996 
to 1998, all of which are first classified manually. These documents are separated into 
two parts: the training documents and the testing documents. The training corpus 
contains 1084 documents in six different categories, and the rest 120 documents are 
used as testing samples, with 20 documents in each category. Instead of using word 
frequency, we use the combined weighing method CHI-MCOR as features of each 
document as described in above, the dimension of the feature vector is 500. 

3.2   Classification by the Competitive Network 

In our experiment, we set the Kohonen learning rate of the competitive network to 
0.01. To prevent the dead nodes problem from happening, we set the conscience 
mechanism to the competitive network. The network is unable to cluster the 
documents when conscience rate is larger than 0.001 or too close to zero, thus the 
conscience rate is set 0.000005. The clustering result of the competitive network is 
listed in Table 2. 

Table 2. Experimental result of the competitive network 

Positive accuracy Negative accuracy Average accuracy 
0.5438 0.9159 0.7299 
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3.3   Classification by the RBF Network 

The value of spread is 1.2. After 1084 iterations, the training completes. This process 
takes only 3 minutes or so. Then another 120 texts are used for testing. Comparing 
with the classification that has been made manually, we can get the precision, recall 
and F1 value of the classification made by RBF network. The experimental results are 
listed in the Table 3. 

Table 3. Experimental result of the RBF network, F1=0.7722 

 Economics Politics Computer Sports Education Law Average 
P 0.615 0.435 1 1 0.947 .722 0.7866 
R 0.8 0.5 0.8 0.9 0.9 0.65 0.7583 

From the experimental results we can know that the classifier based on competitive 
network can classify document of different categories correctly, represented by a high 
negative accuracy rate. However, a low positive accuracy rate shows that many 
documents from different categories are not clustered together. This is partly because 
it is difficult to have information about the correct category in the unsupervised 
learning. In the experiment of the RBF network, the precision and recall are low in 
some categories, such as Politics category; the performances are fairly nice in 
Computer and Sports categories. The RBF network performs unsatisfactorily in the 
same category, the Politics, probably due to that some proper nouns have not  been 
correctly recognized in certain categories and thus lost some important information 
about the text. Feature words in politics often have vague boundaries with other 
fields, such as economics, culture, military affaires, and so on. While sports and 
computer are highly characteristic fields, it is much easier choosing their feature 
words. Besides, the number of training documents are slightly too small compared to 
the dimension of the feature vector and the complexity of text classification. 
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Fig. 2. Performance comparison between the BP and RBF network 
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At the same time, we do also experiment of the BP network, the result shows that 
the RBF network takes less than one-tenth of the training time BP takes, the RBF 
network performs well in the categories in which the results are satisfactory. In the 
sports category, it even outperforms the BP network. 

4   Conclusions 

When semantic sememes are used as the features set of text classification, we can 
efficiently reduce the feature dimension and reflect the original feature space to a 
more stable and smaller one. By setting a proper threshold, we can reserve the word 
whose concept definition is weak in expression. Meanwhile, as every sememe has its 
own expression power, we give them different values according to their expression 
power and relation to the word. Experimental results show that this combined feature 
set is much better than the word one or the semantic one. Because there are some 
words which are not highly occurred but useful in text classification, while the words 
with high occurrence frequency is usually useful, except the words in the stop word 
dictionary which are frequently used in the text but useless in classification, our CHI-
MCOR method to take balance in the high occurring ones and the middle occurring 
ones. This method not only selects the highly occurring words, but also selects the 
words whose occurrence frequencies are middle or low but only occur in one or two 
categories. It is much better than CHI or MCOR method alone.  

The competitive network sometime cannot cluster documents of the same category 
together, because it lacks category information as a method of unsupervised learning. 
As of the supervised learning methods, the RBF network shows its quickness in 
training and it can even outperform the BP’s capability, especially being modified in 
some means. As a classifier, the RBF network can be a good substitute for the BP 
network, when the selected features are clear enough for the RBF network itself to 
produce satisfactory results. 
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Abstract. Text-based information accounts for more than 80% of today’s Web 
content. They consist of Web pages written in different natural languages. As 
the semantic Web aims at turning the current Web into a machine-
understandable knowledge repository, availability of multilingual ontology thus 
becomes an issue at the core of a multilingual semantic Web. However, 
multilingual ontology is too complex and resource intensive to be constructed 
manually. In this paper, we propose a three-layer model built on top of a soft 
computing framework to automatically acquire a multilingual ontology from 
domain specific parallel texts. The objective is to enable semantic smart 
information access regardless of language over the Semantic Web. 

1   Introduction 

The Semantic Web [2] will augment the current WWW with ontological knowledge 
in order to overcome information overload by allowing semantically precise 
information search and retrieval.  Ontology is the carrier of meaning that makes the 
Semantic Web content explicit. Despite the benefits that the Semantic Web promises, 
ontology availability and multilinguality pose two major challenges towards 
realization of the Semantic Web vision [1]. At the ontology level, the issue of 
multilinguality concerns the development of multilingual ontology, by which 
semantic annotation and reasoning of the multilingual Web content can be based on. 
However, manual development of multilingual ontology can be very time consuming 
and require extensive expertise. The need for automation is evident. To automate 
ontology development, ontology learning from text is a viable approach [3]. 
Currently, studies in automatic learning of ontology from text are mainly limited to 
the monolingual environment. To achieve this in a multilingual context, this paper 
proposes a soft computing framework to automate the acquisition of multilingual 
ontology from domain specific parallel texts. The objective is to enable semantic 
smart information access over the Web regardless of language. This paper is 
organized as follow: In Section two, an overview of the soft computing framework for 
automatic ontology development is presented. Following this, technical details of the 
framework, including the construction of a fuzzy multilingual association network, 
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the self-organizing acquisition of the language-neutral concepts, and the formation of 
the ontology’s growing self-organizing concept hierarchy, will be discussed in 
Section three, four and five, respectively. Finally, a conclusive remark is given in 
Section six. 

2   The Soft Computing Ontology Learning Framework 

A multilingual ontology can be conceived as a language-neutral concept hierarchy 
populated with domain-specific lexical entities (i.e. terms) in multiple languages. 
Semantic robustness towards lexical diversity among languages is thus crucial for 
developing a multilingual ontology. To cope with the linguistic diversity within a 
multilingual domain, a three-layer model, built on a soft computing framework, to 
multilingual ontology development, as depicted in Figure 1, is proposed. This model 
consists of three layers, namely, the lexical layer, the semantic layer and the structural 
layer. In the lexical layer, we establish the semantic association among semantically-
similar multilingual lexical entries, which are content-bearing terms relevant to the 
domain of ontology. In the semantic layer, we develop a semantic unification scheme 
by considering each group of semantically-related multilingual terms as an individual 
language-neural concept. As such, linguistic diversity among multiple languages is 
unified. Finally, in the structural layer, we develop a language-neural concept 
hierarchy at the ontology structure level based on the notion of concept subsumption. 

 

Fig. 1. The three-layer soft computing ontology development framework 
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This three-layer model is built on top of a hybrid soft computing framework 
incorporating intelligent techniques from neural networks and fuzzy logic. First, for 
the lexical layer, a fuzzy multilingual association network that models the semantic 
relatedness among multilingual lexical entities is developed. This fuzzy multilingual 
association network will associate every term with all its cross-lingual related ones 
and indicate their semantic relatedness as a fuzzy association measure defined based 
on fuzzy set theory [8]. Second, for the semantic layer, we acquire language-neutral 
concept using neural network techniques based on the self-organizing map (SOM) 
[5]. Each lexical entry’s semantic relatedness vector will be used as input to the self-
organizing map to discover concepts by grouping semantically-similar lexical entries 
into clusters. Third, for the structural layer, we form a concept hierarchy using the 
language-neutral concepts as input. To do so, we discover the hierarchical relationship 
among concept within the ontology by applying the growing hierarchical self-
organizing map (GHSOM) [4]. 

3   Fuzzy Multilingual Association Network 

A fuzzy multilingual association network can be defined as an information structure 
consisting of sets of lexical entities in multiple languages and a specification of their 
cross-lingual semantic association. For automatically constructing a fuzzy 
multilingual association network, this approach involves the processing a parallel 
corpus, consists of identical texts in multiple languages, to exploit the cross-lingual 
semantic association among multilingual lexical entities. To determine the meaning of 
each lexical entity based on its corresponding degree of relevance to the documents, 
corpus statistics of the lexical entities’ occurrences are analyzed. With each lexical 
entity’s meaning as an integration of its document relevance, the lexical meaning of 
each lexical entity is then represented as a fuzzy subset of documents with the 
relevance degrees between the lexical entity and documents as the membership 
values. Based on the similarity of meanings, a degree of cross-lingual semantic 
association is computed. To get an association network that will allow partial 
association, a fuzzy relation representing the semantic relation of cross-lingual 
semantic association is established. Thereby, a fuzzy multilingual association network 
relating lexical entities across languages with their degrees of semantic association, 
ranging from 0 to 1, is constructed. 

Given a parallel corpus D in two languages, LA and LB, we have: 

}{ kdD =  (1) 

where { },...z,kd 21∈  is a parallel document containing identical text in both LA and LB 

versions. 
Two sets of lexical entities, A and B, are extracted from the parallel corpus D using 

language-specific noun-phrase parsing techniques adopted from natural language 
processing research. 

{ }iaA =     where { },...x,ia 21∈  is a term of  LA. (2) 

{ }jbB =                where { },...y,jb 21∈  is a term of LB. (3) 



298 R. Chau, K. Smith-Miles, and C.-H. Yeh 

For the establishment of semantic association to be encoded in the fuzzy 
multilingual association network, meaning of lexical entities has to be determined.  In 
our approach, each document of the parallel corpus is viewed as a specific semantic 
unit contributing to the meaning of the lexical entities it contains. As such, each 
document containing a lexical entity is considered contributing to the totality of the 
semantic content represented by the lexical entity as a whole. Accordingly, the degree 
of relevance between a lexical entity and a document is revealed by the lexical entity’s 
relative frequency within a document. By counting the relative frequency of each 
lexical entity within every document of the parallel corpus, lexical meaning of every 
lexical entity is then represented as a fuzzy subset of its contributing documents with 
the degrees of relevance between lexical entity and documents as membership values. 

For Aai ∈ , its lexical meaning is represented by: 

( )∑
∈

=
Dd

kkai
k

i
dda μ  (4) 

where 

( )
kA

kAi
ka d of version L of Length

d of version L in a of Frequency
d

i
=μ  (5) 

Similarly, for Bbj ∈ , its lexical meaning is represented by: 
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∈

=
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j
ddb μ  (6) 
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=μ  (7) 

A fuzzy multilingual association network FNAB, involving two languages, LA and 
LB, modeling the semantic relation of cross-lingual semantic association is expressed 
as a fuzzy relation [6, 7] FN(A,B) as follows: 
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is defined as the degree of cross-lingual semantic association between two terms, ai 
and bj, based on the similarity of their meanings. In other words, in terms of 
meanings, if bj is similar to ai as ai is similar to ai  itself,  then ( ) 1=jiFN b,aμ  and bj is 

the translation equivalent of ai. 

4   Self-Organizing Concept Acquisition 

To acquire language-neural concepts, which can effectively characterize the domain 
knowledge of a multilingual ontology, the fuzzy multilingual association network is 
used. Contextual contents of every multilingual term represented as their fuzzy 
semantic association vector in the fuzzy multilingual association network are used as 
the input for the self-organizing map algorithm to find concepts. 

Let M
i R∈x ( Mi ≤≤1 ) be the fuzzy semantic association vector of the ith 

multilingual lexical entity, where M is the total number of multilingual lexical 
entities. The self-organizing map algorithm is applied to discover the language-neural 
concepts by clustering the multilingual lexical entities, using these lexical entities’ 
fuzzy semantic association vectors as the input to the self-organizing map. The map 
consists of a regular grid of nodes. Each node is associated with an M-dimensional 
model vector. Let [ ]Mmm jmj ≤≤= 1m  ( Gj ≤≤1 ) be the model vector of the jth 

node on the map. The self-organizing concept acquisition algorithm is given below. 

Step 1: Select a fuzzy semantic association vector xi of a lexical entity at random. 

Step 2: Find the winning node s on the map with the vector ms which is closest to xi 
such that 

ji
j

si min mxmx −=−  (10) 

Step 3: Update the weight of every node in the neighborhood of node s by 

))(( old
ti

old
t

new
t t mxmm −+= α  (11) 

where )(tα is the gain term at time t ( 1)(0 ≤≤ tα ) that decreases in time and 

converges to 0. 

Step 4: Increase the time stamp t and repeat the training process until it converges.  

After the self-organizing process is completed, each multilingual lexical entity is 
mapped to a grid node closest to it on the self-organizing map. A partition of 
multilingual lexical entity space, represented by a map of language-neutral concepts, 
is thus formed. This process corresponds to a projection of the multi-dimensional 
fuzzy semantic association vectors onto an orderly two-dimensional concept space 
where the proximity of the multilingual lexical entities is preserved as faithfully as 
possible. Consequently, conceptual similarities among the multilingual lexical entities 
are explicitly revealed by their locations and neighborhood relationships on the map. 
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Multilingual lexical entities that are synonymous are associated to the same node. In 
this way, conceptual related multilingual lexical entities are organized into clusters, 
representing all domain-specific concepts, within a common semantic space. The 
problem of linguistic diversity in a multilingual environment is thus overcome. 

5   Growing Self-Organizing Concept Hierarchy Formation 

The multilingual ontology modeled as a concept hierarchy is generated with the 
application of the growing hierarchical self-organizing map algorithm using the 
concept prototype vectors obtained from the self-organizing map in the previous stage 
as inputs. The algorithm for the formation of the concept hierarchy is given below. 

Step 1: Start the growing hierarchical self-organizing map (GHSOM) with layer 0 
consisting of only one node whose weight vector m0 is initialized as the average of all 
concept prototype vectors y. Then calculate the mean quantization error (mqe) of this 
single node by the Euclidean distance between the node and all concept prototype 
vectors mapped to it such that 

ym
d

mqe −= 00
1

 (12) 

where d is the total number of concept prototype vectors y. 

Step 2: Initialize layer 1 of the GHSOM as a small self-organizing map (SOM) of 2x2 
nodes, which is trained with all concept prototypes according to the standard self-
organizing map algorithm. 

Step 3: Evaluate the mapping quality by calculating the mean quantization error of 
each node’s mqe in the current layer to determine the error node according to the largest 
deviation between its weight vector and the input vectors mapped to it. Then, either a 
new row or column of nodes is inserted between the error node and its most dissimilar 
neighbor. The weight vectors of these new nodes are initialized as the average of their 
neighbors. After the insertion, training of the newly grown map continues according to 
the standard SOM algorithm. After a fixed number of iteration, calculate the mean 
quantization error (MQEm) of the current map m with i nodes such that: 

∑⋅=
i

im mqe
u

MQE
1

 (13) 

where mqei is computed as the average Euclidean distance between node vector mi 
and the concept prototype vectors mapped to node i. The map m grows until its MQEm 
is reduced to a predefined fraction (the growing-stopping criterion τ1) of the mean 
quantization error mqep of the parent node p in the preceding layer of the hierarchy 
such that: 

pm mqeMQE ⋅< 1τ  (14) 

Step 4: Examine the nodes of map m for hierarchical expansion. Those nodes having 
a large mean quantization error will be expanded by adding a new SOM to the 
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subsequent layer of the GHSOM. The parameter τ2 is used to specify the level of 
granularity desired for the final hierarchy. Each node i fulfilling the criterion given in 
Equation (15) is subject to hierarchical expansion. 

02 mqemqei ⋅< τ  (15) 

The training process and node insertion procedure continues on the newly established 
SOM using only concept prototype vectors mapped to the SOM’s corresponding 
parent node. The training and expansion process of the GHSOM will terminate when 
no more nodes requires further expansion. 

The concept hierarchy resulted from the above process is thus a multilingual 
ontology representing the conceptual knowledge relevant to the domain of the training 
parallel corpus. This multilingual ontology, providing multilingual ontological 
knowledge, will thus act as the linguistic knowledge base for various multilingual 
Semantic Web applications, such as multilingual Semantic Web search engines and 
multilingual knowledge portal to facilitate linguistically smart and semantically 
precise multilingual information access. 

6   Conclusion 

In this paper, an automatic three-layer multilingual ontology development model built 
on top of a soft computing framework is proposed. By automating the laborious 
multilingual ontology development process using intelligent soft computing 
techniques, including fuzzy set theory and neural networks, the knowledge acquisition 
bottleneck problem (i.e. the difficulty of effectively modeling the knowledge of a 
particular domain) in ontological engineering is overcome. By making available a 
multilingual ontology as a linguistic knowledge base of metadata for multilingual 
Web content annotation, the Semantic Web vision of enabling linguistically smart and 
semantically precise global information access can be realized. 
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Abstract. This paper described two kinds of neural networks for text 
categorization, multi-output perceptron learning (MOPL) and back-propagation 
neural network (BPNN), and then we proposed a novel algorithm using 
improved back-propagation neural network. This algorithm can overcome some 
shortcomings in traditional back-propagation neural network such as slow 
training speed and easy to enter into local minimum. We compared the training 
time and the performance, and tested the three methods on the standard Reuter-
21578. The results show that the proposed algorithm is able to achieve high 
categorization effectiveness as measured by the precision, recall and F-measure. 

1   Introduction 

Text categorization is a process of classifying documents with regard to a group of 
one or more existent categories according to themes or concepts present in the 
contents. The most common application of text categorization is in information 
retrieval and news classification.  

Many different classification methods have been attempted, including the K-
Nearest Neighbor[1], Rocchio[2], Decision Tree[3], Neural Networks[4,5] and 
Support Vector Machines [6]. 

There are many kinds of neural networks, based on the network topology; we can 
broadly classify the various neural networks into two classes, feed-forward networks 
and recurrent networks.  Depending on whether an external teacher is present, we can 
have two different learning paradigms: supervised learning and unsupervised 
learning. Our described classification methods MOPL and BPNN have been known as 
linear classifier and non-linear classifier. Perceptron learning has it advantage of fast 
convergence, and the limitation is only can solve problems that are linearly separable. 
BPNN has the advantage of yield a good performance but the shortcomings are slow 
training speed and sometimes easy to enter into local minima. Based on the 
experience we learn that the limitations of BPNN are related to the morbidity neurons. 
In this paper, we proposed a novel algorithm based on improved back propagation 
neural network called MRBP (Morbidity neuron Rectified BPNN) which can detects 
and rectifies the morbidity neurons, this reformative BPNN divides the whole 
learning process into many learning phases. It will evaluate the learning mode used in 
the phase evaluation after every learning phase. This can improve the ability of the 
neural network, making it more adaptive and robust, so that the network can more 
easily escape from a local minimum, and be able to train itself more effectively. 
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The rest of this paper is organized as follows. Section 2 describes the theory of 
MOPL and BPNN including the basic BPNN theory and improved BPNN method; 
Experiments are discussed in section 3. The evaluation results are given in section 4. 
Finally, the conclusion and discussion of future work are given in section 5. 

2   Theory of MOPL and BPNN Algorithms 

2.1   Basic Theory of MOPL Algorithm 

Perceptron had perhaps the most far-reaching impact of any of the early neural 
networks. The perceptron learning rule is a more powerful learning rule than the Hebb 
rule. Single neuron can be used to classify two categories, when the categories are 
more then two, the MOPL can be used. The architecture of the MOPL is shows in  
Fig. 1. In the network, there is an input layer, an output layer. The weights from the 
input layer to output layer were adjusted by the perceptron learning rule. For each 
training input, the net would calculate the response of the output neuron. Then the net 
would determine whether an error occurred for this pattern (by comparing the 
calculated output with the target value). If an error occurred for a particular training 

input pattern, that is j jt y≠ , then the weights and the biases would be changed. If the 

error did not occur, the weights and biases would not be changed. Training would 
continue until no error occurred. 

 

Fig. 1. Architecture of the MOPL 

2.2   Basic Theory of the BPNN Algorithm 

The back-propagation neural network is a generalization of the delta rule used for 
training multi-layer feed-forward neural networks with non-linear units. It is simply a 
gradient descent method designed to minimize the total error (or mean error) of the 
output computed by the network. Fig. 2 shows such a network. 
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Fig. 2. Typical three layers BP network 

In the network, there is an input layer, an output layer, with one or more hidden 
layers in between them. 

During training, an input pattern is given to the input layer of the network. Based 
on the given input pattern, the network will compute the output in the output layer. 
This network output is then compared with the desired output pattern. The aim of the 
back-propagation learning rule is to define a method of adjusting the weights of the 
networks. Eventually, the network will give the output that matches the desired output 
pattern given any input pattern in the training set. 

The training of a network by back-propagation involves three stages: the feed-
forward of the input training pattern, the calculation and back-propagation of the 
associated error, and the adjustment of the weight and the biases.  

2.3   BPNN Defect Analysis and Commonly Used Improved Methods 

The three main defects of the BPNN and some commonly used improved methods are 
as follows: 

Slow training speed. In the beginning, the learning process proceeds very quickly, in 
each epoch, and can make rapid progress, however it slows down in the later stages 
[7]. There are two commonly used methods of improving the speed of training for 
BPNNs. a) Introduce momentum into the network. Convergence is sometimes faster if 
a momentum term is added to the weight update formulas. The weight update formula 
for a BPNN with momentum is 

( ) ( ) ( ) ( )( )1 1ij ij i j ij ijW k W k x u W k W kηδ+ = + + − −  (1) 

where momentum parameter u  is constrained to be in the range from 0 to 1. The new 
weights for the training step t+1 are based on the weights at training steps t and t-1. b) 
Using the adaptive learning rate to adjust the learning rate. The role of the adaptive 
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learning rate is to allow each weight to have its own learning rate, and to let the 
learning rates vary with time as training progresses. The formulas for a BPNN with an 
adaptive learning rate is 

( ) ( )
1

1
n

n n

n

E

E
η η

−
+ = ×  (2) 

where n  is the epoch during the training process, and E  is the absolute error in each 
epoch. When E decreases, the learning effect will increase (the weight may change to 
a greater extent). Otherwise, the learning effect will decrease.  

These two kinds of methods accelerate the convergence of the BPNN, but they can 
not solve other problems associated with the BPNN, especially when the size of the 
network is large. 

Local minimum. When training a BPNN, it is easy to enter into a local minimum, 
and usually the GA and simulated annealing algorithms have been used to solve this 
problem. These algorithms can prevent the problem of entering into a local minimum, 
but they cannot ensure that the network will not enter into a global minimum, and 
they are even slower than the traditional BPNN. 

Network paralyses. During training, the value of the weights may be very large and, 
consequently, the input of the network will be very large. Thus, the output value of 

the activation functions, jO (or lO ), tends to 1, according to the formula of error back 

propagation, and the back propagation error will tend to 0. This phenomenon is 
referred to as saturation. The speed of training becomes very slow when saturation 
occurs. Finally it will cause the weight not to change any more, and this will lead to 
network paralysis. P.D. Wasserman [8] provided the suggested formula to limit the 
weight between (-a, a), but it is only used for weight initialization. It cannot prevent 
the value of the weight increasing during training, and it also has the possibility of 
leading to network paralysis.  

2.4   MRBP Algorithms 

The defects mentioned above are all related to saturation, the convergence will 
become slower and the system will change to a higher learning rate. Also, the weight 
becomes larger due to the larger learning rate, and this will cause the output value of 
the activation function to tend to 1. Under this situation, the network can easily enter 
into a local minimum and ultimately become entrapped by network paralysis. Based 
on our experience with such problems, we also found that there is another 
phenomenon which can cause such defects. For some of the neurons, the range of 
input values is restricted to a small range during each epoch, and this causes the 
values of the output to be extremely close to each other at each epoch, while the error 
during each epoch changes slowly. In other words, the speed of convergence is slow. 
Finally, this situation causes a local minimum or even network paralysis. In this 
paper, we refer to these two kinds of phenomena as neuron overcharge and neuron 
tiredness respectively. We call these neurons morbidity neurons. In general, if some 
morbidity neurons occur within it, then the network cannot function effectively. 



306 C.H. Li and S.C. Park 

The MRBP improved method: During the learning process, neurons face two kinds 
of morbidity: overcharge and tiredness. If we avoid the appearance of morbidity 
neurons during the learning phase or rectify the problem in time, then the networks 
can train and evolve effectively. 

[Definition 1]: Neuron overcharged. If the input value of the neuron is very big or 
very small, it will cause the output value to tend to -1 or 1, and cause the back-
propagation error to tend to 0. We refer to such a neuron as being overcharged. That 
is, for the activation function， 

( )
2

( ) 1
( 1 )j j

j j n e t
f n e t

e
λ θ

θ
− +

+ = −
+

. 
(3) 

If ( ) 1j jf net θ+ →  or ( ) 1j jf net θ+ → − , then 0→jδ . When this happens, 

we refer to neuron j as being overcharged.  

[Definition 2]: Neuron tiredness. If a certain neuron always receives the similar 
stimulation, then its response to this stimulation will be very similar, so that it is 
difficult to distinguish different stimulations by its response. We refer to such a 

neuron as being tired. That is, when neuron j during one learning phase (defined as 

follows)  obeys， 

( ) ( ) 0k k k k
j j j j

k k

f net f netMINMAX θ θ⎛ ⎞+ − + →⎜ ⎟
⎝ ⎠

. (4) 

When this happens, we refer to the neuron j as being tired. 

[Definition 3]: Learning phase. Choosing N iterations (or leanings) as a period, during 
this period we record some important data, and calculate the effect of the learning 
process, as the direction for the next period. We called this period the learning phase 
and, based on our experience, we use 50 epochs as the learning phase. 

According to the definition of an overcharged neuron and a tired neuron, we know 
that they are directly related to the activation function. In the conventional activation 

function 
2

( ) 1
(1 )

x
f x

e
λ−= −

+
, λ using 1 or other constants, whereas in our model, 

λ is an adjustable variable. V.P. Plagianakos [9] tried to use an adjustable value 

of λ in his paper. Actually, different combination of λ corresponds to different 
learning models. 

The determinant rule of the morbidity neuron is: If ( ) 0.9j jf net θ+ >=  or 

( ) 0.9j jf net θ+ <= − , τhen neuron j is overcharged. And if 

( ) ( ) 0.2k k k k
j j j j

k k

f net f netMINMAX θ θ+ − + <= ,  then the neuron j is tired. 
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The formulae used to rectify the morbidity neuron are 

( ) ( )
2

k k k k
j j j j

k k
j j

f net f netMINMAX θ θ
θ θ

+ + +
= −  (5) 

and 
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1.9
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j j j j
k k
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f net f netMINMAX
λ

θ θ

⎛ ⎞−⎜ ⎟
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+ − +

. 
(6) 

Formula (5) is used to normalize the maximum and minimum input values in the 
previous phase in order to make them symmetric with respect to the origin. Formula 
(6) is used to limit the maximum and minimum output values to the normal range. In 
our experiments, the range is (-0.9, 0.9). In our study, the morbidity neurons were 
rectified in each phase after their evaluation. 

3   Experiments 

3.1   Text Representation 

In order to use an automated learning approach, we first need to transform a text into 
a feature vector representation. It involves several steps: word extraction, stop words 
removal, word stemming, and term weighting. In our experiment, we employ Porter’s 
stemming algorithms [10] for word stemming, and Okapi rule as term weights, 

0.5 1.5

ij
ij j

ij

tf
W idf

dl
tf

avgdl

= ×
+ + ×

 
(7) 

where logj

N
idf

n
= , N  is the number of documents in the document sets, and n is 

the number of documents in which the thi  term appears; ijtf is the thi indexing term in 

document j ; dl is the length of document. Okapi rule normalizes the length of 

documents to replace simple tf idf× . 

3.2   Reuters Test Corpus 

In order to measure its performance of our system, we tested the system on a standard 
test collection designed for text categorization used in the literature. This collection is 
known as Reuters-21578. We chose 1600 documents belonging to the Reuters data set 
with ten frequent categories. 600 documents were used for training and 1000 
documents for testing.  
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After word stemming, we merged the sets of stems from each of the 600 training 
documents and removed the duplicates. This resulted in a set of 6122 indexing terms 
in the vocabulary. 

In order to create the set of initial feature vectors to represent the 600 training 
documents, we measured the term weight for each of the 6122 indexing terms. The 
feature vectors were then formed term weights, and each of the feature vectors was of 
the form, 

1 2 6122, ,..........j j j jD W W W= 〈 〉 . (9) 

where ijW is the term weight of the thi indexing term in document j . For each training 

and testing documents, we created the feature vectors corresponding to the 600 
training documents, where each feature vector had a dimensionality of 6122. 

3.3   Dimensional Reductions 

The main difficulty in the application of a neural network to text categorization is the 
high dimensionality of the input feature space which is typical for textual data. This is 
because each unique term in the vocabulary represents one dimension in the feature 
space, so that the size of the input of the neural network depends upon the number of 
stemmed-words. In [11], the authors introduce four kinds of methods designed to 
reduce the dimensional of the feature space. Based on our experience, we reduced this 
size by choosing the highest term weights. We chose 1000 terms as the neural 
network’s input since it offers a reasonable reduction neither too specific nor too 
general.  

3.4   Experimental Results 

The number of output nodes is equal to the number of pre-defined categories. For 
MOPL, the input layer and output layer have 1000 and 10 nodes. And for BPNN, we 
select 15 as hidden nodes. Hence, our BPNN has three layers consisting of 1000, 15 
and 10 nodes respectively.  

Since the MOPL converged very fast, in our experiment we just compare the mean 
absolute error using traditional BPNN, the commonly used improved method (add the 
momentum and using adaptive learning rate, we also called Modified BPNN in our 
paper) and our proposed MRBP network.  

In the case of the traditional BPNN, we can see in Fig. 3 that, at the beginning of 
the training phase, the error is reduced very rapidly. But this reduction slows down 
after a certain number of epochs, and then levels off. The Modified BPNN is 2-3 
times faster than the first method at the beginning of the training phase. It slows 
down when the error reduction reaches a certain value and then fluctuates. 
However, in the case of our method, no morbidity neurons are produced in the first 
learning phase, with the result that the next learning phase is very similar to that of 
the Modified BPNN. However, from the third learning phase, our method 
progresses more rapidly than the Modified BPNN. It also has a good tendency in 
the later part of the training. 
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Fig. 3. Mean absolute error reduce during training with three methods 

4   Evaluations 

The performance of text categorization systems can be evaluated based on their category-
zation effectiveness. We used precision, recall and F-measure to measure our system and 
compare the performance of the MOPL, Modified BPNN and MRBP network. 

We used the macro-average method to obtain the average value of the precision and 
recall. The F-measure is based on the micro-average value. The performance results 
are given in table1. 

Table 1. Comparison of the performances of the three kinds of networks 

MOPL Modified BPNN MRBP Network Category 
Precision Recall Precision Recall Precision Recall 

Money-supply 0.848 0.909 0.913 0.916 0.938 0.946 
coffee 0.824 0.887 0.882 0.900 0.929 0.933 
gold 0.913 0.901 0.944 1.000 0.955 1.000 
sugar 0.889 0.853 0.954 0.883 0.927 0.914 
trade 0.693 0.767 0.766 0.836 0.824 0.895 
crude 0.946 0.903 0.945 0.916 1.000 0.932 
grain 0.935 0.929 0.928 0.934 0.948 0.924 
Money-fx 0.900 0.834 0.908 0.877 0.918 0.912 
Acq 0.927 0.845 0.943 0.893 0.943 0.903 
earn 0.932 0.918 0.957 0.934 0.967 0.952 
micro-average  0.881 0.875 0.914 0.908 0.935 0.931 
F-measure 0.878 0.911 0.933 
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Table 2. The network size and parameters 

Neural 
Networks

#Input  
Nodes 

#Hidden 
Nodes 

#Output 
Nodes 

Learning
Rate 

Moment
um 

Threshol
d 

MOPL 1000  10 0.01  2 
BPNN 1000 15 10 0.01 0.8  

Table 3. The computation time of the networks 

Neural Networks Time # Iterations Mean error 
MOPL 14.21 s 23  

Modified BPNN 776.55 s 3000 0.000854 
MRBP Network 785.32  s 3000 0.000092 

The size of the networks and some parameters used in our experiments are given in 
table 2 and the training time and mean error are given in table 3. 

From the table 1, we can see that the MRBP Network outperform the MOPL and 
Modified BPNN, and from the table 3, the speed of MOPL is much faster than the 
Modified BPNN and MRBP Network. In fact, Modified BPNN also can converged 
earlier, for example, we can let the network stop training when the mean error is 0.01, 
it also take few time to converge, but the performance of F-measure is around 86%, 
even not as good as MOPL. Hence the BPNN is hard to reach trade-off between the 
speed and the performance. However, the MRBP Network, if we let it converged at 
the third learning phase (after 100 epochs), the performance is better than MOPL. 

5   Conclusion and Future Works 

This paper proposes an algorithm for text categorization using improved Back-
propagation neural network. MRBP detects and rectifies the morbidity neuron in each 
learning phase. This method overcomes the network paralysis problem and has good 
ability to escape from the local minima. The speed of the training is also been 
increased and the results of our experiments show that the MRBP network can 
achieve higher categorization effectiveness than both MOPL and the Modified BPNN. 
The superiority of MRBP is obvious especially when the size of the networks is large. 

Even though the MRBP does not solve the problems associated with the structure 
of the BPNN, it provides a rule for adjusting the neurons and training the network 
effectively. In a future study, we intend to analyze and generalize the previous 
training as a direction for the next trainings. 
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Abstract. With the popularization of the concept knowledge economic 
management, it not only propels the whole development of knowledge economy 
but also directs the industry of “Basic Agent Service” of becoming the 
mainstream in the present markets. This research institute constructed a system 
called, “Knowledge-based Broker Service Center” (KBSC). It allows the 
customers to submit economic or business field questions online in the form of 
their natural language. By using Chinese phrase-cutting, key words weighted 
value calculations, and professional categorizations, it can automatically analyze 
the nature of the customer’s problem and search for the relevant information in 
the HR database to list the most suitable names of specialists as the assigned 
coordinator for the clients. When each matching procedure was finished, the 
questionnaire was given to examine the correctness of the data search following 
adjustments of the system. 

Keywords: Knowledge-based agent/broker, natural language, natural language 
arrangement, Chinese phrase-cutting, Fuzzy Sets theory. 

1   Introduction 

With the coming epoch of information, economy, labor, land, and capital being replaced 
by “Knowledge”, it has become the most important tool in businesses’ the survival of 
the fittest. “Knowledge” will not be viewed as a mere resource of the advantaged 
individuals or corporate organizations, but for everyone [1]. When the whole 
organization tries to integrate the internal and external knowledge resources by using 
“knowledge management” to enhance their competitive force, they usually adopt the 
external knowledge to offset the balance due to reasons such as the deficiency of internal 
knowledge resources, technology bottleneck, prime cost consideration etc [2], [13].  

This research is based on the knowledge system of matching the customer’s 
problems vs. professional specialties. By using fuzzy sets theories, automatically file 
categorized theories and techniques, it has built up a service center system [3]. This 
system enables the customers to submit questions online in the form of “natural 
language” and categorize and analyze automatically in response to the questions and 
problems. When each matching procedure was completed, the questionnaire was given 
to examine the correctness of the search as the data for the following adjustment of the 
system. In the long run, through sequence of adjustments, it is possible to cater to 
customer’s needs and demands. 
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The knowledge based theory in this research was designed and constructed under the 
substances in real life. KBSC system invited the management research development 
center from central Taiwan to evaluate and research on the section of industrial service. 
This center is aimed for the goals and plans of “Modernization of Commerce” and 
“Business Management — Automatized Technology Education” each separately under 
the instruction of Department of Economy and Board of Education.  

2   Relevant Research and Techniques 

2.1   Knowledge Market 

The sharing of knowledge shares a similarity towards the trading goods on the market 
[4], [5], [12]. When people try to seek solutions for complicated and uncertain 
problems, they usually turn out for help. This is precisely the background for the rising 
of the “knowledge buyer”. The “knowledge seller”, however, is the person who owns 
the profound knowledge, experience and holds keys to the solution during the process. 
The two parties decided on a satisfying price after a series of communications and 
negotiations. In addition, the “knowledge broker” combines the two sides, the demands 
and the supplies to become the bridging medium.  

2.2   Knowledge Broker 

Sharon [7] brought up that the broker only provides the connection to the recessive 
knowledge sources to the demanders. Once the function of the bridge is established, the 
interaction is solely between the two parties and the agent doesn’t usually get involved 
in the actual transformation of the knowledge content. 

2.3   Chinese Phrase-Cutting 

In a natural language, the most basic unit is usually a “phrase”. Here, the phrase is 
defined by linguistics as “the smallest language element that can be independently used 
and include a complete meaning.” Many researches concerning Natural Chinese 
Application such as document index, Chinese input, and machinery translations could 
only be applied and dealt with using “phrase” as a unit. In the Chinese language, there is 
no space separating each word, therefore, separating the correct phrase becomes the 
most basic work in dealing with natural language.  

There are three most commonly seen methods of Chinese phrase-cutting: phrase 
database cutting, lexicon cutting, statistics cutting. In addition to the above mentioned 
methods of phrase cutting, the utilization of the auto-Chinese phrase cutting 1.0 system 
invented by the Chinese Knowledge and Information Processing (CKIP), the group of 
Academia Sinica Chinese Electronic Dictionic Dictionary, can be use in the process. 
This system not only provides auto-Chinese phrase cutting functions but could also 
automatically label the syntactic functions and allow the users to choose different 
lexicons as references based on their needs [7]. 

2.4   Fuzzy Sets Theory 

In the ordinary set theory, the relationship between an element x and a set, A can only 

be x∈A and x∉A. However in reality, there are a large amount of ‘ambiguous’ and 
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‘paradoxical’ situations. In order to indicate this concept, Zadeh [3] vivified the 
absolute membership function in the ordinary set theory and allow the character level 
of the elements to present from the value 0~1. It doesn’t only confine within the binary 
opposition theory of common mathematical set (either 1 or 0) but it can use the 
membership function to show the reflective relationship between the elements and the 
character level.  

2.5   Automatic Classification 

The main function of the Automatic Classification is using computer calculations to 
find the characters of the documents and categorized them [8]. The Automatic 
Classification will first proceed words arrangement for the sample information and 
transform the information into phrase set data and find the characteristic key phrases set 
to represent the document.  

When testing or categorizing new documents, it is also based on the same procedure 
which is to find of characteristic key phrase sets, weight and calculate them with the 
ones found in the database. The result of the similarity will be labeled and categorized 
as the classification of the new document based on the highest value, then the entire 
automatic classification of the document is done. There are three classical modes for 
automatic classification: Boolean Model, Vector Space Model and Probabilistic 
Model.  

3   System Structure 

The system structure of the knowledge mediating service is shown in Fig 1. Its main 
models include: “phrase database collecting model”, “questions sorting model”, 
“specialist matching model” and “accuracy adjustment model”. Each function as 
described below: 

(1) Phrase Database Collecting Model: This model’s main function is to collect all 
the characteristic key phrase sets and the weighted values from each professional 
category in selected learning sample to be used for the question sorting model 
and the accuracy adjustment model.  

(2) Question Sorting Model: This model could calculate by ways of proper 
auto-phrase cutting and calculation of similarity from customer’s natural 
language questions to specify the relevant professional category in respond to the 
questions.  

(3) Specialists Matching Model: The results of the question sorting model will be 
searched and compared in the specialist database to be listed as the knowledge 
brokers.  

(4) Accuracy Adjustment Model: The accurate examination of the specialist group to 
the question sorting is in accordance with further adjustments.  

The database is separated into two sections, “the key phrase database” and “specialist 
resource database”. The key phrase database mainly stores information and sample 
documents which are built up by the professional sorting characteristic key phrase sets 
and customer request questions key phrase sets.  
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Fig. 1. System Structure Diagram 

3.1   Key Phrase Collecting Model 

(1) Establishing Professional Category Titles: First, establish the “professional 
category titles” data list according to the classification from knowledge based 
mediating center and then transformed these titles to the key phrases of the 
collected sample.  

(2) Collecting Sample Documents: The collecting process was based on the 
following principles:  

1. Collect the beforehand professional category title as the key phrase for the 
thesis researching.  

2. Assign the three sections, “the Chinese title of the thesis”, “key phrase”, 
“abstract section (Chinese)” as the data retrieving section.  

3. Assign “or” as the primary principle rule to the relationship between all the 
retrieving conditions and Boolean logic.  

4. Only collect sample documents from “the Chinese title of the thesis”, “key 
phrase” and “abstract section (Chinese)” 

(3) Phrase Cutting Arrangement of Sample Document: After collecting the sample 
documents, phrase cutting was conducted to get key phrases and establish the 
key phrase database for the system. The cutting tool used was the Chinese 
auto-cutting system from CKIP. After the initial cutting, the sentence was 
transformed into a phrase range to be further used in the next stage.  

(4) Sifting Key Phrase: Each phrase contains the appellation and syntax after the 
cutting and then to the first stage key phrase sifting.  
1. ex. 0、1、2…9)；Remove the half morphic and whole morphic digital 

units (ex. 0, 1, 2, ……9).  
2. Remove the half morphic and whole morphic punctuation marks (ex.，、
；。：！？「」『』….. etc.).  

3. Remove the unimportant syntax terms such as adjectives, conjunctions, 
adverbs, interjections, expletives, prepositions and verbs. 

4. The key phrase was mainly regarded as nouns but such non key phrase 
nouns such as Neu, Nes, Nep, Neqa, Nf, Ng, Nh were also removed. 
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(5) Calculating the Key Phrase Weighted Value: In order to specify the importance 
of the each key phrase to the professional category, it was calculated the number 
of times each phrase appeared in each category and weighted its value.  

In general, there are two elements need to take into consideration: one is the relative 
frequency of the phrase to the document. However, the number of phrases in the 
documents vary from one to another, so it needs to be normalized and the result is the 
TF (Term Frequency) [9] ranging from 0~1. TF is used for testing the relative 
importance of a phrase to a document. The higher the value is, the more important the 
document is likely to be. Another important element is DF (Document Frequency). It 
represents the appearance frequency of the single phrase to the entire document set. The 
less the phrase appears in a different document, the more proper it is likely to be used as 
a specifying standard. So, calculating the importance of a single phrase is to multiply 
TF and IDF. This method is called TFIDF. The key phrase weighted value will require 
this method to get the values. The formula is as below:   
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Wi,j： Means the importance of one key phrase j in i professional category 
document—the weighted value.  

TFi,j：The term frequency means the relative frequency of the key phrase j being 
normalized, its value is between 0~1.   

tfi,j：Means the absolute frequency of the key phrase j appears in i professional 
category document.   

MAX(tfi,j)： The most frequently shown key phrase in i professional category 
document. 

IDFj：Means the IDF of the key phrase j. The inverse frequency of j in professional 
category document set.  

N：Means the total number of the professional category document set.  
nj： Means the appearance frequency of the key phrase j in the total professional 

category document set N.  

3.2   Question Sorting Model 

Through the predefined combination of the professional key phrase, it was used to 
depict different requests and professional categories. Each request and professional 
category may be related to one or more key phrases and these key phrases occupy 
different weighted values. This model used the Keyword Fuzzy Sets [10] to calculate 
the similarities within the professional categories in order to find the most adequate 
groups.  

(1) Question Phrase Cutting Process 
First we process the customer’s questions were processed through Phrase Cutting [11] 
(using the phrase database cutting as the basis) and then using the longest matching 
method to cut the key phrase needed. The complete steps are below:  
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Step 1:  Separating the questions into several sentences Q1、 Q2、 Q3….Qm 
according to the paragraphs and syntax. The end of the sentence of based on 
punctuation marks, ，；。！？…..etc.  

Step 2:  Assign the first sentence m=1，Q1=(C1C2C3C4….Cn) 
Step 3:  i=1，Inquire the first word C1 of the sentence Qm before cutting phrases.  
Step 4:  Check the database to see if there is phrases which begin with C1 if not then 

the value i plus 1 then go on dealing with the next word C2  then repeat Step 
3. If so, then proceed the next step.  

Step 5:  Include all the phrases begin with C1 and input the Term range.  
Step 6:  Terms={<C1>、<C1C2>、<C1C2C3>、<C1C4>、<C1C5>} 
Step 7:  Descending the Term array based on the phrase’s length.  
Step 8:  Terms = {<C1C2C3>、<C1C2>、<C1C4>、<C1C5>、<C1>} 
Step 9:  Compare phrases from the Terms and the phrase string begin with C1 to see 

if it’s perfectly compatible.  
Step 10:  If not, then the value i plus 1 and dealing the next word C2 and then repeat 

step 3. If not, proceed to the next step.  
Step 11:  Key words  <C1C2C3> totally match with the word string begin with C1 and 

get the result of C1C2C3.  
Step 12:  The value i plus the length of the key phrase and deal with C4, repeat step 3 

until all the phrases are being processed.   
Step 13:  If this is the last sentence, then end the cutting phrase. If not, m value plus 1 

and repeat step 3 and deal with next sentence.  

(2) Depiction of Questions in Fuzzy Set  
With regard to the customer question Q, the question key phrase set and the fuzzy set 
theory was used to depict the question Q in Keyword Fuzzy Sets [10];   
Q = {(K1 , W1) , (K2 , W2) , (K3 , W3) … (Kn , Wn)} or 
Q = {(Kj , Wj) | Kj ∈ K}, j =1,…,n 
Kj：The j key phrase in customer question Q 
Wj：The weighted value of the j key phrase in customer question Q  
n：The key phrase unit of the customer question Q as to the characters description of 
each professional category, was used the same way to generate the key phrase fuzzy set 
Ci :  

Ci = {(K1 , Wi1) , (K2 , Wi2) , (K3 , Wi3) … (Kn , Win)}   Or. 
Ci = {(Kj , Wij) | Kj ∈ K} , j =1,…,n 

Kj：The j key phrase in professional category i.  
Wij：The weighted value of j key phrase in professional category i. The weighted value 

has already been calculated and pre-stored by phrase collecting model in the key 
phrase database.  

n：The key phrase unit Ci of in the professional category i.  

(3) Professional Category Gauging 
The last step of this model was to gauge the most relative professional groups in 
respond to customer’s question. This was convenient for the system to search and 
recommend from the specialist catalogue. In addition, it also provided the knowledge 
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broker the guide and direction in aiming the service item. First, fuzzy similarity was use 
to calculate the key phrase set Q and the professional key phrase fuzzy set Ci and the 
result of the similarity between the two will be Ri . the calculation formula is as below:  

),( ii

i
i CCQQMAX

CQ
R

⋅⋅
⋅=                                                (2) 

Q：the key phrase fuzzy set of the customer’s question.  
Q = {(K1 , W1), (K2 , W2) , (K3 , W3) … (Kn , Wn)}。 
Ci：the key phrase fuzzy set of the professional category i.  
Ci = {(K1 , Wi1), (K2 , Wi2) , (K3 , Wi3) … (Kn , Win)}。 

The gauging of the professional category can be based on the value of Ri, the higher 
the value the higher the similarity and can be input in the most relevant result in the set 
D. On the contrary, the low value means the similarity is also low and can be ignored. 
In order to include many possibilities to the question, the descending permutation of the 
biggest differentiated value of the relative value Ri will be set as the standard. Any 
values that are bigger than the standards will be the results needed. The complete 
gauging steps are as follow: 

Step 1. Calculate the similarity degree of the question Q and the professional category Ri 
Step 2. Descending the value Ri as the new permutation Rk, and record the 

correspondent relationship between i and k in array F.  
Step 3. Search for the maximum value (Rk-Rk+1) in as oppose to item k = y.  
Step 4. Gauge whether or not y is bigger than α value, if so the skip to step 5 if not, the 

skip to step 6. the α is the system parameter, it can represent the maximum 
range of the service and provide the knowledge broker for adjustment. The 
restriction range is 1≦α≦n, n is the total number of the professional category.  

Step 5. Using range F to seek the correspondent item i in item k that matches with 1~y 
and record the titles in the category result set D.  

Step 6. Ask the customer to adjust the content of the question and re-execute the 
problem sorting model.  

3.3   Specialists Matching Model 

The system search within the database for the items of specialties belonged to set D 
according to the results of the question sorting model set D. The prior rule was to make 
a list of specialists’ names in descending permutation and this matching list can be 
recommended to the knowledge broker as his/her references before the counseling.  

3.4   Accuracy Adjustment Model 

In order to effectively promote the gauge of the system to customer’s question, the 
system will be re-examining with the specialist group after each gauge and matching. 
The results will be regarded as the accordance for the further adjustment on sorting 
arrangement. After several adjustments, the sorting system is very likely to fit all the 
client’s demands.  
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The accuracy adjustment model is only correspondent to the recommended group 
specialists, and the items of the examination are only aiming to see whether or not the 
result set of the professional categorizations will match with the specialists’. When the 
specialist respond to the model, we can choose the value ranging from 1~5 to show the 
degree of the matching between the professional category and the customer’s question. 
The highest accuracy value is 5, the lowest 1. In addition, the system also set a TLV 
(Threshold Limit Value) for the accuracy. When the value respond of the specialist is 
higher than the TLV, the system will tune up the weighted value of the key phrase in the 
specific category; if lower, then tune down the weighted value. The adjustment formula 
3 is as below:  

∑ =

∗−+=
k

j ji

ji
jiji

W

W
WW

1 ,

,
,, )( θγ                                (3) 

If Wij >1 then Wij=1 ; If Wij <0 then Wij=0 

Wi,j：The weighted value of the no. j key phrase in the professional category i.  
γ：The accuracy value judged by the specialist.  
θ：The accuracy TLV of the system.  

∑ =

k

j jiW
1 , ：The total weighted value of the entire key phrase Ci under category i. 

k：The existing unit of the key phrase Ci under category i. 

After the adjustment, the key phrase weighted value matches with the limitation of 
the professional category fuzzy set, degree of subordination 0~1. After calculation, if 
the weighted value is over 1, it’s regarded as the weighted value 1. If it’s smaller than 0, 
then it’s regarded as value 0.  

4   Experiment Procedure and Results Analysis 

The testing objects of this experiment were a central management research 
development center and the group specialists: customers 48 people, specialists 16 
people. The beginning date was Dec. 1st, 2004 and the termination date was Dec. 31st, 
2005, within a year. The list of professional category includes 19 management fields. 
The system calculated the similarities between customer’s question and the 
professional category and come up with the most possible result. The result showed that 
there are a total numbers of 41 application data, and all of the professional categories 
determine that they are all within one or two categories. It showed that the system was 
gathering focus instead of dispersing.  

In the part of the questionnaire, the system automatically generated 214 
questionnaires according to the recommended specialist list. The questionnaires were 
given to 16 specialists on the accuracy of the professional categorization. The valid 
ones are 214. The tested specialists can judge the accuracy by the syntactic variable or 
the scores. When the system is doing the evaluation, the corresponding score sheet (as 
Table 1 shows) will transform the variable into accuracy scores. The higher the score is, 
the more degree of affirmation there is. According to the result, 49.07% showed high 
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degree of satisfaction. As we can see the specialists’ view toward the gauge system is 
very positive, with a total accuracy score of 4.35.The following figures (as Fig 2) show 
the matching results:  

Table 1. Corresponding Scores of Syntactic Variable and Accuracy Sheet 

syntactic 
variable 

very 
inaccurate 

inaccurate normal accurate very 
accurate 

correspondent 
score 

1 2 3 4 5 

percentage 4.21 16.36 10.75 19.63 49.07 

 

Fig. 2. Matching Results 

5   Conclusions 

By ways of the discussion and summation of the knowledge mediating theory and 
methods, this research constructed a broker service center system based on knowledge. 
This system is capable of dealing with application question in the natural language 
form and auto-gauging its professional category and recommend lists of group 
specialists. The key phrase database samples are the Doctor and Master Thesis samples 
taken from The National Library. By using the key phrase fuzzy set calculation on the 
similarity between the question and professional category, it could compare and match 
with the specialties and come up with a list of group specialists that can be 
recommended to the broker center as the references for the case counseling.  

However, there are still some parts that need to be further improved. 

(1) The professional key phrase database mostly relies on the manpower to maintain 
its function and it has not yet occupied with the self studying function. In the 
future, it could be combining with analogic-nerve internet in order to further 
elevate its goal of self-learning function to semi-construction or 
automatic-construction.   

(2) If the personal writings, other relevant counseling document, specialty fuzzy set of 
the specialists could be added in as part of the established learning samples, it 
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could cross-comparing the three fuzzy sets: customer questions, professional 
categories, professional specialties. It will help to improve the matching standard 
of the system.  

(3) As to deal with a natural language, the proper inference ability and Chinese 
syntactic structure analysis were not mentioned in the present system. Under many 
circumstances, the combination of the phrases may extend to other meanings and 
the system can not cope with it. Right now these conditions are still lacking of 
solutions and need to be continuously researched on.  
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Abstract. It’s natural and direct to identify the structural stiffness based on the 
measurement of static displacement; In addition, considering that the lower 
frequencies of structures can be tested with high precision and can reflect the 
global dynamic properties of structures, static displacements at partial nodes 
and several low frequencies were used to constitute the input parameter vectors 
for neural networks. A damage numerical verification on an arch bridge model 
was carried out using a radical basis function (RBF) network. Identification 
results indicate that the neural network has an excellence capability to identify 
the location and extent of structural damage with the limited noises and 
incomplete measured data. 

1   Introduction 

The health diagnosis and damage detection of civil engineering structures is a very 
active topic at present. The research in this area has extensive and profound 
engineering background. Although there are many effective methods, which 
developed for different problems, but how to use incomplete and inexact measured 
data to acquire acceptable and ideal damage identification results is hot and difficult 
problem [1].  

The main load for existing engineering structures is static load. The static test has 
become a general method used to structural monitoring and damage identification. In 
addition, the static equilibrium equation of engineering structures is only connected 
with structural stiffness and unrelated with damp and inertia, the main aim of 
structural damage detection is the identification of structural stiffness, therefore the 
more natural and direct method for structural damage identification is based on static 
displacements [2-7]. In this paper, static displacements at partial nodes and several 
low frequencies were used to constitute the input parameter vectors for neural 
networks. Thus, overcoming the disadvantages of damage identification, which 
brought by using single date, and validate each other. And then numerical verification 
for the location and extent of structural damage were carried out using the radical 
basis function (RBF) networks with the limited measured data, the aim of the study 
was laid on the influences of different noise levels and the selected number of 
frequencies on the results of structural damage identification. 
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2   Radical Basis Function Neural Networks  

When BP neural networks were used in function approximation, negative gradient 
descent method were adopted to adjust weights, this kind of weight method had its 
localization, such as comparative slow rate of convergence and local minimum value, 
whereas, no matter the capabilities of function approximation, classify and study 
speed of RBF are exceeded that of BP [8]. 

RBF neural network was composed with three layers shown in fig.1, the nodes of 
input layer just only transfer input signals to hidden layer, the nodes of hidden layer 
was composed with radiating action function, whereas, the nodes of output layers are 
simple liner function. 

 

Fig. 1. Structure of RBF neural network 

The kernel function of hidden layer nodes will bring some local effects to input 
signals, that is to say, when input signals close up the center of kernel function, 
relative great output will be produced in hidden layer nodes. So we can see that this 
kind of neural network has the local approach capability. In this paper, Gaussian 
kernel function is used as action function of hidden layer nodes, which shown as 
follow equation 
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Where ( 1, 2, , )hj N= , ju is the output of the jth hidden layer node, 

( )T
nxxxX ,,, 21= is the input sample, jC is the center value of Gaussian kernel 

function, jσ is the standard constant, hN is number of hidden layer nodes. We can 

know that the output of nodes is from 0 to 1, the input sample is more nearing the 
center of the nodes, and the output value is bigger. 

The output of RBF neural network is the linear combination of hidden layer nodes.   

1

hN
T

i i j j i
j

y w u W Uθ
=

= − =∑  (2) 

( )1 2, , , ,
h

T

i i i iNW w w w θ= −  (3) 



324 X.-d. Yuan et al. 

( )1 2, , , ,1
h

T

NU u u u=  (4) 

The process of network learning is divided two stages. First stage, jC and jσ  are 

decided by making use of all input samples. Second stage, after the parameter of 
hidden layer determined, the weight value of output layer iW is decided by using of 

the samples and least square algorithm. When second stage of learning finished, in 
order to improve the accuracy of the networks, the parameters of input and output 
layers are modified by the samples. 

3   Damage Theory Analysis  

3.1   Damage Location Detection Indicator 

For healthy structure, the static response equation and the eigenvalue equation can be 
expressed as  

pKu =  (5) 

0)( 2 =+ jj MK ϕω  (6) 

Where K and M represent the global stiffness matrix and the global mass matrix for 

health structure; u  and p  represent the displacement vector and force vector; iω  

and iϕ  are the ith natural frequency and the corresponding mode shape. Let the 

change of stiffness matrix caused by structural damage be defined as KΔ ，thus, 
Eq.(5) and (6) can be rewritten as 

puKK =Δ+ ∗)(  (7) 

0))()(( 22 =Δ+Δ++Δ+ jjjj MKK ϕϕωω  (8) 

∗u  is damaged displacement vector and defined as 

pKKKKpKKu )()( 1111 −−−−∗ Δ−≈Δ+=  (9) 

The change of displacement vector caused by damage is defined as 

pKKKuuu 11 −−∗ Δ≈−=Δ  (10) 

The change of natural frequency is expressed as 
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When FEM model is used, the change of global stiffness matrix can be expressed 
by the change of element stiffness matrix 

∑
=

=Δ
ne

i
ii kK

1

α  (12) 

iα is the damage parameter of element stiffness, 01 ≤≤− iα ， ik  is element 

stiffness（ nei ,,2,1= ）， ne  is the number of structural elements. 
DS of damage location detection presented in literature [9] was used as input 

vector for the neural network when individual element damage or several element 
damages with the same extent occurred. It can be defined as 

j
T
j

j

ne

i
i

T
j

ne

i
i

j
T
j

j
T
jj

M

k

pKkK

M

K

pKKKu
DS

ϕϕ

ϕϕ
ϕϕ
ϕϕω ∑

∑

=

−

=

−
−−

=
Δ

Δ=
Δ
Δ=

1

1

1

1
11

2
 

(13) 

From Eq. (13), we can see that jα  is eliminated. Thus, DS  is solely related to 
damage location and independent of damage extent 

{ }1 2, , , minput vector DS DS DS− =  (14) 

m is the serial number of corresponding nodes 

3.2   Damage Extent Detection Indicator 

For structural damage extent detection, the terms of damage extent must be added to 
the input vector for damage location detection, namely 
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(15) 

Eq. (13) is related to damage extent, thus, DS and RNF together constitute the input 
vector for the neural network, 

{ }1 2, , , ,minput vector DS DS DS RNF− =  (16) 

4   Numerical Verification of Arch Bridge Model 

Numerical model is a plane arch bridge truss combined with 20 beam elements shown 

in Fig.2, elastic modulus 210E GPa= , mass density 32600 /kg mρ = , cross 

sectional area 23.2A m= , loads 1 2 3 4 5 6 5000P P P P P P kg= = = = = = . 
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Fig. 2. Calculation model of arch bridge structure 

4.1   Localization with Measured Noisy Data 

When generating training samples of the network, the cases with one damaged 
element and two damaged elements of the arch bridge with three combined loads 
listed in Tab.1 are considered. In order to test the capability of identification for 
damage location with incomplete measured DOFs, the displacements of increment of 

,X Y directions at ten nodes with 20 DOFs were selected and composed the 

parameters of training samples of the network in term of Eq. (13). In order to enhance 
the robustness of the network and enlarge the number of training samples, 1%~4% 
random noises were added to the training samples calculated without data errors, and 
the training samples were enlarged 4 times. 

Table 1. The cases of loads & damage of 
training for localization 

Combined Load damage 
element 

damage 
extent(%) 

2 50 

4 50 

8 50 

1 

( 1 2 3 4, , ,P P P P) 

7/15 50 

13 50 

18 50 
2 

( 3 4 5 6, , ,P P P P) 
9/12 50 

3 50 

6 50 

16 50 

3 

( 1 2 5 6, , ,P P P P) 

8/17 50 
 

Table 2. The cases of loads & damage of 
testing the network for localization 

Combined loads damage 
element 

damage 
extent(%) 

10 
3 

60 
10 

12 
60 
10 

1 

( 1 2 3 4, , ,P P P P) 

6/13 
60 
10 

4 
60 
10 

16 
60 
10 

3 

( 1 2 5 6, , ,P P P P ) 

8/15 
60 

 

When generating testing samples of the network, the calculation data of the cases 
with one damaged element and two damage elements with two different combined 
loads listed in Tab.2 were used. Identification of damage locations was carried out 
with the data errors. 
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Fig. 3. Localization results with different 
noise levels in the 3th element 

Fig. 4. Localization results with different 
noise levels in the 3th and 9th element 

In the cases of one damaged element or two damaged elements, we can see that the 
identification errors have some increased with the increase of noise level from 
Fig.3~4. The network can accurately identify the damage locations with 1%~5% 
noises, the results indicate that the network has a favorable generalization capability. 
The identification capability of the network decreased and some error identifications 
occur with 10% noises. 

4.2   Qualification with Change of the Number of Natural Frequencies  

The parameters for consisting of training and testing samples are combined with two 
segments in term of Eq. (16), one is the parameters for identification of damage 
location, another is the ratio of the increment of frequency square to frequency square 
for damage extent identification. When training the network, the cases of one damaged 
element and two damaged elements with three combined loads listed in Tab. 3 were 
considered. In order to test damage extent identification capability of the network with 
incomplete measured DOFs, the increments of displacements of ten nodes with 20 
DOFs were still used.  

When generating training samples of the network, the cases of one damaged 
element and two damaged elements listed in Tab.4 were considered, and the damage 
extent identification were carried out with measured data errors. 

During training and testing the network process. The samples were combined with 
2, 3 and 5natural frequencies, the capability of damage extent identification of the 
network were tested with different natural frequencies. 

The damage locations shown in Fig.5 and 6 were identified. We can see that the 
damage extent of damaged elements are more serious than that of undamaged elements 
and the damage extent identified was lighter than actual damage extent, this result had 
reflected that the training samples were not sufficient, and validated that the identification 
capability of the network is relied on the composition of the training samples. 

The results of identification with the stiffness of two elements decrease 20% shown 
in Fig.7~9. With the increase of the number of natural frequencies, the identification 
accuracy of damage extent was improved, the cases of mistake identification in 
undamaged elements were not appeared and the results of identification were ideally. 
Hence, we can conclude that the network capability of damage extent identification 
depends on whether the training samples are sufficient. 

Generally, the identification capability of damage extent is not as good as that of 
damage location. In spite of that, the damage location could be identified and damage 
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Table 3. The cases of loads & damage for 
training network 

Combined  
Loads 

damage 
element 

damage 
extent(%) 

2 20 

3 30 
4 40 
8 60 
12 40 
7/15 30/60 

1 

( 1 2 3 4, , ,P P P P ) 

6/13 30/20 
13 20 
18 40 

2 

( 3 4 5 6, , ,P P P P ) 
9/12 30/60 

3 20 
4 30 
6 40 
16 50 
8/17 40/20 

3 

( 1 2 5 6, , ,P P P P ) 

8/15 20  

Table 4. The cases of load and damage of 
testing for quantification 

Combined  
Loads 

damage 
element 

damage 
extent(%) 

20 
3 

40 

20 
12 

40 

20 

1 

( 1 2 3 4, , ,P P P P) 

6/13 
40 

20 
4 

40 

20 
16 

40 

20 
8/15 

40 

3 

( 1 2 5 6, , ,P P P P ) 

15 40  

extent could be judged basically. When detecting of structural damage, if we can 
combine damage location identification with damage extent identification and selected 
the number of natural frequencies properly. Thus, the satisfied results could be acquired. 

4.3   Quantification with Measured Noisy Data 

1%, 3% and 5% noises were added into the testing samples for verifying the 
capability of RBF networks to identify structural damage extent. The identification 
results of two elements stiffness decreased 20% were shown in Fig.10~12. We can 
see that all the results are not remarkable difference and are better ideally within 
1%~5% noises. Meanwhile the results are shown that the identification capability of 
damage extent was not affected in definite error range. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-0.05

0
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0.1

0.15

0.2
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0% noise
20% damage

real output
ideal output

 

Fig. 5. Quantification results of 20% damage 
in the 12th element with 2 frequencies 
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Fig. 6. Quantification results of 20% damage 
in the 12th element with 3 frequencies 
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Fig. 7. Quantification results of 20% damage 
in the 6th and 13th element with 2 frequencies 
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Fig. 8. Quantification results of 20% damage 
in the 6th and 13th element with 3 frequencies 
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Fig. 9. Quantification results of 20% damage 
in the 6th and 13th element with 5 frequencies 
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Fig. 10. Quantification results of 20% damage 
in the 6th and 13th element with 1% noise 
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Fig. 11. Quantification results of 20% damage 
in the 6th and 13th element with 3% noise 
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Fig. 12. Quantification results of 20% damage 
in the 6th and 13th element with 3% noise 

5   Conclusion 

In this paper, using of static displacements and several low natural frequencies forms 
the combined input parameter vectors of artificial neural network used to identify 
damage location and extent. The numerical example analyses were carried out on an 
arch bridge model by using RBF network. The results were summarized as follows:  
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(1) The accuracy of damage location identification is better than that of damage 
extent identification. 

(2) The ideal results of identification depend on the number of the training 
samples whether is sufficient.  

(3) The changes in the number of natural frequencies can improve the accuracy of 
damage extent identification, but it’s limited  

(4) The network has good robustness and the probability of RBF networks were 
embodied very well 

(5) The identification of damage location and extent should be carried out 
simultaneously, thus, we can fix the damage location accurately and judge the 
damage extent broadly 
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Abstract. In this paper, we investigate whether the word frequency
effect and the word similarity effect could be applied to Korean lexi-
cal decision task (henceforth, LDT). Also we propose a computational
model of Korean LDT and present comparison results between human
and computational model on Korean LDT. We found that the word fre-
quency effect and the similarity effect in Korean LDT were language
general phenomena in both the behavioral experiment and the proposed
computational simulation.

1 Introduction

The lexical decision task gives us cues to understand the internal mechanism.
There are several basic findings that are consistently obtained in behavioral LDT
experiments(Taft, 1993). Among them, the major findings are frequency effect,
lexical status effect, word similarity effect, semantic priming effect, and visual
degradation effect. These effects should be explained by any models claiming to
be an account of lexical access. Next descriptions are simple explanations of each
effect on LDT.

Word frequency effect. It takes less time to make a lexical decision on high-
frequency words than to low frequency words.

Lexical status effect. It takes more time to make a lexical decision on non-
words than to real words.
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Word similarity effect. A letter string is hard to make a lexical decision on,
when sufficiently similar to real words.

Semantic priming effect. word is easy to make a decision on, when preceded
by a semantically related word.

Visual degradation effect. When a letter string is visually degraded, it be-
comes more difficult to be classified as a word or non-word.

Recently many researchers have tried to investigate visual word recognition
process using computational experiments. Computational experiments and sim-
ulations are very helpful to elaborate or to make the model complete by handling
experimental environment. In addition, computational model may suggest fruit-
ful areas for experimentalists to investigate. Also, partial lesions of neurological
areas and pathways can be modeled in a straightforward way if connectionist
modeling is used. The intensional lesion study using the connectionist computa-
tional model is never possible with human subjects.

Due to these advantages, researches on developing computational mental
lexicon model (Hinton & Shallice, 1991; Plaut & Shallice, 1993) have been con-
ducted. These researches commonly reported word frequency effect, word simi-
larity effect, word status effect, semantic priming effect, and visual degradation
effect which were shown in behavioral experiments. while most of previous stud-
ies have been focused on the model of English fewer studies have been done on
Korean mental lexicon except for the symbolic computational model of Lim, Nam
& Hwang (2005). Furthermore, there have never been behavioral experimental
results reported on Korean LDT.

We have two aims in this paper. First, finding out whether major language
phenomenon, especially word frequency effect and word similarity effect, can
be observed on Korean LDT. Second, building computational model simulat-
ing Korean LDT and performing comparison studies between behavioral and
computational results. The organization of this paper is as follows: the behav-
ioral experiment and results, the description of computational model architecture
training, the result of computational model, the comparison between behavioral
results and computational results, and finally, we will conclude findings and
suggest the future researches.

2 The Behavioral Experiment

2.1 The Word Frequency Effect and the Word Similarity Effect

Method

Participants. Thirty-five students of Korea University participated. They were
all native speakers of Korean with corrected or normal vision.

Stimuli and Design. We collected two hundred words with frequency from 1 to
100 and invented two hundred pseudo-words which are pronounceable but not
meaningful. Additionally we made another two hundred non-words which are
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not pronounceable nor meaningful. One hundred words (filler) were randomly
selected from the corpus for the purpose of eliminating the behavioral bias. All
words were selected from the Sejong Corpus. We randomly assigned materials
to two lists in order to decrease artifacts of items. Each list contains 100 words,
100 pseudo-words, 100 non-words and 100 fillers. The experimenter presented
randomly one of two lists to participants. We used an analysis of variance on
word frequency (high vs. low) and word similarity (word vs. pseudo-word, word
vs. non-word).

Apparatus and Procedure. Two PC586 were used to present stimuli and collect
responses. Responses were received using the PST serial response box. Stimuli
were presented on 17” CRT monitor.

When a participant sit in front of a computer, the experimenter presented the
practice section. The practice section consisted of 5 words, 5 pseudo-words, 5
non-words, and 5 fillers. Any items used in practice section were not presented
in the experiment section, All items were presented randomly. Each trial worked
in the way that that a fixation (“***”) appeared in the center of the screen
for 500ms, and then a target was presented after the fixation. Each target was
displayed long enough for participants to respond. Participants were asked to
decide as quickly and accurately as possible whether the target was a legal word
(word) or an illegal word(pseudo-word or non-word) and to press the appro-
priate response key. The time from stimulus onset to response was measured
in ms.

3 The Behavioral Results

3.1 The Word Frequency Effect

The analysis was performed on only correct responses. We divided words into
two groups(high frequency group vs. low frequency group). We defined a ‘high
frequency’ group as a group of words with frequency with over fifty and a low
frequency group as a group of words with frequency less than fifty. The mean
response time of the high frequency group was 518.51ms and the low frequency
group, 540.95ms. The difference between two groups was significant (F (1, 31) =
7.39, p < .05). Similar results were reported repeatedly in other studies (Forster,
& Chambers, 1973; Taft, 1979). Actually, word frequency was considered to
be one of basic variables in studies involving visual and auditory word process
(Andrews, 1992).

3.2 The Word Similarity Effect

Three of thirty-five participants were excluded from analysis for being beyond
2.5 SD of the grand mean on error rates. We used analysis of variance (ANOVA)
on word, pseudo-word, and non-word. Mean lexical decision times and error rates
were presented on Table 1.
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Conditions Response time(ms) Error rate(%)
Word 559.90 95.31
Pseudo-word 563.99 89.03
Non-word 519.64 98.34

In the error rate analysis, the difference between conditions was significant
(F (1, 62) = 10.93, p < .001). In the response time analysis, the difference be-
tween ‘pseudo-word’ and ‘non-word’ was significant for items and participants
analysis (F1(1, 62) = 7.70, p < .01;F2(1, 398) = 25.79, p < .01). Also, the dif-
ference between ‘word’ and ‘non-word’ was significant (F1(1, 62) = 6.34, p <
.05;F2(1, 398) = 17.80, p < .01). According to these results, participants con-
fused the lexicality of pseudo-words. However, participants immediately decided
that non-words do not have a lexicality.

Because pseudo-words were pronounceable, it seems like that they cause in-
terference with a decision-making on the lexicality of a target. The findings that
pseudo-words take more time to make a lexical decision on than a non-words
are consistent with other researches (Chambers, 1979; O’Connor, & Forster,
1981).

4 Input/Output Design of the Computational Model

Input to the proposed network is Korean 2 syllable string and the output of the
model is a semantic representation. The network is regarded that it makes a
lexical decision when it makes an output on an input.

Some representation methods of English orthography have been proposed such
as in McClelland & Rumelhart (1981), Hinton & Shallice (1991), and Plaut &
Shallice (1993). But, since Korean is very different from English, the same rep-
resentation methods can not be used in representation of Korean Orthography.
We propose a method for representing Korean orthography using connection-
ist model. A typical form of a Korean syllable is CVC(initial Consonant-medial
Vowel-final Consonant) or CV(first Consonant-middle Vowel). The number of
initial consonants and final consonants are 19 and 27 respectively. The number
of vowels is 21. We may represent a Korean syllable as 15 bits: 5 bits are used
to represent each consonant and vowel. But, with this scheme, two different syl-
lables can be represented in the way of the very similar bit stream. This may
be problematic in visual LDT experiment. Thus, we propose a orthogonal rep-
resentation in which different consonants or vowels are represented as different
bit streams.

The proposed orthography, a Korean syllable is represented as a 67-bit vector;
19 bits are used to represent initial consonants, 21 bits for medial vowels, and
21 bits for final consonants. Figure.1 shows an example of vector representation
of Korean alphabets.

We represent the semantics of the input words in terms of 100 pseudo semantic
features. The assignment of semantic features to words has the property that
words from the same category tend to be more similar with each other than with
words from different categories.
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Fig. 1. The Representation of orthography

5 The Network Architecture

Figure. 2 depicts the network architecture of the proposed model. The network is
a recurrent network which contains connections from the hidden units to a set of
context units. The network consists of three layers: input layer, hidden layer, and
output layer. The input layer includes 134 input units(grapheme units), and 250
context units. The 134 grapheme units and contexts units are fully connected
to a group of 250 hidden units. The hidden units are also fully connected to 100
output units and context units.

Each unit except context unit has a real-valued activity level ranging between
0 and 1, computed by a smooth nonlinear function of the summed input received
from other units. The activities of the context units are 0s or direct copies of
the hidden unit activities on the previous time step whether the experimental
task priming task or not. If it is not a priming task, all of context units are set
to 0s. If it is a priming task such as a semantic priming task, the units are set
by copying from hidden units.

Fig. 2. The network architecture
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6 Training and Evaluation of the Model

The network was trained by backpropagation algorithm which was modified
slightly to copy value of hidden layer into the context layer. The error of output
unit was calculated by sum of cross entropy of each output unit. Response time
on lexical decision was measured in terms of semantic stress measure which was
used in Plaut & Shallice (1993). More formally, the stress Sj of unitj is a measure
of the information content (entropy) of its activation aj , corresponding to the
degree to which it differs from the “neutral” output of 0.5. The higher value of
semantic stresses means that the network makes more correct semantic output
pattern. If the network makes higher average value of semantic stresses of all
output nodes in a fixed time, the network is taken to response more quickly on
the input data.

7 The Computational Result

The current model was trained for 10,000 epochs according to the compressed
frequency. After training, the total number of error rate was 0.34 and the er-
ror rate for one input data was 0.001 in average. However, as shown in the
over training might occur so that the best trained point was determined to
have the highest correlation between the semantic stress and the compressed
frequency values. The best trained point was at the 500th trained state, and at
this point the Pearson correlation value correlation between the semantic stress
and the compressed frequency values was 0.738 (p < 0.01). The total error value
of the 500th trained point was 536.85 and for one input data it was 0.630 in
average.

Fig. 3. A correlation value change according to training epoch

7.1 Frequency Effect

To simulate frequency effect, the correlation between the frequency and semantic
stress has to be statistically significant. As the semantic stress value stands for
reaction time and the frequency is a frequency value, the positive correlation
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means that when the frequency gets higher, the corresponding semantic stress
value gets higher, and vice versa. The results show that the correlation coefficient
between the frequency and semantic stress values is 0.738 (p < 0.05) (Fig. 3).

Fig. 4. Frequency effect

Also the results showed that there was a significant difference between two
conditions(t(998.819) = 2.178, p < 0.05), (0.973 for the high frequency word
condition and 0.961 for the low frequency condition in average)(Fig. 4) So, the
results indicate that this model simulates frequency effect.

7.2 Word Similarity Effect

The results showed that while non-words, which are unacceptable in the Korean
orthography, had the semantic stress value of 0.924 in average, pseudo-words,
which are acceptable, but do not exist in Korean language, had the semantic
stress value of 0.913 in average regular word had the semantic stress vale of
0.978 in average. This difference was statistically significant(F (2, 167) = 2.0, p <
0.05).(Fig. 5) Thus, we can conclude that that the proposed model is successfully
simulating word similarity effect.

Fig. 5. Word similarity effect
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8 Comparison with Human Performance

The right figure (Fig. 6) means that the higher the word’s frequency is, the
closer semantic value approaches 1 than less frequent words. In other words,
words with high frequency can access the semantic system faster than words with
low frequency. The left figure in (Fig. 6) represents human responses. The y-axis
represents response time(ms) for participants to decide the lexicality. People also
more quickly identified words with high frequency than words with low frequency.
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Fig. 7. Word similarity effect in behavioral experiment
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Fig. 8. Word similarity effect in computational experiment

(Fig. 7) represents the result of word similarity effect in behavioral exper-
iment. According to (Fig. 7), participants had difficulties identifying pseudo-
words rather than words or non-words. On the contrary as seen in, (Fig. 8),
computational experiment had somewhat different results from behavioral ex-
periment. In contrast to behavioral result, pseudo-word’s semantic stress value
is smaller than non-word’s semantic value. The reason for this disagreement
between behavioral and computational results can be explained by the lexi-
cal structure. It’s probably because while human lexicon may be composed of
phonological information for words (Grainger, Muneaux, Farioli, & Ziegeler,
2005), our computational lexicon is constructed based only on orthographic
information.

9 Conclusion

In this paper, we propose a computational model of Korean LDT and make a
comparison between behavioral and computational results on frequency effect
and word similarity effect. High-frequency words were responded faster than the
low-frequency words in both behavioral and computational experiment. Also,
It took more time to respond to pseudo-words than to non-words. The present
results have several implications for general models of the visual word recog-
nition regardless of language. First, they provide additional evidence that the
word frequency may be a basic information to access the mental lexicon. Sec-
ond, the results support the interpretation that the phonological information
may play a important role in lexical selection (Grainger, Muneaux, Farioli, &
Ziegeler, 2005). However, this model is incomplete in that it still has room to
be improved to simulate many other phenomena of language such as word sta-
tus effect, semantic priming, word neighborhood density and frequency effect.
In the future, we will try to find other effects related to visual word recognition
process.
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Abstract. Supporting the content-based retrieval of 3D graphic data has been 
little addressed in the most current 3D graphic systems. The systems focus on 
visualizing 3D images. This paper presents a 3D graphic data model which 
models 3D scenes using domain objects and their spatial relations. The model 
also supports the content-based query. The user can pose a visual query 
involving various 3D graphic features such as an inclusion of a given object, 
object’s shape, descriptive information, and spatial relations on the web 
interface. We discuss the 3D data modeling technique and content-based 
retrieval in detail. 

1   Introduction 

The explosive growth in the number of web-based applications has made the support 
of multimedia data in web-based information systems a hot research topic. Graphic 
data is probably one of the most frequently used data types in today’s web 
applications. The significance of 3-Dimensional (3D) graphic information has been 
demonstrated in many areas such as e-commerce, virtual reality, geographic 
information system, and entertainment [1, 2, 3].  

As more graphic data are used in applications, the methods that support content-
based retrievals of 3D graphic information are desired. Most current 3D graphic 
systems focus on visualizing 3D images. One problem with this approach is that it is 
difficult to retrieve or manipulate a particular domain object separately from others. 

We have developed a 3D graphic data model that supports a content-based retrieval 
for 3D scenes. This paper presents the data model and a retrieval system based on it. 
The 3D graphic data model, called 3DGML (3-Dimensional Graphical Markup 
language), allows the semantics of 3D objects to be incorporated into a 3D scene. The 
semantics implied in a 3D image include roles of component objects, semantic or 
spatial relationships among objects and composition hierarchies of objects. This 
support of semantic information allows for a content-based retrieval of scenes. Scenes 
are modeled as compositions of 3D graphic objects. A set of primitive 3D objects is 
used as building blocks for modeling 3D scenes instead of lines and polygons. Larger 
3D objects are defined through a composition of other objects.  

In our system, the user can search scenes using various 3D graphic features such as 
object’s shape, descriptive information and spatial relations of 3D objects they 
contain. The user can also look for scenes or objects that contain a given object as a 
component. A query on the shape of an object enables a scene to be retrieved based 
on a particular shape it contains. The shape is determined by the contour information 
of an object. A query on a spatial relation allows scenes to be searched based on 
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relative placements of objects in the space. Finally, a query can use textual 
descriptions of objects and scenes.  

The 3D graphic retrieval system presented in this paper is implemented using 
XML. 3DGML is an XML vocabulary defined using an XML DTD (Document Type 
Definition). The choice of XML as the description mechanism of our data model 
makes the database system suited to web-based information systems. The user can 
pose content-based queries using a web browser. A query result is presented to the 
user through the web browser.  
The remainder of this paper is organized as follows. The next section discusses 
previous researches related to our work. Section 3 describes 3DGML and modeling 
3D images with it. Section 4 presents the information retrieval system for 3D graphic 
information that we developed. Section 5 concludes the paper. 

2   Related Works 

Most current works on graphic database systems are centered on the processing of 2D 
graphic data such as images and maps [4, 5, 6]. Research on 3D graphics has mainly 
concerned about the visualization of data to provide the user with a 3D feel [2, 3, 7]. 
Existing graphic systems traditionally treat a 3D object as a collection of lines and 
polygons rather than a unit of manipulation. It prevents them from supporting content-
based retrievals or manipulations of 3D objects.  

MPEG standard committees have been worked on the issues of modeling 3D 
images [8, 9]. MPEG-4 aims to develop techniques for representing synthetic images 
with natural objects efficiently. 3D objects are represented by 3D meshes, norm 
vectors, and their features such as color, texture, etc. However, modeling 3D objects 
as semantic units is not addressed by MPEG.  

XML has been widely used for describing complex data types. The openness and 
the extensibility make XML an excellent vehicle for defining new languages with a 
relatively small effort [10]. Several domain specific languages have already been 
designed with XML before. 3D graphic data modeling can also benefit from XML. 
X3D (eXtensible 3D) is an open standards XML-enabled 3D file format and related 
access services for describing interactive 3D objects and worlds [11]. It may be used 
in a variety of application areas such as engineering and scientific visualization, CAD, 
training and simulation, multimedia, entertainment, educational, and more. However, 
X3D also does not consider the representation of semantics in 3D graphic modeling, 
which is used to retrieve 3D images from the database.  

There have been some efforts to model the spatial relations of objects for 3D 
scenes. Xiong and Wang described a technique supporting similarity search for a 
chemical application [12]. They represent a 3D object using points in the Euclidean 
Space. An object is a 3D graph consisting of one or more substructures of connected 
subgraphs. Similarity of two objects is determined by comparing their substructures 
and edges. Gudivada and Jung proposed an algorithm for retrieving images of 
relevance based on similarity to user queries [13]. In their image representation 
scheme, an image is converted to an iconic image with human assistance. This 
method also determines the spatial relation of objects using the connectivity of 
graphs.  
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While the works discussed above considered geometrical similarity, they did not 
discuss modeling the semantics of 3D objects and querying based on the contents of 
3D images. Their views still remain graph-oriented. In order to address the problems 
discussed above a new data model is needed that treats 3D objects as first class 
objects in modeling. The new data model should represent 3D data using semantic 
units rather than primitive geometrical objects. 

3   3D Graphic Modeling in 3DGML 

3.1   Data Model and 3DGML  

We first present the graphic data model used in our system. 3DGML models 3D 
scenes using domain objects and their spatial semantics. A 3D scene is an image 
consisting of one or more 3D objects which are meaningful in a domain. 3DGML is 
defined by an XML DTD which is shown in Fig. 1. We use the tags of X3D as much 
as possible to convert 3DGML documents to X3D easily. 

Descriptor

Descriptor

Contour

Td_String

Children

Children

Shape

Parent_Aobj

Shape

Group

Box

Cone

Cylinder

Sphere

UserShape

Box

Cone

Cylinder

Sphere

UserShape

Gobject

Aobject

Shape

Group

Td_String

Descriptor

Display

Definition

Scene

Contour

Group

 

Fig. 1. 3DGML DTD 

A 3D scene is modeled using three types of components: 3D objects contained in 
the scene, spatial relations on the objects, and descriptors. A simple 3D object is 
modeled using basic objects called shapes. A shape object is a system-defined 3D 
graphic object like VRML. Examples of shapes are box, cone, cylinder and sphere. 
An object of an arbitrary shape that is difficult to model with basic objects only, such 
as pyramid, triangular prism, etc, is defined using one or more polygons. Such an 
object is called a user-defined shape (UserShape). Each polygon of a user-defined 
shape may have associated properties as with basic objects. A complex 3D object is 
modeled as a composition of shapes, user-defined shapes, and other complex objects.  

Every 3D object within a scene exists in the form of a Gobject (Graphic object). A 
Gobject is defined by extending an abstract object. An abstract object is a skeletal 
object that is used as a prototype of other objects. We called it as Aobject. It is a 
template that does not physically exist in a scene. It specifies the shape of a 3D object 
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and partially describes its appearance. For example, an abstract object may define 
structure, color, and texture for its child objects. Hence, the modeling of a scene 
typically involves defining abstract objects first. In many cases, abstract objects 
represent semantic units such as desk, chair, etc that are germane to an application 
domain. 

The definition of an abstract object consists of descriptive meta-information called 
descriptor, contour, compound objects (Children), and 3D string [14] that defines 
spatial relation on the objects. A compound object may be comprised of one or more 
of shapes, user-defined shapes, or other compound objects. The contour information 
is represented as a feature value of an object. The contour object of a 3D object is 
defined as a set of wrapped surfaces of the object, which has a cube-like shape [15]. 
The contour value is a sum of norm vectors of surfaces composing a contour object.  

Every 3D object embedded in a scene is a Gobject. To create a Gobject, an abstract 
object needs to be specialized by adding further information required to render its 
clone in a specific scene context. The information on the translation, rotation, and 
scaling in the context of a particular scene needs to be specified in addition to what 
the abstract object has already defined. Separating the structure information of an 
object from its physical rendering for a scene and the use of prototype based object 
instantiation simplify the process of creating new 3D objects. Objects of a kind can 
easily be modeled without creating many superfluous classes. 

A 3D string can express the concepts such as A is located to the left of B (left-right 
relation), A is above B (top-bottom relation), and A is closer than B (front-back 
relation). The representation of a 3D string is derived from the 1D string technique 
[16]. A 1D string is an encoding of the order of the positions of objects in the linear 
space. The ordering symbols used for 1D strings are “<” and “=” which means closer 
and equal, respectively. A 3D string is a 3-tuple (u, v, w), where u, v, and w represent 
the 1D strings obtained when objects are projected to the X, Y, and Z-axis, 
respectively. 

3.2   A 3D Modeling Example 

We now show an example 3DGML document that models a 3D scene. Fig. 2 shows a 
scene of an office that will be used in our discussion below. It is a 3D scene of 
furniture in an office. We label Gobject’s id and related Aobject’s id in the 
parenthesis for each object. Fig. 3 is a stripped version of a 3DGML document for the 
scene. 

The model in Fig. 3 defines the scene “OFFICE_02.” It contains two major blocks: 
the Definition block that defines abstract objects used in the scene and the Display 
block that defines the actual contents of the scene. The Td_string element defines the 
spatial relation for the objects contained in this scene. It specifies the spatial relation 
of Gobjects G001 through G009. For example, the u value of the 3D string specifies 
the ordering of the nine objects with respect to the X-axis.  "G001<G002” means that 
G001 is located to the left of G002. Since G005, G006 and G007 are on the same 
locations with respect to the X-axis and located to the left of G008, the 3D string is 
represented as “G005=G006=G007<G008.” We discuss the Display block first.  
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G001
(A001)

G002
(A002)

G003
(A003)

G004
(A001)

G005
(A004)

G007
(A011)

G006
(A005)

G008
(A006)

G009
(A006)  

Fig. 2. The 3D scene of an office 

- <Scene>
<Descriptor value="OFFICE_02" />
<Td_String

u="G001<G002<G003<G004<G005=G006=G007<G008=G009"
v="G001=G004<G003=G007<G008=G009<G002=G005<G007"
w="G002=G005<G008<G001=G003=G004=G007<G009<G007" />

- <Definition>
- <Aobject aid="A001">

<Descriptor value=“CHAIR" />
<Contour value1="-0.2 0.9 -0.2" />
<Td_String u="……“ v="……“ w="……" />
- <Children>
- <Transform translation="8.5 4.1 -16.2" rotation="0 0 0" scale="1 1 1">
- <Shape shapeID=“S004" color="0.337300 0.337300 0.337300">

<Cylinder height="11.94" radius="0.9" />
</Shape>

</Transform>
+ <Transform translation= … >

<! …… The definition of other shapes for Aobject A001 ……… >
</Children>

</Aobject>
+ <Aobject oid="A002">

<! …… The definitions of other Aobjects ……… ……… ……… ……… >
</Definition>
- <Display>
- <Transform translation="-8.5 -4.14 16.25" rotation="0 0 0" scale="1 1 1">

<Gobject gid="G001" refAid="A001" />
</Transform>

+ <Transform translation="2.17 -4.14 16.33" rotation="0 0 0" scale="1 1 1">
<! …… The definitions of Gobjects G002 through G009…… ……… >

</Display>
</Scene>  

Fig. 3. The definition of the scene in Fig. 2 

The Display block contains the definitions of Gobjects G001 through G009 which 
model the objects labeled in Fig. 2, correspondingly. A Gobject may be defined by 
using an abstract object as its prototype, in which case its features should be modified 
as needed. Object G001 is an example of a Gobject defined using A001, an abstract 
object, as its prototype. It is a concrete extension of A001 with a translation.  

We now narrow our discussion to the modeling of chair G001 in the Fig. 2. The 
3DGML model shown in Fig. 2 defines chair G001 in a two-step process. It first 
defines an abstract object, A001, which resembles the shape of the target object, 
G001. It then defines G001 as a Gobject by declaring A001 to be its prototype and 
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specifying additional information needed to create a concrete graphic object to be 
inserted in the scene.  

According to the definition of the abstract object A001, it consists of many basic 
shapes including a cylinder whose height has 11.94 with the radius of size 0.9. The 
information defined by the shape object in the abstract definition still is not specific 
enough to be used in a scene as it barely defines the information needed by A001. 
This example defines the relative location and scaling factors within A001 and the 
default color for the objects contained in it. These values may need to be modified or 
complemented with further information to fit it in a specific scene. The definition of 
A001 contains one descriptor, which describes it as a chair. The Contour element of 
A001 contains a vector value of the contour object for A001. The Td_string element 
defines the spatial relation for the objects contained in it. It specifies the spatial 
relation among component objects of A001. 

4   Content-Based Graphic Information Retrieval 

In 3DGML, a 3D scene is modeled hierarchically such that a scene is composed of 
objects and the objects are composed of component objects. This relationship 
composes a “scene-object-component” hierarchy and can be used as selection criteria 
in a query. In the 3D graphic retrieval system, queries can be classified into the 
following three categories. 

 The descriptions on scenes and objects can be used to querying database. An 
example query is “find a scene containing an object whose descriptor is desk.” 

 3D objects have features such as color, contour and spatial relations. These 3D 
graphic features can be used as query conditions. A query like “find a scene 
including a lamp on a desk” is an example.  

 Finally, user can retrieve scenes based on a hierarchical relationship among 
components of a 3D scene. It is possible to find an Aobject that contains a 
given shape or find a scene that contains a given Aobject or Gobject. Finding 
Gobjects that is defined by using a given Aobject is also possible. 

A sample query on the 3D database system is now described. It retrieves the scenes 
that contain a lamp on a desk. Fig. 4 shows the screens displayed by our retrieval 
system. The query screen shown in Fig. 4(a) is the user interface with which the user 
enters queries.  

The user specifies object selection conditions by pressing “Select Object” or “Select 
Aobject” button. When “Select Object” button is pressed, the object selection window 
of Fig. 4(b) is popped up for the expression of conditions. The conditions of Fig. 4(b) 
mean an object whose descriptor contains a word “DESK” and contour object is the 
same shape as the given box object. Since the color checkbox is not selected, the color 
feature of the given object is not considered. If the component checkbox is selected, 
objects containing the given shape as a component are selected. If “Select Aobject” 
button is pressed, the Aobject list window of Fig. 4(c) is shown. The user selects an 
Aobject to be used as a query condition from the list. A lamp object is selected in our 
example. For each time the user specifies a search condition for an object, a 
conditioned object is added to “Selected object” part of the user interface. 
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(a) The query screen                                            (b) Object selection 

 

(c) Aobject list                                               (d) The result screen 

Fig. 4. A sample query and the result 

After expressing all conditions on objects, the user states 3D string conditions in 
“Spatial relation” part using the id’s of conditioned objects. In our example, spatial 
relation “1<2” is expressed, which means the “aobject_1”, the lamp object selected in 
Fig. 4(c), is above the “object_1” that has the condition mentioned above.  

The query conditions for the desk object are processed using the description and 
the contour information. All descriptions of both Gobjects and Aobjects are searched 
for the given text. The contour values of all objects are also compared with the given 
shape’s contour value. The query processing for the lamp object is based on a simple 
comparison of oid’s of abstract objects. The scenes shown in Fig. 4(d) are returned as 
the result of the query. 

The implementation of the 3DGML system that we have discussed so far is based 
on the XML technology. The system consists of the semantic editor, the 3D object 
manager, the query coordinator and the database wrapper. 

The user creates a 3D scene using a 3D graphic editor which generates a VRML 
file like 3D Max. The semantic editor converts the VRML document to a 3DGML 
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document. In the process, descriptor information is added and feature values such as 
contour and 3D string are calculated. Then, the database wrapper parses a 3DGML 
document and maps it to a relational database. A relational schema is defined to 
reflect the part of 3DGML structure that is used querying 3D images.  

The query coordinator controls overall phases of query generation. It provides a 
graphical user interface so that users can enter a Query-By-Example style query. In 
the query processing step, the database wrapper generates an SQL query from the 
given content-based query, which returns 3DGML documents. The retrieved 
documents are converted to VRML documents to display its 3D image on the 
browser. 

The current system has been implemented and runs with IIS(Internet Information 
Server) of Microsoft on the Windows NT platform. The XML parser was implemented 
in ASP using DOM API [17]. Parsed XML documents are stored in Oracle 9i. 

5   Conclusion 

While X3D has become a popular tool in many 3D application domains, few graphics 
applications are known to support content-based retrievals of 3D graphic data. We 
presented a 3D graphic system that offers a content-based retrieval of 3D scenes. One 
of the significant features that our system introduced is its support of semantic 
modeling for 3D scenes. 3D objects are modeled using semantic units rather than the 
primitive geometrical objects such as lines and polygons. An XML-based data 
modeling language called 3DGML was described in detail. It separates the 
implementation details of a 3D object from its semantic usage and supports modeling 
scenes in an object-oriented way. A content-based retrieval of 3D objects on our 
system was described using an example. Searching may be based on 3D shapes and 
spatial relations.  

For future work, we are planning on providing more elaborate algorithms to 
represent contour information of objects and the support of similarity query based on 
shapes of objects and scenes. We are also considering the indexing methods that help 
fast searching of 3D graphic data using their features. 
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Abstract. Recommendation is to offer information which fits user's interests and 
tastes to provide better services and to reduce information overload. It recently 
draws attention upon Internet users and information providers. Collaborative 
filtering is one of the widely used methods for recommendation. It recommends 
an item to a user based on the reference users’ preferences for the target item or 
the target user’s preferences for the reference items. In this paper, we propose a 
neural network based collaborative filtering method. Our method builds a model 
by learning correlation between users or items using a multi-layer perceptron. 
We also investigate integration of diverse information to solve the sparsity 
problem and selecting the reference users or items based on similarity to improve 
performance. We finally demonstrate that our method outperforms the existing 
methods through experiments using the EachMovie data. 

Keywords: recommendation system, collaborative filtering, personalization, 
multi-layer perceptron. 

1   Introduction 

Recommendation is to select and offer information or items which fits user's interests 
and tastes by filtering the given set of information or items to provide better service 
and to reduce information overload. For recommendation there are generally three 
different methods depending on the kinds of information used to filtering: content-
based filtering, demographic filtering, and collaborative filtering. Content-based 
filtering estimates a user’s preference for an item based on its similarity in some 
properties with the items with known preferences. Demographic filtering performs 
such estimation based on the user's demographic information such as gender, age, 
hobbies, and occupation. Collaborative filtering predicts a user's preference for an 
item based on other correlated users’ preferences for the item. Different filtering 
methods can be best applied to different application problems and they have their 
strengths and weaknesses. For example, content-based filtering is good for 
recommending books and documents for which contents can be clearly specified. 
However, it may not be useful for recommending items for which contents cannot be 
clearly defined.  It is also difficult to recommend items not similar in contents but 
closely related to some given items. Collaborative filtering can be best applied to 
problems for which items are recommended based on their correlated preference 
behaviors without the need of knowing the contents of items or demographic 
information of the users. Collaborative filtering can be considered more general than 
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the other two filtering methods. It has been reported that content-based filtering and 
demographic filtering lack flexibility in recommendation and their performances are 
generally lower compared with collaborative filtering [1], [2], [3]. 

There have been two typical methods for collaborative filtering: the k-NN method 
and the association rule method [4], [5]. In spite of some advantages, their 
performances are generally low. The low performances of the methods are mainly due 
to the limitation of their underlying models. The k-NN method assumes that the 
attributes of data are independent, however, it is usually not the case. Association rules 
are limited in representing complex quantitative relationships among data [6], [7]. 

In this paper, we propose collaborative filtering based on neural network. In 
general, it has several advantages over the conventional models. Some important 
features of a neural network include: (1) it can learn a complex relationship between 
input and output values; (2) it can easily integrate diverse information; (3) it can 
handle various data types; (4) it can handle incomplete information efficiently. These 
distinguishing features can well fit to problems such as collaborative filtering. In our 
method, a multi-layer perceptron is adopted as the basic neural network architecture. 
A multi-layer perceptron is trained to learn a correlation among preferences of the 
target user and the reference users. The resulting model is called a user model. The 
same principle can be applied to build an item model. 

Our neural network model has several advantages over the existing methods. First 
of all, it is expected that its performance is improved because it can learn a complex 
relationship of preferences among users or items. In addition, the hidden nodes of the 
model represent latent concepts for recommendation and it can improve performance. 
Next, it is easy to handle diverse data types including continuous numeric data, binary 
or logical data, and categorical data. Finally, it is easy to integrate diverse kinds of 
information such as contents and demographic information for efficient filtering. We 
investigate integration of contents information into the user model to examine the 
possibility of solving the sparsity problem. In training a neural network it is important 
to use good features as input data. For this we also investigate selection of the 
reference users or items based on the similarity between the target user and the 
reference users or the target item and the reference items. 

This paper is organized as following. In Section 2 we describe our neural network 
based collaborative filtering and some methods to improve the performance. In 
Section 3 we briefly review the existing collaborative filtering methods. In Section 4 
we describe our experiments with our method and compare the performance of our 
method with those of the existing methods. Finally, in Section 5 we make a 
conclusion and describe future research. 

2   Collaborative Filtering Based on Neural Network 

Among many different types of neural networks we adopt as the basic neural network 
model the multi-layer perceptron(MLP) [8], which is commonly used in various 
applications. In this section we describe our method of building collaborative 
recommendation models based on the MLP. We also describe integration of 
additional information and selection of the reference data to improve the performance 
of our model. 
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2.1   Neural Network Models  

There are two neural network models for collaborative filtering (CFNN): a user model 
called U-CFNN and an item model called I-CFNN. In the U-CFNN model the input 
nodes correspond to the reference users’ preferences and the output node corresponds 
to the target user’s preference for the target item. In the I-CFNN model the input 
nodes correspond to the target user’s preferences for the reference items and the 
output node corresponds to his preference for the target item. CFNN can be designed 
to include more than one output node for multiple users or items. In this case it needs 
to train the whole network for incremental learning for even a small number of users 
or items. Furthermore, it is difficult to utilize user or item specific information such as 
the selected reference users or items. Thus we do not consider such models in this 
paper. 

 

Fig. 1. Example of Training CFNN 

The U-CFNN model is produced by learning the target user's (Ut) correlation with 
the reference users (U1, U2, ... Un-1, Un). When an item is given for recommendation 
the model outputs an estimation of the target user's preference for the item based on 
other users’ preferences for the item. For example, suppose we are given the user-item 
preference ratings and we need to predict user U5’s rating for item I7 by referencing 
other users’ ratings.  We associate the input nodes with users U1, U2, U3 and U4 as the 
reference users and the output node with the target user U5. We train a U-CFNN 
model using the ratings of users for each item. The resulting model represents a 
general behavior of the target user’s preference as associated with the reference users’ 
ratings. Now, for a new item, for example I7, the U-CFNN model can estimate the 
target user’s (U5) rating for the item based on the reference users’ ratings for the item.  

An I-CFNN model can be built in a similar way to that described in the above and 
it is basically of the same structure as that of the U-CFNN model. It mainly differs 
from the U-CFNN model in that it represents preference association among items. 
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Given an item for recommendation its rating is estimated based on ratings for other 
items rated by the target user. 

2.2   Information Integration 

Collaborative filtering often suffers the sparsity problem in which the performance is 
low when the rating information is not sufficient in the data. For a new item, only a 
limited number of users rate their preferences for the item. In this case collaborative 
filtering has difficulty to estimate the preference for the item correctly. To solve the 
sparsity problem and to improve the performance, [10] used the singular value 
decomposition (SVD) to use latent structure in the data. [1] and [11] proposed 
integration of collaborative filtering and content-based filtering. In [11] the content-
based predictor estimates ratings of users for the target item and that rating information 
is fed into the collaborative filtering system to estimate the rating for the target item. 

In this paper we investigate integration of additional information into CFNN as 
shown in Fig. 2, to solve the sparsity problem. We consider integrating content 
information of items into the U-CFNN model. For example, we can integrate content 
information such as the genre of movies into the U-CFNN model. Also we can 
integrate into the I-CFNN model user's demographic information such as age, gender, 
job, and hobbies.  

 

Fig. 2. CFNN with Information Integration 

An MLP for integrating additional information can be built simply by adding new 
input nodes corresponding to the additional information and connecting them to 
hidden nodes as shown in Fig. 2. Our method takes advantage that it is very easy to 
integrate different kinds of information using neural networks. However, we describe 
later an experiment with integrating the genre information into the U-CFNN model. 
We do not consider integrating the demographic information into the I-CFNN model 
because of lacking useful demographic information in the data.  

2.3   Selection of Reference Data 

We investigate using similarity in selecting the reference users or items. In the CFNN 
model there is no restriction on selecting the reference users or items. However, For 
the U-CFNN model if we select those users who are similar to the target user in 
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preference, the model can learn stronger correlation among users than random 
selection of the reference users and consequently, the performance can be improved. 
Fig. 3 illustrates a U-CFNN model with the selected reference users as input users. In 
this paper we adopt Pearson’s correlation coefficient as similarity measure. We select 
k users with the highest Pearson’s correlation coefficients.   

 
Fig. 3. U-CFNNS 

Fig. 4 illustrates building a U-CFNNS (U-CFNN with the selected reference users). 
It computes the similarities of preferences between the target user (U5) and other users 
(U1, U2, U3, and U4). If k is three, it produces a model by selecting three users (U1, U2, 
and U4) as the reference users, who have the highest similarities with the target user. 
The selected reference users correspond to the input nodes. Similarly, for the I-
CFNNS model three items (I1, I4, and I5) are selected as similar to the target item (I7).  

 

Fig. 4. Example of CFNNS 

3   Related Works 

The k-NN method, which was used in GroupLens for the first time [9], is a memory-
based collaborative filtering. In the k-NN method, a subset of users are chosen based 
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on their similarities to the target user in preference and a weighted combination of 
their ratings is used to produce a prediction for the target user. The k-NN method is 
simple and easy to use, however, its performance is generally low. The reason for this 
is that the k-NN algorithm assumes that the attributes are independent. Consequently, 
it may not be efficient if independence among attributes is not guaranteed. It also has 
the scalability problem that computation time increases as the size of data increases 
[4], [6].  

Association rules represent the relations between properties of data in the form of 
‘IF A Then B.’ In association rules we can consider that the correlations (weights) 
between users or items are represented in terms of support and confidence of rules. 
However, more detail correlation may not be represented by support or confidence. In 
addition the performance is low because they rely on a simple statistics of co-
occurrences of data patterns without considering intrinsic semantic structure in the 
data. It is also difficult to represent complex (not logical) relationships among data 
only in rules of attribute-value pairs.  

[10] proposed a method, which  is based on dimensionality reduction through the 
SVD of an initial matrix of user ratings. It exploits latent structure to essentially 
eliminate the need for users to rate common items and it solves the sparsity problem 
to some degree. [11] investigated combining the user model and the item model for 
performance improvement.  

4   Experiments 

We experimented with our method over the domain of movie recommendation. We 
used the EachMovie dataset [12]. It consists of 72,916 users, 1,628 movies, and 
2,811,983 numeric ratings. Movies are rated by six different levels between 0.0 and 
1.0 for the lowest preference (or “dislike”), the highest preference (or “like”), 
respectively. In our research we chose the first 1000 users who rated more than 100 
movies. 

Table 1. Rating Encoding 

User Rating 0.0 0.2 0.4 0.6 0.8 1.0 missing 
CFNN Encoding -1.0 -0.6 -0.2 0.2 0.6 1.0 0.0 

For our method, the ratings were transformed for efficient training as shown in 
Table 2. We also represented the missing ratings by 0.0. Generally, handling missing 
values is one of the difficult problems in data processing. Here we simply considered 
missing ratings the same as the in-between rating to be ignored in MLP processing 
and in our experiments we noticed that it did not affect the performance significantly. 
In training the MLP we only considered the target ratings greater than 0.7 or less than 
0.3 and other ratings were ignored. We also transformed the ratings greater than 0.7 
into 1.0 and the ratings less than 0.3 into 0.0 as the target output for the MLP.  
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For its generalization power we also fixed the number of hidden nodes to be small, 
such as five. In our experiments we used the learning rate 0.05 and the momentum 
constant 0.0.  

We use four different measures for performance evaluation: accuracy, precision, 
recall, and F-measure as defined in equations (1) – (4). In the equations T (Total 
Items) represents the number of items rated and TL (Total Like Items) represents the 
number of items that users like. R is the number of items which are recommended to 
users by the model, RL (Recommended Like Items) is the number of items that are 
recommended and the target users like, and NRD (Not-Recommended Dislike Items) 
is the number of items that are not recommended and the target users dislike. For 
performance evaluation using those measures we quantized the output ratings of our 
model greater than or equal to 0.5 to “like” and less than 0.5 to “dislike”, 
respectively.  

RL NRD
accuracy

T

+=  (1) 

RL
precision

R
=  (2) 

RL
recall

TL
=  (3) 

2
precision recall

F measure
precision recall

⋅− = ⋅
+

 (4) 

In this section, we analyzed the performance of our method for recommendation 
and compared it with the existing methods in various aspects. First we analyzed and 
compared CFNN and CFNNS, and then evaluated the performance for integrating the 
genre information into the U-CFNNS model. Finally, we compared CFNN with the k-
NN and the association rule methods.  

4.1   Comparison of CFNN and CFNNS  

We built 20 models for 10 users and 10 movies. We particularly selected 10 users 
whose preferences are unbiased in that they rated almost equal number of items as 
“like” and “dislike”. In this case it is generally difficult to predict user’s preferences 
correctly. Each model is evaluated by 4-fold cross validation. In our research for 
efficiency we limit the number of the reference users or movies to 100. In CFNN the 
reference users or movies are selected randomly while in CFNNS users whose 
preferences are similar to that of the target user are selected. Table 2 compares CFNN 
and CFNNS in performance. As shown in the table CFNNS clearly outperforms 
CFNN. The performance improvement can be accounted for by the difference of 
average similarities between random selection and similarity based selection of the 
reference users or items. We notice that the performance improvement for the item 
model is greater than for the user model. In this case the difference is 0.32 for the item 
model while it is 0.27 for the user model.  
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Table 2. Performance Comparison of CFNN and CFNNS (%) 

User Model Item Model 
 

U-CFNN U-CFNNS I-CFNN I-CFNNS 
Accuracy 82.1 83.6 77.7 81.5 
Precision 81.7 82.6 77.9 82.0 

Recall 84.1 85.6 75.8 79.4 
F-Measure 82.9 84.1 76.2 80.7 

4.2   Information Integration  

It is often the case that integrating diverse relevant information or combining multiple 
methods yields better performance. This is also true with recommendation. [1] and 
[11] demonstrated performance improvement by integrating additional information 
and combining different filtering methods. Especially, such integration can solve the 
sparsity problem in collaborative filtering. In this paper we describe integration of 
diverse information for performance improvement and solving the sparsity problem 
using a neural network. Demographic information in the EachMovie data includes 
gender, age, residential area, and job. However, we decided to ignore it. It is because 
such demographic information is of little use: residential area and job are little 
correlated with movie preference while gender and age appear to be significantly 
biased in the data.  

Instead, we integrated the genre of movies into the U-CFNN model as well 
correlated to user’s preference. The EachMovie dataset has 10 different genres of 
movies and each movie can have more than one genre specified. Although each genre 
is represented in binary, when we trained the model we transformed it by multiplying 
the target user’s rating for the movie and used the result as input to the neural network 
model as shown in Fig. 2. We experimented with the 10 users under the same 
conditions as described previously.  

Table 3. Performance Comparison of U-CFNNS and U-CFNNS with Genre (%) 

No. of Reference Users (U-CFNNS) 
10 50 100  

User User/Genre User User/Genre User User/Genre 
Accuracy 77.3 82.8 80.5 84.2 83.6 84.1 
Precision 75.2 81.4 80.3 83.4 82.6 84.0 

Recall 85.9 87.8 82.8 87.0 85.6 85.2 
F-measure 79.6 83.4 81.4 84.4 84.1 83.7 

Table 3 compares the performances of U-CFNNS with and without the genre 
information. In the experiment we examined the effect of the genre information by 
varying the number of the reference users. As we can see in the table when the 
number of the reference users is smaller, the performance improvement is larger. 
Integration of diverse relevant information will help recommending items correctly to 
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a new user who only has a limited number of reference users. This result demonstrates 
that integration of relevant information can solve the sparsity problem in collaborative 
filtering and our neural network model proves to be easy to integrate such 
information. 

4.3   Performance Comparison of CFNN and the Existing Methods 

In this section, we compare our collaborative filtering method with the existing 
methods. For comparison we used the first 1000 users in the EachMovie dataset, who 
rated more than 100 movies as the training data, and the first 100 users whose user 
IDs are greater than 70,000 and who rated more than 100 movies as the test data. 
Using the data we built 30 user and item models. Especially we selected 30 target 
users randomly among those who have user ID over 70,000. Two thirds of 30 models 
are trained using data of unbiased preferences and the rest are trained using data of a 
little biased preferences.  

Tables 4 and 5 compare in performance our method with the existing methods such 
as k-NN and association rule methods. As shown in the tables the CFNN and CFNNS 
models show a significant improvement of performance compared with the existing 
methods. 

Table 4. Perfomance Comparison of the User model and the Existing Methods (%) 

U-CFNN U-CFNNS 
 k-NN 

Assoc. 
Rule User 

User/Genr
e 

User User/ Genre 

Accuracy 67.8 72.0 81.6 81.4 87.2 88.1 
Precision 60.3 75.1 77.4 78.0 86.6 88.5 

Recall 55.7 58.4 69.6 65.7 82.8 88.3 
F-measure 57.9 65.7 73.3 71.3 83.3 85.7 

Table 5. Performance Comparison of the Movie Model and the Existing Mehtods (%) 

 k-NN Assoc. Rule I-CFNN I-CFNNS 
Accuracy 64.7 61.1 76.2 79.1 
Precision 67.8 75.4 76.1 74.4 

Recall 59.8 22.6 72.1 76.6 
F-measure 62.4 34. 72.7 74.6 

5   Conclusions 

In this paper, we propose a collaborative filtering method based on neural network 
called CFNN. We also propose some methods to improve the performance including 
integration of additional information and selection of the reference users or items 
based on similarity. Our model utilizes the advantages of a neural network over other 
methods. It is powerful to learn a complex relationship among data and it is easy to 
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integrate diverse information. The experiment results prove that our method shows a 
significant improvement of performance compared with the existing methods. One of 
the weaknesses of our method is that the neural network model is not comprehensible, 
however, in recommendation it is usually the case that comprehensibility is not be 
important.  
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Abstract. We provide a framework for learning to price complex op-
tions by learning risk-neutral measures (Martingale measures). In a sim-
ple geometric Brownian motion model, the price volatility, fixed interest
rate and a no-arbitrage condition suffice to determine a unique risk-
neutral measure. On the other hand, in our framework, we relax some of
these assumptions to obtain a class of allowable risk-neutral measures.
We then propose a framework for learning the appropriate risk-neural
measure. In particular, we provide an efficient algorithm for backpropa-
gating gradients through multinomial pricing trees. Since the risk-neutral
measure prices all options simultaneously, we can use all the option con-
tracts on a particular stock for learning. We demonstrate the performance
of these models on historical data. Finally, we illustrate the power of such
a framework by developing a real time trading system based upon these
pricing methods.

1 Introduction

In 1973, Black and Scholes published their pioneering paper [1] which introduced
the first option pricing formula and also developed a general framework for deriv-
ative pricing. Since then, derivative pricing has become a popular research topic.
A modern, popular approach to pricing has been though the Martingale measure
(see, for example, [2]). The origin of the fundamental theorems on the Martingale
measure can be traced to Cox and Ross’ paper [3] describing the method of risk
neutral valuation. The Martingale measure was developed into a more mature
pricing technique, such as [4]. Other related topics can be found in [2,5].

Option trading by directly predicting prices and then building trading systems
based on the predictions have been considered in the neural network literature
[6,7]. An alternative to predicting prices and then trading is to use direct rein-
forcement to trade directly (see for example [8]). Learning to trade directly has
the advantage of avoiding an additional price-prediction step. When multiple
instruments are available, for example multiple options on a single underlying
stock, then the state space of possible trading actions grows exponentially and
direct reinforcement for learning to trade becomes infeasible. In addition, price
prediction of each individual option leads to an excessive number parameters,
and it now makes sense to develop a unified price prediction mechanism for all the
options simultaneously. Once prices are predicted for all the options, trading can
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be performed independently on each of these options based on their respective
prices. This is the motivation for this work, namely to present a unified frame-
work for learning to price all the derivatives on a particular underlying stock.

The tool we use for accomplishing this task is the Martingale measure, which
relates to the stock dynamics. If we can predict the stock dynamics in the risk
neutral world, then we can price all derivatives on a particular stock. We sum-
marize the advantages of predicting the risk neutral stock dynamics:

(i) Simultaneously prices all derivatives on a stock.
(ii) All derivative data can be used in learning.
(iii) No-arbitrage constraints exist for the risk neutral dynamics.

In contrast, learning to directly price each option suffers from two problems.
The first is that more parameters must be learned, one set for each option. The
second is that the data on a single option can be used only to learn to predict
that particular option’s price. On the other hand, only one set of prediction
parameters need be learned for predicting the risk neutral dynamics, and all
the option prices can be used to learn this single set of parameters – in effect,
more data to learn fewer parameters. Also mentioned above are no-arbitrage
constraints, which limit the possible risk neutral measures. The no-arbitrage re-
quirement thus provides an economic constraint to regularize the learning in the
right direction, further improving the generalization performance of the system.

The underlying theory for the pricing based on the risk neutral dynamics
is that the prices can be computed as expected values of cashflows over the
risk neutral stock price dynamics. Often the Martingale measure is not unique,
and this is where learning comes in. We develop a framework for learning the
Martingale measure. We assume that the stock dynamics can be represented
on a multinomial tree. Binomial trees have often been used to price options
[9,2,10]. In this work, we present the framework for general multinomial trees,
and illustrate with trinomial trees [11], which is more complicated, more flexible
and better illustrate the general principles – in the binomial model, there is no
learning because the Martingale measure is unique. For background on option
pricing and other financial topics, we suggest [10,11].

The outline of this paper is as follows: first, we give some basics of multi-
period, multinomial trees and option pricing, before presenting the NN-OPT
algorithm. We then give some experimental results (training and test) on high-
frequency paper trading of IBM stock options based on the learned price pre-
diction. Our results indicate that learning Martingale measures together with
no-arbitrage regularization constraints performs best.

2 Multi-period Economy with Multinomial Tree

Before introducing NN-OPT, an algorithm to price options, we need set up the
notation to describe the economy. Describe the price of an instrument by C
and consider, for example, a 2-period economy (see Fig.1.(a)). Consider time
steps m and m + 1 (corresponding to times mT and (m + 1)T ). At time step
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m, the instrument could be in one of many states, indexed by α, with price
Cm

α . From state α at time step m, assume that the instrument can transition to
one of L states, with prices

{
Cm+1

α1 , . . . , Cm+1
αL ,

}
. Thus we use Cm+1

αβ to denote
the possible prices which the instrument can transition into at time step m+ 1
from state α at time step m. When L = 2, we have a binomial model, L = 3
is a trinomial model and for L > 3 a multinomial model. Let Pj denote the
probability to transition to state j, j = 1, . . . , L, and

∑
Pj = 1. When Pj is

independent of m and α, we have a standard multinomial tree dynamics for the
instrument price. We can represent Cm+1

αβ and Pj in vector notation,

Cm+1
α =

⎡
⎢⎢⎢⎣
Cm+1

α1
Cm+1

α2
...

Cm+1
αL

⎤
⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎣
P1
P2
...
PL

⎤
⎥⎥⎥⎦ .

When m = 0 (time 0), there is only one state C0
0 , and after each time period T ,

each state can transition to L possible states, which creates a multinomial tree
in a multi-period economy (shown in Fig.1.(b)).

Cm
α

Cm+1
α1 P1

Cm+1
α2 P2

Cm+1
αL PL

(m + 1)TmT
time

C0
0

0 T 2T (M − 1)T
time

(a) 2-period economy (b) M-period economy

Fig. 1. The dynamics of economy

3 Option Pricing

NN-OPT is based on Martingale methods for options pricing and we briefly
discuss some background on Martingale pricing. The basic theorem is that the
discounted price is a Martingale with respect to some measure P .

Cm
α = D(T )× EP

[
Cm+1

αβ

]
= D(T )×

∑L
j=1 PjC

m+1
αj

= D(T )× P T Cm+1
α ,

(1)

where D(T ) is the risk free discount factor, which depends on the interest rate
and T . Intuitively, this formula means that the current prices are the present
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value of the expected future prices, where the expectation is with respect to the
so called risk neutral probabilities P . In this paper, we consider C to be the
price of an American option, whose value can be realized by either exercising
now or holding and optimally exercising later. Let G (Sm,K) be the value of
exercising at time m with strike K and stock price Sm. Then

Cm
α = max

{
G (Sm,K) , D(T )× P T Cm+1

α

}
. (2)

Thus, we can use backward propagation to compute the current prices of options.
To initiate the backward propagation, note that at last time step (M − 1), the
options don’t have any future value, and the option prices become

CM−1
α = max

{
G
(
SM−1,K

)
, 0
}
. (3)

Therefore, if we know the appropriate values1 for SM−1 (i.e. the stock dynamics),
we are able to determine CM−1

α for all states at the last time step, and then we
use the recursive algorithm to compute the current price C0

0 of the option. The
details of pricing options using multinomial trees can be found in numerous
techniques of option pricing, for example [2,11].

4 The NN-OPT Learning Algorithm

The NN-OPT learning algorithm includes two parts, a standard neural network2

probability predictor and a multinomial pricing tree. Figure 2 shows the structure
of neural networks, where wθ

ηδ denote the weights from node η to node δ in layer θ,
and the set of weights are denoted by vector w. The neural networks will predict
and learn the probabilities P for pricing, used in the multinomial pricing tree.
The input of the neural networks can be anything, such like short term interest
rates, long term interest rates, technical indexes or previous historical data. The
output of the neural networks is a set of amplitudes, {g1, g2, . . . , gL−1}, where
gi ∈ [0, 1]. There is also a set of transfer functions {H1, H2, . . . , HL}, denoted by
a vector H , to transfer {g1, g2, . . . , gL−1} into probabilities P , where,

Pi = Hi(g1, g2, . . . , gL−1) i = 1, . . . , L . (4)

The outputs gi, i = 1, . . . , L − 1, are independent of each other. This property
makes the process of backward propagation easier (in Sect.4.3). In a trinomial
model, for example, one choice for the transfer functions is

P1 = g1 (5)
P2 = (1 − g1)× g2 (6)
P3 = 1− g1 − (1− g1)× g2 , (7)

which satisfy
∑
Pi = 1 and 0 ≤ Pi ≤ 1, for i = 1, . . . , 3.

1 There are many techniques to determine appropriate values for SM−1, such as his-
torical volatility and GARCH volatility predictors, [9,12].

2 The details of the structure and the procedures of a standard neural network, please
refer to [13,14].
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INPUTS

wθ
ηδ

gi

g1

g2

gL−1

P1

P2

PL

Fig. 2. The structure of the neural network

The second part of the NN-OPT learning algorithm is the multinomial pricing
tree which uses the probabilities in P to price all options and compute the
feedback to the neural networks for learning (updating of the weights).

4.1 Forward Propagation: Computation of Current Price C0
0

Figure 3 shows the framework for forward propagation. Assume that we are
given a data set, D = {xi, yi}N

i=1, where xi is the input vector, and yi is the
expected output. The standard neural networks just apply the regular forward
propagation to obtain {g1, g2, . . . , gL−1}, see for examples [13,14]. Then using the
transfer functions H , we calculate pricing probabilities P . The pricing algorithm
for the multinomial tree is as follows:

1. Use (3) to compute CM−1
α for all states at last time step (M − 1).

2. Loop from i = (M − 2) to 0,
– Use (2) and Ci+1

α to compute Ci
α for all states at time step i .

3. Output C0
0 .

C0
0

Fig. 3. The framework for forward propagation

4.2 Computation of Error Function Error(w)

We define the error function as

Error(w) =
1
N

N∑
i=1

(
C0

0 − yi

)2
. (8)

The goal is to find a set of weights w that minimizes Error(w). To do this,
using a gradient descent algorithm, we will need to backpropagate gradients
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through a multinomial tree and then through the neural network. Backpropaga-
tion of gradients through neural networks is standard (see for example [13,14]).
We now develop an efficient algorithm for backpropagating gradients through a
multinomial tree pricing framework.

4.3 Backward Propagation: Computation of the Gradients

The framework for backward propagation is shown in Fig.4. In order to imple-
ment the gradient descent algorithm, we need

∂Error(w)
∂wθ

ηδ

=
2
N

N∑
i=1

(
C0

0 − yi

) ∂C0
0

∂wθ
ηδ

. (9)

There are L− 1 neural networks, and we need to compute (9) for each one. We
will focus on a particular neural network j ∈ {1, 2, . . . , L − 1}. In (9), C0

0 and
yi are known after forward propagation, and we have

∂C0
0

∂wθ
ηδ

=
∂C0

0

∂gj
× ∂gj

∂wθ
ηδ

, (10)

thus, we need ∂C0
0/∂gj and ∂gj/∂w

θ
ηδ to compute derivatives, (9). For the second

term, ∂gj/∂w
θ
ηδ, we just apply the regular backward propagation on a standard

neural network, so we won’t discuss it further. In the following, we will focus on
the process of backward propagation in the multinomial pricing tree to determine
∂C0

0/∂gj.
From (2) and (3), we know

Cm
α =

{
max {G (Sm,K) , 0} when m = M − 1
max

{
G (Sm,K) , D(T )P T Cm+1

α

}
when m = 0, . . . , M − 2 ,

(11)
then

∂Cm
α

∂gj
=

{
∂max {G (Sm,K) , 0} /∂gj when m =M − 1
∂ max{G(Sm,K),D(T )P T Cm+1

α }
∂gj

when m = 0, . . . , M − 2 .
(12)

τ 0
0

C0
0C0

0 − yi

Fig. 4. The framework for backward propagation
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Let τm
α = ∂Cm

α /∂gj,

– Case 1: Cm
α = G (Sm,K). We know Sm and K are not related to gj , then

τm
α =

∂G (Sm,K)
∂gj

= 0 . (13)

– Case 2: Cm
α = D(T )P T Cm+1

α . Then,

τm
α =

∂
(
D(T )P T Cm+1

α

)
∂gj

= D(T )
L∑

i=1

∂PiC
m+1
αi

∂gj

= D(T )
L∑

i=1

(
∂Pi

∂gj
Cm+1

αi + Pi
∂Cm+1

αi

∂gj

)

= D(T )
L∑

i=1

(
∂Pi

∂gj
Cm+1

αi + Piτ
m+1
αi

)
. (14)

We have discussed the value of D(T ) (in Sect.3), and from (4), we know Pi is
the output of Hi (g1, g2, . . . , gL−1). Then, in (14), we need to determine the rest
of three terms, Cm+1

αi , ∂Pi/∂gj, and τm+1
αi .

Computation of Cm+1
αi . In the forward propagation, Sect.4.1, when calculat-

ing C0
0 , we also compute Ct

αi for all states at all time steps, where t = 0, . . . ,
(M − 1), and we just save those values for backward propagation.

Computation of ∂Pi/∂gj. From (4), we obtain

∂Pi

∂gj
=
∂Hi (g1, g2, . . . , gL−1)

∂gj
. (15)

In the beginning of Sect.4, we discuss H which are known because we construct
the neural networks and decide those transfer functions, and we also know gj is
independent of {g1, . . . , gj−1, gj+1, . . . , gL−1}. Then, (15) is solvable. From the
same trinomial example, see (5)(6), and (7), and then (15) can be computed
easily; for instance,

∂P3
∂g1

= 1−g1−(1−g1)×g2
∂g1

.

Computation of τm+1
αi . From (14), we know τm

α at time step m can be com-
puted from τm+1

αj , j = 1, . . . , L, at next time step m+1, and from (12) and (13),
we know τM−1

α for any state at last time step are 0. Then, we can use backward
propagation for the multinomial tree to compute τm

α for any state at any time
step. The algorithm is as follows:
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1. Set all τM−1
α to 0.

2. Loop from i = (M − 2) to 0,
– Use (14) to compute τ i

α for all states at time step i from the value of
τ i+1
αj

, j = 1, . . . , L.
3. Output τ0

0 .

Now, we have determine the derivative of error function Error(w), (9), and
then apply the regular process to update the set of weights w in standard neural
networks. Then repeat the all process for each iteration of learning.

5 Results

We developed a simple trading system to evaluate the NN-OPT, which we tested
using intraday real market data (5 minutes time period) for IBM (stock and
option data) and interest rate data, from July 20, 2004 to April 29, 2005. We
used the first 80 days, from July 20, 2004 to November 9, 2004, as the training
data set, and used the remaining 118 days as test data set (see Fig.5). We
compared the trading performance between different algorithms and different
trading costs. Some algorithms, using NN-OPT with no-arbitrage constraint to
learn risk-neutral probabilities, [2,15]. Intuitively, arbitrage is the possibility to
make money out of nothing.

1. Enforcing No-arbitrage, with learning: This is based on a no-arbitrage
condition and also uses NN-OPT learning algorithm to predict the risk-
neutral probabilities for pricing.

2. Not Enforcing No-arbitrage, with learning: This approach is only
based on NN-OPT learning algorithm without no-arbitrage constraints.
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Fig. 5. The intraday market price of IBM
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3. Enforcing No-arbitrage, no learning: This approach is to demonstrate
that a no-arbitrage constraint alone, without learning the Martingale mea-
sures is worse than our framework.

4. Not Enforcing No-arbitrage, no learning (random strategy): This
approach is to develop a benchmark performance using a random strategy.

The results of trading using these approaches are shown in Fig.6, and the figure
on right hand side has higher trading cost. Using both no-arbitrage constraint
and NN-OPT clearly has the best performance. Note that the system still makes
money even when the market crashes. As we move further from the training
window, the performance degrades, though it remains positive. The results of
the other algorithms are also reasonable because any random trading strategy
will systematically lose the transaction cost on each trade which means that the
total profit will drop linearly; the results also show that it is useful to use a
no-arbitrage condition because it narrows the range of Martingale measures to
obtain a set of plausible prices, rather than pure random.
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Fig. 6. Comparison of the trading results of stock IBM using different algorithms

6 Conclusions

Our results show that the right constraint (no-arbitrage) for option pricing can
enable one to potentially learn the Martingale measure. By using a no-arbitrage
condition, we can narrow the range of possible Martingale measures for the learn-
ing - the no-arbitrage constraint regularizes the learning in the right direction
to yield a better learning outcome. Another benefit of our framework is that one
can learn the Martingale measure from all data on all derivatives of the same
underlying instrument simultaneously. The derivatives of the same underlying
instrument should have correlations which our framework can utilize to yield bet-
ter performance. Our future work includes using a moving training window to
increase the performance of predicting the option prices, as we observe a degra-
dation further from the training window. We are also expanding the framework
to include derivatives from various different financial markets such as Futures,
Commodities and many others.
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Abstract. Option pricing is a process to obtain the theoretical fair value of an
option based on the factors affecting its price. Currently, the nonparametric and
computational methods of option valuation are able to construct a model of the
pricing formula from historical data. However, these models are generally based
on a global learning paradigm, which may not be able to efficiently and accurately
capture the dynamics and time-varying characteristics of the option data. This
paper proposes a novel brain-inspired cerebellar associative memory model for
pricing American-style option on currency futures. The proposed model, called
PSECMAC, constitute a local learning model that is inspired by the neurophysi-
ological aspects of the human cerebellum. The PSECMAC-based option pricing
model is subsequently applied in a mis-priced option arbitrage trading system.
Simulation results show a return on investment as high as 23.1% for a relatively
risk-free investment.

1 Introduction

Options, as a derivative security, provide a means to manage financial risks. They are
playing an increasingly important role in modern financial markets [1]. The buyer of an
option enters into a contract with the right, but not the obligation, to purchase or sell an
underlying asset at a later date at a price agreed upon today. The price of an option is de-
termined by a set of pricing factors such as time to expiry and the intrinsic value of the
option. A vital aspect of option trading is to arrive at the theoretical fair value of an op-
tion. This process is called option pricing. The conventional approach to option pricing
is to construct parametric models that are based on the assumptions of continuous-time
finance theory [2]. The pioneering models are the Black-Scholes formula [3] and the
Binomial Pricing Model [4]. However, these models presumed complex and rigid sta-
tistical formulations from which the prices are deduced [5].

Nonparametric methods of option pricing based on neural networks [6,7,8,9], ge-
netic algorithms [10] and kernel regression [11], on the other hand, are model-free ap-
proaches. The pricing model, which is usually represented as a nonlinear functional
mapping between the input factors and the theoretical option price, is derived from vast
quantities of historical data. However, these methods involve heuristics and therefore
suffer from poor interpretability. More recently, neuro-fuzzy approaches [12] are intro-
duced to overcome this problem. With these techniques, a set of comprehensible seman-
tic rules can be extracted from historical trading data for rational pricing of the options.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 370–379, 2006.
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Currently, nonparametric option pricing methods are generally based on a global
learning paradigm, in which the system attempts to use a single formulated model to
generalize or fit the behaviors/characteristics of the entire set of historical pricing data.
Some researchers have argued that it is difficult, if not impossible, to obtain a general
and accurate global learning model [13]. Moreover, a financial market generally has
a dynamic nature and thus is characterized by time-varying trading/pricing patterns.
Historical option pricing data may contain contradicting time-varying characteristics
that make it hard for a global learning model to accurately approximate the underly-
ing pricing function. In contrast, a local learning paradigm focuses on capturing only
useful local information from the observed data [14]. Instead of having a single for-
mulated model, a local learning system can be considered as a collection of locally-
active models, where each sub-model is learning from different subset of the training
data.

In option trading, the prices of the options are determined by a set of pricing factors,
such as time to expiry and the intrinsic values of the options. The complex relationship
between the valuation of an option and its influencing factors may be modeled as com-
binatorial associations to be extracted from the historical pricing data. This motivates
the use of a local associative model as a nonparametric computational method to option
pricing. In this paper, a novel brain-inspired cerebellar associative memory approach
to the pricing of American-style option on currency futures of British Pound versus
US dollar is investigated. The cerebellar associative memory model, referred to as the
Pseudo Self Evolving Cerebellar Model Arithmetic Computer (PSECMAC), constitutes
a local learning model to approximate the associative characteristics between the option
price and its influencing factors. The structure of the PSECMAC network is inspired by
the neurophysiological properties of the human cerebellum [15], and emulates the in-
formation processing and knowledge acquisition of the cerebellar memory.

This paper is organized as follows. Section 2 briefly describe the architecture of
the PSECMAC network and highlights the cerebellar-inspired memory formation and
knowledge acquisition process of the network. Section 3 presents an overview of the
proposed cerebellar associative memory based option pricing model and defines the
selected input factors considered to have an impact on the pricing of American-style
currency futures options. In Section 4, the autonomous option trading system that em-
ploys the proposed option pricing model is introduced and evaluated using real-life
British Pound versus US dollar futures options trading data. Section 5 concludes this
paper.

2 The PSECMAC Network

The cerebellum constitutes a part of the human brain that is important for motor con-
trol and a number of cognitive functions [16], including motor learning and memory.
The human cerebellum is postulated to function as a movement calibrator [17], which
is involved in the detection of movement error and the subsequent coordination of the
appropriate skeletal responses to reduce the error. The human cerebellum functions by
performing associative mappings between the input sensory information and the cere-
bellar output required for the production of temporal-dependent precise behaviors [15].
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Fig. 1. Comparison of CMAC and PSECMAC memory quantization for 2D input problem

The human cerebellum has been classically modelled by the Cerebellar Model Artic-
ulation Controller (CMAC) [18]. As a computational model of the human cerebellum,
CMAC manifests as an associative memory network [19], where the memory cells are
uniformly quantized to cover the entire input space. The CMAC network operation is
characterized by the table lookup access of its memory cells. This allows for local-
ized generalization and rapid algorithmic computation, and subsequently motivates the
prevalent use of CMAC for control applications [20,21].

This paper proposes the use of a brain-inspired cerebellar-based learning memory
model named Pseudo Self-Evolving Cerebellar Model Arithmetic Computer (PSEC-
MAC) as a generic functional model of the human cerebellum for solving approxi-
mation, modeling, control and classification problems. This architecture differs from
the CMAC network in two aspects. Firstly, the PSECMAC network employs one layer
of network cells, but maintained the computational principles of the layered-based
CMAC network by adopting a neighborhood activation of its computing cells to fa-
cilitate: (1) smoothing of the computed output; (2) distributed learning paradigm; and
(3) activation of highly correlated computing cells in the input space. Secondly, in-
stead of uniform partitioning of the memory cells, the PSECMAC network employs the
PSEC clustering technique [22] to form an experience-driven adaptive memory quanti-
zation mechanism of its network cells. Figure 1 illustrates this fundamental architectural
distinction.

The adaptive quantization process of the PSECMAC network is performed in per
dimension basis. The non-uniform quantization of the PSECMAC memory structure
is inspired by the neurophysiological properties of the brain development, where the
precise wiring in the adult brain is a result of experience-dependent refinement of initial
architecture through repeated exposures to external stimuli. This experience-dependent
plasticity is also observed in the human cerebellum [23], and is incorporated to the
PSECMAC network through the PSEC clustering algorithm. Each training data point
is a learning episode to the network. In each input dimension, the PSEC clustering
algorithm is used to compute clusters of data density, and the memory axes in each
dimension are allocated based on the observed density profile of the training data. Thus,
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more memory cells are allocated to the densely populated regions of the input space.
The details on the adaptive quantization algorithm is reported in [24].

The PSECMAC network employs a Weighted Gaussian Neighborhood Output or
WGNO computational process, where a set of neighborhood-bounded computing cells
is activated to derive an output response to the input stimulus. For each input stimulus
X, the computed output is derived as follows:

Step 1: Determine the region of activation
Each input stimulus X activates a neighborhood of PSECMAC computing cells.
The neighborhood size is governed by the neighborhood constant parameter N ,
and the activated neighborhood is centered at the input stimulus (see Fig 1(b)).

Step 2: Compute the Gaussian weighting factors
Each activated cell has a varied degree of activation that is inversely proportional
to its distance from the input stimulus. These degrees of activation functioned as
weighting factors to the memory contents of the active cells.

Step 3: Retrieve the PSECMAC output
The output is the weighted sum of the memory contents of the active cells.

Following this, the PSECMAC network adopts a modified Widrow-Hoff learning rule
[25] to implement a Weighted Gaussian Neighborhood Update (WGNU) learning pro-
cess. The network update process is briefly described as follows:

Step 1: Computation of the network output
The output of the network corresponding to the input stimulus X is computed based
on the WGNO process.

Step 2: Computation of learning error
The learning error is defined as the difference between the expected output and the
current output of the network.

Step 3: Update of active cells
The learning error is subsequently distributed to all of the activated cells based on
their respective weighting factors.

3 A PSECMAC Based Option Pricing Model

The PSECMAC network is used to construct a pricing model to predict the correct
valuations for American call options on the British pound (GBP) and US dollar (USD)
exchange rate futures contract. In this study, the option pricing formula is represented
as a function of the following inputs: S0, X , T , and σ30; where S0 is the current GBP
vs. USD exchange rate futures value; X is the strike price of the option on the GBP
vs. USD exchange rate futures; T is time to maturity of the option in years; and σ30
is the historical price volatility for the last 30 trading days. We introduce the notion of
moneyness (or intrinsic value) of the futures option, which is computed as the difference
between the current futures value S0 and the options strike priceX (i.e. S0−X). Thus,
the pricing function f to be approximated by the PSECMAC network is:

C0 = f(S0 −X,T, σ30) (1)

where C0 is current option price; and (S0 −X) reflects the moneyness of the options.
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Table 1. Simulation set-ups based on permutations of the three sub-groups A, B and C to define
the training and testing sets of the proposed PSECMAC option pricing model

Configuration Simulation Training set Testing set

1/3 training and
2/3 testing

I Sub-group A Sub-groups B and C
II Sub-group B Sub-groups A and C
III Sub-group C Sub-groups A and B

2/3 training and
1/3 testing

IV Sub-groups A and B Sub-group C
V Sub-groups B and C Sub-group A
VI Sub-groups A and C Sub-group B

Table 2. Performances of the proposed PSECMAC option pricing model

Recall Generalization
Configuration Simulation RMSE Correlation RMSE Correlation

1/3 training and 2/3
testing

I 0.1299 0.9956 0.2386 0.9858
II 0.1376 0.9954 0.2727 0.9816
III 0.1178 0.9964 0.2638 0.9847

2/3 training and 1/3
testing

IV 0.1382 0.9952 0.2103 0.9889
V 0.1404 0.9949 0.2210 0.9885
VI 0.1353 0.9954 0.2007 0.9902

Average 0.1332 0.9955 0.2345 0.9866

The data used in this study consists of the daily closing quotes of the GBP versus
USD currency futures and the daily closing bid and ask prices of American style options
on such futures in the Chicago Mercantile Exchange (CME) [26] during the period of
Sept 2002 to Aug 2003. In total, 792 data samples are available in the selected futures
option data set, which contains the historic pricing data for five different strike prices:
$158, $160, $162, $166 and $168, with 159, 158, 173, 137 and 165 data samples respec-
tively. The presentation order of the 792 data samples is randomized and subsequently
partitioned into three evenly distributed sub-groups denoted as A, B and C, each con-
taining 264 data tuples. A total of six different cross-validation sets are constructed
based on the permutations of the sub-groups, as outlined in Table 1.

A PSECMAC network with a memory size of 12 cells per dimension is constructed.
A neighborhood size of 0.2 and Gaussian weighting factor of 0.5 is employed. Table 2
tabulates the recall (training) and generalization (testing) performances of the PSEC-
MAC option pricing model under the various cross-validation sets. RMSE denotes the
root-mean-square-error between the predicted and desired option prices, and Correla-
tion is the Pearson correlation coefficient, a statistical measure reflecting the goodness-
of-fit between the predicted and desired pricing functions. The performances of the
PSECMAC option pricing model are generally good, with an average RMSE of around
0.13 and 0.23 for the recall and generalization process respectively. An average correla-
tion of 0.98 is achieved in the generalization process, indicating a very low performance
degradation as the evaluation emphasis is shifted from the recall to the generalization
capability of the system. From Table 2, one can also observe that a larger training data
set improves the generalization performance of the option pricing model.
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Table 3. Benchmarking results for various global and local option pricing model

Recall Generalization
System Type RMSE Correlation RMSE Correlation
MLP(3-8-1) global 0.0384 0.9997 0.0982 0.9963
PSECMAC local 0.1332 0.9955 0.2345 0.9866
CMAC local 0.0605 0.9990 0.2738 0.9813
GenSoFNN-TVR global 0.1808 0.9946 0.2576 0.9873

As benchmarks, the set of option pricing simulations is repeated using two global
nonparametric approximators: the multi-layered perceptron (MLP) and the GenSoFNN-
TVR [12] networks; as well as the CMAC network, which is a well-established local
learning model. Table 3 summarizes the benchmarking results. The network structure of
the MLP, which consists of three input, eight hidden and one output nodes respectively,
has been empirically determined, while the GenSoFNN-TVR network is a self evolv-
ing structure. Also, for a fair comparison, the size of the CMAC network is set as 12
cells per dimension. From Table 3, one can observe that the MLP network possesses the
most accurate pricing decisions as compared to the other benchmarked systems. How-
ever, it is a black-box model as its complex synaptic weight structure is hardly human
interpretable. There is no mechanism to explain the logical steps that the MLP net-
work employs for its pricing decisions. Moreover, the empirical determination of the
network structure often renders the MLP network hard to use. In contrast, the global
learning-based GenSoFNN-TVR network offers interpretable semantic rules, at the ex-
pense of lower pricing accuracy. The performances of both the CMAC and PSECMAC
local models, on the other hand, exceed those of the global GenSoFNN-TVR model.
Furthermore, the pricing decisions of the proposed PSECMAC option pricing model
outperform those of the CMAC model. The associative structure of the PSECMAC
model also enables discrete pricing rules to be extracted. For example, ”IF the time-
to-maturity is between 0 - 0.04 years and the volatility is between 5.08 - 5.28 and the
moneyness is between $5.03 - $7.98 THEN the Option-Price (on average) is $9.4” is
a representative discrete rule extracted from the PSECMAC model that expresses the
knowledge induced from the training data.

4 Cerebellar Associative Memory Approach to Arbitrage Trading

This section introduces a mis-priced option arbitrage trading system, where the PSEC-
MAC option pricing model is employed to detect any misalignments between the mar-
ket spot value and the theoretical valuation of an option. When such mis-pricing occur,
potential arbitrage trading opportunities on that option are created and investors can
exploit these opportunities to derive risk-free profits.

An arbitrage opportunity arises when the Law of One Price [1] is violated, making
it possible for an investor to make a risk-less profit. In this paper, an arbitrage trading
strategy known as the Delta Hedge Trading Strategy (DHTS) [1] is employed in the
proposed PSECMAC-based trading system. In the DHTS, a delta hedge ratio h is com-
puted to determine the quantity of the underlying asset (e.g. stock) required to cover the
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risk of taking a naked position on the call option. Hence, the selling of one call option
is hedged by the buying of h quantity of the underlying asset and vice versa. The hedge
ratio h is computed as:

ht =
ΔC

ΔS
=

(Ĉu,t+1 − Ĉd,t+1)
(Su,t+1 − Sd,t+1)

∈ [0, 1] (2)

where ht is the hedge ratio at current time t (i.e. this trading opportunity) employed to
build up a risk-free portfolio with proper ratio of call option and the underlying asset;
Su,t+1 is the price of the underlying asset at time t+1 (i.e. the next trading opportunity)
if the price goes up; Sd,t+1 is the price of the underlying asset at time t+1 (i.e. the next
trading opportunity) if the price goes down;ΔS is the change in value of the underlying
asset due to the projected change in price St at time t + 1; ΔC is the change in value
of the call option due to the projected change in price of the underlying asset at time
t+1; Ĉu,t+1 is the predicted price of the call option if the value of the underlying asset
is Su,t+1 at time t + 1; and Ĉd,t+1 is the predicted price of the call option if the value
of the underlying asset is Sd,t+1 at time t+ 1.

However in this study, for simplicity, the price of the underlying asset is assumed to
either go up by 0.5 unit price or go down by 0.5 unit price (i.e. Su,t+1 = St + 0.5 and
Sd,t+1 = St− 0.5) such that the variableΔS in equation (2) evaluates to unity. That is,
there is only a unit change in the price of the underlying asset from time t to time t+1.
Hence, equation (2) can be reduced to:

ht =
(Ĉu,t+1 − Ĉd,t+1)
(Su,t+1 − Sd,t+1)

=
(Ĉu,t+1 − Ĉd,t+1)

(St + 0.5− (St − 0.5))
= (Ĉu,t+1 − Ĉd,t+1) (3)

Thus, the hedge ratio of the portfolio at current time t is computed as the difference in
the predicted prices of the call option at time t+ 1.

4.1 Trading Strategy

Based on the DHTS discussed in the last section, the PSECMAC-based option trading
system is implemented. The general framework of the trading system proposed in this
paper is a modified version of the generic trading decision model found in [27], and is
illustrated in Figure 2.

The format of the training set is as described in Section 3. Historic data of options
with strike prices of $158, $160, $162, $166 and $168 respectively from Sept 2002
to Feb 2003 is used to train the PSECMAC-based option pricing model. The test set
contains out-of-sample data consisting of the intra-day bid and ask prices of options
with strike prices of $158, $159, $160, $164 and $170 respectively from Mar 2003 to
Aug 2003. The trading algorithm is summarized as follows:

1. The proposed trading system takes in the theoretical option value Ct computed by
the PSECMAC-based option pricing model and subsequently compares it to the
spot bid-ask prices of the option.

2. If the predicted theoretical option valueCt falls out of the bid-ask spread range, the
trading system assumes a mis-priced arbitrage opportunity as being detected.
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Fig. 2. General framework of the proposed mis-priced option arbitrage system

3. The trading system would take up trading positions according to the following trad-
ing strategy:
(a) Evaluate if the call option is overpriced or under-priced using equation (4).

Call option =
{

Overpriced, if Ct < Option bid-price at time t

Underpriced, if Ct > Option ask-price at time t
(4)

(b) If the call option is overpriced, short sell the call option and hedge the risk by
buying in ht quantity of the underlying asset, i.e. the GBP vs. USD currency
futures. The hedge ratio ht is computed using equation (3). Else, if the call
option is under-priced, buy in the call option and short sell ht quantity of the
GBP vs. USD futures to hedge the risk.

4. If the trading system already possessed a portfolio (i.e. has either a long or short
open position on the call option with the appropriate ratio of hedged futures), it
would continuously check whether the mis-priced option has pulled back into the
option bid-ask spread range. If it is the case, the trading system closes all the out-
standing position immediately; else, it continues to hedge the portfolio by comput-
ing a new hedge ratio ht+1 and adjusting the portfolio composition.

4.2 Results and Analysis

The proposed PSECMAC-based trading system is evaluated by observing its arbitrage
performances using real-life GBP vs. USD currency futures options with various strike
prices. To simplify the simulation setup, transaction costs are omitted here. The results
are tabulated in Table 4. The ”total capital outlay” column denotes the overall amount
of investment made on the sales and purchases of the respective options and futures
in the hedging exercises, while ”return on investment” (ROI) denotes the profit earned
from the trading endeavors. As shown in Table 4, the PSECMAC-based trading system
has demonstrated fairly high returns for investment, with ROI of 23.1% for the option
with a strike price of $164 and an average ROI of around 12.8% across all the five
options. Such an average rate of return is considered encouraging given the risk-free
nature of the investment portfolio constructed and when compared against other risk-
free investments during the same period. For example, according to the Federal Reserve
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Table 4. Arbitrage performances of the proposed PSECMAC-based option trading system. (Note:
UO is option under-priced arbitrage opportunity; OO is option over-priced arbitrage opportunity;
and ROI denotes the return on investment).

Option Strike Sim Period Num of UO Num of OO Total Capital Absolute Percentage
Price X ($) (days) transaction transaction Outlay ($) ROI ($) ROI (%)

158 156 26 19 143300 7964.80 5.56
159 61 7 15 50940 4228.60 8.3
160 65 0 17 30820 1809.30 5.87
164 97 17 10 20560 4759.60 23.15
170 94 10 12 5560 1175.20 21.14

Average ROI (%) 12.80

Board, the 3-months compounding interest rate of US Treasury Bill is 0.93% on 30th
September 2003, while the 3-month fixed deposit interest rate in Singapore is only
0.25% on 3rd October 2003 according to data provided by the Development Bank of
Singapore (DBS).

5 Conclusions

This paper proposes the use of a brain-inspired cerebellar associative learning mem-
ory structure named PSECMAC to perform nonparametric option pricing of American
style call options on the British pound (GBP) versus US dollar (USD) currency futures.
The PSECMAC-based option pricing system constitutes a local learning approach to
the approximation of the associative characteristics between the option price and its in-
fluencing factors. Evaluation results have demonstrated that the modeling capabilities
of the proposed pricing system exceed those of the global learning-based GenSoFNN-
TVR model, as well as the well established local learning-based CMAC network. The
associative structure of the PSECMAC model also enables discrete pricing rules to be
extracted from the pricing system. Subsequently, the PSECMAC-based option pricing
model is employed in a mis-priced option arbitrage trading system. Simulation results
on various options with different strike prices demonstrated that such a mis-priced ar-
bitrage trading system is able to construct risk-free investment portfolios with a satis-
factory rate of return on investment. Future studies will attempt to incorporate other
external factors such as transaction costs, as well as to extend the PSECMAC-based
option pricing system to a fuzzy associative system to enable the extraction of fuzzy
semantic rules.
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Abstract. In this study, a reliability-based RBF neural network ensemble fore-
casting model is proposed to overcome the shortcomings of the existing neural 
ensemble methods and ameliorate forecasting performance. In this model, the 
ensemble weights are determined by the reliability measure of RBF network 
output. For testing purposes, we compare the new ensemble model’s perform-
ance with some existing network ensemble approaches in terms of three ex-
change rates series. Experimental results reveal that the prediction using the 
proposed approach is consistently better than those obtained using the other 
methods presented in this study in terms of the same measurements. 

1   Introduction 

Combining the outputs of several neural networks into an aggregate output often 
gives improved accuracy over any individual output [1]. Usually, the output of an 
ensemble network is a weighted average of the outputs of each network, with the 
ensemble weights determined as a function of the relative error of each network de-
termined in training [1]. Accordingly, the resulting ensemble network often outper-
forms the individual networks. Therefore there is a growing research stream [1-5] into 
ensemble methods. For example, performance improvement can result from training 
the individual networks to be decorrelated with each other [2] with respect to their 
errors. Usually, the weights of the existing ensemble methods are determined by error 
or error variance [1, 9, 11] without considering the reliability of neural network out-
put. However, error-dependent neural network ensemble methods do not often obtain 
consistent good performances in forecasting. In some experiments, such as [1, 6], 
error-dependent ensemble network sometimes performs worse than the individual 
neural networks. 

Under such backgrounds, we propose a novel neural network ensemble forecasting 
approach that differs in that the ensemble weights are determined the reliability of 
neural network output. In this study, the reliability is used as a confidence measure of 
network output. That is, the ensemble weights are proportional to the reliability  
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measure of the respective outputs. In addition, the neural network type used in this 
study is radial basis function (RBF) neural network because it can generate a confi-
dence measure due to its specificity. 

The motivation of this study is to formulate a reliability-based RBF network en-
semble forecasting model for exchange rates prediction and compare its performance 
with other existing network ensemble forecasting approaches. The rest of the study is 
organized as follows. The next section presents some previous work done in the en-
semble methods in terms of forecasting. Section 3 describes the reliability-based RBF 
neural network ensemble method in detail. To verify the effectiveness of the proposed 
method, several experiments are performed in Section 4. Section 5 concludes. 

2   Previous Studies 

This section presents some earlier work done in ensemble methods in terms of predic-
tion. Suppose there are n individual neural networks trained on a set D = {xi, yi} (i = 
1, 2, … , n). 

2.1   The Brief Description of Neural Ensemble Predictor 

According to the previous assumption, there are n individual neural network outputs, 
i.e., )(ˆ,),(ˆ),(ˆ

21 xfxfxf n . The main question of neural ensemble predictor is how 

to combine (ensemble) these different outputs into an aggregate output )(ˆ xf , which is 

assumed to be a more accurate output. The general form of the model for such an 
ensemble predictor can be defined as 

∑ == n

i ii xfwxf
1

)(ˆ)(ˆ
 (1) 

where wi denotes the assigned weight of )(ˆ xfi , and in general the sum of the weight is 

equal to one, i.e., 1=∑i
iw . In neural network ensemble forecasting, how to determine 

ensemble weights is a focus issue. As earlier mentioned, there are a variety of meth-
ods for determining ensemble weights in the past work, which is presented in the 
following. Typically, there are four ensemble methods, which are described below. 

2.2   The Simple Averaging Ensemble Method (SAE) 

A simple method for combining network outputs is to simply average individual net-
work predictors together, so this approach is called as the “simple averaging ensemble 
(SAE) method”. The SAE is defined as 

∑∑ == == n

i i
n

i iiSAE xf
n

xfwxf
11

)(ˆ1
)(ˆ)(ˆ  (2) 

where the weight of each individual network output wi = 1/n. 
Simple averaging ensemble method is one of the most frequently used combination 

approaches is easy to understand and implement [4]. Some experiments [8-9] have 
shown that this approach by itself can lead to improved performance [1] and it is an 
effective approach to improve neural network performance. Specially, it is more  
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useful when the local minima of ensemble members are different, i.e., when the local 
minima of ensemble networks are different. Different local minima mean that ensem-
ble members are diverse. Thus averaging can reduce the ensemble variance. 

However, this approach treats each member equally, i.e., it does not stress ensem-
ble members that can make more contribution to the final generalization. That is, it 
does not take into account the fact that some networks may be more accuracy than 
others. If the variances of ensemble networks are very different, we do not expect to 
obtain a better result using simple averaging [10]. In addition, since the weights in the 
combination are so unstable, a simple average may not the best choice in practice [6]. 

2.3   The Simple MSE Ensemble Method (SMSE) 

The simple MSE method estimates the linear weight parameter wi in Equation (1) by 
minimizing the mean squared error (MSE) [11], that is, for i = 1, 2, …, n, 
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where d (x) is the expected value. 
The simple MSE solution seems to be reasonable, but, as Breiman [9] has pointed 

out, this approach has two serious problems in practice: a) the data are used both in 
the training of each predictor and in the estimation of wi, and b) individual predictors 
are often strongly correlated since they try to predict the same task. Due to these prob-
lems, this approach’s generalization ability will be poor. 

2.4   The Stacked Regression Ensemble Method (SRE) 

The stacked regression method was proposed by Breiman [9] in order to solve the 
problems associated with the previous MSE method. Thus, the stacked regression 
method is also called the modified MSE method. This approach utilizes cross-
validation data to modify the simple MSE solution, i.e., 
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where ( ) MT
cvj

m
icvjiji DxfDxfxg ℜ∈= );(ˆ,),;(ˆ)( )()1( is a cross-validated version 

M
ji xf ℜ∈)(ˆ and Dcv is the cross-validated data. 

Although this approach overcomes the limitations of the simple MSE method, the 
solution is based on the assumption that the error distribution of each validated set is 
normal [10]. In practice, however, this normal assumption does not always hold and 
thus this approach does not lead to the optimal solution in the Bayes sense [10]. 

2.5   The Variance-Based Weighting Ensemble Method (VWE) 

The variance-based weighting ensemble approach estimates the weight parameter wi 
by minimizing error variance 2

iσ [1]; all predictors are error-independent networks, 

i.e., 
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The variance-based weighting method is based on the assumption of error inde-
pendence. Moreover, as earlier mentioned, individual predictors are often strongly 
correlated for the same task. This indicates that this approach has serious drawbacks 
for minimizing error-variance when neural predictors with strong correlation are in-
cluded within the combinatorial members. 

According to the previous descriptions and literature review, the above four neural 
network ensemble methods have widely been used, but we can also find that the 
weights of these ensemble methods are determined by the error or error variance. In 
practice, error-dependent network ensemble model may not often obtain good fore-
casting performance when error is correlated each other [2]. Furthermore, the accu-
racy of each individual network predictor is different in different conditions because 
neural network learning by itself is “the state of the art”. Thus, it is necessary to meas-
ure the confidence of the forecasting results of each output before they are combined. 
In such situations, a novel reliability-based neural ensemble method is proposed to 
overcome the above problems, which is presented in the following. It is worth noting 
that the reliability is used to measure the confidence of neural network output and the 
RBF network is used to constitute a neural network ensemble.  

3   The Reliability-Based RBF Network Ensemble Model 

In this section, we first introduce the radial basis function (RBF) neural network 
briefly. Then the confidence measure — reliability is induced from the RBF neural 
network. Finally, based on the reliability measure, a reliability-based RBF neural 
network ensemble method is formulated. 

3.1   Overview of RBF Neural Networks 

The RBF neural network [12, 13] is generally composed of three layers: input layer, 
hidden layer and output layer. The input layer feeds the input data to each of the 
nodes of the hidden layer. The hidden layer of nodes differs greatly from other neural 
networks in that each node represents a data cluster which is centered at a particular 
point with a given radius. Each node in the hidden layer calculates the distance from 
the input vector to its own center. The calculated distance is transformed via some 
basis function and the result is output from a node. The output from the node is multi-
plied by a constant or weighting value and fed into the output layer. The output layer 
consists of only one node which acts to sum the outputs of the previous layer and to 
yield a final output value. A generic architecture of an RBF network with k input and 
m hidden nodes is illustrated in Fig. 1. 
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Fig. 1. The generic architecture of the RBF neural network 

The computation process of the RBF neural network follows the following proce-
dures. When the network receives a k dimensional input vector X, the network com-
putes a scalar value using the following formula: 

∑ =
+==

m

i ii DwwXfY
10 )()( ϕ  (7) 

where w0 is the bias, wi is the weight parameter, m is the number of nodes in the hid-
den layers of the RBF neural network, and )( iDϕ is the radial basis function. In this 

study, the Gaussian function is used as radial basis function, as shown below. 

)/exp()( 22 σϕ ii DD −=  (8) 

where σ is the radius of the cluster represented by the center node, the Di representes 
the distance between the input vector X and all the data centers. It is clear that 

)( iDϕ  will return values between 0 and 1. Usually, the Euclidean norm is used to 

calculate distance, but other metrics can also be used. The Euclidean norm is calcu-
lated by 
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where c is a cluster center for any of the given nodes in the hidden layer. 
Complex nonlinear systems such as time series data are generally difficult to model 

using standard linear regression [13]. Dissimilar to the regression, neural networks are 
nonlinear and their parameters are determined by some learning techniques and search 
algorithms such as error back propagation and steep gradient algorithm. The main 
drawback of the standard neural networks is that their parameters learning algorithm 
is time-consuming and have a tendency to get stuck at local minima [14]. But RBF 
neural networks overcome the above problems to obtain good performance since their 
parameters that need to be trained are the ones in the hidden layer of the network. 
Finding their values is the solution of a linear problem and can be obtained through 
interpolation [12]. Therefore, their parameters are found much faster than in other 
neural networks. Furthermore, the RBF network can usually reach near perfect accu-
racy on the training data set without trapping into local minima [13]. 
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3.2   Confidence Measure and Reliability 

Once the parameters are determined by training the data, the RBF network can be 
applied to perform prediction for any unknown input vectors. But the confidence of 
the output results is an important issue for any prediction problems. In this study, 
other than the basic output, the RBF network is also used to generate confidence 
measure to verify the reliability of network output. 

Actually, using RBF neural network to generate a confidence measure is not a new 
idea. Lee [15] used this principle in a handwritten digit recognition program and 
achieved good results. Lee used as a measure of confidence the numeric difference 
between the two output nodes with the highest values. Leonard et al. [16] explored 
two methods of measuring the reliability of prediction: the maximum activation value 
function and Parzen estimator and concluded the Parzen method superior as it took 
into account the distribution of the training data. Wedding and Cios [13] also used the 
output of the Gaussian basis function to calculate a certainty factor value. The cer-
tainty factor was calculated from the input vector’s proximity to the hidden layer’s 
node centers rather than the data distribution of the training vectors. The reliability 
proposed in this study is a variation of [13]. 

In this study, a new confidence measure called reliability for RBF neural networks 
is proposed. The reliability can be generated by RBF through using the )( iDϕ  value 

from the basis functions in the hidden layer, as shown in Equation (8). When the out-
put )( iDϕ of a hidden layer node is high (near one), then this indicates that a data 

point lies near the center of a cluster and the data is familiar to that particular node 
and therefore the network is confident in the output. Conversely, if the )( iDϕ  is very 

small (near zero), this implies that the data point lies outside of a cluster and thus the 
network is not reliable in the result. Because the reliability is used to measure the 
overall network, then all the values from different centers should be combined into a 
single one. According to the positive correlation between the reliability and )( iDϕ , 

the reliability measure of overall network can be computed by 

∑ =
=

m

i ij D
m

R
1

)(
1 ϕ  (10) 

where Rj is the reliability of the individual network j and )( iDϕ  is the corresponding 

output value at hidden neuron i. As Equation (10) revealed, the larger the R, the larger 
the reliability. Then the weight of this individual network should be larger than that of 
others in the ensemble. That is, the large reliability should correspond to large weight 
in the ensemble network so as to improve the prediction accuracy. In terms of reliabil-
ity measure, a reliability-based RBF network ensemble forecasting model is formu-
lated in the following. 

3.3   Reliability-Based Weighted Ensemble (RWE) Method 

Instead of choosing error-dependent weights, we allow the weights to adjust to be 
proportional to the reliability measure of the respective network outputs. We might 
achieve better performance. Define the reliability-based weighted ensemble (RWE) 
network as:  
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where the iw s are as: 
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The iw s sum to one, so RWEf̂  is a weighted average of the individual network out-
puts. The difference is that the weight vector is determined by confidence measure — 
reliability to try to give the best prediction under consideration, instead of choosing 
error-dependent weights with respect to a cross validation set. Each RBF network’s 
contribution to the sum is proportionate to its confidence measure, i.e., reliability. For 
testing, several experimental examples are presented below. 

4   Simulations 

4.1   Data 

In this study three foreign exchange series are selected for comparison purposes. The 
foreign exchange data used in this paper are monthly and are obtained from Pacific 
Exchange Rates Services (http://fx.sauder.ubc.ca/), provided by Professor Werner 
Antweiler, University of British Columbia, Vancouver, Canada. They consist of the 
US dollar against each of the three currencies — German marks (DEM), British pound 
(GBP) and Japanese yen (JPY) studied in this paper. We take monthly data from Janu-
ary 1971 to December 2000 as in-sample (training periods) data sets (360 observations 
including 60 samples for validations). We also take the data from January 2001 to 
December 2004 as out-of-sample (testing periods) data sets (48 observations), which is 
used to evaluate the good or bad performance of prediction based on some evaluation 
measurement. In order to save space, the original data are not listed here, and detailed 
data can be obtained from the website or from the authors. For comparison, two typical 
indicators, mean squared error (MSE) and directional statistics (Dstat) were used in this 
study. Usually, MSE is an ordinary level predication measurement and while Dstat is a 
directional prediction measurement, as defined in [7]. 

4.2   Empirical Results 

In this study each of the three ensemble methods was implemented and tried on sev-
eral data sets for comparison. Ten feed-forward neural networks with sigmoidal acti-
vation functions and four hidden nodes were trained for each training set, then tested 
as an ensemble for each method for the testing set. Each network was trained with 
standard back-propagation for 100 iterations with a learning rate of 0.2 using the 
Matlab software package, which is producted by Mathworks Laboratory Corporation. 
In addition, the best individual network using cross-validation (CV) (NCV for short) 
[3] method (i.e., select the individual network by minimizing the mean squared error 
on CV) is chosen as benchmark model for comparison. Accordingly, the results ob-
tained are reported in Tables 1 and 2. 
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Table 1. A comparison of MSE between different methods for the three exchange rates 

DEM GBP JPY          

MSE Rank MSE Rank MSE Rank 
NCV 0.0035 5 0.0019 5 0.0048 6 
SAE 0.0038 6 0.0018 4 0.0043 5 

SMSE 0.0031 4 0.0021 6 0.0040 4 
SRE 0.0029 3 0.0015 2 0.0037 3 
VWE 0.0025 2 0.0016 3 0.0031 2 
RWE 0.0022 1 0.0009 1 0.0028 1 

Table 2. A comparison of Dstat between different methods for the three exchange rates 

DEM GBP JPY          

Dstat (%) Rank Dstat (%) Rank Dstat (%) Rank 
NCV 64.58 6 70.83 5 62.50 6 
SAE 72.91 4 68.75 6 66.67 5 

SMSE 66.67 5 70.83 4 75.00 4 
SRE 79.17 3 83.33 3 77.08 3 
VWE 81.25 2 85.41 2 81.25 2 
RWE 87.50 1 89.58 1 83.33 1 

Tables 1 and 2 give clear comparisons of various methods for the three currencies 
via MSE and Dstat. Generally speaking, these tables provide comparisons of level and 
direction among these different methods. Experimental results reveal that the predic-
tion performance of the dynamically weighted ensemble forecasting model is better 
than those of other ensembles models. 

Focusing on the MSE indicator, our proposed ensemble method performs the best 
in all the cases, followed by the VWE, SRE. Interestingly, the MSE of the SAE are 
not better than those of the best individual network model for the DEM testing case, 
and the MSE of the NCV are worse than those of the SMSE for the GBP case, imply-
ing that the SAE and SMSE does not consider the fact that some networks may be 
more accurate than the others. 

However, the low MSE does not necessarily mean that there is a high hit ratio for 
foreign exchange movement direction prediction. Thus the Dstat comparison is neces-
sary for practitioners. Focusing on Dstat of Table 2, we are not hard to find that the 
proposed dynamically weighted ensemble forecasting model outperforms the other 
ensemble models and the benchmark model according to the rank; furthermore, from 
the business practitioners’ point of view, Dstat is more important than MSE because 
the former is an important decision criterion in foreign exchange trading decision. 
With reference to Table 2, the differences between the different models are very sig-
nificant. For instance, for the JPY testing case, the Dstat for the best individual ANN 
model via NCV is only 62.50%, for the SAE method it is 66.67%, for the SMSE, it is 
75.00%, and the Dstat for SRE is 77.08%, and for the VWE, Dstat is 81.25%; while for 
the RWE method, Dstat reaches 83.33%. Furthermore, like MSE indicator, the  
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proposed ensemble method performs the best in all the cases, followed by VWE, 
SRE, and the poorest is the individual network model via NCV. The main reason is 
that our proposed approach can adjust its weights dynamically, giving it an advantage 
over other ensemble methods whose weights are fixed as a part of training. 

5   Conclusions 

This study proposes a reliability-based RBF neural network ensemble forecasting 
model to obtain accurate prediction results and improve prediction quality further. In 
terms of the empirical results, we can find that across different ensemble models for 
the test cases of three main currencies — German marks (DEM), British pound (GBP) 
and Japanese yen (JPY) — on the basis of different criteria, our proposed ensemble 
method performs the best. In the proposed reliability-based RBF network ensemble 
model testing cases, the MSE is the lowest and the Dstat is the highest, indicating that 
the proposed reliability-based RBF network ensemble model can be used as a viable 
alternative ensemble solution to exchange rates prediction. 
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Abstract. Support vector machine (SVM) has appeared as a power-
ful tool for time series forecasting and demonstrated better performance
over other methods. This paper proposes a novel hybrid model which
combines time-scale feature extractions with SVM models for stock in-
dex forecasting. The time series of explanatory variables are decomposed
by the wavelet basis, and the extracted time-scale features then serve
as inputs of a SVM model which performs the nonparametric forecast-
ing. Compared with pure SVM models or traditional GARCH models,
the performance of the new method is the best. The root-mean-squared
forecasting errors are significantly reduced. The results of this study can
help investors for controlling and reducing their risks in international
investments.

1 Introduction

With the expansion of international financial links and the continued liberaliza-
tion of cross-border cash flows, international financial markets are highly cor-
related, and some markets are information leader of the other markets. With
these time series features, investors can develop an accurate forecasting strategy
on the stock index evolution. The objective of this study is to help investors for
implementing a forecasting model based on these important characteristics of
financial time series.

Stock index predictions are one of the challenging applications of modern
time series forecasting and very important for the success of many businesses
and financial institutions. The increasingly tight correlations among financial
markets can help investors make a good forecast on the co-movements of stock
indices. However, international investors are a diverse group. They operate on
very different time scales. As a result, the correlations between international
market indices are not fixed over every time scale. The new forecasting model
should extract these important time scale features among financial markets to
make a good prediction.

For the feature extraction, wavelet analysis is a powerful tool to extract time
series features among various time scales. Reviewing the literature on wavelet

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 390–399, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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analysis, it is widely used in engineering, important applications including the
signal processing and image compressions. However, it is relatively new in eco-
nomics and finance. For forecasting strategies, Box and Jenkins’ Auto-Regressive
Integrated Moving Average (ARIMA) technique has been widely used for time
series forecasting. However, ARIMA is a general univariate model and it is devel-
oped based on the assumption that the time series being forecasted are linear and
stationary. In recent years, neural networks (NN) has found useful applications
in financial time-series analysis and forecasting (Yao and Tan [1], Zhang and Hu
[2]). Many researches have shown that NNs perform better than ARIMA models,
specifically, for more irregular series and for multiple-period-ahead forecasting.

Recently, support vector machine (Cristianini and Shawe-Taylor [3], Schoel-
kopf, Burges, and Smola [4], Vapnik [5]) has appeared as a powerful tool for fore-
casting and demonstrated better performance over neural networks or ARIMA-
based models (Cao and Tay [6], Gestel et al. [7]). In very simple terms an SVM
corresponds to a linear method in a very high dimensional feature space that is
nonlinearly related to the input space. Even though we think of it as a linear al-
gorithm in the high dimensional feature space, in practice, it does not involve any
computations in that high dimensional space. By the use of kernels, all necessary
computations are performed directly in input space. Support vector machines for
regression, as described by Vapnik [5], also exploit the idea of mapping input
data into a high dimensional reproducing kernel Hilbert space (RKHS) where a
linear regression is performed. The advantages of support vector regression are:
the presence of a global minimum solution resulting from the minimization of a
convex programming problem; relatively fast training speed; and sparseness in
the solution representation.

The major innovation of this paper lies in combing the above two powerful
tools and developing a hybrid SVM model for forecasting stock indices. In the
empirical analysis, owing to that most high technology investments over the
world have moved closer and closer, especially in U.S. Silicon Valley and Eastern
Asia, the NASDAQ index becomes strongly correlated with major major Asian
stock indices, and it’s always a leading indicator with great prediction power on
these indices. Therefore, the NASDAQ return serves as an important explanatory
variables for three major Asian indices. For forecasting an Asian index, wavelet
analysis is used to decompose and extract important features from the NASDAQ
and lagged returns of itself, and then these features are fed into an SVM model to
perform the nonparametric forecasting. Compared with neural network systems,
SVM minimize the structural risk of the prediction model as opposed to empirical
risk minimization as employed by NN systems. Thus the new forecasting model is
more robust and gets rid of the overfitting problem of traditional nonparametric
regression models.

The remainder of the paper is organized as follows. Section 2 describes wavelet
analysis and SVM models. Section 3 introduces the GARCH prediction model.
Section 4 describes the data used in the study, and discusses the empirical find-
ings. Conclusions are given in Section 5.
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2 Wavelet-Based Feature Extraction

The basic tool of wavelet analysis is the multiresolution decomposition (MRD).
For a thorough review of wavelet analysis I refer to Daubechies [8], and Percival
and Walden [9]. Practical applications of wavelet analysis is given in Lee [10] and
Gençay et al. [11]. Technical details of wavelet analysis are discussed in Bruce
and Gao [12].

2.1 Multi-resolution Decomposition

Any function f(t) in L2(R) can be decomposed by a sequence of projections
onto the wavelet basis. The wavelet representation of the signal or function f(t)
in L2(R) can be written as

f(t) =
∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kψJ,k(t)

+
∑

k

dJ−1,kψJ−1,k(t) + ...+
∑

k

d1,kψ1,k(t),

where φ is the father wavelet and ψ the mother wavelet. φj,k and ψj,k are scaling
and translation of φ and ψ, defined as

φj,k(t) = 2−j/2φ(2−jt− k) = 2−j/2φ

(
t− 2jk

2j

)
(1)

ψj,k(t) = 2−j/2ψ(2−jt− k) = 2−j/2ψ

(
t− 2jk

2j

)
. (2)

In the representation J is the number of multiresolution components, and sJ,k

are called the smooth coefficients, and dj,k are called the detailed coefficients. If
we define

SJ(t) =
∑

k

sJ,kφJ,k(t) (3)

Dj(t) =
∑

k

dj,kψj,k(t) for j = 1, 2, ..., J. (4)

The functions (3) and (4) are called the smooth signal and the detail signals,
respectively, which constitute a decomposition of a signal into orthogonal com-
ponents at different scales. A signal f(t) can thus be expressed in terms of these
signals:

f(t) = SJ(t) +DJ(t) +DJ−1(t) + ...+D1(t). (5)

2.2 Support Vector Machines

The support vector machines (SVMs) were proposed by Vapnik [5]. Based on
the structured risk minimization (SRM) principle, SVMs seek to minimize an
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upper bound of the generalization error instead of the empirical error as in other
neural networks. Additionally, the SVMs models generate the regress function by
applying a set of high dimensional linear functions. The SVM regression function
is formulated as follows:

y = wφ(x) + b, (6)

where φ(x) is called the feature, which is nonlinear mapped from the input space
x to the future space. The coefficients w and b are estimated by minimizing

R(C) = C
1
N

N∑
i=1

Lε(di, yi) +
1
2
||w||2, (7)

where

Lε(d, y) =
{
|d− y| − ε |d− y| ≥ ε,
0 others, , (8)

where both C and ε are prescribed parameters. The first term Lε(d, y) is called
the ε-intensive loss function. The di is the actual option price in the ith pe-
riod. This function indicates that errors below ε are not penalized. The term
C
N

∑N
i=1 Lε(di, yi) is the empirical error. The second term, 1

2 ||w||2, measures the
smoothness of the function. C evaluates the trade-off between the empirical risk
and the smoothness of the model. Introducing the positive slack variables ξ and
ξ∗, which represent the distance from the actual values to the corresponding
boundary values of ε-tube. Equation (7) is transformed to the following con-
strained formation:

min
w,b,ξ,ξ∗

R(w, ξ, ξ∗) =
1
2
wTw + C

(
N∑

i=1

(ξi + ξ∗i ).

)
(9)

Subject to

wφ(xi) + bi − di ≤ ε+ ξ∗i , (10)
di − wφ(xi)− bi ≤ ε+ ξi, (11)

ξi, ξ
∗
i ≥ 0. (12)

After taking the Lagrangian and conditions for optimality, One can get the
dual representation of the model,

y = f(x, α, α∗) =
N∑

i=1

(αi − α∗
i )K(x, xi) + b, (13)

where αi and α∗
i are Lagrangian multipliers, which are the solution to the dual

problem, and K(x, xi) is the kernel function. b follows from the complementarity
Karush-Kuhn-Tucker (KKT) conditions.

The value of the kernel is equal to the inner product of two vectors xi and
xj in the feature space, such that K(xi, xj) = φ(xi)φ(xj). Any function that
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satisfying Mercer’s condition (Vapnik [5]) can be used as the Kernel function.
The Gaussian kernel function

K(xi, xj) = exp
(
−||xi − xj ||2

2σ2

)
(14)

is specified in this study, because Gaussian kernels tend to give good performance
under general smoothness assumptions.

3 GARCH Prediction Models

For comparison, a generalized autoregressive conditional heteroscedasticity mod-
els [13] are also used for predictions. The following model is employed to predict
daily returns of the major Asia indices. In the conditional mean part,

rt = α+ βrt−1 + γxt−1 + εt, (15)

this equation describes the causal relationship between current returns and
lagged returns among market indices. rt is the daily return at time t for each in-
dex, xt−1 is the lagged NASDAQ return which serves as a explanatory variable,
and εt ∼ N(0, σt), the innovation or shock at time t. We model σt to follow a
univariate GJR-GARCH(1,1) process,

σt = a0 + a1ε
2
t−1 + c1St−1ε

2
t−1 + b1σ2

t−1, (16)

where

St−1 =
{

1 if εt−1 < 0
0 if εt−1 ≥ 0. (17)

That is, depending on whether εt−1 is above or below the threshold value of
zero, ε2t−1 has different effects on the conditional variance σ2

t . The asymmetric
impacts of εt−1 on σ2

t has known as the leverage effects.

4 Empirical Results and Analysis

The data employed in the study are composed of the following daily indices:
NASDAQ(US), NK225(Japan), TWSI(Taiwan) and KOSPI(South Korea). All
the index data encompass the period from January 2003 to December 2004.
There are 435 observations. These stock market indices are then transformed
into daily returns (by 100 times their log differences). Selected descriptive sta-
tistics of daily log returns of these indices are presented in Table 1. Sample
means, standard deviations, maxima, minima, skewness, kurtosis are reported.
The time-series plots of these four indices are shown in Figure 1 and 2.

In this study, only one-step-ahead forecasting is considered. One-step-ahead
forecasting can prevent problems associated with cumulative errors from the
previous period for out-of-sample forecasting. The SVM model is trained in a
batch manner, namely, 300 data points before the day of prediction are treated
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Fig. 1. Return Series of NASDAQ and NK225 Indices
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Fig. 2. Return Series of TWSI and KOSPI Indices

Table 1. Descriptive Statistics of Daily Returns of Four Indices

Series Mean Standard Skewness Kurtosis
Deviation

NASDAQ 0.0419 0.5676 0.0504 3.1555
NK225 0.0283 0.5854 -0.4265 3.8608
TWSI 0.0260 0.6545 -0.4805 6.0437
KOSPI 0.0373 0.3330 0.3824 5.4790

as the training data set, and the window of the training data set slides with the
current prediction. The daily returns in the last 135 days of the data series are
used as the test set to evaluate the performances of the pure SVM, the hybrid
SVM and the GARCH prediction models.

We apply the Daubechies least asymmetric filters with length 8 to decompose
the explanatory variables, the NASDAQ returns and lagged returns of itself
(rt−1). These returns are decomposed into four mutually orthogonal different
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periodicity series, ranging from the shortest-periodicity series to the longest-
periodicity series. As shown in Table 2, the correlations between each Asian
Index and the NASDAQ Index are not fixed on every time scale. Their correlation
coefficients range from −0.0464 to 0.6237. Thus, the new method can capture
important time scale features which can’t be revealed in aggregated explanatory
variables.

Table 2. Correlations on Every Time Scale Component

correlation coefficient NK225 TWSI KOSPI

corr(D1, D
N
1 ) -0.0464 0.1019 -0.0330

corr(D2, D
N
2 ) 0.3709 0.3280 0.2213

corr(D3, D
N
3 ) 0.5589 0.5730 0.3594

corr(S3, S
N
3 ) 0.6237 0.5140 0.3537

To model nonlinear relationship between these features and output data, a
SVM model is applied to forecast the future evolution of the target stock in-
dex; that is, the all of the decomposed series or extracted features served as
the inputs of the SVM model. The parameters used in the SVM model are set
as follows: ε = 0.01, C = 100 and σ = 0.8 for the Gaussian Kernel. Tradi-
tional performance indices such as MSE (mean square error), RMSE (root mean
squared error), MAE (mean absolute error), and MAPE (mean absolute percent
error), can be used as measures of the forecasting accuracy. In this studies, we
adopted the RMSE as the performance index. The RMSE index is defined as
follows:

RMSE =

(
1
N

N∑
t=1

(rt − r̂t)2
)1/2

, (18)

where N is the number of forecasting periods, ri is the actual return at period
t, and r̂t is the forecasting return at period t.

Table 3 shows the forecasting performance of the GARCH model, the pure
SVM model, and the hybrid SVM model on three major Asian stock indices. The
actual returns, predicted values and model residuals on various stock indices are
displayed in Figures 1-3.

Compared the pure SVM model with the traditional GARCH model, the
performance of the pure SVM is slightly poor. However, when hybrid with the

Table 3. Relative Forecasting Performance of Three Models on Major Asian Stock
Indices

NK225 TWSI KOSPI

GARCH Predictions 0.2013 0.2183 0.1514
Pure SVM 0.3038 0.3774 0.1725
Hybrid SVM 0.1187 0.1779 0.0379
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Fig. 3. Hybrid SVM Forecasts on the NK225 Index Returns
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Fig. 4. Hybrid SVM Forecasts on the TWSI Index Returns
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Fig. 5. Hybrid SVM Forecasts on the KOSPI Index Returns

wavelet-based feature extraction, the hybrid SVM methods shows superior per-
formance, and significantly reduces the root-mean-squared forecasting errors.
Among the three methods, the performance of the hybrid model is the best. The
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success of this new forecasting model can be attributed to the following two rea-
sons: first, the relationship between the NASDAQ and these Asian indices is not
fixed over every time scale. The proposed wavelet-based SVM model is capable
to capture all these important features. Conventional GARCH predictions only
incorporate information about the “average” correlations among these indices,
and thus its performance is not as good as the new model.

Second reason for the excellent performance of the proposed model is that
SVMs map input data into a high dimensional reproducing kernel Hilbert space
(RKHS) where a linear regression is performed. The RKHS has richer algebraic
and topological structures to capture nonlinear relationship between input and
output data. Consequently, SVMs provide a valuable and flexible framework for
the representation of relations in the data.

5 Conclusions

Combining wavelet analysis and support vector machines (SVM), this study de-
velops a new hybrid SVM prediction model, which operates on multiple resolu-
tions and uses a flexible nonparametric regression to predict the future evolution
of the return series.

International investors are a diverse group. They operate on very different
time scales. Intraday traders, market makers and hedging funds strategists trade
on very short time scales ranging from seconds to hours. International portfolio
managers are traders on the intermediate time scales. Their trades typically
occur on a weekly to monthly basis. Central banks are the main traders on the
longest time scales, they consider long-term economic fundamentals with the
longest investment horizon.

Since the aggregated predictive power of lagged NASDAQ returns is un-
equally divided into the four time scales, the correlations among the NAS-
DAQ and these Asian indices change over every time scale. The pure SVM or
GARCH model only incorporating the “average” of the above information have
very poor performance. By using wavelet analysis and by mapping data to the
high dimensional reproducing kernel Hilbert space, the proposed hybrid SVM
model is capable to capture all the important features, and makes an excellent
forecasts.

To summarize, the powerful framework established in this study can also ap-
plied to other problems involving financial forecasts. The results of this paper
can be used to perform a good hedge on international investments. A chal-
lenging future task is to combine Bayesian methods for important feature
selections.
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Abstract. Recently independent component analysis (ICA) has been
proposed for discovery of linear, non-Gaussian, and acyclic causal mod-
els (LiNGAM). As in practice the LiNGAM assumption usually does not
exactly hold, in this paper we propose some methods to perform causality
discovery even when LiNGAM is violated. The first method is ICA with
a sparse separation matrix. By incorporating a suitable penalty term, the
separation matrix produced by this method tends to satisfy the LiNGAM
assumption. The other two methods are proposed to tackle nonlinearity
in the data generation procedure, which violates the LiNGAM assump-
tion. In the second method, the post-nonlinear mixing ICA model is
exploited to do causality discovery when the nonlinearity is component-
wise. The third method is proposed for the case where the nonlinear
distortion in data generation is of arbitrary form, but smooth and weak.
The separation system for such data is a linear transformation coupled
with a nonlinear one, and the nonlinear one is as weak as possible such
that it can be neglected when performing causality discovery. The linear
causal relations in the data are then revealed. The proposed methods are
applied to discover the causal relations in the Hong Kong stock market,
and the last method works very well. The resulting causal diagram shows
some interesting information in the stock market.

1 Introduction

It is well known that financial assets are not independent of each other, and that
there may be some relations among them. Such relations can be described in
different ways. In risk management, correlations are used to describe them and
help to construct portfolios. The business group, which is a collection of firms
bound together in some formal and/or informal ways, focuses on ties between
financial assets and has attracted a lot of interests [4,8]. But these descriptions
do not tell us the causal relations among the financial assets.
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The return of a particular stock may be influenced by those of other stocks,
for many reasons, such as the ownership relations and financial interlinkages [8].
According to the efficient market hypothesis, such influence should be reflected
in the stock returns immediately. In this paper we aim to discover the causal
relations among selected stocks by analyzing their daily returns.

Traditionally, causality discovery algorithms for continuous variables usually
assume that the dependencies of variables are of a linear form and that the vari-
ables are Gaussian distributed [9]. Under the Gaussianity assumption, only the
correlation structure of variables is considered and all higher-order information
is neglected. As a consequence, one would obtain some possible causal diagrams
which are equivalent in their correlation structure, and could not find the true
causal directions. Recently, it has been shown that the non-Gaussianity distrib-
ution of the variables allows us to distinguish the explanatory variable from the
response variable, and consequently, to identify the full causal model [2,11].

In particular, in [11] an elegant and efficient method was proposed for iden-
tifying the linear, non-Gaussian, acyclic causal model (abbreviated LiNGAM)
by exploiting the independent component analysis (ICA) technique. If the data
are generated according to the LiNGAM model, theoretically, the ICA separa-
tion matrix W of the data can be permuted to lower triangularity. However,
in practice, this may not hold, due to the finite sample effect, the existence of
unobserved confounder variables [9], or the fact that mild nonlinearity and noise
are often encountered in the data generation procedure.

In this paper, we propose a learning approach to continuously tune W such
that it can be permuted to lower triangularity, when LiNGAM is not violated
much. Our another contribution is to propose two methods to tackle the nonlin-
earity in data generation when performing causality discovery. First, the post-
nonlinear (PNL) mixing ICA model [12,14] is used to account for a particular
type of nonlinearity. Second, a linear transformation coupled with a nonlinear
one modeled by a multi-layer perceptron (MLP) is proposed to represent the
nonlinear ICA transformation. With certain penalties, this structure helps to
discover the linear causal relations in the data, when nonlinear distortion is
weak. Finally, we apply the proposed methods for causality discovery in the
Hong Kong stock market.

2 Causality Discovery by ICA: Basic Idea

The LiNGAM model assumes that the generation procedure of the observed data
follows the following properties [11]. 1. The generation procedure is recursive.
This means that the observed variables xi, i = 1, ..., n, can be arranged in a
causal order, such that no later variable causes any earlier variable. This causal
order is denoted by k(i). 2. The value of xi is a linear function of the values
assigned to the earlier variables, plus a disturbance term ei and an optional con-
stant ci: xi =

∑
k(j)<k(i) bijxj +ei+ci. 3. ei are continuous-valued variables with

non-Gaussian distributions of non-zero variances (or at most one is Gaussian),
and are independent of each other.
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After centering of the variables, the causal relations among xi can be written
in the matrix form: x = Bx + e, where x = (x1, ..., xn)T , e = (e1, ..., en)T ,
and the matrix B can be permuted (by simultaneous equal row and column
permutations) to strict lower triangularity if one know the causal order k(i) of
xi. We then have e = Wx, where W = I−B. This is exactly the ICA separation
procedure [6].

Therefore, the LiNGAM model can be estimated by ICA. Let W be the ICA
separation matrix of x. We can permute the rows of W such that it produces
a matrix W̃ without any zero on its diagonal (or in practice,

∑
i |W̃ii| is max-

imized). Dividing each row of W̃ by the corresponding diagonal entry, a new
matrix W̃′ with all entries on its diagonal being 1 is obtained. Finally, by ap-
plying equal row and column permutations on B = I − W̃′, we can find the
matrix B̃ which is as close as possible to strictly lower triangularity. B̃ contains
the causal relations of xi. For details, see [11].

In practice, W may not be able to be permuted to lower triangularity, due
to the estimation error, or violation of the LiNGAM assumption. In [11] some
statistical tests are exploited for pruning the entries of W, so that W is permuted
to lower triangularity. This method is a discrete process, meaning that after
statistical tests, Wij are either retained or set to 0. With this scheme, small
changes in the data may result in a very different model. In addition, if an
entry is thought of insignificant and pruned, the ICA outputs will change, the
independence between them may not hold, and the significance of other entries
will also be affected.

3 Methodology

3.1 ICA with Sparse Transformation Matrix

Why ICA with Sparse Transformation Matrix. When performing ICA,
sometimes it is desirable not only to achieve the independence between outputs,
but also to make the transformation matrix (W or A) as sparse as possible, i.e.
to make its zero entries as many as possible, for the following reasons. First,
consider the case where the data dimension is high and the true transformation
matrix is sparse. If the zero entries can be automatically detected and are set to 0
during the learning process, the model complexity will be reduced and parameter
estimation will be more reliable. Second, a sparse mixing matrix means that the
observations xi are affected by only a smaller subset of the independent sources
si, and this makes the interpretation easier. The third reason is application-
oriented. When applying ICA for estimating the LiNGAM model, W is expected
to be permuted to lower triangularity. In order to achieve this, W with as many
as possible zero entries is preferred. The sparsity of the transformation matrix
can be achieved by introducing some penalty term.

Penalties Producing Sparse Coefficients in Linear Regression. In the
statistics literature, the behavior of different penalties in the linear regression
problem has been intensively studied. By incorporating the Lγ penalty on βi, the
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penalized least square error (LSE) estimate for the coefficientsβ=(β1, ..., βp)T is
obtained by minimizing the mean square error plus the penalty termλ

∑p
j=1|βj |γ ,

where λ ≥ 0 is a parameter controlling the extent to which the penalty influences
the solution. γ = 2 results in ridge regression, which tends to make coefficients
smaller, but cannot set any coefficient to 0. The L2 penalty also results in the
weight decay regularizer in neural networks learning. The least absolute shrinkage
and selection operator (LASSO) emerges when γ = 1, i.e. the L1 penalty is
adopted [13]. With a suitable λ, it automatically sets insignificant coefficients
to 0 . The L1 penalty corresponds to a Laplacian prior on βi. From now on we
drop the subscript in βi for simplicity.

In [3] it was claimed that a good penalty function should result in an es-
timator with the following three properties: 1. unbiasedness for the resulting
estimator of significant parameters, 2. sparsity, which means that insignificant
coefficients are automatically set to 0, to reduce the model complexity, and 3.
continuity of the resulting estimator with respect to changes in data to avoid un-
necessary variation in model prediction. The smoothly clipped absolute deviation
(SCAD) penalty, which has the above properties, was proposed. The derivative
of the SCAD penalty (including the coefficient λ) is given by: p′λ(β) = λ

{
I(β ≤

λ) + (aλ−β)+
(a−1)λ I(β > λ)

}
, for some a > 2 and β > 0, where I(·) is the indicator

function, and the typical value for a is 3.7. The SCAD penalty corresponds to
an improper prior on β. For details of the SCAD penalty, see [3].

Now we propose a generalized version of the SCAD penalty and consider some
computational problems. In fact, in the SCAD penalty, the parameter controlling
the strength of the penalty and that controlling the range the penalty applies
to are not necessarily equal. We then propose the following generalized SCAD
(GSCAD) (for β ≥ 0):

p′λ(β) = λ
{
I(β ≤ λ1) +

(aλ1 − β)+
(a− 1)λ1

I(β > λ1)
}

(1)

GSCAD plays a trade-off between SCAD and the L1 penalty. When λ1 is very
large, it tends to be the L1 penalty. When the data are very noisy, we can
choose the parameter λ1 > λ so that the penalty operates on a wider range
of the parameter value. The penalty for weight elimination in neural networks
learning can be considered as a heuristic approximate to GSCAD. But it just
shrinks small parameters and can not set any parameter to 0.

Any penalty which can set small parameters to 0 and results in a continuous
estimator, including the L1 penalty and (G)SCAD, must be singular (not dif-
ferentiable) at the origin [3]. Consequently, we can not use the gradient-based
learning rule to optimize the objective function when β is around 0. We use
some approximation to tackle this optimization problem. The function tanh(mβ)
(m is a large number, say 200) is used to approximate the derivative of |β|.
The GSCAD (Eq. 1) is then approximated by p′λ(β) = λ

{
tanh(mβ) · I(β ≤

λ1)+ tanh(mλ1) · (aλ1−β)+
(a−1)λ1

I(β > λ1)
}

. As the price, β will not exactly shrink to
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0 even if its true value is 0; it will converge to a very small number (about 10−2)
instead. In practice, after the convergence of the algorithm, we need to set the
parameters whose values are small enough, say, smaller than 0.02, to 0.

ICA with Sparse Separation Matrix. Under some weak regularity con-
ditions, the ordinary maximum likelihood estimates are asymptotically normal,
and the above penalties can be applied to likelihood-based models [3]. As ICA al-
gorithms can be derived from a maximum likelihood point of view [10], ICA with
a sparse separation matrix can be derived with the data (log-)likelihood together
with the above penalties as the objective function. Consider the ICA separation
procedure y = Wx, where x = (x1, ..., xn)T are the observed variables assumed
to be generated from independent variables s = (s1, ..., sn)T by x = As. The
penalized log-likelihood is 1

N �(x;W) −
∑n

i,j=1 pλ(wij), where �(x;W) denotes
the log-likelihood function of the observations x given the ICA model and N de-
notes the number of samples. The corresponding natural gradient learning rule
for W is W ∝

(
I − E{ψ(y)yT } − [p′λ(wij)]WT

)
W, where [p′λ(wij)] denotes

the matrix whose (i, j)-th entry is p′λ(wij), and ψ(y) denotes the score function
of y. In practice, some modifications can be adopted to ensure that yi are of
unit variance at convergence; for example, see [12].

ICA with Sparse Separation Matrix for Estimation of LiNGAM. The
parameters involved in the penalty pλ(wij), denoted by θ, can be estimated by
cross-validation or generalized cross-validation [3]. But when using ICA with
a sparse W for LiNGAM analysis, we need to choose a suitable θ such that
W can be permuted to lower triangularity. A greedy method can be adopted
for determining the parameter λ. (When adopting the GSCAD penalty, we set
λ1 = 1.2λ and a = 3.2 empirically.) Starting from a small value, each time λ is
increased by a fixed increment. After the algorithm converges for the new value
of λ, we check whether the LiNGAM property holds for W. The check can be
easily done with Algorithm B in [11]. Once the LiNGAM property holds, we
terminate the above procedure and LiNGAM is estimated by analyzing W; if λ
reaches the upper bound set in advance, we conclude that the data do not follow
the LiNGAM model. The computation involved in this method is not high, since
the convergence of the algorithm for the new value of λ usually requires just
several iterations.

3.2 To Incorporate Component-Wise Nonlinearity

ICA with a sparse separation matrix can estimate the LiNGAM model when it
is slightly violated. It may fail to discover the causality when the data generation
procedure is actually nonlinear. Now let us take into account such nonlinearity
as it is often encountered in practice. Consider the following data generation
procedure. Suppose the observed data xi do not follow the LiNGAM model;
however, zi, as the actual effect of xi, is a continuous and invertible function of
xi, and zi follow the LiNGAM model. We call this model component-wise nonlin-
ear LiNGAM (CWN-LiNGAM). Let zi = gi(xi). Without loss of generality, we
assume that the nonlinear functions gi to be strictly monotonically increasing.
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Let z = (z1, ..., zn)T and fi be the inverse of gi. We have xi = fi(zi) and
Wz = e. Clearly the observed data x are post-nonlinear (PNL) mixtures of the
independent sources ei [12]. To identify the CWN-LiNGAM model, we first need
to separate the PNL mixtures xi and to estimate gi and W. Some algorithms
can be found in [12,14]. Next, the causal relations among xi can be discovered
from W, with the method mentioned in Section 2.

3.3 With Mild Nonlinearity Modeled by MLP

We now consider the general case of the nonlinear distortion often encountered in
the data generation procedure, provided that the nonlinear distortion is smooth
and mild. The structure in Fig. 1 is used to model the nonlinear transformation
from the the observed variables xi to the disturbance variables ei. This struc-
ture is a linear transformation coupled with a MLP. The MLP accounts for the
nonlinear distortion if necessary. We would like to address that this structure
was adopted to perform nonlinear ICA in the experiments of [1]. It was called
a MLP with direct connections between inputs and outputs there. In fact, this
structure implicitly introduces the regularization condition that the nonlinear
ICA mapping should be as close as possible to linear.1

According to Fig. 1, we have e = Wx + h(x), and consequently x = (I −
W)x+h(x)+ e, where h(x) denotes the output of the MLP. As it is difficult to
analyze the relations among xi implied by the nonlinear transformation h(x),
we expect that h(x) is weak such that its effect can be neglected. The linear
causal relations among xi can then by discovered by analyzing W.

x W
e

MLP h(x)

Fig. 1. Structure used to model the
transformation from the observed data
xi to independent disturbances ei

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Return (x
i
)

A
ct

ua
l e

ffe
ct

 o
f t

he
 r

et
ur

n,
 z

i=
g(

x i)

 

 

Nonlinearity modeled by NN
Data points
tangent at 0

Fig. 2. Nonlinear function gi transform-
ing the return xi to its actual effect zi

In order to do causality discovery, the separation system in Fig. 1 is expected to
exhibit the following properties. 1. The outputs ei are mutually independent, since
1 We conjecture that with this regularization condition, nonlinear ICA leads to non-

linear blind source separation (BSS) when the nonlinear distortion is mild [15]. It
was ever believed that smooth mappings provided by MLP’s are sufficient to ensure
that nonlinear ICA leads to nonlinear BSS [1], but a counterexample against this
conjecture has been given in [7].
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independence of ei is a crucial assumption in LiNGAM. This can be achieved since
nonlinear ICA always has solutions. 2. The matrix W is sparse enough such that
it can be permuted to lower triangularity. This can be enforced by incorporating
the L1 or (G)SCAD penalty on the entries of W. 3. The nonlinear mapping mod-
eled by the MLP is weak enough such that we just care about the linear causal
relations indicated by W. We initialize the system with linear ICA results and
use early stopping to ensure this property: W is initialized by the linear ICA sep-
aration matrix, and the initial values for weights in the MLP are very close to 0;
early stopping means that we stop the training process once the LiNGAM prop-
erty holds for W. In addition, some techniques are used to make the mapping from
x to e as close as possible to linear [15]. Thus, the system in Fig. 1 is learned by
penalized maximum likelihood, or by minimizing the mutual information between
ei together with certain penalty terms. After the algorithm terminates, var(hi(x))

var(ei)
can be used to measure the level of nonlinear distortion, if needed.

4 Data

We aim at discovering the causality network among 14 stocks2 selected from
the Hong Kong stock market. The Hong Kong stock market has some structural
features different from the US and UK markets [5]. One typical feature is that
the concentration of market activities and equity ownership in relatively small
group of stocks, which probably makes causal relations in the Hong Kong stock
market more obvious. However, we should be aware that it is probably very hard
to discover the causal relations among the selected stocks, since the financial data
are somewhat non-stationary, the data generation mechanism is not clear, and
there may be many confounder variables [9].

The selected 14 stocks are constituents of Hang Seng Index (HSI).3 They are
almost the largest companies of the Hong Kong stock market. We use the daily
dividend/split adjusted closing prices from Jan. 4, 2000 to Jun. 17, 2005, ob-
tained from the Yahoo finance database. For the few days when the stock price
is not available, we use the simple linear interpolation to estimate the price. De-
noting the closing price of the ith stock on day t by Pit, the corresponding return
is calculated by xit = Pit−Pi,t−1

Pi,t−1
. The observed data are xt = (x1t, ..., x14,t)T .

Each return series contains 1331 samples.

5 Empirical Results

We first apply a standard ICA algorithm to perform ICA on the data x. The
natural gradient algorithm with the score function adaptively estimated from
data is adopted. We use the LiNGAM software to permutate W and obtain
the matrix B = I − W̃′. B seems unlikely to be lower-triangular; in fact, the
2 For saving space, they are not listed here; please see the legend in Fig. 4.
3 Except that Hang Lung Development Co. Ltd (0010.hk) was deleted from HSI on

Dec. 2, 2002.
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ratio of the sum of squares of its upper-triangular entries to that of all entries
is 0.24, which is very large. We may conclude that the data x do not satisfy the
LiNGAM model.

Second, we exploit ICA with a sparse separation matrix to do causality dis-
covery. The GSCAD penalty is adopted, and the upper bound for λ is set to
0.25 empirically. We find that the learned separation matrix W does not fol-
low LiNGAM for λ less than the upper bound. So again we conclude that the
LiNGAM model does not hold for the data x.
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Fig. 3. Scatter plot of each output of the system in Fig. 1 and its linear part. The
nonlinear distortion level var(hi(x))

var(ei)
is 0.0485, 0.0145, 0.0287, 0.2075, 0.0180, 0.0753,

0, 0.0001, 0.0193, 0.0652, 0.0146, 0.0419, 0.0544, and 0.0492, respectively, for the 14
outputs ei.

Third, we check if the data are generated according to the CWN-LiNGAM
model discussed in Section 3.2. We conjecture that the post nonlinearities fi

should be almost the same for all stocks, which is confirmed by the PNL ICA
result of the extended-Gaussianization method [14]. But the nonlinear functions
gi estimated by extended-Gaussianization are not smooth. We further adopt the
algorithm in [12] to do PNL ICA, but to reduce the model complexity and to
achieve a reliable result, all gi are modeled by the same MLP. The MLP has two
layers with eight hidden units. The activation function for hidden units is the
‘tansig’ function, and that in the output layer is linear. The learned nonlinear
function gi is shown in Fig. 2. It is very interesting that the shape of this function
is somewhat similar to the value function in the prospect theory in behavior
finance. The matrix B estimated from W by the LiNGAM software still seems
not close to lower-triangular, since the ratio of the sum of squares of its upper-
triangular entries to that of all entries is 0.16. However, it is smaller than in the
first experiment.

Finally we adopt the method proposed in Section 3.3. The system in Fig. 1
is used to separate the data x. The GSCAD penalty is applied to entries of W
with λ = 0.04. After 195 epoches, W satisfies the LiNGAM assumption and the
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training process is terminated. Fig. 3 shows the scatter plot of each output ei
and its linear part, from which we can see that the nonlinear distortion is very
weak. Based on the learned W, we find the linear causal relations among these
stocks, as shown in Fig. 4. This figure was plotted using the LiNGAM software.

From Fig. 4 we have some interesting findings. 1. The ownership relation tends
to cause the causal relation. If A is a holding company of B, there tends to be
a causal relation from B to A. There are two significant relations x8 → x5 and
x10 → x1. In fact, x5 owns some 60% of x8, and x1 holds about 50% of x10.
2. Stocks belonging to the same subindex tend to be connected together. For
example, x2, x3, and x6, which are linked together, are the only three constituents
of Hang Seng Utilities Index. x1, x9, and x11 are constituents of Hang Seng
Property Index. 3. Large bank companies are the cause of many stocks. Here x5
and x8 are the two largest banks in Hong Kong. 4. Returns of stocks in Hang
Seng Property Index tend to depend on many other stocks, while they hardly
influence other stocks. Note that Here x1, x9, and x11 are in Hang Seng Property
Index. Further interpretations of this causal diagram is to be done.

x1: Cheung Kong (0001.hk)
x2: CLP Hldgs (0002.hk) 
x3: HK & China Gas (0003.hk) 
x4: Wharf (Hldgs) (0004.hk)
x5: HSBC Hldg (0005.hk), 
x6: HK Electric (0006.hk) 
x7: Hang Lung Dev (0010.hk) 
x8: Hang Seng Bank (0011.hk)
x9: Henderson Land (0012.hk)
x10: Hutchison (0013.hk)  
x11: Sun Hung Kai Prop (0016.hk) 
x12: Swire Pacific ’A’ (0019.hk)
x13: Bank of East Asia (0023.hk) 
x14: Cathay Pacific Air (0293.hk)  

Fig. 4. Casual diagram of the 14 stocks

6 Conclusion

We extended the idea of causality discovery by ICA to a wider application area.
By incorporating a certain penalty on the ICA separation matrix, ICA with a
sparse separation matrix can identify the LiNGAM model when the LiNGAM
assumption is not violated much. We further considered two nonlinear models to
describe the data generation procedure. If the nonlinear transformation in data
generation is component-wise, PNL mixing ICA can be exploited to do causality
discovery. The data generation procedure with unknown but mild nonlinearity
was then studied. A linear transformation coupled with a MLP was adopted
to separate such data. Certain techniques were proposed to ensure that the
nonlinearity modeled by the MLP is as weak as possible. Neglecting the nonlinear
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distortion, linear causality discovery can be easily done. We applied the proposed
methods for causality discovery in the Hong Kong stock market, and found that
the method with a MLP modeling weak nonlinear distortion behaves very well.
The resulting casual diagram revealed some interesting information in the Hong
Kong stock market.
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Abstract. Option pricing is one of the important issues in the financial industry 
and has been studied for decades. Many classical and successful pricing models 
have been presented to implement the pricing processing either by numerical 
computing or by simulation. In this paper, a new option pricing model based on 
a three-layer feedforward neural network is established to improve the pricing 
performance. The new model combines 4 traditional pricing models to obtain a 
better forecasting result based on learning and cutting down their forecasting er-
rors. Numerical experiments are conducted on the data of Hong Kong option 
market from March 2005 to July 2005. The new model improves the pricing 
performance remarkably compared to the traditional option pricing models. 

1   Introduction 

Over the recent years, options have become one of the hottest securities in financial 
markets. Huge amounts of profits from trading options have attracted many investors. 
However, the irrational management in stock options sometimes severely jeopardizes 
the investors’ properties. As a result, the skills and tactics of trading stock options 
remain a mysterious yet provocative topic. 

The option price could be affected by many factors, such as the current asset price, 
the interest rate, the expiration date, the exercise price, and the market risk. Many 
efficient methods have been presented in the past. Among them, the most successful 
pricing models [3] include the binomial options (BI) model, the Black-Scholes (BS) 
model [2], the finite difference (FD) model, and the Monte Carlo (MC) model. 

The BI, BS and FD model are classified as the numerical methods, while the MC 
model is grouped into the simulation method. Each one of them has its own advan-
tages and disadvantages. Accordingly, it is a natural idea to combine the merits of 
these methods to obtain more accurate prediction results. 

At the resurgence of neural networks, many scholars have contributed to the area 
of applying neural networks in the financial markets [1][6][9]. Due to the complexity 
of option calculation, the neural network has not been extensively experimented on 
the option markets until the commencement of this century [5]. The typical ways of 
making use of the neural network in improving the pricing include calculating the 
implied volatility and revising the BS model by using neural network. However, fun-
damentally they are still regarded as traditional methods. 

                                                           
* Corresponding author. 
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The neural network is a universal learner [4] and is capable of extracting rules from 
the complex systems. Efforts have been made to price the options by learning the 
trend and rules of the option market based on the current option market features (for 
example, the sensitivity to risks). The obtained features are “stored” in the neural 
network as weight values and biases, forming the so-called “knowledge” of current 
option market. Consequently, the knowledge could be used for predicting more accu-
rate prices. 

This paper aims to utilize the nonlinear learning capability of neural network to ob-
tain a better pricing algorithm for option market based on the 4 successful models. 

This paper is organized as follows. In section 2, the traditional methods as well 
as the improved method are illustrated. In section 3 the experiments on predicting 
the option prices in Hong Kong market are conducted. Section 4 concludes the 
paper. 

2   Model and Methodology 

2.1   Traditional Option Pricing Models 

As described above, there are 4 widely-used traditional pricing models, the BI model, 
the BS model, the FD model, and the MC model. The BI model divides the whole 
time span from the current day to the expiration date into the designated time inter-
vals. After each time interval Δt, the underlying asset price either increases by a cer-
tain ratio μ or decreases by a certain ratio d. Then, the current option price could be 
derived backward from the expiration date to the current date. The BS model sup-
poses that the underlying asset price observes the logarithmic normal distribution. As 
a result the famous Black-Scholes differential equation could be solved by using the 
Ito’s theorem. Also, the pricing formula could be obtained based on the BS differen-
tial equation. The FD model converts the differential equation supported by the under-
lying asset price to a series of finite equations, based on which the option’s current 
price is obtained. In the MC method, a certain number (for example, 10000) of times 
of simulations is executed. First, in each time, a sampling path for the movement of 
the underlying asset’s price is formed in a risk-neutral world by using the normal 
distributed random numbers. Second, the profit and loss of each sampling path are 
calculated. Third, the mean value of all the profit and loss are discounted back to the 
current date by the risk-free interest rate, and the current option price is solved. The 
detail of these 4 traditional models can be found in many books and papers in the field 
of financial engineering [2][3]. 

2.2   Methods Based on Traditional Models- Weighted Average Model (WAM) 

The simplest way to combine the traditional methods described above is to calculate 
the average of the 4 methods’ results. Suppose that the method with better pricing 
performance during the past few days would lead to a better pricing result of the cur-
rent day in sequence. The contribution of each method should be considered by re-
spectively setting a weight value wi, 
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where Ci is the calculation result of the ith pricing method. Each wi might be deter-
mined by observing the performance of the ith method for pricing a certain option 
during the past L days, where L is the length of sliding window. 

Let Cr(k) be the real option price on the kth day, Ci(k) the forecasting price on the 
kth day by the ith method, i = 0, ..., 3. Then the overall forecasting error by the ith 
method is written as 
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where fd(·) is a decay function, such as 
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1−  or ek. Clearly, the most recent historical 

data should be given more attention or weight. The decay function is utilized to simu-
late the fact that the earlier error results in a smaller effect on the current weight value  

Weight wi could therefore be calculated as 
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where the constant c normalizes wj to ensure 1
3

0
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jw .  

2.3   Neural Network Approach- Multilayer Perceptron (MLP) 

The method in subsection 2.2 holds a preliminary capability of “learning” in the 
meaning that it could revise the pricing result by considering each method’s short-
term historical performance. Apparently, the neural network could be used to learn 
their historical performance automatically and more powerfully. 
The option market is a complex nonlinear system. If f is set to be the nonlinear multi-
variate function mapping from the pricing results of the traditional methods to the real 
option price, then the nonlinear model MLP could be used to fit f nonlinearly. 

In the MLP, nonlinear activation functions and a hidden layer provide the nonlin-
ear feature. In this paper a three-layer feedforward nonlinear neural network is em-
ployed to learn the pricing processing, as shown in Fig. 1. 

Noticing that all the possible values of parameters S, X, k, r, and σ are already in-
corporated in the predicted prices given by the 4 traditional methods, the assignment 
of these parameters as the input of the neurons duplicates the functions of them. 

Similarly, the five parameters S, X, k, r, and σ are not necessary to be set as the in-
put values of the neurons. Furthermore, it is desired to decrease the prediction errors 
through learning the errors of 4 traditional models, and the framework of decreasing 
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Fig. 1. MLP model 

errors by the feedforward neural network is more straightforward and explainable 
compared with other types of neural networks. Consequently, the feedforward neural 
network is employed. 

In Fig.1, Ci is the forecasted result of the 4 traditional methods, the hidden layer 
comprises H hidden neurons adopting nonlinear activation functions such as the sig-
moidal function, the output neuron also has a nonlinear activation function, and C is the 
output of the overall network. The training process is implemented by the BP algorithm. 

Specifically, the network has 4 input neurons which receive the pricing results of 
the 4 traditional methods. In addition, the sliding window with length L is selected to 
form the training patterns. Namely, in each pricing cycle, there are L training patterns 
corresponding to the past L days’ data, and the trained network is used for forecasting 
the current day’s option price. 

The errors are used as training pattern as opposed to the forecasting prices. For ex-
ample, let 
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kA  is the mean value of the pricing results on the kth day 

before the current day obtained by the 4 traditional methods, }1,{ −−∈ Lk . 
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and 

[ ])1()1()(' −+−−= YLYLYY . (7) 

It follows that >< ',' YX  is input to the network. 

After the training processing, the current day’s experimental sample 
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is input to the network and the output value )0('Y  is obtained. At last, the final fore-

casted option price is found by adding back the mean value of the pricing results as 
)0()0(' AY + . 

3   Numerical Experiments 

3.1   Data Preparation 

The options of Hong Kong securities market are selected as the data in experiments. 
Specifically, the historical underlying stock asset prices from March 2005 to July 
2005 and the historical option prices during the same period of time are used as the 
experimental data. Totally, there are 62 days’ data in all, among which in the offline 
training, the former 40 days’ data are for training, and the latter 22 days’ data are for 
testing. However, in the experiments, the data are utilized more sufficiently. In the 
stage of forecasting, an online training is also in progress on a rolling basis. Namely, a 
sliding window of L days in length is designed to across the 22 days. The data in the 
past L days continue to train the neural network so as to make the forecast of (L+1)th 
day more precisely. 

The call options with code HWL, HSB, CKH and HKB in the Hong Kong option 
market is selected in experiments. The expiration date is 2005-09-16.The source of all 
the data can be found on the website of the Hong Kong Exchange and Clearing Lim-
ited with http://www.hkex.com.hk/tod/markinfo/setdata.asp. The respective parame-
ters of each option are in Table 1. 

Table 1. Parameters of 4 options 

option code underlying stock exercise price (HK$) 
HWL HUTCHISON, HKSE:0013.HK 70.0 
HSB HANG SENG BANK, HKSE:0013.HK 105.0 
CKH CHEUNG KONG, HKSE:0001.HK 75.0 
HKB HSBC HOLDINGS, HKSE:0005.HK 130.0 
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3.2   Evaluation Criterion 

The purpose of this paper is to improve the pricing result of the 4 traditional methods. 
The mean absolute error of a method during T days is selected to evaluate, 
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3.3   Experimental Results 

3.3.1   Methods Based on Traditional Model 
Firstly, the 4 traditional pricing methods including BI, BS, FD, and MC are imple-
mented by the Java program. The respective parameters of each method are in Table 2. 

Table 2. Parameters of 4 traditional methods 

model step length grid size risk free rate max price simulation times 
BI 1/100 year  0.025   
BS   0.025   
FD  100×100 0.025 1.2 × exercise price  
MC 1/100 year  0.025  20000 

Based on the pricing result of the 4 traditional methods, the adjusted pricing results 
for the latter 22 days by using the WAM model are calculated. The mean absolute 
errors are evaluated. Figs. 2 show the mean of absolute error values in pricing HKB. 

In Figs. 2, BI, BS, FD and MC represent the respective absolute errors for option 
prices of the 4 traditional methods, WAM1, WAM3, and WAM7 are the absolute 
error for the WAM model with the lengths of sliding windows 1, 3, and 7, respec-
tively. In Fig.3, the means of absolute errors of WAM1, WAM3 and WAM7 are 
0.0456, 0.0457 and 0.0457, which are all a little smaller than some of the traditional 
methods (BI, FD and MC).  
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Fig. 2. Mean absolute errors in pricing HKB by the 4 traditional methods and the WAM 
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3.3.2   Neural Network Approach 
The simulation processing is realized by using the Matlab neural network toolbox. 
The training processing adopts the regularization training function trainbr. The 
training cycle is set to be 100 and the training goal of error is set to be 0.1. The activa-
tion function in the MLP is tansig. Figs. 3 show the evaluation results the MLP 
model. In the figures, NN2, NN3, NN5, NN8 and NN12 represent the absolute errors 
of the MLP model and the respective sliding window lengths are 2, 3, 5, 8 and 12. 
NN5_3, NN5_5, NN5_8, NN5_12 and NN5_17 represent the results of the MLP 
model with a sliding window of 5 days’ length and the numbers of hidden neurons in 
each network are 3, 5, 8, 12 and 17 respectively.  
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Fig. 3. Mean absolute errors in pricing HKB by neural network approach 

From Figs. 3, a conclusion can be drawn that the neutral network methods signifi-
cantly reduced the forecasting errors for pricing each options. Further, the MLP 
model with a sliding window of 3 to 5 days in length and 12 hidden neurons could 
improve the forecasting performance remarkably. As a result, much more profit can 
be made comparing with the 4 traditional methods. 

The experimental results of pricing 4 options HWL, HSB, CKH and HKB are 
listed below in Tables 3, 4 and 5. From Table 3, it can be seen that compared to the 4 
traditional methods, WAM and MLP all improve the precision of the option pricing, 
especially the MLP method. From Table 4, it is found that the length of the sliding 
window L is around 3 to 5 days. From Table 5, it is concluded that the optimal num-
ber of hidden neurons is some 12. 

Table 3. Mean absolute errors of different methods 

option BI BS FD MC WAM NN3 NN5
HKB 0.043 0.038 0.045 0.041 0.045 0.037 0.032
HWL 0.183 0.187 0.194 0.197 0.190 0.061 0.064
HSB 0.233 0.226 0.230 0.226 0.229 0.043 0.054
CKH 0.244 0.245 0.263 0.255 0.252 0.063 0.057
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Table 4. Mean absolute errors of different lengths of sliding windows 

option  NN2 NN3 NN5 NN8 NN12
HKB 0.038 0.037 0.032 0.036 0.037
HWL 0.067 0.061 0.064 0.064 0.063
HSB 0.046 0.043 0.054 0.056 0.062
CKH 0.066 0.063 0.057 0.055 0.060

Table 5. Mean absolute errors of different numbers of hidden neurons 

number of hidden neurons option 
3 5 8 12 17 

HKB 0.037 0.041 0.033 0.032 0.032
HWL 0.063 0.064 0.064 0.062 0.064
HSB 0.053 0.054 0.054 0.054 0.053
CKH 0.057 0.057 0.058 0.058 0.057

More experiments are conducted on another 6 options, CLP, HKG, WHL, CPA, 
HEH, and PCC. The experimental results are similar to the above. 

3.4   Discussion 

There are two important parameters in the MLP model, the length of sliding window 
L and the number of hidden neurons H. 

The selection of L depends on the features of the specific option, for example, from 
the aforementioned experiments the best length of sliding window for HSB is 3 days 
and the best length of sliding window for HKB is 5 days. Furthermore, a short sliding 
window’s length (for example, 2, 3, or 5 days) is selected in this paper for that the 
experiment with longer history data would not affect the current price remarkably in 
practice. Moreover, in this paper a “dynamic” training strategy is adopted to update 
the network continuously. For example, firstly, the 4th day’s price is forecasted by 
training the network with the history data from the 1st to the 3rd days. When the 5th 
day comes, the network should be trained again with the market data from the 2nd to 
the 4th days, and the 1st day’s data are abandoned. 

The problem of determining the number of hidden neurons is difficult [7][8][10]. 
Too many hidden neurons will lead to a long training process and the possibility of 
overfitting. However, too few hidden neurons will lead to the loss of accuracy. In this 
paper, different numbers of hidden neurons are tested and the best ones are found. 
Although the upper and lower bounds for the number of hidden neurons could be 
estimated in specific problems, in practice the number of hidden neurons has to be 
obtained by the trail-and-error method and a developed automatic process could help 
us to find the best number of hidden neurons. 

The experimental results described above show that the forecasting error for pric-
ing options is reduced significantly by adding neutral network training processing to 
traditional methods. It should be note that the traditional methods implemented here 
are the traditional standard ones which do not take into consideration any improved 
methods proposed by researchers, so that the forecasting errors of these traditional 
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methods are comparatively a little higher. However, even if such improved methods 
are employed instead of the standard ones, since the neutral network approach is es-
tablished on those traditional methods, the pricing performance could also be im-
proved and more profits could be gained. 

4   Concluding Remarks and Future Work 

This paper presents a new option pricing model which utilizes a three-layer feedfor-
ward neural network. By carefully selecting the model parameters, for example, the 
number of hidden neurons, and the length of sliding window, the forecasting accuracy 
could be improved remarkably. 

Noticing that the new pricing model in this paper is based on 4 traditional and suc-
cessful pricing models, known as the binomial tree model, the Black-Scholes model, 
the finite differential model and the Monte Carlo model, the result in this paper does 
not surprise us - the neural-network-based method takes advantages from the other 4 
methods. However, the improvement does support the financial professionals to make 
more profits in the option markets. 

In addition, the pricing model in this paper explores a new option pricing approach 
from the machine learning point of view. It highlights a new option pricing frame-
work by automatically learning the complex rules from the performance of the tradi-
tional models as well as the option markets. 

It should be acknowledged that the neural network pricing method in this paper is 
not a substitute for the other 4 methods. Instead, it is one of the better and improved 
methods over the traditional ones. Namely, in the meaning of statistics, the method in 
this paper predicts more closely to the market as long as the forecasting results are 
given first by the 4 traditional methods. Clearly, all methods are naturally comple-
mentary and a proper utilization of their main strengths and weaknesses should lead to 
synergetic effects beneficial to their common goals. 

The work in this paper is still fairly preliminary. Future work includes conducting 
experiments on more data from the worldwide option markets, characterizing the 
method with more statistical features, studying the case in which improved methods 
are adopted instead of the standard ones, as well as incorporating the option pricing 
knowledge hinted by the 4 traditional methods more meticulously into the hidden 
layer of the neural network. 
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Abstract. One of the most important research issues in finance is building accu-
rate corporate bankruptcy prediction models since they are essential for the risk 
management of financial institutions. Thus, researchers have applied various 
data-driven approaches to enhance prediction performance including statistical 
and artificial intelligence techniques. Recently, support vector machines 
(SVMs) are becoming popular because they use a risk function consisting of the 
empirical error and a regularized term which is derived from the structural risk 
minimization principle. In addition, they don’t require huge training samples 
and have little possibility of overfitting. However, in order to use SVM, a user 
should determine several factors such as the parameters of a kernel function, 
appropriate feature subset, and proper instance subset by heuristics, which hin-
ders accurate prediction results when using SVM. In this study, we propose a 
novel approach to enhance the prediction performance of SVM for the predic-
tion of financial distress. Our suggestion is the simultaneous optimization of the 
feature selection and the instance selection as well as the parameters of a kernel 
function for SVM by using genetic algorithms (GAs). We apply our model to a 
real-world case. Experimental results show that the prediction accuracy of con-
ventional SVM may be improved significantly by using our model. 

1   Introduction 

Prediction of corporate bankruptcies has long been an important topic and has been 
studied extensively in the finance and management literature because it is an essential 
basis for the risk management of financial institutions. Bankruptcy prediction models 
have used various statistical and artificial intelligence techniques. These techniques 
include discriminant analysis, logistic regression, the decision tree, k-nearest 
neighbor, and backpropagation (BP) neural network. Among them, the BP network 
(BPN) has become one of the most popular techniques for the prediction of corporate 
bankruptcy due to its high prediction accuracy. However, many financial companies 
still have difficulties in using BPN. The difficulty stems from inherent limitations of 
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BPN such as the requirement of large data samples, the possibility of overfitting, and 
poor explanatory power for the results. 

Support vector machines (SVMs) may be an alternative to relieve these limitations 
of BPN [12]. General BPN models implement the empirical risk minimization princi-
ple for seeking to minimize the misclassification error or deviation from the correct 
solution of the training data. However, SVM implements the structural risk minimiza-
tion principle for searching to minimize an upper bound of generalization error. In 
addition, the solution of SVM may be the global optimum, while BPN models may 
tend to fall into a local optimal solution. Therefore, overfitting of the results is 
unlikely to occur with SVM. Consequently, several recent studies for bankruptcy 
prediction used SVM as a classifier, and they showed that it might be an effective 
technique for predicting corporate financial distress [4,16,17,22]. 

However, SVM also has some factors that affect the prediction performance – 
these factors are usually set by heuristics. In particular, the selection of an appropriate 
kernel function and its parameters (e.g. C, d, δ2) and the selection of proper feature 
subset in SVM have been popular research topics. Other than these factors, the selec-
tion of appropriate instance selection (in other words, prototype selection) may also 
improve the classification accuracy of SVM by eliminating irrelevant and distorting 
training samples. Nonetheless, there have been few studies that have applied instance 
selection to SVM, especially in the domain of bankruptcy prediction. 

Thus, in this study, we propose a novel hybrid SVM classifier with simultaneous 
optimization of feature subsets, instance subsets, and kernel parameters. This study 
introduces genetic algorithms (GAs) to optimize the feature selection, instance selec-
tion, and kernel parameters simultaneously. Our study applies the proposed model to 
the real-world case for bankruptcy prediction, and presents experimental results from 
the application. 

2   Prior Studies 

In this study, we propose the combined model of two artificial intelligence tech-
niques, SVM and GA for effective bankruptcy prediction. Thus, in this section, we 
first review the basic concepts of SVM and GA, which are the core algorithms of our 
model. After that, we introduce prior studies that attempt to optimize SVM using GA. 

2.1   Support Vector Machine (SVM) 

SVM uses a linear model to implement nonlinear class boundaries by nonlinear map-
ping of the input vectors x into the high-dimensional feature space. A linear model 
constructed in the new space can represent a nonlinear boundary in the original space. 
In the new space, an optimal separating hyperplane is constructed [25]. 

Thus, SVM is known as the algorithm that finds a special kind of linear model, the 
maximum margin hyperplane. The maximum margin hyperplane gives the maximum 
separation between the decision classes. The training examples that are closest to the 
maximum margin hyperplane are called support vectors. All other training examples 
are irrelevant for defining the binary class boundaries. 
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SVM constructs a linear model to implement nonlinear class boundaries through 
the transformation of the inputs into the high-dimensional feature space. The function, 
K(xi,xj), which is called ‘kernel function’, does this work. There are some different 
kernels for generating the inner products to construct machines with different types of 
nonlinear decision surfaces in the input space. Choosing among different kernels the 
model that minimizes the estimate, one chooses the best model. Common examples of 
the kernel function are the polynomial kernel K(xi,xj)= (1+ xi

Txj)
d and the Gaussian 

radial basis function (RBF) K(xi,xj)= exp(-1/δ2(xi - xj)
2)  where d is the degree of the 

polynomial kernel and δ2 is the bandwidth of the Gaussian RBF kernel [11]. 
As mentioned above, BPN has been widely used in the area of financial forecasting 

because of its broad applicability to many business problems and preeminent learning 
ability. On the other hand, there are no parameters to tune except the upper bound C 
for the non-separable cases in linear SVM [3]. Overfitting is also unlikely to occur 
with SVM. Overfitting may be caused by too much flexibility in the decision bound-
ary, but the maximum hyperplane is relatively stable and gives little flexibility [26]. 

Although SVM has the above advantages, there are a few studies on the applica-
tion of SVM in financial forecasting. Mukherjee et al. [18] showed the applicability 
of SVM to time-series forecasting. Tay and Cao [24] examined the predictability of 
financial time-series with SVMs. They showed that SVMs outperformed the BPNs 
on the criteria of normalized mean square error, mean absolute error, directional 
symmetry and weighted directional symmetry. Kim [11] applied SVM to predicting 
the future direction of the stock price index. In his study, SVM outperformed BPN 
and case-based reasoning for the prediction of the stock price index. Recently, sev-
eral studies investigated the efficacy of applying SVM to bankruptcy prediction. Fan 
and Palaniswami [4] showed that SVM outperformed traditional classifiers for bank-
ruptcy prediction such as DA, multi-layer perceptron, and learning vector quantiza-
tion. Shin et al. [22] pointed out that the accuracy and generalization performance of 
SVM were better than those of BPN as the training set size got smaller. Min and  
Lee [16] showed that SVM outperformed LOGIT, DA, and BPN for bankruptcy 
prediction. 

2.2   Genetic Algorithm (GA) 

The genetic algorithm is a popular optimization method that attempts to incorporate 
ideas of natural evolution. Its procedure improves the search results by constantly 
trying various possible solutions with some kinds of genetic operations. In general, 
the process of GA proceeds as follows. 

First of all, GA generates a set of solutions randomly that is called an initial popu-
lation. Each solution is called a chromosome and it is usually in the form of a binary 
string. After the generation of the initial population, a new population is formed that 
consists of the fittest chromosomes as well as offspring of these chromosomes based 
on the notion of survival of the fittest. The value of the fitness for each chromosome 
is calculated from a user-defined function. Typically, classification accuracy (per-
formance) is used as a fitness function for classification problems. 

In general, offspring are generated by applying genetic operators. Among various 
genetic operators, selection, crossover and mutation are the most fundamental and 
popular operators. The selection operator determines which chromosome will survive. 
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In crossover, substrings from pairs of chromosomes are exchanged to form new pairs 
of chromosomes. In mutation, with a very small mutation rate, arbitrarily selected bits 
in a chromosome are inverted. These steps of evolution continue until the stopping 
conditions are satisfied [5,6]. 

2.3   Optimization of SVM Using GA 

Until now, researchers have studied optimization of SVM using GA in three ways. 
First, some studies have tried to optimize ‘the kernel function and its parameters’. For 
example, Pai and Hong [19] used GA to optimize the free parameters used in the 
kernel function of SVM. The SVM model of their study used Gaussian RBF as the 
kernel function, and they designed the proposed system to optimize C, δ2, ε parame-
ters using GA. Howley and Madden [8] extended the area of optimization. Their pro-
posed model optimized the kernel parameters (e.g. C, δ2, d, ε) as well as the kernel 
function itself. Consequently, their model could present a globally optimized kernel 
function and its optimized parameters. 

The second approach of GA-optimization of SVM is ‘feature subset selection’. 
Feature subset selection is a method that uses only a small subset of features that 
prove to be relevant to the target concept. In most classification problems, the selec-
tion of an appropriate feature subset is important because it enhances classification 
performance by characterizing each sample more accurately, and it also reduces com-
putational requirements. Thus, many researchers have tried to optimize the input fea-
tures of SVM by using GA. For example, Lee and Byun [14] and Sun et al. [23] used 
this technique for image identification, and Li et al. [15] used it for cancer detection. 
In addition, this technique is adopted in various application areas including gear fault 
detection [21], abnormal key stroke detection [27], direct marketing [28], and bank-
ruptcy prediction [17]. 

The final approach is ‘simultaneous optimization of kernel parameters and feature 
subset selection’. As mentioned above, both kernel parameters and feature selection 
affects the classification performance of SVM. Thus, it may be more effective to 
optimize these factors simultaneously. Nonetheless, this is still an undiscovered area, 
so there are few related studies. Jack and Nandi [9] applied this technique for machin-
ery fault detection, and Kim et al. [10] used it for network intrusion detection. Zhao et 
al. [29] proposed this approach to enhance protein sequence classification. 

Although there have been many prior studies that optimized the various factors 
of SVM using GA, there is another factor to be optimized – optimal instance selec-
tion. Instance selection is the technique that selects an appropriate reduced subset of 
the training samples and only uses the selected subset for training. This prevents the 
distorted training of SVM by reducing the possibility of selecting noisy training 
samples as the support vectors, so it may improve classification accuracy of SVM. 
Due to its advantages, it has been applied to various classification techniques in-
cluding neural networks [20] and case-based reasoning [1]. However, there has 
been no study that has introduced instance selection using GA for SVM, as far as 
we know. Thus, in this study, we propose a global optimization model that opti-
mizes the selection of features, instances, and kernel parameters simultaneously by 
using GA. 
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3   Simultaneous Optimization of SVM Using GA 

This study proposes a novel SVM model whose feature selection, instance selection, 
and kernel parameter settings are globally optimized, in order to improve prediction 
accuracy of typical SVM. We employ GA to optimize these factors simultaneously. 
Hereafter, we call our model SOSVM - Simultaneous Optimization of SVM using 
GA. The detailed explanation for each step of SOSVM is presented as follows. 

Phase 1. Initiation 
In the first step, the system generates the initial population that would be used to 

find global optimum factors – feature and instance selection variables, and kernel 
parameters. The values of the chromosomes for the population are initiated into ran-
dom values before the search process. To enable GA to find the optimal factors, we 
should design the structure of a chromosome as a form of binary strings. Each chro-
mosome for SOSVM has all the information for feature selection, instance selection, 
and kernel parameter settings. The length of each chromosome is m+n+12 bits when 
m is the number of features and n is the number of instances. The values of the codes 
for feature selection and instance selection are set to ‘0’ or ‘1’. ‘0’ means the corre-
sponding feature or instance is not selected and ‘1’ means it is selected. The sign for 
feature and instance selection needs just 1 bit. As a result, m+n bits are just required 
to implement feature and instance selection by GA. The remaining 12 bits are used for 
selecting appropriate kernel parameters. Similar to the study by Pai and Hong [19], 
we use the Gaussian radial basis function (RBF) as the kernel function of SVM. Tay 
and Cao [24] showed that the upper bound C and the kernel parameter δ2 play an 
important role in the performance of SVM using Gaussian RBF. Setting these two 
parameters improperly can cause overfitting or underfitting problems. Thus, SOSVM 
tries to optimize these parameters using GA, and it assigns 6 bits to represent each 
variable. Thus, 12 bits in total are used for setting C and δ2. 

Phase 2. Training 
After generating the initial population, the system performs a typical SVM process 

using the assigned value of the factors in the chromosomes, and calculates the per-
formance of each chromosome. The performance of each chromosome can be calcu-
lated through the fitness function for GA. In this study, the main goal is to find the 
optimal or near optimal parameters that produce the most accurate prediction solution. 
Thus, we set the fitness function for the test data set to the prediction accuracy of the 
test dataset [5,12,13]. 

Phase 3. Genetic operation 
In the third step, a new generation of the population is produced by applying ge-

netic operators such as selection, crossover, and mutation. According to the fitness 
values for each chromosome, the chromosomes whose values are high are selected 
and used for the basis of crossover. The mutation operator is also applied to the popu-
lation with a very small mutation rate.  

After the production of a new generation, phase 2 – the training process with calcu-
lation of the fitness values – is performed again. From this point, phase 2 and phase 3 
are iterated again and again until the stopping conditions are satisfied. When the stop-
ping conditions are satisfied, the genetic search finishes and the chromosome that 
shows the best performance in the last population is selected as the final result.  
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Phase 4. Checking generalizability 
Occasionally, the optimized parameters determined by GA fit quite well with the 

test data, but they don’t fit well with the unknown data. The phenomenon occurs 
when the parameters fit too well with the given test data set. Thus, in the last stage, 
the system applies the finally selected parameters – the optimal selections of features 
and instances, and the optimal kernel parameters – to the hold-out (unknown) data set 
in order to check the generalizability of the determined factors. 

4   The Research Design and Experiments 

4.1   Application Data 

The application data used in this study consists of financial ratios and the status of 
bankruptcy or non-bankruptcy for corresponding corporate. The data was collected 
from one of the largest commercial banks in Korea. The sample of bankrupt compa-
nies was 774 companies in heavy industry that filed for bankruptcy between 1999 and 
2002. There were also 774 non-bankrupt companies from the same industry and pe-
riod. Thus, the total size of the sample was 1548 companies. 

The financial status for each company is categorized as “0” or “1” and it is used as 
a dependent variable. “0” means that the corporation is bankrupt, and “1” means that 
the corporation is solvent. For independent variables, we first generate 162 financial 
ratios from the financial statement from each company. Finally, we get 41 financial 
ratios as independent variables through the two independent sample t-test, the forward 
selection procedure based on logistic regression, and the opinions of the experts who 
are responsible for approving and managing loans in the bank. We split the data into 
three groups: training, test, and hold-out datasets. The portion of these groups is 60% 
(928 companies), 20% (310 companies) and 20% (310 companies) each. 

4.2   Comparative Models 

To test the effectiveness of the proposed model, we compare the result of SOSVM to 
the results of four different models. The first model, labeled COSVM (COnventional 
SVM), uses the conventional approach of SVM. This model considers all initially 
available features as a feature subset. That is to say, there is no special process of 
feature subset selection. In addition, instance selection is not considered here, so all 
instances are used in this model. The kernel parameters in this model are determined 
by varying their values to select optimal values that produce the best prediction  
performance. 

The second model determines the optimal kernel parameters by applying GA. We 
call this model KPSVM (Kernel Parameter optimization for SVM by GA). Similar to 
COSVM, KPSVM also does not contain any function of feature selection or instance 
selection. Pai and Hong [19] proposed a similar model. 

The third model selects relevant features using GA. This model is called FSSVM 
(Feature Selection for SVM by GA). Here, we try to optimize feature selection and 
kernel parameters by GA, but we are still unconcerned with instance selection. The 
studies by Jack and Nandi [9], Kim et al. [10], and Zhao et al. [29] are the examples 
that used this model. 
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The final model uses GA to select a relevant instance subset. This model is called 
ISSVM (Instance Selection for SVM by GA). In this model, we try to optimize in-
stance selection and kernel parameters by GA, but we are unconcerned with feature 
selection. 

4.3   Research Design and System Development 

For the controlling parameters of GA search for ISSVM and SOSVM, the population 
size was set at 200 organisms and the crossover and mutation rates were set at 70% 
and 10%. As the stopping condition, 100 generations were permitted. However, the 
genetic search space of KPSVM and FSSVM is much smaller than the space of 
ISSVM and SOSVM. Thus, we assigned 100 organisms for the population, and set 
the mutation rate at 15% in the case of KPSVM and FSSVM. 

These experiments are done by our private experimental software that is designed 
to perform SVM training by using parameters optimized by GA. This software is 
developed on a Java platform, and the class for SVM training is programmed using 
LIBSVM, a public software for SVM [2]. 

5   Experimental Results 

In this section, the prediction performances of SOSVM and other alternative models are 
compared. Table 1 describes the average prediction accuracy of each model. As shown 
in Table 1, SOSVM achieves the higher prediction accuracy than COSVM, KPSVM, 
FSSVM, and ISSVM by 5.16%, 3.23%, 2.26%, and 0.33% for the hold-out data. Com-
paring the performance of FSSVM and ISSVM, we can find that ISSVM outperforms 
FSSVM by 1.93%. It may be understood that appropriate instance selection is more 
important than feature selection for improving prediction accuracy of SVM. 

Table 1. Average prediction accuracy of the models 

Model Train Test Hold-out Kernel parameter F#a) I#b) 
COSVM 82.65% - 74.52% C=100, δ2=25 41 928 
KPSVM 84.81% 77.42% 76.45% C=55.88, δ2=13.04 41 928 
FSSVM 82.54% 77.74% 77.42% C=93.29, δ2=8.76 25 928 
ISSVM 84.55% 80.00% 79.35% C=36.82, δ2=12.65 41 492 
SOSVM 81.46% 81.94% 79.68% C=80.94, δ2=25.85 39 701 

a) The number of selected features, b) The number of selected instances 

We use the two-sample test for proportions to examine whether the differences of 
prediction accuracy between SOSVM and other comparative algorithms are statisti-
cally significant. By applying this test, it is possible to check whether there is a differ-
ence between two probabilities when the prediction accuracy of the left-vertical 
methods is compared with the right horizontal methods [7]. In this test, the null  
hypothesis is H0: pi – pj = 0 where i=1,…,4 and j=2,…,5, while the alternative hy-
pothesis is Ha: pi – pj > 0 where i=1,…,4 and j=2,…,5. pk means the classification 
performance of the kth method. Table 2 shows Z values for the pairwise comparison 
of the performance of the models. 
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Table 2. Z values of the two sample test for proportions 

 KPSVM FSSVM ISSVM SOSVM 
COSVM 0.560 0.846* 1.430** 1.529** 
KPSVM 0.286 0.871* 0.971* 
FSSVM 0.585 0.685 
ISSVM 0.100 

* significant at the 10% level, ** significant at the 5% level 

As shown in Table 2, SOSVM is better than COSVM at the 5% and better than 
KPSVM at the 10% statistical significance level. But, SOSVM does not outperform 
FSSVM and ISSVM with statistical significance. 

6   Concluding Remarks 

We have proposed a new hybrid SVM model using GA called SOSVM. Our proposed 
model optimizes feature selection, instance selection, and kernel parameters simulta-
neously. Although GA-optimization models for feature selection and kernel parameter 
selection of SVM have been suggested in the literature, our proposed model is de-
signed to include ‘instance selection’, which reduces distorted training samples that 
may lead erroneous prediction. Compared to other models such as COSVM, KPSVM 
and FSSVM, SOSVM as well as ISSVM showed higher prediction accuracy in the 
empirical test for real-world bankruptcy prediction. Thus, instance selection seems to 
be very important for improving classification accuracy of SVM in our experiment.  It 
is quite difficult to theoretically show the reason that instance selection in SVM im-
proves classification performance. However, we just anticipate that appropriate in-
stance selection may help SVM to find more proper support vectors by eliminating 
misleading training samples near the classifying hyperplane. 

However, this study has some limitations. First of all, our model requires a high 
level of computational resources. Similar to other GA-based optimization models, 
SOSVM iterates the SVM training process whenever genetic evolution occurs. In 
particular, the search space of our model is very large, so it takes more time to get 
enough training. Consequently, the efforts to make SOSVM more efficient should be 
followed in the future. Second, the generalizability of SOSVM should be tested fur-
ther. Although we apply this model to bankruptcy prediction, SOSVM can be applied 
to any domain that requires accurate prediction. Moreover, SOSVM did not outper-
form most comparative models with statistical significance in our experiment because 
of the insufficient sample size. Thus, it is necessary to validate the general applicabil-
ity of SOSVM by applying it to other problem domains in the future. 
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Abstract. This paper employs pattern classification methods for as-
sisting investors in making financial decisions. Specifically, the problem
entails the categorization of investment recommendations. Based on the
forecasted performance of certain indices, the Stock Quantity Selection
Component is to recommend to the investor to purchase stocks, hold the
current investment position or sell stocks in possession. Three designs of
the component were implemented and compared in terms of their com-
plexity as well as scalability. Designs that utilized 1, 4 and 16 classifiers,
respectively, were developed. These designs were implemented using Ar-
tificial Neural Networks, Fuzzy Inference Systems as well as Adaptive
Neuro-Fuzzy Inference Systems. The design that employed 4 classifiers
achieved low complexity and high scalability. As a result, this design is
most appropriate for the application of concern.

1 Introduction

Pattern recognition could be defined as the study of the ability of machines to
observe the environment, learn to differentiate between patterns of interest from
their backgrounds and formulate reliable as well as sensible decisions about the
categories of the patterns [1]. This is a complex task that is an innate ability for
humans. However, to develop a system to solve such problems poses formidable
research challenges.

This research focuses on a pattern classification problem utilized within an
application that could assist individual as well as institutional investors in mak-
ing financial decisions. It is anticipated that this application would be used in
conjunction with other financial analysis methodologies. As a result, such an
application should be employed to confirm an investment decision.

Pattern classification is the process of assigning an input pattern to one of
a predefined set of classes. It consists of developing a functional relationship
between the input features and the target classes. Accurately estimating such
a relationship is vital to the success of a classifier. Specifically, the quantity of
stocks or shares to be purchased based on the forecasted performance of certain
indices is the pattern classification problem. The Dow Jones Industrial Average,
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Johannesburg Stock Exchange or the JSE Securities Exchange (JSE) All Share,
Nasdaq 100 and Nikkei 225 Stock Average indices are considered. However, the
computational intelligent techniques as well as their implementation methodol-
ogy utilized in this research could be adapted for decision making systems in
other industry sectors.

The classification of data into various classes has been an important research
area for many years. Artificial neural networks (ANNs) have been applied to
pattern classification [2]. Research has also been conducted on fuzzy classifica-
tion. This resulted in many algorithms, such as fuzzy K-nearest neighbour [3]
and fuzzy c-means [4], being applied to decision making systems. Fuzzy systems
constructed using genetic algorithms have been utilized [5][6]. Fuzzy neural net-
works have also been employed in pattern classification applications [7][8]. Sup-
port Vector Machines have been applied to multi-category classification problems
[9]. These classification tasks have also been implemented by combining multiple
simpler specialized classifiers [10][11].

In this research, artificial neural network (ANN) architectures, Fuzzy Inference
Systems (FISs) as well as Adaptive Neuro-Fuzzy Inference Systems (ANFISs)
have been considered. Specifically, the Multi-Layer Perceptron (MLP) and the
Radial Basis Function (RBF) neural network architectures have been consid-
ered. FISs developed employed subtractive clustering to generate the required
membership functions and set of fuzzy inference rules. Information on these com-
putational intelligent techniques can be found in [12], [13] and [14], respectively.

The next section briefly examines the application of concern. Thereafter,
the implementation methodology is described. The paper concludes with the
comparison of the various models developed and the selection of the superior
classifiers.

2 The Developed System

The developed system is to be used in assisting an investor in making financial
decisions. As a result, the system should be based on a profitable trading strat-
egy. There are numerous trading strategies available. This research focuses on the
”Buy low, sell high” trading strategy. The strategy has been implemented as well
as compared to the ”Buy and hold” trading strategy in terms of profits generated.

The ”Buy low, sell high” trading strategy entails purchasing certain stocks
at a low price and selling these stocks when the price is high. The ”Buy and
hold” trading strategy, as the name suggests, involves an investor purchasing
certain stocks and retaining them for a particular duration. The method used
to implement the ”Buy low, sell high” trading strategy involved classifying the
change in index or delta into certain categorizes. Delta is defined as the differ-
ence between the closing index value for the next day and the closing index value
for the previous day. This functionality has been implemented within the Fore-
casting Component (FC). Depending on the classification of this component,
the strategy would recommend the investor to purchase stocks, hold the current
investment position or sell stocks. This responsibility can be found in the Stock
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Quantity Selection Component (SQSC). Table 1 illustrates the forecasted classes
as well as the corresponding investment recommendation.

It has been determined that the ”Buy low, sell high” trading strategy, with
the percentage threshold combination of 0.8% and -0.20% of the closing value
for the previous day, is most profitable. As a result, the system has been based
on this trading strategy. Further information on the comparison of the 2 trading
strategies considered can be found in [15].

Pattern classification problems can be grouped as either dichotomous or poly-
chotomous problems. Dichotomous classification can be interpreted as 2-class
classification problems, whereas polychotomous classification involves problems
with more than 2 classes to be categorized. The SQSC module is the center of
this research. Based on the forecasted performance of the closing price of the
index, the component is to recommend the investor to purchase stocks, hold the
current investment position or sell stocks. It is evident that this is a polychoto-
mous classification problem as there are more than 2 classes. Further information
on the FC module can be found in [15].

Various classifier designs of the SQSC module were considered. Each of these
designs were developed using both ANNs as well as fuzzy logic techniques. The
first design employed 1 classifier. This classifier consisted of 16 inputs and 16
outputs. The inputs to the model are the forecasted performance of the closing
price of the indices considered. The outputs of the classifier are the investment
recommendations for the indices. The second design involved 4 classifiers. Each
classifier has 4 inputs and 4 outputs. Each classifier is used to generate an in-
vestment recommendation for an index considered. The input to a classifier is
the forecasted performance of the closing price of an index. The output of a
classifier is the investment recommendation for the index. The third and final
design considered utilized 16 classifiers. Each classifier has 4 inputs and 1 output.
Each classifier is employed to categorize whether or not to execute an investment
recommendation. The input to a classifier is the same as design 2 above. The
outputs of the classifiers are fed into an interpretation function that generates
the final investment recommendations for the indices. This design has been im-
plemented to investigate the method of utilizing simpler classifiers to generate a
multi-category classifier.

3 Implementation Methodology

The data used to develop the SQSC module has been generated based on the 4
forecasted closing price performance classes illustrated in Table 1. The develop-
ment process was divided into various stages.

The following procedure has been pursued in the creation of the various clas-
sifiers employed:

1. Selection and processing of data to be used by the classifiers during training,
validation and testing.
2. Optimization of the classification threshold of the various classes to be
categorized.
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Table 1. The ”Buy low, sell high” trading strategy categorizes

Class Requirement Investment recommendation
Large
Rise
(LR)

Delta > Positive threshold per-
centage of previous day closing
price.

If LR is forecasted for the next day,
sell stocks in possession.

Slight
Rise
(SR)

0 < Delta <= Positive thresh-
old percentage of previous day
closing price.

If SR is forecasted for the next day,
hold current investment position.

Slight
Drop
(SD)

Negative threshold percentage
of previous day closing price <=
Delta <= 0.

If SD is forecasted for the next day,
buy stocks to the value of 15 % of
available trading capital.

Large
Drop
(LD)

Delta < Negative threshold per-
centage of previous day closing
price.

If LD is forecasted for the next day,
buy stocks to the value of 25 % of
available trading capital.

3. Optimization of the classifier architectures.
4. Comparison of the various classifiers developed and the selection of the su-
perior model.

The remainder of this section will elaborate on the various stages of imple-
mentation mentioned above.

3.1 Selection and Processing of Data

The data utilized in developing and testing the various classifiers has been cre-
ated by analyzing all the possible combinations of the 4 forecasted closing price
performance classes. As a result, the entire data set consisted of 256 unique data
records.

In order to present the forecasted closing price performance classes to the clas-
sifiers, a binary notation is employed. These inputs are presented to the classifier
using 4 inputs. This input representation format is used for all indices consid-
ered. A similar binary notation scheme is also utilized to present the investment
recommendation outputs. Table 2 illustrates the manner in which the inputs and
outputs of the component are to be interpreted. As previously mentioned, design
1 has 16 inputs and 16 outputs. The input representation format is the same as
above. However, the first group of 4 inputs corresponds to the forecasted perfor-
mance of the Dow Jones Industrial Average index. Similarly, the second, third
and fourth group of 4 inputs characterizes the forecasted performance of the JSE
All Share, Nasdaq 100 and Nikkei 225 Stock Average indices, respectively. The
outputs are to be interpreted in a similar manner.

The data is divided into a training, validation and test set. During the im-
plementation of all 3 designs considered, the training data set consisted of
all data records where the inputs were classified into 2 of the 4 closing price
performance classes. However, the models developed were validated and tested
with the remaining possible closing price performance class combinations. The
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Table 2. Classifier input and output representation

Classifier inputs Classifier outputs
Input 1 2 3 4 Output 1 2 3 4
LR 1 0 0 0 Sell stocks in possession 0 1 0 0
SR 0 1 0 0 Hold current position 1 0 0 0
SD 0 0 1 0 Buy stocks to the value of 15 % of available

trading capital
0 0 1 0

LD 0 0 0 1 Buy stocks to the value of 25 % of available
trading capital

0 0 0 1

training data set is used to train the ANN to find the general pattern between
its inputs and outputs. The validation data set is used to assess the network and
the test data is employed to confirm the classification quality of the developed
model.

The training data set is used to create the cluster centers within the FISs. How-
ever, the validation and test data sets are utilized to assess the classification ability
of the inference systems.

3.2 Optimization of the Classification Threshold

MLP and RBF neural network architectures were utilized in the classification of
investment recommendations. The MLP and RBF neural network architectures
are possibly the most extensively employed ANNs in pattern classification [2]. Due
to the non-linear capabilities of these networks, they are said to be excellent uni-
versal approximators that provide highly accurate solutions. As a result, these net-
works produce very practical tools for classification and inversion problems [12].

It has been stated that a network with 1 hidden layer, provided with sufficient
data, can be used to model any function [12]. As a result, the ANN architec-
tures employed consisted of only 1 hidden layer. The MLP network hidden layer
consists of non-linear activation functions. The choice of the activation function
is largely dependent on the application of the model [12]. However, it has been
found that the hyperbolic tangent activation function offers a practical advan-
tage of faster convergence during training [2]. As a result, this function has been
employed within the MLP network.

The MLP network output layer also contains activation functions. There are
3 major forms of the function that should be considered. These are the linear,
logistic sigmoidal and softmax activation functions [2]. It has been stated that the
appropriate selection of the output layer activation function for a classification
problem is the logistic sigmoidal function [2]. As a result, this function has been
employed within the output layer of the MLP network. The RBF networks that
have been developed contained a Gaussian activation function within its hidden
layer and a linear activation function within its output layer.

As previously mentioned, the FISs developed utilized subtractive clustering to
create the required membership functions and set of fuzzy inference rules. During
this stage of implementation, the number of hidden nodes within the ANNs and
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the cluster radius utilized by the cluster centers within the FISs were assumed to
be arbitrary. This will be optimized at a later stage of development. During this
stage of development, the number of hidden nodes within the ANNs as well as
the cluster radius utilized by the FISs was 10 and 0.5, respectively. This stage of
implementation involved the optimization of the interpretation of the classifiers.
As a result, this involved the selection of an appropriate classification threshold
value that would yield the most accurate results.

The classification threshold has been optimized by minimizing an error func-
tion that mapped the classification thresholds to the accuracy of the developed
classifiers. The process has been performed on the validation data set.

Since this is a classification implementation, the accuracy of the models can no
longer be calculated using the sum of square error of the difference between the
target and investment recommendation classifier output. Instead a confusion
matrix is utilized to identify the number of true and false classifications that
are generated by the models developed. This is then used to calculate the true
accuracy of the classifiers, using the following equation:

Accuracy =

√
TP ∗ TN

(TP + FN) ∗ (FP + TN)
(1)

where
TP is the true positive (1 classified as a 1),
TN is the true negative (0 classified as a 0),
FN is the false negative (1 classified as a 0),
FP is the false positive (0 classified as a 1).

The classification threshold was optimized by initially creating classifiers utiliz-
ing a threshold value of 0.5. This implies that if the classifier outputs a value less
than 0.5, the output will be regarded as a 0. Similarly, if the output value is larger
than or equal to 0.5, the output will be interpreted as a 1. This threshold value of
0.5 proved to be adequate for the MLP networks as well as the FISs implementa-
tions. The threshold value resulted in 100% accurate classifications. This has been
demonstrated on the training as well as validation data sets. However, the RBF
classifier employed in design 1 did not perform well utilizing this threshold value.
As a result, the classification threshold of this model had been varied from 0.1 to
0.5 in iterations of 0.01. Table 3 illustrates the threshold values that resulted in
the largest accuracy value for the validation data set. The threshold value of 0.5
proved to be satisfactory for design 2 and design 3 RBF classifiers.

3.3 Optimization of the Classifier Architectures

This stage of implementation involved the optimization of the ANN and Fuzzy
Inference System (FIS) architectures. As a result, this step of development in-
volved the selection of the correct number of hidden neurons that would yield
the most accurate results. It also entailed selecting the correct cluster radius that
would concede the largest investment recommendation classification accuracy.
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Table 3. Results of varied classification threshold for design 1 RBF classifier. DJ, JSE,
Nas and Nik corresponds to Dow Jones Industrial Average index, JSE All Share index,
Nasdaq 100 index and Nikkei 225 Stock Average index, respectively.

Classification thresholds
Class. DJ JSE Nas Nik
Sell stocks in possession 0.19 0.23 0.20 0.11
Hold current position 0.17 0.10 0.12 0.17
Buy stocks to the value of 15 % of available
trading capital

0.19 0.16 0.13 0.17

Buy stocks to the value of 25 % of available
trading capital

0.24 0.17 0.17 0.19

The number of hidden neurons or nodes has been optimized by minimizing
an error function that mapped the number of hidden nodes to the accuracy of
the developed network. The process was performed on the validation and test
data sets.

The hidden nodes were optimized by creating various MLP and RBF ANNs
with hidden nodes of 1 to 75. As a result, 150 ANNs were developed. These
developed networks employed the classification thresholds stated in the previous
section. The networks also utilized the same activation functions mentioned in
the previous section. Utilizing the training data set, these networks are trained.
The validation and test data are then presented to the ANN. Thereafter, the
accuracies for the training, validation and test data sets are calculated. When
presented with the validation and test data, ANNs that resulted in the largest
accuracy were analyzed.

Fig. 1 illustrates the sell stocks in possession at the next day closing price
investment recommendation results of design 1. Similar results were achieved
for the other design implementations as well as investment recommendations.
Similar results were also obtained for the other indices considered.

The investigation revealed that a design 1 MLP and RBF network with num-
ber of hidden nodes larger than 12 and 52, respectively, yield 100% accurate
models for categorizing the investment recommendations appropriately. The in-
vestigation also determined that design 2 MLP and RBF ANNs with number of
hidden nodes greater than 2 and 5, respectively, achieved the same results. Sim-
ilar results were obtained with design 3 MLP and RBF networks that contained
more than 1 hidden neuron.

The cluster radius indicates the range of influence of a cluster. A small cluster
radius results in small clusters in the data and, therefore, many fuzzy rules.
Large cluster radii yield few large clusters in the data and, hence, fewer fuzzy
rules [13]. The cluster radius has been optimized by minimizing an error function
that mapped the radius to the accuracy of the developed inference systems. This
process was performed on the validation and test data sets.

During this step of implementation, the optimization process entailed the con-
struction of various inference systems with the cluster radius ranging from 0.01
to 1. The investigation determined that design 2 FISs with a cluster radius equal



Neural Networks, FISs and Adaptive-Neuro FISs 437

to or greater than 0.01 achieve 100% accuracy in categorizing the investment rec-
ommendations appropriately. However, the design 1 FIS did not achieve 100% in-
vestment recommendation classification accuracies. It has been determined that
a cluster radius of 0.11 achieved the most accurate results. The lowest accuracy
value attained was 83%. The largest accuracy value was 100%.

Fig. 1. This figure illustrates the results of sell stocks in possession at the next day
closing price investment recommendation for design 1. The number of hidden nodes was
varied and the corresponding accuracy values achieved were noted. The solid, dashed
and dotted line represent the training, validation and test data sets, respectively.

3.4 Comparison of the Various Designs Implemented and the
Selection of the Superior Model

This stage of implementation entailed the comparison of the various designs that
were developed. It also involves the selection of the best design to classify the in-
vestment recommendations. Table 4 illustrates the various models that have been
created. The above designs have been compared in terms of their complexity as
well as scalability. Complexity, in this context, is defined as the number of clas-
sifiers employed by the design. Scalability is defined as the ability of the design
to accommodate the classification of additional investment recommendations.

It is evident that design 1 has low complexity and low scalability. When ad-
ditional investment recommendations are to be added to the component, the
classifier employed is to be re-trained. However, design 2 has low complexity
as there are only 4 classifiers utilized. The design also has high scalability. It
is not required to re-create the existing classifiers, when additional recommen-
dations are added. Table 4 indicates that design 3 has high complexity. The
design contains 16 classifiers. In order to add investment recommendations to
the component, the existing classifiers do not have to be re-created. As a result,
the design has high scalability.
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Table 4. This table illustrates the various models that were created. Accuarcies are
presented as percentages.

Design Classifier
topology

Hidden
nodes

Fuzzy
rules

Membership
functions

Accuracy
(Training)

Accuracy
(Validation)

Accuracy
(Test)

1 MLP 12 - - 100 100 100
1 RBF 52 - - 100 100 100
1 FIS - 85 1360 100 83 87
2 MLP 2 - - 100 100 100
2 RBF 5 - - 100 100 100
2 FIS - 4 16 100 100 100
3 MLP 1 - - 100 100 100
3 RBF 1 - - 100 100 100
3 ANFIS - 4 16 100 100 100

Due to the above analysis, design 2 is most appropriate for this application. It
does not employ many classifiers and the design does not require re-work when
additions are to be made. It is evident from Table 4 that both the ANN and
FIS implementations of design 2 perform satisfactorily. As a result, either of the
classifier architectures could be used.

4 Conclusion

This research involved the development of a component that could categorize
investment recommendations, based on the forecasted performance of indices,
appropriately. The Dow Jones Industrial Average, JSE All Share, Nasdaq 100
and Nikkei 225 Stock Average indices were considered.

Various designs of the component were considered. Designs that utilized 1, 4
and 16 classifiers were implemented. The development methodology employed in
the creation of these designs, initially, involved the selection of appropriate clas-
sification thresholds. Thereafter, the number of hidden nodes within the ANNs
as well as the cluster radius of the cluster centers within the FISs was varied.
This resulted in creating acceptable classifier architectures. Acceptable invest-
ment recommendation classification accuracies were achieved.

The designs were compared in terms of complexity as well as scalability. Com-
plexity is concerned with the number of classifiers that are used within the de-
sign. Scalability is the ability of the design to accommodate the classification of
additional investment recommendations. Design 2 has low complexity and high
scalability. This design consisted of 4 classifiers. Each classifier has 4 inputs and
4 outputs. This design is most appropriate for the application of concern.

References

1. Jain, A. K., Duin, R. P. W., Mao, J.: Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 22 (2000) 4–37

2. Nabney, I. T.: Netlab: Algorithms for Pattern Recognition. Springer (2002)



Neural Networks, FISs and Adaptive-Neuro FISs 439

3. Keller, J. M., Gray, M., Givens, J.: A fuzzy k-nearest neighbor algorithm. IEEE
Transaction on System, Man and Cybernetics. 15 (1985) 580–585

4. Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum (1981)

5. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of fuzzy classi-
fication systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets
and Systems. 65 (1994) 237–253

6. Russo, M.: FuGeNeSys A fuzzy genetic neural system for fuzzy modeling. IEEE
Transaction on Fuzzy Systems. 6 (1998) 373–388

7. Nauck, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from
data. Fuzzy Sets and Systems. 89 (1997) 277–288

8. Sun, C-T., Jang, J-S. R.: A neuro-fuzzy classifier and its applications. Proceedings
of the IEEE International Conference on Fuzzy System. 1 (1993) 94–98

9. Hsu, C-W., Lin, C-J.: A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Neworks. 13 (2002) 415–425

10. Friedman, J. H.: Another approach to polychotomous classification. Department
of Statistics, Stanford University. Technical Report. (1996)

11. Schurmann, J.: Pattern Classification. A Unified View of Statistical and Neural
Principles. John Wiley & Sons Inc. (1996)

12. Bishop, C. M.: Neural Networks for Pattern Recognition. Oxford University Press.
(1995)

13. Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. Journal of In-
telligent and Fuzzy Systems. 2 (1994) 267–278

14. Jang, J-S. R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE
Transaction on System, Man and Cybernetics. 23 (1993) 665-685

15. Patel, P. B., Marwala, T.: Forecasting closing price indices using neural networks.
IEEE System, Man and Cybernetics Conference. (to appear)



Online Forecasting of Stock Market Movement
Direction Using the Improved Incremental

Algorithm

Dalton Lunga and Tshilidzi Marwala

University of the Witwatersrand
School of Electrical and Information Engineering

Private Bag 3 Wits 2050,
Johannesburg, South Africa

{d.lunga, t.marwala}@ee.wits.ac.za
http://www.ee.wits.ac.za/∼marwala

Abstract. In this paper we present a particular implementation of the
Learn++ algorithm: we investigate the predictability of financial move-
ment direction with Learn++ by forecasting the daily movement di-
rection of the Dow Jones. The Learn++ algorithm is derived from the
Adaboost algorithm, which is denominated by sub-sampling. The goal of
concept learning, according to the probably approximately correct weak
model, is to generate a description of another function, called the hy-
pothesis, which is close to the concept, by using a set of examples. The
hypothesis which is derived from weak learning is boosted to provide a
better composite hypothesis in generalizing the establishment of the final
classification boundary. The framework is implemented using multi-layer
Perceptron (MLP) as a weak Learner. First, a weak learning algorithm,
which tries to learn a class concept with a single input Perceptron, is es-
tablished. The Learn++ algorithm is then applied to improve the weak
MLP learning capacity and introduces the concept of online incremen-
tal learning. The proposed framework is able to adapt as new data are
introduced and is able to classify.

1 Introduction

The financial market is a complex, evolutionary, and non-linear dynamical sys-
tem. The field of financial forecasting is characterized by data intensity, noise,
non-stationary, unstructured nature, high degree of uncertainty, and hidden rela-
tionships [1]. Many factors interact in finance including political events, general
economic conditions, and traders’ expectations. Therefore, predicting market
price movements is quite difficult. Increasingly, according to academic investi-
gations, movements in market prices are not random. Rather, they behave in a
highly nonlinear and dynamical manner. The standard random walk assumption
of future prices may merely be a veil of randomness that shrouds a noisy non-
linear process [2]. Incremental learning is the solution to such scenarios, which
can be defined as the process of extracting new information without losing prior
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knowledge from an additional dataset that later becomes available. Various de-
finitions and interpretations of incremental learning can be found in literature,
including online learning [3], relearning of previously misclassified instances, and
growing and pruning of classifier architectures [4]. An algorithm possesses incre-
mental learning capabilities, if it meets the following criteria:

– Ability to acquire additional knowledge when new stock data are introduced
– Ability to retain previously learned information about the stock closing

prices.
– Ability to learn new classes of stock data if introduced by new data.

Some applications of online classification problems have been reported re-
cently [5]. In most cases, the degree of accuracy and the acceptability of certain
classifications are measured by the error of misclassified instances. Although
Learn++ has mostly been applied to classification problems, we show in this
paper that the choice of Learn++ algorithm can boost a weak learning model to
classify stock closing values with minimum error and reduced training time. For
the practitioners in financial market, forecasting methods based on minimizing
forecast error may not be adequate to meet their objectives. In other words,
trading driven by a certain forecast with a small forecast error may not be as
profitable as trading guided by an accurate prediction of the direction of move-
ment. The main goal of this study is to explore the predictability of financial
market movement direction using an ensemble of classifiers implemented using
the Learn++ algorithm. This paper discusses the ensemble systems, introduces
the basic theory on incremental learning and the Learn++ algorithm, and gives
the experimental scheme as well as results obtained.

2 Ensemble of Classifiers

Ensemble systems have attracted a great deal of attention over the last decade
due to their empirical success over single classifier systems on a variety of ap-
plications. Such systems combine an ensemble of generally weak classifiers to
take advantage of the so-called instability of the weak classifier. This causes the
classifiers to construct sufficiently different decision boundaries for minor modifi-
cations in their training parameters and as a result each classifier makes different
errors on any given instance. A strategic combination of these classifiers, such
as weighted majority voting [6], then eliminates the individual errors, generat-
ing a strong classifier. A rich collection of algorithms has been developed using
multiple classifiers, such as AdaBoost [7], with the general goal of improving the
generalization performance of the classification system. Using multiple classifiers
for incremental learning, however, has been largely unexplored. Learn++, in part
inspired by AdaBoost, was developed in response to recognizing the potential
feasibility of ensemble of classifiers in solving the incremental learning problem.
Learn++ was initially introduced in [8] as an incremental learning algorithm
for the MLP type networks. A more versatile form of the algorithm was pre-
sented in [9] for all supervised classifiers. We have recently recognized that the
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inherent voting mechanism of the algorithm can also be used in effectively deter-
mining the confidence of the classification system in its own decision making. In
this work, we describe the algorithm Learn++, along with representative results
on incremental learning and confidence estimation obtained on the application
of the algorithm to predict the direction of the movement for the Dow Jones
Average Indicators.

3 Incremental Learning

An incremental learning algorithm is defined as an algorithm that learns new in-
formation from unseen data, without necessitating access to previously used data
[10]. The algorithm must also be able to learn new information from new data
and still retains knowledge from the original data. Lastly, the algorithm must
be able to learn new classes that may be introduced by new data. This type
of learning algorithm is sometimes referred to as a ’memoryless’ online learning
algorithm. Learning new information without requiring access to previously used
data, however, raises ’stability-plasticity dilemma’ [11]. This dilemma indicates
that a completely stable classifier maintains the knowledge from previously seen
data, but fails to adjust in order to learn new information, while a completely
plastic classifier is capable of learning new data but lose prior knowledge. The
problem with the MLP is that it is a stable classifier and is not able to learn
new information after it has been trained. Different procedures have been im-
plemented for incremental learning. One procedure of learning new information
from additional data involves discarding the existing classifier and training a new
classifier using accumulated data. Other methods such as pruning of networks
or controlled modification of classifier weight or growing of classifier architec-
tures are referred to as incremental learning algorithm. This involves modifying
the weights of the classifier using the misclassified instances only. The above
algorithms are capable of learning new information; however, they suffer from
’catastrophic forgetting’ and require access to old data. One approach evaluates
the current performance of the classifier architecture. If the present architec-
ture does not sufficiently represent the decision boundaries being learned, new
decision clusters are generated in response to new pattern. Furthermore, this
approach does not require access to old data and can accommodate new classes.
However, the main shortcomings of this approach are: cluster proliferation and
extreme sensitivity to selection of algorithm parameters. In this paper, Learn++
is implemented for online prediction of stock movement direction using the Dow
Jones average indicators. The Learn++ algorithm is summarized in the next
section.

4 Learn++

Learn++ is an incremental learning algorithm that uses an ensemble of classifiers
that are combined using weighted majority voting. Learn++ was developed from
an inspiration by a boosting algorithm called adaptive boosting (AdaBoost).
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Each classifier is trained using a training subset that is drawn according to
a distribution D. The classifiers are trained using a weakLearn algorithm. The
requirement for the weakLearn algorithm is that it must be able to give a classifi-
cation rate of atleast 50% initially. For each database Dk that contains learning
examples and their corresponding classes, Learn++ starts by initializing the
weights, w, according to the distribution DT , where T is the number of hy-
pothesis. Initially the weights are initialized to be uniform, which gives equal
probability for all instances to be selected to the first training subset and the
distribution is given by

D =
1
m

(1)

Where m represents the number of training examples in database Sk. The train-
ing data are then divided into training subset TR and testing subset TE to ensure
weakLearn capability. The distribution is then used to select the training subset
TR and testing subset TE from Sk. After the training and testing subset have
been selected, the weakLearn algorithm is implemented. The weakLearner is
trained using subset, TR. A hypothesis, ht obtained from weakLearner is tested
using both the training and testing subsets to obtain an error,εt:

εt =
∑

t:ht(xi) �=yi

Dt(i) (2)

The error is required to be less than 1
2 ; a normalized error βt is computed

using:
βt =

εt
1− εt

(3)

If the error is greater than 1
2 , the hypothesis is discarded and new training and

testing subsets are selected according toDT and another hypothesis is computed.
All classifiers generated so far, are combined using weighted majority voting to
obtain composite hypothesis, Ht

Ht = arg max
y∈Y

∑
t:ht(x)=y

log
1
βt

(4)

Weighted majority voting gives higher voting weights to a hypothesis that
performs well on its training and testing subsets. The error of the composite
hypothesis is computed as in Eq. 5 and is given by

Et =
∑

t:Ht(xi) �=yi

Dt(i) (5)

If the error is greater than 1
2 , the current composite hypothesis is discarded

and the new training and testing data are selected according to the distribution
DT . Otherwise, if the error is less than 1

2 , the normalized error of the composite
hypothesis is computed as:

Bt =
Et

1− Et
(6)
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The error is used in the distribution update rule, where the weights of the
correctly classified instances are reduced, consequently increasing the weights of
the misclassified instances. This ensures that instances that were misclassified
by the current hypothesis have a higher probability of being selected for the
subsequent training set. The distribution update rule is given by

wt+1 = wt(i) · B[|Ht(xi) �=yi|]
t (7)

Once the T hypotheses are created for each database, the final hypothesis
is computed by combining the composite hypothesis using weighted majority
voting given by

Ht = arg max
y∈Y

K∑
k=1

∑
t:Ht(x)=y

log
1
βt

(8)

5 Confidence Measurement

An intimately relevant issue is the confidence of the classifier in its decision,
with particular interest on whether the confidence of the algorithm improves as
new data become available. The voting mechanism inherent in Learn++ hints
to a practical approach for estimating confidence: decisions made with a vast
majority of votes have better confidence than those made by a slight majority
[12]. We have implemented McIver and Friedl’s weighted exponential voting
based confidence metric [13] with Learn++ as

Ci(x) = P (y = i|x) =
expFi(x)∑N

k=1 expFk(x)
, 0 ≤ Ci(x) ≤ 1 (9)

Where Ci(x) is the confidence assigned to instance x when classified as class i,
Fi(x) is the total vote associated with the ith class for the instance x and N is
the number of classes. The total vote Fi(x) class received for any given instances
is computed as

Fi(x) =
N∑

t=1

(
log 1

βt
, if ht(x) = i

0, otherwise

)
(10)

The confidence of winning class is then considered as the confidence of the
algorithm in making the decision with respect to the winning class. Since Ci(x)
is between 0 and 1, the confidences can be translated into linguistic indicators
as shown in Table 1. These indicators are adopted and used in interpreting our
experimental results.

Equations (9) and (10) allow Learn++ to determine its own confidence in
any classification it makes. The desired outcome of the confidence analysis is to
observe a high confidence on correctly classified instances, and a low confidence
on misclassified instances, so that the low confidence can be used to flag those
instances that are being misclassified by the algorithm. A second desired outcome
is to observe improved confidences on correctly classified instances and reduced
confidence on misclassified instances, as new data become available, so that the
incremental learning ability of the algorithm can be further confirmed.
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Table 1. Confidence estimation representation

Confidence range (%) Confidence level
90 ≤ C ≤ 100 Very High (VH)
80 ≤ C < 90 High (H)
70 ≤ C < 80 Medium (M)
60 ≤ C < 70 Low (L)

C < 60 Very Low (VL)

6 Forecasting Framework

6.1 Experimental Design

In our empirical analysis, we set out to examine the daily changes of the Dow
Jones Index. The Dow Jones averages are unique in that they are price weighted
rather than market capitalization weighted. Their component weightings are
therefore affected only by changes in the stock prices, in contrast with other
indexes’ weightings that are affected by both price changes and changes in the
number of shares outstanding [14]. When the averages were initially created,
their values were calculated by simply adding up the component stock prices
and dividing by the number of components. Later, the practice of adjusting the
divisor was initiated to smooth out the effects of stock splits and other corpo-
rate actions. The Dow Jones Industrial Average measures the composite price
performance of over 30 highly capitalized stocks trading on the New York Stock
Exchange (NYSE), representing a broad crosssection of US industries. Trad-
ing in the index has gained unprecedented popularity in major financial markets
around the world. The increasing diversity of financial instruments related to the
Dow Jones Index has broadened the dimension of global investment opportunity
for both individual and institutional investors. There are two basic reasons for
the success of these index trading vehicles. First, they provide an effective means
for investors to hedge against potential market risks. Second, they create new
profit making opportunities for market speculators and arbitrageurs. Therefore,
it has profound implications and significance for researchers and practitioners
alike to accurately forecast the movement direction of stock prices.

6.2 Model Input Selection

Most of the previous researchers have employed multivariate input. Several
studies have examined the cross-sectional relationship between stock index and
macroeconomic variables. The potential macroeconomic input variables which
are used by the forecasting models include term structure of interest rates (TS),
short-term interest rate (ST), long-term interest rate (LT), consumer price in-
dex (CPI), industrial production (IP), government consumption (GC), private
consumption (PC), gross national product (GNP) and gross domestic product
(GDP). Other macroeconomic variables data are not available for our study.
Thus for our study only the closing values of the Index were selected as inputs.
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A one step forward prediction of the Index was performed on a daily basis. The
output of this prediction model was used as inputs to the learn++ algorithm for
classification into the correct category that would give an indication of whether
the predicted index value is 1 (indicating a positive increase in next day’s pre-
dicted closing value compared to the previous day’s closing value) or a predicted
closing value of −1, indicating a decrease in next day’s predicted closing value
compared to the previous day’s closing value. Figure 1 depicts the conceptual
model of all processes required for this study. The first prediction model can be
written as depicted by Eq. 11 below:

CVt = F (cvt−1, cvt−2, cvt−3, cvt−4) (11)

Where CVt is the predicted close value at time t, cvt−1 indicates the close value
at day i, where i = 1, 2, 3, , t− 1.The second model takes the output of the first
model as its input in predicting the direction of movement for the index. The
classification prediction stage can be represented by Eq. 12:

Directiont = F (CVt) (12)

Where CVt is the first model prediction of the fifth day stock closing value when
given the raw data at time t− 1 to t− 4 respectively. Directiont is a categorical
variable to indicate the movement direction of Dow Jones Index at time t. If
Dow Jones Index at time t is larger than that at time t − 1, Directiont is 1.
Otherwise, Directiont is −1.

Fig. 1. Proposed model for online stock forecasting

6.3 Experimental Results

The forecasting model described in the sections above is estimated and vali-
dated by insample data. The model estimation selection process is then followed
by an empirical evaluation which is based on the out-of-sample data. At this
stage, the relative performance of the model is measured by the classification
accuracy of the final hypothesis chosen for all given databases. The confidence
of the algorithm on its own decision is used in establishing the accuracy of
predicted closing value category. The first experiment implements a one step
forward prediction of the next day’s stock closing value. After predicting the
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next day’s closing value this value is fed into a classification model to indicate
the direction of movement for the stock prices. As discussed above the database
consisted of 1476 instances of the Dow Jones average closing value during the
period from January 2000 to November 2005; 1000 instances is used for training
and all the remaining instances is used for validation. The two binary classes
are 1, indicating an upward direction of returns in Dow Jones stock, and -1 to
indicate a predicted fall/downward direction of movement for the Dow Jones
stock. Four datasets S1, S2, S3, S4, where each dataset included exactly one
quarter of the entire training data, were provided to Learn++ in four training
sessions for incremental learning. For each training session k,(k = 1, 2, 3, 4) three
weak hypothesis were generated by Learn ++. Each hypothesis h1, h2 and h3
of the kth training session was generated using a training subset TRt and a
testing subset TEt. The WeakLearner was a single hidden layer MLP with 15
hidden layer nodes and 1 output node with an MSE goal of 0.1. The test set
of data, Validate consisted of 476 instances that were used for validation pur-
poses. On average , the MLP hypothesis, weakLearner, performed little over 50%,
which improved to over 80% when the hypothesis were combined by making use
of weighted majority voting. This improvement demonstrates the performance
improvement property of Learn++, as inherited from AdaBoost, on a given
database. The data distribution and the percentage classification performance
are given in Table 2. The performances listed are on the validation data, Val-
idate following each training session. Table 3 provides an actual breakdown of
correctly classified and misclassified instances falling into each confidence range
after each training session. The trends of the confidence estimates after subse-
quent training sessions are given in Table 3. The desired outcome on the actual
confidences is high to very high confidences on correctly classified instances, and
low to very low confidences on misclassified instances. The desired outcome on
confidence trends is increasing or steady confidences on correctly classified in-
stances, and decreasing confidences on misclassified instances, as new data is
introduced.

Table 2. Training and generalisation performance of Learn++

Database Class(1) Class(-1) Test Performance (%)
S1 132 68 72
S2 125 75 82
S3 163 37 85
S4 104 96 86

V alidate 143 57 –

The performance shown in Table 2 indicates that the algorithm is improving
its generalization capacity as new data become available. The improvement is
modest, however, as majority of the new information is already learned in the
first training session. Table 4 indicates that the vast majority of correctly clas-
sified instances tend to have very high confidences, with continually improved
confidences at consecutive training sessions. While a considerable portion of
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misclassified instances also had high confidence for this database, the general
desired trends of increased confidence on correctly classified instances and de-
creasing confidence on misclassified ones were notable and dominant, as shown
in Table 3.

Table 3. Confidence results

VH H M VL L
Correctly classified S1 96 14 13 15 6

S2 104 7 22 17 14
S3 111 11 6 3 39
S4 101 13 42 12 4

Incorrectly classified S1 23 7 13 3 8
S2 27 0 1 3 4
S3 21 1 2 4 2
S4 24 0 2 2 0

Table 4. Confidence trends for Dow Jones

Increasing Steady Decreasing
Correctly classified 119 8

Misclassified 16 24

7 Conclusion

In this paper, we study the use of an incremental algorithm to predict finan-
cial markets movement direction. As demonstrated in our empirical analysis,
Learn++ is observed to give good results on converting the weakLearner (MLP)
into a strong learning algorithm that has confidence in all its decisions. The
Learn++ algorithm is observed to assess the confidence of its own decisions.
In general, majority of correctly classified instances had very high confidence
estimates while lower confidence values were associated with misclassified in-
stances. Therefore, classifications with low confidences can be used as a flag
to further evaluate those instances. Furthermore, the algorithm also showed in-
creasing confidences in correctly classified instances and decreasing confidences in
misclassified instances after subsequent training sessions. This is a very comfort-
ing outcome, which further indicates that algorithm can incrementally acquire
new and novel information from additional data.
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Abstract. Over the last decade, numerous papers have investigated the
use of GP for creating financial trading strategies. Typically in the litera-
ture results are inconclusive but the investigators always suggest the pos-
sibility of further improvements, leaving the conclusion regarding the ef-
fectiveness of GP undecided. In this paper, we discuss a series of pretests,
based on several variants of random search, aiming at giving more clear-
cut answers on whether a GP scheme, or any other machine-learning
technique, can be effective with the training data at hand. The analy-
sis is illustrated with GP-evolved strategies for three stock exchanges
exhibiting different trends.

1 Motivation and Introduction

The computational intelligence techniques such as genetic programming1, with
their continuous advancement, persistently bring us something positive to ex-
pect, and incessantly push the application domain to more challenging issues.
However, sometimes, the costs and benefits of using this advanced CI techniques
are uncertain. Usually the benefits are not assured, while the costs is immediate.
On the one hand, the CI techniques are frequently used as intensive search al-
gorithms, which inevitable are computationally demanding, and take up a great
amount of computational resources. On the other hand, whether there is a needle
in the sea remains to be dubious.2 Certainly, if such a needle does not exist at
all, the all efforts are made with no avert. Given this asymmetry between costs
and benefits, it would be economical, at the first stage, to test the existence
of such a needle before a full-fledged version of search is applied. We call this
procedure a pretest.

1 Although, in this paper, we only focus on genetic programming, but the general ideas
and some specific implementations may also be applicable to other computational
intelligence technique used to induce trading strategies.

2 For example, in the financial application domain, it can be particularly due to the
efficient market hypothesis or the no-arbitrage condition.
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The pretest procedure proposed here is similar in a sense to the pretests used
in econometrics where the estimator of an unknown parameter is chosen on the
basis of the outcome of a pretest ([1]). Pretesting, also known as “data-snooping”
in finance, serves classically for selecting the right model that will be used later
on for forecasting purpose ([2,3]). More broadly, pretesting can be considered as a
practice of a sequential decision-making process, which is used when the decision
involves a great deal of uncertainty, and the costs of making a wrong decision
is huge. 3 In this case, in the first stage, we would like to spend some limited
resources in probing to gain some initial information, e.g. the distribution of a
very uncertain environment, while in later stages, we make our decision based
on the gauged distribution.

The reason behind prestesting is very intuitive, and [4] is the first who applies
this idea to the financial application of genetic programming (GP). [4] proposed
a measure known as the η statistic. The η statistic is a measure of predictability.
Basically, using simple (vanilla) version of GP, one can first gauge the predictabil-
ity by η. When η is low to zero, it indicates that there is nothing to forecast.
So, the use of full-fledged GP is not advised. The virtue of this doing is to dis-
tinguish two kinds of possibilities when we see a failure of an initial attempts
based on simple GP. First, the series itself has nothing to forecast; second, GP
has not been used appropriately. Understanding this distinction can result in
big differences in our second stage of the decision. For the former case, we may
simply give up the further search to avoid a waste. For the latter, we should keep
on exploring different deliberations of GP to search for potential gains before a
final conclusion can be made. In either case, we have a clear-cut situation. How-
ever, when a pretest is absent, we become less conclusive: we are no longer sure
whether it is due to the non-existence of the needle, or the improper use of GP.

Unfortunately, in most financial trading applications of GP, a pretest has been
largely neglected.4 We think that this negligence may cause many observed in-
conclusive results. Typically, what happens is that the results with GP are not
very convincing, but the investigators always suggest directions for further im-
provements, leaving the actual conclusion regarding the effectiveness of GP un-
decided. Therefore, this study attempts to provide practical pretesting procedure
aiming at reducing the number of cases where the conclusion is inconclusive.

Needless to say, there are various ways to implement different pretesting. For
example, the η statistic mentioned above can be used as a pretest, as [4] did, but
that is mainly applied to forecasting time series. A series being predictable does
not necessarily imply that we can develop profitable trading strategies. For ex-
ample, the fluctuation is not volatile enough to cover the round-trip transaction
3 The problem of sequential decision making under incomplete knowledge has been

studied by researchers in various fields, such as optimal control, psychology, eco-
nomics, and game theory.

4 This may not be completely so. In fact, most earlier studies selected the buy-and-hold
strategies or a risk-free investment (e.g., treasury bills) as the benchmark. However,
the conclusion that “GP performs better than buy-and-hold in a bearish market and
worst in a bullish market” is often found in the literature. This shows the limits of
choosing buy-and-hold as a pretest. See, for example, [5].
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costs. Consequently, literature of forecasting with GP and literature of trading
with GP usually are separated. Therefore, in this paper, we attempt to develop
pretest procedures more suitable for the trading purpose.

More precisely, we will propose several different styles of pretests, which
when put together can help us decide whether there are hidden patterns to
discover and whether GP is designed properly to do the job. The essential
idea underlying all proposed pretests is to compare the performance of GP
with random trading strategies or behavior. However, as we shall see in Sec-
tion 2, just making trading strategies or trading behavior arbitrarily random
is not sufficient to give a fair and informative comparison. To do so, some con-
straints are expected, and the intriguing point is how to impose these constraints
properly.

The rest of the paper is organized as follows. Section 2 provides a detail for-
mulation of four pretests. The first three concerns the trading strategies, whereas
the last one concerns the trading behavior. Normally, trading behavior comes
from trading strategies, and they cannot be separated; but, when randomness
is introduced, difference between the two can arise. In particular, in the vein of
algorithmic complexity, random trading strategies can imply trading behavior
actually using knowledge, while random trading behavior presumably exclude
such possibility. We, therefore, intentionally distinguish the two by called the
former zero-intelligence strategies, and the latter lottery trading. Section 3 dis-
cuss how to use these proposed tests together to make a better judgement given
the initial results we have. Section 4 illustrates the proposed pretests based on
the real detail and the experimental designs detailed in the appendix. Section 5
makes the concluding remarks.

2 Pretests : Description and Rationale

In this section, we describe a series of 4 pretests and discuss their purpose and
implementation. Out of the 4 pretests, we highlight that 2 are of particular
interest and, as shown in section 3, enable us to gain complementary knowledge
on the data under study and on the efficiency of the GP implementation. In
the following, we consider GP with a validation stage before the actual testing
on the out-of-sample data. Validation means that the best rules induced on the
training interval are further selected on unseen data, the validation period, before
being applied out-of-sample. The validation step is a device to fight overfitting5

that has been widely used in earlier GP work (see for instance [7,8]). Note that
our pretest proposals remain valid for GP without validation step except that
pretest 2 replaces pretest 1, which requires validation.

2.1 GP Versus Equivalent Intensity Random Search

The basic idea is here to compare the outcome of GP with an equivalent inten-
sity random search. We say that two search algorithms are equivalent in terms
5 The actual effectiveness of validation is still an open question, see [5] and [6].
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of search intensity if their execution leads to the evaluation of the same number
of different trading strategies on the training data. For instance, let us consider
GP with the parameters chosen for this study: a population of 500 individu-
als evolved over 100 generations. In first approximation, the equivalent random
search (ERS) would consist in evaluating 50,000 randomly created solutions.
In practice, search algorithms sometimes rediscover identical solutions over the
course of their execution. This can be detected by keeping track of all created
individuals since the beginning of the execution, and doing so useless fitness eval-
uations can be skipped, which actually saves computing time when the fitness
function is rather time-consuming as it is in our context. Since, computationally
speaking, what is preponderant is the fitness evaluation, and since the extent
to which GP re-discovers the same individuals is very dependent upon the im-
plementation, we impose that our definition of equivalent search intensity only
accounts for unique individuals, i.e. individuals which require evaluation. We
consider two solutions to be different if their expression is syntactically differ-
ent6, in our context, if the trees representing the programs are different.

The three following pretests compare GP with a random search with and
without training and validation stage. In the latter search technique, the bi-
ologically inspired evolution process of GP is simply replaced by the creation
of solutions at random. Since with random search the strategies do not benefit
from the “intelligence” resulting from the evolution or learning process, we dub
randomly created solutions zero-intelligence trading strategies.

For each pretest i, we formulate the null hypothesis Hi,0 that GP does not
outperform the technique it is compared with at pretest i, where the alternative
hypothesis is denoted Hi,1.The experiments will provide us with the answer on
whether Hi,0 should be rejected in favour of Hi,1 or not.

Pretest 1: GP Versus Equal Search Intensity Random Search with
Training and Validation Stage. The implementation of the random search
strategy is straightforward: parameters of GP are set in such a way that only
the initial generation, where individuals are created at random, is used. The
size of the initial population is adjusted so that the resulting search intensity is
identical to the one of the regular GP.

6 Two individuals can be syntactically different while being equivalent in the sense
that they lead to equivalent trading decisions, the equivalence could thus be also de-
fined in terms of semantics. With symbolic simplification using rewriting rules and
interval arithmetic on the function arguments, one could detect that some syntac-
tically different individuals are in fact semantically identical. However, there is no
way to make sure that all duplicates will be detected and the implementation of this
procedure would be so complex and time consuming at run time that, in our opinion,
a definition based on semantics would be of little practical interest. Alternatively,
the equivalence in search intensity could be defined in terms of equivalent computing
time, however there is such a difference of complexity between a full-fledged GP im-
plementation and random search that it is hard to imagine how we can ensure that
the two implementations have been optimized in a similar manner, while a better
implementation of GP for instance may lead to an opposite conclusion.
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– Hypothesis H1,0 cannot be rejected: the first explanation that can be
envisaged is that, GP or not, there is nothing essential to be learned from the
past. It that case GP would strongly “overfits” the training data, possibly
explaining that its out-of-sample performance is worse than with a random
search. This can be due by the market being efficient or because the training
interval is very dissimilar to the out-of-sample7. Another explanation is that
the GP machinery is not working properly, for instance due to a wrong choice
of the function/terminal sets, because the parameters are inappropriate (e.g.
too low search intensity), or the genetic operators unable to create better-
than-random individuals.

– Hypothesis H1,0 is rejected in favour of H1,1: there may be something
to learn from the past and GP, with the chosen parameters, may be effective
in that task.

Rejecting H1,0 is of course a first indication of the efficiency of GP but we cannot
rule out the case where there would nothing useful to learn on the data at hand
and GP would beat random search by mere luck. We will see in Section 3, that
further investigation may provide additional evidence to answer that question.

Pretest 2: GP Versus Equal Search Intensity Random Search with
Training But Without Validation Stage. Here, the best random solutions
on the training interval are applied directly to the out-of-sample period. With
regards to pretest 1, pretest 2 could give us some insight about how effective
is validation as a device to fight against overfitting. However, since overfitting
is unlikely to occur with random solutions, the rationale of using pretest 2 is
unclear and it will not be further considered in this study. A more direct and
effective way to evaluate the effect of the validation stage is simply to compare
regular GP with and without validation8.

Pretest 3: GP Versus Equal Search Intensity Random Search With-
out Training and Without Validation Stage. In pretest 3, selection of the
strategies on the training set is removed: a large number random strategies are
created and applied directly out-of-sample. The performance is evaluated as the
average performance (e.g. average total return) over the set of random strate-
gies. Comparing the outcome of pretest 3 with regards to pretest 1 and regular
GP tells us something about how effective is the selection process, the extent to
which a top performing rule on the training and validation sets will keep on per-
forming well out-of-sample. If strategies selected by GP or random search on the
training and validation intervals have some predictive ability out-of-sample, it
provides use with some evidence that there is something to learn from the past.
It is worth to point out that the randomness of the strategies is here constrained
by the GP language: rules can only be made with GP functions/terminals orga-
nized according to the typing scheme. For instance, it is possible that the GP
7 In [5], numerous experiments have highlighted that when training and out-of-sample

data sets are very “dissimilar”, for instance if the market exhibits an opposite trend,
then there is little chance that GP performs well out-of-sample.

8 For instance, as it is done in [5].
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language is not expressive enough to represent a rule consisting in buying and
selling every other period9. In the rest of this study, we will consider pretest 4,
presented in Section 2.2, that is similar in spirit to prestest 3, but is more ran-
dom in the sense that it does not possess the bias in randomness induced by the
GP language.

2.2 GP Versus Lottery Trading

We call lottery trading a strategy that would consist in making the investment
decision at random on the basis of the outcome of a random variable. In its
simplest form, the random variable would follow a Bernoulli distribution where
the parameter p expresses the probability to take a long position and 1 − p the
probability to be out of the market.

In our context, this requires refinement since we are interested in profitability
and profitability takes into account transaction costs. So, to allow a fair com-
parison with GP, we should make sure that the expected number of transactions
for lottery trading is the same as for GP. We call the expected number of trans-
actions per unit of time the frequency of a trading strategy. Another important
characteristic of a trading strategy is what we term its intensity, i.e. the number
of periods where a position10 “in the market” is held, over the length of the
trading interval. We should also enforce lottery trading to have the same ex-
pected intensity as GP to avoid misleading results, for instance, the case where,
given its frequency, the intensity of lottery trading is not sufficient to cover the
transaction costs with the volatility of the market under study.

One denotes by FGP and IGP respectively the average frequency and average
intensity observed for the set of GP evolved rules applied on the testing interval
over all GP runs, NGP is the number of transactions leading to FGP . For the
experiments made in the following, a sequence of investment decisions SLT re-
sulting from lottery trading is generated at random according to the following
procedure:

– the intensity for lottery trading, ILT , is uniformly chosen in [IGP · (1 −
α), min(1, IGP · (1 +α))] with 0 ≤ α ≤ 1. In a first step, SLT is made of the
’0’ positions (i.e. out of the market) followed by the block of ’1’ positions
(i.e. in the market) corresponding to ILT ,

– the number of transactions NLT is uniformally chosen in the set of integer
values that are even11 in interval [NGP · (1−α), NGP · (1+α)]. The block of

9 Period refers to the granularity of time used for trading, for instance, one second or
one day.

10 Implicitly, we consider here the trading of a single instrument, e.g. an index, where
2 decisions are possible at each time period: be in or be out of the market without
short selling, or with short selling as implemented in [5], hold a long position or a
short position. The concept remains valid where one can be holding a long position,
a short position or be out of the market. One can also define the intensity and the
frequency of a strategy for each instrument traded.

11 NLT has to be even since a “buy” transaction is followed by a sell transaction and
no positions are left open.
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’1’ is subdivided at random in NLT /2 sub-sequences and each sub-sequence
is inserted at random inside the block of ’0’. This design avoids the problem
of overlapping ’1’ sub-sequences that occurs with other schemes.

We formulate the pretest comparing GP and lottery trading and denote by H4,0
the null hypothesis that GP does not outperform lottery trading.

Pretest 4: GP Versus Lottery Trading. Obviously, if GP is not able to
outperform lottery trading, it gives strong evidence that GP will not be good at
evolving effective trading strategies with the data at hand. In section 3, we shall
discuss this point in more details.

3 What Does Pretest Tell Us ?

The outcomes of the pretests provide us with answers to the two following ques-
tions: is there something essential to learn on the training data that can be of
interest for the out-of-sample period ? Does the GP implementation shows some
evidence of effectiveness in that task ? Clearly, before actually trading with GP
evolved programs, these two questions must be answered with reasonable cer-
tainty; the rest of this section explains how pretests may help in that regard.

3.1 Question 1: Is There Something to Learn ?

Null hypothesis H4,0 corresponding to pretest 4 has been presented in Sec-
tion 2.2. We introduce pretest 5 that will be used in conjunction with pretest 4.

Pretest 5: Equivalent Intensity Random Search with Training and
Validation Versus Lottery Trading. Here, we compare lottery trading to a
random search with training and validation, and a search intensity equivalent
to the one used for GP in pretest 4. Null hypothesis H5,0 is that the equivalent
intensity random does not outperform lottery trading on the out-of-sample data.
Depending on the validity of H4,0 and H5,0, we can draw the conclusions that
are summarized in Table 1.

In case 1, best solutions on the training intervals, obtained with 2 different
search algorithms, do not perform better than lottery trading on the out-of-
sample period. This suggest to us than there is nothing to learn. In case 2, GP

Table 1. Information drawn from the outcomes of pretest 4 and pretest 5 (¬R means
that the null hypothesis Hi,0 cannot rejected while R means that the hypothesis is
rejected in favour of the alternative hypothesis)

H4,0 H5,0 Interpretation
case 1 ¬R ¬R there is evidence that there is nothing to learn
case 2 R ¬R there may be something to learn (weak certainty)
case 3 R R there is evidence that there is something to learn
case 4 ¬R R there may be something to learn (weak certainty)
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outperforms lottery trading but random search does not; it is possible that there
is something to learn but that the selected random rules do not have a sufficient
predictive ability. Anyway, this lead us to a less certain conclusion than in case
3 where both search techniques outperform lottery trading. Finally case 4 is
a special case where random search performs better than lottery trading but
GP does not. The whole evolution process of GP has thus a detrimental effect
and a possible explanation is that GP induced solutions overfit the training
data.

3.2 Question 2: Is the GP Machinery Working Properly?

The second question we ought to ask is whether GP is effective. Of course, this
cannot be answered with the data at hand if pretests 4 and 5 have shown that
there is nothing to be learned (case 1 in Table 1). In addition, in case 4 of Table 1,
we already know that GP is not efficient since, by transitivity, it is outperformed
by the random search based algorithm. Thus, the only two cases where one really
needs to proceed to further examination are case 2 and case 3. The validity of
null hypothesis H1,0, which can be tested with pretest 1, gives a helpful insight
into the answer: only if H1,0 should be rejected we can conclude that GP shows
some real effectiveness. We would like to stress that rejecting H1,0 is far from
implying profitability, but beating a mere random search algorithm on a diffi-
cult problem with an infinite search space, is the bare minimum one can expect
from GP.

4 Experiments

The aim of the experiments is to evaluate the extent to which the pretests
proposed are reliable. The methodology adopted here is to check if the out-
comes of the pretests are consistent with results already published in the liter-
ature. We call GP1 the GP implementation developed for this study and GP2
the software12 used in [5], which will constitute our benchmark. The GP con-
trol parameters, identical to the one used in [5], are summarized in Table 1
(Appendix A).

The stock indexes from 3 stock markets are used: TSE 300 (Canada), Nikkei
Dow Jones (Japan) and Capitalization Weighted Stock Index (Taiwan). They
have been chosen among the 8 markets studied in [5] because they exhibit the
main evolution patterns that can be found in the set of 8 markets. The aim
of GP is to induce the most profitable strategy, measured by the accumulated
return, for trading the stock exchange index. The use of short selling is possible.
We adopt what is done classically in literature in terms of data-preprocessing
and use normalized data that is obtained by dividing each day’s price by a

12 Although both programs have been developed by members of the AI-ECON Re-
search Center, they have not been written by the same persons and do not share
a single line of code. Furthermore GP2, which is based on the Open-Beagle library
(see http://beagle.gel.ulaval.ca/), implements strongly-typed GP.

http://beagle.gel.ulaval.ca/
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250-day moving average13. In a way similar to what is done usually, we subdivide
the whole dataset into three sections: training, validation and out-of-sample test
period. For each considered stock index, 3 different out-of-sample test periods
of 2 years (i.e. 1999-2000, 2001-2002, 2003-2004) follow a 3 year validation and
a 3 year training period. In the following, the term market refers to a stock
exchange during a specific out-of-sample period. For instance, Canada-1 (C1 for
short) is the market corresponding the TSE 300 during the out-of-sample period
1999-2000. Hypothesis testing is performed with the Student’s t-test at a 95%
confidence level. The samples for statistics are constituted of the results of 50
GP runs, 50 runs of equivalent search intensity random search with training and
validation (ERS) and 100 runs of lottery trading (LT).

In 4 out of the 9 markets (i.e. C3, J2, T1, T3), there is evidence that there is
something to learn from the training data (case 1 in Table 1). This is consistent
with [5] where GP2 performs outstandingly on these 4 markets (respective total
return: 0.34, 0.17, 0.52, 0.27). On markets C1, J3 and T2, pretests 4 and 5
suggest to us that there is nothing to learn (case 3). Except for C1, GP2 also
performs poorly (−0.18 for J3 and −0.05 for T2). Finally, in the 3 markets where
GP1 is shown to beat ERS (H1,0 is rejected in favor of H1,1 for J1, J2 and T1),
GP results are very good : both GP1 and GP2 produce positive returns and
outperform the buy-and-hold strategy.

Although more comprehensive tests are to be performed, the experiments con-
ducted here show some preliminary evidence that the proposed pretests possess
some predictive ability. Indeed, when the outcome is “nothing to learn”, GP
performs very poorly (except in one case out of three). When pretests suggest
that there is something to learn, at least one implementation did good and when
GP1 is more efficient than random search (i.e. ERS), GP2 from [5] is efficient
too. In the light of the pretests, we should also conclude if our GP implemen-
tation (i.e. GP1) is more efficient than ERS, it is only slightly more efficient
since one would expect more cases where GP beats LT and not LT. This sug-
gest that GP1 is only able to take advantage of “simple” regularities in the
data.

5 Conclusions

The main purpose of this paper is to enrich the earlier research on Genetic Pro-
gramming (GP) induced market-timing decisions by proposing pretests aiming
to shed light on the GP results. Actually in the literature, the results of apply-
ing GP for market-timing decisions are typically not very convincing but the
investigators always suggest the possibility of further improvements. If the in-
vestigators can first convince that there is something to learn and that GP is
suitable for that task, then their conclusion would be less vague and uncertain.
We propose here a series of pretests, where GP is tested against a random behav-
ior (lottery trading) and against strategies created at random (zero-intelligence
13 See [5] for a discussion about how non-normalized data affects the performance of

GP.
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strategies), that aim to answer these two crucial questions. Of course there is
the risk of getting a wrong pretest result and the possible reasons why GP may
have failed should be thoroughly investigated before drawing conclusion. But,
at the end, analyzing the results in the light of the pretests should help to draw
more fine-grained conclusion.
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Program GP2 implements strongly typed GP with the set of functions and ter-
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ones in [5] (program GP1) except when fine-tuning GP2 have highlighted that
better results may be obtained with different parameters. Precisely, we make use
of more elitism, the size of the tournament selection is set to 5 and numerical
mutation is implemented.
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Abstract. This paper describes four currency options volatility fore-
casting models. These models are based on shift-invariant wavelet trans-
form and neural networks techniques. The à trous algorithm is used to
realize the shift-invariant wavelet transform. Wavelets provide a decom-
position of the volatility in a nonlinear feature space. Neural networks
are used to infer future volatility from the feature space. The individual
wavelet domain forecasts are recombined by different techniques to form
the accurate overall forecast. The proposed models have been tested with
the USD/Yen options volatility market data. Experimental results show
that wavelet prediction scheme has the best forecasting performance on
testing dataset among four models, with regards to the least error val-
ues. Therefore, wavelet prediction scheme outperforms the other three
models and avoids effectively over-fitting problems.

1 Introduction

Basically the price of an option consists of two parts, the intrinsic value and the
time value. The time value represents the uncertainty until expiration, the risk
of the underlying asset and the riskless return of the currencies. A lot of factors
influence the time value, but the volatility between the involved currencies is
the most important factor. A high volatility increases the risk of the option and
the uncertainty about future price movements. The volatility is the most impor-
tant input to all options pricing models. Besides, volatility is a very important
quantity for value-at-risk calculations used in portfolio risk management.

However, volatility is quite unsettling, measuring volatility is in itself more of
an art than a science. There is no clear agreement as to what measure of future
volatility should be used as an input to the options pricing formulae. Therefore,
it is very vital to forecast accurately the future volatility by modeling.

Traditionally, short term forecast techniques use statistical models. The Au-
toregressive moving average model is among the most popular ones of dynamic
models. However, these models are basically linear methods, which have limited
ability to capture nonlinearities in currency options volatility series.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 461–468, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



462 F.-Y. Liu and F.-X. Liu

Artificial intelligence methods for forecasting have shown ability to give better
performance in dealing with the nonlinearity and other difficulties in modeling of
the time series. Neural networks (NN) have been practiced recently in the area
of time series forecasting due to their flexibilities in data modeling. In particular,
Zapart [1] proposes an alternative way of looking at stochastic volatility models
based haar wavelet and neural networks and their integration with conventional
options pricing methods. Bai-Ling Zhang et al [2] proposed a hybrid neural-
wavelet scheme to predict electricity demands in short term. This study is partly
motivated by these contributions and shares much of the underlying analytical
reasoning with the work recently reported in their papers.

In this paper, we study neural network models combined with wavelet trans-
formed data. These strategies approximate a time series at different levels of
resolution using multiresolution decomposition. An autocorrelation shell repre-
sentation (ASR, [3,4]) technique is employed to reconstruct signals after wavelet
decomposition. With the help of this technique, a time series can be expressed
as an additive combination of the wavelet coefficients. These techniques are then
applied to build forecasting models to predict currency options volatility as from
the data obtained from foreign exchange (FX) markets.

The main contributions of this study include: a multiresolution prediction
scheme set up on the ASR technique is applied to forecast currency options
volatility, the performance comparison between four different volatility forecast-
ing models is performed, and the model based on à trous transform avoids the
over-fitting problems which occurs often in neural networks models.

This study consists of four sections. Section 2 provides a brief introduction
to model design. Section 3 contains the experimental data, the criteria of the
prediction performance, and result discussion. Section 4 draws the conclusions.

2 Model Design

In this section we propose the forecasting models of volatility and their applica-
tion to the currency options.

2.1 Wavelet Transform and Autocorrelation Shell Representation

For a chosen mother wavelet function ψ a function f can be expanded as:

f(t) =
∞∑

j=−∞

∞∑
k=−∞

wjk2j/2ψ(2jt− k) (1)

where the functions ψ(2jt− k) are all orthogonal to each other. The coefficient
wjk gives information about the behavior of the function f concentrating on
the effects of scale around 2−j near time k × 2−j. This wavelet decomposition
of a function is closely related to a similar decomposition (the discrete wavelet
transform, DWT) of a signal observed in discrete time.

In time series analysis, DWT often suffers from a lack of translation invariance.
This problem can be tackled by means of a redundant or non-decimated wavelet



Currency Options Volatility Forecasting 463

transform [4,5]. A redundant transform based on a n-length input time series
has a n-length resolution scale for each of the resolution levels of interest. The à
trous algorithm is used to realize the shift-invariant wavelet transforms [6]. Such
transforms are based on the ASR technique by dilations and translations of the
autocorrelation functions of compactly supported wavelets.

By definition, the autocorrelation functions of a compactly supported scaling
function φ(x) and the corresponding wavelet ψ(x) are as follows:

φ(x) =
∫∞
−∞ φ(y)φ(y − x)dy, ψ(x) =

∫∞
−∞ ψ(y)ψ(y − x)dy. (2)

The set of functions {ψ̃j,k(x)}1≤j≤J,0≤k≤N−1 and {φ̃J,k(x)}0≤k≤N−1, can be
called an autocorrelation shell, where:

ψ̃j,k(x) = 2−j/2ψ(2−j(x− k)), φ̃J,k(x) = 2−J/2φ(2−J (x− k)). (3)

The filters P = {pk}−L+1≤k≤L−1 and Q = {qk}−L+1≤k≤L−1 is defined as:

1√
2
φ(x

2 ) =
L−1∑

k=−L+1
pkφ(x − k), 1√

2
ψ(x

2 ) =
L−1∑

k=−L+1
qkφ(x − k). (4)

Using the filters P and Q, the pyramid algorithm for expanding into the
autocorrelation shell can be obtained as:

cj(k) =
L−1∑

l=−L+1
plcj−1(k + 2j−1l), wj(k) =

L−1∑
l=−L+1

qlcj−1(k + 2j−1l). (5)

These shell coefficients obtained from (5) can then be used to directly recon-
struct the signals. Given smoothed signal at two consecutive resolution levels,
the detailed signal can be derived as:

wj(k) =
√

2cj−1(k)− cj(k). (6)

Then the original signal c0(k) can be reconstructed from the coefficients
{wj(k)}1≤j≤J,0≤k≤N−1 and residual {cJ(k)}0≤k≤N−1:

c0(k) = 2−J/2cJ(k) +
J∑

j=1
2−j/2wj(k) (7)

for k = 0, 1, · · · , N − 1, where cJ (k) is the final smoothed signal.
To make more precise predictions, the most recent data shall be used and the

previous data is penalized with forgetting factors. The time-based à trous filters
similar to that of [7] are used to deal with the boundary condition.

2.2 Automatic Relevance Determination

When applying neural networks to time series forecasting, it is important to
decide an appropriate size of time-window of inputs. The Automatic Relevance
Determination (ARD) method [8,9] gives a systematic way for choosing a suitable
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length of past windows to train the neural networks. In the forecasting model,
ARD is used to choose a short-term history for higher temporal resolution and
a long-term history for lower temporal resolution. By this way, substantial in-
formation on both the ’detailed’ and ’general’ history of the time series can be
effectively exploited.

ARD simply approximates the posterior distribution over weights by a
Gaussian distribution. The optimization of the regularization parameters is in-
terleaved with the training of the neural network weights. These parameters are
divided into classes {c}, with independent scales {αc}. For a network with one
hidden layer, the weight classes are: one class for each input; one class for the
biases; and one class for each output. Assuming a Gaussian prior for each class,
we define EW (c) =

∑
i∈c

w2
i /2, then the ARD model uses the prior of equation

P = ({wi}|{αc},HARD) = 1
ΠZW (c)

exp(−
∑
c
αcEW (c)). (8)

The evidence framework can be used to optimize all the regularization con-
stants simultaneously by finding their most probable value, i.e. the maximum
over {αc} of the evidence, P = (D|{αc},HARD).

2.3 Wavelet-Neural Forecasting Model

The proposed prediction model is shown in Fig. 1. Given the time series f(n), n =
1, · · · , N , the aim is to predict the l-th sample ahead, f(N + l). For each value
of l a separate prediction architecture is trained accordingly. The hybrid scheme
basically involves three stages [2]. First, the time series is decomposed into differ-
ent scales by autocorrelation shell decomposition; second, each scale is predicted
by a separate NN; and at the third stage, the next sample of the original time
series is predicted by another NN using the different scale’s prediction.

�
Volatility data

f(n)
n = 1, · · · , N

decomposition

� predictor

predictor

predictor

predictor

predictor�c

�wk

�w2

...

�w1

ĉ

ŵk

ŵ2

ŵ1

�
� NN �Prediction

f̂(N + l)
l = 1, · · · , L

w1, · · · , wk are wavelet coefficients, and c is residual series.

Fig. 1. The forecasting system
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The time-based à trous transform as described above provides a simple but
robust approach. This approach based on ASR is realized by applying (6) and
(7) to successive values of t. For example, given currency options volatility series
of N + L values, we hope to extrapolate into the future with 1 to L subsequent
values. By the time-based à trous transform, we simply carry out a wavelet
transform on values x1, · · · , xN . The last values of the wavelet coefficients at
time-point t = N are kept because they are the most critical values for prediction.
Repeat the same procedure at time point t = N+1, N+2, · · · , N+L repeatedly.
We empirically determine the number of resolution levels J , mainly depending
on the inspection of smoothness of the residual series for a given J . Prior to
forecasting, we get an over complete, transformed and normalized dataset.

Secondly, a predictor is allocated for each resolution level and the wavelet
coefficients wj

i (t); j = 0, · · · , J ; i = 1, · · · , N are used to train the predictor. All
networks used to predict the wavelet coefficients of each scale are of the same
feed forward multi-layer perceptron(MLP) with D input units, one hidden layer
with K sigmoid neurons, and one linear output neuron. In the proposed models,
each network is trained by back propagation algorithm using the Scale Conjugate
Gradient method and a weight decay regularization of the form (1/λ)

∑
iw

2
i [2].

The procedure for designing neural network structure essentially involves se-
lecting the input, hidden and output layers. ARD is used to empirically decide
the number of inputs in each resolution level. In all of the experiments per-
formed, the number of hidden neurons is estimated as half of the sum of inputs
plus outputs. The number of training vectors available dictates an upper limit on
the weight number. A rough guideline recommends that the number of training
vectors should be ten times or more the number of weights.

Thirdly, the predicted results of all the different scales ŵj
N+i(t), j = 0, · · · , J

are appropriately combined. This paper discussed and compared four methods.
In the first method, we simply applied the linear additive reconstruction prop-

erty of the à trous transform, as expressed in (7). The fact that the reconstruction
is additive allows the predictions to be combined in an additive manner. This is
denoted as à trous wavelet prediction scheme in the sequel.

A hybrid strategy can also be empirically applied to determine what should be
combined to provide an overall prediction. In proposed first hybrid method, the
predicted results of all the different scales are linearly combined by a single-layer
perceptron. In order to improve the prediction accuracy, a MLP with the same
structure as for wavelet coefficients prediction is employed for currency options
volatility series and the corresponding prediction results are incorporated into
the third stage, as shown in Fig. 1.

In experiments, we also applied a third stage MLP in place of the simple
perceptron. The number of hidden neurons is also estimated as half of {#inputs+
#outputs}. We denote this as second hybrid method for the combination of
prediction results from the second stage. This method uses the second stage
MLP for recombining wavelet coefficients prediction.

For comparison purpose, a plain MLP was also trained and tested for original
time series, denoted as MLP, without any wavelet preprocessing involved.
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3 Experimental Results

In this section, the proposed forecasting model is tested with the weekly and
monthly USD/Yen options volatility data. The market data covers the year from
2002 to 2006, and are taken from the British Banker’s Association website.The
number of data patterns is 1000.The training data is taken as the data between
1 and 700, while the testing data covers the period between 701 and 960.

3.1 The Currency Options Volatility Forecasting

The simulation was performed based on historical data of volatility in FX mar-
kets. The hybrid model for decomposition and forecast employs six sub-NNs and
a seventh NN for summation of the decomposed signals. Examples of forecasting
profiles from the feed forward perceptron (MLP), à trous wavelet and the second
hybrid system, together with actual volatility, are given in Fig. 2 and Fig. 3. As
shown in figures, the forecasts are accurate at a satisfactory level, which reveals
the effectiveness of the proposed. The predictions from the two hybrid schemes
are similar, so we only illustrated results from the second one.
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Fig. 2. Forecasting the currency option volatility on training data set

3.2 Evaluating the Prediction Performance

The final step in the design procedure is the assessment of the forecasting perfor-
mance of the introduced models. Forecasting errors have considerable implications
for the forecasting performance ofmodels.Various errormetrics between the actual
and forecastedvolatilityhavebeendefined in the literature [10].This paper adopted
normalized mean squared error (NMSE) as the error measure. It is defined as:

NMSE = 1
N

N∑
k=1

(fk − f̂k)2 (9)

where fk and f̂k is the actual and forecasted volatility at time k, respectively.
NMSE is more suitably applied to evaluate the forecasting performance of

all four models over the forecasting range of interests. The NMSE values from
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Fig. 3. Forecasting the currency option volatility on a testing data set
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Fig. 4. The normalized mean squared error from different models with two data type

the different forecasting models are presented in Fig. 4. This figure shows that
the wavelet only model is the best forecasting performance on testing dataset
among four models, with regards to the least NMSE value. On the other hand,
the other three modes occur over-fitting problems.

4 Conclusions

Currency options volatility short term forecast is important for option pric-
ing and risk management in the FX markets. Proper volatility forecast helps
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the market participants to maximize their profits and/or reduce their possible
losses. Traditional statistics based linear regression methods need modification
to capture the more and more nonlinearities in volatility signals under the mar-
ket conditions. This paper introduced a hybrid neural-wavelet scheme to predict
currency options volatility in short term. Wavelet decomposition techniques are
discussed and used to gain deeper insight into the volatility data series, and,
therefore, get better prediction results. Different techniques are used to imple-
ment the prediction model considering its different components. ARD method
dealing with neural network length of training data window is also discussed.

The proposed techniques have been tested with the weekly and monthly
USD/Yen options volatility market data series with promising results. Differ-
ent approaches for volatility forecast are also performed on the same volatility
series for comparison to show the effectiveness of the forecast models. Accord-
ing to Fig. 4, wavelet only model is the best forecasting performance on testing
dataset among four models, with regards to the least NMSE values. Therefore,
wavelet only model outperforms the other three models in forecasting volatility.

Under the FX market situation, the currency options price signal is more
appealing to market players. The further research is study how to apply the
volatility forecasting values into pricing currency options.
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Abstract. Time-series models have been used to make reasonably accurate pre-
dictions in the areas of weather forecasting, academic enrolment and stock price 
etc… We propose a methodology which incorporates trend-weighting into the 
fuzzy time-series models advanced by S.M. Chen and Hui-Kuang Yu. By using 
actual trading data of Taiwan Stock Index (TAIEX) and the enrolment data of 
the University of Alabama, we evaluate the accuracy of our trend-weighted, 
fuzzy, time-series model by comparing our forecasts with those derived from 
Chen’s and Yu’s models. The results indicate that our model surpasses in accu-
racy those suggested by Chen and Yu. 

1   Introduction 

Each day individual investors, stock fund managers and financial analysts attempt to 
predict price activity in stock market on the basis of either their professional knowl-
edge or stock analyzing tools. Higher accuracy is most concerned, because more 
profit will be made if more accurate predictions are given. So, they have, perennially, 
strived to discover ways to predict stock price accurately.  

For more than one decade, different fuzzy time-series models have also been ap-
plied to solve various domain problems, such as financial forecasting [3], [5], [16], 
university enrolment forecasting [1], [12], [13], temperature forecasting, etc... As 
Dourra (2002) notes, it is common practice to “deploy fuzzy logic engineering tools 
in the finance arena, specifically in the technical analysis field, since technical analy-
sis theory consists of indicators used by experts to evaluate stock price [2].”  

In this paper, a trend-based, fuzzy, time-series model is proposed to improve the 
forecast accuracy in stock market. In this model, several factors such as the fuzzy rela-
tionships of trend weighted, a reasonable universe of discourse, a reliable length of 
intervals and past patterns of stock prices are all considered together for forecasting. 
Moreover, three refined processes are employed in the forecasting algorithm. Using 
one year period of the trading data from the Taiwan Stock Index and, the enrolment of 
the University of Alabama, as the data sets for training and testing, the results demon-
strate that the proposed model outperforms other fuzzy time-series models.  

The remaining content of this paper is organized as follows: Section 2 introduces 
the related literature of fuzzy time-series model; section 3, demonstrates the proposed 
model and algorithm; section 4 evaluates the model’s performance; and section 5 
concludes the paper. 
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2   Related Works 

This section briefly reviews the related literature, including two sections: literature 
reviews of time-series model and fuzzy time-series definitions and algorithm. 

2.1   Literature Reviews of Fuzzy Time-Series Model 

Fuzzy theory was originally developed to deal with the problems involving human 
linguistic terms [18], [19], [20]. Time-series methods had failed to consider the appli-
cation of this theory until fuzzy time-series was defined by Song and Chissom [11]. In 
1993, Song and Chissom proposed the definitions of fuzzy time-series and methods to 
model fuzzy relationships among observations [11]. In the following research, they 
continued to discuss the difference between time-invariant and time-variant models 
[13]. Besides these researchers, Chen (1996)  proposed  another method to applied 
simplified arithmetic operations in forecasting algorithm rather than the complicated 
max-min composition operations presented in Song and Chissom’ [1].  

In time-series model, when unexpected conditions happen, the fluctuations can not 
be recorded into the historical data immediately. This would probably results in terri-
ble inaccurate forecast by using the out-of-date data. To deal with the problem, a 
group decision-making method was employed to integrate the subjective forecast 
values of all decision makers. Fuzzy weighted method was then combined with sub-
jective forecast values to produce the aggregated forecast value.  

Huarng (2001) pointed out that the length of intervals affects forecast accuracy in 
fuzzy time-series and proposed a method with distribution-based length and average-
based length to reconcile this issue [6].  The method applied two different lengths of 
intervals to Chen’s model and the conclusions showed that distribution-based and 
average-based lengths could improve the accuracy of forecast. Although this method 
has excellent performance, it creates too many linguistic values to be identified by 
analysts. According to Miller (1956), establishing linguistic values and dividing inter-
vals would be a trade off between human recognition and forecasting accuracy [8]. 

It becomes apparent that the major drawback of these methods is the lack of con-
sideration in determining a reasonable universe of discourse and the length of inter-
vals. Moreover, the researchers find that the neglected information, which indicates 
the patterns of trend changes in history, should be considered in the processes of fore-
casting. To reconcile these problems above, a new methodology is hereby proposed. 

2.2   Fuzzy Time-Series Definitions and Algorithm 

Over the past fourteen years, many fuzzy time-series models have been proposed by 
following Song and Chissom’s definitions [11]. Among these models, Chen’s model 
is very conventional one because of easy calculations and good forecasting perform-
ance [1]. Therefore, Song and Chissom’s definitions and the algorithm of Chen’s 
model are used for illustrations as following: 

Definition 1: fuzzy time-series  

Let ( )( )…… ,2,1,0,=ttY , a subset of real numbers, be the universe of discourse by 

which fuzzy sets ( )tf j  are defined. If ( )tF  is a collection of ( ) ( )…tftf 21 ,  then ( )tF  

is called a fuzzy time-series defined on ( )ty . 
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Definition 2: fuzzy time-series relationships  

Assuming that ( )tF  is caused only by ( )1−tF  , then the relationship can be expressed 

as: ( ) ( ) ( )1,1 −∗−= ttRtFtF  , which is the fuzzy relationship between ( )tF  and 

( )1−tF , where ∗  represents as an operator. To sum up, let ( ) iAtF =−1  

and ( ) jAtF = . The fuzzy logical relationship between ( )tF  and ( )1−tF  can be de-

noted as ji AA → where iA  refers to the left-hand side and jA  refers to the right-

hand side of the fuzzy logical relationship. Furthermore, these fuzzy logical relation-
ships can be grouped to establish different fuzzy relationships. 

The Algorithm of Chen’s model 

Step 1: Define the universe of discourse and intervals for rules abstraction. Based on 
the issue domain, the universe of discourse can be defined as: U = [starting, 
ending]. As the length of interval is determined, U can be partitioned into 
several equal length intervals. 

Step 2: Define fuzzy sets based on the universe of discourse and fuzzify the histori-
cal data. 

Step 3: Fuzzify observed rules.For example, a datum is fuzzified to Aj if the maximal 
degree of membership of that datum is in Aj . 

Step 4: Establish fuzzy logical relationships and group them based on the current 
states of the data of the fuzzy logical relationships.  

For example, A1→A2, A1→A1, A1→ A3, can be grouped as: A1→A1, A2, A3. 
Step 5: Forecast. Let ( ) iAtF =−1 .Case 1: There is only one fuzzy logical relation-

ship in the fuzzy logical relationship sequence. If   Ai →Aj, then F(t), forecast 
value, is equal to Aj.Case 2: If  Ai →Ai , Aj , …, Ak, then F(t), forecast value, is 
equal to Ai , Aj , …, Ak . 

Step 6: Defuzzify. Apply “Centroid” method to get the results of this algorithm. This 
procedure (also called center of area, center of gravity) is the most often 
adopted method of defuzzification. 

3   Trend-Weighted Fuzzy Time-Series Model 

In this section, we propose a research model (Fig.1) of trend-weighted, fuzzy, time-
series and its algorithm. From our review of the literature, there are two major draw-
backs: (1) The lack of consideration in determining a reasonable universe of discourse 
and the length of intervals; and (2) Many researchers neglect the information, which 
indicates patterns of trend changes in the past history. In order to reconcile these prob-
lems, three refined processes are factored into the model: (1) To define a reliable 
length of intervals for linguistic values; (2) To classify recurrent fuzzy relationships 
into three different types of trends and assign a proper weight to individual fuzzy 
relationships; and (3) To modify the forecasting equation of Chen’s model and assign 
a adaptive value, alpha (α ), to make the forecast results more reliable.  
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Fig. 1. Research model for trend-weighted fuzzy time-series 

Table 1. Assign weights to different trends 

(t = 1) A1 → A1 No change Assign weight 1 

(t = 2) A1 → A2 Up trend Assign weight 1 

(t = 3) A2 → A1 Down trend Assign weight 1 

(t = 4) A1 → A1 No change Assign weight 2 

(t = 5) A1 → A1 No change Assign weight 3 

(t = 6) A1 → A3 Up trend Assign weight 1 
* t denotes time point 

Initially, in the first refined process, the universe of discourse should be partitioned 
into seven linguistic values [8], and if the data amount of a given linguistic value is 
larger than the average amount, then the original linguistic value should be further 
partitioned in half. Because the data occur more frequently in the linguistic value, 
using once-divided linguistic value to present the data is supposed to be less reliable 
than twice-divided. However, it would be undesirable to create too many linguistic 
values and, thereby, ignoring the meaning of fuzzy application. 

The second comes from the belief of the researchers that classifying these relations 
into three different types of trends should enhance the performance of prediction. Tra-
ditionally, fuzzy relationship weights are determined either based on knowledge which 
could be elicited from domain experts or their chronological order. Since each fuzzy 
relationship will reoccur, from the researcher’s perspective, classifying them into dif-
ferent trends and converting the counts of trends to incremental weights is reasonable 
for making more accurate predictions, hence, the trend-weighted method. The details 
describing the assignment of weights are listed in Table 1. For example, it is clear that 

Establish fuzzy sets for observations and 
fuzzify historical data. 

Establish fuzzy logic relationships. 

Aggregate weights to calculate forecast. 

Establish fuzzy relationship groups into 

Assign trend weights. 

Adapt α to adapt the forecast result. 
  

Define the universe of discourse U and 
partition it into several intervals. 
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among the Fuzzy Logical Relationships (FLRs), when t = 5 (t denotes time point), then 
it is assigned the highest value of 3, which means that the probability of its appearance 
in the near future is 3 times higher than in any of the other cases. The merits of the 
trend-weighted model are that they can foresee the cycles and events which will even-
tually occur and relate the fuzzy relationship in a more reasonable manner. 

The third is to modify forecasting equation with a proper alpha (α ) value. Here 
the value represents the confidence level of the investors represented in the whole 
data set, ranging from 0~1 but not equal to 0. If the investor is very confident in the 
predicted variant, then α  is assigned 1; conversely, if the investor is cautious, 0.1 
may be assigned. By way of summarization, a detailed algorithm for the proposed 
model is illustrated below: 

Step 1: Define the universe of discourse and partition it into intervals. By the problem 
used in forecasting, the universe of discourse for observations is defined as: U 
= [starting, ending]. Then the average datum that should be in each linguistic 
value may be calculated. The linguistic value, which the amount of the data 
falling in is larger than the average amount of all linguistic values, should fur-
ther be split into smaller linguistic values by dividing them into two. 

Step 2: Establish fuzzy sets for observations. Each linguistic observation Ai can be 
defined by the intervals: nuuu ,,, 21 … . Each Ai can be represented as following 

equation (1). And the value, kj , is determined by the situation as follows: if j= i-
1, then  kj = 0.5; if  j = i , then kj = 1; if j= i+1 ,then kj = 0.5; elsewhere  kj = 0; 

j

n

j
ji ukA /

1
∑

=

=  (1) 

Step 3: Establish fuzzy relationships. Two consecutive fuzzy sets ( )1−tAi  and 

( )tAj  can be established into a single FLR as ji AA →  

Step 4: Establish fuzzy relationship groups into corresponding trends. The FLRs 
with the same LHSs (left hand sides) can be grouped to form a FLRG. For 
example, mikiji AAAAAA →→→ ,,  can be group as mkji AAAA ,,→ . 

Step 5: Assign trend weights. The FLRs are grouped into the trend to which they 
belong. For example, A1 → A2 , will be grouped into the “up trend,” A1 → 

A1 into the “no-change trend,” and  A2 → A1, into the “down trend”. These 
weights should be standardized to obtain the weight matrix, 

( ) [ ]jWWWtW ',,',' 21 …= .The standardized weight matrix equation is defined 

in equation (2). 
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For example, if the forecast data is Table 1, the weights are specified as fol-
lows: W1 = 1, W2 = 1, W3 = 2, W4 = 3, W5 = 1. By equation (2), the weight 
matrix, W( t ), is determined as following equation (3) : 
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Step 6: Calculate forecast value. From step 5, we can obtain the standardized weight 
matrix. Hereby, apply equation (4) to generate the forecast value ( )1( −tLdf  

is deffuzified matrix, )1( −tWn  is weight matrix). 

)1()1()( −⋅−= tWtLtForecast ndf  (4) 

Step 7: Apply α  to adapt the forecast value. The adapted-forecast equation (5) is 
generated from the modified forecast equation (4). 

( ) ( ) ( )( )11)(_ −−+−= tActualtForecasttActualtforecastAdapted α  (5) 

4   Verifications and Comparisons 

To illustrate the forecasting performance of the model, one period of the trading data 
from Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and an 
open data set, the enrolment of the University of Alabama, are used to perform it. 

Table 2. Comparisons of the forecast results for university enrolments with different models 

Year 
Actual 

Enrolment 
data 

Song & Chissom
[1993] 

Sullivan& 
Woodall 
[1994] 

Chen 
[1996] 

Lee 
[1996] (w=2)

Proposed Model 

1971 13055      
1972 13563 14000 13500 14000  13680.5 
1973 13867 14000 14500 14000 13860 13731.3 
1974 14696 14000 14500 14000 13964 13761.7 
1975 15460 15500 15231 15500 14710 15194.6 
1976 15311 16000 15563 16000 15452 15374.8 
1977 15603 16000 15563 16000 15311 15359.9 
1978 15861 16000 15500 16000 15603 16410.3 
1979 16807 16000 15500 16000 15861 16436.1 
1980 16919 16813 16684 16833 16830 17130.7 
1981 16388 16813 16684 16833 16919 17141.9 
1982 15433 16789 15500 16833 16388 15363.8 
1983 15497 16000 15563 16000 15417 15372.1 
1984 15145 16000 15563 16000 15497 15378.5 
1985 15163 16000 15563 16000 15145 15343.3 
1986 15984 16000 15563 16000 15163 15345.1 
1987 16859 16000 15500 16000 15984 16448.4 
1988 18150 16813 16577 16833 16862 17135.9 
1989 18970 19000 19500 19000 18122 18915.0 
1990 19328 19000 19500 19000 18970 18997.0 
1991 19337 19000 19500 19000 19091 19032.8 
1992 18876 * * 19000 19101 19033.7 

Average Error 3.22% 2.66% 3.11% 2.95% 2.087% 
MSE 423027  386055 407507 377728  192084.3 

Note: * denotes No answer 
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4.1   Forecasting for University Enrolment  

The open data set, the enrolment of the University of Alabama, is used to verify the 
researchers’ model. The comparisons with different models, Chen’s model, Song and 
Chissom’s, Sullivan and Woodall’s, Lee’s and the proposed model (Using α = 0.9 to 
generate the forecast results), are listed in Table 2. 

Table 3. Comparisons of the forecast results for TAIEX with different models 

Date Actual 
Chen’s 
Model 

Forecast 
Error 
(%)

Yu’s 
Model 

Forecast 
Error 
(%)

Proposed 
Model 

Forecast 
Error 
(%)2000/11/2 5,626.08 5300 5.80% 5340.0 5.08% 5463.85 2.88% 

2000/11/3 5,796.08 5750 0.80% 5721.7 1.28% 5644.80 2.61% 
2000/11/4 5,677.30 5450 4.00% 5435.0 4.27% 5797.80 2.12% 
2000/11/6 5,657.48 5750 1.64% 5721.7 1.13% 5690.90 0.59% 
2000/11/7 5,877.77 5750 2.17% 5721.7 2.66% 5673.06 3.48% 
2000/11/8 6,067.94 5750 5.24% 5760.0 5.07% 5871.32 3.24% 
2000/11/9 6,089.55 6075 0.24% 6062.0 0.44% 6042.47 0.77% 

2000/11/10 6,088.74 6075 0.23% 6062.0 0.43% 6061.92 0.44% 
2000/11/13 5,793.52 6075 4.86% 6062.0 4.64% 6061.19 4.62% 
2000/11/14 5,772.51 5450 5.59% 5435.0 5.85% 5795.50 0.40% 
2000/11/15 5,737.02 5450 5.00% 5435.0 5.26% 5776.59 0.69% 
2000/11/16 5,454.13 5450 0.08% 5435.0 0.35% 5744.65 5.33% 
2000/11/17 5,351.36 5300 0.96% 5340.0 0.21% 5409.92 1.09% 
2000/11/18 5,167.35 5350 3.53% 5350.0 3.53% 5317.42 2.90% 
2000/11/20 4,845.21 5150 6.29% 5150.0 6.29% 5151.81 6.33% 
2000/11/21 5,103.00 4850 4.96% 4850.0 4.96% 4861.89 4.72% 
2000/11/22 5,130.61 5150 0.38% 5150.0 0.38% 5093.90 0.72% 
2000/11/23 5,146.92 5150 0.06% 5150.0 0.06% 5118.75 0.55% 
2000/11/24 5,419.99 5150 4.98% 5150.0 4.98% 5213.56 3.81% 
2000/11/27 5,433.78 5300 2.46% 5340.0 1.73% 5459.32 0.47% 
2000/11/28 5,362.26 5300 1.16% 5340.0 0.42% 5391.60 0.55% 
2000/11/29 5,319.46 5350 0.57% 5350.0 0.57% 5327.23 0.15% 
2000/11/30 5,256.93 5350 1.77% 5350.0 1.77% 5288.71 0.60% 
2000/12/1 5,342.06 5250 1.72% 5250.0 1.72% 5232.44 2.05% 
2000/12/2 5,277.35 5350 1.38% 5350.0 1.38% 5309.05 0.60% 
2000/12/4 5,174.02 5250 1.47% 5250.0 1.47% 5250.81 1.48% 
2000/12/5 5,199.20 5150 0.95% 5150.0 0.95% 5157.82 0.80% 
2000/12/6 5,170.62 5150 0.40% 5150.0 0.40% 5180.48 0.19% 
2000/12/7 5,212.73 5150 1.20% 5150.0 1.20% 5154.76 1.11% 
2000/12/8 5,252.83 5250 0.05% 5250.0 0.05% 5192.66 1.15% 

2000/12/11 5,284.41 5250 0.65% 5250.0 0.65% 5228.75 1.05% 
2000/12/12 5,380.09 5250 2.42% 5250.0 2.42% 5257.17 2.28% 
2000/12/13 5,384.36 5350 0.64% 5350.0 0.64% 5343.28 0.76% 
2000/12/14 5,320.16 5350 0.56% 5350.0 0.56% 5347.12 0.51% 
2000/12/15 5,224.74 5350 2.40% 5350.0 2.40% 5289.34 1.24% 
2000/12/16 5,134.10 5250 2.26% 5250.0 2.26% 5203.46 1.35% 
2000/12/18 5,055.20 5150 1.88% 5150.0 1.88% 5121.89 1.32% 
2000/12/19 5,040.25 5450 8.13% 5405.0 7.24% 5050.88 0.21% 
2000/12/20 4,947.89 5450 10.15% 5405.0 9.24% 5037.42 1.81% 
2000/12/21 4,817.22 4950 2.76% 4950.0 2.76% 4954.30 2.85% 
2000/12/22 4,811.22 4850 0.81% 4850.0 0.81% 4836.70 0.53% 
2000/12/26 4,721.36 4850 2.72% 4850.0 2.72% 4831.30 2.33% 
2000/12/27 4,614.63 4750 2.93% 4750.0 2.93% 4750.42 2.94% 
2000/12/28 4,797.14 4650 3.07% 4650.0 3.07% 4654.37 2.98% 
2000/12/29 4,743.94 4750 0.13% 4750.0 0.13% 4818.62 1.57% 
2000/12/30 4,739.09 4750 0.23% 4750.0 0.23% 4770.74 0.67% 

Average error  (Testing) 2.43%  2.36%  1.76% 
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From the Comparisons in Table 2, the average forecasting error of Song and Chis-
som’s model is 3.22%, with an MSE (Mean Square Error) of 423027; Sullivan and 
Woodall model, the average error is 2.66%, MSE is 386055; Chen’s model, the aver-
age error is 3.11%, MSE is 407507; Lee’s model, the average error is 2.95%, MSE is 
377728; and proposed model, the average error is 3.11%, MSE is 407507; It is obvi-
ous that our model has a smaller MSE and less average error than the listing models. 

4.2   Forecasting for TAIEX 

The data from TAIEX during 2000/11/1~2000/12/30 are used for forecasting. The 
comparisons of Chen’s model, Yu’s model and the forecast results from the proposed 
model are listed in Table 3. (Using α = 0.9 to generate the forecast results). 

From the Comparisons in Table 3, the forecasting error of Chen’s model ranges 
from 0.05% to 10.15%; Yu’s model ranges from 0.05% to 9.24%; and proposed 
model ranges from 0.15% to 6.33%. It is quite obvious that the worst case of our 
model is much better than either Chen’s or Yu’s. Furthermore, the average error of 
Chen’s model is 2.43%, Yu’s model is 2.36%, and proposed model is 1.76%. Based 
on these comparisons, the proposed model has a smaller prediction error interval and 
less average error than the other two models. 

5   Conclusions and Future Research 

This paper has proposed a trend-weighted, fuzzy, time-series model to overcome the 
problems mentioned in the literature. Base on the two cases in the verification section 
the researchers conclude that the refined processes would lead to better performance 
than the cited models in forecasting. For each step of the process, we can further draw 
independent conclusions: (1) The second-divided linguistic values seem to be more 
reliable than once-divided linguistic value, and can detail more closely the distribu-
tion of the data in that interval; (2) Classifying recurrent fuzzy relationships and as-
signing proper weights to them make more reasonable descriptions for the past pat-
terns and more accurate predictions for the future; and (3) the results shows that the 
forecast value, with reasonable alpha value adaptation of the user’s opinion, can make 
more precise adjustments to match the past trends in the data set. However, there is 
still room for testing and improving the hypothesis of this model as follows: 

1. Using the other periods of TAIEX, stocks and financial materials as data sets to 
evaluate the accuracy and performance of the model. 

2. Simulating trading, and sum up the profits of these trades to evaluate the profit 
making ability. 

3. Applying different types of data sets to test the model. 
4. Reconsidering the factors affecting the behavior of the stock markets, such as 

trading volume, news and finical reports which might impact it in the future. 
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Abstract. We have insight into the importance of resource exploration derived 
from the quest for sustaining competitive advantage as well as the growth of the 
firm, which are well-explicated in the resources-based view. However, we 
really do not know when the firm will seriously commit to this kind of activi-
ties. Therefore, this study proposes an intelligence-based model using quantum 
minimization (QM) to tune a composite model of adaptive neuron-fuzzy infer-
ence system (ANFIS) and nonlinear generalized autoregressive conditional het-
eroscedasticity (NGARCH) such that it constitutes the relationship among five 
indicators, the growth rate of long-term investment, the firm size, the return on 
total asset, the return on common equity, and the return on sales. In particularly, 
this proposed approach outperforms several typical methods such as auto-
regressive moving-average regression (ARMAX), back-propagation neural 
network (BPNN), or adaptive support vector regression (ASVR) for this timing 
problem in term of comparing their achievement and the goodness of fit. Con-
sequently, the preceding methods involved in this problem truly explain the 
timing of resources exploration in the behavior of firm. Meanwhile, the per-
formance summary among methods is compared quantitatively. 

1   Introduction 

When we think about the firm as a collective of resources [1], it drives the different 
aspects of research directions to answer two fundamental strategic questions: the 
sources of competitive advantage and the growth trajectory of firm. There is fairly 
general agreement that the accumulation of heterogeneous resources can explain the 
success of firm for a period of time [2][3][4][5][6][7]; it also shapes the path of firm’s 
growth [1][8]. However, resources or capabilities, like product, have life cycles [9]. 
Thus, researchers always remind us the importance of exploring new resources due to 
the pressure of external changing environment [1][8][10].  
                                                           
* Corresponding author. 
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We know the importance of resource exploration derived from the quest for sus-
taining competitive advantage as well as the growth of the firm that are well-
explicated in the resources-based view. It is worth understanding that the idea of  
balance between exploration and exploitation will be solely achieved under the as-
sumption of calculated rationality. However, we in fact do not know when the firm 
takes it into account and commits itself to the exploring activities. In each occasion of 
decision-making, decision makers are constrained by bounded rationality [11][12][13] 
which is raised from two facts: (a) managers have limited absorptive capacity, and (b) 
managers acquired finite information subjected to the external changing environment. 
Therefore, the managers might miss or postpone the exact timing of exploring activi-
ties because of their inability on controlling the future uncertainty under the situation 
of limited rationality. Accordingly, the reinforcement of the precedent tendency men-
tioned above will be stressed by the conservative personality of managers. All of 
these will leads the managers to persist on the exploiting the existing resources rather 
than exploring new ones. 

So, we concern the timing problem, namely when the risky attitude of managers 
will be shifted from risk-avoiding exploiting activities to relative risk-taking explor-
ing activities. In the basis of the prospect theory [14], we argue that the turning point 
will be triggered by the negative prospects. That is, when the firm is framed by posi-
tive performance, it will incline the managers to utilize the existing resources and 
neglect the need of exploring new ones. On the other hand, when the firm suffers 
from loss or decline in performance, it will reverse the risky attitude of decision mak-
ers to approach risk-taking considerably that will ignite more exploring activities. 
And then, we can observe that the trajectory of the growth of firm is emerging with 
the exploration and the following exploitation and so on [1][15]. In the mean time, we 
also proposed that large firm holds much more resources than small one [16] in this 
case that leads to the large firm’s ‘value function’ [14] is flatter than small firm. 
Therefore, large firm has revealed low risk-aversion so as to potentially proceed to 
higher exploring activities in positive frames; in contrast, small firm with the emer-
gence of high risk-seeking in negative frames will then undertake more exploring 
activities.  

There are five indicators that are the growth rate of long-term investment, the firm 
size, the return on total asset, the return on common equity, and the return on sales. 
The relationship among these indicators indeed can be used to analyze the timing of 
resources exploration in the behavior of firm. Several quantitative methods, such 
linear time-series models with single-output, multi-input structure as AR, MA, ARX, 
ARMA, and ARMAX [17][18], are applicable to the simulation of the dynamics of 
the interaction between five indicators. Once a trained structure is built, it interprets 
the timing of resources exploration in the behavior of firm based on the coefficients 
with respective to explanatory variables. However, a trained ARMAX [19] do not get 
the least mean-absolute-percent-error for the timing problem. Thus, four remarkable 
nonlinear models, adaptive neuro-fuzzy inference system (ANFIS) [20], back-
propagation neural network (BPNN) [21], adaptive support vector regression (ASVR) 
[22], and quantum minimization [23] tuning ANFIS/NGARCH composite model [24] 
are also provided in this study so that the performance comparison among methods 
for the timing problem is compared quantitatively. 
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2   Methods 

2.1   ANFIS Inference Model 

Adaptive neuro-fuzzy inference system (ANFIS) [20] is a remarkable Sugeno-type 
fuzzy inference machine and we herein apply and treat it as a non-periodic short-term 
predictor to forecasting the flow of data packets among hosts. A single Sugeno rule is 
represented as the diagram in Fig. 1. As a matter of fact, a fuzzy rule with crisp input 
signals x  and y  is formulated on Eq. (1). 

 cbyaxzOutputthenyInputandxInputIf i ++=== ,21 , rNi ,...,2,1= , (1) 

where the output signal iz  is designated as a linear function of input signals x  and y . 

Two fuzzy membership function values )(1 xF  and )(2 yF , with respective to two input 
signals x  and y , implement a “AND” function and result in a weight value iw  that is 

so-called firing strength as expressed on Eq. (2), 

 ))(),(( 21 yFxFANDw iii = , rNi ,...,2,1= . (2) 

The final output finalZ , during the defuzzification, is evaluated by a weighted average 

through N  fuzzy rules as listed below. 
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Autoregressive moving-average (ARMA) [18] and artificial neural network (ANN) 
[21] are frequently employed to forecast time series, but not suitable for modeling the 
short-term structure with fewer data because they need a lot of data to train their struc-
ture in-depth. ANFIS is capable of building the most recent few data to fit the short-
term dynamics. However, the occurrence of extreme outlier causes ANFIS output a big 
residual error when volatility clustering effect [6] happens. Therefore, we introduce a 
nonlinear conditional heteroscedasticity (NGARCH) [25], which can resolve volatility 
clustering effect, to compensate ANFIS outputs, and then this composite model is 
tuned optimally by quantum minimization (QM). Accordingly, we denote this intelli-
gence-based composite model as QM tuning ANFIS/NGARCH approach. 

 

Fig. 1. A single Sugeon fuzzy rule is conducted by adaptive neuro-fuzzy inference system 
(ANFIS) wherein MF denotes the fuzzy membership function 
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2.2   ARMAX/NGARCH Composite Model 

The ARMAX [19] encompass autoregressive (AR), moving-average (MA), and re-
gression (X) models, in any combinations as expressed below. 
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where armaxC  = a constant coefficient, armax
iR = autoregressive coefficients, armax

jM = 

moving average coefficients, )(teresid = residuals, )(tyarmax = responses, armax
kβ = 

regression coefficients, X = an explanatory regression matrix in which each column is 
a time series and ),( ktX  denotes a element at the t th row and k th column of input 
matrix. 

The NGARCH [25] consists of nonlinear time-varying conditional variances and 
Gaussian innovations. Its mathematical formula is shown as follows.  
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where ngK  = a constant coefficient, ng
iG = linear-term coefficients, ng

jA  = nonlinear-term 

coefficients, ng
jC  = nonlinear-term thresholds, )(2 tntvcvσ  = a nonlinear time-varying con-

ditional variance and )( jteresid −  = j-lag Gaussian distributed residual in ARMAX. 

2.3   Quantum Minimization (QM) 

Quantum-based minimization (QM) that makes optimization task work out associated 
with probability of success at least 1/2 within an unsorted database is realized by 
quantum minimum searching algorithm [23]. A quantum exponential searching algo-
rithm [26] is called by quantum minimum searching algorithm to be as a subroutine to 
serve a fast database searching engine. 

2.3.1   Quantum Exponential Searching Algorithm 
As reported in [26], we assume in this section that the number t of solutions is known 
and that it is not zero. Let { }1)(| == iFiA  and { }0)(| == iFiB . 

Step 1: For any real numbers k  and l  such that 1)( 22 =−+ ltNtk , redefine 

 ∑∑
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A straightforward analysis of Grover's algorithm shows that one iteration 
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Step 2: This gives rise to a recurrence similar to the iteration transforms in Grover's 
algorithm [27], whose solution is that the state 〉Ψ ),(| jj lk  after j  iterations is 

given by 

 ))12cos((
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))12sin((
1 θθ +

−
=+= j

tN
landj

t
k jj . 

where the angle θ  is so that Nt=θ2sin  and 20 πθ ≤< . 

2.3.2   Quantum Minimum Searching Algorithm 
We second give the minimum searching algorithm [23] in which the minimum 
searching problem is to find the index i  such that ][iT  is minimum where ]1,...,0[ −NT  
is to be an unsorted table of N  items, each holding a value from an ordered set.  

Step 1: Choose threshold index 10 −≤≤ Ni  uniformly at random. 
Step 2: Repeat the following stages (2a and 2b) and interrupt it when the total running 

time is more than NN 2lg4.15.22 + . Then go to stage (2c). 

(a) Initialize the memory as ∑ 〉〉
j

ij
N

||
1 . Mark every item j  for which 

][][ iTjT < . 
(b) Apply the quantum exponential searching algorithm [26]. 
(c) Observe the first register: let 'i  be the outcome. If ][][ ' iTiT < , then set 

threshold index i  to 'i . 
Step 3: Return i  

This process is repeated until the probability that the threshold index selects the 
minimum is sufficiently large. 

3   Intelligence-Based Approach to Problem 

In this case, the signal difference (or deviation) of Eq. (6) can provide precious infor-
mation about the short-run dynamics of the currently applied data sequence. A signal 
deviation )(koδ  is defined as the backward difference between two consecutively 
adjacent observations, )(ko  and )1( −ko , as  

 )1()()( −−= kokokoδ . (6) 

A single-step-look-ahead prediction, as shown in Fig. 2, can be arranged by adding 
the most recent predicted signal deviation )1(ˆ +koδ  of Eq. (7) to the observed current 
output )(ko . The summation results in a predicted output )1(ˆ +ko  at the next period as 
expressed in Eq. (8) [24]. The function h  in Eq. (7) represents a predictor that in-
cludes a data preprocessing unit, a QM-ANFIS/NGARCH system and a summation 
unit, as shown in Fig. 3. A data preprocessing unit is used to calculate signal devia-
tions of Eq. (6) as 

 ))(),...,1(),(),(),...,1(),(()1(ˆ skoδkoδkoδskokokohkoδ −−−−=+  (7) 

 )1(ˆ)()1(ˆ ++=+ koδkoko  (8) 
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Let’s turn back and examine again QM-ANFIS/NGARCH system as shown in Fig. 
3. In order to construct an ANFIS-based prediction, the most recent predicted devia-
tion )1(ˆ +koδ  at next period is assigned as the output of the QM-ANFIS/NGARCH 
system. As shown in Fig. 2, the most recent observations and their deviations, 

)}(),...,1(),(),(),...,1(),({ skokokoskokoko −−−− δδδ , have been specified as inputs of the 
QM-AFNG system. Based on the QM-ANFIS/NGARCH structure, one can form the 
function p  of the ANFIS output, )1(ˆ +koanfisδ , and the square-root of NGARCH’s 

output, )1(ˆ +koδσ , as presented below and shown in Fig. 3.  

 ))1(ˆ),1(ˆ()1(ˆ ++=+− kσkoδpkoδ oanfisafngqm δ  (9) 

A weighted-average function is assumed to combine both )1(ˆ +koanfisδ  and )1(ˆ +koδσ  

to attain a near-optimal result )1(ˆ +− ko afngqmδ . 
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Here, the linear combination of two nonlinear functions, )1(ˆ +koanfisδ  and )1(ˆ +koδσ , 

can also optimally approximate an unknown nonlinear target )1(ˆ +− ko afngqmδ . The rea-

son for the approach of Eq. (10) is that individual nonlinear function implemented by 
using soft-computing is fast and effective, speeding convergence and reducing com-
putational time. This proposed approach is called QM-ANFIS/NGARCH as shown in 
Fig. 3. 
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Fig. 2. Diagram of QM Tuning ANFIS/NGARCH outputs 

 

Fig. 3. Prediction using QM-ANFIS/NGARCH system 
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4   Empirical Simulation and Discussions 

A collection of data about five indicators, (i) the growth rate of long-term investment 
(GRLTI), (ii) the firm size (FS), (iii) the return on total asset (ROA), (iv) the return on 
common equity (ROE), and (v) the return on sales (ROS), from TEJ [28] including 30 
corporations have been cited herein for explaining the timing of resources exploration 
in the behavior of firm to fit in with the real world dynamics in changing environ-
ments. In order to accomplish data manipulation easier, data preprocess is required to 
transform indicator GRLTI linearly with appropriate bias, and a natural logarithm 
applied to indicator FS. The first phase designed as training/learning stage for model-
ing linear structure of ARMAX as well as nonlinear structure of BPNN and ASVR, 
which is of the posterior analysis from observed 383 historical data for a period of 10 
years from 1995 to 2004. Next, the second phase, the prior validation stage proceeded 
to simulate the empirical results for examining the system performance employing 
interpolation from trained model. Estimated ARMAX with a bias of scalar (bias= 
2000.5) simulated from computer:  
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Thus, we can construct an estimated ARMAX model as expressed in Eq. (11). In 
this estimated ARMAX model, we can check directly from Eq. (11) to explain the 
current GRLTI is related to it’s the most recent four lags of GRLI, as well as coupled 
to the second lag of FS, the second lag of ROA, the second lag of ROE, and the  
second lag of ROS. We can interpret that in the respect of autoregressive GRLTI is 
definitely auto-correlated to a few of most recent historical (the past) GRLTI. Fur-
thermore, there are three indicators ROA, ROE, and ROS playing the roles to affect 
the current GRLTI negatively. In other words, increasing on ROA, ROE, or ROS will 
depress the current GRLTI. This development can meet the typical theory in the pros-
pect theory perspective [14]. Nevertheless, an indicator FS can promote the current 
GRLTI such that the larger FS is, the higher GRLTI will be.  It is also noted that 
strictly speaking the residual terms indicated by )(te , )1( −te , and )2( −te  in MA part  
have small values usually. The MA part cannot affect GRLTI significantly, even 
though they have relatively larger coefficients with respect to those terms, )(te , 

)1( −te , and )2( −te  as shown in Fig. 4. Obviously, MA part is trivial in this ARMAX 
model as a result of small residuals; in contrast, AR and X part of estimated ARMAX 
model are used to determine GRLTI predominantly and their corresponding coeffi-
cients is displayed as shown in  Fig. 5.  As a matter of fact, the most recent lags of 
GRLTI are essentially related to the performance of GRLTI, and secondly we must 
also take FS into account when we examine the changes in GRLTI. 

The performance criteria [29] based on mean square error (MSE), mean absolute 
deviation (MAD), and mean absolute percent error (MAPE) will be used to compare 
the performance of empirical simulation among models (ARX, ARMAX, ANFIS, 
BPNN, ASVR, and QM-ANFIS/NGARCH) as listed in Table 1. Nonlinear models get 
lower MSE, MAD, and MAPE than the linear ones, ARX and ARMAX. This is be-
cause MAPE for ARX and ARMAX always cannot less than 0.3% even varying with 
different biases. It implies that the accuracy of empirical simulation is not enough for 
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ARX and ARMAX. On the contrary, nonlinear models like ANFIS, BPNN and ASVR 
obtain higher accuracy in empirical simulation. Furthermore, as listed in Table 1, the 
goodness of fit for the proposed methods is also tested by Q-test [30], and null hy-
pothesis do not be rejected due to all p-value greater than the level of significance 
(5%). In other words, all of trained structures are significantly for this timing problem. 
As for model validation, QM-ANFIS/NGARCH has attained the best Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) [18], which implies the 
best reliability for the problem. However, interactions between indicators do not be 
resolved yet due to none of exact input/output equation to represent any nonlinear 
structure ANFIS, BPNN, ASVR, or QM-ANFIS/NGARCH. Fortunately, linear struc-
ture ARMAX built a representative equation in which we check the correlation be-
tween input and output indicators, respectively. That is, this equation can give us new 
insight into the timing of resources exploration in the behavior of firm. 

Table 1. The performance comparison is shown among six approaches 

Criteria ARX ARMAX ANFIS BPNN ASVR QM-
ANFIS/NGARCH 

MSE 0.0023 0.00003991 0.0000092 0.0000073 0.0000065 0.00000086 
MAD 0.0101 0.00045029 0.00024341 0.00021757 0.00065275 0.00016435 

MAPE 0.0644 0.0038 0.0021 0.0019 0.0016 0.0011 
p-VALUE 0.2089 0.9997 0.7414 0.9062 0.9067 0.9331 

AIC -123.5 -107.9914 -215.1323 -344.5377 -1035.3 -1292.1 
BIC -121.9 -92.1992 -199.3402 -328.7455 -1019.5 -1274.3 
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Fig. 4. The coefficients of AR, MA and X 
parts of ARMAX are displayed 
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Fig. 5. The coefficients of AR and X parts 
of ARMAX are emphasized here 
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5   Conclusions 

The following statements summarize the accomplishment of the proposed methods, 
including intelligence-based models like ANFIS, BPNN, ASVR, and QM-
ANFIS/NGARCH. The resulting ARMAX model explains the growth rate of long-
term investment, which can help decision-maker to explore new resources due to the 
pressure of external changing environment. This dynamics also can be considered as 
the timing when the risky attitude of managers will be shifted from risk-avoiding to 
relative risk-taking exploring activities. In ARMAX model, the firm size affects the 
growth rate of long-term investment positively whereas the return on total asset, the 
return on common equity, and the return on sales influence the growth rate of long-
term investment negatively. Clearly, the nonlinear intelligence-based model QM-
ANFIS/NGARCH gets the satisfactory results, and improves the goodness of fit better 
than the linear structure of ARMAX or the nonlinear structure of ANFIS, BPNN or 
ASVR. However, the nonlinear intelligence-based models, including ANFIS, BPNN, 
ASVR, and QM-ANFIS/NGARCH, cannot tell us the exact impact to the growth rate 
of long-term investment from the other individual factors because those are hidden in 
the nonlinear system. 
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Application of ICA in On-Line Verification of the Phase 
Difference of the Current Sensor  
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Abstract. The performance of the current sensor in power equipment may 
become worse affected by the environment. In this paper, based on ICA, we 
propose a method for on-line verification of the phase difference of the current 
sensor. However, not all source components are mutually independent in our 
application. In order to get an exact result, we have proposed a relative 
likelihood index to choose an optimal result from different runs. The index is 
based on the maximum likelihood evaluation theory and the independent 
subspace analysis. The feasibility of our method has been confirmed by 
experimental results.  

Keywords: Independent Component Analysis (ICA), Independent Subspace 
Analysis, Relative Likelihood Index, Current Sensor. 

1   Introduction 

The on-line monitoring of power equipment for high-voltage insulation is the key 
technique to improve the security of the power supply. Because the current leakage 
is very small in normal state, the current sensor, which is used to monitor the 
parameters of the current, must have high accuracy. However, the performance of 
most monitoring equipment may become worse in application. Because most current 
sensors work in a strong electromagnetic environment, they tend to be affected by 
the electromagnetism. Also, the temperature and the humidity of the atmosphere can 
change the current sensor’s phase difference. Further more, in the measurement 
circuit, the linear amplification of the current also has an influence on the phase 
difference. In our country, the range of the phase difference of the current sensor 
used in the primary substation is 0.75o with 20% rating current. In this paper, we 
focus on finding an on-line method to verify the phase difference of the current 
sensor. 

Because it’s a linear system, the frequency of the current will not change after 
processing. We input a test sine current 

tI  with fixed frequency and phase to the 

current sensor.  tI  is assumed to be independent of the sensor’s original input xI , 

which is the leaking out current of the power equipment. Then separating the response 
of tI  from the sensor’s output oI , we can get '

tI . The phase difference of the current 
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sensor can be determined by comparing '
tI  with tI . With proper separating algorithm, 

this method can achieve high accuracy. 
The traditional method of separating a sine component with a given frequency from 

a mixed signal is FFT analysis. But, because of the spectral leakage and the noise 
interference, it is often difficult to get an acceptable result. It may be also not feasible 
to use least-squares estimation, for there is little information about the system’s 
original output. 

Because Independent Component Analysis (ICA) is capable of finding the 
underlying sources [1], and in our case the test signal is independent of another signal, 
we can use ICA to solve this problem. However, the basic ICA model requires that 
the number of observed mixed signals is not less than the number of source signals. It 
is also required that the observed signals should be additive mixtures of the source 
signals with different weights. Thus we firstly take measures to change it into the 
basic ICA model. It is described in detail in Section 2. 

Since there are intrinsic limitations of ICA [2], the separation results of the same 
mixed signals may be somewhat different in different runs. Previous researches, such 
as [3], [4], have studied the reliability of the ICA estimation. But they mainly focus 
on the independence of the source components which are all mutually statistical 
independent. It is not suitable for us. Because some components are not completely 
independent after we change it into the basic ICA model. In Section 3, we have 
proposed a relative likelihood index to indicate the separation phase errors of different 
runs in order to choose an optimal one as the final separation result. In Section 4, the 
feasibility of our method is illustrated by experiments. And the factors affecting the 
accuracy of the result are discussed. Conclusions are drawn in the last section. 

2   Signal Separation Method   

2.1   The ICA Model  

Generally Independent Component Analysis (ICA) consists in recovering N unknown 

sources { } 1
( )

N

n n
s t =

from M instantaneous mixtures { } 1
( )

M

m m
x t =

, and we can use this 

matrix notation for the instantaneous linear mixture model 

1 1 1( ) ( ) ( )

... ... ...

( ) ( ) ( )M N M

x t s t n t

A

x t s t n t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (1) 

Where A is an M×N unknown mixing matrix and ( )kn t  are additive noise signals 

which will always be assumed to be mutually de-correlated and de-correlated from all 
sources. In basic ICA model, it is required M N≥ .  

In order to verify the phase difference of the current sensor, we need to separate the 
response of the test current signal tI  from the mixed output oI  using ICA. This can 

be modeled as follows: the testing sine current tI  is denoted as ( )Is t  with fixed 
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frequency 0f and phase 0θ . The mixed output current of the current sensor oI  is 

denoted as ( )x t , which is the additive mixture of the original output signal ( )og t  and 

the test signal’s response ( )os t . Because of the linearity of the system, ( )os t must be a 

sine signal with the same frequency as ( )Is t . It is also restricted that ( )og t  hardly has 

the component with frequency 0f  in its spectrum. So, we obtain the output vector 

( ), 1,2...x n n N=  by sampling.  

( ) ( ) ( ) ( )o ox n s n g n noise n= + +  (2) 

Our focus is on how to separate ( )os n  from ( )x n  with exact phase. We can take the 

sum of ( )og n and ( )noise n  as one component. They are emitted by different physical 

sources from the test signal, and can be considered to be independent of the test 
signal. Because the frequency of ( )os n is 0f , we can project test signal ( )os n  into the 

subspace which is generated by two vertical vectors 0 0sin(2 )f t nπ  and 0 0cos(2 )f t nπ  

to determine its phase and amplitude. Therefore, ( )x n can also be expressed as  

1 0 0 2 0 0( ) sin(2 ) cos(2 ) ( )x n a f t n a f t n g nπ π= + +  (3) 

Where ( ) ( ) ( )og n g n noise n= + , 1a and 2a  are unknown mixing weights.  

In order to satisfy the basic ICA requirements, 1( )x n  and 2 ( )x n  are generated by 

subtracting 0 0sin(2 )f t nπ  and 0 0cos(2 )f t nπ from ( )x n respectively. Although 

0 0sin(2 )f t nπ  and 0 0cos(2 )f t nπ  are not completely independent, they still can be 

separated by ICA explained in [9]. Then applying FastICA [1] to the generated 
mixture matrix

1 2( ( ), ( ), ( ))TX x n x n x n= , three latent sources can be estimated.  They 

are ( )g n , 0 0sin(2 )f t nπ  and 0 0cos(2 )f t nπ .Meanwhile, the mixing matrix A in Eq.1 is also 

estimated.  

2.2   Simulation to Test the Model 

To test the preceding method, artificial source signals are generated in MATLAB with 
length of 8K samples: a 50 Hz square wave with 18.42 dB SNR as the current 
sensor’s original output ( )g n  and a 62.5 Hz test sine signal ( )os n with phase / 4π . 

We sampled the sum of those signals with a 50 us  interval and obtained the mixed 
signal ( )x n shown in Fig. 1. The normalized separation results are shown in Fig. 2. 

Then the estimated test signal (shown in Fig.3) is the sum of the sine and cosine 
components with the weights estimated in A (Eq.1). The phase error of the estimated 
signal can be obtained by comparing the zero points of the real signal with the 
estimated signal. The errors of 10 different runs of FastICA on the same mixed signal 
are shown in Table 1. The results are somewhat different and some results’ phase 
errors are too large. Considering the requirement of the application, we have to find 
an index to choose an optimal result with a smaller error from several runs. It will be 
discussed in the next section. 
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Fig. 1. The source signals and the mixed signal. 
Top: The source signal ( )g n with 18.42 dB 

SNR. Middle: The source signal ( )os n . Bottom: 

The mixed signal ( )x n . 

Fig. 2. The normalized separation results. Top: 
The cosine component. Middle: The sine 
component. Bottom: The sensor’s original 
output ( )g n . 
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Fig. 3. The comparison of the real test signal (top) with the estimated signal (bottom) 

Table 1. The phase errors (o) of  the separation results of 10 runs on the same mixed signal 

Time 1 2 3 4 5 6 7 8 9 10 
error 0.0018 0.6539 0.6556 0.0018 0.0248 0.3132 0.0018 0.0018 0.4869 0.0018 

3   The Evaluation of the Separation Results 

Figures in Table 1 indicate that the separation results of the same mixed signal are 
different in different runs. This may be induced by several reasons. The first reason is 
the statistical character of ICA. Because the initial mixing matrix A is generated 
randomly, the algorithm may find a local extremum of the objective function. The 
second reason, as for this case, is that the sine and cosine components in the source 
signals are not independent although they are uncorrelated. However, the subspace 
generated by the two signals is independent of the other source component. The third 
reason is the intrinsic limitations to the accuracy of the estimation of the mixing 
matrix [2]. 

A major problem of evaluating the reliability of the estimation is that the real signal 
is unknown. In general, ICA can be illustrated by a probability density matching 
problem [5], [7], which, in fact, turns out to be equivalent to mutual information 
minimization, and maximum likelihood estimation [6]. So, we can derive a relative 
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likelihood index from maximum likelihood evaluation. In theory the indexes should 
be in reverse order in relation to their corresponding phase errors’ absolute value.  

Previous study [1] shows that based on using the well-known result on the density 
of a linear transform, the density xp  of the mixture vector X (defined in Eq.1) can be 

formulated as 

( ) det ( ) det ( )x s i i
i

p X B p S B p s= = ∏  (4) 

where 1
1 2( , ... )T

nB A b b b−= = , T
i is b X= and the ip  denote the densities of the 

independent components. Then the likelihood [1] can be obtained as the product of 
this density evaluated at the T  points. This is denoted by L  and considered as a 
function of B : 

1 1

( ) ( ( )) det
T n

T
i i

t i

L B p b X t B
= =

= ∏∏  (5) 

We can denote the sum over the sample index t by an expectation operator, and 
divide the likelihood by T  to obtain the log-likelihood 

1

1
log ( ) log ( ) log det

n
T

i i
i

L B E p b X B
T =

⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑  (6) 

As for the estimation of the densities, it should be divided into two cases. On one 
hand, for the independent components, it has been verified (chapter 9 in [1]) that it is 
enough to use just two approximations of the density of an independent component. 
They are supergaussian and subgaussian, and are estimated by these formulae Eq.7 

and Eq.8 respectively [1]. The motivation for these formulae is that ip
+

 is a 

supergaussian density, because the logcosh function is close to the absolute value that 

would give the laplacian density. The density given ip
−

 by is subgaussian, because it 

is like a gaussian logdensity. 

1log ( ) 2 log cosh( )ip s sα
+

= −  (7) 

2
2log ( ) / 2 log cosh( )ip s s sα

−
⎡ ⎤= − −⎣ ⎦  (8) 

Where 1α  and 2α are positive parameters that are fixed so as to make these two 

functions logarithms of probability densities. s  is a normalized vector with zero-
mean, and 2( ) 1E s = . The Theorem 9.1 in [1] shows the maximum likelihood estimator 

is locally consistent, if the assumed densities ip  fulfill 

'{ ( ) ( )} 0i i i i iE s g s g s− >  (9) 

Where
' ( )

( ) log ( )
( )

i i
i i i i

i i i

p s
g s p s

s p s

∂= =
∂

.  Computed by Eq.9, the  nonpolynomial    moment 

{ }22 tanh( ) (1 tanh( ) )i i iE s s s− + −  can be obtained to determine which one of the two 
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approximations is better. If this nonpolynomial moment is positive, the Eq.7 should 
be used, otherwise the Eq.8 should be used. 

On the other hand, the density estimation in the independent subspace which is 
generated by sine and cosine components is different from the above. The principle of 
invariant-feature subspaces states that we can consider an invariant feature as a linear 
subspace in a feature space. The value of the invariant, higher-order feature is given 
by (the square of) the norm of the projection of the given data point on that subspace, 
which is typically spanned by lower-order features [1]. So, the densities of the 
components inside a subspace can be evaluated by  

2( , ) ( )
j

j i j i
i s

p s i S p s
∈

∈ = ∑  (10) 

Where jS denotes the j th subspace and is denotes the i th component inside one 

subspace. Then the relative likelihood index can be formulated as  

{ }2 2
1 2 sin coslog ( ( )) log ( ) log detRL E p g n p s s B= + + +  (11) 
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Fig. 4. The relationship of the phase error with the relative likelihood index 

To test the relationship of the relative likelihood index with the estimated phase 
error, we run FastICA 10 times on the same mixed signal. The relationship of the 
phase error (absolute value) and the relative likelihood index is shown in Fig. 4. It 
indicates that the phase errors converge at 5 points (marked by red *). It is because the 
results converge at 5 local extremums of the objective function in FastICA. With the 
increasing index, the phase error becomes smaller. It accords with our expectation. 
Therefore, we can obtain an optimal result by choosing the one with the largest index 
from 10 FastICA runs.  

4   The Results of the Experiments 

To test the performance of our algorithm, we apply it to mixed signals with 2 different 
noise levels, 18.42 dB and 27.96 dB. With each noise level, we did 100 experiments. 
In every experiment, we ran FastICA 10 times on the same mixed signal. Then we 
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chose the result with the maximum relative likelihood index as the final separation 
result. Fig. 5 shows the final phase errors of the separation results of 200 experiments. 
It shows that the results’ phase errors of mixed signals with 27.96 dB SNR are much 
smaller than that with 18.42 dB. In both situations, the absolute values of the phase 
errors are smaller than 0.36o, which can meet the application’s requirement. 
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Fig. 5. The phase errors of final separation results of 200 experiments. Left: The original SNR 
is 18.42 dB. Right: The original SNR is 27.96 dB. 
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Fig. 6. The averaged absolute value of the phase error against the SNR 

Table 2. The phase errors’ absolute values of the results with different noise levels. Probatility 
denotes the probability of the index choosing an optimal result from 10 runs in 100 experiments 

 SNR (dB) Experiment times min ( o) max ( o) mean ( o) Probability( % ) 
33.98          100 0.0002 0.0659    0.0214         92 
27.96          100 0.0003 0.0734 0.0220         82 
24.44          100 0.0004 0.1743   0.0555         84 
21.94          100 0.0008  0.1549   0.0687         72 
18.42 100 0.0001 0.3532 0.0976         68 
15.92 100 0.0011 0.5591 0.1357         64 

To test our separation algorithm’s performance with different noise levels, we 
apply it to mixed signals with different SNR. With each SNR we did 100 
experiments. The averaged absolute values of the results’ phase errors with each SNR 
are shown in Fig. 6. Some of the final phase errors of our experiments are given 
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statistically in Table 2. The phase error becomes larger with decreasing SNR. But, if 
the SNR is lower than 15 dB, the error may become too large. In this case we should 
denoise the mixed signal to reduce the error. 
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Fig. 7. The comparison of the real minimum phase error of 10 runs with the error of the final 
separation result chosen by the index. Left: The original SNR is 18.42 dB. Right: The original 
SNR is 33.98 dB. 

To test the validity of the relative likelihood index, we apply it to mixed signals 
with 2 different noise levels, 18.42 dB and 33.98 dB. With each noise level we did 
100 experiments. In every experiment, we ran FastICA 10 times on the same mixed 
signal, and then chose the final separation result by the relative likelihood index. We 
have also recorded the real minimum phase error of the 10 results in each experiment. 
Fig. 7 shows the comparison of the real minimum phase error with the phase error of 
the final separation result in every experiment. Figures illustrate that in most 
experiments the final separation result’s phase error is the smallest of the 10 results. 
Because the probability density estimation in the index may be not exact, the result 
chosen by the index is not always the optimal one. The probability of the index 
choosing an optimal result from 10 runs is higher than 70% with SNR higher than 
18.42 dB (shown in Table 2). It increases with the increasing SNR. 

In our work, we have also investigated the factors which may affect the accuracy of 
the result. First, it is the deficiencies of the ICA algorithm which have been discussed 
at the beginning of the Section 3.  

Second, the manner we sample the observed signals also has a great influence. We 
obtained 8K samples from the same signals as Section 2.2 with 10 different intervals. 
With each interval we did 5 experiments. The absolute values of the errors are shown 
in Table 3 and the averaged absolute values of the phase errors are illustrated in the 
left of Fig. 8. It shows that for the periodic signal, with the same number of samples, 
the error becomes smaller with the increasing interval. It may be due to the increased 
length of sample time. To test the length of sample time’s influence, we obtained 
mixed signals in the same length of sample time with different sample intervals. The 
number of samples decreases with the increasing interval. With each interval we did 
10 experiments, the phase errors’ absolute values are shown in Table 4. The averaged 
absolute values of the phase errors are illustrated in the right of Fig. 8. It illustrates 
that with the same length of sample time, no matter what the sample interval is, the 
alterations to the phase errors are very small. So, we can conclude that the length of 
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sample time is a main factor to influence the results. If the length of sample time is 
longer, the phase error will become smaller. 
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Fig. 8. The averaged absolute value of the phase error against the sample interval. Left: The 
numbers of samples are all 8K with every interval. As the intervals are different, the lengths of 
sample time are different. Right: The lengths of sample time are identical with every interval. 
Because the intervals are different, the numbers of samples are different. 

Table 3. The phase errors (o) of the separation results with different sample intervals (The 
numbers of mixed signal samples in every experiment are identical) 

interval (us) 5 30    50     100    200 250   500   1000  2000 
1 0.1885 0.0664 0.0707 0.0920 0.1168 0.0212 0.0037 0.0399 0.0037 
2 0.0959 0.1484 0.0030 0.0430 0.0051 0.0123 0.0437 0.0060 0.0071 
3 0.2106 0.0886 0.0185 0.2691 0.0322 0.0725 0.0350 0.0022 0.0005 
4 0.0476 0.1122 0.2335 0.0375 0.1075 0.0022 0.0883 0.0075 0.0046 
5 0.1779 0.0819 0.1379 0.0660 0.0236 0.0036 0.0008 0.0118 0.0043 

Table 4. The phase errors (o) of  the  separation results with different sample intervals (The 
lengths of sample time of the mixed signal in every experiment are identical) 

interval (us)    25    50    100   200   250  500  1000  2000 
1 0.0447 0.1885 0.0296 0.0813 0.0119 0.0047 0.1645 0.0250 
2 0.1088 0.0751 0.0104 0.2469 0.0372 0.1318 0.0350 0.0289 
3 0.0187 0.0089 0.0348 0.1066 0.0700 0.0859 0.1562 0.0315 
4 0.0089 0.0907 0.1746 0.0705 0.0798 0.0931 0.1339 0.0203 
5 0.0701 0.0123 0.0112 0.0390 0.2083 0.0204 0.0800 0.0211 
6 0.0812 0.2237 0.0297 0.1437 0.0270 0.1421 0.0113 0.0328 
7 0.0593 0.1015 0.0331 0.1128 0.0616 0.0395 0.0837 0.0012 
8 0.0479 0.0391 0.0813 0.0119 0.0619 0.0069 0.0201 0.0677 
9 0.1763 0.0882 0.0388 0.0361 0.0173 0.0053 0.1587 0.1936 

10 0.1515 0.0344 0.0339 0.0559 0.0126 0.0680 0.0050 0.2108 

5   Conclusions 

In this paper, we apply ICA to verify the phase difference of the current sensor in 
power equipment. Considering the background, we have made an ICA model of the 
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signals and focus on separating a sine component from the mixed signal. Our 
algorithm is that every time we run FastICA 10 times on the same mixed signal. Then 
we choose the separation result which has the maximum relative likelihood index as 
the final separation result. The relative likelihood index we proposed is based on the 
maximum likelihood evaluation theory and independent subspace analysis. 
Experimental results have verified that with the SNR higher than 18.42 dB, we can 
obtain a result with maximum phase error 0.3532o, which satisfies the requirement of 
the primary substation. We have discussed the potential factors affecting the accuracy 
of the result in detail. This separation algorithm can be applied to other linear 
systems. However, it still has some limitations; for example, the error becomes larger 
with the increasing noise. Further studies are necessary to improve it. 
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Abstract. A lot of test cases must be executed in statistical software testing to 
simulate the usage of software. Therefore automated oracle is needed to auto-
matically generate the expected outputs for these test cases and compare the ac-
tual outputs with them. An attempt has been made in this paper to use neural 
networks as automated test oracle. The oracle generates the approximate output 
that is close to expected output. The actual output from the application under 
test is then compared with the approximate output to validate the correctness. 
By the method, oracle can be automated. It is of potential application in soft-
ware testing. 

1   Introduction 

The software engineering community has turned attention to statistical software test-
ing recently [1, 2, 3]. The main idea is that the reliability of software depends greatly 
on the manner in which the software is used. The importance of a failure is largely 
determined by the likelihood of encountering it.  Therefore software is tested accord-
ing to the model which highlights the critical usage and a lot of test cases must be 
executed to simulate statistically the usage of the software. However it needs a lot of 
time and is often error-prone to manually generate the expected outputs for these test 
cases and compare the actual outputs of the application under test (AUT) with them. 
As a result automated test oracle is needed in statistical software testing to automati-
cally generate the expected output and compare the actual output with it. However 
there are very few techniques developed to automate oracle.  In most cases, a tester is 
assumed to provide the expected output of the software, which is specified by a table 
of pairs [4], logical expressions to be satisfied by the software [5], or temporal con-
straints that must not be violated during software execution [6]. Schroeder uses the 
input-output (IO) relationships of the software to identify unique combinations of the 
inputs which influence outputs. By this information a lot of test cases which including 
the inputs and expected outputs can be automatically generated [7]. However deter-
mining all IO relationships manually is rather difficult. When testing software with 
graphical user interfaces (GUI) by capture/replay tool [8, 9], expected outputs are 
saved for comparison while recording test scripts or inserted into the test scripts 
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manually. Memon presents planning method to generate expected outputs [10]. It 
needs to construct GUI model and set conditions for every operator manually. Chen 
tests software by finite state machines (FSM), expected outputs are manually included 
in the model [11]. Specification language Z uses predicate logic to specify an opera-
tion as a relation between the input and output [12]. Test oracle can be generated from 
Z specification [13]. However it needs that the user’s requirements of the software are 
represented by Z specification language. To implement more automatic oracle, Ag-
garwal use neural networks (NN) based approach to generate expected output [14] for 
triangle classification problem [15]. By the experiment they made the conclusion that 
NN can be used as test oracle with reasonable degree of accuracy for classification 
problem in software testing.  

We propose in this paper that the relationship from inputs to outputs of AUT is in 
nature a function. When the function is continuous, an automated oracle is proposed. 
NN is used to implement the oracle. To appeal of the NN approach lies in its ability to 
approximate a function in any precision without the need to have knowledge of that 
function [16-19]. Experiment has been conducted to validate the effectiveness of the 
proposed method. 

In the next section, we briefly describe the theory of multilayer NN. Automated 
oracle based on NN is proposed in section 3. Section 4 presents the results of the 
experiment. The conclusions and future directions are presented in section 5. 

2   Multilayer Neural Networks for Function Approximation 

Multilayer NN has been established to be effective method to approximate continuous 
or other kinds of functions defined on compact sets in nR  [16, 17]. It can be used to 
learning the relationship from inputs to outputs by training on the samples. Once 
training process finishes, it can be given any input and produce an output by the rela-
tionship learned. The output generated by NN can be arbitrarily close to the expected 
output owing to the generalization capabilities of the networks. Back propagation 
based on gradient descent in error is the most popular training algorithm for multi-
layer NN [17, 18, 19]. In the algorithm the network is initialized with a random set of 
weights, and then trained from a set of input and output pairs, i.e. training samples. 
Training process stops when the training error is acceptable or a predefined number of 
epochs pass. Once trained, network weights are kept and used to approximate the 
function. When training NN, the weight update rule can be expressed as follows: 

)()()1()( nynnwnw ijjiji ηδα +−Δ=Δ  (1) 

where α  is a positive number called the momentum constant, )(nwjiΔ  is the cor-

rection which is applied to the weight connecting the output of neuron i  to the input 

of neuron j  at the n th iteration, η  is the learning rate, )(njδ is the local gradient at 

the n th iteration, and )(nyi  is the function signal appearing at the output of neuron 

i  at the n th iteration. The training error can be the sum over output units of the 
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squared difference between the expected outputs kt  given by a teacher and the actual 

output kz :  
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where t  and z  are the target and the network output vectors of length c respectively 
and w  are the weights in the network. Details about the back propagation algorithm 
can be found in references [18, 19]. 

3   Automated Test Oracle Based on Neural Networks 

3.1   Model of the Automated Oracle 

Function testing involves executing an AUT and examining the output, which is im-
plemented by oracle. General model of oracle is as Fig.1.  In the model expected 
outputs are generated from inputs and then compared with actual outputs from AUT. 
If they are not same, it implies a failure. The process of generating expected outputs 
and comparing is traditionally done manually. Testers compute the expected outputs 
from program specifications or their knowledge of how a program should operate. 
Expected outputs are then compared with actual outputs by tester’s knowledge to 
determine if a failure occurs.  

 

Fig. 1. General oracle model 

The relationship from the input to output of the software is in nature a function. Let 

),,,( 21 nxxxx = and ),,,( 21 myyyy =  be input and output vectors respec-

tively. Therefore the relationship can be represented by )(xfy = , where f  imple-

ment the specification of the software. When nRx ∈ , mRy ∈ , and f  is continuous, 

the function f  can be approximated by NN after training. In this paper, we propose the 

automated oracle in this situation. Each component in y  is also a function of x , that 

is )(xfy jj = . Let )( ixD  be the set of all possible values of ix  and )(xD  be the set 

of all possible values of x . Therefore )(xD  includes every possible combination of the 
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value from )( ixD  and ∏=
i

ixDxD )()( . Let ix  be a data item in )(xD  

and )( ii xfy = , then ),( ii yx  is a test case. Automated test oracle can generate iy  

from  ix  and compare it with the actual output automatically.  
The model of the automated oracle is as Fig. 2.  In the model approximate outputs 

are automatically generated according to inputs. Approximate output is not as same as 
expected output. But it can approach expected output in any precision. Comparison 
process now became as follows: 

⎩
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εη
εη

η ε

0
 (3) 

where  η  and a  are the actual output and approximate output respectively, ε  is test 

precision.  Indicator ε  controls the criterion if the actual value η  is right or not. We 

can adjust ε  between precision and test cost. In experiment, we will describe the 

effect of theε . If 0=− εη a , it means the actual output is right within precisionε . 

Otherwise, if 0>− εη a , it means that a failure occurs because the actual output is 

not right within precision ε . To generate the approximate outputs, the relationship 
from the input to output of the AUT should be learned from a small set of training 
samples of the specification. Let )(yD  be co-domain of the AUT. Then the training 

samples are: 

)}(),(),()(),(|),{( '' yDyxfyxDxDxDxyxS iiiiii ∈=⊂∈=  (4) 

where iy is the expected output. The approximate outputs are then automatically 

generated for )(xDx ∈∀ by the relationship learned. 

 

Fig. 2. Automated oracle model 

3.2   Automated Oracle Based on Neural Networks 

NN can approach any continuous function in theory. This feature is used to generate 
the approximate output in the automated oracle. To implement automated oracle, two 
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processes must be automated. One is to generate approximate output by NN and the 
other is to compare the actual output from AUT with the approximate output. Auto-
mated oracle can be summarized in the following steps. 

Step 1: Manually generate sample set S  in equation (4) from the specification of the 
AUT. 

Step 2:  Construct NN and initialize the weights. Set training parameters.  

Step 3:  Train NN by back propagation algorithm in the training set SS ⊂'  . 
Step 4:  When the stopping criterion is satisfied, keep the weight and go to step 5. 

Step 5:  Obtain approximate output ia from NN for )(' xDxi ∈∀ . Set test preci-

sion ))((max ii

i
ayabs −=ε . 

Step 6:  Get the input of the AUT and input it to NN. Obtain the approximate output 
a from NN. 

Step 7:  Get the actual output η from the AUT and compare it with the approximate 

output a according to equation (3).  Determine if there is failure or not by 
the result of comparison. 

Step 8:  Repeat step 6 and 7 to test the AUT in other inputs. 
Step 9:  If it is needed to test in different precision, go to step 2. Otherwise, the proc-

ess finishes.  

4   Experiments 

The goal of the experiment is whether the method proposed is effective to expose the 
failure of the AUT. It includes whether NN can be used to generate the approximate 
output that is close to the expected output, whether the value of ε  can be computed 
from samples, and whether the method can expose failure of the AUT.  

The AUT in the experiment is an application with GUI as Fig. 3. It has three input 

variables and two output variables. Input and output vector are ),,( 321 xxxx =  and 

),( 21 yyy =  respectively. The relationship between input and output is: 

2
11

1111 )cos()3sin( xexxxy −+=  (5) 
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xxxxxxx
y

++++=  
(6) 

where ]3,0[,, 321 π∈xxx . The output variable verified in the experiment is 1y in 

equation (5). It can be generalized to more complicated and real situations. We manu-
ally seed faults into the AUT. The faults seeded in the AUT will cause failures as 
table 1. It shows that the faults will cause the actual output of the AUT different from 
the expected output. Manually generate set S  with 200 samples from the specifica-

tion of the AUT. The set S is used for training NN and compute the value ofε . The 
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variable 1x  is dropped from interval ]3,0[ π  evenly and the variable 1y  is computed 

manually. NN is constructed and training parameters are set as table 2. We select 

samples from S evenly to form training samples 'S whose size of is 100. Use 'S  to 
train NN. The training process is as Fig. 4. It shows the performance achieves the goal 
quickly after 192 epochs pass. 

 

Fig. 3. The example of AUT 

Table 1. Five failures caused by faults seeded in the AUT ( 1x ,η , and 1y  are the inputs of 
AUT, actual outputs, and expected outputs) 

Failure ID 1x  η  1y  

1 1.1 0.3900 0.1942 
2 1.57 -1.8732 -1.5698 
3 3.683 -3.5776 -3.6777 
4 5.9 -5.3631 -5.3842 
5 7.31 0.4367 0.4467 

Table 2. Neural networks architecture and training parameters 

Network architecture Training parameters 
The number of layers 2 
The number of units on the 

layers 
Input: 1; Hidden: 13; Output: 1 

Transfer functions logsig in 1st layer,  purelin in 2st layer 
Training function trainlm 
Learning function learngdm 
Performance function  mse 
Initial weights and biases The Nguyen-Widrow method 
epochs 10000 
goal 0.001 
Adaptive learning rate 0.1 
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Fig. 4. The process of training the NN 

After NN is trained, we test the performance of approximation. The expected out-

put 1y , approximate output a  obtained from trained NN, and difference ay −= 1ζ  

is as Fig.5. From it we can see the difference is small enough when the training goal is 
set to 0.001. It shows that NN can be used to generate the approximate output that is 
close to the expected output. 

 

Fig. 5. Plot of the expected outputs, approximate outputs and their difference when the training 
goal is 0.001 

Test precision ε is computed in this step. The trained NN is used to generate ap-

proximate output ia for )(' xDxi ∈∀ , 200,,1=i . Test precision ε  is set 
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as )(max 1
ii

i
ay − . The result value ofε  is 0.1863  because the values of )( 1

ii ay −  

is in the interval ]0757-0.1863,0.[ . As a result if the actual output obtained from 

the AUT is in the interval ]1863.0,1863.0[ +− aa , there is no failure. Otherwise, 

a failure is exposed. We now check if the method can expose the failures in table 1. 

The result is in table 3. In the table εη a−  is computed by equation (3). A failure is 

exposed if εη a− is larger than 0. Table 3 shows failure 1 and 2 can be exposed 

successfully when training goal is set to 0.001 because 0>− εη a . Failure 3, 4, and 

5 can not be exposed. It is because the difference between the actual output and the 
approximate output is below the test precisionε .  

Table 3. The failures that can be exposed when ε  is 0.1863  ( 1x ,η , and a are input, actual 
output, and approximated output. 0>− εη a  means a failure is exposed ). 

Failure ID 1x  η  1y  a  εη a−  

1 1.1 0.3900 0.1942 0.1943 0.0094 
2 1.57 -1.8732 -1.5698 -1.5730 0.1139 
3 3.683 -3.5776 -3.6777 -3.6690 0 
4 5.9 -5.3631 -5.3842 -5.3693 0 
5 7.31 0.4367 0.4467 0.4870 0 

When we change the training goal, different test precision can be achieved (table 4). 
It shows we can set goal according to different demand of precision in software testing. 
If a precision ε of 0.0165 is needed, we can set training goal under 5e-005. If the ac-

tual output is in the interval ]0.0165,0.0165[ +− aa , where a  is the approximate 

output obtained from NN, it means there is no failure. Otherwise, it means a failure 
occurs. All failures in table 1 can be exposed in this situation. It means the method 
proposed can expose failure effectively. 

Table 4. Precision ε achieved under different training goal ( min  and max  are min and 
max difference between expected and approximate outputs) 

Goal min  max  ε  Goal min  max  ε  
0.01 -0.3694  0.1852  0.3694  5E-04 -0.0818 0.0408  0.0818  
0.005 -0.2542  0.1378  0.2542  1E-04 -0.0789 0.0294  0.0789  
0.001 -0.1863  0.0757  0.1863  5E-05 -0.0149 0.0165  0.0165  

In the experiment, the value of ε  is obtained from 200 samples. We now obtain 
the value from more samples to see if the value will change obviously. The result is in 
table 5. The meaning of each column is same as table 4. It shows that the value of ε   
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computed from 200 samples is effective in this experiment because it is same as the 
one computed from more samples where the number is 100000. 

Table 5. The comparison of the value ε  obtained from different samples ( min , max , and 
ε are obtained when the number of samples is 200, 

'min , 
'max , and 

'ε  are obtained when 
the number of samples is 100000) 

Goal min  max  ε  'min  
'max  'ε  

0.01 -0.3694  0.1852 0.3694 -0.3694 0.1864 0.3694  
0.005 -0.2542  0.1378 0.2542 -0.2542 0.1378 0.2542  
0.001 -0.1863  0.0757 0.1863 -0.1863 0.0758 0.1863  
5E-04 -0.0818  0.0408 0.0818 -0.0818 0.0409 0.0818  
1E-04 -0.0789  0.0294 0.0789 -0.0789 0.0297 0.0789  
5E-05 -0.0149  0.0165 0.0165 -0.0149 0.0165 0.0165  

5   Conclusions  

In statistical software testing a lot of test cases should be executed to simulate statisti-
cally the usage model of the AUT. However it is difficult to manually generate ex-
pected outputs for these test cases and compare the actual outputs of the AUT with 
them. As a result an automated test oracle is proposed in this paper to solve the prob-
lem. The oracle can be applied when the relationship from the input to output of the 
AUT is a continuous function. From above results we conclude that NN can be used to 
implement the automated test oracle in reasonable precision. It can generate the ap-
proximate output for AUT and the precision can be adjusted by training parameter. As 
a result, we can test AUT in the precision needed. By the method, we need not generate 
all expected output from AUT manually. It can save a lot time and labor in software 
testing. It is shown in the experiment that the precision ε is important to expose failure 
and it can be computed from samples generated manually. However it is not verified 
that if it is effective when the relationship from the input to output become more com-
plicated. As a result we will do the experiment in more complicated relationships.  
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Abstract. During the era of the rapid automation of the manufactur-
ing processes, the automation of the metal cutting and drilling process,
which is one of the most crucial stages in the industrial process, has
become inevitable. The most important difficulty in the automation of
machining process is time and production loss that occurs as a result
of tool wear and tool breakage. In this study, a fuzzy logic based deci-
sion mechanism was developed to determine tool wear condition by using
cutting forces. The statistical parameters of the cutting forces collected
during the drilling operation have been determined as variables for the
membership functions of the fuzzy logic decision mechanism. The system
developed in this study, successfully determined the tool wear condition
in drilling processes.

Keywords: Fuzzy Logic; Tool Wear Condition; Decision mechanism.

1 Introduction

Unmanned metal cutting systems have widely started to use in manufacturing in
1990’s, and this phenomena have forced to develop new automated tool condition
monitoring systems [1]. Machines used in unmanned manufacturing systems are
unable to determine tool wear or breakage automatically, therefore continuing
to manufacturing leads to wrong production and low product quality, hence pro-
duction costs would increase significantly. Late replacement of worn tool, may
cause damage or dimensional errors on workpiece. On the other hand, in case
of an early replacement of tool or determining tool condition by direct measure-
ment from workpiece, the manufacturing process will encounter with downtime
frequently and hence production capacity will decrease. Modern CNC systems
can be programmed according to experimental tool life, thus the appropriate
replacement time of tool can be provided. But experimental conditions doesn’t
match always with the working conditions. Therefore, as a result of early replace-
ment of a workable tool or late replacement of a worn tool, time or production
loss may occur. In addition, due to complex structure of tool wear mechanism,
unpredictable breakages may occur at any time. Consequently, the purpose of
such production systems must be provide replacement of a tool after maximum
utility obtained from the tool. This purpose requires sensing of critical tool wear
level that necessitates tool replacement at the next cutting process. There are
two main techniques used to determine tool wear condition. One of them is
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”direct method” which requires measurement from workpiece directly and the
other is ”indirect method” which realized by measuring cutting parameters from
medium during cutting process. As mentioned above, downtime of manufactur-
ing process in direct measurement leads production loss. Therefore, researchs on
this issue has been focused on tool condition monitoring methods without direct
contact with tool. Different sensing methods has been developed for this goal.
When the measured parameters which are sensitive to tool wear analyzed by us-
ing different methods, they can give meaningful results about tool wear. Many
different parameters was used in past researchs. Most used parameters can be
arranged as cutting forces, vibration, sound, acoustic and ultrasonic vibration,
current, power and temperature. All of the parameters can have advantages and
also can have disadvantages with respect to others. Many data analyses methods
have been used for extracting information about tool wear state from obtained
data. Formerly, researchs started with time series and frequency domain analyses
and then more successful results achieved by using different methods together or
separately such as pattern recognition [2], statistical analyses [3], fourier trans-
form [4], wavelet transform [5], fuzzy logic and artificial neural Networks [5,6,7].
As such in cutting parameters, analyses methods have also sufficiency and prac-
ticability at different degrees with respect to others. Some analyses methods can
be realized easily and quickly, but also they maybe less sensitive to tool wear.
On the other hand, complex methods provide more information but they are
hard to realize or not economic.

Regardless which method was used, realized process is always basically the
same. The goal is analysing and classifying of data obtained by different sensors.
This classification explains tool condition, but parametric data contains needless
information that can be called as noise together with information about tool
wear. Used method comes into prominence due to ability of extracting beneficial
information. As mentioned before both cutting parameters and analyses methods
have advantages or disadvantages according to each other. Therefore, various
researchs have been being made lately on every kind of parameters and methods
by researchers to increase predictability rate of tool failure.

In this study, as a primary goal a fuzzy logic based decision mechanism was
developed to determine tool wear condition for drilling process which is one
of the most used material removal process at industry by using cutting forces.
Feed force (thrust) measurements which obtained from a project [8] were used
as cutting parameters. The statistical parameters such as mean, RMS, standard
deviation and maximum value of the cutting forces collected during the drilling
operation under different number of revolutions and feed rate have been de-
termined as variables for the membership functions of the fuzzy logic decision
mechanism. The system developed in this study, successfully determined the tool
wear condition in drilling processes as sharp, workable or worn. Although this
work focuses on tool wear condition monitoring for drilling operations, the pro-
posed techniques and decision algorithm introduced in this paper can be applied
to other cutting process.
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In addition, an Adaptive Neuro Fuzzy Inference System (ANFIS) has been
composed to determine tool wear state by using same parameters. Results for
ANFIS system and comparison of two different methods have been proposed on
last section of this study.

2 Fuzzy Logic

The theory of Fuzzy Logic was introduced by Lotfi A. Zadeh in 1965 as an
alternative way of data processing against classical logic [9]. The main reform
coming along with fuzzy logic theory is the partial thruthness and partial wrong-
ness instead of the states absolute thruthness and absolute wrongness existed
in classical logic. In other words, fuzzy logic has admitted to using multivalued
variables based on necessity instead of bivalued variables. Although initially this
theory wasn’t proposed as a control method, subsequently rapidly progressed af-
ter 70’s and then it has become a research area that arouses interest among the
researchers. Conventional control systems perform the process control based on a
mathematical model which is hard to build. Control procces can only be handled
by an expert in case of building a matematical model is impossible. Fuzzy logic
based systems eliminate the mathematical model necessity and brings expert ex-
perience and intuition instead of model. Thus the control process becomes simple
and automation possibility occurs for some areas which couldn’t be controlled
without an expert.

2.1 Fuzzy Thinking

Human thought and reasoning system uses quality instead of quantity to define
uncertainties. In other words, gives linguistic meanings to magnitudes instead
of numerical meanings and uses linguistic (fuzzy) variables. Human brain has
ability to produce perfect behavior through giving weightness to perceived stim-
ulant based on their qualities. Certainly, this ability improves with experience.
Fuzzy logic is a method which enables modeling this feature of human brain.

Human brain finds solutions to problems by using simple ’IF condition THEN
consequence’ approach. For example, measuring of light intensity is unnecessary
to decide turning on light. Instead of that ’IF it is dark THEN light must be
turned on’ behavior rule is simple and enough. As the control problems become
complex the number of conditions which will effect to decision may arise and their
kinds may change. Conditions can be combined by conjunctions such as AND-
OR. For instance, a driver uses the rule ’IF speed > 90 km/h OR forward vehicle
is slow THEN speed must be decreased’ and this rule requires to use both nu-
merical value on the speedometer and the quality of speed of vehicle on forward.
In other words both numerical and linguistic variables can be used together.

Fuzzy logic based control systems has a lot of advantages. Fuzzy logic doesn’t
require numerical precision. As the control conditions change it can be tuned
up simply according to new conditions. Most important advantage of fuzzy logic
based systems is it’s ability of performing simple, cheap and fast solutions to
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control necessity by modeling human behavior even in case of building a math-
ematical model is impossible.

3 The Adaptive Neuro-Fuzzy Inference System (Anfis)

Fuzzy logic and neural network technology were proved as powerful method for
the modeling process parameters and outputs when the mathematical model for
the process couldn’t be constructed. Both methods have their disadvantage. In
fuzzy logic, rules and membership functions can only be determined by experts
and they couldn’t be determined and adjusted automatically. On the other hand
neural networks couldn’t process the fuzzy information. Hence none of them is
the best way for process modeling. So, combination of these two techniques may
provides a better way for modeling.[10]

The ANFIS is a multilayer feedforward network and it uses neural network
learning algorithms and fuzzy reasoning to model relations between given in-
put/output data sets. Due to its ability to combine verbal power of a fuzzy
system with the numeric power of a neural system, it has been shown to be
prosperous in modeling a lot of processes. ANFIS has ability of learning, con-
structing, expensing and classifying. It has the advantage of allowing the ex-
traction of fuzzy rules from numerical data or expert knowledge and constitutes
a rule base. In addition it can adapt complicated reasoning of human brain to
fuzzy systems. The main drawback of the ANFIS is the time requirement for
training and determining parameters which may took much time [11].

Fig. 1. ANFIS architecture

As mentioned before, fuzzy systems use rules and membership functions based
on expert experience to make a decision. ANFIS architecture enables to associate
inputs with outputs by itself. Thus system can learn membership functions and
rules automatically without expert knowledge. Figure 1 shows ANFIS architec-
ture. Rules for this ANFIS can be written as following form:
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If (A is A1) and (B is B1) then f1 = p1A + q1B + r1
If (A is A2) and (B is B2) then f2 = p2A + q2B + r2

As shown in figure 1, some of the nodes are circular which have fixed transfer
function and the others are square which have adaptive parameters. Adaptive
parameters change as the network learns the relations between input and output
of the network. A and B represent inputs and A1, A2 , B1, B2 represent fuzzy sets
(linguistic values) of input variables. Layer 1 is the fuzzify layer which provides
transition between numerical and linguistic values and determines membership
degrees. Layer 2 is the product layer which products its inputs and generates one
output which represents result of two rules. Layer 3 is the normalization layer
which calculates firing strength of rules. Layer 4 is defuzzification layer which
calculates fuzzy rule results by using a lineer function such as F=pA+qB+r
where p, q and r are the lineer parameters of sugeno inference system and they
can change in order to learning. Finally layer 5 is the total output layer which
realizes mathematical summing and the output of this layer represents ANFIS
output.

4 Related Studies

A study which aims to determine tool condition can be realized through 3 stages.
1) Collecting data by using sensors 2) Signal processing and extraction of useful
information 3) Classification. Fuzzy logic is one of the most used techniques in
classification stage. Li, Tso and Wang were studied to determine the relation
beetween spindle motor current and tool wear by analyzing motor current using
wavelet and fuzzy logic [12]. Yao, Li and Yuan, successfully determined the tool
condition by using acoustic emission and motor current signals through wavelet
transform and fuzzy-neuro approach [5]. Bicudo, Sokolowski, Oliveira and Dorn-
feld achieved high accuracy ratio by modeling based on artificial neural Networks
and fuzzy logic [6]. Relation between chip size and RMS value of cutting force
has been modelled based on fuzzy logic by Sokolowski and Kosmol [13]. Li [14],
Ko and Cho [2] and Fang [15] have determined tool wear condition by using
fuzzy expert systems, fuzzy pattern recognition and fuzzy set theory respec-
tively. Mehrabi proposed the fuzzy set theory as optimal method in his study
which directed towards determining tool wear condition by using multi-sensor
method [16]. Messina has provided high accuracy about tool wear condition by
using neuro-fuzzy approach [7].

5 Experimental Results

Used data in this study provided from cutting force measurement ( thrust force )
at vertical direction (z axis) during drilling operation on a CNC machine. Data
can be separated to 3 different group. Table 1 shows cutting conditions for used
16 tools.
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Table 1. Cutting Conditions

Group Tool number Revolution (RPM) Feed (mm/min) Depth (mm)
1 1-6 1800 450 10
2 7-11 1600 450 10
3 12-16 1600 300 20

5.1 Fuzzy System Results

As mentioned before, statistical parameters of measured signals such as standart
deviation, mean, maximum and RMS values were calculated for each tool. These
parameters have been used as fuzzy variables of fuzzy decision system. Different
combinations of variables were tested. Universe of discourse were separated to 3
different fuzzy set as sharp, workable and worn for each used parameters.

Fig. 2. Membership Functions of Statistical Parameters

Membership function is one of the most important element which effects on
system performans. Different membership functions were tested in this study.
Figure 2. shows trapezoidal membership functions for each statistical
parameters.

Another important element which effects on system performans is rule base.
Rule base represents control targets and behaviour of an expert. Constituted
decision system in this study classifies tool wear condition on 3 classes as sharp,
workable and worn. Different rules were written and tested. Table 2 shows the
rule base used in this study. Columns show states of Mean and Standart Devi-
ation, rows show states of RMS and Max values and each cell have a decision
about tool wear according to states of statistical parameters.
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Table 2. Rule Table

Mean / Standart Deviation
SHRP SHRP SHRP WRK WRK WRK WRN WRN WRN

States / / / / / / / / /
SHRP WRK WRN SHRP WRK WRN SHRP WRK WRN

SHRP/SHRP SHRP SHRP SHRP SHRP WRK WRK SHRP WRK WRK

SHRP/WRK SHRP WRK WRK WRK WRK WRK WRK WRK WRK

SHRP/WRN SHRP WRK WRK WRK WRK WRK WRK WRK WRN

Rms / Max WRK/SHRP SHRP WRK WRK WRK WRK WRK WRK WRK WRN

WRK/WRK SHRP WRK WRK WRK WRK WRK WRK WRK WRN

WRK/WRN SHRP WRK WRK WRK WRK WRK WRK WRK WRN

WRN/SHRP SHRP WRK WRK WRK WRK WRK WRK WRK WRN

WRN/WRK WRK WRK WRK WRK WRK WRK WRK WRK WRN

WRN/WRN WRK WRK WRN WRK WRK WRN WRN WRN WRN

SHRP, WRK, WRN: Represents sharp, workable and worn tool states respectively

For simplify, three sample rules were written below.

Rule 1:
IF mean is sharp AND S.Deviation is sharp AND Rms is sharp AND Max is
worn THEN tool is sharp

Rule 2:
IF mean is sharp AND S.Deviation is sharp AND Rms is worn AND Max is
worn THEN tool is workable

Rule 3:
IF mean is worn AND S.Deviation is worn AND Rms is worn AND Max is sharp
THEN tool is worn

Developed system has been tested for 16 tool which has 3 different cutting
conditions. Obtained decision results for 3 tool which are belong to 3 different
group shown in figure 3.

Horizontal axis represents the number of hole drilled with tool and vertical
axis shows system decision. Decisions 1,2 and 3 represents sharp, workable and
worn tools respectively. For example, for tool 6, system generated sharp decision

(a) Tool 6 (b) Tool 11 (c) Tool 14

Fig. 3. Fuzzy System Results
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at first 3 hole, and workable decision at next 17 hole and finally worn decision
at last 2 hole about tool. System has made mistake between holes 11-21 with
generating unstable workable and sharp decisions for tool 14 .

5.2 ANFIS Results

Statistical parameters of cutting forces has been used as inputs of the ANFIS
system as were in developed fuzzy system. Some of the parameters were used for
training of ANFIS and others for testing the system. Figure 4 shows an example
initial membership function before training and final membership function after
training.

(a) Initial membership function (b) Trained membership function

Fig. 4. Example Membership Functions

For training ANFIS, different tool parameters used and tested but best re-
sults accomplished when the training and testing data belong the same group
of tools while fuzzy system can provide more general modeling regardless which
tool group used. After training the ANFIS system, cutting parameters of three
different group of tool have been used for testing.

(a) Tool 6 (b) Tool 11 (c) Tool 14

Fig. 5. ANFIS System Results

For simplify of comparison, results of same tools 6, 11 and 14 which given in
figure 3 as fuzzy decisions, were displayed in figure 5 as ANFIS decisions.

As seen in figure 3 and 5, results for ANFIS and Fuzzy system resembles each
other. Table 3 shows comparison between ANFIS and Fuzy decisions for tool
number 11.
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Table 3. Comparison Between ANFIS and Fuzzy Decisions

Tool 6 Hole Number
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Fuzzy Decision 1 1
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2

3 3 3 3

Anfis Decision 1 1
1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3

3 3 3 3

1, 2, 3: Represents sharp, workable and worn tool states respectively

As shown in table 3, Fuzzy and ANFIS systems have generated four different
decision about tool wear state at hole numbers 3, 21, 22 and 23. In this case,
it couldn’t be decided which result is more reliable because there is not clear
information about tool wear state where the results are different . On the other
hand, ANFIS results of tool 14 shown in figure 5-c, seems more accurate than
fuzzy results because ANFIS results are more stable while fuzzy system generated
unstable decisions between holes 11 and 21 as mentioned before.

6 Conclusions

In this study two decision making mechanism have been developed to determine
tool wear condition by using statistical parameters of cutting forces collected
during drilling process based on fuzzy logic and the neuro-fuzzy system (ANFIS).
Both systems results were similar and successful. Altough results are similar it
can be said that fuzzy system results are reliable on all tool data nearly but
ANFIS results reliable only if the system trained by the same tool group of data
with testing data. This results may show that learning ability of ANFIS couldn’t
be substituted with expert knowledge used in fuzzy systems or structure of tool
wear mechanism isn’t suitable enough for learning algorithm of ANFIS. Finally,
it can be thought that if there is an expert knowledge the best way is using it,
but in other case ANFIS can model a system successfully and eliminates expert
knowledge necessity of fuzzy systems.
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Abstract. The neural network diagnosis method based on fault features denoted 
by frequency domain kernel in nonlinear circuit was presented here. Each order 
frequency domain kernel of circuit response under all fault states can be got by 
vandermonde method; the circuit features extracted was preprocessed and 
regarded as input samples of neural network, faults is classified. The uniform 
recurrent arithmetical formula of each order frequency-domain kernel was 
given, the Volterra frequency-domain kernel acquisition method was discussed, 
and the fault diagnosis method based on recurrent neural network was showed. 
A fault diagnosis illustration verified this method. The fault diagnosis method 
showed the advantages: no precise circuit model is needed in avoiding the 
difficulty in identifying nonlinear system online, less computation amount, high 
fault diagnosis efficiency. 

1   Introduction 

The research on nonlinear system and fault diagnosis had gained some important 
achievement [1], [2], but the inherence complexity in nonlinear system results in slow 
research development of fault diagnosis in nonlinear analog circuit. if frequency 
domain characteristic of nonlinear system is got under continuous actuating signal, 
The fault recognition is simple, But continuous actuating problem in nonlinear system 
is unsolved yet, under non-contiguous actuating signal, frequency spectrum obtained 
in any system only is a subset of whole frequency spectrum, how to distinguish actual 
work states of system by these insufficient information is difficult in fault diagnosis 
theory and method based on nonlinear frequency domain response analysis. In 1995, 
the General Frequency Response Function (GFRF) of nonlinear system got under 
non-continuous actuating signal was classified by neural network to judge fault and 
fault sorts in diagnostic system; the thought is presented in document [3], [4], prior 
study showed: the method is high efficiency obviously, the Volterra model variables 
and GFRF model variables are regarded as input sample of neural network, the output 
are work state codes of diagnostic object. The large computation amount aroused by 
neural network with large scale input nodes is unsolved well, which made fault 
diagnosis efficiency low. Aim to this problem, the kernel main component analysis 
method was introduced into feature extraction of GFRF model, the fault feature 
vectors  dimension compressed greatly, the circuit is diagnosed by classified function 
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of neural network, a high efficient method is provide for fault diagnosis in nonlinear 
circuit based on GFRF model. Three key steps in fault diagnosis method on frequency 
spectrum analysis in nonlinear system were introduced: frequency spectrum 
acquisition, frequency spectrum feature extraction, fault diagnosis based on frequency 
spectrum feature. 

2   The Measurement in Volterra Frequency Domain Kernel 

In essence, fault diagnosis is a traditional pattern recognition problem, the 
constructing and choosing of fault feature is the key to diagnosis technology; good 
fault feature can improve diagnosis efficiency and veracity, frequency domain kernel 
described essential characteristic of nonlinear system, so, the unique Volterra kernel 
can be regarded as system features in fault diagnosis. 

The time domain response is a transient process, it is difficult to measure 
accurately, and so, transfer function ( )SH  is always measured in frequency domain. 
When the computation value of each order frequency kernel ( )nn SSH ,,1  under all 

possible faults is same to the measurable value ( )nn SSH ,,1
'  under fault occurrence, 

the right fault diagnosis conclusion can be got. From   uniqueness theorem of complex 
analysis, the comparison in two function between ( )nn SSH ,,1 and ( )nn SSH ,,1

'  just 

the same as that between ( )nn jjH ωω ,,1 and ( )nn jjH ωω ,,1
' . 

For computing and measuring each order frequency domain kernel in nonlinear 
network ( )nn jjH ωω ,,1 , multi-frequency sinusoidal signal can be regarded as test 

input signal, but in stable response of nonlinear network measured actually, some 
frequency component always include the contribution from different order kernels, 
that is, the different order kernel all include some same frequency elements, which 
overlapped with each other in response, the amplitude and phase in ω  frequency of 
response only can be obtained in frequency spectrum analysis to output signal, but the 
element magnitude in each order kernel is un-acquirable, there is no way to define the 
value belonged to each order kernel at all[5], then, the key to high order transfer 
function measurement in nonlinear network is separating each high order transfer 
function from whole response, which realized by homogeneous characteristic of 
Volterra response, it roots in vandermonde method, showed as follows: 

The n order Volterra kernel with n  homogeneous characteristic, in network 

described by Volterra series, if the response is ( ) ( )∑
∞

=

=
1n

n tyty aroused by input ( )tu , 

( )tyn showed the response aroused by n order kernel, if the input increases to ( )tau , the 

response is: 

( ) ( ) ( )++++= tyatyatyay n
n

2
2

1
1  (1) 

When ( )tu  choose some definite wave signals, the magnitude changed, the formula 
(1) can be regarded as multinomial expanded formula of y to a , each order response 
component ny  is the polynomial coefficient. e.g. the primary N  Volterra frequency 
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domain kernel in system need to measure, if 3=N , three same  waveform, different 
magnitude input  ( ) ( ) ( )tuatuatua 321 ,,  taken, the corresponding output 321 ,, YYY will be 

measured, the equation can be got: 
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Here ( )3,2,1=iei include measured error and truncation error generated by over four 

order kernel, the matrix in formula (2) called vandermonde matrix, when ( )3,2,1=iai  is 

unequal to each other, the inverse matrix existed, so, when ( )3,2,10 == iei  taken, 

321 ,, yyy  can be got. The vandermonde method only fits for feeblish nonlinear 

network (high order kernel decaying quickly). 
The disadvantage is sensitive to measure error, increasing measure time can 

overcome it, a group over-determined equation (equation numbers are more than 
unknown quantity numbers ny ) can be got, seeking for each order solution of this 

group equation by least square method. In theory, each order kernel can be 
measured accurately by choosing multi-frequency signal and vandermonde method 
properly. Seeking for the solution to over-determined equation, the linear parameter 
of over-determined equation estimation method resolved based on neural network 
showed in document [6], the computation speed increase greatly, diagnosis realized 
online. 

In the frequency domain kernel measurement of fault network with multi-
frequency signal, the magnitude, frequency, phase of several different frequency 
sinusoidal signal need be controlled accurately, superposition as actuating signal ( )tu  
of  measured fault circuit, the frequency spectrum function ( )ωY  can be got by circuit 
response ( )ty Fourier transformed, high order frequency domain kernel measured can 
be computed out with frequency spectrum analysis results by vandermonde method, 
the state features of measured circuit can be obtained, through compression transform 
and normalized process, which are regarded as input sample of neural network for 
pattern classify and fault diagnosis of system. 

3   Fault Diagnosis Based on Inner Recurrent Neural Network 

The research applications on nonlinear system analysis and fault diagnosis based on 
neural network get more attention. BP network is difficult to deal with system with 
stronger real-time characteristic, so, feedback signal and deviation unit are added to 
form inner recurrent neural network (IRN), which describe nonlinear dynamic 
behavior in system by inner state feedback, specially, the experience knowledge is 
convenience for introduce into learn process, which improve learn speed greatly. An 
inner recurrent neural network model with deviation unit and error inverse transfer 
algorithm method were presented here, it is applied in simulation analysis to fault 
diagnosis. 
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The recurrent neural network model composed by three layer is showed: input 
layer node, hide layer node and output layer node, two deviation nodes are added to 
hide layer and output layer respectively, the hide layer node receive not only output 
signal from input layer, but also one-step delay output signal from node-self in hide 
node, it is called associate node. Supposing NH and NI as hide node numbers and 
input node numbers (except for deviation node), ( )kI j  is the jth  input of recurrent 

neural network with deviation at time k  , ( )kx j  is output of the jth  hide layer node , 

( )ky  is output vector of recurrent neural network with deviation unit, the IRN network 
can be described by mathematical formula as follows: 

( ) ( ) bias

NH

j

jj WOkxWOky +=∑
=1

 (3) 

( ) ( )( )kSkx jj σ=  (4) 

( ) ( ) ( ) bias

NI

i

iij

NH

i

iijj WIkIWIkxWRkS ∑∑
==

++−=
11

1  (5) 

In formula, ( )⋅σ  is nonlinear activation function of hide layer node, WOWRWI ,,  is 
weigh coefficient from input layer to hide layer, recurrent signal and weigh 
coefficient from hide layer to output layer respectively, biasbias WOWI , are weigh 
coefficient of deviation unit added to hide layer and output layer. From formula (5), 
the output of hide layer node can be regarded as dynamic system states, here, the IRN 
network is the state space expression for nonlinear dynamic system, the hide node can 
storage input/output information. The research and application on IRN get 
progressively, Su apply IRN for nonlinear system modeling successfully, Ku&Lee, 
Narendra adopt IRN model in nonlinear system identification and control, the effect is 
satisfied. 

The usual fault diagnosis model based on neural network (BP network) include 
three layer, input layer: receiving all fault information and phenomenon from actual 
system; middle layer: the fault information got from input layer is transferred into 
target resolve way by inner learn and process; output layer: according to input faults 
form, the fault decision can be made by adjusting weigh coefficient ijW . In short, the 

fault diagnosis on neural network model is training node link weigh value which is 
stable convergence with samples, sample symptom parameters diagnosed are input 
into network; computing the actual output of network, according to output magnitude 
sequence to define fault sorts. each frequency domain kernel under all possible faults 
can be computed out (own to quick series decaying, only fore three order kernel are 
computed enough) then, they are normalized to form train sample sets, then, the train 
samples are input into neural network for training, just as a fault dictionary is set in 
neural network [2], the neural network classifier trained can classify test samples of 
actual each order kernel in fault network, fault automation inquiry and diagnosis are 
completed in fault dictionary. 
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4   Diagnosis Circuit Illustration 

The fault diagnosis in nonlinear circuit verifies this method presented. Firstly, the 
GFRF estimation in nonlinear system under non-continuous estimation signal, the 
feature parameters of diagnosis system were extracted and preprocessed, they form 
input/output sequence with fault pattern diagnosis to construct sample set. The 
Volterra frequency domain kernel was provide for neural network as input sample, the 
output of neural network is corresponding to present work states of system, choosing 
proper network structure, train network with train sample, testing the network 
performance with test sample. The fault feature vectors are input into neural network 
trained to diagnose faults and fault sorts system. 

4.1   Volterra Series Distinguish and Feature Extraction of Nonlinear System 

When nonlinear system operate at a predefined work point, self-adaptation linear 
model can approach it with high precision, when system jump to other work point, the 
network can transfer to new work point correspondingly. Volterra series model can 
complete features extraction of actual system in definite time, seeking for GFRF 
estimation from it to estimate Minimum Square error in nonlinear system behavior. 
For guarantying Volterra series model can track current system work point in 
nonlinear system as soon as possible, the sample rate must be enough quick. whereas, 
for obtaining enough more information for system modeling in reason, network needs 
least cognitive time, adding small volume noise to decrease time possible, the noise 
made nonlinear system increase more operation point dynamically in very short time, 
the learning is more quicker. Of course, the noise must be small enough to ensure 
normal work of system. 

A weak non-linear circuit with nonlinear capacitor showed in figure 1, linear 
resistance and voltage source, supposing sinusoidal signal with multiform non-
commensurability frequency is added into circuit, the transfer function between 
excitation voltage ( )tvs and response current ( )ti . 

 

Fig. 1. Weakly nonlinear circuit 

Under small-signal excitation and weakly nonlinearity, the direct component is 
very small, it can be ignored completely, the actual influence from direct component 
is the value of offset current and voltage which deviate from static state work point 
little, if the deviation value is bigger, Volterra series analysis method is invalid. 
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Fig. 2. The identification effect of Volterra series  

 

Fig. 3. Identification error  

Nonlinear Volterra frequency domain kernel was estimated by neural network 
[7], train time is 50 identity time, the distinguish error is less than 0.01, other 
parameter adopted default value. The output contrast waveform of Volterra series in 
distinguish process of nonlinear system showed in figure 2, by this denotation, at 
fast sample rate, GFRF model can distinguish nonlinear system in high precision. in 
figure 3, the distinguish process of nonlinear system is very fast, passing two 
identity time, Mean Square Error changed from 12.0426/0.01 to 0.00233035/0.01, 
the error grads change form 299.229/1e-010 to 2.21394/1e-010, the distinguish 
error satisfy need. 
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4.2   The Fault Diagnosis Based on Neural Network 

The nonlinear system is analyzed by Volterra series firstly, the fault symptom 
function extracted is compressed and normalized, which are divided into train sample 
and test sample, take thirty times computation value of each order kernel, twenty as 
train sample, ten as test sample, the neural network designed was trained with train 
sample, adjust weigh value, network satisfy system error precision; the neural 
network trained was freeze, test code is input into network, which is under 
recollection state, the work state at each test point are judged to diagnose faults with 
these recollection results [8]. 

The fault classification is realized by recurrent neural network with deviation unit 
[9]. the input of IRN have three neutron corresponded to three order Volterra 
frequency domain kernel respectively, five neurons in output layer corresponding  to 
five bits of one work state respectively, the corresponding output bit as 1 showed the 
fault class which is corresponded to this bit occurrence. Six neutron cells are in hide 
layer, the configuration of other associate node and deviation unit are set properly. 
train samples showed in table 1, test codes are regarded as network input, fault codes 
are regarded as network output, the learn rate is 1.5 in first layer and second layer 
respectively, deviation learn rate of input is 1.0, learn to the eighth step, the precision 
is superior to 0.05, the recollection results shows in table 2, the illustration results 
showed the fast error convergence in inner recurrent neural network. 

Analysis: the circuit response in time domain is difficult to measure and the 
waveform is difficult to compile into fault dictionary, so, it is a feasible thought in 
fault diagnosis based on Volterra frequency kernel; under weakly nonlinear system 
and network, the high order frequency domain kernel attenuate quickly, the fore tree  
 

Table 1. Test and fault code 

Fault sequence Test code Fault code 
1 
2 
3 
4 
5 
6 

111 
010 
100 
110 
101 
011 

00000 
10000 
01000 
00100 
00010 
00001 

Table 2. Recollection result of train mode  

Test code 
111             010             100             110          101          011 

Fault code 
Bit1                     Bit1                    Bit1                  Bit1                 Bit1 
0.0001             0.0001            0.0000            0.0000           0.0001 
0.9931             0.0000            0.0002            0.0001           0.0000 
0.0000             0.9931           0.0002            0.0001           0.0000 
0.0000             0.0000            0.9939            0.0002           0.0001 
0.0001             0.0001            0.0000            0.9917           0.0001 
0.0001             0.0001            0.0000            0.0000           0.9958 
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order frequency domain kernel was adopted for  fault diagnosis; the feature vector in 
nonlinear system is compressed by main component analysis, the convergence and 
classified speed of neural network improve greatly, the fault diagnosis in nonlinear 
system online was realized. 

5   Conclusions 

The fault diagnosis method based on frequency spectrum in nonlinear circuit was 
researched here, the frequency response component in nonlinear analog circuit is 
regarded to construct research object, the nonlinear system was identified by Volterra 
frequency domain kernel, the frequency spectrum in nonlinear system was analyzed 
by GFRF analysis to extract state features in nonlinear analog circuit, the IRN 
network with deviation node was adopted to make fault decision, an diagnosis 
illustration verify frequency spectrum estimation and fault diagnosis based on neural 
network with nonlinear Volterra frequency domain kernel.  
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Abstract. Dealing with product yield and quality in manufacturing industries is 
getting more difficult due to the increasing volume and complexity of data and 
quicker time to market expectations. Data mining offers tools for quick 
discovery of relationships, patterns and knowledge in large databases. Growing 
self-organizing map (GSOM) is established as an efficient unsupervised data-
mining algorithm. In this study some modifications to the original GSOM are 
proposed for manufacturing yield improvement by clustering. These 
modifications include introduction of a clustering quality measure to evaluate 
the performance of the programme in separating good and faulty products and a 
filtering index to reduce noise from the dataset. Results show that the proposed 
method is able to effectively differentiate good and faulty products. It will help 
engineers construct the knowledge base to predict product quality automatically 
from collected data and provide insights for yield improvement. 

Keywords: Data mining, Self-organising map, Clustering quality, Filtration of 
noisy data, Yield improvement. 

1   Introduction 

The volume of manufacturing data is growing at an unprecedented rate, both in the 
number of features and objects (instances). Manufacturing databases usually comprise 
of process control, process step and quality control data. In many applications, data is 
automatically generated (by sensors) and therefore the number of objects can be very 
large. The combination of upstream information (supplier information for example) 
and manufacturing & product quality data results in a large number of features in the 
dataset. Traditional techniques of dealing with quality problems are the use of 
statistical process control (SPC) and design of experiments (DOE). However, these 
techniques fail to extract underlying features from complex data [1].  Moreover, these 
methods are highly time-consuming. To shorten design cycle times, it is very 
important for designers to have a tool that can quickly and efficiently analyze 
manufacturing data, estimate product performance, predict the effects of design 
changes and manufacturing variations, and determine optimum design parameters for 
new products. 

Data mining appears to offer a solution to the shortcomings of traditional methods 
and offers tools for the discovery of patterns, associations and statistically significant 
structures and events in data. Thus, it has the potential for providing the underpinning 
technology for decision support tools.  
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2   Unsupervised Clustering Method 

Cluster analysis is a technique that processes data that do not have known class labels, 
or where the analyst opts not to use them. Data within a cluster are highly similar to 
one another, but are very dissimilar to data in other clusters. Each cluster that is 
formed can be treated as a class of data, on which class or concept characterisation 
and discrimination can be performed. 

2.1   SOM and GSOM  

A popular and well-accepted self-organising method of neural network analysis is 
Self-Organising Maps (SOM) [2]. SOM, when two-dimensional topological 
constraints are defined, are useful for providing visualisation of high-dimensional data 
by projecting it onto a two-dimensional network. However, the two-dimensional 
SOM are rectangular grids of neurons that have predefined sizes and are specified by 
widths and heights. This can potentially hinder the real representation of input space 
topology [3].  

Consequently, several modifications to SOM have been proposed to overcome the 
problem of predefined grids. One of the most recent variants, called the growing self-
organising map (GSOM) was proposed to let the algorithm determine the size of the 
feature map [3-6].  Hsu et al. [7] proposed a hierarchical clustering algorithm using 
multiple layers of GSOM that automatically suggests an appropriate number of 
clusters that are present in the data. A significant difference between standard SOM 
and GSOM is that SOM is not able to grow but GSOM grows according to its own 
growing criterion. A parameter of growth, the growth threshold (GT), is defined as: 

GT = −D × ln(SF)                                                            (1) 

where D is the dimensionality of data and SF is the user defined spread factor that 
takes values between 0 and 1 with 0 representing minimum and 1 representing 
maximum growth. The size of the output cluster map will depend on the value of 
growth threshold.  

2.2   Proposed Modifications 

The GSOM algorithm was developed for clustering and class discovery and its 
primary applications were for biological datasets. Manufacturing datasets are complex 
due to the large number of processes, diverse equipment set and nonlinear process 
flows and often comprise of hundreds of process control, process step and quality 
control data. To deal with complexity of manufacturing data, the following two 
modifications are proposed for GSOM developed. 

Evaluating Clustering Results 

With manufacturing data, it may not be straightforward to obtain a good clustering. It 
might be necessary to change different variables and monitor the change of ‘quality’ 
of the cluster. A clustering quality measure, CQ, has been proposed as a benchmark 
[8] to evaluate the results of running simulations with different parameter changes. 
Mathematically, clustering quality can be expressed as:  
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where, B is total number of faulty products, G  is total number of good products, N  is 
total number products (B+G), bi  is number of faulty products in neuron i, gi  is number 
of good products in neuron i, and  ni  = number of products  in neuron i (bi + gi).  

A CQ of 1 would mean a perfect separation of good and faulty products and a CQ 
of 0 would mean no separation at all. This proposed CQ takes the complete cluster 
map into account and can be generated automatically as an objective quantifier of the 
programme to separate good and faulty products from the data provided 

Filtration of Noisy Data 

It was mentioned above that manufacturing databases are usually large and complex and 
may have substantial amounts of noise. Noise reduction from the data is one of the 
primary conditions for obtaining good clustering. Manufacturing data may contain 
many categorical variables, which are comprised of letters or a combination of numbers 
and letters. These categorical data should be transformed to numerical data to allow 
their use in data mining programmes. One of the ways to transform categorical data to 
numerical data is to use 0 and 1 as shown in Table 1 for a simple case of 3 categories. In 
Table 1, the first column is the original dataset. A new column is created for each 
categorical variable and a value of 1 or 0 is provided for the existence and non-existence 
of that variable in the respective row. In this process each column with categorical data 
will be expanded to many columns depending on the number of different categorical 
values in that column. This makes the dataset very large and noisy.  

Table 1. Expansion of Categorical Data 

Original data Expanded data 
 XS21C PG201 P4812 
XS21C 1 0 0 
PG201 0 1 0 
P4812 0 0 1 

Investigation of sample manufacturing datasets has revealed that there are many 
categorical variables that do not have any affect on separating good and faulty 
products. For example a categorical variable may have an equal distribution among 
good and faulty products. These variables, when expanded, only add noise to the 
dataset. To filter out these unnecessary categorical variables, a method is proposed to 
delete them. Mathematically the constraint can be expressed as: 

α≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

f

if

g

ig

N

X

N

X
FI                                                              (3) 



 Manufacturing Yield Improvement by Clustering 529 

where, FI = Filtration Index, Xig = number of good products having a particular 
categorical variable , Xif = number of faulty products having a particular categorical 
variable, Ng = number of good products in the sample, Nf = number of faulty products 
in the sample, α = user defined constraint limit.  

If the Filtration Index for a variable is close to zero, it can be considered that the 
variable is equally distributed among good and faulty products and hence should not 
be considered for analysis. For example, if a dataset has 50 good products and 25 
faulty products and among them 10 good products and 5 faulty products have the 
same variable, then FI will be [(10/50)-(5/25)] = 0.  As the variable is similarly 
distributed among the good and faulty products, it will not have any effect on 
clustering. However, it is not expected that a variable would have FI value exactly 
zero. In practice, the user has to define the value (or range of values) for α depending 
on the characteristics of the dataset. Although the Filtration Index has been proposed 
for categorical variables, it can similarly be used for numerical variables. 

3   Results and Discussions 

The method proposed has been applied to several manufacturing datasets. The results 
demonstrate the effectiveness of the methodology. Details of the simulation results 
are described in the following sections.  

3.1   Manufacturing Process for Industrial Conveyor Belts 

Manufacturing process data for industrial conveyor belts reported by Hou et al. [9] 
was used in this study. For the conveyor belt manufacturing process, the temperature 
at the rollers, thickness of the belt on both sides and revolution speed of the final 
product are three key parameters that determine the quality of the finished product. To 
ensure these parameters are within acceptable ranges, they are monitored and 
controlled closely. A total of 27 records of these key parameters and faulty product 
types were used and a sample of the dataset is shown in Table 2. In the last column of 
the table, different types of faults (1, 3, 7 and 9) are shown. Four good finished 
products are also included in the table and designated as fault type 0. So, there are 
five product quality categories. It is expected that GSOM should be able to cluster the 
different types of faults as separate clusters.  In order to use the data in GSOM, the 
manufacturing parameters are normalized between 0 and 1.  

Table 2. Manufacturing Process Parameters and Faulty Product Types 

Data Spee Thic Thic Thic Tem Tem Tem Tem Fault 
1 3.72 5.58 5.58 5.6 77.8 82.1 80.6 80.6 1 
2 3.62 5.58 5.58 5.61 76.7 82.3 81.6 80.6 7 
3 3.58 5.79 5.62 5.6 76.6 82.3 81.6 80.6 7 
4 3.42 5.67 5.61 5.65 76.6 82.1 80.5 80.6 3 
• • • • • • • • • • 

23 3.42 5.61 5.58 5.6 76.7 82.2 80.6 80.6 3 
24 3.6 5.57 5.58 5.59 76.7 82.2 80.5 80.7 0 
25 3.62 5.58 5.6 5.6 76.8 82.1 80.6 80.7 0 
26 3.61 5.6 5.61 5.61 76.6 82.2 80.5 80.6 0 
27 3.62 5.58 5.61 5.59 76.6 82.1 80.6 80.6 0 
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Since manufacturing parameters for different quality categories are not 
significantly different, detection of patterns is challenging. However, as the dataset is 
small and there are no categorical variables, it is expected that no filtration of data 
will be required. Simulation results for different runs at different spread factors (SF) 
are presented in Table 3. Cluster maps at SF 0.1 and 0.9 are shown in Figure 1. 
Clusters in the cluster maps are numbered for the convenience of analysis. In the 
programme, the last column of the dataset is considered as the object identifier. So the 
fault categories (last column in Table 2) will be shown in the clusters of the output 
map. In Table 3, the first column shows the SFs used in the simulation, the 2nd to 
15th columns show the number of products and the fault category clustered in each 
cluster and the last column shows the calculated clustering quality. For example, data 
in the 1st row of the  2nd  column shows that there are 6 products (shown in 
parentheses) of failure category 3 in cluster 0. As there is no data in clusters 8 and 11, 
they are not shown in Table 3. 

Table 3. Distribution of Faulty and Good Products in Different Clusters 

SF C 0 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 9 C 10 C 12 C 13 C 14 C 15 CQ 

0.1 3(6) 0(2)
1(1)

 0(2) 9(7)  
7(6)
1(3)

 
       0.95 

0.3 3(6) 0(2)
1(1)

 0(2) 9(7)  7(6)
1(3)

       0.95 

0.5 3(6)    7(4) 
7(2) 
1(2)

 
0(4) 
1(2)

9(7) 
 

     0.96 

0.9  7(1) 3(2)  3(4)  0(4)   1(4) 7(5) 9(2) 9(3) 9(2) 1.00 

At lower SFs, good and faulty products are not perfectly separated. It can be seen that 
at SF 0.1 and 0.3 there is mix up of good and faulty products in clusters 1 and 6 (shown 
in bold). Clustering quality of the entire cluster is 0.95 in both cases. As SF is increased, 
CQ increased correspondingly and reaches its maximum at SF 0.9. That means at SF 
0.9, good and faulty products are completely separated. However, it does not mean that 
results at lower SF are meaningless. At SF 0.1, presence of fault category 0 and 1 in 
cluster 1 and fault category 3 and 6 in cluster 6 indicate that there is something common 
among  fault categories 0 and 1 and also among fault categories 3 and 6.  

 

Spread factor = 0.1 
 

Spread Factor 0.9 

Fig. 1. Cluster Map Showing the Influence of the Spread Factor 
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3.2   Wafer Manufacturing Data 

Recorded manufacturing process data can be used to analyse the performance of a 
process. However, it is difficult to find the causes of any abnormal output or the 
factors resulting in lower yield rates [9]. To determine whether GSOM could deal 
with a complex manufacturing dataset, a simulation has been run with a large dataset 
obtained from Motorola USA. The quality problem of the Motorola wafer fabrication 
process is described in reference [1].  

In the context of analysis of manufacturing quality problems, the focus involves 
two main aspects - separation of good and faulty products and identifying the reason 
for yield failure. The present study focuses on the first aspect. The challenge is not 
solely in clustering, but also to obtain a meaningful and adequate number of clusters. 
With meaningful clusters, grouped in appropriate numbers, identification of the 
reasons that contribute significantly to the differentiation of clusters should become a 
simpler task.  

The dataset is the historical wafer data collected for 2500 wafers over a 2-month 
period. The input database measured 133 parameters by 16,381 entries organized into 
an Excel file. The data consisted of Wafer Probe Data of 39 wafer probe functional 
tests, Process Control Data (59 numerical electrical PC measurements probed at 8 
sites per wafer) and Process Step Data such as material vendor/lot, wafer boat 
position, etc. A sample of the dataset is shown in Table 4. The second column in the 
table is the product ID, the 3rd column is the product reference number and columns 
C1 to X133 are measured parameters. In the original dataset, there are 59 ‘C’ columns 
(C1-C59), 38 ‘K’ columns (K60-K98) and 34 ‘X’ columns (X99-X133). The 
reference number in the 3rd column identifies which product is good and which 
product is faulty. Reference numbers above 8750 indicate good products and below 
8750 indicate faulty product. 

Table 4. Motorola Wafer Manufacturing Data (showing dimensionality and layout) 

No. NAME REF C1 C2 • • • 
 

K60 K61 • • • X132 X133 

1 J546040_12_1 9628 1.00E-09 2.21E-02 • • • 33 18 • • • R2793 Dec-18-95 

2 J546040_12_2 9628 -1.33E-09 2.39E-02 • • • 33 18 • • • R2793 Dec-18-95 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

16381 F606617_21_5 9584 -2.69E-08 2.23E-02 • • • 19 18 • • • R285 Feb-26-96 

As can be seen in the table, there are many categorical variables especially in the 
X-columns. This dataset must be converted into a suitable format to use in GSOM. 
Preprocessing of data includes removal of outliers, transformation of categorical data 
into numerical values and normalization. It was found that there are some excessively 
large values in the dataset and if these are not removed, most of the values will 
become zero after normalization. After removing the outliers, the categorical data are 
expanded following the procedure suggested in Table 1 and then normalized between 
0 and 1. This now presents a significant problem as  the 133 columns of the dataset 
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now become 832 columns with 16,381 entries. Considering the computational time 
and complexity of the dataset, about one quarter of the entries (4000) was considered 
for simulation purposes.  

Simulation was run at SF 0.1 first but a very poor (0.25) CQ was obtained. 
Clustering quality was improved with higher SF but the maximum CQ was only 0.52,  
obtained at an SF of 0.95. It is thought that introduction of a large number of 
attributes (because of the expansion of categorical data) created unnecessary noise in 
the dataset. It may be necessary and of great insight to study the effect of removing 
several attributes from the input dataset and to check the impact on the generated 
maps.   

The categorical data from the dataset were reduced using equation (3). First using 
the constraint IF ≤ 0.05, 163 categorical variables were deleted and the simulation 
was rerun. A significantly higher CQ of 0.71 was achieved. To test further, more 
categorical variables were deleted. Using IF ≤ 0.15 a CQ of 0.81 was achieved. As 
further deletion of variables did not produce any more significant improvement, no 
further deletion was done. Moreover, if many variables are deleted, some important 
features may be lost. A  summary of the results is presented in Table 5. 

Table 5. Improvement of Clustering Quality Changing SF and IF 

SF(IF≤ 0) 0.1 0.5 0.7 0.8 0.9 0.95 
CQ 0.25 0.40 0.45 0.49 0.51 0.52 
IF (SF=0.95) ≤ 0.05 ≤ 0.10 ≤ 0.12 ≤ 0.13 ≤ 0.14 ≤ 0.15 
CQ 0.71 0.76 0.78 0.79 0.80 0.81 

Although higher clustering quality is desired, it may not be possible to obtain high 
CQ with complex manufacturing data as 100% separation of all good and faulty 
products is not possible. For example, consider that the desired dimension of a 
product is 10mm. If the dimension of the finished product is 11mm it will be 
considered a failure and if the dimension of final product is 15mm it is also a failure 
but certainly different to the previous failure. It cannot be expected that all products 
with a dimension 10mm (plus tolerance) be clustered in one group and the rest will be 
grouped in another cluster.  There will certainly be some mixing. In practice, some 
clusters with 100% good and faulty products and the rest of the clusters with majority 
either good or faulty products are expected. In this study some clusters with 100% 
good and faulty products were obtained and other clusters either contained majority of 
good products or faulty products.   

4   Conclusions  

The proposed methodology is a significant contribution to the data mining techniques 
available, especially in dealing with complex datasets (such as manufacturing data). 
To the best of the authors’ knowledge there is no similar methodology in the 
literature. For example, Hou et al. [9] used a back propagation neural network method 
to identify faulty product categories. It was shown that the network was able to 
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identify faulty product groups. However, the dataset used in that study is very simple 
and real manufacturing datasets in no way are so simple and straightforward. 
Moreover, product quality may depend on many factors [1]. Hou et al. [9] have not 
suggested how to deal with a complex manufacturing dataset and what to do if a 
reasonable separation is not achieved.  

Application of data mining to manufacturing is relatively limited mainly because 
of complexity of manufacturing data. The original GSOM algorithm has been proven 
to be an efficient algorithm to analyse unsupervised DNA data. However, it produced 
unsatisfactory clustering when used on manufacturing data. Moreover, there was no 
benchmark to monitor improvement in clustering. The present study has proposed 
methods to evaluate quality of the clusters produced by GSOM and to remove 
insignificant variables from the dataset. With the proposed modifications, significant 
improvement in unsupervised clustering was achieved with simple as well as complex 
manufacturing data. Possible further improvement in cluster analysis may be achieved 
by applying evolutionary optimization algorithms [10]. 

For manufacturing data, the objective is not limited to finding the separation of 
good and faulty products. The main objective is to find the underlying reason for poor 
yield. To discover this, it is necessary to create clusters of good and faulty products, 
as has been done in this study. The technique is being extended to model the failure 
causes of the lower yielding products. 
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Abstract. Failure detection in machine condition monitoring involves a 
classification mainly on the basis of data from normal operation, which is 
essentially a problem of one-class classification. Inspired by the successful 
application of KFA (Kernel Function Approximation) in classification 
problems, an approach of KFA-based normal condition domain description is 
proposed for outlier detection. By selecting the feature samples of normal 
condition, the boundary of normal condition can be determined. The outside of 
this normal domain is considered as the field of outlier. Experiment results 
indicated that this method can be effectively and successfully applied to gear 
crack diagnosis.  

1   Introduction 

Feature extraction methods play an important role in machine condition monitoring 
and faults diagnosis, from which the diagnostic information can be obtained. The 
omnipresence of gearbox in rotating machine made the study of gearbox condition 
monitoring a more interesting subject [1-4]. However, the industrial signal is always 
complex because the strong random noises in an industrial environment degrade the 
signal-to-noise ratio greatly. Especially at the first stage of the gear fault such as tooth 
crack, it is very difficult to detect the weakly fault information immerged in noises. 

There are many techniques for extracting indicators of a machine's condition from 
the vibration signals, such as power spectrum, neural networks and time-frequency 
distribution. But the choice of features is often arbitrary leading to situations where 
several features can be providing the same information as well as some features 
providing no useful information at all. The additional burden of computing these 
features may increase the learning cost and affect real-time application of the 
condition monitoring system. So feature selection is helpful to reduce dimensionality, 
discard deceptive features and extract an optimal subset from the raw feature space 
[5]. It is critical to the success of faults recognition and classification. 

Kernel based methods have recently gained wide attention and enabled new 
solutions and improved know ones in the field of communication, geophysics, 
biomedical, text categorization and patter recognition etc [6-10]. The main idea behind 
kernel methods is to map the input space into a convenient high dimensional feature 
space F, where variables are nonlinearly related to the input space. In the feature space, 
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one can solve the problem in a classical way. It is able to approximate almost any 
nonlinear functions, and is possible to model the nonlinear dynamics of gearboxes 
using kernel methods when failures occurring. SVM (support vector machine), KPCA 
(kernel principal component analysis) and KDA (kernel discriminant analysis) have 
found many applications in machine fault diagnosis [11-14]. 

In this paper, KFA (Kernel Function Approximation) based method was used to 
extract the feature sub-space of gear vibration signals’ raw feature space, which was 
composed of some statistical features. By selecting the feature samples of normal 
condition, the boundary of normal condition can be determined. The outside of this 
normal domain is considered as the field of outlier, which can be seen as the samples 
of gear crack failure. 

The paper is organized as follows: in Section 2, an overview of feature vector 
selection and kernel function approximation is introduced. The gear failure 
experiment is described in Section 3, and the proposed method is used to classify 
different faults. Section 4 concludes with a discussion of the results.  

2   Kernel Function Approximations for Outlier Detection 

According to SVM and other kernel methods such as KPCA, if the kernel matrix K of 
dot products is well defined, the map function is constructed. By kernel 
representations, we just need to compute the value of dot product in F without having 
to carry out the map φ. The fascinating idea of using a kernel approach is that we can 
construct an optimal separating hyperplane in the feature space without considering 
this space in an explicit form. For improving computational efficiency and extend the 
classical linear algorithms, Baudat proposed a new approach called kernel function 
approximation [15], in which the kernel tricks is used to extract a relevant data set 
into the feature space and then the data sets are projected onto the subspace of the 
selected feature vectors where classical algorithms are applied for classification or 
regression. Here we adopt this method to realize the normal data domain description 
and to detect the machine failure. 

2.1   Feature Vector Selection 

Consider the input space X contains of M condition samples, and every sample 
represents a feature vector of machine condition at that time.  Suppose we map the 
data into a high dimensional space F by a possibly nonlinear map  

1 2 M 1 2 M[ , , , ] [ ( ), ( ), , ( )]ϕ ϕ ϕ ϕ⎯⎯→x x x x x x  (1) 

These data can be represented in a subspace Fs of F, and the dimension of this 
subspace is lower than M and equal to the ranks of kernel matrix K. The purpose of 
feature vector selection is to choose a basis of the subspace for expressing all the data 
as a linear combination of these selected vectors in the transformed space F, so that 
classical linear methods can be used to detect the outliers. The feature vectors are 
among the samples which represent the machine condition. 
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Let L be the number of feature vectors need to be selected (L≤M), the mapping of 
xi simplified as iϕ ( 1, ,i M= ), and the selected vectors noted as 

jSx , its mapping as 

jSϕ (1≤j≤L), here ‘S’ is used in subscripts to declare the selected feature vectors. 

According to the definition of basis vector, for a given set of selected vectors 

1 2
{ , , , }

Ls s s=S x x x , after mapping into subspace Fs, the mapping of any vector xi 

can be denoted as a linear combination of S 

1

ˆ
j

L
j

i i s
j=

=∑aϕ ϕ  (2) 

Where It can be formulated as a dot product 

ˆ
i S i= ⋅aϕ ϕ  (3) 
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iϕ is the mapping of xi in subspace Fs, 1

( , , )
LS s s=ϕ ϕ ϕ is the matrix of selected 

vectors into F and 1 2 T[ , ,..., ]L
i i i i=a a a a is coefficient vector that weighted this matrix.  

For a given set S, the key is to find coefficients ia in order to minimize the 

difference between ˆ
iϕ  and iϕ . Consider solve this problem in space F, the normalized 

Euclidean distance can be given by the following ratio 
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So, the minimum of equation (4) can be expressed with dot products and leads to 

T 1

min 1 S i SS S i
i

ii

δ
−

= −
K K K

K
 (5) 

where KSS is the matrix of dot products of the selected vectors, 
( ) ( )

p q p qSS s s s s= = ⋅K k K ϕ ϕ (1≤p≤L，1≤q≤L), KSi is the vector of dot products between 

xi and selected vector set S, ( ) ( )
p pS i s i s i= = ⋅K k K ϕ ϕ (1≤p≤L，1≤i≤M), and Kii is the 

matrix of dot products of all condition samples, ( ) ( )i i i i i i= = ⋅K k K ϕ ϕ (i=1, , M) 

The problem now is to find the condition samples set S minimizing equation (5) 
over all samples xi 
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K
 (6) 

For solving this problem, the fitness function Js is defined as 
11

( )
i

T
Si SS Si

S
x X ii

J
M

−

∈

= ∑ K K K

K
 (7) 

Obviously, eq.(6) is equivalent to maximize eq.(7), and note that for i ∈x S , (5) is 
0. Js can be used to descript the fitness of selected vectors, the larger the value of Js, 
the selected vectors more representative, and the maximum of Js is 1. 
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The selection algorithm is an iterative process, which is sequential forward 
selection: at each step looking for the sample that, when combined with the 
previously selected vectors, maximize fitness function Js. The algorithm stops when 
KSS is no longer invertible, which means that S is a basis for expressing data in 
subspace Fs. Besides, the stop criterion can also be that the fitness or the number of 
selected vectors reaches a given value.  

2.2   Kernel Function Approximation 

In classical function approximation, for a given function f, the observation can be 
denoted as 

0( , )y f x a ξ= +  (8) 

where x is the input data, y is the output data, a0 is the parameter unknown and ξ  is 

the noise.  
The goal of function approximation is to compute the parameter a0 by the 

observation value, so the output ˆiy can be estimated. Function approximation is 
mainly used in the problems of regression, which is closely related to classification. 
Especially for outlier detection, this classification task into 2 classes is a particular 
regression problem for which the output y is a binary value such that y=1 where x is 
belong to the class of normal condition, otherwise, y=0. Therefore, function 
approximation can be used to solve classification problems. 

Once the feature vectors are obtained, we can transform all of the samples into the 
subspace Fs, and the projection of a sample xi can be denoted as zi by dot products 

T( )i i S S i= ⋅ =z ϕ ϕ ϕ ϕ  (9) 

A set of data (xi, yi) transformed to (zi, yi) after projection, and the problem of 
function approximation is to determine zi is outlier or not according to the output yi. 

The estimation of the function using linear regression into subspace Fs, minimizes 
the MSE error of the learning set H and results in an optimal solution 

T T Tˆ i i= +y z A β  (10) 

where T 1 T( )H H H H
−=A Z Z Z Y , T( )H i i H∈=Z z , ( )H i i H∈=Y y , and β is a vector that can be 

included in the estimation of A by adding a constant component in each vector zi. For 
more detail, please refer to [15]. 

The process of kernel function approximation can be described in the Fig 1.  

Input  Space
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Feature Space
F

Subspace
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Y

 FVS

Projection
KFA

Mapping

ϕ

 

Fig. 1. The Procedure of Kernel Function Approximation 
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3   Experiments 

In this section, we will apply the proposed approach as an unsupervised learning 
method to gear vibration signal analysis and compare the results with that of 
supervised one. 

3.1   Gearbox Failure Experiments 

The experiments were conducted on an auto-gearbox (Type/Manufacturer: 
6J90T/Shaanxi Auto-gear Factory, China), and the transmission diagram is shown in 
Fig.2. The gearbox vibration signals were measured externally on the gearbox bearing 
case using an acceleration sensor B&K 4396 and amplified by a charge amplifier 
B&K 2626 to monitor the operating condition of the gearbox. The total testing time of 
the gear fatigue experiments was up to 182 hours. During the testing process, the 
gearbox's running condition underwent three different stages naturally. At first, the 
gearbox's operating condition was normal. Then a crack in one tooth root arose and 
propagated gradually. Lastly one tooth of the meshing gear was broken and the testing 
experiment was terminated. It was found that one tooth of the meshing gear with 24 
teeth was broken when the gearbox was stripped. For more details of the experiment 
one may refer to reference [16]. There are distinct differences between the vibration 
signals of the gearbox with a broken tooth and those of the other two operating 
conditions, however there is only a slight difference between the vibration signals of 
the normal condition and the condition with a cracked tooth. Therefore, we will 
concentrate our efforts on the analysis of the vibration signals of latter two conditions. 
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z=42 z=36 z=33 z=23 z=26

z=12

z=17 z=24 z=35 z=52 z=43

z=25

I (Input)II (Output)

1
2 3

5

6
4

III

 

Fig. 2. The transmission diagram of 6J90T auto-gearbox is shown as above. The gear 
transmission realizes six forward shifts and one backward shift. The third forward gear shift (it 
is the most commonly used shift in practice, which is shown in dash line) was used in the 
experiments.  

In the experiment, the input power is about 193.96kW, the input torque of shaft I is 
about 883Nm, the input speed is about 1270rpm, and the sampling rate was 12.5 kHz. 
So, the rotating frequencies of the three shafts are: 21.17Hz for shaft I; 8.53Hz for 
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shaft II and 12.80Hz for the middle shaft (III). The meshing frequency of the first 
gear-pair is fz1=550Hz and the meshing frequency of the second gear-pair is fz2=307Hz. 

Fig. 3 (a) and (b) show the time domain acceleration signal of normal condition 
gearbox and cracked tooth gearbox. It is difficult to describe the difference between 
the two signals in time domain. 

Fig.4 (a) and (b) show the magnitude spectra of the discrete Fourier transform 
(DFT) of the vibration signals shown in Fig 3 (a) and (b) respectively. From Fig. 4 it 
is seen that the normal gearbox vibration consists of mainly the meshing vibration and 
their higher order harmonics. Moreover, the dominant components are the first 
meshing frequency (550Hz) and its higher order harmonics (1100Hz and 1650Hz). 
The meshing vibration at the second meshing frequency (307Hz) and the 
corresponding order frequencies are relatively weaker than that of the first meshing 
frequency. When there is a tooth crack in one of the gears, the vibration magnitude of 
the second frequency has a significant increase (Fig. 4(b)), as the meshing-stiffness 
decreased. Besides, as shown in Fig.4(b), it can be seen that a new component at 
frequency 857Hz (307Hz+550Hz) appears, which indicates the existence of the 
nonlinearity caused by the coupling of the two meshing frequencies.  

    

Fig. 3. Time domain vibration signals: (a) Normal gearbox (b) Cracked tooth gearbox 

      

Fig. 4. DFT magnitude spectra: (a) Normal gearbox (b) Cracked tooth gearbox 
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However, in addition to the two pairs of meshing gears, there are also many other 
gears that not in meshing condition and supporting rolling bearings, they also 
contribute to the gearbox vibration. These additional components and measuring noise 
make the signal-to-noise ratio of vibration signals very low. Therefore, it is not 
adequate to determine that there is a tooth crack failure within the gearbox.  

3.2   Gear Crack Detection Using KFA 

It is known that the time domain of the vibration signals provides a useful feature set 
for gear faults diagnosis. Many feature parameters have been defined in the pattern 
recognition field. Here only 11 time domain features, including maximum value, 
minimum value, standard deviation, absolute mean value, crest factor, impulse factor, 
clearance factor, root mean square value, kurtosis, skewness and variance, were used 
as raw feature sets for further analysis. These parameters are non-dimensional and are 
used to construct “input space” in this work. 
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Fig. 5. Gear tooth crack detection using unsupervised KFA learning method with a Gaussian 

kernel function ( )2
( , ) exp / 2K = − −x y x y and σ =1 

There were 80 raw vibration signals, each having 1024 samples, measured under 
normal and tooth cracked conditions of the gearbox (40 per condition) for the 
investigation. Firstly, 11 features mentioned above of each raw signal were computed 
and normalized; in total 80 11-D raw feature data were obtained. In views of 
visualization the result, all the feature data first were processed with principal 
component analysis to reduce the dimensions to 2-D. Then selecting feature vectors of 
40 feature samples of normal condition, the criterion of feature vector selection was 
that the number of vectors reaches 20 or the fitness value reaches 0.95. When 15 
feature vectors have been selected, the fitness value reached 0.950256, which means 
that the subspace for gear crack detection can be constructed by these 15 feature 
vectors. Projecting all the feature samples onto the subspace, using KFA to descript 
the normal condition domain as an unsupervised learning method, the samples which 
located out of the boundary can be thought as outliers, and the detection result is 
shown in Fig.5, in which we use the symbol ‘+’ to represent data of normal condition 
and ‘ ’ tooth cracked data respectively. The data labeled with ‘o’ are the selected 
feature vectors, and the correct detection rate of this method reaches 95%.  
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Fig. 6. Gear condition classification using supervised KFA learning method with a Gaussian 

kernel function ( )2
( , ) exp / 2K = − −x y x y and σ =1 

 

Fig. 7. Gear condition classification using SVM learning method with a Gaussian kernel 

function ( )2
( , ) exp / 2K = − −x y x y and σ =1 

The gear conditions classification result using supervised KFA learning method is 
shown in Fig.6. Here we need to select feature vectors of two classes, the criterion is 
that the number of feature vectors reaches 20 or the fitness value reaches 0.95. When 
20 feature vectors have been selected, in which there are 8 vectors of normal 
condition and 12 vectors of tooth cracked condition, the fitness value reached 
0.912566, and the correct classification rate is 95% too. It can be seen that the result 
of unsupervised KFA performed as well as that of supervised one.  

Fig.7 shows the classification result of gear conditions with SVM method, here 
OSU_SVM toolbox is used to get the result and the same kernel function used in KFA 
is adopted [17]. The number of support vectors is 51, and the correct rate is 95%. 
Obviously, the number of feature vectors is less than that of support vectors, which 
means that KFA can give slightly better results than the SVM does considering the 
computation load and speed. 
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It should be pointed out that parameter σ of Gaussian kernel influences the domain 
description, especial for the domain boundary. Different value of σ will lead to 
different number of feature vectors and different boundary of normal data domain, 
and in this work we determine this value by testing and experience, which is related to 
the selection of kernel functions.  

4   Conclusions 

Machine failure detection involves modeling the normal behavior of a system hence 
enabling detection of any divergence from normality or highlighting abnormal 
features of machine damage. In this paper an approach to outlier detection based on 
KFA is presented, in which feature vectors are selected to construct the feature 
subspace and determine the normal data domain, and then all the samples are 
projected onto this subspace, samples outside of the normal data domain are outliers. 
Experiment results on industrial gearbox vibration signals indicate that the proposed 
method is sensitive to select feature vectors from raw feature sets and is capable of 
detecting early machine failure such as gear crack. It has great potential for machine 
fault diagnosis in practice. 
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Abstract. A framework model proposed in this paper is a data-link Equipment 
Redundant Strategy based on reliability theory. The strategy combined with the 
normal maintenance could greatly improve the performance of the network 
system. The static-checking and policy of authentication mechanism ensure the 
running network without any error. The redundant equipments are independent 
but are capable of communication with each other when they work their actions. 
The model is independent of specific application environment, thus providing a 
general-purpose framework for fault diagnosis. An example is given to express 
the calculating method. 

1   Introduction 

One of the important characteristics of informationized weapons is that the platforms 
are horizontally implemented that they can be merged into information network 
system to accomplish information sharing. As a result, the efficiency of the platforms 
can be significantly upgraded. Traditionally, the land-based operation platform takes 
tank, war chariot, cannon and guided missile as representative and the sea-based 
operation platform takes naval ships and submarines as representative, and the sky-
based operation terrace takes plane and helicopter as representative. But all of the 
above platforms could become informationized weapons with high-tech only when 
they are implemented with superiority in modern information technology as well as 
superiority in traditional firepower. 

Therefore, more and more attention is being paid to the task of making a “data 
chain” that mixes each platform, information resources optimization, efficient 
deployment and use of armed forces, and the task is now being put into practical use. 
The “data chain” is becoming the “binder” and “multiplier” of armed forces in future, 
making every commanding and controlling system and computer systems on 
operation platforms consist into a tactic data transmission/exchange and information 
processing network, so that all the concerned data and complete battle information 
can be provided to the commanders and warriors. 

Nowadays, the researchers have focused on the performance of data link networks, 
so only little progress has been made on user’s safeguard. But the performance of the 
user’s safeguard strategy is a direct factor into the reliability and cost of data link 
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network, including the whole procedure from fault discovering to trouble shooting. 
The reliability of data link network is based not only on the design of system structure 
and redundancy but also the strategy adopted. Research [1] shows that the fault 
tolerable network with redundant strategy is a better choice on performance, cost and 
reliability. 

Base on this, the Datalink Equipment Redundant Strategy (DERS) strategy is put 
forwarded in this paper, analyzing the state transmission mechanism of tactics, 
building a mathematical model based on the reliability theory. And the theoretical 
proof of it is given while the availability of this strategy is proved by the simulation. 

2   Datalink Equipment Redundant Strategy 

2.1   Basic Principle 

In a redundant datalink network, θ  represents the time cost on a normal safeguard, λ  
represents MTTR, μ  represents MTBF, c  represents the equipment quantity in this 

network, d  represents equipment quantity that are under normal synchronously 
safeguard. Obviously cd ≤≤0 . Let μξ c= , μτ )( dc −= . Assuming cd ≤≤1 , 

when a trouble is shot, if the quantity of the equipments with trouble is less 
than dc − , then d  equipments start synchronous safeguard, other dc −  equipments 

are not able to enter the safeguard state even if they are idling. After d  equipments 
accomplish the safeguard procedure, if the quantity of the equipments with trouble is 
still less than dc − , d  equipments start another safeguard. Otherwise, stop the 
safeguard procedure. When the safeguard procedure terminates synchronously, j  

equipments are under trouble, cjdc <<− , dcj +−  equipments (among the 

redundant equipments returning from safeguard) are working, and jc −  equipments 

are idling. 

2.2   Analysis of DERS Model 

The state shifts of DERS strategy model is shown in Fig. 1. After a trouble is shot at 
state （ dc − +1， ） （1 , the state shifts to state dc − ， ）0 , and d  redundant 
equipments start the safeguard procedure now. Let 

)( tL v

 represent the quantity of the 

equipments with trouble at time t, and  

⎩
⎨
⎧

=
 tat time safeguardunder  isequipment  no1

 tat time procedure safeguardunder  are equipments d0
)(tJ ,  

then（ )(tLv ， )(tJ ） is a tow-dimensional Malcov procedure, and a state space 

exists: 

}10,|),{(}0|)0,{( orjdckjkdckk =−>−≤≤=Ω ∪ . (1) 
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Fig. 1. State Shifts of DERS Strategy Model 

Generated elements in the procedure are as below: 
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Assuming )/( μλρ c= , when ρ <1,（ vL , J ）  represents the stable limit of the 

procedure（ )(tLv ， )(tJ ） . 
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Assuming 1
0 )( −= ππ kkR ，we get (11) from (9) 

02 =++ CRABR . (11) 

Proposition 1: Let r 和 *r represent the two solutions of the quadratic equation 

0])([)( 2 =++−+−− λθμλμ zdczdc , 0< r <1, *r >1. When ρ <1, matrix 

equation (11) has its minimal non- negative solution. 
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As r  is 0])([)( 2 =++−+−− λθμλμ zdczdc  the minimal non-negative 

solution in (0, 1), we could assume 11r = r . According to the second formula, 

assuming )/(22 μλ cr = . Substituting the above results into the third formula, we can 

get 
)1(12 rc

r
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−
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. Obviously, 1),max( <ρr  exists when and only when 

ρ <1。The proposition is proved.。  

Proposition  2: When the queue consisted of equipments with trouble exists in the 

network, the probability of not able to work normally is ,
1
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Proof: The probability of the existence of the queue consisted of equipments with 
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The proposition is proved. 
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3   Simulation of the DERS Model 

In order to prove the availability of this system and its algorithm, we use the NS2 and 
its ETR data sampling lib, provided by Berkley, as the experiment environment to 
take this simulation. In the environment of this simulation experiment, the interval of 
radio frequency is 25 KHz; data transmission rate is 5 Kbps; there are 5 redundant 
equipments in each network segment, in which only two equipments are allowed to be 
in the state of self-safeguard. And we assume that the normal safeguard takes 0.2 
minutes, MTBF is 30 seconds and MTTR is 120 seconds, i.e. 
c =5， d =2， θ =0.2， λ =2， μ =0.5. We get 
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Assuming r is the root of the equation 027.35.1 2 =+− zz  between (0, 1), We 

get r=0.7667, 18.0 <==
μ
λρ
c

. 

According to (12), we get ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8.00

2628.07667.0
R . 

According to (10), we can get the average length of the queue consisted of 
equipments with troubling in this segment is 11.8)( =qLE . Then we can get the 

MTTR is 06.4)(
1

)( == qLEWE
λ

minutes by using formula Little[1]. 

More researches on the relationship among each parameter in the redundant 
configuration can be done by using this model. Let’s take a common problem on 
redundant requirement as an example: try to find out the number of redundant 
equipments needed to reduce the MTTR to less than 2 minutes. 

Proof: Calculate the values of )( qLE  and )(WE  as below by fixing the values of λ , 

μ , θ  and changing the value of c . The relationship between E(W) and c  is shown 

in fig. 2. 

Table 1. Average Idling Time on Different Redundant Equipment Number 

c  5 6 7 8 
)(WE  4.0560 2.6620 1.9240 1.4200 

)( qLE  8.1120 5.3240 3.8480 2.8400 
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So we can get the result that we should add two more equipments in order to make 

2)( <= WEW . 

 

Fig. 2. Relationship between the Number of Redundant Equipments and Average Idling Time 

4   Conclusion 

We have proposed a new redundant strategy mathematic model DERS to solve the 
problem on Datalink Equipment Redundant Strategy in this paper. Based on this 
model, we can solve the problem of redundant management efficiently. Also, this 
strategy can minimize the cost of equipments’ safeguard procedure and normal 
running on the premise of the normal running of the network. The simulation 
experiment has proved the availability of DERS strategy. 
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Abstract. This paper deals with the problem of minimizing the maximum 
completion time (makespan) of jobs on identical parallel machines.  A Hopfield 
type dynamical neural network is proposed for solving the problem which is 
known to be NP-hard even for the case of two machines. A penalty function 
approach is employed to construct the energy function of the network and time 
evolving penalty coefficients are proposed to be used during simulation 
experiments to overcome the tradeoff problem. The results of proposed 
approach tested on a scheduling problem across 3 different datasets for 5 
different initial conditions show that the proposed network converges to 
feasible solutions for all initialization schemes and outperforms the LPT 
(longest processing time) rule. 

1   Introduction 

This paper considers the problem of scheduling independent jobs on identical parallel 
machines with the objective of minimizing makespan. The problem can be described 
as follows: we are given n jobs each of which is to be executed on one of the identical 
parallel m machines during a fixed processing time without preemption.  

So far, much research work has been performed on identical parallel machine 
scheduling problems and a detailed survey of applications is provided by [4,15]. 
Different objective functions can be defined for the problem but makespan 
minimization has been one of the most widely studied objectives in the literature.  

In the standard three-field problem classification notation of [8], the problem is 
denoted in the scheduling literature as P||Cmax where P represents the identical 
parallel machines, Cmax denotes the makespan. It is assumed that the processing times 
are positive and that 1<m<n.  

Even though traditional techniques such as complete enumeration, dynamic 
programming, integer programming, and branch and bound were used to find the 
optimal solutions for small and medium sized problems, they do not provide efficient 
solutions for the problems with large size and the problem is known to be NP-hard.  

Since no efficient polynomial algorithm exists to find the optimal solution, 
heuristic methods were developed to obtain near optimal solutions. Although, 
efficient heuristics can not guarantee optimal solutions, they provide approximate 
solutions as good as the optimal solutions. The LPT rule of Graham [7], one of the 
most popular heuristics, has been shown to perform well for the makespan criterion. 
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This rule arranges jobs in descending order of processing times, such that 
p1≥p2≥…≥pn, and then successively assigns jobs to the least loaded machine. The 
MULTIFIT algorithm, a classical constructive heuristic developed by [5], determines 
the smallest machine capacity to find a feasible solution using the LPT scheme. This 
is achieved by solving heuristically a series of bin packing problems. Although 
MULTIFIT is not guaranteed to perform better than LPT, it has been shown that it has 
a worst case bound better than LPT.  

Besides a large number of approaches such as mathematical programming, 
dispatching rules, expert systems, and neighborhood search used to model and solve 
scheduling problems, over the last decades, there has been an explosion of interest in 
using Artificial Neural Networks (ANNs) for the solution of various scheduling 
problems. After the success of the use of Hopfield and Tank’s network [12] in solving 
the Traveling Salesman Problem, a variety of optimization problems including 
scheduling problems are solved using Hopfield type networks. However, the Hopfield 
model gets easily trapped in local minimum states and stochastic approaches are more 
successfully able to improve solution quality since they attempt to embed the 
principles of simulated annealing into the Hopfield network to escape from local 
minima. Replacing sigmoidal activation function with a stochastic decision type 
activation function, adding noise to the weights of the network or to the biases of the 
network are some of the main methods used to embed stochasticity into the Hopfield 
network [17]. Boltzmann machine [10], Gaussian machine [2] and mean field 
annealing [16] approaches were obtained by embedding stochastic properties into the 
Hopfield network. 

The aim of this research is to explore the use of ANNs in solving the identical 
parallel machine scheduling problem for minimizing the makespan. To the best of 
our knowledge, this study will be the first attempt to solve the considered problem 
using neural networks. A dynamical gradient network is developed to attack the 
problem and a penalty function approach is used to construct the energy function. 
The idea of overcoming the tradeoff problem encountered in using the penalty 
function approach motivated us to use time varying penalty coefficients during 
simulation experiments.  

The results of proposed approach tested on a scheduling problem for 5 
initialization schemes show that the proposed network outperforms the LPT rule in all 
the datasets with a 100 % convergence rate. The rest of the paper is organized 
follows. In Section 2, a mixed integer programming (MIP) formulation for the 
identical parallel machine scheduling problem is given and the proposed dynamical 
network is explained in Section 3. The computational results are provided in Section 4 
and the conclusions with future research directions are given in Section 5. 

2   Formulation of the Problem 

The problem under study can be formulated using a mixed integer programming 
formulation. The objective is to find an appropriate allocation of jobs to machines that 
would optimize the performance criterion, makespan, Cmax.  
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The notations for the problem are as given below: 

n: number of jobs 
m: number of machines 
Ji : job i, i Є N={1,...,n} 
Mj : machine j, j Є M={1,...,m} 
pi: processing time of Ji 
Ci: completion time of Ji 
Cmax: makespan, the maximum completion time of all jobs 
Cmax = max{C1, C2, ...,Cn} 
 

xij = 
⎭
⎬
⎫

⎩
⎨
⎧

otherwise

jmachinetoassignedisijobif
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A MIP formulation of the minimum makespan problem can be defined as follows: 

min Cmax 
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n

i
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max                        (2) 

The first constraint given in (1) ensures that each job is assigned to exacly one of 
the machines. The second constraint given in (2) ensures that the makespan is at least 
the completion time of each machine.  

3   Design of the Proposed Dynamical Gradient Network 

This section describes how dynamical gradient networks can be used to solve the 
considered problem given in the previous section. The proposed approach is an 
extension of the original formulation given in [11,12]. 

3.1   The Network Architecture 

In the proposed dynamical network, we will have two types of neurons: a continuous 
type neuron to represent real valued variable Cmax, and discrete types of neurons to 
represent binary valued variables X11,…, X1m;  X21,…, X2m; Xn1,…,Xnm. The input to 
the neuron for job i and resource j is represented by UXij and UCmax represents the 
input to the neuron representing Cmax. The dynamics of the gradient net will be 
defined in terms of these input variables. 

While the output of the neuron for job i and resource j is denoted by VXij, the 
output of the neuron representing Cmax is denoted by VCmax. We use a piecewise 
linear type activation function for neuron Cmax and the activation function for 
discrete neurons will take the usual sigmoidal form with slopes λX. In other words, we 
use a log-sigmoid function to convert discrete neurons to continuous ones.  
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3.2   The Energy Function 

The energy function for this network is constructed using a penalty function approach. 
That is the energy function E consists of the objective function Cmax plus a penalty 
function to enforce the constraints. For the problem considered, the penalty function 
P(X, Cmax) will include three penalty terms: P1, P2 and P3. 

In other words, the first penalty term P1 tries to ensure that each job is allocated to 
one only one machine and will yield a positive penalty value if any of the following 
constraints are violated. 
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)1( . P2 adds a positive penalty if the solution does 

not satisfy any of the inequality constraints given in (4). 
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We can write P2 as follows:  
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The binary constraints Xij є{0,1}will be captured by P3 which adds a positive 
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where A, B, C and D are positive penalty coefficients. 

3.3   The Dynamics 

The dynamics for the proposed network are obtained by gradient descent on the 
energy function. The motion equations can be written as follows.  
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where ηCmax and ηX are positive coefficients which will be used to scale the dynamics 
of the network, and ν’ is the derivative of the penalty function ν.   

00)(02)( ≤=′〉=′ εευεεευ allforandallfor  

Since the computation is performed in all neurons at the same time, the network 
operates in a fully parallel mode. 

The solution of equations of motion may be performed via the use of Euler’s 
numerical integration method. The states of the neurons are updated at iteration k as 
follows. 

dt

dUC
UCUC C

kk max
max

1
maxmax η+= −                                          (7) 

dt

dUX
UXUX ij

X
k

ij
k

ij η+= −1                                                                        (8) 

Neuron outputs are calculated by V=g (U), where g (.) is the activation function, U 
is the input and V is the output of the neuron. 

VCmax=g(UCmax) = UCmax for UCmax ≥ 0; otherwise VCmax=0 (a piecewise 
linear function) 

VXij = g(UXij) = logsig (λX×UXij)  (a log-sigmoid function) 

where λX is the slope of the activation function and logsig(n) = 1 / (1 + exp(-n)). 

3.4   Parameter Selection 

We need to determine some parameters in order to simulate the proposed network for 
solving the problem described by the dynamics given in Section 3.3. These are the 
penalty parameters A, B, C and D; the activation slopes λX; the step sizes ηCmax, ηX and 
the initial conditions.  

Since there is no theoretically established method for choosing the values of the 
penalty coefficients for an arbitrary optimization problem, the appropriate values for 
these coefficients can be determined empirically. In other words, simulation runs are 
conducted, and optimality and/or feasibility of the resulting equilibrium points of the 
system are observed. The network can be initialized to small random values, and then 
synchronous or asynchronous updating of the network will allow a minimum energy 



558 D.E. Akyol and G.M. Bayhan 

state to be attained. In order to ensure smooth convergence, step size must be selected 
carefully [20].  

The dynamics of the proposed Hopfield-like gradient network will converge to 
local minima of the energy function E. Since the energy function includes four terms, 
competing to be minimized, there are many local minima and a tradeoff exists among 
the terms. The penalty parameters that result a feasible and a good solution, which 
minimizes the objective function should be found.  

Determining the appropriate values of the penalty parameters, network parameters 
and initial states are critical issues associated with gradient type networks. Obviously, 
tradeoff problem will exist among the penalty terms to be minimized, in solving 
scheduling problems represented by many constraints. In the last years, some problems 
of Hopfield like NNs in solving optimization problems are observed. While several 
authors modified the energy function of the Hopfield network to improve the 
convergence to valid solutions [1,3,18], others employed different penalty parameters to 
the same formulation [9,13,14]. Recently, time based penalty parameters are proposed 
to overcome the tradeoff problems encountered in using penalty function approach. [19] 
used monotonically time-varying penalty parameters for solving convex programming 
problems. [6] proposed linearly increasing time-varying penalty parameters for solving 
clustering problems. In this paper, we propose to use time varying penalty parameters 
that take zero values as initial values and then they are increased in a linear fashion in a 
stepwise manner to reduce the feasible region. We update all the neurons synchronously 
since better simulation results are obtained for this problem.  

The proposed gradient network algorithm can be summarised by the following 
pseudo-code. 

Step 1. Construct an energy function for the considered problem using a penalty 
function approach. 

Step 2. Initialize all neuron states to random values. 
Step 3. Select the slope of the activation function (λ) and step sizes (η). 
Step 4. Determine penalty parameters  
Step 4.1. Select C (the coefficient of the inequality constraint) and assign zero as 

initial value to other penalty parameters A, B and D. If the constraint associated with 
parameter C is satisfied, proceed to Step 4.2 otherwise go back to Step 4.1. 

Step 4.2. Select D (a higher value than C to increase the effect of equality 
constraint), and use the predetermined value of C (without taking into consideration 
of the effect of parameter A and B) to check whether both of the constraints 
associated with these terms are satisfied. If yes go to step 4.3, otherwise to step 4.4. 

Step 4.3. Select B (a higher value than D), assign 1 to A, and use the predetermined 
values of C, D together with B to check whether all of the constraints associated with 
these terms are satisfied. If yes go to step 5, otherwise to step 4.4.  

Step 4.4. Increase the value of parameter whose associated constraint is not 
satisfied. 

Step 5. Repeat n times: 
   Step 5.1. Update U using equations (7) and (8), and then compute V by V=g (U). 
Step 6. If the energy has converged to local minimum proceed to step 7, otherwise 

go back to step 5. 
Step 7. Examine the final solution to determine feasibility and optimality. 
Step 8. Adjust parameters A, B, C, D if necessary to obtain a satisfactory solution, 

reinitialize neuron states and repeat from step 5. 
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4   Simulation Results 

In order to evaluate the performance of the proposed gradient network in terms of 
solution quality, a simulation experiment was conducted. A 10-job 3-machine 
identical parallel machine scheduling problem was considered. The initial conditions 
of the network and the processing times of jobs were chosen randomly from uniform 
distribution in an interval [0,1], and [1,3], respectively.   

Following the steps of the proposed methodology, we firstly try to satisfy the 
inequality constraints by penalizing them and run the simulations without considering 
any other constraints. For the first 2000 iterations, the best initial value of the penalty 
parameter C is determined as 8. Satisfying these inequality constraints after 2000 
iterations, we can proceed to the next phase. In the next phase (for iterations from 
2001 to 4000), one of the equality constraints (binary constraints) is taken into 
consideration, and its associated parameter D is chosen as 20, a value greater than C.  
The predetermined value of C, 8, is used to penalize the inequality constraint. Since 
both of the constraints are satisfied, it is decided to proceed to the next phase where 
we run the simulations for iterations from 4001 to 5000. In this phase, the aim is to 
satisfy all of the constraints. Using the predetermined values of C and D, the penalty 
parameter B belonging to the assignment constraint is chosen as 100 (a value greater 
than other parameters). Parameter A belongs to the original objective function and it 
is not penalized, and we assign 1 to A. After running simulations with all these 4 
penalty terms, the feasibility and optimality of the final solution are checked. It is 
realised that except the inequality constraint, being violated with a small percentage 
error, all of the constraints are satisfied. Thus, it is decided to enhance the weight of 
this constraint, and the value of its parameter, C, is increased to 600. An optimal 
solution is obtained at iteration 5100. All of the constraints were met satisfactorily, 
and the cost value is found as 7.35. Empirically determined values of penalty 
parameters used during the solution of the problem are shown in Table 1.  

Table 1. Penalty parameter values in four phases of simulation 

Penalty Coef.  

Iterations 
A B C D 

1:2000 0 0 8 0 

2001:4000 0 0 8 20 

4001:5000 1 100 8 20 

5001:5100 1 1 600 1 

The proposed network was run for 5 different initial conditions on 3 different 
datasets and in Table 2, the results are compared with the results of the LPT rule and 
with the optimum solutions obtained by Lingo (version 8.0), a linear programming  
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solver, in terms of Best Cmax (cost of the best solution obtained by the gradient 
network), Avg. Cmax (cost of the average solution obtained by the gradient network), 
Worst Cmax (cost of the worst solution obtained by the gradient network), and % 
deviations. Columns (6) and (7) represent the % deviations of the proposed gradient 
network solution from the LPT rule solution and from the optimal solution, 
respectively. The % deviations reported in Columns (6) and (7) are given by 

%100*
)max(

)max()max(.
%

LPTC

LPTCnetworkGradientCAvg
LPTfromdeviation

−=  

%100*
)max(

)max()max(.
%

optimalC

optimalCnetworkGradientCAvg
optimalthefromdeviation

−=  

where Avg. Cmax(Gradient network) is the average gradient network solution of the 5 
runs, Cmax(LPT) is the LPT solution and Cmax(optimal) is the optimal solution 
obtained by the linear programming solver. The percentage of times, which resulted 
in a feasible solution by the network, was also displayed in the last columns of these 
tables. It is obvious that the negative % deviation values from the LPT dispatching 
rule represent the % improvement realized by the gradient network. 

Table 2. Results for m=3, n=10 over 3 problems  

Gradient Network 

Best 
Cmax 

(1) 

Avg. 
Cmax 

(2) 

Worst 
Cmax 

(3) 

LPT 
(4) 

Optimum 
(5) 

Deviation 
(%) from 
the LPT 
solution 

(6)   

Deviation 
(%) from 

the optimal 
solution 

(7) 

Percent 
Feasibility 

of 
Computed 
Solutions 

(8) 

7.35 7.46 7.49 7.63 6.95 -2.2 7.34 100 % 

6.99 7.11 7.20 7.41 6.77 -4.04 5.02 100 % 

6.74 6.81 6.94 7.36 6.57 -7.47 3.65 100 % 

The results given in Table 2 show that for the three datasets in all the initialization 
schemes, percent feasibility obtained is 100 %. If we consider the first dataset, the 
best, average and the worst makespan of the 5 feasible solutions are found as 7.35, 
7.46 and 7.49, respectively. The average Cmax of the 5 runs is 2.22 % less costly than 
the result of LPT rule, and 7.34 % more costly than the global optimal solution. Even 
the worst makespan 7.49 obtained out of the 5 runs outperform the LPT rule result 
7.63. Similarly, in all the three datasets, the worst makespans out of the 5 different 
runs outperform the LPT rule results. Since the initial conditions of the network effect 
the solution quality, the performance is tested on different initial conditions. From the 
results obtained, it is seen that besides the convergence to valid schedules, 
convergence of the proposed network to good quality solutions points out its general 
applicability in other scheduling environments.   
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5   Conclusions 

In this paper, we have studied the identical parallel machine scheduling problem with 
the makespan criterion, which is known to be an NP-hard problem. A dynamical 
neural network that employs time varying penalty parameters is proposed for the 
solution of the problem. By this way, the tradeoff problem is tried to be overcome. 
The performance of the proposed network is evaluated on an example scheduling 
problem and the proposed methodology is explained. The simulation results obtained 
from the network is compared with the well-known LPT heuristic commonly used to 
solve the problem under study, and also with the optimal solutions in terms of the 
solution quality. The simulation experiments demonstrated that the proposed network 
generated feasible solutions for all the data sets and it found smaller makespan 
compared to LPT. To the best of our knowledge, there is no previously published 
article that tried to solve this NP-hard problem using neural networks, so we believe 
that this study will also make a contribution to the scheduling literature.  

Further research can concentrate on analyzing the effects of parameters on the 
solution quality, selecting the parameters of the network automatically rather than 
choosing by trial and error, which is one of the shortcomings of neural networks and 
the performance of the proposed network can be tested on different sizes of 
scheduling models. Additionally, the implementation of the network in hardware can 
make a great progress in computational efficiency.  
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Abstract. For cleaning silicon wafers via the RCA clean, temperature
control is important in order to obtain a stable performance, but it is
difficult mainly because the RCA solutions expose nonlinear and time-
varying exothermic chemical reactions. So far, the MSPC (model switch-
ing predictive controller) using the CAN2 (competitive associative net 2)
has been developed and the effectiveness has been validated. However,
we have observed that the control performance, such as overshoot and
settling time, does not always improve as the number of learning itera-
tions increases when using multiple units of the CAN2. So we apply the
ensemble learning scheme to the CAN2 for stable control over learning
iterations, and we examine the effectiveness of the present method by
means of computer simulation.

1 Introduction

The competitive associative net called CAN2, developed for utilizing the con-
ventional competitive and associative schemes [1,2], has been shown effective in
several applications such as control, function approximation, rainfall estimation,
time series prediction, estimating predictive uncertainty and so on [5]-[11]. The
CAN2 is characterized as the net which uses a gradient method for competi-
tive learning, recursive least squares for associative learning, and an exploration
heuristic based on an ”asymptotic optimality” criterion (see [7]) for overcoming
local minima problems of the gradient method. Although local linear models
[12,13] also utilize piecewise linear approximation, they use linear models in
piecewise regions obtained via the K-nearest neighbors, while the CAN2 utilizes
linear models (associative memories) in the piecewise regions obtained via the
competitive learning designed for minimizing the mean square error of function
approximation. Here, note that the K-nearest neighbors are for minimizing the
distance measures between input vectors and the centers of the piecewise regions,
and do not relate to the mean square error of function approximation. Thus, the
CAN2 is supposed to show better performance in function approximation and
its applications.

As one of the applications of the CAN2, we have been dealing with the tem-
perature control of RCA cleaning solutions, where the RCA cleaning introduced

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 563–571, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Schematic diagram of the RCA cleaning system

and developed at Radio Cooperation of America is the industry standard way to
clean silicon wafers and the temperature control is important for a stable cleaning
performance. Since the RCA cleaning procedure uses corrosive and hazardous
chemical solutions such as SPM (sulfuric acid, H2SO4, and hydrogen peroxide,
H2O2, mixture) and so on, several special pieces of equipment are arranged for
heating solutions as shown in Fig. 1, where there is a solution bath, a bellows
pump, an infrared (IR) heater, and a cleaning filter, which are connected by
anti-corrosive recirculation pipes; and the thermal sensor is covered by an anti-
corrosive glass tube. Thus, this system involves long and fluctuating time lags
and delays, and the mixture of the solutions exposes several exothermic reactions
which are nonlinear and time-varying.

In order to control such nonlinear and time-varying plants involving time lags
and delays, we have developed a control method called MSPC (model-switching
predictive controller) using the CAN2 [3]-[10]. Precisely, the CAN2 in the MSPC
learns multiple linear models of the plant dynamics from the input and output
data of the plant, and then selects an appropriate linear model at each time of
the control phase in order for the GPC (generalized predictive controller) to use
the selected linear model. Although we could have obtained good control perfor-
mance, such as overshoot and settling time, after certain learning iterations, we
have observed that the performance does not always improve with the increase
of learning iterations and increase of the number of units of the CAN2. One of
the reasons for this phenomena is the supposition that the training data, which
are obtained through the previous control iteration, may involve some biased



Ensemble of Competitive Associative Nets for Stable Learning Performance 565

M 10

input

competitive
cells

assosiative
cells

x0 =1

M 11

M 1k

w11

x1

xk

...

1st unit

...

w1k

MN0

MN1

MNk

wN1

Nth unit

...

wNk

. . .

. . .

. . .

y

output

y1 y 
N

Fig. 2. Schematic diagram of the CAN2

data depending on the previous control trajectory, and the CAN2 may overlearn
the data. One of the methods for avoiding overlearning is the cross-validation,
with which we have obtained a certain level of improvement [10]. As another
method for avoiding overlearning, we in this article try to apply the ensemble
method, where the ensemble of the CAN2s may have a higher prediction ability
than the single CAN2 because there are a number of researches showing that
an ensemble prediction is (not average but) often more accurate than any of the
single predictions in the ensemble [14].

This article is organized as follows; Section 2 gives a brief overview of the
CAN2 and the iterations of control and batch learning. Section 3 introduces the
CAN2 ensemble for the MSPC to control the plant. Section 4 shows the result
of numerical experiments and examines the performance.

2 Single CAN2 for Control

2.1 CAN2 for Approximating the System Dynamics

In Fig. 1, the input power p = p(t) and the bath temperature θB = θB(t)
are sampled with a sampling period Tv, and denoted by u(j) = p(jTv) and
y(j) = θB(jTv) for j = 1, 2, · · · , n, where they actually are sampled by the
virtual sampling method [3]. Further, suppose they have the relation given by

y(j) = f(x(j)) + d(j) (1)
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where the function f(·) does not change or changes slowly in time, d(j) represents
zero-mean noise with the variance σ2

d, and the input vector x = x(j) ∈ X � R
k×1

is given by

x(j) = (1, y(j − 1), · · · , y(j − ky), u(j − 1), · · · , u(j − ku))T (2)

where ky and ku are positive integers, and k = 1 + ky + ku.
A CAN2 hasN units. The ith unit has a weight vector wi � (wi1, · · · , wik)T ∈

R
k×1 and an associative matrix M i � (Mi0,Mi1, · · · ,Mik) ∈ R

1×(k+1) for i ∈
I = {1, 2, · · · , N} (see Fig. 2). The CAN2 approximates the above function
y = f(x) for x = x(j) by

ŷ � ŷc � M cx̃ (3)

where x̃ � (1,xT )T ∈ R
(k+1)×1. The MSPC at every discrete time j selects the

model M c which minimize the approximation error for l = j−1, j−2, · · · , j−Ne,
namely c is selected by

c � c(j) � arg min
i∈I

j−Ne∑
l=j−1

‖y(l)−M ix̃(l)‖ (4)

where Ne is a constant. Note that the weight vector wc is not used in the above
procedure, but used for the batch learning (see [8] for details).

2.2 Control and Batch Learning Iterations

We use the controller called MSPC (see Fig. 3 and [3] for details) involving the
CAN2. Here, note that when we apply the MSPC involving the CAN2 to the real
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RCA system, we use the CAN2 after learning the data obtained from simulations
using the model RCA system. The simulation (shown bellow) is executed by the
repetition of control and batch learning iterations as follows; after we set certain
initial values to the associative matrices M i(i ∈ I) of the CAN2, and then
execute the following two procedures repeatedly;

1) Control procedure: control the model RCA system by means of the MSPC
with the CAN2, from which obtain D = {(x(j), y(j)|j = 1, 2, · · · , n)} con-
sisting of the input and the output of the RCA system as given by (1) and (2)

2) Batch learning procedure: execute the batch learning with the dataset
D where the M i are updated to minimize the approximation error on the
dataset D (see [8] for details of the batch learning of the CAN2).

2.3 Problems on Conventional Method

In the actual factories, the RCA cleaning is executed repeatedly for cleaning
many silicon wafers where the system dynamics varies depending on the envi-
ronmental conditions, such as the humidity and temperature of the room, the
amount of the remaining solution in the pipe used at the previous control, and
so on, which cannot be controlled precisely in the current system. A strategy
for overcoming this problem, as well as saving cost, is that we use several units
for the CAN2 to learn different dynamics at various environmental conditions.
Precisely, when we apply the MSPC to the actual RCA system, we are going to
use the CAN2 after learning the data obtained from simulations with the model
system, whose parameter values are set differently according to the variability
of the actual system. However, we have observed a problem on the learning of
the CAN2, i.e. the control performance such as overshoot and settling time does
not always improve with the increase of learning iterations. In order to overcome
this problem, we will try to apply the ensemble of the CAN2s.

3 Ensemble of CAN2s for MSPC

Suppose we have multiple CAN2s, and the lth CAN2 has l units with the weight
vectors w

(l)
i , the associative matrices M

(l)
i for i = 1, 2, · · · , l. Further, let ŷ(l) =

ŷ
(l)
c = M (l)

c x̃ be the output of the lth CAN2. Then, we use a simple ensemble
given by the mean of the outputs of the CAN2s as

ŷ(l1,l2) =
1
ld

l2∑
l=l1

ŷ(l) =
1
ld

l2∑
l=l1

M (l)
c x̃ = M̂

(l1,l2)
x̃, (5)

where l1 and l2 and ld � l2 − l1 + 1 are positive integers, and

M̂
(l1,l2)

=
1
ld

l2∑
l=l1

M (l)
c . (6)
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Fig. 4. Examples of the time course of the control at a control iteration with the CAN2
after L = 30 times of control and learning iterations, where (a) is of the present method
using CAN2(6,10), and (b) is of the conventional method using CAN2(10). The input
power relative to the maximum power is represented by p[%], the output temperature
is θB [◦C], the mean square prediction error is E[5000( ◦C)2], the overshoot is θOS[◦C],
and the setting time tS[s].

For simple expression of the following, let CAN2(l) denote the single CAN2
with l units, and CAN2(l1,l2) be the ensemble of the single CAN2s using l =
l1, l1 +1, · · · , l2. The above two equations show that the ensemble of the outputs

is equivalent to the output using the ensemble of linear models M̂
(l1,l2)

. Since the
MSPC utilizes GPC (generalized predictive controller) which requires the linear

model of the plant, the model ensemble M̂
(l1,l2)

is sufficient for the MSPC to
calculate the control input û(j) at the current discrete time j or the real time
t = jTv.

4 Numerical Experiments

We have examined the present method with the model RCA system whose pa-
rameter values are of the SPM, which is one of the most difficult RCA solutions
to be controlled. The initial temperature is set θB = 120 [◦C] at t = 0 [s], which
also makes the control more difficult, and the set point is 135 [◦C] with allowable
error ±2 [◦C]. The dimension of the input vector x(j) of Eq.(2) is k = 4 where
ky = 2 and ku = 1. Since the sampling period is T = 0.25 [s], the number of the
training data for the CAN2 is about n = 32, 000 = 8, 000/0.25.

4.1 Control Iteration

In order to understand a control iteration, examples of time course of the input
power p = p(t) and the output temperature θB = θB(t) in a control iteration
after L = 30 times of the control and learning iterations are shown in Fig. 4,
where (a) and (b) show the results of the present and the conventional methods,
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Fig. 5. (a) Overshoot θOS and (b) setting time TS achieved by single CAN2s and the
CAN2 ensemble versus the number of control and learning iterations

respectively. From Fig. 4, we can see that the temperature θB increases even if
the input power p is small, around t = 1000 [s], which indicates that exothermic
chemical reaction is occurring, while p should be kept about 60[%] (of the max-
imum power) around t > 2500 where the exothermic reaction is disappeared.
For evaluating the control performance, the overshoot θOS and the settling time
TS are calculated. Further, for evaluating the prediction error, the mean square
prediction error at time t given by

E(t) � 1
t

t∑
j=1

‖e(j)‖2 � 1
t

t∑
j=1

‖ŷ(j)− y(j)‖ (7)

is also calculated, where ŷ(j) is the prediction by the single CAN2 or the CAN2
ensemble at the discrete time j, and e(j) � ŷ(j) − y(j) is the prediction er-
ror. From Fig. 4, we can see that the present method shows a slightly better
performance than the conventional one, but we are interested much more in
the stability through the increase of control and learning iterations, which is
examined in the next section.

4.2 Stability of Control Performance Through Number of Iterations

First, we examine the effect of the ensemble in control performance. As an ex-
ample, Fig. 5 shows the overshoot θOS and the settling time TS as the control
performance achieved by single CAN2s and the CAN2 ensemble with respect
to the number of control and learning iterations, L. From Fig. 5(a), we can see
that the CAN2 ensemble with (l1, l2) = (6, 10) achieves the overshoot θOS less
than the allowable error 2[◦C] for L ≥ 1, while the single CAN2 with l = 6 and
7, respectively, could not achieve the overshoot less than the allowable error at
L = 1. Further, we can see the CAN2 ensemble achieves the settling time TS
stabler than the single CAN2s as shown in Fig. 5(b).

Next, we examine the effect of the number of units in the ensemble. As an
example, Fig. 6 shows the control performance achieved by the CAN2 ensembles
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Fig. 6. (a) Overshoot θOS and (b) setting time TS of the CAN2 ensembles with five
single CAN2s using different number of units
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Fig. 7. (a) Overshoot θOS and (b) setting time TS of the CAN2 ensembles with in-
creasing number of single CAN2s

with five single CAN2s using different number of units. We can see that the
CAN2 ensemble using (l1, l2) = (6, 10) is the best among the ones in the figure
because it achieves the overshoot in the allowable error for L ≥ 1 and stable
settling time for the increase of the number of the iterations, L.

As another example, Fig. 7 shows the control performance achieved by the
CAN2 ensembles with increasing number of units. From the figure, we may say
that every CAN2 ensemble shows a good performance in overshoot from the
point of view of the allowable error ±2[◦C], and the CAN2 with (l1, l2) = (6, 10)
seems to be the best in the stability of the settling time.

5 Conclusion

We have introduced the CAN2 ensemble for the stability of control performance
through the increase of control and learning iterations. By means of numerical
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experiments, we have observed that the CAN2 ensemble shows better perfor-
mance than single CAN2s. We have examined different members for the CAN2
ensemble, and the result indicates that there may be a good set of members.
However, we have not yet examined how we can choose good members for the
ensemble, this will be for our future research.

This research was partially supported by the Grant-in-Aid for Scientific Re-
search(B) 16300070 of the Japanese Ministry of Education, Science, Sports and
Culture.
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Abstract. It is difficult to predict the mechanical properties of welded joints 
because of non-linearity in welding process and complicated mutual effects in 
multi composition welding material. Based on these practical problems, the 
application of neural network technology in predicting mechanical properties of 
welding joints is developed. The modeling method has been studied and the 
author puts forward that the parameters of neutral network can be optimized by 
the method of uniform design. The neutral network model of mechanical 
properties of welding joints is established on the basis of the data of welding 
thermal simulation, and the experimental results show that this model can 
predict the mechanical properties including impact toughness, tensile strength, 
subdued strength, reduction ratio of area and hardness more accurately. At the 
same time, using this method can improve estimating precision largely 
compared with using traditional statistic method. That is, this method provides 
an effective approach to estimate the mechanical properties of welding joints. 

1   Introduction 

It is a tough problem to predict the mechanical properties of the heat affected zone 
(HAZ) of welding joints with different welding specification, because of non-linearity 
in welding process and complicated mutual effects in multi composition welding 
material. In order to solve this problem, a great deal of welding procedure 
qualification reports (PQR) and welding procedure specifications (WPS) are 
developed in practice, and labor and resource are wasted. It makes production cycle 
longer and production cost higher. In latest several decades, the neural networks are 
applied widely in welding field In consideration of its superior characteristics of non-
linear mapping and fault-tolerant [1], the author uses the neural network model to 
predict the mechanical properties of welding joints. In addition, considering the 
uncertainty of the BP neural network parameters during the period of designing model 
and the need of reducing the workload of designing neural network as possible, the 
author brings the method of uniform design into optimizing the parameters and has 
obtained good results.  
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2   Constructing and Classify the Sample Data 

2.1   Construction of the Sample Data  

For setting up the predicting model, large quantities of accurate and dependable sample 
data are required. In order to obtain these sample data, 17 kinds of steel materials are 
machined into specimens and executed to simulate the welding heat cyclic process 
under the different cooling time t8/5 in welding thermal simulator. About 159 groups of 
sample data including tensile strength, yield strength, impact toughness, reduction of 
area and hardness under the different cooling time t8/5 are obtained. 

2.2   Classifying of the Sample Data 

Because of the differences of alloying composition and heat treatment process, 
mechanical properties have biggish difference between the 17 kinds of steel materials. 
If the same model were used to predict the mechanical properties of the 17 kinds of 
steel materials, it would lessen the predicting accuracy and could not approximate the 
property functions of steel materials. So it is necessary to divide these materials on the 
close principle of alloying composition and mechanical properties into four classes: 
low carbon alloy steel (hot rolling), low-alloy steel (hot rolling, normalizing), low-
alloy steel (quenching and tempering), Cr-Mo steel. 

3   Selecting the Architecture and Optimizing the Parameters of the 
Neural Network 

3.1   Selection of Architecture of the Network 

The BP neural network has a formidable spatial mapping ability and many mature and 
effective learning algorithms to train the network, so it is chosen as the structure of 
the predicting model. The network structure is shown in Fig. 1. 
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Fig. 1. Neural network mode 
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According to the metallographic principles and the characteristics of welding 
process, these fifteen parameters including the welding cooling time t8/5, the content of 
carbon, silicon, manganese, sulfur, phosphorus, chromium, molybdenum, vanadium, 
titanium, nickel, niobium, boron, aluminum and cold cracking sensitive coefficient Pcm 
are chosen as inputs. The network outputs contains tensile strength ( bσ ), yield strength 

( sσ ), impact toughness (Akv), reduction of area (φ ) and hardness (HV). The number 

of hidden-layer neurons (HN) and others parameters will be obtained through 
optimizing BP network by the uniform design method in section 4.1.  

3.2   Optimizing the Parameters of Neural Network 

At present, the study of the neural network is still at the stage of grope. There are not 
mature theories and rules to follow during the design of the neural network for 
specific application. Usually the network parameters are set by tests based on the 
experience. But it costs a great deal of time and resources and can not ensure that a 
satisfied neural network could be found [2]. Common optimizing methods need more 
experiments and have stronger blindness and larger uniformity error [3]. The method 
of uniform design that applies the number theory in the mathematical statistic 
successfully is an optimizing method that adapts larger variety of the factors. 
Moreover it is a direct design method that does not rely on the concrete problems. The 
neural network training process essentially is obtaining one group or several groups of 
appropriate weights by iterative algorithm [4]. Suppose the mapping relation of the 
neural network is f (x). It is a multivariate function in number field D. The purpose of 
the training process is obtaining the maximum of f (x) and the value x* which follows 
the equation (1): 

)(*)( max xfxf
sCx∈

=
 

(1) 

Because f (x) has many peaks, the classical gradient methods can not ensure that f(x) 
obtains the global optimal solution. The actual method is picking out the best one as 
the global optimal approximate solution from certain local maximums that are 
obtained from certain starting spots by the gradient method. The starting spots 
initialized by uniform design are superior to those spots created randomly because 
these spots distribute evenly in field D. 

The experiment is arranged according to the method of uniform design. At first, it 
needs to choose the appropriate factors and the level numbers according to its goal 
and the characteristics of the object. Suppose there are S parameters and the level 
number is n, and then 

( )niSkfaX kkki ,,2,1,],[ …=∈∈  (2) 
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(3) 

The suitable )( 8* nU n
 table used to looking up S that has been assigned and n in the 

uniform design table. Xki is the element of the table. The level numbers of column 
elements can be adjusted. Follow equations can obtained from (3). 
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Xki can be obtained from the above formulas and fills in the uniform design table. 
Then the experiment can be done according to the table. The selection of Cki is vital 
during the process of selecting independent variables and must be in its scope because 
it decides the uniformity of the whole design process. The appropriate uniform design 
table is selected according to the recommendation in the uniform design handbook. 
Then the factors are put in the uniform design table and their column numbers are 
selected from the using tables of these above uniform design tables and their level 
numbers are the same as the index of their classes. Now the experiment has been 
arranged well. 

4   The Results of Experiments 

4.1   The Experiment Results of Optimizing BP Network by the Uniform Design 
Method 

The seven parameters including HN, μ0, α, β, moment, dmoment and ρ are the 
important performance parameters of the neural network according to the 
characteristics of the neural network and the study algorithm where HN is the number 
of hidden-layer neurons, μ0 is the coefficient in the transfer function, α is the training 
coefficient of weights, β is the training coefficient of biases, dmoment is the variance 
of the moment and ρ is the training proportion coefficient. 

The table 1 ( )28( 8*
28U ) is selected as the standard from the uniform training design 

handbook because of the minimal uniformity error of the above seven parameters. n is  
number of runs,  s is number of factors and q is number of levels in *( )s

nU q
[5].  The 

step length and the variation range of seven parameters were obtained according to 
Table 1 and are shown in Table 3. Low carbon alloy steel (hot rolling) adopts the 
15×72×5 three-layer BP network. Low-alloy steel (hot rolling, normalizing) adopts 
the 15×62×5 three-layers BP network. Low-alloy steel (quenching and tempering) 
adopts the 15×74×5 three-layer BP network. Cr-Mo steel adopts the 15×56×5 three-
layer BP network. Then the experiment is done according to this table and Table 2 
(the employing table of )28( 8*

28U ). 
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Table 1. Table  )28( 8*
28U  

 1 2 3 4 5 6 7 8 

1 1 7 16 18 20 23 24 25 
2 2 14 3 7 11 17 19 21 
3 3 21 19 25 2 11 14 17 
4 4 28 6 14 22 5 9 13 
5 5 6 22 3 13 28 4 9 
6 6 13 9 21 4 22 28 5 
7 7 20 25 10 24 16 23 1 
8 8 27 12 28 15 10 18 26 
9 9 5 28 17 6 4 13 22 

10 10 12 15 6 26 27 8 18 
11 11 19 2 24 17 21 3 14 
12 12 26 18 13 8 15 27 10 
13 13 4 5 2 28 9 22 6 
14 14 11 21 20 19 3 17 2 
15 15 18 8 10 10 26 12 27 
16 16 25 24 27 1 20 7 23 
17 17 3 11 16 21 14 2 19 
18 18 10 27 5 12 8 26 15 
19 19 17 14 23 3 2 21 11 
20 20 24 1 12 23 25 16 7 
21 21 2 17 1 14 19 11 3 
22 22 9 4 19 5 13 6 28 
23 23 16 20 8 25 7 1 24 
24 24 23 7 26 16 1 25 20 
25 25 1 23 15 7 24 20 16 
26 26 8 10 4 27 18 15 12 
27 27 15 26 22 18 12 10 8 
28 28 22 13 11 9 6 5 4 

Table 2.  Employing table of  )28( 8*
28U  

S No. of column D 
2 1 4      0.0545 
3 1 2 5     0.0935 
4 1 2 5 7    0.1074 
5 1 2 3 7 8   0.1381 
6 1 2 3 5 6 7  0.1578 
7 1 2 3 5 6 7 8 0.1550 
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Table 3. The step length and the variation range of the seven parameters 

Parameter HN μ0 α β moment dmoment ρ 

Step length 2 0.030 0.015 0.005 0.015 0.005 0.020 
Variation 

range 
30 

~84 
0.100 

~0.940 
0.200 

~0.605 
0.050 

~0.185 
0.500 

~0.905 
0.010 

~0.150 
1.020 

~1.560 

Comparing with empiric design, the uniform design method can make points 
distribute more uniformly and make data more representative [6]. The results of 
uniform design experiment are shown in Table 4 and the results of the conventional 
empiric method are shown in Table 5. From these tables, it is easy find that the BP 
neural network model optimized by the method of uniform design has lower training 
error and training times than the model designed by empiric method. 

Table 4. The best training results of uniform design 

 σb σs AKV φ HV 
Maximum of 
absolute error 

0.214 0.262 0.449 0.310 0.310 

Maximum of 
relative error (%)

0.863 1.127 2.486 1.470 1.256 

Table 5. The best training results of conventional method (empiric design) 

 σb σs AKV φ HV 
Maximum of 
absolute error 

0.363 0.598 1.111 3.819 0.440 

Maximum of 
relative error (%) 

1.300 1.959 5.646 5.188 1.505 

4.2   The Predicted Results of Neural Network 

Some samples reserved as checking samples are used to check the predicting accuracy 
of the network. Take the low carbon alloy steel (hot rolling) as the example, the 
predicate results are showed from Fig.2 to Fig.6. 

The predicating results show that the neural network has high predicting accuracy 
of mechanical properties, but the predicting error values are big in some points of 
tensile strength and impact toughness. If more samples are used to train the model 
could be a good solution. 
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4.3   Testing the Fault-Tolerance Ability of the Neural Network 

The fault-tolerance ability is very important to the neural network, because all the 
samples being used to train the network come from the experiments and have some 
deviations. If the fault-tolerance ability of the neural network were bad, these 
deviations would be taken in the predicted results. In order to test the fault-tolerance 
ability of the network, some samples changed manually are inputted in the network 
and some fluctuations around these samples in the predicted results are found. The 
test shows that if the deviations are 2~4 times smaller than themselves, their 
influences on the predicted results can be acceptable. 

4.4   Testing the Association Ability of the Neural Network 

In order to test the association ability of the network, steels not having been used to 
train the network are selected as the samples to test the association ability of the 
network. Take the alloy steel as the example: the steels including HQ60, 15MnV, 
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BHW-35 and STE-460 are used to train the network, and then 14MnVR steel is used 
to test the association ability of the network. The test results show that the predicting 
effect of tensile strength and hardness is better and the relative error is respectively 
0.88%~13.04% and 0.93%~9.24%, that the predicting effect of yield strength and 
reduction of area (section shrinkage rate) is good and the relative error is respectively 
6.69%~38.96% and 1.36%~48.54%. The predicting effect of impact toughness is bad 
and the relative error is 31.54%~343.77%. It is because of the large variation range of 
impact toughness, the strong influence of chemical composition and the relative 
insufficiency of sample data. 

5   Conclusion 

• The neural network for predicting the mechanical properties of weld joints has the 
better abilities to memory, association and fault-tolerant and has the high 
predicting accuracy. It is feasible to use the neural network to assist making 
welding craft. 

• The neural network model having the reasonable parameter structure can be 
obtained easily by optimizing the model with the method of uniform design. It will 
reduce the training cycle and training error of neural network effectively. 
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Abstract. Output time prediction is a critical task to a wafer fab (fabrication 
plant). To further enhance the accuracy of wafer lot output time prediction, the 
concept of input classification is applied to Chen’s fuzzy back propagation net-
work (FBPN) approach in this study by pre-classifying input examples with the 
k-means (kM) classifier before they are fed into the FBPN. Production simula-
tion is also applied in this study to generate test examples. According to experi-
mental results, the prediction accuracy of the intelligent neural system was  
significantly better than those of four existing approaches: BPN, case-based rea-
soning (CBR), FBPN without example classification, and evolving fuzzy rules 
(EFR), in most cases by achieving a 11%~46% (and an average of 31%) reduc-
tion in the root-mean-squared-error (RMSE) over the comparison basis – BPN. 

1   Introduction 

Predicting the output time for every lot in a wafer fab is a critical task not only to the 
fab itself, but also to its customers. After the output time of each lot in a wafer fab is 
accurately predicted, several managerial goals can be simultaneously achieved [5]. 
Predicting the output time of a wafer lot is equivalent to estimating the cycle (flow) 
time of the lot, because the former can be easily derived by adding the release time (a 
constant) to the latter. There are six major approaches commonly applied to predicting 
the output/cycle time of a wafer lot: multiple-factor linear combination (MFLC), 
production simulation (PS), back propagation networks (BPN), case based reasoning 
(CBR), fuzzy modeling methods, and hybrid approaches. Among the six approaches, 
MFLC is the easiest, quickest, and most prevalent in practical applications. The major 
disadvantage of MFLC is the lack of forecasting accuracy [5]. Conversely, huge 
amount of data and lengthy simulation time are two shortages of PS. Nevertheless, PS 
is the most accurate output time prediction approach if the related databases are con-
tinuingly updated to maintain enough validity, and often serves as a benchmark for 
evaluating the effectiveness of another method. PS also tends to be preferred because 
it allows for computational experiments and subsequent analyses without any actual 
execution [3]. Considering both effectiveness and efficiency, Chang et al. [4] and 
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Chang and Hsieh [2] both forecasted the output/cycle time of a wafer lot with a BPN 
having a single hidden layer. Compared with MFLC approaches, the average predic-
tion accuracy measured with the root mean squared error (RMSE) was considerably 
improved with these BPNs. On the other hand, much less time and fewer data are 
required to generate an output time forecast with a BPN than with PS. Chang et al. [3] 
proposed a k-nearest-neighbors based case-based reasoning (CBR) approach which 
outperformed the BPN approach in forecasting accuracy. Chang et al. [4] modified 
the first step (i.e. partitioning the range of each input variable into several fuzzy inter-
vals) of the fuzzy modeling method proposed by Wang and Mendel [8], called the 
WM method, with a simple genetic algorithm (GA) and proposed the evolving fuzzy 
rule (EFR) approach to predict the cycle time of a wafer lot. Their EFR approach 
outperformed CBR and BPN in prediction accuracy. Chen [5] constructed a fuzzy 
BPN (FBPN) that incorporated expert opinions in forming inputs to the FBPN. 
Chen’s FBPN was a hybrid approach (fuzzy modeling and BPN) and surpassed the 
crisp BPN especially in the efficiency respect. 

To further enhance the effectiveness of wafer lot output time prediction, the con-
cept of input classification is applied to Chen’s FBPN approach by pre-classifying 
input examples into different categories before they are fed into the network. The 
classification mechanism is kM. PS is also applied in this study to generate test exam-
ples. Using simulated data, the effectiveness of the intelligent neural system is shown 
and compared with those of four existing approaches, BPN, CBR, EFR, and FBPN 
without example classification. 

2   Methodology 

The intelligent neural system is composed of two parts. In the first part, kM is applied 
to classify wafer lots that are examples to the FBPN. 

2.1   Wafer Lot Classification with kM 

Every lot fed into the FBPN is called an example. The procedure of applying kM in 
forming inputs to the FBPN is now detailed: 

1. Examples are pre-classified to m categories before they are fed into the FBPN 
according to their Euclidean distances to the category centers, which are arbitrarily 
chosen from those of all examples in the beginning. In this way, lot n is classified 
to category j with the smallest d(n, j). 

2. Each time after all examples are classified, the parameter sets of all category cen-
ters are recalculated by averaging those of the examples clustered in the same  
categories. 

3. Example classification is continued until the sum of the average Euclidean dis-
tances (SADs) from examples to their category centers in all categories converges 
to a minimal value. 

Examples of different categories are then learned with different FBPNs but with 
the same topology. 
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2.2   Output Time Prediction with FBPN Incorporating Expert Opinions 

Subsequently, a FBPN is applied for output time prediction within a category. The 
configuration of the FBPN is established as follows: 

1. Inputs: six parameters associated with the n-th example/lot including the average 
fab utilization (Un), the total queue length on the lot’s processing route (Qn) or be-
fore bottlenecks (BQn) or in the whole fab (FQn), the fab WIP (WIPn), and the late-

nesses ( )(i
nD ) of the i-th recently completed lots. These parameters have to be  

normalized so that their values fall within [0, 1]. Then some production execu-
tion/control experts are requested to express their beliefs (in linguistic terms) about 
the importance of each input parameter in predicting the cycle (output) time of a 
wafer lot. Linguistic assessments for an input parameter are converted into several 
pre-specified fuzzy numbers. The subjective importance of an input parameter is 
then obtained by averaging the corresponding fuzzy numbers of the linguistic re-
plies for the input parameter by all experts. The subjective importance obtained for 
an input parameter is multiplied to the normalized value of the input parameter. 

2. Single hidden layer: Generally one or two hidden layers are more beneficial for the 
convergence property of the network. 

3. Number of neurons in the hidden layer: the same as that in the input layer. Such a 
treatment has been adopted by many studies (e.g. [2, 5]). 

4. Output: the (normalized) cycle time forecast of the example. 
5. Network learning rule: Delta rule. 
6. Transformation function: Sigmoid function, 

).1/(1)( xexf −+=  (1) 

7. Learning rate (η): 0.01~1.0. 
8. Batch learning. 

The procedure for determining the parameter values is now described. A portion of 
the examples is fed as “training examples” into the FBPN to determine the parameter 
values. Two phases are involved at the training stage. At first, in the forward phase, 
inputs are multiplied with weights, summated, and transferred to the hidden layer. 
Then activated signals are outputted from the hidden layer as: 
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and )(−  and )(×  denote fuzzy subtraction and multiplication, respectively; jh
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’s are 

also transferred to the output layer with the same procedure. Finally, the output of the 
FBPN is generated as: 
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To improve the practical applicability of the FBPN and to facilitate the comparisons 
with conventional techniques, the fuzzy-valued output o~  is defuzzified according to 
the centroid-of-area (COA) formula: 

.4/)2()~(COA 321 ooooo ++==  (8) 

Then the defuzzified output o is applied to predict the actual cycle time a, for which 
the RMSE is calculated: 

.examplesofnumber/)( 2∑ −= aoRMSE  (9) 

Subsequently in the backward phase, the deviation between o and a is propagated 
backward, and the error terms of neurons in the output and hidden layers can be cal-
culated, respectively, as 
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Based on them, adjustments that should be made to the connection weights and 
thresholds can be obtained as 
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Theoretically, network-learning stops when the RMSE falls below a pre-specified level, 
or the improvement in the RMSE becomes negligible with more epochs, or a large 
number of epochs have already been run. In addition, to avoid the accumulation of 
fuzziness during the training process, the lower and upper bounds of all fuzzy numbers 
in the FBPN will no longer be modified if Chen’s index [5] converges to a minimal 
value. Then test examples are fed into the FBPN to evaluate the accuracy of the network 
that is also measured with the RMSE. Finally, the FBPN can be applied to predicting 
the cycle time of a new lot. When a new lot is released into the fab, the six parameters 
associated with the new lot are recorded and fed as inputs to the FBPN. After propaga-
tion, the network output determines the output time forecast of the new lot. 
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In addition, the fuzzy-valued output ),,(~
321 oooo = of the FBPN can be thought 

of as providing a weighted interval forecast for the actual cycle time a, and it becomes 
possible to further reduce the RMSE with such weighted interval forecasts to the 
following value: 

∑ −−= examplesofnumber/))(,)min(( 2
3

2
1 aoaoRMSE . (16) 

3   A Demonstrative Example from a Simulated Wafer Fab 

In practical situations, the history data of each lot is only partially available in the 
factory. Further, some information of the previous lots such as Qn, BQn, and FQn is 
not easy to collect on the shop floor. Therefore, a simulation model is often built to 
simulate the manufacturing process of a real wafer fabrication factory [1-7]. Then, 
such information can be derived from the shop floor status collected from the simula-
tion model [3]. To generate a demonstrative example, a simulation program coded 
using Microsoft Visual Basic .NET is constructed to simulate a wafer fabrication 
environment with the following assumptions: 

1. The distributions of the interarrival times of orders are exponential. 
2. The distributions of the interarrival times of machine downs are exponential. 
3. The distribution of the time required to repair a machine is deterministic. 
4. The percentages of lots with different product types in the fab are predetermined. 

As a result, this study is only focused on fixed-product-mix cases. However, the 
product mix in the simulated fab does fluctuate and is only approximately fixed in 
the long term. 

5. The percentages of lots with different priorities released into the fab are controlled. 
6. The priority of a lot cannot be changed during fabrication. 
7. Lots are sequenced on each machine first by their priorities, then by the first-in-

first-out (FIFO) policy. Such a sequencing policy is a common practice in many 
foundry fabs. 

8. A lot has equal chances to be processed on each alternative machine/head avail-
able at a step. 

9. A lot cannot proceed to the next step until the fabrication on its every wafer has 
been finished. No preemption is allowed. 

The basic configuration of the simulated wafer fab is the same as a real-world wa-
fer fabrication factory which is located in the Science Park of Hsin-Chu, Taiwan, 
R.O.C. A trace report was generated every simulation run for verifying the simulation 
model. The simulated average cycle times have also been compared with the actual 
values to validate the simulation model. Assumptions (1)~(3), and (7)~(9) are com-
monly adopted in related studies (e.g. [2-5]), while assumptions (4)~(6) are made to 
simplify the situation. There are five products (labeled as A~E) in the simulated fab. 
A fixed product mix is assumed. The percentages of these products in the fab’s prod-
uct mix are assumed to be 35%, 24%, 17%, 15%, and 9%, respectively. The simulated 
fab has a monthly capacity of 20,000 pieces of wafers and is expected to be fully 
utilized (utilization = 100%). POs with normally distributed sizes (mean = 300  
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wafers; standard deviation = 50 wafers) arrive according to a Poisson process, and 
then the corresponding MOs are released for these POs a fixed time after. Based on 
these assumptions, the mean inter-release time of MOs into the fab can be obtained as 
(30.5 * 24) / (20000 / 300) = 11 hours. An MO is split into lots of a standard size of 
24 wafers per lot. Lots of the same MO are released one by one every 11 / (300/24) = 
0.85 hours. Three types of priorities (normal lot, hot lot, and super hot lot) are ran-
domly assigned to lots. The percentages of lots with these priorities released into the 
fab are restricted to be approximately 60%, 30%, and 10%, respectively. Each product 
has 150~200 steps and 6~9 reentrances to the most bottleneck machine. The singular 
production characteristic “reentry” of the semiconductor industry is clearly reflected 
in the example. It also shows the difficulty for the production planning and scheduling 
people to provide an accurate due-date for the product with such a complicated rout-
ing. Totally 102 machines (including alternative machines) are provided to process 
single-wafer or batch operations in the fab. Thirty replicates of the simulation are 
successively run. The time required for each simulation replicate is about 12 minute 
on a PC with 512MB RAM and Athlon™ 64 Processor 3000+ CPU. A horizon of 
twenty-four months is simulated. The maximal cycle time is less than three months. 
Therefore, four months and an initial WIP status (obtained from a pilot simulation 
run) seemed to be sufficient to drive the simulation into a steady state. The statistical 
data were collected starting at the end of the fourth month. For each replicate, data of 
30 lots are collected and classified by their product types and priorities. Totally, data 
of 900 lots can be collected as training and testing examples. Among them, 2/3 (600 
lots, including all product types and priorities) are used to train the network, and the 
other 1/3 (300 lots) are reserved for testing. 

3.1   Results and Discussions 

To evaluate the effectiveness and efficiency of the intelligent neural system and to 
make some comparisons with four approaches – BPN, CBR, EFR, and FBPN without 
example classification, all the five methods were applied to five test cases containing 
the data of full-size (24 wafers per lot) lots with different product types and priorities. 
In the intelligent neural system, a fixed number of 5 categories were assumed for all 
cases. The convergence condition was established as either the improvement in the 
RMSE becomes less than 0.001 with one more epoch, or 1000 epochs have already 
been run. The minimal RMSEs achieved by applying the five approaches to different 
cases were recorded and compared in Table 1. As noted in Chang and Liao [5], the k-
nearest-neighbors based CBR approach should be fairly compared with a BPN trained 
with only randomly chosen k cases. The latter was also adopted as the comparison 
basis, and the percentage of improvement on the minimal RMSE by applying another 
approach is enclosed in parentheses following the performance measure. The optimal 
value of parameter k in the CBR approach was equal to the value that minimized the 
RMSE [5]. According to experimental results, the following discussions are made: 

1. From the effectiveness viewpoint, the prediction accuracy (measured with the 
RMSE) of the intelligent neural system was significantly better than those of the 
other approaches by achieving a 11%~46% (and an average of 31%) reduction in 
the RMSE over the comparison basis – BPN. The average advantages over CBR 
and EFR were 28% and 4%, respectively. 
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2. The effect of example classification is revealed by the fact that the prediction accu-
racy of the intelligent neural system was considerably better than that of FBPN 
without example classification in all cases with an average advantage of 27%. 

3. In the case that the lot priority was the highest (super hot lot), the intelligent neural 
system has the greatest advantage over BPN and CBR in forecasting accuracy. In 
fact, the cycle time variation of super hot lots is the smallest, which makes their 
cycle times easy to predict. Clustering such lots seems to provide the most signifi-
cant effect on the performance of cycle time prediction. 

4. As the lot priority increases, the superiority of the intelligent neural system over 
BPN and CBR becomes more evident. 

5. The greatest superiority of the intelligent neural system over EFR happens when 
the lot priority is the smallest (normal lots). 

Table 1. Comparisons of the RMSEs of various approaches 

RMSE A(normal) A(hot) A(super hot) B(normal) B(hot) 
BPN 177.1 102.27 12.23 286.93 75.98 

FBPN 171.82(-3%) 89.5(-12%) 11.34(-7%) 286.14(-0%) 76.14(+0%) 
CBR 172.44(-3%) 86.66(-15%) 11.59(-5%) 295.51(+3%) 78.85(+4%) 
EFR 164.29(-7%) 66.21(-35%) 9.07(-26%) 208.28(-27%) 44.57(-41%) 

I. N. S. 157.78(-11%) 54.93(-46%) 9.48(-22%) 197.1(-31%) 42.01(-45%) 

4   Conclusions and Directions for Future Research 

To further enhance the effectiveness of wafer lot output time prediction, the concept 
of input classification is applied to Chen’s FBPN approach by pre-classifying input 
examples into different categories before they are fed into the network. The classifica-
tion mechanism is kM. In this way, similar examples are clustered in the same cate-
gory. Examples of different categories are then learned with different FBPNs but with 
the same topology. At last, an intelligent neural system is constructed with two special 
features tailed to the problem: incorporating expert opinions, and classifying exam-
ples. For evaluating the effectiveness of the intelligent neural system and to make 
some comparisons with four approaches – BPN, CBR, EFR, and FBPN without ex-
ample classification, production simulation is applied in this study to generate test 
data. Then all the five methods are applied to five cases elicited from the test data. 
According to experimental results, the prediction accuracy (measured with the 
RMSE) of the intelligent neural system was significantly better than those of the other 
approaches by achieving a 11%~46% (and an average of 31%) reduction in the 
RMSE over the comparison basis – the BPN. The average advantages over CBR and 
EFR were 28% and 4%, respectively. The effect of example classification is revealed 
with an average advantage of 27% over FBPN without example classification. 

However, to further evaluate the effectiveness and efficiency of the intelligent neu-
ral system, it has to be applied to fab models of different scales, especially a full-scale 
actual wafer fab. In addition, the intelligent neural system can also be applied to cases 
with changing product mixes or loosely controlled priority combinations, under which 
the cycle time variation is often very large. Besides, there are many other neural  
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network methods that classify examples before learning as well. For example, a sim-
ple hybrid of a principal component analysis (PCA) neural network or a self-
organization feature map (SOFM) and a FBPN can also be applied for the same pur-
pose. These constitute some directions for future research. 
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Abstract. A human-like multi-fingered prosthetic hand, HIT hand, has been 
developed in Harbin Institute of Technology. This paper presents a new pattern 
discrimination method for HIT hand control. The method uses a bagged-BP 
neural network based on combing the BP neural networks using bagging 
algorithm. Bagging has been used to overcome the problem of limited number of 
training data in uni-model systems, by combining neural networks as weak 
learners. We compared the results of the bagging based BP network, using four 
features, with the results obtained separately from these uni-feature systems. The 
results show that the bagged-BP network improves both the accuracy and 
stability of the BP classifier. 

1   Introduction 

Surface electromyography (sEMG) signals are often used as interface for prosthetic 
devices, since they are the manifestation of electrical stimulations, which motor units 
receive from the central nervous system (CNS), and indicate the activation level of 
motor units associated with muscle contractions. Different motions resulting from 
different modes of muscle activation generate different EMG patterns. 

The neural network (NN) is suitable for modeling nonlinear data, and is able to cover 
the distinction among different conditions. It has been widely used for the EMG-based 
motion discrimination since 1980s. However, in general, neural networks classifier is 
unstable. One method for improving stability of neural networks classifier is to 
construct good ensembles of classifiers [1].  

This paper proposed a new BP neural network using bagging with four feature sets. 
Offline pattern discrimination experiments of the EMG signal were conducted using 
bagged-BP with four subjects, and the proposed method was compared with BP 
classifier using uni-feature set. 

2   Background 

2.1   HIT Hand 

HIT hand was (shown in Fig.1) developed in Harbin Institute of Technology (HIT) [2]. 
The robot hand has 5 fingers and 14 joints just like human hand, and the thumb has 2 
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joints. All 5 fingers and 14 joints are controlled by only 3 separate electro-motors. 
Thumb, index finger and middle finger are controlled by each electromotor separately. 
The ring finger and the little finger of the prosthetic hand act along with middle finger. 
All other freedom-degrees are developed based on under-actuated adaptive theory. So 
the robot hand can achieve kinds of general grasp functions such as power grasp, pinch 
grasp and so on.  

Considering the function of HIT hand, in the experiment, we try to discriminate six 
patterns of finger movements, i.e. thumb extension (TE), thumb flexion (TF), index 
finger extension (IE), index finger flexion (IF), middle finger extension (ME), and 
middle finger flexion (MF).  

 

Fig. 1. HIT multi-finger robot hand 

2.2   Signal Representation 

The performance of time domain feature set (TD), the autoregressive coefficients (AR), 
cepastral (CEP) coefficients and those based upon the wavelet transform (WT) were 
used to discriminate the EMG patterns. Data were acquired from four channels of EMG 
from electrodes placed on extensor digitorum, extensor pollicis brevis, flexor carpi 
ulnaris and flexor digitorum. 

The TD [3] was got by computing the mean absolute value (MAV), zero crossings 
(ZC), slope sign changes (SSC) and waveform length (WL) of each channel, and 
combining the four channels’ parameters to construct the TD feature vector 
{ 1, 1, 1, 1, , 4, 4, 4, 4}MAV ZC SSC WL MAV ZC SSC WL . 

The AR feature set [4] is a vector containing 16 parameters, including the four-order 
AR coefficients of each channel. The CEP feature set [5] is also a vector containing 16 
parameters, containing the four-order cepastral coefficients of each channel. 

 We made wavelet decomposition at level four, using coiflet4 wavelet. Once the 
wavelet decomposition vector containing the approximate coefficients and the detail 
coefficients are obtained they were subject to dimensionality reduction using singular 
value decomposition respectively, and the standard deviation are also calculated. So for 
four channel raw EMG signals, by doing wavelet decomposition and dimension 
reduction, a WT feature set of 40 parameters was got. Table 1 shows the details of the 
four feature sets. 
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Table 1. List of created feature set for each hand motion 

Parameter title Parameter number 
4th order AR model 4×4 
4th order cepstrum coefficients 4×4 
Time domain feature set 4×4 
Wavelet coefficients 10×4 

2.3   Bagged BP Classifier 

Bagging predictors [6] is a method for generating multiple versions of a predictor and 
using these to get an aggregated predictor. The aggregation averages over the versions 
when predicting a numerical outcome and does a plurality vote when predicting a class. 
The multiple versions are formed by making bootstrap replicates of the learning set and 
using these as new learning sets. For unstable procedures, such as neural networks, 
bagging works well. It can push a good but unstable procedure a significant step 
towards optimality. In this paper, we bagged BP neural networks on real EMG data and 
compare the classification rate with those using BP neural networks alone.  

The BP neural network contains three layers. The number of nodes in input layer 
agrees with the dimension of the feature sets. The middle layer has 30 nodes and the 
output layer has 6 ones representing the six patterns of finger movements. The network 
was trained by gradient descent with momentum algorithm and adaptive learning rate 
back-propagation algorithm. 

Fig. 2. The structure of the bagged-BP classifier 

We created four training sets ( 1, 2,3, 4)kL k = . WT feature sets make up 1L , TD 

feature sets make up 2L , AR feature sets make up 3L  and CEP feature sets make up 4L . 

Each training set ( 1, 2,3, 4)kL k =  consists of data{( , ), 1,2, 180}k k
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( ){ ( , )}( 1,2,3,4; 1,2,3,4)B
kBP x L k B= =  vote to form ( )finalBP x . This procedure is called 

“bootstrap aggregating” and uses the acronym bagging. The ( ) ( 1,2,3,4)B
kL B = forms 

replicate data sets, each consisting of 120 cases, drawn at random, but with 
replacement, from ( 1, 2,3, 4)kL k = . Each{( , ), 1,2, 180}k k

n ny x n = may appear repeated 

times or not at all in any particular ( ) ( 1, 2,3,4)B
kL B = . Fig. 2 shows the structure of the 

bagged BP classifier. 

3   Methodology 

Data were collected from four normally limbed subjects and ID numbers were 
assigned according to their names, i.e. ZJD, WJZ, DXN and MTB. The discrimination 
results of the experiment represent the best performance that an amputee can obtain 
when using the same classifier.  

Fig. 3. Subject’s six patterns of finger movements which the controller discriminates and the 
positions of electrodes. The selected four muscles where the electrodes placed on are most 
correlative with the six motions. 

Each subject generated six different classes of finger movements: thumb flexion 
(SF)/extension (SE), index finger flexion (IF)/extension (IE), and middle finger flexion 
(MF)/extension (ME). Four channels of EMG signal were recorded from electrodes 
placed on extensor digitorum, extensor pollicis brevis, flexor carpi ulnaris and flexor 
digitorum, which are most involved when executing the six patterns of finger 
movements. Each bipolar channel was acquired using Ag-AgCl electrodes spaced at 2 
cm. Each record was 3s in duration (7200 points, sampled at 2400 Hz, prefiltered 
between 10 and 1000 Hz). In each dataset, 100 patterns were generated in each class, 
resulting in a total of 600 patterns. These data were divided into training sets of 180 
patterns, verification sets of 120 patterns and test sets of 300 patterns, and then subject 
to feature selection and classification. Fig.3 shows the movements and the positions of 
the electrodes. 

TF 

TE 

IF 

IE 

Ch 1 

Ch 3

Ch 2

Ch 4

MF 

ME Positions of electrodes 
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4   Results 

Each feature set extracted from the raw EMG signals of four subjects with record length 
of 256 points (107ms) were put into the BP network for recognition respectively. And 
the hybrid features extracted from the same raw EMG date were used to train the 
bagged BP classifier. Tables 2 to table 5 depict the discrimination results of the test data 
of the four subjects.  

From these tables we can see that the discrimination rate of the six motions differ 
from each other. And for a certain motion, the results also differ using different feature 
set. The tables also show that the bagged-BP classifier is superior to the BP classifier. 

Fig.4 and Fig.5 shows the average discrimination rate of the four subjects when 
using EMG data with different length. For all subjects, the classification rate improves 
when the data length increases. It is also obvious that different subjects have different 
recognition result when the length of EMG data, the method to extract feature and the 
structure of classifier are the same.  

Table 2. The classification results of the test data of ZJD 

Classifier Feature 
TF 

(50) 
IF 

(50) 
MF 
(50) 

TE 
(50) 

IE 
(50) 

ME 
(50) 

Accuracy(%) 

 ar 49 49 18 49 50 50 88.3 
BP cep 48 50 31 48 50 48 91.7 

 wt 49 45 37 49 46 48 91.3 
 time 44 43 30 49 46 48 86.7 

Bagged-BP hybrid 49 50 38 50 50 50 95.7 

Table 3. The classification results of the test data of WJZ 

Classifier Feature 
TF 

(50) 
IF 

(50) 
MF 
(50) 

TE 
(50) 

IE 
(50) 

ME 
(50) 

Accuracy(%) 

 ar 42 28 33 49 38 42 77.3 
BP cep 42 43 31 49 27 42 78.0 

 wt 39 25 40 49 14 46 71.0 
 time 37 30 40 43 19 42 70.3 

Bagged-BP hybrid 45 46 41 49 41 42 88.0 

Table 4. The classification results of the test data of DXN 

Classifier Feature 
TF 

(50) 
IF 

(50) 
MF 
(50) 

TE 
(50) 

IE 
(50) 

ME 
(50) 

Accuracy(%) 

 ar 43 40 36 2 49 49 73.0 
BP cep 47 37 41 0 49 49 74.3 

 wt 47 33 44 13 49 49 78.3 
 time 47 13 46 41 42 45 78.0 

Bagged-BP hybrid 46 47 46 3 50 49 80.3 
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Table 5. The classification results of the test data of MTB 

Classifier Feature 
TF 

(50) 
IF 

(50) 
MF 
(50) 

TE 
(50) 

IE 
(50) 

ME 
(50) 

Accuracy(%) 

 ar 17 12 29 37 8 38 47.0 
BP cep 30 4 24 37 15 37 49.0 

 wt 39 20 35 44 8 45 63.7 
 time 25 8 31 46 25 39 58.0 

Bagged-BP hybrid 38 29 25 39 29 38 66.0 

40

60

80

100

ar cep wt time hybrid
Feature

D
is

cr
im

in
at

io
n 

R
at

e 
(%

) ZJD WJZ DXN MTB

 

Fig. 4. The test discrimination rate of the four subjects with EMG data of length N=128  
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Fig. 5. The test discrimination rate of the four subjects with EMG data of length N=256 

5   Discussion 

In order to construct a more efficient EMG recognition system, we proposed a new 
classifier, i.e. bagged BP classifier. The results show that the bagged BP classifier 
improves accuracy and stability. Since BP neural network is unstable and easily reaches 
a local minimum of the error, the results of individual neural net may not be satisfying. 
However, these characteristics of neural network increase the variant of the individual 
classifier in the ensemble classifier, and bagging improves the efficiency of the weak 
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learner by reducing the differences in the system. So bagging is an effective method to 
enhance the efficiency of neural network.  

sEMG signals have the properties of large variations and subject’s dependent. Until 
now there is no feature set which can give a universal optimal discrimination results 
among all subject [7，8，9，10]. So we try to use hybrid features and bagged BP 
classifier to discriminate the different finger movements. The experiment show that 
hybrid feature improve the classification rate.  

We also find that the classification rate varied a lot between subjects. It is because 
that some subjects act less skillfully and the low proficiency leads to the less desirable 
results. Therefore, we presume that the more the subjects practice the task, the more 
desirable results can be observed. 
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Neural-Network-Based Sliding Mode Control for Missile 
Electro-Hydraulic Servo Mechanism 
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Abstract. A method investigating a Gaussian radial-basis-function neural net-
work (GRBFNN) with sliding mode control (SMC) for missile electro-
hydraulic servo mechanism is presented. Since the dynamics of the system are 
highly nonlinear and have large extent of model uncertainties, such as big 
changes in parameters and external disturbance, firstly, SMC is introduced. 
Since the accurate equivalent control is difficult to reach, a Gaussian radial ba-
sis function neural network is utilized. By adjusting the weight on-line, a neu-
ral-network-based SMC is developed to estimate the equivalent control of SMC 
control system. Then the switching control is appended to guarantee the stabil-
ity of the proposed controller, and a set of fuzzy control rules are used to at-
tenuate chattering phenomenon of the switching control. We apply the control 
method to the missile electro-hydraulic servo mechanism. Simulation results 
verify the validity of the proposed approach. 

1   Introduction 

Electro-hydraulic servo mechanism has been frequently used in the position servo 
system of a missile thanks to their capability of providing large driving forces or 
torques, rapid response and a continuous operation [1]. However, electro-hydraulic 
servo mechanism inherently has many uncertainties and highly nonlinear characteris-
tics, which results from the flow-pressure relationship, oil leakage, and etc. Further-
more, the system is subjected to load disturbances [2]. Consequently, the conventional 
control approaches based on a linearized model near the operating point of interest 
may not guarantee satisfactory control performance for the system. Since the variable 
structure control strategy using the sliding mode can offer many good properties, such 
as insensitivity to parameter variations, external disturbance rejection [3], sliding 
mode control (SMC) has been studied by many researchers for the control of electro-
hydraulic servo system [4,5,6]. However, it is difficult to guarantee the stability of 
system as well as to obtain a suitable equivalent control if the nominal mathematics 
model is unknown in advance [4]. And SMC may suffer from the main disadvantage 
associated with the chattering control input due to its discontinuous switching control 
used to deal with the uncertainties [5, 6].  

To overcome the problems, the method of neural-network-based SMC is proposed 
in this paper. Based on the conventional SMC, a Gaussian radial basis function  
neural network (GRBFNN) [7, 8] is utilized. By adjusting the weight on-line, a  
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neural-network-based SMC is developed to estimate the equivalent control of SMC 
control system. The switching control is appended to guarantee the stability of the 
proposed controller. Then a set of fuzzy control rules is constructed to attenuate the 
chattering phenomenon of the switching control signal. Finally, we apply the control 
method to the missile electro-hydraulic servo mechanism. Simulation results show the 
advantages of the proposed approach. 

2   Problem Statement and Design of Conventional SMC 

For a kind of missile electro-hydraulic servo mechanism, which is a typical electro-
hydraulic position servo system [1], Fig.1 shows a structure diagram of missile elec-
tro-hydraulic servo system.  

guidance  
    & 
 control 
   unit

  digital 

controller

 current 

amplifier

 electro-
hydraulic 

servo valve
actuator nozzle

potentiometer

cδ δ

 

Fig. 1. Structure diagram of missile electro-hydraulic servo system 

The closed loop of control system is composed of a digital controller [9], a current 
amplifier, an electro-hydraulic servo valve, an actuator, and a potentiometer. The 
objective of the control is to generate the input current such that the angular position 
of the nozzle is regulated to the desired position.  The piston position of the actuator is 
controlled as follows: Once the voltage input corresponding to the position input cδ is 
transmitted to the digital controller, the input current is generated in proportion to the 
error between the voltage input and the voltage output from the potentiometer. Then 
the valve spool position is controlled according to the input current applied to the 
torque motor of the servo valve. Depending on the spool position and the load condi-
tions of the piston, the rate as well as the direction of the flows supplied to each cyl-
inder chamber is determined. The motion of the piston then is controlled by these 
flows, and then swing angle δ  of the nozzle is achieved. At the same time, the piston 
is influenced by an external disturbance generated from the nozzle. The whole system 
dynamics model is given by the following derivation equations [1] 

2

( )
4

T
ui V Q L ce

L

V
K K K u ARS p S K

B

ARP IS nS K Mδ

δ

δ δ δ

= + +

= + + +
 (1) 

where uiK －servo amplifier gain, VK  －servo valve gain, QK －valve flow gain;  
A－ pressure area in the actuator, R －effective torque arm of the linkage, TV －

effectivesystem oil volume, ce e cK C K= +  ( eC － leakage coefficient of cylinder,  

cK － valve pressure gain), LP － load pressure; B － oil effective bulk modulus, 
n － coefficient of viscous friction, I －moment of inertia, M － load torque, 
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Kδ －coefficient of position torque, u－input voltage, δ －swing angle of the nozzle, 
S－Laplace operator. 

Choose system state: 1 2 3[ ] [ ]T Tx x x δ δ δ= =X , then the system state-
space equation is 

1 2

2 3

3 ( )

x x

x x

x f gu d

=⎧
⎪ =⎨
⎪ = + −⎩ X

 (2) 

where

  

1

4 ce

T

BK K
a

IV
δ= ,  

2

2

4 ( ) 4 ce T

T

B AR BK n K V
a

IV
δ+ +

= ,   3

4 ce

T

BKn
a

I V
= + , 

1 1 2 2 3 3( )f a x a x a x= − − −X ,  
4

Q V ui
T

BAR
g K K K

IV
=  , 

4 1ce

T

BK dM
d M

IV I dt
= + ⋅  

The parameters
1a ,

2a ,
3a , g , d are all uncertainties due to the variations of QK , B , eC , 

uiK and M . It is assumed that dδ  is the desired angle, and has up to 3rd derivative. 
All state variables are measurable and bounded. The objective is to let the state vector 
X  track dX under the condition of parameter variations and external disturbances, 

where ( , , )d d dδ δ δ=dX . Define the tracking error 1 1de xδ= − , and the error vector 

1 2 3 1 1 1[ ] [ ]T Te e e e e e= =e  (3) 

Thus (2) can be rewritten as 

1 2

2 3

3 ( )d

e e

e e

e f gu dδ

=⎧
⎪ =⎨
⎪ = − + − +⎩ de X

 (4) 

In the conventional SMC design, we usually assume 

0i i ia a a= + Δ  , 0g g g= + Δ  (5) 

where 0ia , 0g  is the nominal parameters of ia  and g �and iaΔ , gΔ  is the model 
uncertainty. Let ( )i tα , ( )tβ and ( )r t  are the upper bound function of iaΔ , gΔ and 
d respectively,  i.e. ( )i ia tαΔ ≤ ,  ( )g tβΔ ≤ , ( )d r t≤ .  Take 

1 1 2 2 3( )s c e c e e= + +e  (6) 

Then the sliding surface is 

1 1 2 2 3 0c e c e e+ + =  (7) 

where 1 2,c c  are constants and can be properly chosen such that all the roots of (7) are 
in the open left-half of the complex plane. Take the derivative of (6) and set 

( ) 0s =e , 0d = , then the equivalent control can be obtained as 

3
1

0 0 1 2 2 3
1

( )eq i i d
i

u g a x c e c e δ−

=

= + + +∑  (8) 
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Based on the principle of SMC, the control law consists of two parts. One is the slid-
ing mode equivalent control equ . Another is the switching control hu  that drives the 
states toward the sliding surface. From (4), (8), the control law is taken as 

sgn( )eq h equ u u u K s= + = +  (9) 

where [ ]
3

0
1

( ) ( ) ( ) ( )i i eq
i

K t x t u r t g tα β η β
=

⎡ ⎤= + + + −⎢ ⎥
⎣ ⎦
∑ ,     

1, 0

sgn( ) 0, 0

1, 0

s

s s

s

>⎧
⎪= =⎨
⎪− <⎩

  

From the analysis above, we get 0ss sη≤ − < , where 0η > . So under the control 
law (9), the sliding surface exists and is reachable. However, since the functions 

( )f X  and g  are uncertain, the accurate equivalent control equ  is difficult to reach. 
So a GRBFNN is employed to approximate equ . So the control law consists of the 
following two parts. One is the estimated equivalent control ˆequ  that is constructed by 
an adaptive mechanism. The function of this term is to force the system state to slide 
on the sliding surface. Another is the switching control hu  that drives the states to-
ward the sliding surface. Thus, the control law can be represented as 

ˆeq hu u u= +  (10) 

3   Design of Neural-Network-Based SMC 

3.1   GRBFNN Structure 

The control design presented in this paper employs GRBFNN to approximate equ . 
GRBFNN constitutes a special class of these structures. A hidden neuron in a 
GRBFNN structure uses a Gaussian nonlinearity as the activation function described 
in (11). In this definition, i  is for ordering the input vector entries, which runs up 
to m . j indexes the neuron order in the hidden layer. The prototype vector is com-
prised of the ijc variables, which characterize the centers of the Gaussian functions. 
The variable ijσ  determines how the function ijα spreads over the domain of its input 
space iu . The output of jth neuron in the structure is evaluated through the use of (11) 
and is denoted by jw .  

2

( ) exp i ij
ij i

ij

u c
uα

σ

⎧ ⎫⎛ ⎞−⎪ ⎪= −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
, 

1

( )
m

j ij i
i

w uα
=

= ∏  (11) 

The overall output of the structure depicted is evaluated by a weighted sum of the 
responses of the neurons contained in the hidden layer and is described by (12), 
where jp denotes the weight determining the effect of jth hidden neuron output on the 
overall network response.  

1

h
T

j j
j

y w p
=

= =∑ W P  (12) 
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3.2   The Equivalent Control 

In this section, we first construct the neural-network-based SMC, and then show how 
to develop an adaptive mechanism for obtaining the equivalent control through weight 
adaptation. Then, we construct the switching control to guarantee system's stability. In 
this paper, a GRBFNN is employed to approximate the equivalent control. The input 
variables used in the GRBFNN are integrated into two variables ( s and s ) [10]so that 
the number of input variables could be minimized than those that use state variables. 
So we have 

2

1
1

1

( ) exp j
j

j

s c
sα

σ

⎡ ⎤⎛ ⎞−
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

2

2
2

2

( ) exp j
j

j

s c
sα

σ

⎡ ⎤⎛ ⎞−
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (13) 

1 2( , ) ( ) ( )j j jw s s s sα α= ⋅  (14) 

In order to reduce the computational burden in the control process, the variable ijc , 

ijσ are pre-arranged according to the maximum variation of s and s . The weight jp  
are on-line adjusted. So the output of the GRBFNN is 

Tˆ ( , )equ s s= W P  (15) 

where   T
1 2( , ) [ ( , ), ( , ), , ( , )]Ns s w s s w s s w s s=W , T

1 2[ , , , ]Np p p=P  

The main task of this section is to derive an adaptive law to adjust the weight pa-
rameter vector P  such that the estimated equivalent control  ˆequ  can be optimally 
approximated to the equivalent control of the SMC. Suppose there exists the optimal 
parameter vector * * * * T

1 2[ , , , ]Np p p=P such that ˆequ  has minimum approximation 
error *( , ) ( , ) ( , )eq eqs s u s s u s sε = − . Thus,  

* T *( , ) ( , ) ( , )( )eq equ s s u s s s s− = −W P P  (16) 

Define a Lyapunov function candidate: 
2 T(1/ 2) (1/ 2 )V s r g= + P P  (17) 

where *= −P P P  and r is a positive constant. Differentiating (17), we can have 

T(1/ )V ss r g= + P P  (18) 

Differentiating (6) and substituting (4) into (18), then 

T
1 2 2 3

1
ˆ{ ( ) [ ] }d eq hV s c e c e f g u u d g

r
δ= + + − − + + +X P P  (19) 

Since (8), (19) can be written as  

T1
ˆ[ ( )]eq eq hV s g u u u g

r
= − − + + P P  (20) 

Substituting (16) into (20), then  

T T * T * T{ [ ( , ) ( , ) ( , ) ]} 1eq hV s g s s s s s s u u r g= − − + − + + ⋅W P W P W P P P  

T T1
{ [ ( , ) ]} ( , )hs g s s u sg s s g

r
ε= − + − +W P P P  (21) 
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Choosing the adaptive law  

( , )rs s s=P W  (22) 

Since (22), (21) becomes 

( , ) 0hV gs s s gsuε= − − ≤  (23) 

hu  has the same sign as gs  ( refer to (26) ).  So In order to complete the neural-
network-based SMC design, the switching control should be taken into account to 
ensure state trajectory moves toward the sliding surface as well as to guarantee the 
stability of the control system. So a Lyapunov function candidate is given as 

20.5V s=  (24) 

Then differentiate V  with respect to time. Substituting (4) and (6) into (24) 

1 2 2 3

1 2 2 3

ˆ{ ( ) [ ] }

ˆ  { ( ) }

d eq h

d eq h

V s c e c e f g u u d

s c e c e f g u d sgu

δ

δ

= + + − − + +

≤ + + + + + −

X

X  
(25) 

Choosing the switching control 

sgn( )hu s K=  (26) 

where 1
1 2 2 3 max ˆ( )l d eqK g c e c e f D uδ−≥ + + + + + . Thus, 0V ≤  . i.e., the switching 

control actually achieves a stable control system. 

3.3   The Fuzzy Control Law 

From (26) it can be seen that the undesirable control input chattering is caused by the 
discontinuous sign term sgn( )s . The switching control law hu  which guarantees the 
reachability and existence of the sliding mode is proportional to the uncertainty bound 
including maxf and D . However, the exact value of the parameter variations and the 
external load disturbance are difficult to know in advance for practical applications. 
Therefore, usually a conservative control law with large control gain K is selected. 
However, it will cause a large amount of chattering phenomenon, which causes high-
frequency unmodelled dynamics [11]. Therefore, a fuzzy control law is proposed 
here, in which a fuzzy inference mechanism is used to facilitate switching control 
adjustment for minimizing the chattering.  The input of the fuzzy controller is s , and 
the output is fu to replace the discontinuous sliding switch control hu . The following 
rule base is proposed:  (1) if s  is positive large (PL) , then fu  is negative large(NL); 
(2)if  s  is positive small(PS), then fu  is negative small (NS); (3) if s  is negative 
large(NL), then fu  is positive large(PL);  (4)if s  is negative small(NS), then fu  is 
positive small(PS). 

Choosing sigmoidal membership functions for s and singletons for fu , we have 

_ PL tanh( )s
s

sμ
σ

= , s_PS _ PL1 sμ μ= − , _ NL tanh( )s
s

sμ
σ

= − , _ NS _ NL1s sμ μ= −  (27) 
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 (28) 

and using rules (1)-(4), we obtain 

_ PL _ PS

_ PL _ PS

_ NL _ NS

_ NL _ NS

( ) 0
0

( ) 0
0

s m s

s s
f

s m s

s s

s

u

s

μ γ μ
μ μ

μ γ μ
μ μ

⋅ − + ⋅⎧
>⎪ +⎪= ⎨ ⋅ + ⋅⎪ <⎪ +⎩

 (29) 

In summary, the fuzzy control fu  can be written as follows: 

tanh( / )f m su sγ σ= −  (30) 

where  m Kγ = , sσ is a designed parameter.  

As discussed above, a GRBFNN has been developed to estimate the equivalent 
control of SMC system. The adaptive law is applied to adjust the weight parameter 
vector P . In addition, the switching control has also been derived to ensure the re-
quirement of system stability. Finally, four constructed fuzzy control rules are em-
ployed to smooth the control law based on the concepts of SMC. 

4   Simulation Results and Discussion 

For a missile electro-hydraulic servo mechanism (1), the nominal value [1] of some pa-
rameters are assumed as 5 /uik mA V= , 312 /( )QK cm s mA= ⋅ , 210A cm= , 17R cm= . 

Substituting the values into (2), we get 10 0a = , 20 8873.64a = , 30 37.68a = , 

0 179425g = , 0.86 9.73d M M= + , where 0f dM M Sgn Mδ= + , 0fM is frictional 

torque amplitude, dM is position torque. Assume 00.2sin(2 )g t gπΔ = , so 

00.8lg g= × ; 00.5sin(2 )i ia t aπΔ = , so max 20 2 30 31.5 1.5f a x a x= × + × , 

500 100sin 2dM tπ= + , 0 3000 1000sin 2fM tπ= + .  

The simulation condition and design parameters of neural-network-based SMC are 
specified as follows:(a) initial values of system state variables (0) [2 0 0]T=X ; (b) 
sampling time interval 0.001t s= ; (c) Desired output ( ) 2sin 2d t tδ π= ; (d) Choose 
the poles of the system as described by (5) at 60, 60− − , we can obtain 1 3600c = , 

2 120c = ; (e) The center of the jth kernel of the neural network for the normalized 
state(i.e., 3000s , 3000000s ) is [ ]1 0.5 0 0.5 1ijc ∈ − − ,  the width of nodes 
for the neural network is 0.3ijσ =  , 1, 2i = , 1, , 25j = . (f) Parameter in the adap-
tive law is selected as 0.5r = ; (g) 500sσ = ; (h) The initial weight [0,0, ,0]T

jp = .   
We do simulation research and compare results with that of conventional SMC under 

the same condition of parameter variations and external disturbances. Simulation results 
are indicated in Fig. 2－Fig. 5. Fig. 2 shows the tracking response of the system.  Fig. 3 
shows the tracking error of the system. Fig. 4 and Fig. 5 show the control input where 
the controllers are taken as the neural-network-based SMC and conventional SMC.  
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Fig. 2. Tracking response of system                  Fig. 3. Tracking error of system 

  

Fig. 4. Control with neural-network-based SMC     Fig. 5. Control with Conventional SMC 

Simulation analysis: From the simulation results, we can conclude that: 1) If the 
controller is the conventional SMC, the tracking error is small and there are serious 
high frequency chattering in the control input due to the sign function in the switching 
control. 2) If the controller is the neural-network-based SMC, chattering phenomenon 
is attenuated, the control input is smooth and the strength of the control signal can 
also be significantly reduced. The transient deviation of control input, which is de-
picted in Fig.4, is induced owing to the random initialization of the weight of the 
GRBFNN especially under the occurrence of uncertainties. The tracking error is 
smaller than that with conventional SMC because adjusting weight can effectively 
deal with the parametric uncertainty and external disturbances of the system.  Good 
tracking result is obtained. It is robust to the uncertainties and the external disturbance 
in the missile electro-hydraulic servo mechanism.  

5   Conclusions 

In this paper, a neural-network-based SMC method is applied to control missile elec-
tro-hydraulic servo mechanism. The input variables used in the controller are inte-
grated into two variables ( s and s ) so that the number of control input could be mini-
mized than those that use state variables. By adjusting the weight on-line, a GRBFNN 
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is developed to estimate the equivalent control of SMC control system. The system is 
stable in the sense of Lyapunov under a given common Lyapunov function. In gen-
eral, the switching control depends on the bounds of system and it is usually chosen to 
be large to ensure the stability of the fuzzy control system, which induces chattering 
phenomenon. Therefore, four constructed fuzzy control rules are employed to smooth 
the control law based on the concepts of SMC. Simulation results from the missile 
electro-hydraulic servo mechanism are given to demonstrate the applicability and the 
effectiveness of the proposed approach.  
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Abstract. During a flight, take-off and landing are the most difficult operations in 
regard to safety issues. Aircraft pilots must not only be acquainted with the 
operation of instrument boards but also need flight sensitivity to the ever-changing 
environment, especially in the landing phase when turbulence is encountered. If 
the flight conditions are beyond the preset envelope, the automatic landing system 
(ALS) is disabled and the pilot takes over. An inexperienced pilot may not be able 
to guide the aircraft to a safe landing at the airport. This paper proposes an 
intelligent aircraft automatic landing controller that uses recurrent neural network 
(RNN) controller with genetic algorithm (GA) to improve the performance of 
conventional ALS and guide the aircraft to a safe landing. 

1   Introduction 

China Airlines Flight 642 had a hard landing at Hong Kong International Airport on 22 
August 1999. The lifting wing was broken during the impact, which killed 3 passengers 
and injured 211 people. After 15 months of investigation, a crash report was released on 
November 30, 2000. It showed that the crosswind-correction software 907 on the 
Boeing MD-11 had a defect. Boeing also confirmed this software problem later and 
replaced nearly 190 MD-11 crosswind-correction software programs with the 908 
version. Although this accident was attributed to bad weather and software problem, 
the ALS was focus of the safety issue. The first ALS was made in England during 1965. 
Since then, most aircraft have had this system installed. The ALS relies on the 
Instrument Landing System (ILS) to guide the aircraft into the proper altitude, position, 
and approach angle during the landing phase. According to Federal Aviation 
Administration (FAA) regulations, environmental conditions considered the 
determination of dispersion limits as being: headwinds up to 25 knots, tailwinds up to 
10 knots, crosswinds up to 15 knots, moderate turbulence, and wind shear of 8 knots per 
100 feet from 200 feet to touchdown [1]. If the flight conditions are beyond the preset 
envelope, the ALS is disabled and the pilot takes over. An inexperienced pilot may not 
be able to guide the aircraft to a safe landing at the airport. It is therefore desirable to 
develop an intelligent ALS that expands the operational envelope to include safer 
responses under a wider range of conditions. The goal of this paper is to show that the 
proposed intelligent ALS can relieve human operators and guide the aircraft to a safe 
landing in a wind-turbulence environment. 
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Most of the improvements in the ALS system have been on the guidance 
instruments, such as GNSS Integrity Beacons, Global Positioning System, Microwave 
Landing System, and Autoland Position Sensor [2]-[5]. By using improvement 
calculation methods and high accuracy instruments, these systems provide more 
accurate flight data to the ALS and can help to make landings smoother. However, 
these researches do not include weather factors such as wind turbulence. Recently, 
some researchers have applied some intelligent concepts such as neural networks, 
fuzzy system, particle swarm optimization, GA, and hybrid systems to flight control to 
increase the flight controller’s adaptively to different environments [6]-[10]. Among 
these intelligent concepts, neural network techniques are used most because of their 
adaptively and robustness for unmodeled system and the hardware implementation 
capability. This paper proposes an intelligent aircraft automatic landing controller that 
uses a RNN controller with GA to improve the performance of conventional ALS. This 
controller can guide the aircraft to a safe landing and make the controller more robust 
and adaptive to the ever-changing environment. 

2   Aircraft Landing Analysis 

In a normal landing process, the pilot descends from the cruising altitude to an altitude 
of approximately 1200ft. The pilot then positions the aircraft so that the aircraft is on a 
heading towards the runway centerline. When the aircraft approaches the outer airport 
marker, which is about 4 nautical miles from the runway, the glide path signal is 
intercepted (as shown in Fig. 1). As the aircraft descends along the glide path its pitch, 
attitude, and speed must be controlled. The aircraft maintains a constant speed along the 
flight path. The descent rate is about 10ft/sec and the pitch angle is between -5 to +5 
degrees. Finally, as the aircraft descends to 20 to 70 feet the glide path control system is 
disengaged and a flare maneuver is executed. The vertical descent rate is decreased to 
2ft/sec so that the landing gear may be able to dissipate the energy of the impact at 
landing. The pitch angle of the aircraft is then adjusted to between 0 to 5 degrees for 
most aircraft, which allows a soft touchdown on the runway surface. 

A simplified model of a commercial aircraft that moves only in the longitudinal and 
vertical plane is used in the simulations for implementation ease [9]. The motion 
equations of the aircraft are given as follows: 

     qXwwXuuXu qgwgu +−+−= )()( ( ) TTEE XXg δδθγπ ++⎟
⎠
⎞

⎜
⎝
⎛− 0cos
180
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 qMwwMuuMq qgwgu +−+−= )()( TTEE MM δδ ++  (3) 

q=θ                          (4) 

θπ
0180

Uwh +−=       (5) 

where u  is the aircraft longitudinal velocity (ft/sec), w  is the aircraft vertical velocity 
(ft/sec), q  is  the pitch rate (deg/sec), θ  is the pitch angle (deg), h  is the aircraft 
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Flare Path 

Glide Path 
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0 ft 

50 ft 
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Touchdown  

altitude (ft), Eδ  is the incremental elevator angle (deg), Tδ  is the throttle setting 

(ft/sec), oγ  is the flight path angle (-3deg), and g  is the gravity (32.2 ft/sec²). The 

parameters ii ZX ,  and iM  are the stability and control derivatives. 

To make the ALS more intelligent, reliable wind profiles are necessary. Two 
spectral turbulence forms modeled by von Karman and Dryden are mostly used for 
aircraft response studies. In this study the Dryden form [9] was used for its 
demonstration ease. The model is given by 
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( )hu gcw ×+= 00098.05.02.0σ  for 5000 ≤≤ h , gcw u2.0=σ  for 500>h . 

The parameters are ug is the longitudinal wind velocity (ft/sec), wg is the vertical 
wind velocity (ft/sec), 0U  is the nominal aircraft speed (ft/sec), 510windu is the wind 

speed at 510 ft altitude, uL  and wL  are scale lengths (ft), uσ  and wσ  are RMS values of 

turbulence velocity (ft/sec), tΔ  is the simulation time step (sec), N(0,1) is the Gaussian 
white noise with zero mean and unity standards deviation, gcu is the constant 

component of gu , and h  is the aircraft altitude (ft). Fig. 2 shows a turbulence profile 

with a wind speed of 30 ft/sec at 510 ft altitude. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Glide path and flare path 
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Fig. 2. Turbulence profile 

3   Aircraft Landing Control 

A simplified structure of aircraft landing controller, which is a PID type controller, is 
shown in Fig. 3. Its inputs consist of altitude and altitude rate commands along with 
aircraft altitude and altitude rate. Via PID controller we can obtain the pitch command 

cθ . The pitch autopilot is then controlled by pitch command as shown in Fig. 4. Detail 
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Fig. 4. Pitch Autopilot 
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descriptions can be found in [9]. In order to enable aircraft to land more steady when 
aircraft arrives to the flare path, a constant pitch angle will be added to the controller. 

Genetic Algorithm (GA) is a global search method [11], which can search best 
population by using evolutionary computation. Therefore, it has been widely used to 
solve optimal problem recently. It can search many points at the same time, so not apt to 
fall into local optimal solution. The control parameters of the pitch autopilot were 
derived by traditional control theory, which can not bear various wind turbulence. 
When the wind turbulence is too strong, the ALS can not control aircraft to land safely. 
In here we reselected the aircraft’s control parameters by using a hybrid RNN-GA 
control scheme which improved the ability of turbulence resistance of the ALS. 

Williams and Zipser [12] proposed a real-time recurrent learning (RTRL) algorithm 
in 1989, which is used to train RNN (as shown in Fig. 5). RNN is used to approximate 
and control a nonlinear system through an on-line learning process [13]-[14], and the 
weights of the networks need to be updated using a dynamical learning algorithm 
during the control process. In the training schemes of RNN, most algorithms were 
developed in accordance with different problems. The learning algorithms adjust the 
weights of the network, so that the trained network will exhibit the required properties. 
The most general algorithms used for RNN are usually the gradient descent learning 
algorithms. By evaluating the gradient of cost function with respect to the weights of 
the networks, it is possible to iteratively adjust the value of the weights in the direction 
opposite to the gradient. It is well known that there are feedback paths or recurrent links 
in RNN, i.e., the current output depends upon the past outputs of the network. 
Furthermore, the level of error depends not only on the current parameter set, but also 
on the past parameter set. Obviously, it is necessary to consider these dependencies in 
the learning schemes. In the course of learning, the adjustment of the relevant 
parameters of the network will be updated by sequential mode; therefore, this can be 
applied to on-line learning. The characteristics of the RNN are fast learning, short 
execution time, fast convergence, and the network relatively stabilizes with plasticity. 

Fig. 5 shows the structure of the RNN. The inputs for the RNN controller are: 
altitude, altitude command, altitude rate, and altitude rate command. The output of the 
controller is the pitch command. The activation of the hidden layers is sigmoid 
function, which can be used in nonlinear space transformation. Weights updating rules 
are given as follows. 
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where dy  is the desired pitch command, η  is the learning rate, other parameters are 

defined in Fig. 5. 
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Fig. 5. RNN Structure 

Fig. 6 shows the RNN learning structure. The four inputs of the aircraft are altitude, 
altitude command, altitude rate, and altitude rate command which will input to 
PI-controller and RNN at the same time. The output of the PID-controller is the expected 
pitch command, and the output of the network is the pitch command after learning. The 
network will amend itself through the error between these two commands. After 
training, the RNN controller will replace PID controller as the pitch autopilot. 
Feedforward and feedback control gains of the pitch autopilot are selected by GA with 
different strength of turbulence. The wind turbulence strength increases progressively 
during the process of parameter search. The purpose of this procedure is to search more 
suitable control gains for kө and kq in glide path and flare path. The control parameters, 
kө and kq, of the glide and flare paths are the chromosomes that need to be searched. The 
design of fitness function is to consider different intensity of the wind turbulence as 
fitness function values. This method makes the aircraft adapt itself to wind turbulence 
with a wider range. Fig. 7 shows the flow chart of the RNN-GA learning process. In GA 
search, the evolutionary computations are shown below. 

(1) Reproduction: Roulette wheel selection [11] 
(2) Crossover: modified Adewuya method [15] 

Step1: Randomly choose a gene from each individual of a matching pair in 
parent generation, αmp  and αnp , as crossover positions. 

[ ]msmmm pppppattern ..........211 α=      

[ ]nsnnn pppppattern ..........212 α=  
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Fig. 6. The RNN learning structure 
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Fig. 7. Learning process of the RNN-GA scheme 
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Step2: Calculate new values of these selected genes as follows, where β  is a 

random number and 10 ≤≤ β . 

1 (1 )new m np p pα αβ β= − ⋅ + ⋅  (18) 

2 (1 )new m np p pα αβ β= ⋅ + − ⋅  (19) 

Step3: Replace αmp  and αnp  with 1newp  and 2newp , respectively, and the 

genes in the right side of the crossover position exchange with each other. 
[ ]nsnewmm ppppNewpattern .......... 1211 =  

[ ]msnewnn ppppNewpattern .......... 2212 =  

(3) Mutation: The mutation operator creates one new offspring individual for the new 
population by randomly mutating a randomly chosen gene of the selected 
individual. 

_new oldx x random noiseγ= + ⋅  (20) 

 where γ  is a real number within [0-1]. 

 The fitness function is: 
Fitness = number of successful landing with different turbulence strengths. (21) 

4   Simulation Results 

Suppose that the aircraft starts the initial states of the ALS as follows: the flight height 
is 500 ft, the horizontal position before touching the ground is 9240 ft, the flight angle is 
-3 degrees, and the speed of the aircraft is 234.7 ft/sec. Successful touchdown landing 
conditions are defined as follows: 

(1) 13 −≤≤− TDh (ft/sec)  (2) 300 ( ) 1000TDx T− ≤ ≤ (ft) 

(3) 200 ( ) 270TDV T≤ ≤ (ft/sec)  (4) 10 ( ) 5TD Tθ− ≤ ≤ (degrees) 

where T is the time at touchdown, TDh is vertical speed, TDx  is the horizontal position, 

TDV  is the horizontal speed, and 
TDθ  is the pitch angle. The simulation results are 

divided into two parts: the RNN with original control gains and the RNN-GA with 
optimal control gains. These parts are described as follows. 

I. RNN with original control gains 
For the safe landing of an aircraft using a RNN controller with original control gains 
from [9] and the wind turbulence speed at 40 ft/sec, the horizontal position at 
touchdown is 926.1 ft, horizontal velocity is 234.7 ft/sec, vertical speed is -1.9 ft/sec, 
and pitch angle is 0.2 degrees, as shown in Fig. 8 to Fig. 10. Table 1 shows the results 
from using different wind turbulence speeds. The RNN controller can successfully 
guide the aircraft flying through wind speeds of 0 ft/sec to 50 ft/sec. 
II. RNN-GA with optimal control gains 
By utilizing the combination of RNN and GA, for the safe landing of an aircraft using 
the RNN controller with optimal control gains and the wind turbulence speed at 70 
ft/sec, the horizontal position at touchdown is 973.0 ft, horizontal velocity is 234.7 
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Fig. 8. Aircraft pitch angle and command       Fig. 9. Aircraft altitude and command 

0 5 10 15 20 25 30 35 40 45
-30

-25

-20

-15

-10

-5

0

5

Time (sec.)

ft
./

se
c.

Vertical Velocity (Solid) & Vertical Velocity Command (Dashed)

      
0 5 10 15 20 25 30 35 40 45

-10

-8

-6

-4

-2

0

2

4

6

8

Time (sec.)

de
g.

Pitch (Solid) & Pitch Command (Dashed)

 

Fig. 10. Aircraft vertical velocity and command   Fig. 11. Aircraft pitch angle and command 
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   Fig. 12. Aircraft altitude and command        Fig. 13. Aircraft vertical velocity and command 

Table 1. The results of RNN from using different turbulence speeds 

Wind speed (ft/sec) 10 20 30 40 50 
Landing point (ft) 879 867 914 926 949 

Aircraft vertical speed (ft/sec) -2.5 -2.2 -2.1 -1.9 -1.7 
Pitch angle(degrees) -0.9 -0.8 -0.2 0.2 0.6 



614 J.-G. Juang and H.-K. Chiou 

Table 2. The results of RNN-GA from using different turbulence speeds 

Wind speed (ft/sec) 30 50 70 80 90 
Landing point (ft) 832 902 973 920 245 

Aircraft vertical speed (ft/sec) -2.3 -2.0 -1.8 -2.0 -1.1 
Pitch angle (degrees) -0.3 0.4 0.9 3.0 3.1 

ft/sec, vertical speed is -1.8 ft/sec, and pitch angle is 0.9 degrees, as shown in Fig. 11 to 
Fig. 13. Table 2 shows the results from using different wind turbulence speeds. The 
RNN-GA controller can successfully guide the aircraft flying through wind speeds of 0 
ft/sec to 90 ft/sec. 

5   Conclusion 

The automatic landing system of an aircraft is enabled only under limited conditions. If 
severe wind turbulences are encountered, the pilot must handle the aircraft based on the 
limits of the automatic landing system. The purpose of this study is to investigate the 
use of RNN-GA hybrid systems in aircraft automatic landing controls and to make 
automatic landing systems more intelligent. Current flight control law is adopted in the 
intelligent design. Tracking performance and adaptive capability are demonstrated 
through software simulation. For the safe landing of an aircraft using a conventional 
controller with original control gains [9], the wind turbulence limit is 30 ft/sec. In this 
study, a RNN controller with original control gains can reach 50 ft/sec, and a 
well-trained hybrid RNN-GA controller can overcome turbulence to 90 ft/sec. It shows 
that the proposed controller has better performance than previous studies [6]-[10]. 
From these simulations, the recurrent neural network controller can be used to 
successfully replace the conventional controller. This intelligent controller can act as an 
experienced pilot and guide the aircraft to a safe landing in severe wind turbulence 
environment. 
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Abstract. In this paper, an AND-OR fuzzy neural network (AND-OR FNN) 
and a piecewise optimization approach are proposed. The in-degree of neuron 
and the connectivity of layer are firstly defined and Zadeh’s operators are em-
ployed in order to infer the symbolic expression of every layer, the equivalent is 
proved between the architecture of AND-OR FNN and fuzzy weighted Mam-
dani inference. The main superiority is shown not only in reducing the input 
space, but also auto-extracting the rule base. The optimization procedure con-
sists of GA (Genetic Algorithm) and PA (Pruning Algorithm);the AND-OR 
FNN ship controller system is designed based on input-output data to validate 
this method. Simulating results demonstrate that the number of rule base is de-
creased remarkably and the performance is good, illustrate the approach is prac-
ticable, simple and effective. 

1   Introduction 

Fuzzy neural network combines the theories of fuzzy logical and neural network, 
including learning, association, identification, self-adaptation and fuzzy information 
process. The logic neurons have received much concern all the time as the important 
components of neural networks. From model design to algorithm study, there are 
many achievements. Glorennec[1]proposed a general artificial neuron to realize Lu-
kasiewicz logical operate. Yager[2] employed a group of OWA fuzzy Aggregation 
operators to form OWA neuron. Pedrycz and Rocha [3] proposed aggregation neurons 
and referential neurons by integrating fuzzy logic and neural network and discuss the 
relation about the ultimate network structure and practical problem; Pedrycz et al. [4], 
[5] constructed a knowledge-based network by AND, OR neurons to solve classified 
problem and pattern recognition. Bailey et al. [6] extended the single hidden layer to 
two hidden layers for improve complex modeling problems. Pedrycz and Reformat 
designed fuzzy neural network constructed by AND, OR neurons to model the house 
price in Boston [7]. 

We consider the multi-input-single-output (MISO) fuzzy logic-driven control sys-
tem based on Pedrycz. Pedrycz[7] transformed T norm and S norm into product and 
probability operators, formed a continuous and smooth function to be optimized by 
GA and BP. But there is no exactly symbolic expression for every node, because of 
the uncertain structure. In this paper, the in-degree of neuron and the connectivity of 
layer are firstly defined and Zadeh’s operators are employed in order to infer the sym-
bolic expression of every layer, and form a continuous and rough function. The 
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equivalence is proved between the architecture of AND-OR FNN and the fuzzy 
weighted Mamdani inference in order to utilize the AND-OR FNN to optimize fuzzy 
rules. The piecewise optimization of AND-OR FNN consists of GA and PA. Finally 
this approach is applied to design the AND-OR FNN ship controller. Simulating re-
sults show the performance is good. 

2   Fuzzy Neurons and Topology of AND-OR FNN 

2.1   Logic-Driven AND, OR Fuzzy Neurons 

The AND and OR fuzzy neurons were two fundamental classes of logic-driven fuzzy 
neurons. The basic formulas governed the functioning of these elements are con-
structed with the aid of T norm and S norm (see Fig. 1, Fig. 2).Some definitions of the 
double fuzzy neurons show their inherent capability of reducing the input space.  

Definition 1. Let 1 2[ , ...... ]nX x x x= be input variables 1 2[ , ,...... ]nW w w w= be adjust-

able connections (weights) confined to the unit interval, then the AND fuzzy neuron 
which completes a T-S norm composition operators is shown in Fig.1, the OR fuzzy 
neuron which completes an S-T norm composition operators is shown in Fig.2. Both 
of them are defined by Zadeh’s operators as the following expression(1) and (2), 
respectively. 
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Fig. 1. AND neuron 
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Fig. 2. OR neuron 

Owing to the special compositions of neurons, for binary inputs and connections 
the neurons function is equal to the standard gates in digital circuit. For AND neuron, 

the closer to 0 the connection iw is, the more important to the output the correspond-

ing input ix  is. For OR neuron, the closer to 0 connection iw is, the more important to 

the output the corresponding input ix  is. Thus the values of connections become the 

criterion to eliminate the irrelevant input variables to reduce input space.  
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2.2   Several Notations About AND, OR Neuron  

Definition 2. Let iw  be the connection value, ix  be the ith  input variable. Then, 

( ) [0,1]i iRD x w= ∈  (3) 

is the relevant degree between the input ix and the neuron’s output. For AND neuron, 

if ( ) 0iRD x = , then ix  is more important feature to the output; if ( ) 1iRD x = , then ix  

is more irrelevant feature to the output, it can be cancelled. For OR neuron, vice 
versa. Thus the RDV or RDM is the vector or matrix made up of connections, respec-
tively , which becomes the threshold to obstacle some irrelevant input variables, also 
lead to reduce the input space.  

Definition 3. The in-degree of the ith  neuron ( )id neuron+ is the number of input 

variables, then the in-degree of the ith AND neuron ( )id AND+ is shown the number 

of its input variables; the in-degree of the jth OR neuron ( )jd OR+ is shown the num-

ber of its input variables.  

2.3   The Architecture of AND-OR FNN 

This feed-forward AND-OR FNN consists of five layers (Fig.3.), the input layer, 
fuzzification layer, double hidden layers (one consists of AND neurons, the other 
consists of OR neurons) and the defuzzification output layer, Here the fuzzy inference 
and the fuzzy rule base are integrated into the double hidden layers. The inference 
mechanism behaves as the inference function of the hidden neurons. Thus the rule 
base can be auto-generated by training AND-OR FNN in virtue of input-output data.  

Both W and V are connection matrixes, also imply relevant degree matrix (RDM). 
Vector H is the membership of consequents. The number of neurons in every layer is 
n , n t× , m , s and 1, respectively ( t is the number of fuzzy partitions.).  

 
Wx1 

xn 

fuzzification ORAND

V

H
Σ

Z

defuzzification

n m s

dZ

1
input 

n*t n 

 
Fig. 3. The architecture of AND-OR FNN 

Definition 4. The layer connectivity is the maximum in-degree of every neuron in its 

layer, including the double hidden layers,  

( ) max( ( ))iCon AND d AND+= , ( ) max( ( ))jCon OR d OR+=  
(4) 
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where ( )id AND+ is the in-degree of t he ith  AND neuron; ( )jd OR+ be the in-degree 

of the ith  OR neuron. 

Remark 1: ( )Con AND n≤  ( n  is the number of input variables). ( )Con OR m≤  ( m is 

the number of AND neurons). 

2.4   The Exact Expression of Every Node in AND-OR FNN 

According to definitions and physical structure background, the AND-OR FNN 
model is derived as Fig. 3. The functions of the nodes in each layer are described as 
follows. 

Layer 1: For every node i in this layer, the input and the output are related by  

1
i iO x=  (5) 

where 1
iO  denotes the output of ith  neuron in layer 1, 1,2, ,i n= .Here the signal 

only transfers to the next layer without processing.  

Layer 2: In this layer, each neuron represents the membership function of linguistic 
variable; Gaussian is adopted as membership function. The linguistic value 
(small , ,  very large) jA  are used. The function is shown as.  

2
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2 ( )
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ij A iO x e σμ
− −

= =  (6) 

where 1,2,... , 1, 2,...i n j t= = , ijm and σ is the modal and spread of the jth fuzzy parti-

tion from the ith input variable.  

Layer 3: This layer is composed of AND neurons, the function can be expressed as 
follows based on above.  
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where 1,2, , nk t= 1,2, ,j t= 1,2, ,i n= ( )1r i t j= − × + , ( )kd AND+  is the in-

degree of the kth  AND neuron. nt is the total of AND neurons in this layer.  

Remark 2: when 1p is fixed and ( ) 2id AND+ ≥ , i  must be different. That means the 

input of the same AND neuron must be from the different ix . 

Layer 4: This layer is composed of OR neurons, the function can be expressed as 
follows based on above. 
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where 1,2, , nk t= , 1, 2, ,l s=  ( )ld OR+ is the in-degree of the lth  OR neuron. s is 

the total of OR neurons.  

Layer 5: There is only one node in this layer, but includes forward compute and 
backward training. Center-of-gravity method is adopted for former compute as  
follows. 

4
,15

4

l l

l

O h
z O

O
= = ∑

∑
 (9) 

where 1, 2, ,l s= , H is the membership function of consequents. The latter is only 
imported to train data for next optimization. There is no conflict because the double 
directions are time-sharing. The function is shown as following like (6) above. 
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3   Functional Equivalent Between Fuzzy Weighted Mamdani 
Inference and AND-OR FNN  

3.1   Fuzzy Weighted Mamdani Inference 

The fuzzy weighted Mamdani inference system [8] utilizes local weight and global 
weight to avoid a serious shortcoming in that all propositions in the antecedent part 
are assumed to have equal importance, and that a number of rules executed in an 
inference path leading to a specified goal or the same rule employed in various infer-
ence paths leading to distinct final goals may have relative degrees of importance. 

Assume the fuzzy IF-THEN rules with consequent   ly is B to be represented as: 

1 1:  is and and   and and  then   j i ij n nj lRule if x A x is A x is A y is B  (11) 

where 1, , nx x are the input variables, y is the output, ijA  and lB  are the fuzzy sets 

of input and output, respectively. ijw  is local weights of the antecedent part; iv is the 

class of global weight for every rules. 1,2, ,i n= , 1, 2, ,j t= , 1, 2, ,l s= , t  is 

the total of antecedent fuzzy sets; s  is the total of consequent fuzzy sets. The same 

iB  is collected to form s  complex rules as follows: 

1 1 ' " 1

1 1 ' " 1

1 1 ' "

1 '
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i n ni

j n nj

k n nk s
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 (12) 

where ', ", ', ", ', ", ', " [1, ]i i j j k k l l t∈ . 
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On the view of general fuzzy inference, to a single rule, the firing strength (or 
weight) of ith  rule is usually obtained by min or multiplication operator, to the com-
plex rule, the firing strength is the union iλ , which can be expressed as. 
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where Δ is the number of the same consequent lB , Ψ the number of antecedent parts. 

On the view of fuzzy weighted Mamdani inference, local weight and global weight 
are considered by the mode of ,< ∨ ∧ >  as follows: 
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In general, center-of-gravity method is adopted for defuzzification as follows. 
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3.2   Functional Equivalence and Its Implication 

From (9) and (15), it is obvious that the functional equivalence between an AND-OR 
FNN and a fuzzy weighted Mamdani inference can be established if the following is true.  

1. The number of AND neurons is equal to the number of fuzzy rules.  
2. The number of OR neurons is equal to the number of fuzzy complex rules. 
3. The T-norm and S-norm used to compute each rule’s firing strength are min and 

max, respectively.  
4. Both the AND-OR FNN and the fuzzy inference system under consideration use 

the same center-of-gravity method to derive their overall outputs.  

Under these conditions, when ( ) 0ijRDM w = , ( ) 1ijRDM v = , AND-OR FNN is 

completely connected, which is shown that every part of antecedent is the same im-
portant to the output , k nΨ = , l n tΔ = ×  and it is equal to the general fuzzy inference. 

But it falls short of the practice. When [0,1]iw ∈ ， [0,1]iv ∈ , every part of antecedent 

has different important degree to the output and every rules has different important 
degree to the final output.  
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4   GA Optimization  

In general, gradient-based optimization is often chosen for ANN, Pedrycz [7] has 
proved that the output of AND neuron and its derivative are heavily affected by the 
increasing values of “n”. Meanwhile, here the final output of AND-OR FNN is not a 
smooth function. Obviously gradient-based optimization is not preferred, GA  
(Genetic Algorithm) is a very effective method to solving the structure optimization 
problem because of the superiority of robust, random, global and parallel process. 
Structure optimization is transferred to the species evolution by GA to obtain the 
optimal solution.  

4.1   Code Mode 

Parameters encoding is the first phase of GA optimization. Parameters are often trans-
formed to unsigned binary. Here the structure parameters of two hidden layers are 
considered on focus by double matrixes as follows: 

, ( )
( ) and

i j m n t
RDM AND w

× ×
⎡ ⎤= ⎣ ⎦ , ,( ) or

i j s m
RDM OR v

×
⎡ ⎤= ⎣ ⎦  (16) 

where , ,i j , ,m n t  and s  are like before. Lining up the two matrixes to a binary string 

as initial population represents the structure status. In the initialization, ( ) 0ijRDM w =  

and ( ) 1ijRDM v =  are set or the authoritative opinion from experts can also be put 

into initial population as seeds to reach the best initialization.  

4.2   Objective Function  

The parameters of the GA used are chosen experimentally. The fitness function 
maximized by the GA is expressed in the form of the sum of squared errors between 
target values (data) and outputs of network. This fitness has to be minimized (it stands 
in contrast with the classic way of using fitness functions in GA whose values are 
maximized; if necessary a simple transformation of taking the reciprocal of the fit-
ness, fitness/1 , brings in line with the way of maximizing the fitness)  

2

1

( ( ) )d

fitness
z z

=
−∑

 (17) 

5   Pruning Algorithm  

The pruning of the network is a process consisting of removing unnecessary parame-
ters and nodes during the training process of the network without losing its generali-
zation capacity [9]. The best architecture can be sought using GA in conjunction with 
pruning algorithms. There are three situations as follow: 

1. For AND neuron, if the connection is equal to zero, this means that the correspond-
ing input impacts the output of this neuron, the connection can be pruned away if 
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its value is one. For the OR neuron a reverse situation occurs: the connection equal 
to one implies that the specific input is essential and affects the output of the neu-
ron. The connection can be pruned away if its value is zero.  

2. For ( )RDM AND , the number of zero in every line is shown as the in-degree of this 

AND neuron, the node can be pruned away if the line is full of one. 
For ( )RDM OR , the number of one in every line is shown as the in-degree of this 

OR neuron, the node can be pruned away if the line is full of zero. 
3. For ( )RDM AND , if there are the same line in the matrix, that means the node is 

redundant, it can be pruned away. For ( )RDM OR , that means the node is conflict 

each other, it need be pruned away.  

6   Application to Ship Control 

According to the principle of manual steering, it makes full use of the advantages of 
fuzzy logic and neural network. An AND-OR FNN ship controller is presented to 
adapt the change of navigation environment and get the information of ship maneu-
verability automatically. The structure and parameters are learned by GA and PA. 
Fuzzy rules can be auto-obtained from a group of sample data, which is generated by 
a fuzzy control system. Fig.4 shows a block diagram of the AND-OR FNN autopilot. 
Test results show that an effect method has been provided for the improvement of 
ship steering control.  

Double input variable of AND-OR FNN ship controller are heading error  
)()1( kk ψψψ −+=Δ and yaw rate ( ) /k d dtγ ψ= . The control action generated by 

the autopilot is the command rudder angle ( )kδ . The range of values for a given auto-

pilot inputs and output are ( 20 ,20 )−  and ( 2.5 / sec,2.5 / sec)− , It is usually required 

that the rudder should move from 35 port to 35 starboard within 30s.  

 
( )d kδ

AND-OR FNN

Autopilot 
Ship

( )r kψ  +

—

—

( )kδ

+

( )kδ
( )r k  ( 1)kψ +

( )kψΔ  ( 1)r k +

Delay operator 
 

Fig. 4. AND-OR FNN autopilot for ship course-keeping 

6.1   The Structure Design and Simulation Result 

In this section, an AND-OR FNN ship controller is constructed successfully. Firstly, 
)(kψΔ and )(kγ  are double input variable; )(kδ  is the output variable, which are all 
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fuzzied into 3 Gaussian membership functions with 0.5 overlap degree, thus there are 
9 pieces of rules. According to analysis before, there are 9 AND neurons and 3 OR 
neurons in AND-OR FNN. Initialize structure parameters with all connections to form 
the structure string that is ( ) 0iRDM w = , ( ) 1iRDM v = . The structure and parameters 

are optimized by GA and PA, some parameters are chosen experimentally, which are 
including population size=100, crossover rate=0.7, mutation rate=0.01 and selection 
process is tournament. The ultimate better structure result is transformed into the 
AND-OR FNN. There are 5 AND neurons and 3 OR neurons left, that is, 5 pieces of 
fuzzy rules and 3 complex rules. The number of rule base is decreased remarkably 
The ultimate better performance result is shown as Fig. 5 and Fig. 6. The simulation 
result has illustrated the effectiveness of proposed method  

7   Conclusion 

In this paper, we have proposed a novel AND-OR FNN and a piecewise optimization 
approach, the symbol expressions of every node in the AND-OR FNN are educed in 
detail, the input space is reduced by special inner structure of AND and OR. The 
equivalence is proved to the fuzzy weighted Mamdani inference. The fuzzy rule base 
auto-extracted is equal to optimize the architecture of AND-OR FNN. This novel 
approach has been validated using AND-OR FNN ship controller design. The simula-
tion results illustrate the approach is practicable, simple and effective and the per-
formance is good. 

 

 

Fig. 5. Ship heading (solid) and desired ship heading (dashed) 

 

Fig. 6. Rudder angle (δ ) 
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Abstract. The inherent nonlinear of switched reluctance motor (SRM) makes it 
hard to get a good performance by using the conventional PID controller to the 
speed control of SRM. This paper develops a radial basis function (RBF) artifi-
cial neural network (ANN) nonlinear prediction model based adaptive PID con-
troller for SRM. ANN, under certain condition, can approximate any nonlinear 
function with arbitrary precision. It also has a strong ability of adaptive, self-
learning and self-organization. So, combining it with the conventional PID  
controller, a neural network based adaptive PID controller can be developed. 
Appling it to the speed control of SRM, a good control performance can be got-
ten. At the same time, the nonlinear mapping property and high parallel opera-
tion ability of ANN make it suitable to be applied to establish nonlinear predic-
tion model performing parameter prediction. In this paper, two ANN - NNC 
and NNI are employed. The former is a back propagation (BP) ANN with sig-
moid activation function. The later is an ANN using RBF as activation function. 
The former is used to adaptively adjust the parameters of the PID controller on 
line. The later is used to establish nonlinear prediction model performing pa-
rameter prediction. Compared with BP ANN with sigmoid activation function, 
the RBF ANN has a more fast convergence speed and can avoid getting stuck in 
a local optimum. Through parameter prediction, response speed of the system 
can be improved. To increase the convergence speed of ANN, an adaptive 
learning algorithm is adopted in this paper that is to adjust the learning rate ac-
cording to the error. This can increase the convergence speed of ANN and make 
the system response quick. The experimental results demonstrate that a high 
control performance is achieved. The system responds quickly with little over-
shoot. The steady state error is zero. The system shows robust performance to 
the load torque disturbance. 

1   Introduction 

The SRM drives have been introduced for the past two decades. Some advantages of 
this motor are simplicity and robustness of construction; potentially, it is somewhat 
cheaper than other classes of machines. It also has a high efficiency and large torque 
output over a wide speed range. It has a wide application in industrial and in home 
appliances.  

In order to get a large output power, the magnetic circuit of SRM is often designed 
saturation. Together with double salient structure and eddy current effect, all of this 
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leads to the highly nonlinear characteristics of SRM. The conventional PID controller 
is widely applied to the control of electric machines. But it is hard to get a good per-
formance when applied to control the speed of highly nonlinear SRM.  

There have been several methods to tune conventional PID parameters. Among 
those methods, the well known method is the rules of Ziegler and Nichols for tuning 
the control gains. But once the parameters of the PID controller tuned according to a 
certain condition, it will not be tuned again. So, when the characteristic of the nonlin-
ear plant changed, the parameters tuned formerly will not do. In order to get a high 
performance, the adaptive PID control strategy should be adopted. ANN is formed by 
the interconnection of artificial neurons. It has a strong ability of adaptive, self-
learning, and self-organization. It also has a strong ability of nonlinear mapping and 
fault tolerance. So, by combining it with the conventional PID controller, an adaptive 
PID controller based on neural network can be constructed.  

In the application of ANN, the parameters of the plant should be identified. The per-
formance of the controller can be improved though the prediction of parameter of the 
system. Compared with sigmoid activation function BP ANN, the RBF ANN has a 
more fast convergence speed and can avoid getting stuck in a local optimum. By using 
the RBF ANN to identify the system parameters, the system can respond quickly. 

To increase the convergence speed of ANN, an adaptive learning algorithm is 
adopted in this paper that is to adjust the learning rate according to the error. This can 
increase the convergence speed of ANN and make the system response much quickly. 

Many researches have been done to implement the control of electrical drives based 
on ANN. ANN is used to produce the phase current needed for trailing speed [1]. 
ANN is used to the modeling and control of SRM [2]. The application of ANN to 
identification and control of SRM and other electric machine is reported [3]-[7]. In 
summary, the application of ANN to the control of SRM can improve the perform-
ance of SRM. In order to get a high performance, an adaptive PID controller based on 
RBF ANN nonlinear prediction model for SRM is developed in this paper. 

2   The PWM Control Method of SRM 

The SRM is a doubly salient construction machine. The rotor is driven by the reluc-
tance torque. Under certain condition, the instantaneous torque can be expressed as  

2

2

ω
sU

KT = . (1) 

where Us is the phase voltage; ω is the rotor speed; K is a constant. 
The torque is proportional to the voltage supplied to the winding. So, by adjusting 

the duty ratio of the voltage PWM, the average voltage will be adjusted, the torque 
will also be adjusted, then the speed will be changed. 

3   The Adaptive PID Controller Based on RBF ANN Nonlinear 
Prediction Model 

The structure of the adaptive PID controller based on RBF ANN nonlinear prediction 
model for SRM is shown in Fig. 1. 
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Fig. 1. The structure of the RBF ANN nonlinear prediction model based adaptive PID controller 

In the system, the NNC is a sigmoid activation function BP ANN, which adap-
tively adjusts the parameters of the PID controller in order to get a set of optimal 
parameters. The PID controller performs the closed loop control of SRM and its pa-
rameters are tuned on-line. The NNI is a RBF ANN which acts as the nonlinear pre-
diction model of SRM. 

3.1   Adaptive Tuning of Parameters by BP ANN 

The equation of conventional increment PID controller can be expressed as  

[ ]+−−+−= )1()()1()( kekeKkuku p

[ ])2()1(2)()( −+−−+ kekekeKkeK DI
 . 

(2) 

where KP�KI�and KD is the proportional factor, integration factor, and derivative 
factor, respectively. 

When KP�KI�and KD is considered as in function of the system operation condi-
tion, the Eq. (2) can be expressed as 

[ ])2(),1(),(,,,),1()( −−−= kekeKeKKKkufku DIP
 . (3) 

In Eq. (3), f[·] is in function of KP, KI and KD. Through the training of NNC, an opti-
mal control strategy can be searched.  

In this paper, the neural network NNC is a three-layer sigmoid activation function 
BP-type ANN. The structure of NNC is shown in Fig. 2. There are four neurons in the 
input layer, six neurons in the hidden layer and three neurons in the output layer. The 
input neurons are corresponding to variables that reflect the system operation condi-
tion. The output neurons are corresponding to the parameters (KP, KI, and KD) of the 
PID controller.  For KP, KI, and KD can’t be negative, so the activation function of the 
neurons in the output layer is a sigmoid activation function. The activation function of 
the neurons in the hidden layer is a hyperbolic tan activation function. 

In this paper, the input vector of the NNC is x=[r(k)�y(k)�e(k)�1]. 
From Fig. 2, it can be seen that the outputs of these neurons in the input layer are 

( )(1) 1, 2, ,jO x j j M= =  . (4) 

where )1(
jO is the output of the neurons in the input layer,  M is the number of neurons 

in the input layer. 
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Fig. 2. The structure of the neural network NNC 

The inputs and outputs of these neurons in the hidden layer of the NNC are 
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where ( 2)
ijw  is the weight matrix between the input layer and the hidden layer; f[�] is 

the activation function, f[�]=tanh(x); label (1), (2), and (3) corresponding to the input 
layer, hidden layer and output layer, respectively; i is the number of neurons in the 
current layer; j is the number of neurons in the input layer. 

The input and output of these neurons in the output layer of the NNC is 

( ) ( )
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 . 

(6) 

where w(3)
li is the weight matrix between the hidden layer and the output layer; g[·] 

is the activation function, [ ] ( )[ ]xg tanh1
2
1 +=⋅ ; l is the number of neurons in the current 

layer. 
The objective function to be minimized is defined as  

( ) ( ) 21

2
J r k y k= −⎡ ⎤⎣ ⎦  . (7) 

where r(k) is the reference input; y(k) is the output of plant.  
The weights adjustment for reduction of error is done by the standard gradient de-

scent method. A momentum term is added to speed up the convergence speed to a 
globe optimum, which is given as 
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( ) ( ) ( )(3) (3)
(3)

1li li
li

J
w k k w k

w
η α∂Δ = − + Δ −

∂
. 

(8) 

where η(k) is learning rate; α is momentum factor. 

(3) (3)
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For ( ) / ( )y k u k∂ ∂  is unknown, in order to get a good performance, the value of 

( ) / ( )y k u k∂ ∂  should be replaced by the prediction value of ( ) / ( )y k u k∂ ∂ . 

From Eq. (2), it can be derived 

( ) ( )

( )

( ) ( ) ( )

(3)
1

(3)
2

(3)
3

( )
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( )

( )

( )
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∂ ⎭

 . 
(10) 

So, the weights update equation of the output layer of neural network NNC can be 
derived as 

( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

(3) (3) (2) (3)

(3) ' (3)
(3)

1

1, 2,3

li l i li

l l
l

w k O k w k

y k u k
e k g net k

u k O k

l

ηδ α

δ

⎫Δ = + Δ −
⎪

∂ ∂ ⎪⎡ ⎤= ⋅ ⋅ ⎬⎣ ⎦∂ ∂ ⎪
⎪= ⎭

 . 
(11) 

 In the same way, according to the differential method, the weights update equation 
of the hidden layer of the NNC can be derived as 

( ) ( ) ( ) ( )

( ) ( )

(2) (2) (1) (2)

3
(2) ' (2) (3) (3)

1

1
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δ δ
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⎫Δ = + Δ −
⎪
⎪⎡ ⎤= ⎬⎣ ⎦
⎪
⎪= ⎭

∑
 . 

(12) 

where [ ] ( ) ( )[ ]xgxgg −=⋅ 1' , ( )[ ] 21 2' xff −= . 

To increase the convergence speed of ANN, an adaptive learning algorithm is 
adopted in this paper that is to adjust the learning rate η(k) according to the error. 

3.2   The Nonlinear Prediction Model Based on RBF ANN 

In order to get a high performance, the value of ( ) / ( )y k u k∂ ∂  in Eq. (9) should be 

identified and predicted on line. For SRM is a severely nonlinear plant, a nonlinear 
prediction model is used to perform the parameter prediction.  

In this paper, the SRM can be expressed by a MISO mathematical equation as 

[ ]( ) ( 1), ( 1), ( 2)y k f u k y k y k= − − −  . (13) 
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In order to predict the value of ( ) / ( )y k u k∂ ∂ , in this paper, a three-layer RBF 

ANN with three neurons in the input layer, five neurons in the hidden layer and one 
neuron in the output layer called NNI is employed to perform parameter prediction. 
The activation function of the neuron in the output layer is a linear activation func-
tion. The activation function of the neurons in the hidden layer is a Gaussian type 
activation function. 

In this paper, the input vector of the neurons in the input layer of the neural network 
NNI is X=[ u(k-1), y(k-1), y(k-2)]T. The vector used to construct the neural network 
NNI is H=[h1, h2,…, hj, …, hm]T, in the vector, where hj is Gaussian type function 

( )
2

2
exp 1,2,

2
j

j
j

X C
h x j m

b

⎛ ⎞−⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

 . (14) 

where Cj is the center of the receptive field of the jth neuron, j=1,2,…,m; bj is the 
width of the receptive field. 

The output of neural network NNI is  

( ) 1 1 2 2( )m m my k y k w h w h w h= = + + +  . (15) 

where wj is the weight between the hidden layer and output layer. 
The objective function of NNI to be minimized is defined as  

2
1

1
( ( ) ( ))

2 mJ y k y k= −  . (16) 

where y is the output of plant; ym is the output of NNI. 
According to the gradient descent method, the update equation of the weight be-

tween the hidden layer and the output layer, the center of the receptive field and the 
width of the receptive field can be expressed as 

+−+−= jmjj hkykykkwkw ))()()(()1()( 'η ))2()1((' −−− kwkw jjα  . (17) 
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( ) ( ) ( ) ( ) ( )( )211 '' −−−+Δ+−= kbkbbkkbkb jjjjj αη  . (19) 

( ) ( )( ) 2

j ji
ji m j

j

x c
c y k y k w

b

−
Δ = −  . (20) 

( ) ( ) ( ) ( ) ( )( )' '1 1 2ji ji ji ji jic k c k k c c k c kη α= − + Δ + − − −  . (21) 

where η′(K) is the learning rate; α′ is momentum factor. 
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    The partial derivative of y(k) with respect to u(k)  called Jacobian matrix can be 
expressed as 

( )
( )

( )
( )

1

2
1

m
jim

j j
j j

c xy k y k
w h

u k u k b=

−∂ ∂
≈ =

∂ ∂ ∑  . (22) 

where x1=u(k). 

3.3   Adaptive Tuning of Learning Rate 

The reason of the low convergence speed of BP algorithm is that, in order to keep the 
convergence of the learning algorithm, the learning rate is small. To increase the con-
vergence speed of ANN, this paper adopts an adaptive learning algorithm that is to 
adjust the learning rate according to the error. When the current error is large than the 
former, the learning rate will not be changed, otherwise, the learning rate will be in-
creased. 

3.4   On-Line Training and Off-Line Training 

To reduce computational complexity, improve initial response performance and de-
termine the parameters of ANN, off-line training is done. After off-line training, the 
control system is applied to on-line training and on-line control. Through on-line 
training, effect on the performance of the system caused by the change of system 
parameters can be eliminated. This helps to increase the robustness of the system. By 
measuring the error, the proposed controller performs on-line control to achieve a 
high performance. By this method, the initial parameter of the controller is optimized 
and on-line computational complexity is reduced and the controller can perform a 
real-time control on-line. 

4   Experimental Results 

The experimental results are got under the control of the adaptive PID controller 
based on RBF ANN nonlinear prediction model. The block diagram of the hardware 
control system for the SRM which based on the TMS320LF2407 type DSP is shown 
in Fig. 3. 
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Fig. 3. The block diagram of hardware control system for SRM 
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With no load, the step response of the SRM under the control of the proposed con-
troller is shown as curve 1 in Fig. 5. When under the control of the proposed control-
ler, the system responds quickly with little overshoot. The steady state error is zero. In 
Fig. 4, curve 2 stands for the step response under the control of the conventional PID 
controller. The parameters of the conventional PID controller are tuned as KP=10, 
KI=0.3, KD=4.2. 

 

Fig. 4. Step response of SRM 

In the dynamic response, the adjustment of the parameters of the adaptive PID con-
troller is shown in Fig. 5. 

 

Fig. 5. Adjustment of parameters of the adaptive PID controller in dynamic response 

The step response of the system without identification is shown as curve 2 in Fig. 6. 
The step response of the system with identification is shown as curve 1 in Fig. 6. 
From the Fig. 6, it can be seen that after the nonlinear prediction model established to 
predict the parameter of the system, this increases the convergence speed of ANN, the 
dynamic response of the system is much quick. 

When the system is disturbed, the response of the system is shown in Fig. 7. Curve 
1 is the response of the system under the control of the proposed controller. Curve 2 is 
the response of the system under the control of the conventional PID controller. From 
Fig. 7, it can be seen that under the control of the proposed controller, the speed drop 
is little and the recover time is short. Under the control of the proposed controller, the 
system shows a robust performance to the torque disturbance. 
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Fig. 6. Step response of SRM with and without identification 

 

Fig. 7. Response of SRM under torque disturbance 

While running at steady state, the phase current is shown in Fig. 8. 

 

 

Fig. 8. Phase current of SRM at steady state 

5   Conclusions 

By using the ANN’s strong ability of adaptive, self-learning, and self-organization 
and combining it with the PID control algorithm, an adaptive PID controller based on 
RBF ANN nonlinear prediction model is developed in this paper. The parameters of 
the proposed controller can be adaptively adjusted on-line. This overcome the draw-
back of conventional PID controller which’s parameters are fixed. Appling it to the 
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speed control of SRM, a high response performance of SRM can be achieved. By 
using the RBF ANN to construct the nonlinear prediction model of the nonlinear 
SRM to perform parameter prediction, the response of the SRM can be improved. To 
increase the convergence speed of ANN, an adaptive learning algorithm is adopted in 
this paper. This makes the system response much quick. Experimental results prove 
that a high performance is achieved under the control of the proposed controller. The 
system responds quickly with little overshoot. The Steady state error is zero. The 
system shows robust performance to the load torque disturbance. 
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Abstract. For a nonlinear discrete-time Multi-Input Multi-Output (MIMO) 
system, a Hierarchical Multiple Models Neural Network Decoupling Controller 
(HMMNNDC) is designed in this paper. Firstly, the nonlinear system’s working 
area is partitioned into several sub-regions by use of a Self-Organizing Map 
(SOM) Neural Network (NN). In each sub-region, around every equilibrium 
point, the nonlinear system can be expanded into a linear term and a nonlinear 
term. Therefore the linear term is identified by a BP NN trained offline while the 
nonlinear term by a BP NN trained online. So these two BP NNs compose one 
system model. At each instant, the best sub-region is selected out by the use of 
the SOM NN and the corresponding multiple models set is derived. According to 
the switching index, the best model in the above model set is chosen as the 
system model. To realize decoupling control, the nonlinear term and the 
interaction of the system are viewed as measurable disturbance and eliminated 
using feedforward strategy. The simulation example shows that the better system 
response can be got comparing with the conventional NN decoupling control 
method. 

1   Introduction 

In recent years, for linear multivariable systems, researches on adaptive decoupling 
controller have made much success [1]. As for nonlinear Multi-Input Multi-Output 
(MIMO) systems, few works have been observed [2,3]. Ansari et al. simplified a 
nonlinear system into a linear system by using Taylor’s expansion at the equilibrium 
point and controlled it using linear adaptive decoupling controller accordingly [4]. 
However, for a system with strong nonlinearity and high requirement, it can not get 
good performance [5]. In [6,7], an exact linear system can be produced utilizing a 
feedback linearization input-output decoupling approach and high dynamic 
performance was achieved. But accurate information, such as the parameters of the 
system, must be known precisely. Furthermore, a variable structure controller with 
sliding model was proposed [8] and industrial experiment in binary distillation columns 
was presented in [9], which required the system an affine system. Although the design 
methods above can realize nonlinear decoupling control, there were too many 
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assumptions required on the system so that they can not be used in the industrial 
process directly. To solve this problem, Neural Network (NN) decoupling controller 
was proposed [10]. In [11], NN was used to identify the structure and the parameters of 
the nonlinear system. In [12], at the origin, the system was expanded into the linear 
term and the nonlinear term and two NNs were adopted to identify these two terms. 
Unfortunately, when the equilibrium point was far from the origin, the system lost its 
stability. 

In this paper, for a nonlinear discrete-time MIMO system, a Hierarchical Multiple 
Models Neural Network Decoupling Controller (HMMNNDC) is designed. The 
nonlinear system’s working area is partitioned into some sub-regions, which is 
described using a Self-Organizing Map (SOM) NN. In each sub-region, at every 
equilibrium point, the system is expanded into a linear term with a nonlinear term. Both 
terms are identified using BP NNs, which compose one system model. All models, 
which are got from all equilibrium points in this sub-region, compose a multiple models 
set. At each instant, the best sub-region is chosen out using the SOM NN. Then in the 
corresponding multiple models set, according to the switching index, the best model is 
selected out as the system model. To control the system, the nonlinear term and the 
interactions of the above model is viewed as measurable disturbance and eliminated by 
the use of the feedforward strategy. The simulations illustrate the effectiveness of the 
method.  

2   Description of the System 

The system is a nonlinear discrete-time MIMO system of the form 

]),(,),([)1( ttt uyfy =+ , (1) 

where )(tu , )(ty are 1×n  input, output vectors respectively and ][⋅f  is a vector-based 

nonlinear function which is continuously differentiable and Lipshitz.  
Suppose that ( ) ( ) ( )mmll yuyuyu ,,,,, 11  are all equilibrium points. At each 

equilibrium point ( )ll yu , , using Taylor’s formula, it obtains 
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Define 
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ltt uuu −= )()( , (4) 
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Then system (2) can be rewritten as 

)()()()1()( 11 ttztz vuByA ll +=+ −− . (10) 

Remark 1. Although the representation of the system (10) is linear, the term )(tv  is a 

nonlinear term. Then it is viewed as measurable disturbance and eliminated by using 
feedforward method. 

3   Design of HMMNNDC 

In the industrial process, on the one hand, the environment, where the system runs, is 
too diverse to satisfy the strict requirement which the nonlinear controller needs. On the 
other hand, the engineers are willing to employ easy linear control theory because of 
less mathematical knowledge. So a nonlinear system would always be expanded 
around the equilibrium point. If better performance is required, more equilibrium points 
should be needed. However, too many equilibrium points means too many models and 
too many computations. To solve this problem, a hierarchical structure is designed 
here.  

3.1   Hierarchical Structure 

For a nonlinear system, according to the prior information, the whole working area 
can be partitioned into many sub-regions, which is distinguished by a SOM NN. In 
each sub-region, at every equilibrium point, two BP NNs are employed to identify the 
linear and nonlinear term of the system (10). These two NNs compose one system 
model. All NNs of this sub-region compose the sub-region. At each instant, the best 
sub-region is selected first, and then, according to the switching index, the models in 
this sub-region are focused and the best model is chosen out from this sub-region (see 
Fig.1). To design the corresponding controller, the nonlinear term and the 
interactions is viewed as measurable disturbance and eliminated using the 
feedforward strategy. 
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Fig. 1. Hierarchical structure of HMMNNDC 

3.2   SOM NN 

SOM NN is a NN which can transform an arbitrary dimensional continuous input 
signal into a lower dimensional discrete output signal preserving topological 
neighborhoods [13]. Here a SOM NN is employed as a first level of the hierarchical 
structure to represent the plant dynamics and map the different dynamic regimes into 
different sub-regions. It is designed as follows [13] 

[ ]( ) ( ) ( ) ( ) ( ) ,  is selected
( 1)

( ),
i i i

i

i

t t h t t t i
t

t otherwise

η+ −⎧⎪+ = ⎨
⎪⎩

w x w
w

w
, (11) 

where ( )tx  is the input signal consisting of ( )tu  and ( )ty , ( )tw  is the weighting 
vector, ( )tη  is a learning rate and ( )ih k  is a typical neighborhood function, 
respectively. 

3.3   Foundation of System Model 

At each equilibrium point ),( ll yu  of the best sub-region, the system (10) is excited 
using white noise. One BP network NN1 is trained off-line to approximate the system’s 
input-output mapping. So )(ˆ 1−zlA  and )(ˆ 1−zlB , the estimation of the )( 1−zlA  and 

)( 1−zlB , are obtained [14]. Then another BP network, NN2, is employed to approximate 
)(tv  online, i.e. 
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 )](,[)(ˆ tNNt xWv = , (12) 

where ][⋅NN  means the structure of the neural network and W is the weighting value. 
So the model at the equilibrium point ),( ll yu  is obtained. Similarly, the models at all 
equilibrium points in this sub-region can be set up. 

3.4   The Switching Index 

At each instant, to the models in the best sub-region, only one model is chosen as the 
system model according to the switching index, which has the form 

22

)()()( tttJ ll

l yye −== , (13) 

where )(tle  is the output error between the real system and the model l. )(tly  is the 
output of the model l. Let arg min( )lj J=  correspond to the model whose output error 
is minimum, then it is chosen to be the best model. 

3.5   Multiple Models Neural Network Decoupling Controller Design 

For the best model, to realize the decoupling control, the interaction between the input 
)(tu j  and the output )(tyi ,( ij ≠ ) is viewed as measurable disturbance. Then (10) can 

be rewritten as 

=+− )1()( 1 tz yAl )()()()()( 11 ttztz vuBuB ll ++ −− , (14) 

where [ ])(diag)( 11 −− = zz l
ii

l BB  is a diagonal polynomial matrix with a known 

nonsingular matrix l
0B , )()()( 111 −−− −= zzz lll BBB . For a simple case,  )( 1−zlA  is 

assumed to be a diagonal matrix. 
Because the nonlinear system is rewritten as a linear equation in (14), the linear 

adaptive decoupling controller can be designed to control the system, in which the 
nonlinear term is viewed as measurable disturbance and eliminated with the interaction 
by the choice of the polynomial matrices. Like the conventional optimal controller 
design, for the model j , the cost function is of the form 

21
2

1
1

111 )()()()()()()()()()( tztztztzktzJ c vSuSuQwRyP −−−−− +++−+= , (15) 

where )(tw  is the known reference signal,  ),(),(),( 111 −−− zzz RQP ),( 1
1

−zS  )( 1
2

−zS  

are weighting polynomial matrices respectively. Introduce the identity as 

)()()()( 11111 −−−−− += zzzzz GAFP . (16) 

Multiplying (14) by )( 1−zF  from left and using (16), the optimal control law can be 

derived as follows 

)()]()()([)()]()()([)()( 1
1

111111 tzzztzzztz uSBFuQBFyG −−−−−−− ++++
)()()]()([ 11 ttzz RwvSF 2 =++ −− , 

(17) 
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combing (17) with (14), the closed loop system equation is obtained as follows 

[ ] =++ −−−−− )1()()()()( 11111 tzzzz yABQP [ ] )()()()()( 1
1

1111 tzzzz uSBBQ −−−−− −
[ ] )()()()( 1

2
111 tzzz vSBQ −−−− − )()( 1 tz wR −+ . 

(18) 

To eliminate the nonlinear form and the interactions of the system exactly, let 

)1()( 1
1 BRQ =−z , (19) 

)1()( 1
1

1 BRS =−z , (20) 

1
1

2 )( RS =−z , (21) 

)1()1()( 1
1 ARPR +=−z , (22) 

where 1R  is a constant matrix and decided by the designer to guarantee the stability of 

the closed loop system. So 1
1),( RP −z  are selected off-line to satisfy 

1z     0)()()1()( 111

1
11 >≠+ −−−−− zzz APRBB . (23) 

Although the second )(tu  is the interaction of the system and viewed as measurable 

disturbance, to obtain the control input, it must be included. So the control law is 
rewritten from (17) as 

+++ −−−− )()]()()()([ 1
1

111 tzzzz uSQBF

)()()]()([)()( 111 ttzztz RwvSFyG 2 =++ −−− . 
(24) 

Remark 2. Equation (24) is a nonlinear equation because )(tu  is include into the 

nonlinear term )(tv . Considering )(tu  will converge to a constant vector in steady 

state, then substitute )(tu  in the nonlinear term )(tv with )1( −tu and solve (24). 

4   Simulation Studies 

A discrete-time nonlinear multivariable system is described as follows 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−+
−+++−++=+

−++−−+
+

−=+

)1(1

)1(5.1
)()()1(3.1)(2.0)(6.0)1(

)1(2.0)(5.1)]1(sin[5.0)](sin[
)(1

)(2.0
)1(

2

2

22

221122

22112
1

1
1

tu

tu
tututututyty

tutututu
ty

ty
ty

 

(25) 

which is the same as the simulation example in [12]. The known reference signal w  is 
set to be a time-varying signal. When 0=t , 1w  equals to 0 and when t  is 40, 80, 120, 
160, 200, it changed into 0.05, 0.15, 0.25, 0.35, 0.45 respectively, while 2w  equals to 0 
all the time.  
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Fig. 2. The output y1(t) of NNDC 
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Fig. 3. The output y2(t) of NNDC 

0 50 100 150 200 250
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t/step

y1

 

Fig. 4. The output y1(t) of HMMNNDC 

In Fig.2 and 3, the system (25) is expanded only at the original point )0,0(  and a 

Neural Network Decoupling Controller (NNDC) is used. In Fig.4 and 5, the system is  
 



 Hierarchical Multiple Models NN Decoupling Controller for a Nonlinear System 643 

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

t/step

y2

 

Fig. 5. The output y2(t) of HMMNNDC 

expanded at six equilibrium points, i.e. T]0,0[ , T]0,1.0[ , T]0,2.0[ , T]0,3.0[ , T]0,4.0[  

and. Note that the equilibrium points are far away from the set points. The results show 
that although the same NNDC method is adopted, the system using NNDC loses its 
stability (see Fig.2 and 3), while the system using HMMNNDC not only gets the good 
performance but also has good decoupling result (see Fig.4 and 5). 

5   Conclusion 

A HMMNNDC is designed to control the discrete-time nonlinear multivariable system. 
A SOM NN is employed to partition the whole working area into several sub-regions. 
In each sub-region, around each equilibrium point, one NN is trained offline to identify 
the linear term of the nonlinear system and the other NN is trained online to identify the 
nonlinear one. The multiple models set is composed of all models, which are got from 
all equilibrium points. According to the switching index, the best model is chosen as the 
system model. The nonlinear term and the interaction of the system are viewed as 
measurable disturbance and eliminated using feedforward strategy.  
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Abstract. The accurate rotor position information is very important for high 
performance operation of switched reluctance motor (SRM). Traditionally, 
there is a mechanical rotor position sensor. But this reduces the reliability and 
increases cost and size of SRM. In order to overcome the disadvantage of me-
chanical rotor position sensor, a sensorless operation method of SRM based on 
adaptive network based fuzzy inference system (ANFIS) is developed in this 
paper. The rotor position can be estimated by using the unique relationship be-
tween rotor position, flux linkage and phase current. In this paper, the ANFIS is 
used to map this relationship. Among the sensorless position estimation 
method, approach based on fuzzy neural network (FNN) is one of the promising 
methods. By combining the benefits of artificial neural network (ANN) and 
fuzzy inference system (FIS) in a single model, the ANFIS shows characteris-
tics of fast and accurate learning, the ability of using both linguistic information 
and data information and good generalization capability. For its antecedents are 
fuzzy sets, the noise in the input signals can be restrained. This approach shows 
a characteristic of robustness. For its consequent is in linear function of input 
variables, it has a simple structure and low computation complexity. So, it is 
well suited to be applied on-line. Applying it to the rotor position estimation, a 
high accuracy and robust sensorless rotor position estimator is presented. The 
experimental results proved the effectiveness of the proposed method. 

1   Introduction  

Switched reluctance motor drive is a novel variable speed drive. It has a wide applica-
tion in industrial and in home appliances. The SRM is characterized by simplicity and 
low cost. It has high efficiency and large torque output over a wide speed range. It also 
presents smaller size and lower weight comparatively to the induction machine[1]. 

The rotor position information is very important for high performance operation of 
SRM. For the energize of the SRM phases needs to be synchronized with rotor posi-
tion to obtain desired control of speed and torque. In a conventional SRM, there has a 
mechanical position sensor. This mechanical position sensor reduces the reliability 
and increases the complexity of electrical connection, size and cost of SRM. In order 
to overcome the disadvantage of mechanical position sensor, position sensorless op-
eration of SRM has become an attractive research region. Various position sensorless 
                                                           
* This work is supported by Natural Science Foundation of Tianjin. 
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control methods have been developed. Such as method using the impressed voltage 
pulse technique [2] and improved voltage pulse technique sensorless control [3], 
method based on fuzzy logic [4], method based on artificial neural network [5]-[8]. In 
summary, those methods can be classified as tow groups. One is hardware detecting 
approach. Another is computational approach based on relationship between rotor 
position, current and flux linkage of SRM. The former may produce negative torque 
and has a restrain to the speed range. The later is a purely electrical measurement 
approach which needs only current and voltage signals and does not need extra me-
chanical measurement equipment. For ANFIS having capability of using both linguis-
tic information and numerical information and the advantage of simple structure, 
fuzzy antecedents, linear consequent, good generalization ability and fast and accu-
racy learning capability, the rotor position can be estimated by using ANFIS to map 
the relationship between rotor position, flux linkage and current. 

2   Structure and Rotor Position Estimation Method of SRM 

The SRM is a double salient motor. It only has concentrated winding on the stator 
pole. There is no winding or magnet on the rotor pole. The structure of a typical SRM 
with eight stator and six rotor poles is shown in Fig. 1. The motor is driven by the 
reluctance torque produced by the electromagnetic field excited by the current flow in 
the stator winding. By consecutive energization of successive phases, continuous 
rotation in either direction is possible. The idealized inductance profile for one phase 
of a SRM is shown in Fig. 2. Meanwhile different current profile corresponding to 
different firing angle is also shown in Fig. 2. From Fig. 2, it can be seen that the firing 
angle has a great influence on the amplitude of phase current. For amplitude of cur-
rent corresponding to the amplitude of torque, the tuning of firing angle can adjust the 
torque and speed of SRM. In the direction of increasing flux linkage, the positive 
torque or the motor torque is created. While in the direction of decreasing flux link-
age, the negative torque or generating torque is created. The phase windings are 
switched on and off at appropriate instances to ensure the desired direction of rotation 
with desired torque and speed. Meanwhile the rotor position information is used to 
generate correct commutation sequence and instants. So, the accurate information of 
rotor position is very important for operation of SRM. 

The traditional measurement method of rotor position is by using a mechanical po-
sition sensor. This increases cost, size and electrical connection complexity of SRM. 
Especially for some application, elimination of mechanical position sensor can im-
prove reliability and reduce cost. For the double salient structure of SRM, the flux 
linkage is in function of both phase current and rotor position which is shown in Fig. 
3. From the unique relationship between flux linkage, phase current and rotor posi-
tion, the rotor position can be estimated. In this paper, the ANFIS is used to map the 
relationship between rotor position, flux linkage and phase current. After the model 
based on ANFIS established, the measured phase current and calculated flux linkage 
are input to the ANFIS to estimate the rotor position. An advantage of this method is 
that error will not be accumulated for the flux linkage returns to zero at each cycle 
allowing the integrator to be reset. Among the sensorless position estimation method, 
FNN based approach is one of the promising method. One of FNN – the ANFIS has 
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the advantage of high accuracy and fast computational speed. It also shows a robust 
characteristic. The application of ANFIS to estimate the rotor position of SRM can 
present a good performance. The speed control range will be extended further. It has 
the ability to be tolerant to input signal noise and error. This increases the reliability 
and robustness of this approach. 

 

Fig. 1. Structure of SRM with 8/6 poles 

 

Fig. 2. Different turn-on and turn-off angle for different current 

 

Fig. 3. Mapping surface of flux linkage with respect to rotor position and phase current 
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3   The Mathematical Model of SRM 

The basic mathematical model equations to describe the dynamics of a SRM are given 
as follows.  

1) Terminal Voltage Equations: The terminal voltage equations can be easily 
written according to the circuit configuration of the system, the kth phase equa-
tions can be written as 

dt

d
iRU k
kkk

ψ+=  . (1) 

where Uk is terminal voltage of kth phase; Rk is the resistance of kth phase wind-
ing; ik is the current flow in the kth phase winding; Ψk is the flux linkage of kth 
phase winding. 

For the mutual flux linkage of SRM is very small, so the mutual flux link-
age can be neglected for the convenient of analysis. When the mutual flux 
linkage and saturation are neglected, the flux linkage of one phase of SRM can 
be calculated from the phase current and voltage of an energized phase of the 
SRM which can be expressed as 

( )k k k kU R i dtψ = −∫ . (2) 

2) Mechanical Equation: The balance equation between the electromagnetic 
torque and the load torque can be expressed as 

Le T
dt

d
D

dt

d
JT ++= θθ

2

2

 . (3) 

where Te is the electromagnetic torque; J is the moment of inertia of the rotor; 
D is the coefficient of viscous friction; θ is rotor position; TL is the load torque. 

3) Torque Production: Due to the saturation of magnetic circuit, the torque is also 
in nonlinear function of rotor position and phase current. It is also hard to be 
analytically calculated. The instantaneous torque at any rotor position can be 
obtained by derivative of co-energy with respect to rotor position θ. This can 
be expressed as 

CONSTi

e

W
T

=
∂

∂=
θ

'

 . (4) 

where ∫=
i

diW
0

' ψ  is the co-energy of one phase. 

4   Adaptive Network Based Fuzzy Inference System 

By combining fuzzy inference system and neural network (NN) in a single model and 
taking advantage of the ability of using the expert knowledge and the strong learning 
ability of NN, the ANFIS shows high approaching precision, fast convergence speed 
and simple structure [9]. It has a wide application in modeling, control and function 
approaching. 



 Sensorless Control of Switched Reluctance Motor Based on ANFIS 649 

The typical structure of an ANFIS is shown in Fig. 4. Where a circle indicates a 
fixed node, a square indicates an adaptive node. For simplicity, there are only two 
inputs x, y and one output z. A first order Takagi and Sugeno’s (T-S) type fuzzy rules 
are used in this paper, which can be expressed as 

Rule 1: If x is A1 and y is B1, then z1=p1x+q1y+r1 
Rule 2: If x is A2 and y is B2, then z2=p2x+q2y+r2 

where Ai and Bi are the fuzzy sets in the antecedent; pi, qi, ri are the consequent  
parameters. 

W1 Z1

x y

yx
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W 2

W 1
Layer 5
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Layer 3Layer 2
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x

B2

B1
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Fig. 4. Structure of ANFIS 

As shown in Fig. 4, the ANFIS has five layers: 

Layer 1: Every node i in this layer transform the crisp values to a fuzzy one 

( )1 , 1,2i AiO x iμ= = .  

( )1 , 3,4i BiO x iμ= = .  
(5) 

where μAi(x) and μBi(x) are the membership function (MF). In this paper, the Gaussian 
function is used as the MF 

( )
21

2

x c

x e σμ
−⎛ ⎞− ⎜ ⎟

⎝ ⎠= .  (6) 

where c and σ are the parameters which determine the shape of the MF. The parame-
ters in this layer are referred to as the antecedent parameters. 

Layer 2: Every node in this layer calculates the firing strength of a rule by multiplying 
the degree of MF of input signals as 

( ) ( ) , 1,2i Ai Biw x y iμ μ= = .  (7) 

Layer 3: The ith node in this layer calculates the ratio of the ith rule’s firing strength to 
the sum of all rules’ firing strengths: 

1 2

, 1,2i
i

w
w i

w w
= =

+
.  (8) 

where wi are called the normalized firing strengths. 
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Layer 4: In this layer, every node has the function 

( )4 , 1,2i ii i i i iO w z w p x q y r i= = + + = .  (9) 

where wi is the output of layer3, and {pi, qi, ri} is the parameter set. 

Layer 5: The single node in this layer computes the overall output as the summation 
of all incoming signals, which can be expressed as  

2
5 1 1 2 2

1 1 2

ii i
i

w z w z
O w z

w w=

+= =
+∑ .  (10) 

To minimize the error between the output of the ANFIS and the desired output, the 
hybrid learning algorithm is employed in this paper which combines the least square 
method (LSM) and the back propagation (BP) algorithm to train rapidly and adapt the 
ANFIS. The consequent parameters are identified using the LSM when the values of 
the premise parameters are fixed. Whereas the antecedent parameters are updated by 
the stand BP algorithm while by holding the consequent parameters fixed and the 
error propagated from the output end to the input end. 

5   Experimental Results 

The characteristics of SRM can be described by a two input (flux linkage and current) 
– one output (rotor position angle) function. This function can be modeled by analyti-
cal mathematical equation. But this is a hard and complex task. Also, the precision of 
this method may be not very high. However, instead of using complex mathematical 
equations to describe this function, ANFIS provide a simple way of modeling which 
can take into consideration the static and dynamic effects of the motor. The training 
data is defined as a two input one output data pairs. The total number of data for train-
ing is 105. Each point of measured data presented to the ANFIS are given as 

( ) ( ) ( )( ), ,n n niψ θ  

where n is the nth data pair; ψ is flux linkage; i is current; θ is rotor position angle. 
The model used for calculating the rotor position is shown in Fig. 5. 

 

Fig. 5. ANFIS model for rotor position calculation 

To establish the model for rotor position estimation, in this paper, for each input 
three fuzzy sets are used for fuzzification. The number of rules is then 9. The MF of 
which is a Gaussian type function as Eq. (6). It can be seen that the Gaussian MF is 
specified by two parameters. Therefore, the number of parameters to be optimized is 
39, of which 12 are the antecedent parameters and 27 are the consequent parameters. 
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The initial values of MF are predetermined by analyzing the measured data. The dis-
tribution of the initial MF covering the whole universe is shown in Fig. 6(a). 

After training, the degrees of MF are shown in Fig. 6(b). From Fig. 6, it can be 
seen that by using ANFIS, the MF can be adjusted automatically in the training proc-
ess. This makes the distribution of the MF more reasonable. So, the precision of the 
model can be improved. 

       
(a) Initial membership functions of input variables 

      
(b) Membership function of input variables after training 

Fig. 6. Membership function of input variables 
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Fig. 7. Hardware configuration 

After the model established, it is applied on-line to estimate the rotor position. The 
proposed approach is implemented on a TMS320LF2407 type DSP. The hardware 
configuration is shown in Fig. 7. It consists of several distinct sub system: the DSP, the 
power converter, the 8/6 SRM and the optical isolation gate driver. Firstly, the initially 
phase is selected to be energized. Then during running condition, the flux linkage calcu-
lated according to Eq. (2) and the phase current are fed to the ANFIS to calculate the 
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rotor position angle. The estimated rotor position angle is shown in Fig. 8 (a). While the 
actual measured rotor position angle is shown in Fig. 8 (b). The error between actual 
and estimated rotor position angle is shown in Fig. 8 (c). From Fig. 8, it can be seen that 
the maximum error is less than 0.5°. The proposed approach has a high precision. 

 
(a) Estimated rotor position angle 

 
(b) Actual rotor position angle 

 
(c) Error between estimated and actual rotor position angle 

Fig. 8. Rotor position angle 

Currents in one of the four phase can be seen for this transient start up case in Fig. 9. 

 

Fig. 9. Phase current at transient start up case 
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6   Conclusion 

In this paper, an ANFIS based high precision and robust sensorless rotor position 
estimation method is developed. By taking advantage of benefits of T-S type FIS and 
ANN, the ANFIS presents a superior performance when applied to estimate the rotor 
position of SRM. The ANFIS can approximate any nonlinear function with arbitrary 
precision. It has the ability to be tolerant to input signal noise and error. This increases 
the reliability and robustness of this approach. For the consequent of the ANFIS is in 
a linear function of input variables, the structure of the ANFIS is simple and the com-
putational complexity is low. This makes it suitable to be applied on line. Compared 
with rotor position estimation method based on FIS and ANN, the rotor position esti-
mation method based on ANFIS developed in this paper has the advantage of high 
precision and robustness. In order to estimate the rotor position, firstly a model based 
on ANFIS for mapping the nonlinear relationship between rotor position, flux linkage 
and phase current is established off-line. Then it is applied on-line to estimate the 
rotor position. Experimental results show that a high accuracy and robust rotor posi-
tion estimator is achieved. 
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Abstract. This paper presents a new approach using switching grey prediction 
PID controller to an experimental propeller setup which is called the twin rotor 
multi-input multi-output system (TRMS). The goal of this study is to stabilize the 
TRMS in significant cross coupling condition and to experiment with set-point 
control and trajectory tracking. The proposed scheme enhances the grey 
prediction method of difference equation, which is a single variable second order 
grey model (DGM(2,1) model). It is performed by real-value genetic algorithm 
(RGA) with system performance index as fitness function. We apply the integral 
of time multiplied by the square error criterion (ITSE) to form a suitable fitness 
function in RGA. Simulation results show that the proposed design can 
successfully adapt system nonlinearity and complex coupling condition. 

1   Introduction 

PID is the control algorithm most often used in industrial control. It is implemented in 
industrial single loop controllers, distributed control systems, and programmable logic 
controllers. There are two reasons why it is the majority in industrial process. The first 
reason is its simple structure and the well-known Ziegler and Nichols tuning algorithms 
which have been developed [1-2] and successfully used for years. The second reason is 
that the controlled processes in industrial plant can almost be controlled through the 
PID controller [3-4]. The drawback is that the parameters of the PID controller are 
partially tuned by trial and error process, which makes it less intelligent. To overcome 
this problem, some intelligent computation techniques such as genetic algorithm or 
grey system may provide a solution for it. 

The concept of grey system was firstly proposed by Deng from the control problem 
of unknown systems in 1981 [5]. Next year, he proposed the paper of grey control 
system which made the grey system research to be studied widely later [6]. Grey theory 
mainly integrates key concepts of system theory, information theory, and control 
theory. Grey system theory has been widely utilized in the system modeling, 
information analysis, and prediction fields. Grey prediction controller was proposed by 
Cheng in 1986 [7]. The large prediction step using in grey prediction controller usually 
causes worse transient response, but small prediction step yields fast response. 
Therefore, the forecasting step-size in the grey prediction controller can be switched 
according to the error of system during different periods of the response. It differs from 
the traditional techniques, in which its prediction still can be generated by grey model 
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construction stage even facing unknown systems. Therefore, many approaches of grey 
prediction controllers have been developed in recent years [8-9]. 

In this paper, a switching grey prediction PID controller is utilized, which is 
combined with real-value genetic algorithms (RGA) [10]. The parameters of the 
controller are tuned by RGA which fitness function is formed by specific index such as 
System Performance Index [11]. The System Performance Index is an optimization for 
parameters tuning of control system. A modified system performance index of the 
known integral of time multiplied by squared error criterion (ITSE) is used in this 
paper. The strict model of mathematics is needless with respect to the searching 
parameters of PID controller which is obtained by RGA, or the structure of grey 
prediction controller which is obtained by switching mechanism. For this reason the 
design process is more concise and the controller is more robust to the traditional 
controller. According to simulation results, the new approach improves the 
performances in set-point control and trajectory tracking. 

2   System Description 

The TRMS, as shown in Fig. 1, is characterized by complex, highly nonlinear and 
inaccessibility of some states and outputs for measurements, and hence can be 
considered as a challenging engineering problem [12]. The control objective is to make 
the beam of the TRMS move quickly and accurately to the desired attitudes, both the 
pitch angle and the azimuth angle in the condition of decoupling between two axes. The 
TRMS is a laboratory set-up for control experiment and is driven by two DC motors. Its 
two propellers are perpendicular to each other and joined by a beam pivoted on its base 
that can rotate freely in the horizontal and vertical plane. The joined beam can be 
moved by changing the input voltage to control the rotational speed of these two 
propellers. There is a Pendulum Counter-Weight hanging on the joined beam which is 
used for balancing the angular momentum in steady state or with load. In certain 
aspects its behavior resembles that of a helicopter. It is difficult to design a suitable 
controller because of the influence between two axes and nonlinear movement. From 
the control point of view it exemplifies a high order nonlinear system with significant 
cross coupling. For easy demonstration in the vertical and horizontal separately, the 
TRMS is decoupled by the main rotor and tail rotor.  

 tail rotor

Tail shield

DC-motor + 

tachometer

pivot

main rotor

DC-motor + 

tachometer

free-free beam

counterbalance

main shield

 

Fig. 1. The laboratory set-up TRMS 
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A block diagram of the TRMS model is shown in Fig. 2, where vM is the vertical 
tuning moment, vJ is the moment of inertia with respect to horizontal axis, vα is the 
vertical position (pitch position) of TRMS beam, ml is the arm of aerodynamic force 
from main rotor, tl is the effective arm of aerodynamic force from tail rotor, g is the 
acceleration of gravity, mω is the rotational speed of main rotor, ( )mv wF  is the 
nonlinear function of aerodynamic force from main rotor, vk is the moment of friction 
force in horizontal axis, vΩ is the angular velocity (pitch velocity) of TRMS beam, 

hΩ is the angular velocity (azimuth velocity) of TRMS beam, hα is the horizontal 
position (azimuth velocity) of TRMS beam, 

hM is the horizontal turning torque, hJ is 
the nonlinear function of moment of inertia with respect to vertical axis, tω is the 
rotational speed of tail speed, ( )thF ω  is the nonlinear function of aerodynamic force 
from tail rotor, hk  is the moment of friction force in horizontal axis, trJ is the vertical 
angular momentum from tail rotor, mrJ  is the vertical angular momentum from main 
rotor, vS is the vertical turning moment, hS  is the horizontal turning moment, fS is the 
balance factor, Uv  and Uh are the DC-motor control inputs. In order to control TRMS in 
the vertical and horizontal separately, the main rotor and tail rotor are decoupled. Detail 
mathematical model can be found in [12]. 

hf FS vtl αcos s/1 hJ/1 s/1

vf FS ml s/1 vJ/1 s/1

hk

hvg

vk

( )vf α

trJ

( )vmrJ α

hU

vU

tω hM

mω vM

hS

vS

hΩ

vΩ

( )thα

( )tvα

hG hP

vG vP

 

Fig. 2. Block diagram of TRMS model 

3   Control System Design 

The proposed control scheme utilizes three techniques to control the TRMS, which are 
grey prediction with second order difference equation of DGM(2,1) model, switching 
grey prediction, and RGA. The structure is shown in Fig. 3. The steps of grey prediction 
modeling can be summarized as follows [13]. 

Let )0(y  be a non-negative original data sequence, then 

{ })(),...,2(),1( )0()0()0()0( nyyyy = ,  n ≥ 4.                                      (1) 

Take the accumulated generating operation (AGO) on )0(y  , then the AGO sequence 
)1(y  can be described by 
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Fig. 3. The block diagram of the switching grey prediction PID control 
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The DGM(2,1) model is expressed as  

0)()1()2( )1()1()1( =++++ kbykayky ,                                  (3) 

where the a and b are undecided coefficients of second order difference equation. The 
parameters a and b can be solved by means of the least square method as follows 
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Take the Z transform for (3); we obtain the following characteristic equation 

( ) 02 =++ bazz                                                     (5) 

and the roots of (5) are represented as 

2

42

1

baa
z

−+−=  , 
2

42

2

baa
z

−−−=  .                                     (6) 

Therefore, there are three cases for (6): Case I. 21 zz ≠ ; Case II. 21 zz = ; Case 
III. 1z and 2z are a conjugate pair. 

Case I: If 21 zz ≠ , the solution of the prediction model of second order difference 
equation by using inverse Z transform is  

pkpk zczcpky ++
Λ

+=+ 2211

)1(

)(                                                (7) 

The constants 1c  and 2c  are obtained by solving the initial condition of (7) from 1=k  

and 2=k : 
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Case II: If 21 zz = , the second difference equations becomes  
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The constants 1c  and 2c  are  
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Case III: If 1z and 2z are a conjugate pair, the second order difference equation 
becomes  
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Because the second order difference equation of the prediction model is based on the 
AGO data, we must take the inverse accumulated generating operator (IAGO) to get the 
non-negative )0(y  data by the following relationship  

)1()()(
)1()1()0(

−+−+=+
∧∧∧

pkypkypky ,                                            (13) 

where p is the forecasting step-size. Based on the above description, the basic grey 
prediction method can be described as follows 

.)1,2( )0(
)0(

yAGODGMIAGOy =
∧

                                  (14) 

However, the response sequence of the system may be positive or negative. 
Therefore, we have to map the negative sequence to the relative positive sequence by 
some methods of data mapping. In this paper, we take the inverse mapping generating 
operator (IMGO) defined as follows. 

Let )0(y  be an original sequence and )0(
my  be the MGO image sequence of )0(y , then 

)0()0()0( ybiasyMGOy m +== ,                                        (15) 

where the bias is a shift factor, and must be greater than )0(y . Then the IMGO can also 

be obtained as follows   

.)0()0()0( biasyyIMGOy mm −==                                       (16) 
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Therefore, the modified grey prediction can be constructed by  

.)1,2( )0(
)0(

yMGOAGODGMIAGOIMGOy =
∧

   (17) 

Influence of using different step-size on the system is shown in Table 1. The goal is 
to find a proper forecasting step-size between the given positive and negative one. The 
controller not only can reduce the overshoot, but also can cause a shorter rise time than 
the conventional design methods. The switching mechanism is defined by [14] 
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θθ
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,                                                 (18) 

where p is the forecasting step-size of the system. pys, pym and pyl are the forecasting 
step-sizes for the large error, the middle error, and the small error, respectively. 

lθ  and 

sθ are the switching time of the large error and the small error, respectively.  

Table 1. Different forecasting step-size influence on the system 

                     Forecasting 
                     Step-size 
System 

 response 

Positive 
forecasting 
step-size 

Negative 
forecasting 
step-size 

Overshoot Small Big 
Rising time Long       Short 

Steady state time       Slow Fast 
Adapt region Close Leave 

A system performance index is used for fitness function in RGA. It is an 
optimization criterion for parameters tuning of control system. It deals with a 
modification of the known integral of time multiplied by squared error criterion (ISTE). 
In order to influence a characteristic value of a signal it is not necessary to add a special 
term to the ITSE which will increase the selection pressure in RGA. An evident 
possibility is to divide the integral criterion in special error section for each 
characteristic value. The addition of integral sections in the time horizon is straight 
forward and always the same unit. For example, the aim of control optimization is to 
determine the control parameters in order to minimize the error signal e as shown in 
Fig. 4. The general form and an often used performance index are shown below. 

( ) ( ) ( ) ( )( )∫=
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The following equation represents system performance index: 
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Fig. 5 shows the definition of different sections. 
The Rise time is evaluated as the signal difference 
area between ( )tr  and ( )ty  from 0=t  to T, where 

the gain of ( )ty  is ( )tr9.0 . The section may also 

include the undershoot area. Overshoot I and 
Overshoot II are the areas between the overshoot or 
maximum peak and ( )tr . The Overshoot II section 

is double evaluated in the sense of more selection 
pressure and smooth fitness landscape. It leads to 
faster convergence by raising the section pressure 
or weighting value. The ssTime is the steady state 
error section. The control is control force to the 
TRMS. The following equation represents the 
system performance index in Fig. 5, which meets 
the requirements above. Flow chart of the 
switching prediction PID control with RGA is 
shown in Fig. 6. 
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Fig. 4. Example of control system 

ssTime

Rise time

Overshoot I
Overshoot II

 

Fig. 5. Piecewise Integral of Time weighted Squared 
Error – PITSE 

 

 

Fig. 6. The flow chart of the 
switching prediction PID 
control with RGA 
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4   Simulations 

In the process of RGA, population size is 10. The first step is to evaluate each fitness 
value of individuals (chromosomes) and subsequently grade them by fitness function. 
The individuals are selected probabilistically by their fitness values. Using these selected 
individuals the next population is generated through a process of Adewuya crossover law 
[15]. Mutation is applied with a very low probability 0.025. The target parameters of the 
control system are the forecasting step-size, switching times, and the PID control gains, 
which are pylh, pysh, pylv, pysv, 

lhθ , 
svθ , KPhv, KIhv, KDhv, KPvh, KIvh, KDvh, KPvv, KIvv, 

KDvv, KPhh, KIhh, and KDhh. During the simulation in Simulink, reference input of 
horizontal is 1 rad and initial condition is 0 rad. Reference input in vertical is 0.2 rad and 
initial condition is -0.5 rad. Simulation time is from 0 to 50 seconds. System performance 
requirements are: maximum overshoot less than 1%；rising time, delay time and steady 
state time as short as possible. System Performance Index is 
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Fitness function in RGA is 

vpitsehpitse II
FunctionFitness

__

1000010000
_ += .                                        (24) 

Simulation results are shown in Fig. 7 to Fig. 9. Compare to previous work [16], as 
shown in Table 2, the TRMS output performance has been improved a lot. 

 

Fig. 7. Step response in cross-coupling system 
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Fig. 8. Sine wave response in cross-coupling system 

 

Fig. 9. Square wave response in cross-coupling system 

Table 2. Comparison of total error in cross-coupling system 

reference V or H [16] This paper improvement 
Horizontal 50.0221 28.7228 42.6% 

set-point 
Vertical 32.8766 29.4717 10.4% 

Horizontal 14.0243 13.6415 2.7% 
sine wave 

Vertical 72.2283 46.1231 36.1% 
Horizontal 125.3977 103.6016 17.4% square 

wave Vertical 99.3753 74.6588 24.9% 
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5   Conclusion 

This paper proposes a design of a grey prediction controller which is simple and easy to 
be realized. Grey theory has successfully implemented in TRMS control. In here, 
utilization of switching grey prediction and RGA provides good adaptive predictions 
and pre-compensations for the PID controller. This approach has successfully 
overcome the influence of cross-coupling between two axes. In set-point control, it 
reduces maximum overshoot, rising time, steady state time and delay time. It is also 
more suitable for tracking a desired trajectory in horizontal and vertical planes 
simultaneously. Compare to previous work, the simulation results show that the new 
approach reduces the total error and improves the system performance.  
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Abstract. Based on RBF (radial basis function) neural network, an adaptive 
neural network feedback control scheme and an impulsive controller for output 
tracking error disturbance attenuation of nonlinear switched impulsive systems 
are given under all admissible switched strategy in this paper. Impulsive con-
troller is designed to attenuate effect of switching impulse. The RBF neural net-
work is used to compensate adaptively for the unknown nonlinear part of 
switched impulsive systems, and the approximation error of RBF neural net-
work is introduced to the adaptive law in order to improve the tracking attenua-
tion quality of the switched impulsive systems. Under all admissible switching 
law, impulsive controller and adaptive neural network feedback controller can 
guarantee asymptotic stability of tracking error and improve disturbance at-
tenuation level of tracking error for the overall switched impulsive system. 

1   Introduction 

A switched nonlinear system is a hybrid system that comprises a collection of nonlin-
ear subsystems together with a switching signal that specifies the switching among 
the subsystems. Switched dynamical systems have been attracting much attention 
because the study for these systems is not only academically challenging, but also of 
practice importance. The study for switched systems is well motivated from several 
aspects. Firstly, from the practical point of view, switching among different system 
structures is an essential feature of many engineering systems including power sys-
tems and disk drivers. Secondly, from the modeling point of view, as complex (intel-
ligent) systems are very hard to model (analyze) globally at the whole range of opera-
tion, multiple-model provides a convenient and efficient way to model these systems. 
Thirdly, from the control point of view, multi-controller switching provides an effec-
tive mechanism to cope with highly complex systems and/or systems with large un-
certainties. 

During the last decades, applications of neural networks in system identification 
and control have been extensively studied. The study for non-switched nonlinear 
systems using universal function approximation has received much attention and 



 H ∞  Neural Networks Control for Uncertain Nonlinear Switched Impulsive Systems 665 

many methods have been proposed (see [1], [2], [3], [4], [5], [6] for therein refer-
ences). Typically, these methods use neural networks as approximation models for the 
unknown part of non-switched systems. It has been shown that successful identifica-
tion and control may be possible using neural networks for complex nonlinear dy-
namic systems whose mathematical models are not available from first principles. In 
[7] and [8], it was shown that for stable and efficient online control using the back 
propagation learning algorithm, the identification must be sufficiently accurate before 
the control action is initiated. In practical applications, it is desirable to have a sys-
tematic method of ensuring stability, robustness, controllability, observability, H 
disturbance attenuation quality and other performance properties of system. Recently, 
several good neural network control approaches have been proposed based on 
Lyapunov stability theory ([9], [10], [11], [12] and [13]). One key advantage of these 
schemes is that the adaptive laws were derived based on Lyapunov synthesis and, 
therefore, guaranteed the stability of non-switched systems without the requirement 
for offline training. 

However, most of these good results are restricted in non-switched systems. Due to 
the difference between non-switched systems and switched systems, a stable control-
ler designed in non-switched system may become unstable in switched system via 
unsuitable switching rule, thus we may run into troubles when we implement these 
networks controllers in switched system in which the data are typically available only 
at switching time instants. Therefore, the study for switched system based on neural 
network is necessary and significant. Unfortunately, all these good neural network 
controllers are designed for non-switched systems while there are a few attentions for 
switched control systems presently. In [14], the output tracking stabilization is studied 
for a class of switched nonlinear systems based on RBF (radial basis function) neural 
network. In [15], [16] and [17], output tracking error disturbance attenuation problem 
for a class of switched nonlinear systems is investigated in SISO case and MIMO 
case, respectively. 

As we know, many practical systems in physics, biology, engineering, and infor-
mation science exhibit impulsive dynamical behaviors due to abrupt changes at cer-
tain instants during the dynamical processes. But for hybrid and switched systems, as 
an important model for dealing with complex real systems, there is little work con-
cerning impulsive phenomena ([18], [19], [20], [21], [22], [23] and [24]). In this 
note, impulsive phenomena are introduced into switched nonlinear systems. Fur-
thermore, we investigate tracking disturbance attenuation capability for such systems 
that exhibit impulsive behaviors at switching time instant by using RBF neural  
networks. 

This paper is organized as follows. In Section 2, H ∞ control problem for a class of 
switched nonlinear systems with impulsive behavior is stated. Section 3 focuses on 
the design method of adaptive feedback control scheme and impulsive controller 
based on RBF neural network. Finally the conclusion is drawn in Section 4.   

2   System Description and Preliminaries 

Consider the following switched nonlinear system with impulsive behavior is given 
by 
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( ) (1) ( 1) (1) ( 1)
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( 1) ( 1) ( 1)
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t t
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E

y t y t y t

σ σ
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+ −

+ −

− − + − −

= +
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⎢ ⎥⎢ ⎥Δ −⎢ ⎥⎢ ⎥ = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

Δ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦
( 1)

)
( )

( )

I

n

t
u t

y t−

⎧
⎪
⎪ ⎡ ⎤
⎪ ⎢ ⎥⎨ ⎢ ⎥ +⎪ ⎢ ⎥⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎩

     (1) 

where y ∈  is the measured output of system. u ∈  is the control input signal. 
n

Iu ∈ is the impulsive control to be designed.   

0 0
( ) lim ( ), ( ) lim ( )

def def

h h
y t y t h y t y t h

+ +

+ −

→ →
= + = −  .  

(1) (1) ( 1) ( 1)( ) ( ), ( ) ( ), , ( ) ( ).n ny t y t y t y t y t y t− − − − −= = =  

The symbol  ( )( ) k∗ denotes the  thk derivative of ( )∗   and 

{ }: [0, ) 1, 2, ,
def

Nσ +∞ =  

( N is finite natural number, i.e. N < ∞ ) stands for the piecewise constant switching 
signal. Moreover, ( )kt iσ =  means that the  thi  subsystem 

( ) (1) ( 1) (1) ( 1)( ) ( ( ), ( ), , ( )) ( ( ), ( ), , ( )) ( )n n n
i iy t f y t y t y t g y t y t y t u t− −= +   

is active at time instant kt t= .  ( )mt iσ − = and ( )mt jσ + =  mean that the switched 

nonlinear system (1) is switched from the thi  subsystem to the thj subsystem at time 

instant mt t= . . ( , )i jE i j ∈ is known n n×  constant matrices. Especially, 

. 0( )i iE i= ∈ means the switching between the same sub-system are smooth and 

without impulse, in other words, there is no impulse when a subsystem is remaining 
active. The functions ( )if ⋅ and ( )( )ig i⋅ ∈   are unknown smooth function.  

Now we design RBF neural network to approximate the functions ( )if x and 

( )( )ig x i ∈   , that is,  

ˆ ˆ( , ) ( ), ( , ) ( )T T
i f f fi i g g gif x x g x xθ θ ϕ θ θ ϕ= =  

where ( )(1) ( 1), , ,
Tnx y y y −= , fθ   and gθ   are vector of adjustable weights. 

( )1( ) ( ), , ( )
T

fi fi fipx x xϕ ϕ ϕ=  and ( )1( ) ( ), , ( )
T

gi gi giqx x xϕ ϕ ϕ=  denote vectors 

of Guassian basis function. 
2 2( ) exp( / )fij fij fijx x cϕ σ= − − and 

2 2( ) exp( / )gij gij gijx x cϕ σ= − − stand for Guas-

sian basis function, where ( , )fij fijc σ  and ( , )gij gijc σ   is, respectively, center vector and 

width of the thj   hidden element for RBF neural network to approximate the functions 

( )if x and ( )( )ig x i ∈  . The radial basis function neural network is shown in fig. 1.  
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Fig. 1. Schematic of RBF neural network  

By calling up the literature [11] and the neural network theory [25], on compact 
set nX ⊂ , for every 0ε >  , there exist two Guassian basis function vectors 

( ) : , ( ) : ( )p q
fi giX X iϕ ϕ⋅ ⋅ ∈ , and two weight vectors ˆ

f fθ ∈ Ω , ĝ gθ ∈ Ω   

such that  

ˆ( ) ( ) ,T
i f fif x xθ ϕ ε− ≤  ˆ( ) ( ) ,T

i g gig x xθ ϕ ε− ≤    

where fΩ  and gΩ  is known compact subset of p  and q  , respectively.  

Therefore, the optimal weights ,f gθ θ  defined as  

ˆ 1

ˆ 1

ˆarg min min sup ( ) ( )

ˆarg min min sup ( ) ( )

f f

g g

T
f i f fii N x X

T
g i g gii N x X

f x x

g x x

θ

θ

θ θ ϕ

θ θ ϕ

≤ ≤∈Ω ∈

≤ ≤∈Ω ∈

⎧ = −
⎪
⎨

= −⎪
⎩

  

and RBF neural network reconstruction approximate error iω for the thi subsystem of 

switched impulsive system (1) defined as  

ˆ ˆ( ) ( , ) ( ( ) ( , ))i i f i gf x f x g x g x uω θ θ= − + −    

are well pose, where ˆ ˆ( , ) ( ), ( , ) ( )T T
i f f fi i g g gif x x g x xθ θ ϕ θ θ ϕ= = .  

Setting re y y= −  (is any given bounded reference output signal) denotes the out-

put tracking error,  

ˆ ,
TT TTT T

f gf gθ θ θ θ θ θ θ θ θ⎛ ⎞⎡ ⎤⎡ ⎤= − = =⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠
   

denotes the adaptive parameter error.  
The objective in this paper is, for any given 0γ >  , to design adaptive neural net-

work controller ( )u t and impulsive controller ( )Iu t  such that the switched impulsive 
system (1) satisfies the following two performances for all admissible switching strat-
egy ( )tσ .  



668 F. Long et al. 

i). lim ( ) 0
t

e t
→∞

=  when the network reconstruction error kω   admits a upper bounder; 

and there exists a constant 0M >  such that  Mθ ≤  .  

ii). 2

0 0

( ) ( ) ( ) ( ) ( (0), (0))
T T

T Te t e t dt t t dt S eγ ω ω θ≤ +∫ ∫ , where (1) ( 1)( , , , )n Te e e e −= , 

{ }1max , , Nω ω ω= , S denotes appropriate positive-definite function.  

In this article, we make the following assumptions.  

Assumption 1. There exists a positively real number l  such that for all nx ∈  and 

every i ∈  , ( )ig x l≥ .   

Assumption 2. The reference signal ry  is n-times continuous in the interval 

[0, )+∞ and its derivatives up to order n  are known and uniformly bounded in the 

time interval [0, )+∞ . 

3   Controller Design 

Consider the following adaptive neural network feedback controller and impulsive 
controller  

1
( ) ( )

(1)

( ), ( )

( 1)

ˆˆ( ) ( , )( ( , ) )

( )

( )
( )

( )

t g t f

r

r
I t t

n
r

u t g x f x

y t

y t
u t E

y t

σ σ

σ σ

θ θ

− +

−

−

⎧ = − + Λ
⎪
⎪ ⎡ ⎤
⎪ ⎢ ⎥⎨ ⎢ ⎥= −⎪ ⎢ ⎥⎪ ⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎩

                                (2)  

where ( ) ( 1) ( 1)
1( ) ( )n n n

r n r ry y y y yλ λ− −+ − + + − , ( )1 2, , , nλ λ λ   is Hurwitz vector, i.e., 

the matrix  

1 2

0 1 0

0 0 1

n

A

λ λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

is stable.   
The output tracking error dynamic equation of switched impulsive system (1) is 

given by  

( ) ( ) ( )

( ), ( )

( ) ( ) ( ( , ) ( , ) )

( ) ( ) ( )

t t f t g

t t

e t Ae t B f x g x u

e e t e t E e t

σ σ σ

σ σ

ω θ θ

+ −
+ −

⎧ = + + +⎪
⎨

Δ = − =⎪⎩
                  (3)  

Where (1) ( 1)( , , , )n Te e e e −=  , ,f gf f g gθ θ θ θ θ θ= − = − , (0,0, ,1)TB = . 
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By calling up the literature [11] and the neural network theory [25], in view of the 

assumption 1, it is obvious that 1ˆ ( , ) 1/( ),i fg x l iθ ε− ≤ − ∀ ∈ . Again by means of the 

approximation property of RBF neural network, the neural network feedback control-
ler ( )u t  is bounded.  

Now, we introduce an important concept---switching sequence, which can be use 
in the later.  

Definition 3.1. The sequence  

{ }( , ) 1,2, , ; 1,2,m m mt r r N m= =    

is said to be switching sequence, if   

i) ( ) ( )m mt tσ σ− +≠ ,  

ii) 1( ) ( ) , [ , )m m m mt t r t t tσ σ −
−= = ∈ . 

Moreover, the interval 1[ , )m mt t−  is said to be dwell time interval of the mr th−  sub-

system.  
According to the above analysis, for the switched impulsive system (3), we have 

the following result.  

Theorem 3.1. Consider the output tracking error dynamic equation of switched im-
pulsive system (1), i.e. the system (3) and suppose that, for any given 0γ >  and sym-

metrical positive-definite matrices 1 2, , , NQ Q Q , there exist N symmetrical positive-

definite matrices 1 2, , , NP P P  such that for 1,2, ,i N=   

1

1
0

T
i i i i

T
i

A P P A Q PB

B P I

γ
γ

−

−

⎡ ⎤+ +
<⎢ ⎥−⎣ ⎦

                                       (4)  

2 2
1 2i C Cω γ≤                                                                 (5)  

and for , 1,2, ,i j N=  , the following matrix inequality holds.  

,

,

( )
0

( )

T
i i j j

j i j j

P I E P

P I E P

⎡ ⎤− +
<⎢ ⎥+ −⎢ ⎥⎣ ⎦

                                    (6)  

Then there exists RBF neural network controller such that the resulting closed-loop 
system satisfies i) and ii) for all admissible switching rule ( )tσ .  In this case RBF 

neural network controller is taken as (2) and  

1

( ); ,

( ( )) 0; \ ,

T
f i fi f f i

T T
f f i fi f f f i

e PB x t

e PB x tδ

θ μ ϕ θ

μ θ θ μ ϕ θ−

⎧ = ∈ Ω ∈ Ω⎪
⎨

− ≥ ∈ Ω Ω ∈ Ω⎪⎩
                     (7)  

1

( ) ; ,

( ( ) ) 0; \ ,

T
g i gi g g i

T T
g g i gi g g g i

e PB x u t

e PB x u tδ

θ ρ ϕ θ

ρ θ θ ρ ϕ θ−

⎧ = ∈ Ω ∈ Ω⎪
⎨

− ≥ ∈ Ω Ω ∈ Ω⎪⎩
                     (8)  
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where {i tΩ = the thi  subsystem is active at time instant }t  , f fδΩ ⊂ Ω , 

g gδΩ ⊂ Ω ( p
fδΩ ⊂  and  q

gδΩ ⊂ are known compact subset), μ  and ρ  denote, 

respectively, the learning rate of RBF neural networks for ( )if x  and ( )ig x  ,  

{ }1 min 1 min 2 minmin ( ), ( ), , ( )NC Q Q Qλ λ λ=  ,   

the set 0E  is any given known compact subset  of n  and contains (0)e  ,  

{ }2

2
nE e e C= ∈ ≤ ,

0

2

2 max
e E

C e
∈

> .  

Proof:  Consider the Lyapunov function candidate  

1 1

1

( )
N

T T T
i i f f g g

i

V t e Peα μ θ θ ρ θ θ− −

=

= + +∑                          (9)  

where   

1,
( )

0,
i

i
i

t
t

t
α

∈ Ω⎧
= ⎨ ∉ Ω⎩

 ,  

{i tΩ = the thi  subsystem is active at time instant }t .  

Using (4) and (7)-(8), , the derivative of V along the trajectories of the system (3) is 
given by 1( , ]

mm m rt t t−∀ ∈ ⊂ Ω  

( ) 2

2
m m m m

m m m m m

T T T
r r r r

T T T T
r r r r r

V e A P P A e e P B

e Q e e P B e P BB P e

ω

ω

≤ + +

< − + −
 

22

m m

T
r re Q e γ ω≤ − +                         (10) 

In view of { }1 min 1 min 2 minmin ( ), ( ), , ( )NC Q Q Qλ λ λ= and 
0

2

2 max
e E

C e
∈

> , for every 

e E∈ ,  we have  

22
1 2 mr

V C C γ ω< − +                                               (11)  

It can conclude form (5) that for every 1( , ]
mm m rt t t−∈ ⊂ Ω , ( ) 0V t < . Without of gen-

erally, suppose that 1( )m mt rσ +
+=  , then by (6) and (9)  

1

1 1 1, ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

m m

m m m m m m

T T
m m m r m m r m

T T
m r r r r r r m

V t V t e t P e t e t P e t

e t I E P I E P e t

+

+ + +

+ − + + − −− = −

⎡ ⎤= + × + − <⎣ ⎦
            (12) 

Therefore by Lyapunov stability theorem, i) holds.  
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Next, we prove that ii) holds. By means of { }1max , , Nω ω ω=  , 

{ }1 min 1 min 2 minmin ( ), ( ), , ( )NC Q Q Qλ λ λ= and (10), we have  

1 1

2

1
1

( ) ( ) ( ) ( ) ( ) ( ), 1,2,
m m

m m

t tT T
m mt t

e t e t dt t t dt V t V t m
C

γ ω ω
− −

+ −
−≤ + − =∫ ∫              (13)  

Let  

{ }1 2( , ) | ; 1,2, , ; 0m m m st r r m s t t t T∈ = = < < < ≤
 

be every switching sequence in the interval [0, that is to say, the switching time in-
stant  1 2 1, , , , ,s st t t t + satisfies 1 2 10 s st t t T t += < < < ≤ ≤ .  

Noting that 1 0t =  and (0) 0x = , in view of (6), (12) and (13), 2[0, ]L Tω∀ ∈   

1

1

1

1

10

2
1

1 2
1

2
1 1

0
1

( ) ( ) ( ) ( ) ( ) ( )
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m
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T t TsT T T

m t t

t Ts sT T
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T T T T T
r f f g g

e t e t dt e t e t dt e t e t dt

t t dt t t dt V V T V t V t
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t t dt e P e
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γ ω ω ω ω

γ ω ω μ θ θ ρ θ θ

+

+

−

=

− + −
= =

− −

= +

≤ + + − + −

< + + +

∑∫ ∫ ∫

∑ ∑∫ ∫

∫

 

Hence, ii) holds. This ends the proof.                                                                           ◊  

4   Conclusions 

For a class of switched impulsive systems represented by input-output models, the 
tracking error attenuation problem is investigated by using RBF neural networks. 
Neural network adaptive feedback controller and impulsive controller are given. Ap-
proximation errors of RBF neural networks are introduced to the adaptive law in order 
to improve the tracking error attenuation quality for overall switched impulsive sys-
tems. The adaptive feedback controller and impulsive controller designed can guaran-
tee asymptotical stability and disturbance attenuation performance of tracking error 
for the whole switched system under all admissible switching rules.  
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Abstract. An approach is investigated for the adaptive guaranteed cost
control design for a class of nonlinear state-delayed systems. The non-
linear term is approximated by a linearly parameterized neural net-
works(LPNN). A linear state feedback H∞ control law is presented.
An adaptive weight adjustment mechanism for the neural networks is
developed to ensure H∞ regulation performance. It is shown that the
control gain matrices and be transformed into a standard linear ma-
trix inequality problem and solved via a developed recurrent neural net-
work.

1 Introduction

Neural networks have often demonstrated their usefulness in the control of con-
tinuous or discrete nonlinear or unknown systems [1]. Most notably, due to the
unknown and highly nonlinear behavior of neural networks during their learning
phase, guaranteeing stability becomes a major problem [2,3].

In [3-5] A class of multi-layer neural networks that admits a linear difference
inclusion (LDI) state-space representation to approximate a nonlinear systems
has been observed and used in the stability analysis via a Lyapunov function.
However, regrading H∞ control by neural networks, to the best of our knowl-
edge, only a few results are published[6-10]. For example, in [11], a class of
nonlinear system is approximated by two multilayer perceptrons. In [12], an
LDI state-space representation for a class of multilayer neural networks was
established. Since time-delays are often present in all actuation and measure-
ment, it is important to study the stability problems for time-delay systems
[13-16].

In this paper, we discuss an H∞ design approach for a class of nonlinear
state-delayed systems by using neural networks. Throughout this paper, The
Euclidean norm ‖ x ‖=

√
xTx; the weight Euclidean norm ‖ x ‖Q=

√
xTQx,

where Q denotes the weighting matrix; x : [0,∞) �→ �n belongs to the space

Ln
2 [0,∞) with the norm ‖ x(t) ‖L2=

√∫∞
0 xT (t)x(t)dt ,if ‖ x(t) ‖L2<∞.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 674–683, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Neural Net-Based Description

Consider a nonlinear plant model described as follows:

ẋ = Ax+Bu +Adx(t− τ) + f(x) + d (1)

where, A,B,Ad are known constant matrices; x ∈ �n is state vector; u ∈ �m

is input control vector; y ∈ �z is output vector; f(·)�n → �n is continuous
nonlinear mapping with f(0) = 0 but not assumed a prior known; d ∈ �n is
d ∈ Ln

2 [0,∞]; τ > 0 is the delay parameter.
The model structure f(x) are to be parameterized by LPNNs. For instance,

high-order neural networks(HONNs), RBF networks, adaptive fuzzy systems,
wavelet networks, etc., [17], [18],[19] belong to this class of NN. In general, the
LPNNs are mathematically described by

y = WS(ζ) (2)

In this paper, the function is selected as follows:

s(ν) = λ
1 − e−ν/q

1 + e−ν/q
, λ > 0, q > 0 (3)

More precisely, (1) becomes

ẋ = Ax+Bu+Adx(t− τ) +W ∗S(x) +Δf(x) + d (4)

where, Δf(x) = f(x)−W ∗S(x). Assume that ‖ Δf(x) ‖≤ ε ‖ x ‖. Furthermore,
(4) can be written as follows:

ẋ = Ax+Bu+Adx(t− τ)− W̃S(x) +WS(x) +Δf(x) + d (5)

where, W̃ = W −W ∗. Next, we introduce some lemmas, which are needed in
the proof of the main theorem.

Lemma 1
| s(ν) |≤ λ

q
| ν | (6)

Proof: We only proof when ν > 0, the inequality holds. Let h(ν) = λν
q −

λ1−e−ν/qi

1+e−ν/qi
. Then, h′(ν) = λ(1

q −
2e−ν/q

q(1+e−ν/q)2 ) > 0, and h(0) = 0. So, we can

obtain that 1−e−ν/q

1+e−ν/q ≤ ν
q , i.e., | s(ν) |≤ λ

q | ν |.

Lemma 2: Let D is a positive defined diagonal matrix, S1(x) = [s1(x1),s1(x2),
· · · , s1(xn)]T , and Σ = diag[λ/q1, 1/q2, · · · , λ/qn], then the following inequality
holds

ST
1 (x)DS1(x) ≤ xTΣDΣx (7)

Proof: Assume D = diag[d1, d2, · · · , dn], then,

ST
1 (x)DS1(x) = d1s

2
1(x1) + d2s21(x2) + · · ·+ dns

2
1(xn)
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By lemma 1, we have s21(xi) ≤ λ2/q2i x
2
i , i = 1, 2, · · · , n. Thus, the inequality (7)

holds.

Lemma 3[20]:Given any real matrices Q1, Q2, Q3 with appropriate dimensions
such that 0 < Q3 = QT

3 , the following inequality holds:

QT
1Q2 +QT

2Q1 ≤ QT
1Q3Q1 +QT

2Q
−1
3 Q2 (8)

3 H∞ Neural Control Design

The state feedback control law is designed using the available plant information

u = Kx (9)

By substituting into (5) gives the perturbed closed-loop system

ẋ = (A+BK)x+Adx(t− τ)− W̃S(x) +WS(x) +Δf(x) + d (10)

Consider now the condition ensuring H∞ regulation performance and stability
of the perturbed system under feedback control.
i)H∞ regulation with control penalty
The performance index under consideration is defined by [21]

∫ tf

0 [‖ x(t) ‖2
Q + ‖ u(t) ‖2

R]dt∫ tf

0 ‖ d(t) ‖2
< ρ2, ∀d(t) ∈ Ln

2 [0, tf ] (11)

where Q = QT > 0 and R = RT > 0 are the weighting matrices, ρ is the
attenuation level, usually a prescribed value.
ii) H∞ regulation without control penalty

∫ tf

0 ‖ x(t) ‖2
Q dt∫ tf

0 ‖ d(t) ‖2
< ρ2, ∀d(t) ∈ Ln

2 [0, tf ] (12)

Theorem 1: Consider the perturbed system (5) with x(0) = 0. The controller (9)
such that the closed-loop system achieves the regulation performance described
by (11) provided that there exist a common matrix P = PT > 0 satisfying:

Ω ≡ (A+BK)TP + P (A+BK) +AT
dAd + ε2I +ΣΣ

+PWWTP + (2 + 1/ρ2)PP +Q+KTRK < 0 (13)

with the weight updating law:

Ẇ = Px(t)ST (x) (14)

Proof: Construct the following Lyapunov-Krasovskii function:

V (t) = xT (t)Px(t) + tr{W̃T W̃}+
∫ t

t−τ

xT (ν)AT
d Adx(ν)dν (15)
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where P = PT > 0, The time derivative of V (t) is

V̇ (t) = xT (t)[(A +BK)TP + P (A+BK)]x(t)− 2ST (x)W̃TPx(t)
+2ST (x)WTPx(t) + xT (t− τ)AT

d Px(t) + xT (t)PAdx(t− τ)
+2Δf(x)TPx(t)) + xT (t)AT

dAdx(t) − xT (t− τ)AT
d Adx(t− τ)

+2xT (t)Pd+ 2tr{ ˙̃W
T

W̃}

(16)

Meanwhile, we note that the following equality holds:

xT (t− τ)AT
d Px(t) + xT (t)PAdx(t− τ) − xT (t− τ)AT

d Adx(t− τ)
= −[Adx(t− τ) − Px(t)]T [Adx(t− τ) − Px(t)] + xT (t)PPx(t) (17)

Therefore, we have

xT (t− τ)AT
d Px(t) + xT (t)PAdx(t− τ) − xT (t− τ)AT

d Adx(t− τ)
≤ xT (t)PPx(t) (18)

Thus

V̇ (t) ≤ xT (t)[(A+BK)TP + P (A+BK) + PP +AT
dAd]x(t)

−2ST (x)W̃TPx(t) + 2ST (x)WTPx(t) + 2Δf(x)TPx(t))

+2xT (t)Pd+ 2tr{ ˙̃W
T

W̃}
(19)

Since
2ST (x)WTPx(t) ≤ ST (x)S(x) + xT (t)PWWTPx(t)

≤ xT (t)[ΣΣ + PWWTP ]x(t)
2Δf(x)TPx(t)) ≤ ΔfT (x)Δf(x) + xT (t)PPx(t)

≤ xT (t)[ε2I + PP ]x(t)
2xT (t)Pd ≤ 1/ρ2xT (t)PPx(t) + ρ2dTd

Meanwhile, using the weight updating law described by (14), we can obtain

V̇ (t) ≤ xT (t)[(A +BK)TP + P (A+BK) +AT
dAd + ε2I +ΣΣ

+PWWTP + (2 + 1/ρ2)PP ]x(t) + ρdT d
(20)

Clearly, if there exists a common matrix P = PT > 0 such that the following
algebraic Riccati matrix inequalities

Ω ≡ (A+BK)TP + P (A+BK) +AT
dAd + ε2I +ΣΣ

+PWWTP + (2 + 1/ρ2)PP +Q+KTRK < 0 (21)

is satisfied, then (20) becomes

V̇ (t) ≤ xT (t)Ωx(t) − xT (t)Qx(t)− uT (t)Ru(t) + ρ2dT d (22)

Next, integrating both sides of the inequality from t = 0 to tf (> 0) yields
∫ tf

0 xT (t)Qx(t)dt +
∫ tf

0 uT (t)Ru(t)dt
≤
∫ tf

0 xT (t)Ωx(t)dt + ρ2
∫ tf

0 dTddt+ V (0)− V (tf )
(23)
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Since V (t) ≥ 0 for all t ≥ 0, then

∫ tf

0
xT (t)Qx(t)dt +

∫ tf

0
uT (t)Ru(t)dt ≤ xT (0)Px(0) + ρ2

∫ tf

0
dT ddt (24)

This clearly shows that, as the dynamics starts with x(0) = 0, the H∞ perfor-
mance index defined by (11) is guaranteed with the prescribed level ρ.

It is impractical to analytically solve a common solution P = PT > 0. Intro-
duce the variables X = P−1 and Y = KP−1 transforms (21) into

XAT +AX + Y TBT +BY +X [AT
dAd + ε2I +Q+ΣΣ]X

+[WWT + (2 + ρ2)I] + Y TRY < 0 (25)

Using Schur’s theorem[21], (26) can be equivalently expressed in the form of
LMI’s :
⎡
⎢⎢⎣

XAT +AX + Y TBT

+BY + [WWT + (2 + ρ2)I] X Y T

X −[AT
dAd + ε2I +Q+ΣΣ]−1 0

Y 0 −R−1

⎤
⎥⎥⎦ < 0 (26)

or equivalently

(ĀX + B̄Y )C + CT (XĀT + Y T B̄T ) + Q̄ < 0 , X > 0 (27)

where Ā =

⎡
⎣AI

0

⎤
⎦ , B̄ =

⎡
⎣B0
I

⎤
⎦ , C = [I 0 0]

Q̄ =

⎡
⎣WW

T + (2 + ρ2)I 0 0
0 −[AdAd + ε2I +Q+ΣΣ]−1 0
0 0 −R−1

⎤
⎦

The corresponding control gain is determined by

K = Y X−1 (28)

4 Construction of Neuro-solvers for LMI

As it can see from (9) and (27) that the control gain is dependent on matrix
Q̄, which is determined by the result of neural networks identification of W ,
solutions to the LMI (27) should therefore be solved adaptively. To solve the
problem, several slack matrices are imposed which convert the problem of (27)
into two matrix equalities:

Gσ(X,Y,Rσ) = (ĀX + B̄Y )C + CT (XĀT + Y T B̄T ) + Q̄+ R̃σR̃σ (30a)

G1(X,R1) = X − R̃1R̃
T
1 (30b)
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where X and Y are the solution matrices, and Gσ and G1 are the objective
matrices; the slack matrices R̃σ and R̃1 are restricted to be nonsingular, positive
definite as

R̃σ = Hσ(Rσ)

=

⎡
⎢⎢⎢⎢⎢⎣

hσ1(rσ,11) 0 0 · · · 0
rσ,21 hσ2(rσ,22) 0 · · · 0
rσ,31 rσ,32 hσ3(rσ,33) · · · 0

...
...

...
. . . 0

rσ,(2n+m)1 rσ,(2n+m)2 rσ,(2n+m)3 · · · hσ(2n+m)(rσ,(2n+m)(2n+m))

⎤
⎥⎥⎥⎥⎥⎦

(31a)

R̃1 = H1(R1) =

⎡
⎢⎢⎢⎢⎢⎣

h11(r1,11) 0 0 · · · 0
r1,21 h12(r1,22) 0 · · · 0
r1,31 r1,32 h13(r1,33) · · · 0

...
...

...
. . . 0

r1,n1 r1,n2 r1,n3 · · · h1n(rσ,nn))

⎤
⎥⎥⎥⎥⎥⎦

(31b)

with Rσ ∈ �(2n+m)×(2n+m),R1 ∈ �n×n, r̃s,jj = hs(rs,jj) > 0,s = σ, 1, ∀j. The
existence of decomposition R̃sR̃

T
s for a positive definite matrix is based on the

Cholesky decomposition [22].
The second step is to established a convex computation energy function:

E[G(X,Y,Rσ, R1)]

=
∑

σ

2n+m∑
i=1

2n+m∑
j=1

eij [gσ,ij(X,Y,Rσ)] +
2n+m∑
i=1

2n+m∑
j=1

ei,ij [g1,ij(X,R1)] (32)

where es,ij are the objective function. The neural dynamics for solving the linear
matrix equation can be described as follows:

dX(t)
dt = −ηX

∂E
∂X(t) = −ηXΦX (33a)

dY (t)
dt = −ηY

∂E
∂Y (t) = −ηY ΦY (33b)

dRσ(t)
dt = −ηrσ

∂E
∂R̃σ(t)

= −ηrσΞσ Rσ(0) �= 0 (33c)
dR1(t)

dt = −ηr1
∂E

∂R̃1(t)
= −ηr1Ξr R1(0) �= 0 (33d)

R̃s = Hs(Rs), s = σ, 1 (33e)

where the matrix derivative

∂E

∂X
=

⎡
⎢⎣

∂E
∂x11

· · · ∂E
∂x1n

...
. . .

...
∂E

∂xn1
· · · ∂E

∂xnn

⎤
⎥⎦ , X ∈ �n×n

The same derivatives apply for ∂E/∂Y and ∂E/∂R̃s, s = σ, 1. In the above,
X(t), Y (t), Rs(t), s = σ, 1 are activation state matrices of the recurrent neural
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networks, ηX , ηY , ηrs > 0 are learning rates and

[ΦX ]ij =
∑

σ

2n+m∑
k=1

2n+m∑
l=1

∂gσ,kl(X,Y,Rσ)
∂xij

fσ,kl(gσ,kl(X,Y,Rσ))

+
n∑

k=1

n∑
l=1

∂g1,kl(X,R1)
∂xij

f1,kl(g(X,R1))

[ΦY ]ij =
∑

σ

2n+m∑
k=1

2n+m∑
l=1

∂gσ,kl(X,Y,Rσ)
∂yij

fσ,kl(gσ,kl(X,Y,Rσ))

+
n∑

k=1

n∑
l=1

∂g1,kl(X,R1)
∂yij

f1,kl(g(X,R1))

[Ξσ]ij =
2n+m∑
k=1

2n+m∑
l=1

∂gσ,kl(X,Y,Rσ)
∂r̃σ,ij

fσ,kl(gσ,kl(X,Y,Rσ))

[Ξ1]ij =
n∑

k=1

n∑
l=1

∂g1,kl(X,R1)
∂r̃1,ij

f1,kl(g1,kl(X,R1))

i, j = 1, 2, · · · , n
and fs,kl(gs,kl) = ∂es,kl/∂gs,kl is the activation function. Note that es,kl(gs,kl)
and fs,kl(gs,kl) are function of gs,kl only. The constraints r̃s,jj > 0, ∀s, i impos-
ing on R(t) can be fulfilled by employed a limiting integrator with a nonlinear
transformation

hsi(rs,jj) =
{
rs,jj , rs,jj > ε,
ε, rs,jj < ε

∀s, j (34)

where ε is an arbitrarily small positive constant. The proof for the networks sta-
bility follows the derivative proposed elsewhere [12][23]. Applying the derivative
presented in (33) and lemma 3 in [23], the derivative neural dynamics for solving
the LMI of (30) is now given by

dX(t)
dt = −ηX{

∑
σ

[ĀTFσ(X,Y, R̃σ)C + CTFσ(X,Y, R̃σ)Ā] + F1(X, R̃1)} (35a)
dY (t)

dt = −ηY {
∑
σ

[B̄TFσ(X,Y, R̃σ)C + CTFσ(X,Y, R̃σ)B̄]} (35b)
dRσ(t)

dt = −ηrσFσ(X,Y, R̃σ)R̃σ, Rσ(0) �= 0, ∀σ (35c)
dR1(t)

dt = −ηr1F1(X,Y, R̃1)R̃1, R1(0) �= 0, (35d)

where the activation matrices are

Fσ[X,Y, R̃σ) = Fσ[(ĀX + B̄Y )C + CT (XĀT + Y T B̄T ) + Q̃+ R̃σR̃
T
σ ]

F1(X, R̃1) = F1(X − R̃1R̃
T
1 )

Note that to ensure the steady state of X is positive definite, we require that
Rσ(t) and R1(t) converge faster than X and Y . Therefore, we choose ηrσ, ηr1 >>
ηX , ηY .
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5 Example

Consider the following nonlinear system:

ẋ(t) =
[
−0.5 0
0.5 −3

]
x(t) +

[
0
1

]
u

+
[
0 0.5
0.7 −0.1

]
x(t− 2) +

[
0
exp(−(x1 + x2)) cos(x1 + x2)− 1

]
+ d

where, xi(t) = 0 for t ∈ [−2, 0] and d denotes the vector with random entries,
chose from a normal distribution mean zero and variance one. First, specify the
prescribed attenuation level ρ = 0.5, and the approximation errors of LPNNs
ε = 0.02. In addition, choose the weighting matrix for the performance index

Q =
[
0.2 0
0 0.3

]
, R = [0.33]. A LPNNs was used to approximate the nonlinear

term exp(−(x1 +x2)) cos(x1 +x2)−1. Select S(x) = [6(1−e−x1/2

1+e−x1/2 ) 8(1−e−x1

1+e−x1 )]T .
The initial values ofW,Y,Rσ, R1 are placed by the uniformly distributed random
numbers in [-1,1]. Select the ηX = 5, ηY = 5, ηrσ = 80, ηr1 = 80. Use the weight
update law (14) to adaptively train the LPNNs. Propagate the recurrent neural
dynamics to (33) find the solution of LMIs (30), where

Ā =

⎡
⎢⎢⎢⎢⎣

−1 0
0.5 −3
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦ , B̄ =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
1

⎤
⎥⎥⎥⎥⎦ C̄ =

[
1 0 0 0 0
0 1 0 0 0

]

Fig.1 and Fig.2 illustrate the convergence behavior of X and Y , respectively.
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Fig. 1. Transient of X Fig. 2. Transient of Y

The steady state of the matrix P was obtained as

P (∞) =
[

2.6185 −7.4131
−7.4131 67.9346

]

Clearly, P is symmetric and positive definite. The control gain k(∞) = [13.8327−
127.7577]T . Fig. 3 and Fig.4 show, respectively, the state response for the system
without control and with neuro control.
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Fig. 3. State response of system without Fig. 4. State response of system with
control control

6 Conclusions

In this paper, we have addressed the design and analysis an adaptive neural net-
based H∞ controller for for a class of nonlinear state-delayed systems . The non-
linear term is approximated by a linearly parameterized neural networks(LPNN).
A linear state feedback guaranteed cost control law is presented. An adaptive
weight adjustment mechanism for the neural networks is developed to ensure
H∞ regulation performance.
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Abstract. Modern exploration missions require modern control systems
that can handle catastrophic changes in behavior, compensate for slow
deterioration in sustained operations, and support fast system identifi-
cation. The dynamics and control of new vehicles remains a significant
technical challenge. Neural network based adaptive controllers have these
capabilities, but they can only be used safely if proper Verification and
Validation can be done. Due to the nonlinear and dynamic nature of an
adaptive control system, traditional Verification and Validation (V&V)
and certification techniques are not sufficient for adaptive controllers,
which is a big barrier in their deployment in the safety-critical appli-
cations. Moreover, traditional methods of V&V involve testing under
various conditions which is costly to run and requires scheduling a long
time in advance. We have developed specific techniques, tools, and pro-
cesses to perform design time analysis, verification and validation, and
dynamic monitoring of such controllers. Combined with advanced mod-
elling tools, an integrated development or deployment methodology for
addressing complex control needs in a safety- and reliability-critical mis-
sion environment can be provided.

1 Introduction

The performance of aircraft systems is highly dependent on the capabilities of the
guidance, navigation and control systems. This necessitates the need to have so-
phisticated and reliable control systems. In order to maximize the performance,
the control system needs to be adaptive in nature. However, due to the non-
linear and dynamic nature of adaptive control systems, traditional Verification
and Validation (V&V) and certification techniques are not sufficient for adap-
tive controllers, which is a big barrier in their deployment in the safety-critical
applications [1]. Moreover, traditional methods of V&V involve testing under
various conditions which is costly to run and requires scheduling a long time
in advance. This paper introduces an advanced V&V tool that enables a rapid,
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high-confidence, and cost efficient design of revolutionary systems which is val-
idated by the IFCS flight test. To demonstrate the capabilities of the proposed
V&V tools, the results from the laboratory shall be compared to the results
obtained from Matlab/Simulink for the IFCS flight.

2 Research Overview and Background

Developing flight control systems for today’s aerospace vehicles is time consum-
ing. While the theory is understood, its application is lengthened as a result of
three factors. First, flight control is an interdisciplinary subject that integrates
mathematical models, control theory, computers, hydraulic and electrical sys-
tems, specifications, and pilots. Combining these pieces into a unified framework
is a challenge. Second, imperfect knowledge of a contributing component results
in costly flight-test iterations. Manufacturers have previously allotted 25% of
the total flight test development time for flight control evaluation and iteration.
Third, after a control system design is finalized, it can take two weeks to just
evaluate the control system against the myriad of often conflicting design speci-
fications. The use of adaptive control system has been growing in flight control.
In the past few years, there has been an increasing interest within the con-
trol community in exploring the promise of biologically motivated algorithms,
like fuzzy sets, neural networks as well as genetic algorithms to solve difficult
optimization and control problems [2],[3]. Recently, an on-line adaptive archi-
tecture that employs a Sigma-Pi neural network has been applied to augment
the attitude control system [4] and it has been shown that the on-line neural
network in adaptive control architecture is very effective in dealing with the
performance degradation problem of the trajectory tracking control. Melin and
Castillo [5] have also used adaptive intelligent control of aircraft systems with
a hybrid approach combining neural networks, fuzzy logic and fractal theory.
Extensive research has also been conducted to investigate the certification of an
adaptive flight control [6]. Highly reliable adaptive control systems are needed
to fulfill the present and future aerospace needs. Adaptive control technologies
that incorporate learning algorithms can enable a wide range of expanded ca-
pability, including reconfigurable avionics systems, automatic vehicle recovery
and safing, real-time load, performance, and health monitoring. Adaptive con-
trol systems can be used to improve or maintain vehicle control in unknown,
changing, or poorly defined operating environments. The verification and vali-
dation of adaptive neural flight control systems that can provide adaptive con-
trol to an aircraft without using extensive gain-scheduling or explicit system
identification [7] are of great interest. However, adaptive systems that can re-
configure themselves “on the fly have been proposed for both commercial and
military aircraft, as well as a host of NASA spacecraft. As capable and desir-
able as these new control technologies appear, adaptive control systems can only
become part of the future vision if performance guarantees can be established.
Rigorous methods for adaptive software verification and validation must be de-
veloped by NASA and others to ensure that disabling control system software
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failures will not occur, and to demonstrate certification requirements can be sat-
isfied. To help bridge this gap, NASA is conducting Intelligent Flight Control
System (IFCS) flight tests research aimed at developing usable procedures and
methods that can verify the reliability of adaptive flight control system soft-
ware. The IFCS is designed to incorporate self learning neural network concepts
into flight control software to enable a pilot to maintain control and safely land
an aircraft that has suffered a failure to a control surface or damage to the
airframe. The IFCS GEN II project goal is the development and flight evalua-
tion of a direct adaptive neural network based flight control system. The direct
adaptive approach incorporates neural networks that are applied directly to the
flight control system feedback errors to provide adjustments to aircraft perfor-
mance in both normal flight and with system failures. The IFCS project is a
collaborative effort among NASA centers namely Dryden Flight Research Cen-
ter (DFRC) and Ames Research Center (ARC), the universities and the industry
partners. The technical approach includes: integrating the GEN II online learn-
ing neural networks with an advanced flight controller; testing the software on
the NASA 837 flight control ground test bench; and installing the system in
the aircraft and conducting a flight test evaluation in a limited flight envelope
at DFRC. Flight testing includes simulated failures to the control system. The
results of the tests demonstrate the performance and the test process for ad-
vanced online learning neural network technology. The IFCS GEN II project
research objectives as defined in the F-15 IFCS GEN II Project Plan are to: 1)
Implement and fly neural network software for flight controls (in support of In-
formation Technology Base, Intelligent Systems, and Vehicle Systems programs)
2) Develop Verification and Validation procedures for flight critical checkout
of non-deterministic neural net software (in support of Information Technol-
ogy Base, Intelligent Systems, and Vehicle Systems programs) 3) Demonstrate
safe in-flight simulated failure recovery using learning neural network software
with adaptive flight controls (in support of the Design for Safety program, In-
formation Technology Base program, Intelligent Systems program, and Vehicle
Systems programs)

3 Proposed Approach

In order to fulfill the requirements for complex systems and missions for
aerospace systems, a unified approach for Verification and Validation for de-
sign, analysis, implementation, and monitoring of the system is necessary. Our
approach uses a unique combination of mathematically rigorous analysis (e.g.,
Lyapunov based methods, Bayesian) with intelligent testing and dynamic per-
formance monitoring. Due to the adaptive nature, the performance of an adap-
tive controller needs to be monitored during the actual mission for safe opera-
tion in unknown and possibly changing environments. Only a dynamic measure
can tell for sure if the controller is still within the safety margin, even under
unanticipated or un-modeled changes in the environment. A signal of low con-
trol performance can be used for early fault detection and analysis, potentially
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reducing the effort. The dynamics and control of new vehicles remains a signifi-
cant technical challenge. The V&V tool was used to abate these challenges in a
cost-effective manner to achieve credible flight control designs.

3.1 Conventional (Non-adaptive) Feedback Control System

Fig. 1 illustrates the basic anatomy of a simple conventional control system. In
the case of an aviation example, sensors measure the aircraft state parameters
to be controlled (e.g., pitch angle). After some signal conditioning, the measured
state is compared to the desired state to generate a measure of the difference or
error. The controllers function is to produce a control inputs to be sent to the
aircraft control surfaces to reduce the measured error.

Fig. 1. Conventional (non-adaptive) feedback control system

The most widely used traditional non-adaptive design is the PID (Propor-
tional Integral- Differential) controller, due to its simplicity, performance and
robustness. Tuning the controller is a matter of finding the right gain settings. If
the gains are selected too large, the system may exhibit instability; yet if selected
too low, the system response may become sluggish. Although fairly simple to im-
plement, PID and other types of conventional controllers unfortunately have the
limitation that once the controller is put into operation, the gains cannot be
changed. If the performance of the controller degrades after start-up, the only
remedy is to stop the controller, re-tune the gains, and then restart the con-
troller. This process continues until a combination of parameters is found that
produces the desired results [8]. If the aircraft or spacecraft to be controlled or its
operating environment should change significantly, new gains will be needed to
optimize performance. The challenge is that re-tuning the gains may not always
be practical if the behavior of the process changes too frequently, too rapidly,
or too much. The tuning process can be excessively time consuming. Moreover,
changes to the plant that favor increased gain settings may also cause the control
system to become unstable.
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3.2 Adaptive Control System Architecture

Learning or system identification is one of the primary objectives of adaptive
control. One approach is to identify a mathematical model of a plant by using
historical process data to predict future behavior. Adaptive model-based con-
trollers generate real time updates automatically while the controller is on-line
and can then use the adapted model to select future control actions that will
drive the process accurately even if its behavior changes over time. Fig. 2 pro-
vides a notional diagram of an adaptive control system to illustrate the role
of learning. The controller gains are not fixed, but rather learned by a system
identification method or neural network. For example, the control law can be
an LQG or H2 regulator concept which calculates the control gains based in
part on adaptive system identification. The system identification may be done
in real-time (on-line) by a number of means (e.g., Kalman filter, LMS algo-
rithm) and may either directly identify control derivatives or transfer matrix
model elements. The control signals are thus not only generated as a function
of the performance error only, but also of the identified system parameters. It is
also possible to formulate the controller to contain both minimum variance and
PID control elements. For such cases, the single controller block in Fig. 2 can
be envisioned to contain sub-blocks for the PID and minimum variance control
components without loss of generality.

Fig. 2. Generic adaptive control system

In addition to system identification, some learning systems may also be de-
signed to produce direct control augmentation commands. Such systems typi-
cally use novel identification methods such as adaptive inverse identification or
neural networks to directly synthesize the adaptive controls needed to maintain
aircraft or spacecraft performance. This approach is typically used to achieve
adaptation for cases in which the controller block contains only fixed-gain, PID
elements.



Neural Network Applications in Advanced Aircraft Flight Control System 689

4 Research Challenges

4.1 Software Verification and Validation

A serious challenge hindering the deployment of advanced, flight-critical software
is the requirement to show that it can operate as intended and with very high
reliability. Adaptive controllers that can make rapid and automatic adjustments
to enable self-healing in the event of vehicle damage, might also act to make a
healthy aircraft un-flyable or a safety hazard to other vehicles. How can it be
assured that safety-critical malfunctions never occur? The software implemen-
tation must be thoroughly analyzed and checked to provide sufficient assurance
of its intended functionality, safety, and the absence of aberrant functionality.
This process of analyzing and checking the correctness of software is termed
verification and validation.

4.2 Special V&V Challenges of Adaptive Control Software

The additional verification complexity posed by adaptive control systems pri-
marily stems from the use of the learning algorithm. It is fairly easy to realize
(from Figure 2) that if the controller gains are based on numerical values passed
from the learning algorithm to the controller, then malfunctioning of the learning
algorithm can lead to the calculation of controller gains that are too low or too
high, and hence produce suboptimal controller performance. In this section, the
special challenges of adaptive control systems will be examined. Generally, these
special challenges relate to maintaining stable and convergent learning. Adap-
tive control systems derive their adaptive utility by using learning algorithms to
identify transfer matrix models or determine the coefficients of neural networks.
A difficulty is finding suitable values for the learning gains that provide stable
adaptation, while allowing convergence to the desired solution in a sufficiently
short time.

5 Experimentation

The Generation II concept is based on a dynamic inversion controller with a
model-following command path. The feedback errors are regulated with a pro-
portional plus integral (PI) controller. This basic system is augmented with
an Adaptive Neural Network that operates directly on the feedback errors.
The Adaptive Neural Network adjusts the system for un-predicted behavior, or
changes in behavior resulting from damage. Demonstration of this direct adap-
tive neural network is the primary objective of the IFCS Generation II flight
project as mentioned in section 2 above.

5.1 Flight Test Description - NASA 837

The test aircraft used for the IFCS programs is a pre-production NF-15B (USAF
S/N 71-0290, NASA 837), which has been extensively modified to serve as a flex-
ible platform for flight controls research. This aircraft is equipped with a digital
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fly-bywire flight control system, canard control surfaces, and thrust vectoring
nozzles. Thrust vectoring was not used for this program.

5.2 Envelope Clearance Approach

A systematic flight test followed a build-up approach, with prior checkout of all
test maneuvers in the simulator. Initial flights will verify basic functionality of
the installed GEN II systems. Engage/disengage checks are performed, and the
auto-disengage envelope are verified. A standard sequence of maneuver groups
are flown, consisting of 1g clearance maneuvers, followed by a series of basic ma-
neuvering points, and finally a handling qualities research assessment, consisting
of 1g formation flight and 3g tracking maneuvers. This sequence is repeated pro-
gressing through the available IFCS configurations: conventional mode, default
enhanced mode, Neural Net ON, default enhanced mode with simulated fail-
ures introduced, and Neural Net ON with simulated failures introduced. Two
types of simulated control system failures are available: locking one stabilator
at a selected angle from trim, and changing the programmed canard response
gain factor (canard gain multipliers). The failures are introduced separately in a
build up sequence, and aircraft response evaluated using the standard maneuver
sequence of 1g clearance, basic maneuvering, and handling qualities tests.

6 Results

The following section will show results from simulations of [A] matrix and [B]
matrix failures. One type of simulated failure, which represents an aerodynamic
type of failure, inserts a multiplier onto the canard surface command (change in
Cmalpha). The second type of simulated failure, which represents a surface fail-
ure, inserts a jammed stabilator failure [B matrix]. Results from the simulation
are presented to illustrate the flight test flown under FC1 and FC2 that highlight
the benefits provided by the Gen 2 control system. For simulation, all of the pilot
inputs to the simulation time histories are from canned piloted stick inputs and
no attempt to correct for the aircraft attitudes are added to the piloted inputs.
This canned pilot input method was used only for comparison purposes and not
intended for flight test. The controller is a rate command system, therefore the
attitudes such as bank angle (phi) are for comparison purposes only; and as such
are used for disturbance rejection trade-off studies. For instance, when a failure
is imparted on the aircraft and the resulting attitudes change minimally, the
control system is said to have good robustness properties.

7 Discussion and Conclusions

This paper demonstrates the application of our V&V tools for adaptive control
system as demonstrated by actual flight tests flown at NASA DFRC. It pre-
sented simulation results of a neural network adaptive controller compensating
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for errors resulting from aerodynamic and control surface failures. The controller
is a hybrid controller that uses a simplified dynamic inverse control for the pitch
and roll axes, while using a classical β-dot controller for the yaw axis. The neu-
ral network is an on-line direct adaptive algorithm that attempts to drive the
error between the reference model and the commanded state to zero. The fail-
ures demonstrated are an aerodynamic failure type ([A] matrix) and a jammed
control surface failure ([B] matrix). In both failure cases, benefits where shown
to be obtained using neural networks compared to the non-adaptive controller
as predicted by the V&V tool. The [A] matrix failure showed improved damping
and better tracking with the neural networks active compared to the no adap-
tation case. And for the [B] matrix failure with a jammed surface, the neural
networks reduce the cross coupling by 40 percent, implying the pilot can fly to
the desired trajectory/path easier with less tracking errors.
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Abstract. Reinforcement learning is a class of model-free learning control 
method that can solve Markov decision problems. But it has some problems in 
applications, especially in MDPs of continuous state spaces. In this paper, based 
on the vague neural networks, we propose a Q-learning algorithm which is 
comprehensively considering the reward and punishment of the environment. 
Simulation results in cart-pole balancing problem illustrate the effectiveness of 
the proposed method. 

1   Introduction 

Reinforcement learning (RL) has been an active research area not only in machine 
learning but also in control engineering, operations research and robotics in recent 
years. It is a model-free learning control method that can solve Markov decision 
problems. 

In general, the machine learning is separated into the two categories of supervised 
and unsupervised learning by whether the teaching signal is needed or not. The 
supervised learning needs teaching signal from the exact modeling of the 
environment, but the reinforcement learning is generally unsupervised learning 
algorithm. It is the process by which the response of a system to a stimulus is 
strengthened by reward and weakened by punishment. 

But there are still many difficulties for the application of reinforcement learning 
control, especially in MDPs with continuous state space, such as slow convergence. In 
this paper, we discussed some problems with Q-learning algorithm in cart-pole 
balance problem and proposed Vague Neural Networks to solve it. 

Neural networks have extensively been used as associative memory and 
optimization. They have many well known advantages such as error tolerant and self-
learning capacity. The base idea of the fuzzy neural network is to realize the process 
of fuzzy reasoning by the structure of neural network and to make the parameters of 
fuzzy reasoning be expressed by the connection weights of neural network. But Fuzzy 
theory has it’s shortages as Daniel J.Buehrer and Wen-Lung Gun pointed out fuzzy 
neural network has its shortages: fuzzy membership function has only one single 
value, it cannot get more reasonable classified and cognizable results [2]. Vague set 
theory is a new extension form fuzzy set. Vague sets’ distinguishing feature is having 
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a truth-membership function and a false-membership function. It presents both of the 
opposite factors to deal with nonlinearities and uncertain of system in the research 
fields. It overcomes the disadvantage of membership function in fuzzy set which 
cannot characterize both the similarity and dissimilarity between pairs of objects. 
Therefore, VNN has been conceived as a new effective tool to deal with ambiguous 
data and applied successfully in different fields. 

In this paper, we use vague neural network (VNN) to memorize and optimize the 
positive and negative Q values of Q-learning algorithm. Compared with the former 
method and simulation results, we present an optimal scheme for the design of a 
vague neural network as a controller. And the simulation results on the cart-pole 
balancing problem illustrate the effectiveness and the advantages of the proposed 
method. 

2   Cart-Pole Balancing Problem 

A common benchmark problem for nonlinear controllers is the inverted pendulum 
problem. The earliest application of neural networks to the inverted pendulum 
problem is accomplished by Widrow and Smith (1964) and Widrow (1987). Other 
researchers' work (Barto, 1983; Anderson, 1987; Berenji, 1991, 1992, 1993) also 
involves an inverted pendulum control by neural networks. 

It is one of the simplest inherently unstable systems and has a broad base for 
comparison throughout the literatures. The goal is to apply a fixed magnitude force to 
one side of the cart to accelerate it at each time step, so as to keep the pole always 
upright and within a fixed angle from the vertical, and to keep the cart away from the 
ends of the track (Fig.1). 

 

Fig. 1. Inverted pendulum model 

2.1   Inverted Pendulum Modeling 

The mass of the cart plus the pole m=1.1kg, the gravity acceleration constant 

g=9.8m/s2, half the length of the pole l =0.5m, the mass of the pole pm =0.1kg, the 

output of the agent tF =+10N or –10N, the sampling period of tΔ =0.02s. The pole 

must be kept within  rad21.0±  from vertical. Equations of Motion can refer to 
many other sources. 

In this problem, the action size is just two: push left and push right. And we define 
the cart-pole system into 3*3*6*3=162 states shown as follow: 
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Table 1. State space 

Cart position -2.4 ~ -0.8 -0.8 ~ 0.8 0.8 ~ 2.4 
Velocity of cart <-0.5 -0.5 ~ 0.5 >0.5 

Pole angle <-6 -6 ~ -1 -1 ~ 0 0 ~ 1 1 ~ 6 >6 
Angle velocity of the pole <-50 -50 ~ 50 >50 

2.2   The Problems of Q-Learning in Inverted Pendulum 

Inverted pendulum is an inherently unstable system. In real control applications, we 
find there are some problems which have a bad impact on the learning results.  

2.2.1   Limit Cycle Problem 
As Yu Zheng pointed out, in [5], that Q-learning will get into the limit cycles problem 
in inverted pendulum applications. The high degree exploration can not solve this 
problem, but rather intensify it. In inverted pendulum controlling, Agent receives a 
negative signal as a penalty, and learns an optimal policy to keep the inverted 
pendulum stand as long as possible. The requirement will lead the limit cycle bring 
terrible effect to the convergence of Q-learning. The negative Q values of each pair of 
state-action in limit cycle will update iteratively, which make negative Q values of all 
pairs of state-actions converge to zero.  

 

Fig. 2. A simple limit cycle situation 

In this way, we can not choose the optimal control action from comparing negative 
Q values of every action in each state. The optimal control policy can not keep it 
stability, and it will be breakdown ultimately. 

A penalty only makes the Q-learning get a policy to avoid failure. But in the 
control of inverted pendulum, we require Q-learning get a control policy which keeps 
the inverted pendulum swing around the balance position. The optimal policy of avoid 
failure is not equal to the optimal policy of successful control. We must give agent a 
reward when the inverted pendulum is in the balance position. 

2.2.2   Convergence Problem 
On the other hand, the definition of reinforcement learning process is based on the 
MDPs with discrete state spaces. Apparently, the state spaces of inverted pendulum 
do not meet the need of it. Although we can solve the problem by subdivision, it leads 
new problem, curse of dimensionality. 

In MDPs of continuous state spaces, the result of one state-action pair is not the 
same all the time. Different results lead to distinct responds of environment. Once a 
good state take an action, then get a bad response or even failed, the penalty will 
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cause the Q value fluctuate or vary irregularly. As a result, it makes the Q value can 
not converge continuously. In this way, learning algorithm can not get the optimal 
control policy, namely, the dimensions of state spaces directly impact on the converge 
result. Many reference ascribe the problem to an uncertain reward and action, it’s an 
inaccurate explanation. Actually, continuous state spaces have a certain reward. 

  

Fig. 3. Dimensions of state spaces impact on the convergence 

To solve these problems, we have to get a positive Q value and a negative Q value 
from reinforcement signal. At the beginning, penalties will make the Q-learning get a 
policy to avoid failure. With the learning progressing, the influence of Q+ value must 
be increasing, or even replace it ultimately. It can effectively avoid the limit cycle and 
convergence problems. One should point out is simply add the Q+ to Q- is not only 
useless but also makes the convergence effect worse. Besides, only a reward and a Q 
+ are unfeasible, the pole is hard to get in target states, especially with random restart 
situation. And the convergence is very slow, or even can’t converge. Thus, how to 
build the relationship between Q+ and Q- is worth to study. In this paper, we just add 
Q+ to Q- in the time of choosing action in order to take comparison of former method, 
but it obviously impact convergence. 

With discussion above, in this paper, we will propose a new method of Q-learning 
with VNN to solve these problems. 

3   Vague Neural Networks 

The fuzzy neural networks are achieved by adding a fuzzification layer to a 
conventional feed forward neural network. The difference between fuzzy neural 
networks and conventional neural networks lies on how they estimate sampled input-
output relationships. They differ in the kind of samples used, how they represent and 
store those samples, and how they associatively “inference” or map inputs to outputs. 
Here, VNN generalizes and estimates fuzzy functions with vague set samples, it can 
handle real inputs as well as fuzzy inputs. 

3.1   Vague Set 

Let, vt and, vf be the truth-membership function, and false-membership function of the 

Vague set V. ( )vt x   is a lower bound on the grade of membership of x derived from 
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the evidence for x, and ( )vf x  is a lower bound on the negation of x derived from the 

evidence against x. ( )vt x  and ( )vf x  both associate a real number in the interval [0,1] 

with each x in U, where ( )vt x + ( )vf x ≤1. A vague set in U is illustrated in Fig.4 

 

Fig. 4. Vague set 

3.2   The Structure of Vague Neuron 

In Fig.5, ( )1x t , 1( )x f , ( )2x t , 2 ( )x f , … , ( )nx t ( )nx f  express other neural 

elements’ axon output, ( )ix t ( )ix f  shows the prompting and restraint of axon. W1 

…Wn are the synapse connection between, each artificial neural element need to 
accord with following equation 

1
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Fig. 5. The structure of vague neuron 
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The equation express neural element i electric potential summation after synapse, 
θt, θf are thresholds, in formulas, μi is the state of neural element i, yi is the output of 

neural element i. ( )it μ  is a monotonous increase function, while ( )if μ  

monotonous decrease, when μi increase, ( )iy t  increase, ( )iy f  decrease. 

3.3   Vague IF-THEN Control Rules 

In VNN, The fuzzy if-then rules are extended to vague if-then rules described as: 

IF tx is (1)tX and fx is (1)fX  THEN ty  is (1)tY and fy  is (1)fY ; 

IF tx is (2)tX and fx is (2)fX  THEN ty  is (2)tY and fy  is (2)fY ; 

…… 

IF tx is ( )tX n and fx is ( )fX n  THEN ty  is ( )tY n and fy  is ( )fY n . 

There are n rules in all. Vague logical is represented as rule relation matrix R: 

1

[( ( ) ( )) ( ( ) ( ))]
n

t f t f
i

R X i X i Y i Y i
=

= × → ×∪
 

(4) 

After structure analysis and approximate process, above-mentioned dual-input and 
dual-output vague controller could be represented as: 

1
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(6) 

Where  ( )tx k  ， ( )fx k are input variables in the kth second, ''and'' is logic 

operator" "∧ . ( )tX i , ( )fX i , ( )tY i and ( )fY i  are linguistic terms characterized by 

two vague sets on domain of ix  and y respectively. 

The character of VNN is to build the vague relationship between input and output. 
It can have some deferent structure and algorithm in real applications. VNN is 
generalized form FNN, actually, it can have the same structure as a specified FNN, it 
can also adopt FNN’s learning algorithm for training. For some real applications, 
FNN can be easily extended to VNN by replacing the single membership function and 
fuzzy if-then rule by ones of vague set. 

4   Reinforcement Learning with VNN 

Reinforcement learning is the process by which the response of a system to a stimulus 
is strengthened by reward and weakened by punishment. Rewards and punishments  
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represent favorable and unfavorable environmental reactions to a response (Fig.6). 
Such reactions are evaluated by its effort to achieve the goal. A reinforcement 
learning system seeks its goals by strengthening some responses and suppressing 
others. 

Reinforcement learning control is based on psychological learning theories. A 
controller receives evaluation of an action based on the definition of a utility 
function or reinforcement variable U. if the evaluation is positive then the 
probability associated with that action is increased, and the probabilities associated 
with all other actions are decreased. Conversely, if the evaluation is negative, then 
the probability of the given action is decreased and the probabilities associated with 
all other actions are increased. Loosely speaking, the reward signal positively 
reinforces those states of the controller that contribute to improvement, while the 
punishment signal negatively reinforces the states that produced improper behavior. 
Thus, learning from both of reward and punishment and getting the Q+ and Q- are 
essential. 

The main part of learning agent is VNN which can produce outputs from its inputs 
immediately. The network is trained to output Q+ and Q-values for the current input 
and the current internal state. The output units of the network have a linear activation 
function to produce Q+ values and Q- values of arbitrary magnitude. For the hidden 
units, the sigmoid function is used. 

The action is selected by the equation:  

( )),(max aiQaction =  
(7) 

If ),( leftiQ > ),( rightiQ , push left. Else push right. The action selected is also 

fed back into the neural network through a one step time delay. The agent learning 
structure, learning procedure, VNN layout is shown in Fig.6, 7, and 8 respectively. 

 

Fig. 6. Structure of the learning agent with VNN 
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Fig. 7. Learning procedure of VNN control system 

 

Fig. 8. Neural network layout for approximating the target Q+ and Q- factor 

5   Simulation Results 

Based on VNN, we utilize the Q-learning control system to simulate the cart-pole 
balance control problem in MATLAB. In order to illustrate performance of this 
system, we simply use the parameters in literature [6], and compared with two 
methods. The running performance of proposed method is distinguished well. 

The main deference between two methods is the use of positive Q+ values. We can 
see distribution of Q values after training in Fig.9. The up state spaces show the state 
of left pushing action, and the bottom state spaces are related to the right pushing 
action. The left figure shows the Q- values of former method, and the right one shows 
both the Q+ and Q- values of proposed method. Obviously, the upward ones are the 
Q+ values. 
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Fig. 9. The distribution of Q values after training in former and proposed method 

In Fig.10, we can get the performance of VNN based Q-learning control system 
compared with the method in the literature and the method using Q+ only. The result 
of VNN based Q-learning is distinguished well which is almost between 2000 and 
10000 successful balance iteration. And the former method still has some good 
performance of thousands of successful balance iteration, but it is much lesser than 
the proposed one. With the curve of Q+ values learning, the successful balance 
iteration is less than 100, which is almost the time of pole from initial state to fall 
down, so the learning results are bad, without supporting with Q- value, it is hard to 
get into the target position. But the convergence of proposed method is not so 
remarkable. It results from simply calculating Q+ and Q- together without 
consideration of convergence. After considering the effect of Q+ and Q- in different 
time epochs, it has a better result. 

 

Fig. 10. Success balance iterations of each trial in use of Q+&Q-, Q-, and Q+ 

Another advantage of VNN based Q-learning is the trajectory which is restricted in 
a small area, it is clearly illustrated in Fig.11. The trajectory of Pole angle and Pole 
angle velocity of VNN based method is good, while it is just chosen from 10 trails at 
the beginning. Pay attention to the scale of the latter figure, it is 10 times lesser than 
the former method. In this way, we can get the conclusion that receiving reward, 
getting Q+, and combining it with Q- in VNN is a resultful method. 
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Fig. 11. Trajectory of Pole angle and Pole angle velocity in former and proposed method 

6   Conclusions 

In this paper, a VNN based control system is implemented to balance a cart-pole 
system. Based on VNN, we combine two Q values of state-action pairs in Q-learning. 
A new reinforcement learning algorithm of neural network is proposed. Simulation 
results of inverted pendulum show that the two output neurons play different roles in 
reinforcement learning, the combination of them has an excellent effect on the Q-
learning result. 

Actually, VNN can be considered as a specific FNN, it can be utilized in the 
FNN’s application field by simply replaced the single membership function and the 
fuzzy if-then rule. We have already tried it in fault diagnosis, pattern recognition and 
control system field. All the experiment proves that it’s correct and feasible. So we 
can believe it is a promising scheme dealing with ambiguous data in the future. 
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Abstract. Exoskeleton system which is to assist the motion of physically weak 
persons such as disabled, injured and elderly persons is discussed in this paper. 
The proposed exoskeletons are controlled basically based on the electro-
moyogram (EMG) signals. And a mind model is constructed to identify per-
son’s mind for predicting or estimating person’s behavior. The proposed mind 
model is installed in an exoskeleton power assistive system named IAE for 
walking aid. The neural-network is also be used in this system to help learning. 
The on-line learning adjustment algorithm based on multi-sensor that are fixed 
on the robot is designed which makes the locomotion stable and adaptable. 

1   Introduction 

Recent progress in robotics and mechatronics technology brings a lot of benefits not 
only in the field of industries, but also in the fields of welfare and medicine. The pur-
pose of this paper is to invent the exoskeletons to help those people with walking 
disabilities or enhance people’s strength, endurance, and speed in many activities. 
These exoskeletons can assist the motion of physically weak persons such as elderly 
persons, make user hike further, jump higher, and run faster. Solders will be able to 
walk fast with heavy weapons. 

In order to be useful and accepted by many people who is really need it, these exo-
skeletons should need some performance characteristics, including comfortable, safe, 
long life. 

The electromyogram (EMG) signals of human muscles are important signal to un-
derstand how the patient intends to move. The EMG signals can be used as input 
information for the control of robotic systems. The proposed exoskeleton system 
automatically assists the patient’s motion for daily activity based on the skin surface 
EMG signals. 

One of the expected tasks of a robot is to assist a person’s work. In order that the 
robot assists a person, it is necessary to estimate what action the person is going to 
do. The behavior of the person is decided by the mind controlled by emotion whether 
the person does care or worry about something or not in usual activity. To carry out a 
cooperative work, the person should take care of a robot because behavior of the 
robot is altered by his/her mind. We want to install a function of predicting a robot’s 
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behavior for cooperating with human behavior. Though the EMG contains lots of 
important information, but it is still difficult to predict the motion of the patient. 
Because of many muscles are involved in the motion. And it is difficult to gain the 
same EMG signals for the same motion from the same patient since the EMG signal 
is affected by many factors. Further more, the EMG signals are always different 
among patients. So in order to resolve this problem, fuzzy-neural control has been 
applied to realize the sophisticated real-time control of the exoskeleton system for 
motion assist of the patient. The fuzzy-neural controller is supposed to control the 
joints of the exoskeleton system based on lots of the skin surface EMG signals of the 
leg muscles. In this paper, we also propose an efficient adaptation evaluation method 
for the fuzzy-neural controller. Experiment has been performed to evaluate the pro-
posed exoskeleton and its control system. 

2   System of Neural-Fuzzy Controller 

The proposed exoskeleton system is supposed to be attached to the lateral side of a 
patient directly. The architecture of the exoskeleton system is shown in Fig.1. The 
exoskeleton system consists of two kinds of main links (four links are rotation joints 
and the other four links are pitching joints). 

 

Fig. 1. Architecture of the Exoskeleton System 

A fuzzy-neural controller, a combination of a flexible fuzzy controller and an adap-
tive neural controller, has been applied as a controller for the proposed exoskeleton 
system in this study. The initial fuzzy IF-THEN control rules are designed based on 
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the analyzed human leg motion patterns in the pre-experiment, and then transferred to 
the neural network form. The EMG characteristics of human leg muscles studied in 
another researches [1], [2], are also taken into account. 

In the proposed control method, the definition of the antecedent part of the fuzzy 
IF-THEN control rules for leg motion is adjusted based on the activation level of leg 
muscles, since the amount of the EMG signals of biceps is affected by leg motion. 
The effect of the leg posture change is also taken into account in the controller [3], 
since the leg posture change affects the amount of the EMG signals generated for the 
joint motion. In the proposed fuzzy-neural controller, there are 16 rules (3patterns) for 
leg motion, 32rules for leg motion, and 2rules for controller switching between the 
EMG based control and the ankle force sensor based control. Here ∑ means sum of 
the inputs, ∏ means multiplication of the inputs. Two kinds of nonlinear functions are 
applied to express the membership function of the fuzzy-neural controller. 

In order to extract the features from the raw EMG signals, the MAV (Mean Abso-
lute Value) is calculated and used as input signals to the fuzzy-neural controller. The 
equation of the MAV is written as: 

∑
=

=
N

k
kx

N
MAV

1

1
                                                       (1) 

Where xk is the voltage value at kth sampling, N is the number of samples in a seg-
ment. The number of samples is set to be 100 and the sampling time is set to be 1ms 
in this study. 

The input variables of the fuzzy-neural controller are the MAV of EMG of eleven 
kinds of muscles, leg angles (vertical and horizontal angles), and force signals from 
the ankle force sensor. Four kinds of fuzzy linguistic variables (ZO: zero, PS: positive 
small, PM: positive medium, and PB: positive big) are prepared for the MAV of 
EMG. Three kinds of fuzzy linguistic variables (EA: Extended, FA: Flexed, and IA: 
Intermediate angle) for leg angles. 

The outputs of the fuzzy-neural controller are the torque command for shoulder 
motion, and the desired impedance parameters and the desired angle for leg motion of 
the exoskeleton. The torque command for the leg joint of the exoskeleton is then 
transferred to the force command for each driving wire. The relation between the 
torque command for the leg joint of the exoskeleton and the force command for driv-
ing wires is written as the following equation: 

sd
T
ss fJ=τ                                                              (2) 

Where τs is the torque command vector for the leg joint of the exoskeleton system, fsd 
is the force command vector for the driving wires, and Js is the Jacobian which relates 
the exoskeleton’s joint velocity to the driving wire velocity. Force control carried out 
to realize the desired force (fsd) in driving wires by the driving motors for leg motion 
of the exoskeleton system. 

Impedance control is performed with the derived impedance parameters and the de-
rived desired angle for the knee joint control of the exoskeleton system. The equation 
of impedance control is written as: 
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)()()( qqKqqBqqM dededee −+−+−=τ                         (3) 

Where τe denotes torque command for the knee joint of the exoskeleton system, Me is 
the moment of inertia of the leg link and human subject’s foreleg, Be is the viscous 
coefficient generated by the fuzzy-neural controller, Ke is the spring coefficient gen-
erated by the fuzzy-neural controller, Ke is the spring coefficient generated by the 
fuzzy-neural controller, qd is the desired joint angle generated by the fuzzy-neural 
controller, and q is the measured knee joint angle of the torque command for the driv-
ing motor for the knee motion of the exoskeleton system. There is also a mind model 
installed in the exoskeleton power assistive system named IAE (Intelligent Assistive 
Exoskeleton) for walking aid. The Environment Disturbance Index (ED) is defined as 
a ratio of the feasible velocity to the desired walking velocity. Then the ED ranges 
from normalized value 0.0 for most hazardous road, to value 1.0 for the smoothest 
road. And ED is: 

)tan(θ⋅−= abED                                                    (4) 

Where θ is the angle of hip joint for every step, a is a coefficient and b is an offset 
which is chosen so that it may be set to ED equals 1 at the time of flat road. 

IAE needs to identify operator’s mind to assist operator cooperatively, and it is re-
alized through identifying operator’s Emotion Index. In this section, we describe a 
method of identifying Emotion Index (M) and estimating Desired Input (d) of third 
layer of the mind model simultaneously using the information from the sensors of 
IAE when the operator walks along a path which consist of a flat passage, gentle 
stairs, and steep stairs. 

Operator’s mind model installed in IAE for identification and estimation is written 
as follows. 

EDdMdMv ⋅−+⋅= )ˆ1(ˆˆˆ                                            (5) 

Where M̂ is the estimated Emotion Index, and d̂ is the estimated Desired Input, and 

v̂ is the estimated walking velocity. Walking velocity, which is a reference input for 
identification and estimation can be obtained from a step width (S) and a time-interval 
(T) spent on every step as depicted in preceding chapter. An error e between the calcu-
lated walking velocity and the estimated one by operator’s model is written as follows: 

vve ˆ−=                                                                 (6) 

Adjustment of M̂ for identification is written as equation using steepest descend 
method. 
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Likewise, correction of d̂  is written as: 
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Since the gain km for identification and the gain kd for estimation are defined as 
positive, M and d are estimated so that error converges in zero. 

This method for identification and estimation is illustrated in Fig.2. 
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Fig. 2. Architecture of Identifying Emotion Index and estimating Desired Input 

3   Control of Neural-Network Inverse Dynamic Offline Learning 

Narrow inverse learning is used widely. It not only can determine the sample con-
course easily, but also can construct a special inverse model. The schematic of inverse 
learning is depicted as Fig.3. Narrow inverse learning frame is usually used BP  
algorithm; the effect of Neural Network model is affording an error Propagation 
communication. The convergence of BP algorithm is slow. Compare to BP algorithm, 
Recursive Least Square (RLS) don’t need to guess the learning rate and coefficients，
it converge fast and has high precision. But the problem of algorithm stability exists. 
If the RLS algorithm inverse learning project based on U-D disassemble, then the 
algorithm stability is ensured and the efficiency is increased. 

NN forward model 

Exoskeleton 
yd 

_ 

+ 

y 
NN inverse model 

 

Fig. 3. Specialized Inverse Learning on Neural Network 

In the realization of algorithm, the inverse dynamic model of single hidden layer 
forward network approaching robot is used. Taking exoskeleton joint position signal 
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q, velocity signal q  and accelerate signal q  as network input signal，the network 

output joint constrained control U. Form the viewpoint of system identification，in 
order to learn system inverse dynamic better，the inspire system input signal should 
include ample frequency response and converge network quickly. 

1. Initialize weigh value W(0), U(0) and D(0), selecting the random value in [-1, 1], and 

determining study rate η=0.6 and error range ε=0.005; 

2. Collecting robot input signal X(t) = τ(t), input signal dp(t)=[q(t) q  (t) q  (t)] as sample; 

3. Input(i =1, 2) of computing network: )(
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4. Obtain F(t), g(t) andβ(t) by G(t)=U(t)D(t)UT(t), F(t)=UT(t-1)X(t), g(t)=D(t-1)F(t), β(t)=

λ+FT(t)g(t); 

5. Computing Kalman filter gain equation of all layers: 
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4   Control of Neural-Network Inverse Dynamic Online Learning 
and Simulation Comparison 

There is a limitation of offline inverse dynamic control，because when robot is inter-
rupted  by environment, the exoskeleton need to change walking track to ensure sys-
tem stability and continuation. The offline training scheme do not study online, so the 
change of dynamic property can’t reflect correctly. It is necessary to introduce an 
online training method，then the response of neural network nonlinear compensation 
control to inverse dynamic property can be ensured, and the Robust stability and con-
trol precision is also ensured. 

In order to ensure network can study while system running, a proper online training 
algorithm need to choose. The RLS algorithm based on U-D disassemble can realize 
online recursive，and ensure algorithm stability and algorithm efficiency. In the ac-
tual control system, the exoskeleton can be recognized as slow time-changing system. 
then the online learning progress can be placed outside servo-loop，that is learning 
can choose slow sampling frequency，which can be realized by coordinated man-
agement. Thus, the sampling frequency of servo-system can be increased, the whole 
control system can realize multi-velocity sampling configuration, the weight of servo-
loop computing can be reduced, and the performance of system is ensured. 

The step of  RLS algorithm based on U-D disassemble is shown as follow: 
The difference between online and offline learning is that, the former can study 

while control, but the latter can’t study while learning. Thus, when object parameter 
change or system disturbed, the learning configuration can adjust network weigh 
value timely and achieve better control effect. The offline and online learning result 
curve are shown as Fig.4.and Fig.5.while the operator weight increase 8%. We can 
find that the online learning can reflect the change of inverse dynamic characteristic 
timely. So the control error is small. The simulation experiment proved that online 
learning control has high Robustness and better effect. 
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Fig. 4. Error Response Curve of Knee Joint by Offline Learning. Dashed—normal; Real line--
add by 8%. 
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Fig. 5. Error Response Curve of Knee Joint by Online Learning. Dashed—normal; Real line--
add by 8%. 

5   Conclusion 

Exoskeletons that enhance human strength, endurance, and speed are feasible and will 
someday be popular. In this paper, a fundamental mind model is developed for a robot 
to carry out a cooperative work with a person by identifying person’s mind condition 
which affects his behavior. The assist level of the system can be adjusted based on 
his/her physical and physiological condition. The robot is a complex non-linear sys-
tem which utilizes neural-network for both offline and online learning. On-line learn-
ing based on the inverse dynamics that are learned off-line, is proposed in this paper. 
Simulation demonstrated that the tracking precision is higher, adaptive ability is bet-
ter, and the locomotion is more stable and reliable. 
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Abstract. A fuzzy adaptive particle filter for fault diagnosis of dead-reckoning 
sensors of wheeled mobile robots was presented. The key idea was to constrain 
sampling space to a fuzzy subset of discrete fault space according to domain 
knowledge. Domain knowledge was employed to describe 5 kinds of planar 
movement modes of wheeled mobile robots. The uncertainties of domain 
knowledge (due to imprecise driving system and inaccurate locomotion system) 
were represented with fuzzy sets. Five subjection functions were defined and 
aggregated to determine discrete transitional probability. Two typical advan-
tages of this method are: (1) most particles will be drawn from the most hopeful 
area of the state space; (2) logical inference abilities can be integrated into par-
ticle filter by domain constraints. The method is testified in the problem of fault 
diagnosis for wheeled mobile robots. 

1   Introduction 

Fault detection and diagnosis (FDD) is increasingly important for wheeled mobile 
robots (WMRs), especially those under unknown environments such as planetary 
exploration [1]. Particle filter (also known as sequential Monte Carlo) is a promising 
approach for mobile robot fault diagnosis, and has received many attentions [2-7]. 
The merits of particle filters includes the abilities of handling nonlinear non-Gaussian 
state space, estimating discrete and continuous states simultaneously, and adjusting 
the computational complexity by the number of particles. 

Two challengeable problems for fruitfully using particle filters are: (1) the degener-
acy problem, i.e. after a few iterations, all but one particle will have negligible weight; 
(2) the problem of sample impoverishment, i.e. many particles will collapse to a few 
particles [8]. The most promising approach to handle these problems of general particle 
filter is adaptive particle filter, such as KLD-sampling method proposed by [9], and the 
Rao-Blackwellised particle filter (RBPF) proposed by [10]. The key idea of the KLD-
sampling method is to bound the approximation error by adapting the size of sample 
sets by the Kullback-Leibler distance. RBPF decreases the size of sample sets dramati-
cally by only sampling the discrete states, and the trade-off is that each discrete state of 
operation is described with one different linear-Gaussian state space model.  
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Researchers have already noticed that reducing the dimensionality of the state 
space is a feasible approach to approximate the true distribution accurately and effi-
ciently. In this paper, a fuzzy adaptive particle filter, which adjusts state space accord-
ing domain knowledge, is presented. The key idea is that most particles are drawn 
from the most hopeful regions of the state space. Firstly, a general framework for 
particle filter, which integrates domain knowledge, is put forward. The, domain 
knowledge is exploited to constrain sampling space to a fuzzy subset of the ‘univer-
sal’ state space. In mobile robot diagnosis problem, domain knowledge is used to 
describe movement modes of the robot, including at rest, straight-line movement and 
rotation etc. The uncertainties of domain knowledge (due to imprecise driving system 
and inaccurate locomotion system) were represented with fuzzy sets. Five subjection 
functions were defined and aggregated to determine discrete transitional probability. 
Two typical advantages of this method are: (1) most particles will be drawn from the 
most hopeful area of the state space; (2) logical inference abilities can be integrated 
into particle filter by domain constraints. 

2   Particle Filter Based Fault Diagnosis 

Particle filter is a Monte Carlo (i.e. choosing randomly) method to monitor dynamic 
systems, which non-parametrically approximates probabilistic distribution using 
weighted samples (i.e. particles). PF gives a computationally feasible method for state 
estimation of hybrid systems. Furthermore, a single particle filter can represent dis-
crete and continuous states simultaneously and can represent any distribution (includ-
ing non-Gaussian). 

The main idea for using PF as a fault diagnosis method is described as following. 
Let S  represent the finite set of discrete fault and operational modes of the system, 

st∈S  the state of the system to be diagnosed at time t and {st} the discrete, first order 
Markov chain representing the evolution of the state over time. The problem of state 
monitoring and fault diagnosing of the system consists of providing a belief (a distri-
bution over the state set S ) at each time step as it evolves based on the following 
transition model:  

p(st=j|st-1=i),i,j∈ S                                                           (1) 

Each of the discrete fault and operational modes changes the dynamics of the sys-
tem. Let xt denote multivariate continuous state of the system at time t. The non-linear 
conditional state transition models are denoted by p(xt|xt-1,st). The state of the system 
is observed through a sequence of measurements, {zt}, based on the measurement 
model p(zt|xt,st). 

The problem of state monitoring and fault diagnosing consists of estimating the 
marginal distribution p(st|z1..t) of the posterior distribution p(xt,st|z1..t). A recursive 
estimate of this posterior distribution may be obtained using the Bayes filter: 

  

t-1

t 1..t t t t t t-1 t-1 1..t -1 t t t-1 t-1 t-1
s

p(s , | )=η p( |s , ) p(s , | )p(s , |s , )d∑∫tx z z x x z x x x          (2) 
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There is no closed form solution to this recursion. PFs appropriate the posterior 
with a set of N fully instantiated state samples or particles {( [1]

ts , [1]
tx ),…,( [ ]N

ts , [ ]N
tx )} 

and importance weights { [ ]i
tw }: 

[ ] [ ]

[ ]
1.. ,

1

ˆ ( , | ) ( , )i i
t t

N
i

N t t t t t ts
i

P s w sδ
=

=∑ x
x z x                                              (3) 

where δ(.) denotes the Dirac delta function. The appropriation in equation (3) ap-
proaches the true posterior density as N→∞. Because it is difficult to draw samples 
from the true posterior, samples are drawn from a more tractable distribution q(.), 
called the proposal (or importance) distribution. The importance weights are used to 
account for the discrepancy between the proposal distribution q(.) and the true distri-
bution p(xt,st|z1..t). The importance weight of sample ( [ ]i

ts , [ ]i
tx ) is 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
-1 -1 -1 -1( , | , , ) / ( , | , , )i i i i i i i i i

t t t t t t t t t t tw p x s x s z q x s x s z=                               (4) 

The general particle filter algorithm is expressed as following. 

1)  Initialization:   
   for i=1,…,N, sample 0

is ∼ 0( )p s , 0
ix ∼ 0( )p x ， 0

iw =1/N; 

2) Sequential Importance Sampling: 
   for i=1,…,N, 

  i
ts ∼ 1( | )i

t tp s s − ;sampling discrete states 

  i
tx ∼ 1( | , )i i

t t tp s −x x ; sampling continuous state;  

  i
tw ∼ ( | , )i i

t t tp sz x ; computing weights; 

   end 

   
1

i
i t
t N i

tj

w
w

w
=

=
∑

; normalization; 

3) Resampling: Generate a new set 1{ , }i i N
t t is =x  from 1{ , }i i N

t t is =x  such that 

Pr( ,i i
t ts（ ）x  = ,j j

t ts（ ）x )=     j
kw . 

  i
tw =1/N;  

3   Kinematics Models and Fault Modes 

3.1   Kinematics Models  

The velocity kinematics model of mobile robots is shown in (5),  

( ) / 2

( ) /
L R

R L

v v v

v v Dϕ
= +⎧

⎨ = −⎩
                                                                 (5) 
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where v denotes linear speed (mm/s), ϕ  denote yaw rate (rad/s). vL, vR denote linear 

speed of left and right wheels respectively. D denotes the axis length. The state vector 
is x=(v, ϕ )T. 

3.2   Measurement Models 

MORCS-1(1st MObile Robot of Central South University) is a 6-wheels/5-wheels 
mobile robot, which is capable of moving in complex 3D terrain [13]. The four front 
wheels are driving wheels and each front wheel is equipped with a step motor and a 
wheel encoder. The rotational speeds of wheels are measured with 4 encoders. The 
yaw rate is measured with a gyroscope. The measurement vector is z=(zLF, zLR, zRF, 
zRR, zG) T, where zLF, zLR, zRF, zRR, zG denote measurements of left front, left rear, right 
front, right rear encoder and gyroscope respectively. 

The measurement model of MORCS-1 is shown in (6), 

zt=ht(xt)+vt                                                                      (6) 

where zt denotes measurements at t. vt denotes measurement noises at t, which is 
assumed to be zero mean white Gaussian sequences with the covariance matrix R.  

In normal state, h=((v-ϕ .D/2)/r, (v-ϕ .D/2)/r, (v+ϕ .D/2)/r, (v+ϕ .D/2)/r, ϕ )T.  

3.3   Fault Models 

Each sensor can be normal or fault. A system of 5 sensors has 25=32 kinds of modes: 
including normal mode and 31 kinds of fault modes. All these modes form the dis-
crete state space, S={ i | 1 ≤ i ≤ 32 }, in which ‘1’ denotes normal state, ‘2’ denotes 
the left front wheel encoder fails, ‘3’ denotes the left rear wheel encoder fails, …, ‘31’ 
denotes all wheel encoders fail (only the gyroscope is ok), and ‘32’ denotes all sen-
sors fail. 

Let hi denote the measurement model of state ‘i’. For example, 
h2=[0, ( . / 2) / , ( . / 2) / , ( . / 2) / , ]Tv D r v D r v D rϕ ϕ ϕ ϕ− + + ; 

h6=[( . / 2) / , ( . / 2) / , ( . / 2) / , ( . / 2) / ,0]Tv D r v D r v D r v D rϕ ϕ ϕ ϕ− − + + . 

4   Domain Constraints and Representation 

4.1   Movement Modes of Mobile Robots 

The movement modes are determined by the driving speeds of left and right sides of 
the robot. Let uLand uR denote the driving speeds of left and right wheels respectively. 
The constraints of the five movement modes are: 

(a) At Rest (M1), uL= uR=0; 
(b) Straight Line (M2), uL= uR ≠ 0; 
(c) Rotation 1(M3), uL=0，uR ≠ 0; 
(d) Rotation 2(M4), uL ≠ 0，uR=0; 
(e) Rotation 3 (M5), uL ≠ 0，uR ≠ 0，uL ≠ uR; 
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These movement modes determine 5 sets. To handle the errors of the driving sys-
tem and the locomotion system, fuzzy sets are used to represent the 5 movement 
modes. Let M1, M2, M3, M4, M5 denote the fuzzy sets of corresponding movement 
modes. The subjection functions are: 

1

2 2( , ) 1/(1 )M L R L Ru u u uμ = + +                                    (7a) 

2

2 2( , ) 1 ( ) /[( ) 1]M L R L R L Ru u u u u uμ = − − − +                            (7b) 

3

2 2 2( , ) 1000 /[(1 )(1 1000 )]M L R R L Ru u u u uμ = + +                       (7c) 

4

2 2 2( , ) 1000 /[(1 )(1 1000 )]M L R L R Lu u u u uμ = + +                        (7d) 

5

2 2 2 2 2 2( , ) 1000 ( ) /[(1 10 )(1 10 )(1 10( ) )]M L R R L R L R L R Lu u u u u u u u u uμ = − + + + −    (7e) 

4.2   Domain Constraints 

Each movement mode defines a set of detectable fault modes (a subset of S ), as 
shown in Table I. 

Table 1. Movement Modes and Detectable Fault Sets 

Conditions Movement Modes Fault Sub-
sets 

uL=uR=0 At Rest (M1) S 1 
uL=uR≠0 Straight Line (M2) S 2 
uL=0, uR≠0 Rotation 1 (M3) S 3 
uL≠0, uR=0 Rotation 2 (M4) S 4 
uL≠uR, uL≠0, uR≠0 Rotation 3 (M5) S 5 

where  S 1={1}, S 2= {1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 17, 18, 20, 23, 27}; S 3={1, 4, 
5, 6, 14, 15, 16, 26}; S 4={1, 2, 3, 6, 7, 10, 13, 19}; S 5= S . The characteristic func-
tions are kC : S → {0, 1} (k=1,2,3,4,5), 

1,  
( )

0,
k

k

i
C i

otherwise

∈⎧
= ⎨
⎩

S
 (k=1,2,3,4,5)                                       (8) 

4.3   Conditional Probabilities Based on Fuzzy Aggregation 

Integrating (7) and (8), the following aggregation operator is used to calculate 
pa(s|uL,uR). pa(s|uL,uR) denotes the detectability of fault mode ‘s’ when the left and 
right driving speeds are uL,uR. 

pa(s|uL,uR)= 
5

1

( ) ( , )
k kM L R

k

C s u uη μ
=
∑ S                                        (9) 

5
1

1

( ( ) ( , ))
k kS M L R

s k

C s u uη μ −

∈ =

= ∑∑
S

 , is normalization factor. 
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5   Fuzzy Adaptive Particle Filter 

5.1   Transition Probability pb(st+1=j|st=i) 

Generally, the probability of multiple components fail simultaneously is larger the 
single component fails. For the fault diagnosis problem mentioned in Section II, 6 
kinds of transitional probability are, satisfying that, 

                         
5

50
1k

kk
C p

=
=∑ ，p0 ≥ p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5                  (10) 

where k denotes the number of fault components. 
For example, p0, p1, p2, p3, p4 and p5 are set as 0.0425, 0.0380, 0.0335, 0.0290, 

0.0245 and 0.02. pb(st+1=1| st=1) = p0 = 0.0425, pb(st+1=32| st=1) =p5=0.02. 

5.2   Conditional Transition Probability p(st+1=j|st=i, uL, uR) 

The conditional transition probability, p(st+1=j|st=i, uL, uR), can be derived directly 
according to pa(s|uL,uR) and pb(sj| si) as follows, 

        p(st+1=j|st=i, uL, uR) = 3μ  pa(s=j |uL,uR)pb(st+1=j|st=i)                         (11) 

where, 1
3 ( ( ) ( | ))

i

a i b j i
s S

p s p s sμ −

∈

= ∑  is normalization factor. 

Fig. 1 shows several typical conditional transition probability distributions. These 
distributions take into account the information of domain knowledge and provide 
more information with respect to the uniform distribution. 

5.3   Fuzzy Adaptive Particle Filter 

The fuzzy adaptive particle filter is shown as follows. 

Algorithm Fuzzy Adaptive Particle Filter (FAPF)  

1. for i=1,…,N, sample 0
is ∼ 0( )p s , 

0
ix ∼ 0( )p x , 0

iw =1/N; 

2. for each time step t do 
3. compute conditional transition probability, p(st| st-

1,uL,uR), according (11)  
4.   for i=1 to N 

5.   i
ts ∼ 1( | , , )i

t t L Rp s s u u− ; 

6.   i
tx ∼ 1( | , )i i

t t tp x s x − ; 

7.   i
tw ∼ ( | , )i i

t t tp z s x ; 

8. end for 

9. State estimation: 
1..

ˆˆ arg max ( | )
t

t N t t
s

s P s z=  

10. 

1

i
i t
t N i

tj

w
w

w
=

=
∑

; 

11. Resampling; 
12. end for 
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Fig. 1. Several typical conditional discrete transition probability p(st+1|st, uL, uR) (a)p(st+1 | st=1, 
uL=0, uR=0); (b)p(st+1 | st =13, uL=9.9mm/s, uR=-9.9mm/s ); (c)p(st+1 | st=1, uL=9.9mm/s, 
uR=9.9mm/s); (d)p(st+1 | st=10, uL=9.9mm/s, uR=-9.9mm/s); (e)p(st+1 | st =9, uL=9.9mm/s, 
uR=9.9mm/s); (f)p(st+1 | st =1, uL=9.9mm/s, uR=-9.9mm/s); 

6   Experiment Analysis 

The driving speed of left and right side are shown in Fig. 2(a) and (b). The movement 
state of the robot is shown in Fig. 2(c). Measurements of sensors are shown in Fig. 
2(d)-(h).  When the robot is rotating during the period of 7.65 -13.65s, 5 kinds of 
faults (‘2’, ‘7’, ‘17’, ‘27’, ‘32’) occurred in sequence. When the robot is moving 
straight forward during the period of 14.7-37.3s, 4 kind of fault (‘2’, ‘7’, ‘17’, ‘27’) 
took place. Two kinds of methods, general particle filter (GPF for short) and fuzzy 
adaptive particle filter (FAPF for short) are employed to diagnose these faults. Two 
typical estimation results of FAPF and GPF are shown in Fig. 3. It shows that FAPF is 
much more accurate than GPF. It is noticed that when the robot is moving straight 
line, GPF classifies the mode of gyroscope as ‘normal’ and ‘fault’ stochastically. This 
is the main source of misdiagnoses in GPF. 

The efficiency and accuracy of both methods are compared and reported in Table 
II. The ‘error rate’ denotes the percentage of mismatches between the estimation of 
particle filters and the true states. Two methods, FAPF and GPF, are tested with dif-
ferent particle numbers. Table II shows that FAPF is superior to GPF in accuracy, and 
has almost the same efficiency with GPF. 
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Table 2. Efficiency and accuracy of FAPF and GPF 

GPF FAPF  
Parti-

cle Num-
ber 

Total 
Time(s) 

Error 
rate(%) 

Total 
Time(s) 

Error 
 rate (%) 

60 16.0 27.5 18.8 4.50 
80 19.5 26.4 24.1 3.43 

100 22.7 26.0 28.7 3.00 
120 25.7 24.6 33.9 3.00 
140 29.1 24.0 39.7 3.00 
160 32.6 23.1 43.8 2.78 

 

    

    

    

    
 

Fig. 2. Driving speeds and measurements (a)Left driving speed; (b)Right driving speed; 
(c)Movement modes (d)Left front encoder measurement (e)Right front encoder measure-
ment;(f) Left rear encoder measurement (g)Right rear encoder measurement (h)Gyroscope 
measurement 
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Fig. 3. State estimation of fuzzy adaptive particle filter (FAPF) and general particle filter (GPF) 
(a) FAPF estimation vs. true states;  (b) GPF estimation vs. true states; 

7   Conclusions 

In this paper, a fuzzy adaptive particle filter (FAPF) was presented and its application 
in the field of fault diagnosis for mobile robots was discussed. FAPF integrated do-
main knowledge, which was represented with fuzzy sets, into particle filters. Domain 
knowledge was employed to constrain sampling space to a fuzzy subset of the univer-
sal state space. Main advantages of this scheme include: (1) most particles will be 
drawn from most hopeful regions of the state spaces, (2) logical inference abilities can 
be integrated into particle filter by domain constraints.  

The approach is testified in the dead-reckoning system fault diagnosis problem of a 
real mobile robot, MORCS-1. The experimental results show that FAPF is much more 
accurate the GPF, and is slightly slower than GPF. 
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Abstract. In this paper, a kinematic controller based on input-output
linearization plus neural network (NN) controller is presented for tracking
control of a mobile robot with kinematic uncertainty. The NN controller,
whose parameters are tuned on-line, can deal with the uncertainty im-
posed on the kinematics model of mobile robots. The stability of the
proposed approach is guaranteed by the Lyapunov theory. Simulation
results show the efficiency of the proposed approach.

1 Introduction

In recent years, tracking control of mobile robots has received wide attention.
There are some methods have been proposed to solve the tracking problem of
a mobile robot, such as backstepping [1], sliding mode [2], pure pursuit [3],
neural networks [4] [5], fuzzy logic systems [6] [7], linearization [8]. However,
in these papers, the wheels of the robot are assumed to be pure rolling and
nonslipping and the uncertainty imposed on the kinematics model of mobile
robots has not been considered. In practical situations, any set of sensor data
used to estimate the robot pose (position and orientation) may be incomplete
and distorted by noises and errors, at the same time, the wheels of the robot may
be skidding and slipping. In this case, the nonholonomic constraints are violated.
The existing methods for dealing with uncertainties include adaptive control and
robust control. Adaptive control schemes reduce uncertainties by learning them.
Most of the adaptive controllers involve certain types of function approximators
such as neural networks in their learning mechanism. On the other hand, robust
control scheme focuses on compensating the uncertainties by employing high
gain feedback. In [5] [9], the adaptive NN controllers have been proposed due
to the universal approximation property of NN [10], where the NN weights are
tuned on-line and the stability is guaranteed by Lyapunov theory.

This paper presents a kinematic tracking controller for mobile robots with
kinematic uncertainty which combines input-output linearization method and

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 721–730, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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NN control with adaptive and robust control techniques. The NN controller,
whose parameters are tuned on-line, can deal with the uncertainty imposed on
the kinematics model of mobile robots. The stability of the proposed approach
is guaranteed by the Lyapunov theory.

This paper is organized as follows. Some basis of neural networks are described
in Section 2. Section 3 discusses the design of kinematic controller based on the
input-output linearlization method and NN. Stability of the proposed approach
is proven by the Lyapunov theory. Simulation results are presented in Section 4
and conclusions are given in Section 5.

2 Feedforward Neural Networks

A two-layer feedforward NN has output

yi =
Nh∑
j=1

[ωijσ(
n∑

k=1

(υjkxk + θυk)) + θωi] i = 1, 2, · · · ,m, (1)

where x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , ym)T are the input and out-
put vectors of the NN, respectively; Nh is the number of hidden-layer neurons;
θυk and θωi are the thresholds; ωij and υjk are the interconnection weights of
the input-to-hidden-layer and hidden-to-output-layer, respectively, and σ(·) are
activation functions. In this paper, we shall use the sigmoid activation function

σ(x) =
1

1 + e−x
. (2)

Equation (1) can be rewritten in matrix form as follows

y =WTσ(V Tx), (3)

where the vector activation function is defined by σ(z)=(σ(z1), σ(z2),· · ·, σ(zn))T

for a vector z ∈ Rn; the thresholds are included as the first columns of weight
matrices.

Let f(x) be a smooth function from Rn to Rm. Then, it can be approximated
by

f(x) = WTσ(V Tx) + εn, (4)

where εn is the NN functional approximation error. An estimate of f(x) can be
given by

f̂(x) = ŴTσ(V̂ Tx). (5)

3 Kinematic Controller Design

This paper we consider of a class of mobile robots with the following kinematics
model

q̇ = J(q)u + d, (6)
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where q = (x, y, θ)T is the pose of the robot; u = (v, ω)T , 0 ≤ v ≤ vmax, |ω| ≤
ωmax are the linear and angular velocities of the robot, respectively; d denotes
unknown bounded disturbance, which violates the pure rolling and nonslipping
constraints, and J(q) is given by

J(q) =

⎛
⎝ cos(θ) 0

sin(θ) 0
0 1

⎞
⎠ . (7)

The trajectory tracking problem for a mobile robot is described as follows:
given the reference pose qr = (xr, yr, θr)T , the reference velocities ur = (vr, ωr)T

with vr > 0 for all time and q̇r = J(qr)ur, find a smooth velocity uc such that
limt→∞(qr − q) = 0 and limt→∞(ur − uc) = 0.

The output of the robot is defined as

Y =
(
x+D cos(θ)
y +D sin(θ)

)
(8)

with D a positive constant.
The time derivative of Y is

Ẏ =
(

cos(θ) −D sin(θ)
sin(θ) D cos(θ)

)
u+ d̄ ≡ Eu+ d̄, (9)

where d̄ is

d̄ =
(

1 0 −D sin(θ)
0 1 D cos(θ)

)
d, (10)

it is obvious that d̄ is bounded such that ‖d̄‖ ≤ d̄M and we assume that d̄ is a
function of the robot output Y .

Let the control u be

u = E−1(v + un + us), (11)

where v is the new input vector, and un is the adaptive NN control and us is
the sliding mode component to be determined below, then we can obtain input-
output linearlization as follows

Ẏ = v + un + us + d̄. (12)

The new input v is defined as

v = Ẏr +Keη, (13)

where K is a positive constant matrix; Yr = (xr +D cos(θr), yr +D sin(θr))T is
the reference output and eη = e− ηsat( e

η ) with e = Yr −Y the tracking error, η
a small positive constant and sat(·) a saturation function. The vector saturation
is defined by sat(z) = (sat(z1), sat(z2), · · · , sat(zn))T for a vector z ∈ Rn. The
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constant η describes the width of a boundary layer, which is applied to prevent
discontinuous control transitions. Then we have

ė = −Keη − un − us − d̄. (14)

Assume that the robot reference outputs are constrained in the compact sub-
set Ad of the state space. In this paper, the compact subset Ad is reconstructed

Ad = {Y |‖Y − Y0‖p,π ≤ 1}, (15)

where Y0 is a fixed vector in the state space of the plant, and ‖Y ‖p,π is a weighted
p norm of the form

‖Y ‖p,π =

{
2∑

i=1

(
|Yi|
πi

)p
}1/p

, (16)

with πi strictly positive weights. Then, in the subset Ad, d̄ can be approximated
by neural networks as follows

d̄ = WTσ(V T z) + εn, (17)

where z with zi = Yi−Y0i

π1−p
i

is the input vector of the NN, then the set Ad is

equivalent to Ad = {z|‖z‖p ≤ 1}; εn is the NN functional approximation error.
Since it is impossible to guarantee a prior that the robot trajectory will remain
in the set Ad, the following reasonable assumption is given

Assumption 1:

||εn(z)|| ≤ εM + α(z), α(z) = 0 if z ∈ Ad, (18)

where α(z) represents the approximation error outside the compact subset Ad.
An estimate of d̄ can be given by

ˆ̄d = ŴTσ(V̂ T z). (19)

Remark: The input vectors of the NN are normalized, which is motivated by the
facts that better convergent performance of NN can be obtained by using the
normalized data as inputs to train the two-layer feedforward NN.

By defining εd = d̄− ŴTσ(V̂ T z), then we have

εd = d̄− ŴTσ(V̂ T z) = d̄−WTσ(V T z) +WTσ(V T z)− ŴTσ(V̂ T z)

= εn +WTσ(V T z)−WTσ(V̂ T z) +WTσ(V̂ T z)− ŴTσ(V̂ T z)

= εn +WT σ̃ + W̃Tσ(V̂ T z)

= εn +WT σ̃ − ŴT σ̃ + ŴT σ̃ + W̃Tσ(V̂ T z)

= εn + W̃T σ̃ + ŴT σ̃ + W̃Tσ(V̂ T z) (20)
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with σ̃ = σ(V T z)− σ(V̂ T z), W̃ = W − Ŵ , and Ṽ = V − V̂ .
The Taylor series expansion of σ(z) for a given z may be written as

σ(V T z) = σ(V̂ T z) + σ′(V̂ T z)Ṽ T z +O(Ṽ T z) (21)

with

σ′(ẑ) =
∂σ(z)
∂z

|z=ẑ (22)

the Jacobian matrix and O(Ṽ T z) denoting the high-order terms in the Taylor
series. Then we have

σ̃ = σ′(V̂ T z)Ṽ T z +O(Ṽ T z). (23)

Substituting (23) into (20) results in

εd = W̃Tσ(V̂ T z)− W̃Tσ′(V̂ T z)V̂ T z + ŴTσ′(V̂ T z)Ṽ T z + φ (24)

with φ = εn + W̃Tσ′(V̂ T z)V T z +WTO(Ṽ T z) denoting a residual term.
Some assumptions are given as follows:

Assumption 2: The ideal NN weights are bounded so that ‖W‖F ≤WM , ‖V ‖F ≤
VM with ‖ · ‖F the Frobenius norm.

Assumption 3 : The desired reference trajectory is continuous and bounded so
that ‖qr‖ ≤ qM with qM a known scalar bound.

Assumption 4 : The reference linear velocity vr is bounded, and vr > 0 for all
t ≥ 0, and the angular velocity ωr is bounded.

Lemma 1 (Bounds on the Robot Reference Output Yr): The reference output of
the robot is bounded by

‖Yr‖ ≤ qM +D ≡ YM . (25)

Lemma 2 (Bounds on NN Input z): For each time t, the NN input z is bounded by

‖z‖ ≤ c0 + c1‖e‖ (26)

with ci positive constants.

Lemma 3 (Bounds on Taylor Series High-Order Terms): For sigmoid activation
functions, the high-order terms in the Taylor series are bounded by

‖O(Ṽ T z)‖ = ‖σ̃ − σ′(V̂ T z)Ṽ T z‖ ≤ c2 + c3‖Ṽ ‖F + c4‖Ṽ ‖F ‖e‖ (27)

with ci positive constants.
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Lemma 4 (Bounds on the Residual Term φ): For ∀z ∈ Ad, φ is bounded by

‖φ‖ ≤ εM + c2‖W‖F + c3‖W‖F‖Ṽ ‖F + c4‖W‖F‖Ṽ ‖F ‖e‖
+ c3‖V ‖F‖W̃‖F + c4‖V ‖F ‖W̃‖F‖e‖

≤ εM + c2WM + c3WM‖Ṽ ‖F + c4WM‖Ṽ ‖F ‖e‖
+ c3VM‖W̃‖F + c4VM‖W̃‖F‖e‖

≤ C0 + C1‖Z̃‖F + C2‖Z̃‖F ‖e‖
≤ C0 + C1ZM + C1‖Ẑ‖F + C2ZM‖e‖+ C2‖Ẑ‖F ‖e‖
= (C0 + C1ZM , C1, C2ZM , C2) · (1, ‖Ẑ‖F , ‖e‖, ‖Ẑ‖F‖e‖)T

≡ βT · Yf (28)

with Z = diag{W,V } and ‖Z‖F ≤ ZM , and Ci are positive constants.

Remark: Lemma 4 demonstrates that the residual term φ is bounded by a linear
expression with a known function vector. Thus, adaptive control techniques can
be employed to deal with this residual term.

The NN adaptive law is now described below

un = (1−m(t))(−ŴTσ(V̂ T z) + β̂TYfsat(
e

η
)) (29)

us = ksm(t)sat(
e

η
) (30)

˙̂
W = (1−m(t))(−Fσ(V̂ T z)eTη + Fσ′(V̂ T z)V̂ T zeTη ) (31)
˙̂
V = −(1−m(t))GzeTη Ŵ

Tσ′(V̂ T z) (32)
˙̂
β = (1−m(t))H‖eη‖Yf , (33)

where β̂ is the estimate of β; ks is a positive constant satisfying ks ≥ d̄M and
F , G, and H are symmetric positive definite matrices. The modulation function
m(t) is chosen as

m(t) =

⎧⎨
⎩

0 if z ∈ Ad
‖z‖p−1

Ψ if z ∈ AΨ −Ad

1 if z ∈ Ac
Ψ

, (34)

where AΨ is chosen as AΨ = {z|‖z‖p ≤ 1 + Ψ}, and Ψ is a small positive
constant, denoting the width of the transition region. The modulation function
m(t) generates a smooth switching between the adaptive NN and sliding modes.
If the robot output state in the set Ad, the pure NN control performs, while
outside the set AΨ , the pure sliding mode control behaves and forces the robot
output state back into Ad. In between the region AΨ − Ad, the two modes are
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effectively blended using a continues modulation function. Then (14) becomes

ė = −Keη − (1−m(t))(W̃Tσ(V̂ T z)− W̃Tσ′(V̂ T z)V̂ T z)

− (1−m(t))ŴTσ′(V̂ T z)Ṽ T z − (1−m(t))β̂TYfsat(
e

η
)− (1−m(t))φ

+m(t)(−kssat(
e

η
)− d̄). (35)

Theorem 1. Consider the mobile robot system (6) with control (11), where the
adaptive NN control un is given by (29) and the sliding mode component us is
given by (30). Let the parameters in (29) be adjusted by the adaptive laws (31)-
(33), respectively, and suppose that Assumptions 1-4 are satisfied and define
β̃ = β − β̂. Then

1. W̃ , Ṽ , β̃, and eη are uniformly ultimately bounded.
2. The tracking error ‖e‖ ≤ η is obtained asymptotically.

Proof. (1) Consider the following Lyapunov candidate

L =
1
2
(eTη eη + tr{W̃TF−1W̃}+ tr{Ṽ TG−1Ṽ }+ β̃TH−1β̃) (36)

with tr{·} the trace. Note that though ėηi is not defined when |eηi| = η, (d/dt)e2ηi

is well-defined and continuous everywhere and can be written as (d/dt)e2ηi =
2eηiėi.

The time derivative of L is

L̇ = eTη ė− tr{W̃TF−1 ˙̂
W} − tr{Ṽ TG−1 ˙̂

V } − β̃TH−1 ˙̂
β. (37)

Substituting (29)-(33) and (35) into (37) yields

L̇ = −eTηKeη − (1 −m(t))(eTη W̃
Tσ(V̂ T z)− eTη W̃Tσ′(V̂ T z))

− (1−m(t))eTη Ŵ
Tσ′(V̂ T z)Ṽ T z − (1−m(t))eTη β̂

TYfsat(
e

η
)

− (1−m(t))eTη φ+m(t)eTη (−kssat(
e

η
)− d̄)

− tr{W̃TF−1 ˙̂
W} − tr{Ṽ TG−1 ˙̂

V } − β̃TH−1 ˙̂
β

= −eTηKeη − (1 −m(t))‖eη‖β̂TYf − (1−m(t))eTη φ

− (1−m(t))‖eη‖β̃TYf +m(t)(−ks‖eη‖ − eTη d̄)
≤ −eTηKeη − (1 −m(t))eTη φ− (1 −m(t))‖eη‖βTYf

≤ −eTηKeη
≤ −λmin(K)eTη eη, (38)

where the facts for ∀z ∈ Ad, ‖φ‖ ≤ βTYf and eηsat( e
η ) = ‖eη‖ have been

used, and λmin(K) is the minimum eigenvalue of matrix K. According to Lya-
punov theory, this demonstrates that W̃ , Ṽ , β̃, and eη are uniformly ultimately
bounded.
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(2) Integration of (38) from t = 0 to ∞ results in
∫ ∞

0
‖eη(t)‖2dt ≤ L(0)− L(∞)

λmin(K)
. (39)

Noting that L(t) is a non-increasing function of time and low bounded, this
implies that L(0) − L(∞) < ∞, then we have eη ∈ L2. The boundedness of eη
implies eη ∈ L∞. Because we have proven that all the variables on the right-
hand side of (35) are bounded, we have ėη ∈ L∞. Using Barbalat’s lemma [11] (if
eη ∈ L2

⋂
L∞ and ėη ∈ L∞, then limt→∞ eη(t) = 0), we have limt→∞ eη(t) = 0,

this means that the inequality ‖e‖ ≤ η is obtained asymptotically.

Remark: Theorem 1 demonstrates that the tracking errors depend on the choice
of η. If η → 0, then e → 0. In this case, sat( e

η ) becomes sgn(e). Using the
saturation switch function instead of the signum function, chatter is overcome.

4 Simulation Studies

In this section, we shall provide some simulation results to show the effectiveness
of our proposed methods. The parameters used in the controller are: D = 0.5,
K = diag{10, 15}, ks = 0.6, η = 0.01, Ψ = 0.2, vmax = 2m/s, ωmax = 5rad/s.
For the NN controller, we selected the sigmoid activation function with Nh = 10
hidden-layer neurons, F = 0.005 · diag{1, 2, · · · , 10}, G = 0.005 · diag{5, 10}
and H = 0.0005 · diag{1, 2, 3, 4}. The sampling time is 0.01s. Note that these
parameters are the same in the two cases of the simulations.

Case 1: The tracking path is a circle, which is defined by x2 + y2 = 1, as
shown in Fig. 1. The reference linear and angular velocities are vr = 1m/s
and ωr = 1rad/s, respectively. The initial pose of the desired virtual cart is
(0,−1, 0)T . The actual robot starts at (−0.5,−1.5, 0)T . The compact set Ad is
chosen as Ad = {Y |(Y 2

1 +Y 2
2

2 )1/2 ≤ 1}. The elements of the external disturbance
are randomly selected in interval [-0.2, 0.2].

Case 2: The initial pose of the desired virtual cart is (0,−1, 0)T . The actual
robot starts at (−0.5,−1.5, 0)T . The reference linear and angular velocities are
given as follows

vr =

⎧⎪⎪⎨
⎪⎪⎩

0.5 + 0.5 sin t, 0 ≤ t < 4 s
1.5, 4 ≤ t < 6 s
1 + cos t, 6 ≤ t < 8 s
1, 8 ≤ t ≤ 10 s

(40)

and

ωr =

⎧⎪⎪⎨
⎪⎪⎩

cos t, 0 ≤ t < 4 s
0, 4 ≤ t < 6 s
1 + 0.5 sin t, 6 ≤ t < 8 s
1, 8 ≤ t ≤ 10 s

. (41)
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It is assumed that the external disturbance is d = (0.1 sin t, 0.1 cos t, 0.1 sin t)T .
The compact set Ad is chosen as Ad = {Y |( (Y1−3.5)2

24.1 + (Y2+1.4)2

3.92 )1/2 ≤ 1}. The
simulation results are shown in Fig. 2. The results show that the proposed NN
controller greatly improves the performances of robot tracking with model un-
certainty.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Position x (m)

P
os

iti
on

 y
 (

m
)

 Desired path
 Actual path 

(a)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5
Error in position x and y

E
rr

or
 (

m
)

 Xe
 Ye

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Error in orientation

Time (s)

E
rr

or
 (

ra
d)

(b)

Fig. 1. Tracking using NN control with uncertainty : (a) mobile robot trajectory; (b)
position and orientation errors
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Fig. 2. Tracking using NN control with uncertainty: (a) mobile robot trajectory; (b)
position and orientation errors

5 Conclusions

A stable control algorithm based on input-output linearization method and NN
control capable of dealing with the uncertainty imposed on the kinematic model
of mobile robots is proposed in this paper. In the proposed scheme, the NN
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controller with a set of “on-line” tunable parameters with no “off-line learning
phase” needed is employed to approximate the uncertainty of the robot due
to the universal approximation property of the NN. Stability of the proposed
method is proven by Lyapunov theory. Some simulations are provided in order
to illustrate the feasibility of the proposed method.
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Abstract. In this paper, using the pre-determined specific tasks, a solid and 
complete solution for the optimal control of the mobile manipulator is proposed 
based on a divide and conquer scheme. In the scheme, a mobile manipulator is 
virtually divided into a mobile robot and a task robot. All the tasks are also 
divided into task segments that can be performed by only the task robot. An 
optimal configuration of the task robot is defined by the task oriented 
manipulability measure for given task segment. And using a cost function for 
optimality defined as a combination of the square errors of the desired and 
actual configurations of the mobile robot and of the task robot, the job which 
the mobile manipulator performs is optimized. We figured out the solution for 
the optimal configuration of a mobile manipulator with a series of tasks. 

1   Introduction 

Mobile manipulators have been used in various fields, such as factory automation, 
underwater exploration, robotic surgery, space exploration, nuclear power plant 
maintenance, and etc[1]. They are supposed to be used more widely in the future. The 
two main characteristics of mobile manipulators are high kinematic redundancy and 
dynamic nonhomogeneity[2]. The former results from the addition of the platform 
DOF(Degree Of Freedom) to the manipulator[3]. A mobile manipulator generates the 
redundant DOF in kinematics different from the other redundant robot with the fixed 
base structure and with at least six DOF. Pin and Culioli[4] proposed the concept of 
commutation configuration, and formulated the path planning problem as multi-
objective optimization, which was settled by the minmax approach. Yamamoto and 
Yun[5] demonstrated the coordinated motion of mobile manipulators using the 
concept of preferred operation region, which maximized its manipulability measure. 
Seraji[6] regarded the whole mobile manipulator as a redundant manipulators. 
Carriker formulated the coordination of manipulation and locomotion as a nonlinear 
optimization problem in order to solve the problem of kinematic redundancy[7].  

Fig. 1 shows the mobile manipulator, the robot, which is implemented for the 
experiment. Fig. 2 shows the block diagram of mobile manipulator configuration, 
where the mobile robot is wheel-driven and is capable of moving its platform up and 
down on the basis of gravity center. The task robot is mounted on the center of the 
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platform. We used 80C196KC microprocessor as the motor controller to control the 
three motors concurrently. The motor-drive point with an IGBT was configured in H-
bridge form. We mounted the ROB3 with 5 joints as the task robot Then, we installed 
a gripper at the end-effector to grip things. In addition to that, we mounted the 
portable pc, which was used as the host computer to monitor the controller of the 
mobile manipulator and to monitor the stats of the robot. 

 

Fig. 1. Mobile Manipulator PURL-II 
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Fig. 2. Block diagram of PURL-II 

2   System Operation Algorithm  

2.1   Definition of Cost Function 

When moving an object from some points to a desired point for the mobile 
manipulator, the base frame position of task robot varies according to the movement 
of mobile robot. Therefore through inverse kinematics, the task planning has many 
solutions with respect to the robot movement. For the robot to perform the task 
efficiently after defining the constraint condition, we must find the accurate solution 
to satisfy both the optimal accomplishment of the task and the efficient completion of 
the task. In this paper, we have the objective of movement-minimization of the whole 
robot when performing the task. Therefore we expressed the vector for mobile 
manipulator states as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

tq

p
s  (1) 

where [ ]Tzyx θ=p  and  [ ]T
tntt qqq ...21=tq . Here, s is the vector for the robot 

and consists of p representing the position and direction of mobile robot in Cartesian 
space and qt representing the n joint variables of the task robot. Now planning the task 
to minimize the whole movement of mobile manipulators, a cost function, L, is 
defined as 
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            ss ΔΔ= TL )()( T
ifif ssss −−=  

                               )()()( TT
titftitfifif qqqqpppp −−+−−= ()  

(2) 

where [ ]T
tiii qps = represents the initial states of the mobile manipulator, and 

[ ]Ttfff qps = represents the final states after having accomplished the task. In the final 

states, the end-effector of the task robot must be placed at the desired position dx . 

For that purpose the equation (2) must be satisfied. In (2), we denoted as )( mqR  and 

)( tfqT  respectively, as the rotational transformation to the base of the task robot and 

the translation vector of task robot. 

ftfmd xqqx += )()( TR  (3) 

where
dx  represents the desired position of task robot, 

fx  is the final position of 

mobile manipulator, and .][ T
lr zqq=mq We can express the final position of the 

mobile manipulator 
fx  as the function of the desired coordinate 

dx , joint variables 

mq  and 
tfq , then the cost function that represents the robot movement is expressed as 

the 1×n  space function of 
mq  and 

tfq  as 

}{}{})()({})()({ T
ti

T fRfRL qqqqxqqxxqqx tftitfitfmditfmd −−+−−−−=  (4) 

In (4), 
mq and 

tfq  which minimize the cost function L must satisfy the condition,  

0=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

=∇

tf

m

q

q
L

L

L

 
(5) 

Because the cost function is nonlinear, it is difficult to find analytically the optimum 
solution that satisfies (5). So in this paper, we find the solution numerically using the 
gradient method described as  

)(,)( ktfkm qq
L∇−⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+

+ η
tf(k)

m(k)

1)tf(k

1)m(k

q

q

q

q
 (6) 

This recursive process will stop, when 0≈<∇ εL : when 
m(k)q and 

tf(k)q  are 

optimums. Through the optimum solutions of 
mq and 

tfq , the final robot state 
fs can 

be calculated as 

⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=

tf

fR

q

qqx

q

p
s tfmd

tf

f
f

)()(  (7) 

2.2   Cartesian Coordinate Path Planning of the Mobile Robot 

For the robot to move and to take a posture from the initial position of the mobile 
robot to the workspace, we established the coordinate system as the system shown 
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in Fig. 3. When the mobile robot starts at the current position ( )iii yxX ,=  and 

moves to position ( )ppp yxX ,=  to include position ( )ddd yxX ,= , trajd XX ∈ the final 

position of the end-effector, within a workspace, we represent the current robot 
direction, direction error from the current position to the desired position, distance 
error to the desired point, the mobile robot direction at the desired position as 
φ , α , e ,θ  respectively, as shown in Fig 3 . When the mobile robot moves from 
( )ii yx ,  to ( )dd yx , , we make α  and e to be minimized, θ   to be the direction of the 

mobile robot at the desired position. Kinematics Eq αcos⋅−= vx  , αsin⋅= vy , 

ωθ =   e > 0, Lyapunov Candidate Function is denoted as the following equation 
(8)[8][9][10]. 

( )222
21 2

1

2

1 θαλ heVVV ++⋅⋅=+=  (8) 

where λ  and h  are arbitrary positive real number, respectively.  
Differentiating equations (8), we obtained the following equation (9). 

⎟
⎠
⎞

⎜
⎝
⎛ +⋅⋅+−+⋅⋅⋅−=

e

hv
veV

θα
α

αωααλ sin
cos  (9) 

In order to be converged stably, V  has to be less than 0. Hence, nonlinear mobile 
robot controller is designed as follows: 
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Therefore, V  satisfies the convergence condition that θφ ≅ , when ∞→t as the 
following equation(11), 0, ≅αe by mobile robot controller. 
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Fig. 3. Position movement of a mobile robot 
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3   Simulation  

Using the algorithm proposed in the paper, we simulated drawing a big rectangle on 
the wall. Fig. 4 is the result of simulation, which shows the motion of the mobile 
robot to carry the task robot to the initial position for the rectangular drawing. The 
simulation conditions are as follows:  Initial position: )1,10,10(),,( −−=iii zyx  

Initial angle between mobile robot and x-axis: 8/π rad 

Goal position: )1,0,0(),,( =iii zyx  

Goal angle between mobile robot and x-axis: 0 rad. 1. In this simulation, ,, yx vv and 

zv are considered as task constrained components; ,, yx ωω and  
zω are considered as 

task free components. The lengths of link and the allowable range of joint variable are 
as follows: d1=0.3, l1=0.2, l2=0.33, 

0100,6535,8080 321 <<−<<−<<− ttt qqq . 

2. The given task is composed of four task segments which are defined as the basic 
units of task with the same task requirements:  
Task segment 1: Move from (0.16, 0.45, 0.7) to (1.16, 0.45, 0.7) 
Task segment 2: Move from (1.16, 0.45, 0.7) to (1.16, 0.45, 1.0) 
Task segment 3: Move from (1.16, 0.45, 1.0) to (0.16, 0.45, 1.0) 
Task segment 4: Move from (0.16, 0.45, 1.0) to (0.16, 0.45, 0.7). 
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Fig. 4.  Simulation results to show the 
motion of mobile robot 

Fig. 5. Result of the experiment 

4   Experiments  

Fig. 5 is the result of the experiment. The desired point is the top point of the box in 
the right side of picture. The environment of this experiment is conditioned as 
follows:  

1. Mobile robot moves from the origin of world frame to the initial position to 
perform the task: Original position: )8.0,0,0(),,( =iii zyx , Original angle between 
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mobile robot and x-axis: 8/π rad , Initial position: )8.0,2,2(),,( =iii zyx , Initial angle 

between mobile robot and x-axis: 0rad. 
2. In this experiment, ,, yx vv  and 

zv are considered as task constrained components; 

,, yx ωω and  
zω  are considered as task free components; the length of link and the 

range of joint variable are set as follows:  d1=0.3, l1=0.2, l2=0.33, 
0100,6535,8080 321 <<−<<−<<− ttt qqq . 

3. The given task is composed of four task segments which are defined as the basic 
units of task with the same task requirements:  
Task segment 1: Move from (2.16, 0.48, 0.7) to (3.16, 0.48, 0.7) 
Task segment 2: Move from (3.16, 0.48, 0.7) to (3.16, 0.48, 1.0) 
Task segment 3: Move from (3.16, 0.48, 1.0) to (2.16, 0.48, 1.0) 
Task segment 4: Move from (2.16, 0.48, 1.0) to (2.16, 0.48, 0.7). 

The scenario for this experiment is illustrated in Fig. 6. The mobile robot is initially at 
the origin of the world frame. The task robot is configured as the joint angles of 

)7.51,6.38,4.70( − . The coordinate of the end-effector is set up as (0.16, 0.45, 0.9).  

World Frame

Wall

x

Y

( 2, 2 )

( 0, 0 )

 

Fig. 6. Scenario for the experiment 

5   Conclusions  

The effective control methodology of the two serially connected robots – a mobile 
manipulator – is proposed. A task can be divided into several task segments according 
to the required motion components. For each task segment, a desired configuration for 
the task robot is specified considering the task execution efficiency. The actual 
configuration is controlled to be close to the desired one. To verify the idea 
experimentally, a mobile manipulator is implemented by the serial connection of a 
task robot and a mobile robot, which are controlled by a host PC governing the 
cooperation between them. When we controlled mobile robot to change workspace, 
we controlled the mobile robot to decrease the distance and direction errors by 
Lyapunov function. Task robot took an appropriate posture to execute a task using 
Manipulability Ellipsoid in the workspace, executing a task by moving a mobile robot 
in that posture so that the end-effector of a task robot can reach the desired position. 
Therefore, the mobile manipulator executed the task beyond current workspace with 
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an appropriate posture to accomplish the given task in cooperation of mobile robot 
and task robot. In the further study, exact position control is needed by using a sensor 
to calibrate position error for velocity control. Then we can execute cooperation 
control of the two local robots by making a cost function, weighting values for the 
mobility of a mobile robot and the manipulability ellipsoid of a task robot. Moreover, 
the dynamic control of the mobile manipulator is left assuming that the precise control 
of the mobile robot is possible by adding absolute position sensors, such as gyro 
sensors and a CCD camera. Searching an optimal configuration for GMEd , and 
defining GMEd  for a task segment are interesting subjects to be investigated.  
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Synthesis of Desired Binary Cellular Automata
Through the Genetic Algorithm
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Abstract. This paper presents a GA-based synthesis algorithm of a
cellular automaton ( CA ) that can generate a desired spatio-temporal
pattern. Time evolution of CA is determined by a rule table the number
of which is enormous even for relatively small size CAs: the brute-force
search is almost impossible. In our GA-based synthesis algorithm, a gene
corresponds to a rule and a masking technique is used to preserve gene(s)
with good fitness. Performing basic numerical experiments we have con-
firmed that the masking works effectively and the algorithm can generate
a desired rule table. We have also considered an application to reduction
of noise inserted randomly to a spatio-temporal pattern.

1 Introduction

Cellular automata ( CA ) are nonlinear dynamical systems in which time, space
and state variables are all discrete [1] [2]. CA dynamics is governed be a rule table
that is equivalent to a function of integers and the CA can generate rich spatio-
temporal patterns and the patterns relate to engineering applications including
self-replication [3] [4], simulation of natural phenomena [5], block cipher [6] and
signal processing [7] [8]. Classification rule tables and finding a desired rule table
is basic to analyze the rich spatiotemporal dynamics and to realize engineering
applications. However, as size of CA increases, search space of the possible rule
tables is to be incredibly large [4] hence finding a desired rule table is to be very
hard, at least direct search is impossible. In order to search a desired rule table,
several approaches have been studied. A method based on genetic algorithm (
GA ) may be strong candidate to realize effective search [4] [9] [10]. In the method
a rule table corresponds to a chromosome and GA runs to optimize some given
fitness function. However, existing algorithms are rather complicated and search
tends to be hard for complicated dynamics and/or fitness.

This paper studies a simple search algorithm to synthesize desired binary
cellular automata ( BCA ) that is a simple version of CA. The BCA has bi-
nary state variable. its rule table is equivalent to a set of Boolean functions and
can generates a variety of binary spatiotemporal patterns. In our algorithm the
chromosome is a binary sequence corresponding to outputs of the Boolean func-
tions, the fitness measures error between a desired pattern and a pattern by the
chromosome, and GA runs to minimize the error. Major difference from existing
algorithms is masking to preserve suitable genes. Performing basic experiments

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 738–745, 2006.
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Fig. 1. 3-neighbor binary CA: spatio-temporal pattern and rule table that is equivalent
to the binary vector (-1, -1, -1, 1, -1, -1, 1, -1)

for relatively complicated patterns, we can confirm that the masking is very ef-
fective to increase success rate of finding desired rule tables. We then apply this
algorithm to noise reduction problem of desired patterns with random noise and
have confirmed that the masking is also effective in this problem. These results
provide basic information to establish systematic synthesis method of desired
CA and its application to signal/image processing.

2 Binary Cellular Automata

CA are typical digital dynamical systems that exhibit huge variety of spatio-
temporal patterns [1], [2] and BCA is a simple version of CA. The BCA has
binary state variable and we consider the of L cells arranged on a ring site. Let
ai(t) ∈ {−1, 1} denote the state variable of position i at discrete time t and let i
be a cell index mod L: i ∈ {1, · · · , L} and i+ L = i. The dynamics is described
by

ai(t+ 1) = FC(ai−k(t), ai−k+1(t), · · · , ai+k(t))

FC : Br → B, r ≡ 2k + 1,
(1)

where k is a positive integer at most L/2 and r is referred to as the number of
neighbors of a cell. The Boolean function FC corresponds to a rule table. Fig. 1
shows a rule table of 3-neighbor BCA (r = 3) consisting of 23 rules. This rule
table is equivalent to a binary vector with length 23. As an initial condition is
given at t = 0, this BCA can exhibit an interesting spatio-temporal pattern like
the Sierpinski triangle as suggested in the figure. Since possible number of this
rule table is 223

, the 3-neighbor BCA has variation of 223
. Detailed analysis of

the 223
patterns can be found in [2]. In general, an r-neighbor BCA is governed

by a rule table with length 2r (FC in (1) is an r-dimensional binary function) and
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Fig. 2. Two example patterns where fitness at time 5 is 14/19

the number of possible rule tables is 22r

. That is, as size of neighbors increases
the variation of rule tables is to be incredibly large and huge variety of spatio-
temporal patterns can be generated.

3 Learning Algorithm

In order to describe the algorithm we give some preparations. First, in our GA,
a rule corresponds to a gene and a rule table corresponds to a chromosome. As
shown in Fig. 2, output of a rule is -1 ( white ) or 1 (black) and the rule table
is described by a binary sequence. Length of chromosome is 2m and is equal to
that of rule table. For example, the length is 32 for 5-neighbor rule table.

Second, our fitness function measures error between a desired image and an
image generated by a chromosome ( rule table ). The fitness at time t is given
by

f(t) =
1
N

N−1∑
i=0

fi(t), fi(t) =
{

1 if at
i = At

i

0 if at
i �= At

i
(2)

where i is position of a cell, N is the number of cells, Ai(t) is spatio-temporal
pattern At

i and ai(t) is state of a cell. Integrating f(t) we obtain the total fitness:

Fc(T ) =
1
T

T∑
t=0

f(t) (3)

For example spatio-temporal patterns in Fig. 2, 17 cells satisfy at
i = At

i at t = 5
over 19 cells hence f(5) = 14

19 . Repeating similar calculations and integrating
them we obtain the total fitness. We then define the main algorithm.

Algorithm

STEP 0:
Some spatio-temporal pattern is given as an input data.

STEP 1: Initialization
Initial chromosome group with the population size K is generated randomly. Let
initial generation be g = 0.
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STEP 2: Masking
For each gena, calculate coincidence rate of state by a gene and corresponding
state in a desired pattern. For example, if rule h5 is applied M times in spatio-
temporal pattern by a chromosome andN outputs corresponds to desired pattern
then we obtain coincidence rate h5 = N/M . If a gene has coincidence rate over
Tm then the gene is masked, where Tm is a threshold parameter. The masked
gene can change only by mutation: can not change by any other operation.

STEP 3: Evaluation
Calculate fitness Fc(t) of each chromosome.

STEP 4: Elite Strategy
Leave chromosome having the best fitness for the next generation.

STEP 5: GA Operation
Generate other offspring. Parents are chosen by roulette wheel selection, and
applied one-point crossover and mutation. Note again that a masked gene can
not be changed by crossover but by mutation.

STEP 6: Termination
If generation is g = G, the algorithm is terminated. Otherwise, g = g+1 and go
to STEP 2.

4 Numerical Experiments

In order to investigate efficiency of our learning algorithm we have performed
fundamental numerical experiments. For the experiments we give several prepa-
rations. First, we adopt the λ parameter [1] in order to characterize spatio-
temporal patterns of BCA.

λ = (2N − n)/2N = (25 − n)/25

where n is the number of rules that output −1 and N = 5 is the number of
neighbors. Fig. 3 shows typical spatio-temporal patterns for some values of λ
parameter. Roughly speaking, a pattern tends to be complex as λ approaches
0.5 [1]. For simplicity we focus on the following case in the experiments

Fig. 3. Typical spatio-temporal patterns and λ parameter
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Fig. 4. Example of spatio-temporal pattern synthesized in the experiment. left: spatio-
temporal pattern. right: Process of synthesis.

Fig. 5. Results of synthesis that uses this algorithm(trial 1000 times)

λ = 0.5 for 5-neighbor CA

Also, let the number of cells be 99 and let time steps be 99. As the initial state, let
a cell at i = 49 be black and all the other cells be white ( -1 ). After trial-and-errors
we have fixed parameters of GA: population sizeK = 400 probability of crossover
Pc = 0.9, probability of mutation Pm = 0.1, threshold of masking Fth = 0.7 and
maximum generation G = 1000. We then show results of two basic experiments.

4.1 Experiment 1

GA Fig. 4 left shows a spatio-temporal pattern generated artificially by a rule
table generated randomly. We use it as a desired pattern virtually. Fig. 4 right
shows the maximum and average fitness for a set of chromosome for each gen-
eration. At g = 109, the maximum fitness reaches 1.0 and we can obtain the
desired pattern. Repeating similar experiments 1000 times we have summarized
the results as shown in Fig. 5. Fig. 6 shows corresponding results from experi-
ments without masking of genes. These results show that the masking improves
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Fig. 6. Results of synthesis without masking(trial 1000 times)

Fig. 7. Example of noise reduction. left: 10% noisy pattern. right: Process of reduction.

success rate dramatically for large number of rule used in a spatio-temporal pat-
tern. The masking is very effective to increase the success rate and our algorithm
have achieved over 95% success rate.

4.2 Experiment 2: Application to Noise Reduction

We consider noise reduction problem from a desired spatio-temporal pattern
with noise. In the experiment, we invert pixels randomly in a pattern at the
probability of 10%. For example, Fig. 7 left is given by adding noise to the
spatio-temporal pattern Fig. 4. Applying our algorithm, the fitness increased for
1 and converged some constant value as shown in Fig. 7 right. The constant
fitness �= 1 is not consistent with the noisy pattern but original pattern: the
original pattern can be reproduced. Repeating similar experiments 1000 times
we have summarized the results as shown in Fig. 8. Even when the noise was
added, we obtain an excellent results in about 90% success rate. It goes without
saying that lower noise gives higher success rate.
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Fig. 8. Results of noise reduction(trial 1000 times)

Fig. 9. An example of direct search. Left: Desired pattern. Center: Noisy pattern.
Right: Result of direct search.

4.3 Comparison with Direct Search

The preceding two experiments suggest that our algorithm is effective to syn-
thesize desired CAs, however, the algorithm should be compared with other
methods. The simplest method is direct search: if we have a spatiotemporal pat-
tern in which the number of neighbors is known and all the rules are used then
we can construct a rule table by direct extraction from the pattern. However this
direct search has problems for noisy patterns. When we extract rules from the
noisy pattern, there must exist contradiction rules. In such a case it is natural
to fix the rule based on majority principle. However, if one pixel is inverted as
a noise in a pattern, the inverted pixel affects not only as an output but also
as a cell of input. For example, 5-neighbor CA, one inverted pixel make one
contradiction as output and at most 5 contradictions as a input cell: total 6
contradictions. Therefore it is hard to construct desired rule-tables from a noisy
patters as suggested in an example in Fig. 9. As compared with this, the fitness
of our GA-based algorithm measures difference between patterns and one noisy
pixel affects only one pixel. This is the reason why our algorithm can construct
a rule table for a desired pattern.
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5 Conclusions

We have studied a GA-based search algorithm to synthesize desired BCA. Intro-
ducing masking to preserve suitable genes, our algorithm can find desired rule
table for relatively complicated spatiotemporal patterns. The algorithm is effec-
tive also for noise reduction problem of desired patterns with random noise. Fu-
ture problems include detailed analysis of learning process, application to larger
problems, and FPGA-based hardware implementation for practical problems.
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Abstract. In recent years, network analysis has revealed that some real
networks have the properties of small-world and/or scale-free networks.
In this paper, a simple Genetic Algorithm (GA) is regarded as a network
where each node and each edge respectively represent a population and the
possibility of the transition between two nodes. The characteristic path
length, which is one of the most popular criterion in small-world networks,
is derived analytically. The results show how the crossover operation works
in GAs to shorten the path length between two populations, compared to
the length of the network with the mutation operation.

1 Introduction

There have been several theoretical results on the properties of genetic algorithms
(GAs). One is the schemata theorem, which shows that a set of individuals (a
schema) with a higher fitness on average is more likely to survive than a set
with a lower fitness [1, 2]. Another result, based on the information-theoretic
method, regards a GA as a finite-state ergodic Markov chain and discusses the
convergence to the optimal solution in asymptotics [3, 4, 5].

In this paper, we take another approach to the problem why GAs are good
quasi-optimizers: We regard a GA as a network, where a node is a possible set
of individuals, and investigate the connectivity of the network from a network
analytical point of view. Network analysis has recently attracted much attention
as a new method to analyze complex phenomena in the world, where the follow-
ing two properties have been found in many real networks [6, 7, 8, 9, 10, 11]: One
is referred to as a small-world network, which means that a network simultane-
ously has dense local connections and short pairwise distances. The other is a
scale-free network, which means that the distribution of the orders of nodes in
a network has a long tail obeying the power law.

We shed light on the former property. That is, we analytically derive the
characteristic path length (CPL) ν, defined as the shortest path length (SPL)
between two nodes averaged over all possible pairs. Since it is expected that a
GA with a smaller CPL takes a shorter time to find a solution, we see how the
two basic genetic operations in GAs, crossover and mutation, affect the CPL.

In the following, we show how to construct a network from a GA and derive
its CPL analytically, which is confirmed by numerical analyses.
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Fig. 1. Genetic operations: one-point crossover and mutation. An example with L = 7.

2 Simple Genetic Algorithms

Since the analytical derivation of CPL is difficult in general, we select the sim-
plest GA formulated below from many variants of GAs proposed since the orig-
inal GA was born [1, 2].

Each individual consists of a binary sequence of length L. That is, we have
2L kinds of individuals. A set of individuals defines a population. In this paper,
we assume that each population has only two individuals. Then, the cardinality
of the different populations becomes

N ≡ 2L−1(2L − 1). (1)

When the generation proceeds, a population changes by one of the two ba-
sic genetic operations, one-point crossover or mutation. The former randomly
chooses one crossover-point from L− 1 candidates and exchanges the bits right-
ward from the point, while the latter randomly chooses one of 2L loci (or gene-
positions) in the two individuals and inverts its bit from 0 to 1 or vice versa
(Fig. 1).

Note that we do not treat any fitness function because we are only considering
the possibility of population-transition from one in a generation to another in
the next generation.

3 Network of a Simple GA

We regard a population as a node of a GA network. Hence, the network has
N nodes. Two nodes are linked by an edge if and only if one of the two nodes
can change to the other in a one-point crossover or mutation operation (Fig. 2).
Obviously, the edge is undirected because the reverse change is also possible.
Note that a node has 2L edges from the mutation operation and L − 1 edges
resulting from the crossover operation since an individual is a binary sequence
of length L and a population consists of two individuals.
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Fig. 2. A part of the network of a genetic algorithm

If a network consists of only the edges from mutation, it is a lattice of the
2L-dimensional hypercube because an individual is an L-bit sequence and a
population consists of two individuals. Therefore, the path-length of any two
distinct nodes is the same as the Manhattan distance, that is, L on average.
This means that we need L generations to reach a quasi-optimal population
from an initial one.

On the contrary, the edges from crossover are shortcuts in the network where
plural bits can change at once. It is likely that these shortcuts enable GAs to find
a quasi-optimal solution in a short time. The purpose of this study is to evaluate
quantitatively how these shortcuts work to shorten the CPL and to clarify their
effects in GAs.

4 Four Types of Loci

In many cases of network analysis, the CPL is numerically calculated from the
empirical data collected. However, the CPL of the GA network treated here
can be derived analytically due to its simplicity, as shown below. Before deriva-
tion, we classify L loci into four types according to how two populations can be
matched by genetic operations since neither crossover nor mutation change the
locus of a gene (Fig. 3).

Thefirst type is referred toasType1,whereall fourgeneshavethe samealphabet,
0 or 1. That is, the genes at the locus are 0000 or 1111 and hence the cardinality
is two. This means that the path length resulting from this locus is zero.

The second is Type 2, where the two genes of a population are the same but
the two genes of the other population are different. That is, one of the genes at
the locus is different from the others such as 0001, 0010, and so on, and hence the
cardinality is eight. Because the crossover operation cannot change the alphabet
of the former, mutation is necessary and the path length resulting from this locus
is one.
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Fig. 3. An example of the types of loci in two nodes

The third is Type 3, where the two genes of each population are the same but
the two populations have different alphabets. That is, the genes at the locus are
0011 or 1100, and hence the cardinality is two. Because the crossover operation
cannot change the alphabet, mutation is necessary and the path length resulting
from this locus is two, if the genes at the other loci are identical.

The last is Type 4, where each population has two different genes. That is,
the genes at the locus are 0110, 1001, 0101 or 1010. The former two are termed
Type 4-1 while the others Type 4-2. The path length in Type 4-2 is zero and
that in Type 4-1 is two when either of crossover and mutation is applied only to
match the bits at the locus. However, since the crossover operation can change
plural bits at once, the shortest path of the network consisting of only the edges
from mutation never exceeds that from crossover.

Note that the path length is calculated in Type 4 as if the individuals in a
population are ordered. In the next subsection we discuss how this affects the
CPL before deriving it.

5 Ordered Individuals in a Population

Suppose we add the left of the left-most locus to the crossover-points. Obviously,
this does not affect the CPL ν because the edges corresponding to the crossover
operation at the point make no sense to match the bits of two populations.

Let g1 and g2 be two individuals of a population (g1, g2). Then (g1, g2) and
(g2, g1) represent the same node since individuals in a population are not ordered.
We denote the CPL of the network by ν̃ where individuals in a population are
ordered. Then, the cardinality of the different populations becomes

Ñ ≡ 22L (2)

and ν̃ is expressed as

ν̃ =
2Nν + L
Ñ

(3)

since Nν represents the sum of the shortest path lengths of all distinct-node
pairs and L that of all identical-node pairs. Hence

ν̃ = ν
(
1− 2−L

)
+ L2−2L (4)
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0  1  0  1  0

1  0  0  0  1

�����������	������	����g1

p ��g1�����g2

1  1  0  1  1

1  1  0  1  1

�����������	������	����g2

p1 ����� ��!�p

q ��p�����p1 0  1  1  0

Fig. 4. How to calculate the SPL of two nodes consisting of the loci of Type 4

stands and ν̃ and ν are one-to-one. Moreover, the difference is negligible when
L is large. We therefore derive ν̃ instead of ν in the following.

6 Shortest Path Length for Crossover Operations

The crossover operation cannot change the type of a locus and the mutation
operation works bitwise. Therefore, the loci belonging to Types 1, 2 and 3 re-
spectively contribute zero, one and two for the SPL no matter where they are
located.

Hence, the SPL of two nodes is the sum of the above and the SPL of the two
shorter nodes consisting of only the loci of Type 4. The latter for l-bit individuals
can be calculated using the following procedure, as shown in Fig. 4:

1. Take l-bit XOR bitwise between an individual in a population and one in
the other population and denote it by p.

2. Take (l− 1)-bit XOR bitwise between p and 1-bit shifted p and denote it by q.
3. Count the number of 1s in q.

It is easily shown that the above procedure does not depend on which individual
is chosen from a population because one individual is the bitwise-inverted binary
sequence of the other in a population when all loci belong to Type 4.

7 Characteristic Path Length

The main idea for derivation is to count the number of node-pairs with the SPL
M , instead of evaluating the SPL of each node-pair directly.

Let the numbers of Type 1, 2, 3 and 4 in L loci be denoted by l1, l2, l3 and
l4, and the numbers of links in M by m1, m2, m3 and m4, respectively. Here,

L = l1 + l2 + l3 + l4, (5)
M = m1 +m2 +m3 +m4, (6)
m1 = 0, (7)
m2 = l2, (8)
m3 = 2l3 (9)

stand by definition.
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First, we consider the case of m4 = 0. Taking into account the number of
combinations of positions and the cardinality of each type, the number of node-
pairs satisfying (6) is written as

L!2l18l22l3

l1!l2!l3!
(10)

for fixed l1, l2 and l3. Since they must satisfy

l2 + 2l3 = 0 (11)
l1 + l2 + l3 = L (12)

0 ≤ l3 ≤ �L/2� (13)

from (5) to (9), the ratio of the number of node-pairs to the possible pairs for
m4 = 0 is

1
24L

2L∑
M=1

L/2�∑
l3=0

ML!2L+2M−4l3

(L−M + l3)!(M − 2l3)!l3!
, (14)

which is denoted by ν̃1.
Next, we consider the case of m4 > 0. For fixed l1, l2, l3 and l4, the number

of combinations of positions is equal to

L!
l1!l2!l3!l4!

(15)

and the number of combinations of places where crossover occurs is l4−1Cm4 .
Taking into account the cardinality of Type 4 and the possibility that the left-
most in the Type 4 loci belongs to Type 4-1 or Type 4-2, the total number of
node-pairs is written as

L!2l18l22l32l4+1
l4−1Cm4

l1!l2!l3!l4!
. (16)

Summing up for all possible combinations of l1, l2, l3, l4 and m4 under the
condition

l1 + l2 + l3 + l4 = L, (17)
m1 +m2 +m3 +m4 = M (18)

where m1 = 0, m2 = l2, m3 = 2l3 and m4 ≤ l4 − 1, the ratio of the number of
node-pairs to the possible pairs is written as

1
24L

2L∑
M=1

∑
l1,l2,l3,l4,m4

ML!2l18l22l32l4+1
l4−1Cm4

l1!l2!l3!l4!
, (19)

which is denoted by ν̃2.
The complete expression for the CPL is

ν̃ = ν̃1 + ν̃2. (20)
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8 Numerical Analyses

Table 1 shows ν̂ for some L’s derived from (20). These values coincide with
those numerically calculated from actual networks. Note that since the CPL of
the network consisting of only the edges from mutation is L, the ratio shows how
the crossover operation shortens the CPL.

Table 1. The CPL ν̂ for some L’s

L ν̂ ratio
3 2.3359 0.7786
8 6.5501 0.8188
13 10.887 0.8375
18 15.253 0.8474
23 19.626 0.8533
28 24.000 0.8571
33 28.375 0.8598
38 32.750 0.8618
43 37.125 0.8634
48 41.500 0.8646
53 45.875 0.8656
58 50.250 0.8664
63 54.625 0.8671
68 59.000 0.8676

9 Conclusions and Discussions

We regarded a simple GA as a network and derived its CPL analytically. The
result shows how the crossover operation works to shorten the CPL of a network

Mutation

Crossover
0001
0001

0000
0000

0010
0010

0001
0000

0000
0001

0010
0001

0000
0011

0001
0010

0011
0000

0010
0000

0000
0010

Fig. 5. A schematic view of a GA network. Only the edges from mutation link the nodes
belonging to different rows. The nodes in the first and second rows are not connected
by the edges from crossover.
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consisting of only the edges from mutation. In short, even when the crossover
operation is applied, the CPL is not so small, and the same order O(L) as in the
case when only the mutation operation is employed.

We see that the CPL is rather large even when the edges from crossover are
added. This may be because the network is foliated into slices between which the
mutation operation must be applied, as the crossover operation cannot change
the type of a locus as shown in Fig. 5. Moreover, some of such slices are divided
into small parts which are not linked by the edges from crossover as seen in the
first and second rows in Fig. 5.

As everyone knows, the result in this analysis is preliminary for the following
two reasons: One is that the population used here has only two individuals. It
seems possible to extend the results to more general cases where a population
has more than two individuals in a similar way. The other is that the selection
pressures of the GA were neglected. These can be introduced by cutting links
with a small transition probability, although this operation will make it difficult
to calculate the CPL analytically. When these matters are investigated in the
future, the results will give some insight into designing effective GAs.
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Abstract. Most contemporary multi-objective evolutionary algorithms
(MOEAs) have high computational demand. In this paper, a new MOEA
based on objective space divided named SDMOGA is proposed. SD-
MOGA transforms the Pareto ranking into the sum of interval index
ranking among individuals in objective space divided, and uses a method
of individual crowding operator similar to adaptive grid to keep popu-
lation diversity. Experimental results on four nicely balance functions
show that SDMOGA has high efficiency, low run-time complexity and
good convergence.

1 Introduction

Most real-world engineering optimization problems are multi-objective in na-
ture, since they normally have several (usually conflicting) objectives that must
be satisfied at the same time. These problems are known as multi-objective
optimization problems(MOP)[1,2] in contrast with single-objective optimization
problems(SOP).Because there are several objectives functions to be optimized
at the same time in MOP, there is no unique solution instead of all of the good
trade-off solutions available(the called Pareto optimal set) to MOP.

Evolutionary Algorithms(EAs) seem also particularly desirable for solving
MOP because they deal simultaneously with a set of possible solutions(the called
population) which allows us to find several members of the Pareto optimal set
in a single run of the algorithm, instead of having to perform a series of separate
runs as in the case of the traditional mathematical programming techniques. Ad-
ditionally, evolutionary algorithms are less susceptible to the shape or continuity
of the Pareto front (e. g., they can easily deal with discontinuous and concave
Pareto fronts).

In this paper, an efficient and simple multi-objective genetic algorithm based
on objective space divided (named as SDMOGA for short) is proposed. The
remainder of this paper is organized as follows. Section 2 introduces the back-
ground of SDMOGA. Section 3 introduces the SDOMGA in details. Section 4
and section 5 respectively presents the experimental results and the concluding
remarks.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 754–762, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Background

After the first implementation of a multi-objective evolutionary algorithm in the
mid-1980s[3], a considerable amount of multi-objective evolutionary algorithms
(MOEAs) have been developed[5,7]. Coello[8] reviews some of the most popular
MOEAs reported in the literatures, indicating some of their main application,
their advantages and disadvantages. The common defect of these algorithms is
high runtime complexity. This is partly due to the fact that MOEAs based on
Pareto ranking requires that each solution be compared to a large number of
other solutions and time-consuming methods to keep population diversity. An-
other explanation lies on the fact that often MOEA research has disregarded run-
time complexity. However, reducing the run-time complexity of MOEAs is very
important for MOEAs’ application. Coello[9] thinks that parallelism MOEAs
and use of more efficient data structures are two future challenges. Both tasks
reduce the run-time complexity of MOEAs.

Most contemporary MOEAs are based on two kinds of Pareto ranking[2] meth-
ods. One proposed by Goldberg assigns Pareto optimal solutions the same rank
and other solutions some less desirable rank. Another proposed by Fonseca and
Fleming ranks a solution according to the number of solutions dominating it.
Both Pareto ranking methods require that each solution be compared to a large
number of other solutions. Their common feature is that all Pareto optimal so-
lutions have a higher probability to be selected as individuals of next generation
than dominated ones.

3 The Multi-objective Genetic Algorithm Based on
Objective Space Divided

The main work of general MOEAs contains two parts, identifying the Pareto
solutions from the population and convergence to the Pareto optimal front,
and then distributing the solution on the Pareto optimal frontier uniformly.
The multi-objective genetic algorithm based on objective space divided (SD-
MOGA) also focuses on the two tasks, but it reduces run-time complexity of
MOEA.

First, SDMOGA divides the current objective space so that every individual
locates in someone subspace. Second, it deletes some individuals in order that
the number of individual in every subspace is not more than one. Third, it
assigns fitness value to every individual according the sum of subspace index.
Last, it selects next population according the index and run evolution operator
for next population. The main operators of SDMOGA are described in detail as
follows.

3.1 Dividing Objective Space Operator

In order to divide objective space, some concepts are defined as follows:

Definition 1 (Maximum Objective Vector,MAXOV). For a given popu-
lation,the maximum objective vector(MAXOV) is defined as:
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MAXOV = (maxobj1,maxobj2......maxobjk) (1)
maxobjj = max

indi∈Pop
{indj

i} j = 1, 2, . . . , k (2)

Where the Pop is the current population, indj
i is the jth objective value of the

ith individual in the current population.

Definition 2 (Minimum Objective Vector, MINOV). For a given popu-
lation, the Minimum objective vector (MINOV) is defined as:

MINOV = (minobj1,minobj2......minobjk) (3)
minobjj = min

indi∈Pop
{indj

i} j = 1, 2, . . . , k (4)

Where the Pop is the current population, indj
i is the jth objective value of the

ith individual in the current population.

Definition 3 (Current Objective Space). The current objective space is the
area that is bounded by MAXOV and MINOV.

Definition 4 (Dividing Interval,DIVI). The dividing interval of every ob-
jective in objective space is defines as:

N = α+ �1.01β� (5)
DIV I = (MAXOV −MINOV )/N (6)

Where α of equation (5) is a parameter that is generally set a small number be-
tween three and seven. because the population is far away from the Pareto front
of multi-objective optimization problem. The β of equation (5) is a parameter
that is the times of dividing objective space. The symbol �x� is the minimum
integer that isn’t more than x.

Definition 5 (Dividing Objective Space, DIVOS). The dividing objective
space is the current objective space divided according to equation (5) and (6).

To reduce the run time, SDMOGA only runs the dividing objective space op-
erator when the number of individuals locating at the outside of the current
objective space is more than a parameter max out num set by users.If someone
objective value of an individual is less than the same objective value of MI-
NOV or more than the same objective value of MAXOV,SDMOGA considers
this individual locates at the outside of the current objective space.

3.2 Crowding Operator

After dividing the current objective space, all the individuals of the population
locate at different subspaces. However, the dividing objective space operator
does not ensure that there is only an individual in a subspace. SDMOGA requires
that each subspace only has an individual and the redundant individuals must
be deleted. the crowding operator is designed to complete this task.
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The crowding operator contains two steps. The first step calculates the dis-
tance between all individuals and the origin in the subspace. The origin of a
subspace is a boundary point that all objective value is minimal in all boundary
points.The second step selects the individual that the distance is minimal and
deletes other ones.

Figure 1(a) shows the distribution of individuals at someone generation in
MOEAs. MOEAs based on Pareto ranking select all individuals in the first area
and one individual in the second area. However, the individuals in the first area
are very crowd. In this paper, SDMOGA thinks the crowding nondominated in-
dividuals are worse than the dominated ones, which are diversity and dominated
by a few individuals, to keep population diversity. For example some individuals
of the first area are worse than those of the second area in figure 1(a). SD-
MOGA deletes some crowding nondominated individuals by dividing objective
space and crowding operator in order to select some dominated ones. For ex-
ample, in figure 1(b) some dominated ones in the second area are selected as
individuals of next generation after some nondominated individuals in the first
area are deleted.

Fig. 1. Dividing objective space and crowding operator

3.3 Selection Operator Based on the Sum of Subspace Index

After dividing objective space and crowding operator, SDMOGA computes the
subspace index of individual according to equation (7) and (8).

indexj
i = �(indj

i −MINOV j)/DIV Ij� (7)

SumIndexi =
k∑

i=1

indexj
i (8)
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Where the indj
i is the jth objective value of the ith individual. The MINOV j

is the jth value of the MINOV. The indexj
i is the jth objective index of the ith

individual. The k is the number of objective. The SumIndexi is the sum index
of the ith individual.

General MOEAs based on Pareto ranking always first select the nondomi-
nated individuals as individual of next generation. These MOEAs give a higher
probability to the nondominated individuals than dominated ones. However,
some crowding individuals are deleted during the step of crowding operator in
SDMOGA. After dividing objective space and crowding operator, the popula-
tion is diversity. Now the nondominated individuals must first be selected to the
population of next generation. We design a selection operator based on the sum
of subspace index instead of Pareto ranking for SDMOGA. The method also
ensures that the nondominated individuals are first selected.

Figure 2 shows the distribution of individuals of a two objective optimiza-
tion problem after dividing objective space and crowding operator. In figure 2,
the subspace index of the seven individuals is respectively (2,1),(1,2),(3,2),(2,3),
(4,3),(3,4) and (3,1). The sum of their subspace index is respectively 3, 3, 5, 5,
7, 7 and 4. The order of the sum is 1, 2, 7, 4, 3, 5 and 6. However, according
to the number of individuals dominating them, the result of sorting the seven
individuals is also 1,2,7,4,3,5 and 6. This indicates that the selection operator
based on the sum of their subspace index is as the same as the selection operator
based on Pareto ranking.

Fig. 2. The distribution of individual

There is a case that several individuals have the same sum of subspace index
and the selection operator only selects part ones. We design a method that is
adjusted from the partitioned quasi-random selection(PQRS)[10] to complete
this task. The method first finds all the individuals that have the same sum
of subspace index. The second step selects an individual that has the minimum
subspace index of one objective and then selects the second individual that
has the minimum subspace index of another objective. The second step runs
repetitively until algorithm selects enough individuals.
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3.4 The Flow of SDMOGA

The flow of SDMOGA is as follow:

Alogrithm : (SDMOGA Main Loop)
Input: Popsize (population size)

maxgen (maximum number of generations)
Output: Pop (nondominated set)

Step 1: Initialization: Generate an initial population Pop and initialize all
parameter

Step 2: Calculation: Calculate the objective value of all individuals.
Step 3: Termination: If stopping criterion is satisfied then go to Step 8, oth-

erwise go to Step 4.
Step 4: Dividing objective space: Divide the current objective space accord-

ing to equation (5) and (6).
Step 5: crowding individual: Run Crowding operator for all individuals.
Step 6: selection: Select next generation population based on the sum of sub-

space index.
Step 7: Evolution operator: Run evolution operator for current population,

then go to Step 2.
Step 8: Output: Out the Pop that is nondominated population.

The main comparisons of SDMOGA locate at the crowding operator. In the worst
case,this operator requires O(N) comparison for all solutions in the population,
where N is the size of population. The case is that all new solutions locate at one
subspace, but the probability of this case is almost zero. The run-time complexity
of SDMOGA is O(N), where N is the size of population. It is much less than
the run-time complexity O(mN2) of general MOEAs. The storage complexity
is O(mN), where N is the size of population and m is the number of optimal
objective. The comparisons of the computational complexity of the SDMOGA
and other two popular algorithms are summarized in table 1, which all assume
in the worst case.

Table 1. Computational complexity of three algorithms

NSGA-II SPEA21 SDMOGA

Run-time complexity O(mN2) O(M3) O(N)
Storage complexity O(mN2) O(mN) O(mN)

1Where M is the sum of the size of current population and archive population.

4 Experiment

In this section,we apply SDMOGA to four nicely balanced test functions,which
are designed by Deb in 1999[11]. The four test functions are constructed accord-
ing to formula (9).
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Minimize T (X) = (f1(x1), f2(X))
Subject to f2(X) = g(x2, x3, . . . , xm)h(f1(x1), g(x2, x3, . . . , xm)) (9)
Where X = (x1, x2, . . . , xm)

The four test functions are as table 2.

Table 2. Four test functions

Name Function define Remarks

f1(x1) = x1 m = 30
ZDT1 g(x2, . . . , xm) = 1 + 9 ∗

�m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
�

f1/g

f1(x1) = x1 m = 30
ZDT2 g(x2, . . . , xm) = 1 + 9 ∗

�m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 − (f1/g)2

f1(x1) = x1 m = 30
ZDT3 g(x2, . . . , xm) = 1 + 9 ∗

�m
i=2 xi/(m − 1) xi ∈ [0, 1]

h(f1, g) = 1 −
�

f1/g − (f1/g) ∗ sin(10πf1)
f1(x1) = 1 − exp(−4x1) sin6(6πx1) m = 30

ZDT4 g(x2, . . . , xm) = 1 + 9 ∗
�
(
�m

i=2 xi)/(m − 1)
�0.25

xi ∈ [0, 1]
h(f1, g) = 1 − (f1/g)2

We compare the run-time of SDMOGA, NSGA-II[6] and SPEA2[4]. For all
test functions and algorithms, we set the parameters as follows. The size of
population is 50. The mutation probability is 0.05 and the crossover probability
is 0.9. The maximum generation is 1000. All programs are programmed based
on PISA that is designed by Bleulur[12]. The program of SPEA2 and NSGA-II
is copied from PISA. All program are run in PC computer with CPU 133MHZ
and memory 128M.

The run-time of three algorithms is summarized in table3, where the unit is
millisecond.

In table 3, the run-time of SMDOGA is the least among ones of three al-
gorithms. This shows that the SDMOGA reduces the run-time of MOEAs and
improves the efficiency by transforming the Pareto ranking into the sum of sub-
space index ranking.

The results of four function optimized by three MOEAs are as figure 3, 4, 5
and 6.

The programs of NSGA-II and SPEA2 are the source programs on PISA. The
results of SDMOGA optimizing four functions show that SDMOGA has a good
convergence performance and maintains a widely distributed set of solutions on
Pareto front. Figure 3, 4, 5 and 6 respectively show the results of three MOEAs
optimizing four functions. They also show three MOEAs, SDMOGA, NSGA-
II and SPEA2, have almost the same convergence performance and distributed
performance of solutions.
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Table 3. the run-time of three algorithms

ZDT1 ZDT2 ZDT3 ZDT4

SPEA2 20439 15866 20427 20346
NSGA-II 10489 9884 9934 10080
SDMOGA 2078 3533 2173 170

Fig. 3. The result of function ZDT1 Fig. 4. The result of function ZDT2

Fig. 5. The result of function ZDT3 Fig. 6. The result of function ZDT4

5 Conclusion

In this paper, we proposed a fast and efficient multi-objective optimization ge-
netic algorithm based on objective space divided. It has been proved both on
the views of experiment results and computational complexity analysis that this
approach could find the Pareto optimal solutions and obtain well distribution on
the Pareto optimal front fast. Four test functions are used to test this approach,
which the final simulation results proved that SDMOGA is not bad or better
than other methods in finding better distribution on the Pareto optimal front. It
is foreseeable that SDMOGA should be promising and find increasing attention
and application in future.
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Abstract. Many researches on genetic algorithm based multi-user de-
tection indicate initial population has crucial effects on the performance
of detectors. Commonly used method to obtain initial population is to
perturb the input chromosome randomly, which fails to fully exploit the
effective information delivered by input chromosome. This paper pro-
poses a kind of Hamming Sphere Solution Space based Genetic Multi-
User Detector (HSSSGMUD), which constructs the initial population in
a simple but effective manner. Firstly, select the input chromosome, and
regard it as the center of a sphere in PK dimensions space, where P
is data packet length and K is user numbers in Code Division Multiple
Access (CDMA) system. Then, the concept of Hamming sphere space
is used to obtain other chromosomes of initial population. Simulation
results show the proposed HSSSGMUD not only achieves lower Bit Er-
ror Ratio (BER) and better near-far resistant ability, but also converges
quickly.

1 Introduction

In the last two decades, multi-user detection has been a hot research topic for
its potential to alleviate multiple access interference and resist the near-far ef-
fect in Code Division Multiple Access (CDMA) system. Since the computation
complexity of the optimum multi-user detector (OMD) increases exponentially
with the number of users [1], researchers have devoted themselves to finding sub-
optimum detectors that can achieve better performance with less computation
complexity [2], [3], [4].

Recently, many researchers have proposed Genetic Algorithm based Multi-
User Detection (GAMUD) schemes [5], [6], [7] [8], [9]. Juntti firstly proposed the
GAMUD for synchronous CDMA system in AWGM channels, and he pointed out
it is necessary to provide better initial population for genetic algorithm to achieve
better detection results [5]. The GAMUD proposed by Yen K and Hanzo [8] can
obtain near single user performance. In their method, a local search is performed
ahead, and then genetic algorithm is used to evolve the local search results. To
improve the convergence speed of genetic algorithm, Ergün C and Hacioglu K
[7] took the multistage detector as a “genetic operator” to process the detection
results further at each generation, with the aim to provide a better solution
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assembly for next generation, and thus to accelerate the convergence speed.
Evidently, better initial or medium-term population is an important premise for
GAMUD to yield promising results.

According to this train of thoughts, this paper proposes a Hamming sphere
solution space based genetic multi-user detector (HSSSGMUD), which is distin-
guished for using the concept of sphere solution space to construct the initial
population. This new initial population construction method can fully exploit
the effective information embedded in the input chromosome, that ensures a fast
convergence speed and excellent detection performance.

2 System Model

Assume there have K active users in the asynchronous CDMA system, and each
user employs the binary phase shift keying (BPSK) modulation, then baseband
received signal can be written as

r(t) =
P∑

i=1

K∑
k=1

Akb
(i)
k sk(t− iTb − τk) + n(t), (1)

where Ak, b(i)k ∈ {−1, 1}, sk(t) and τk ∈ [0, Tb)are the signal amplitude, ith
bit, signature waveform and time delay of the kth user, respectively. Tb is bit
interval duration, P is the length of data packet, and n(t) is the gauss white
noise with two-side power spectrum density N0/2. Without loss of generality,
the time delays of each user are assumed to satisfy the followed relation, 0 ≤
τ1 ≤ τ2 ≤ ... ≤ τk < Tb.

In the Conventional Detector (CD), the received signal r(t) is passed through
a bank of filters matched to the signature waveforms of each user, and then the
outputs of matched filters are sampled at symbol rate. So the matched filters
output vector is:

y = HAb + n, (2)

where H∈ RPK×PK is the correlation matrix of signature waveforms, A is
the diagonal matrix composed of signal amplitude, b and n are K-vectors of
information bits and noise, respectively.

The OMD is a kind of maximum-likelihood estimate algorithm, which can
achieve the theoretical minimum Bit Error Ratio (BER) value. The optimum
detection result satisfies the following expression [1]

b̂OMD = arg
{

max
b∈{−1,+1}PK

(2yT b− bT Hb)
}
. (3)

Since the computation complexity of OMD increases with the number of users,
most research efforts have been focused on suboptimum multi-user detectors.

Decorrelating (DEC) detector [10], [11], [12] is one of the most popular linear
detectors, which uses the inverse of correlation matrix (H−1) to remove multiple
access interference. The output of DEC detector can be expressed as

bDEC = sign(H−1y) = sign(Ab + H−1n). (4)
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DEC detector can achieve optimum near-far resistance, but fail to achieve the
minimum BER because it causes noise enhancement.

3 Hamming Sphere Solution Space Based Genetic
Multi-User Detection

3.1 Genetic Algorithm [13], [14]

Genetic algorithm (GA) was inspired by natural selection and genetic mechanism
of biology. It is a kind of massively parallel, random and self-adaptive search-
ing algorithm, which is characterized by the strategy of population searching,
and the information exchange between different chromosomes of the population.
Thus, GA can solve many problems that are beyond the ability of conventional
algorithms, such as chaos problems, random problems and non-linear dynamic
problems.

GA starts from a population consists of a fixed number of chromosomes, and
each chromosome corresponds to a possible solution of the problem to be solved.
In each generation, all chromosomes in the population are evolved, and then are
evaluated according to the fitness function. Generally, the chromosomes with
high fitness values have more chances to be selected as parent chromosomes
to give birth to offspring chromosomes by crossover and mutation. The newly
produced offspring chromosomes compose a new population. Then the new pop-
ulation repeats the above steps until a certain number of generations, or a sat-
isfactory solution is produced.

3.2 Hamming Sphere Solution Space Based Population Initialization

As described in Section 1, the performance of GAMUD depends heavily on
the selection or construction of initial population. So far as the GAMUDs in the
literatures the author can find are concerned, the initial populations are obtained
by the method of perturbing the input chromosome randomly, which usually fails
to exploit the useful information delivered by the input chromosome. In this
paper, the author proposes a simple but effective construction method of initial
population, which can make full use of the effective information embedded in
the input chromosome, and ensure excellent detection performance of GAMUD.

Firstly, the output of a detector, such as the DEC detector, minimum mean
square error detector, multistage detector, interference cancellation detector and
etc, is selected as the input chromosome bInputof genetic algorithm. Then, the
rest chromosomes bInitial in the initial population are selected according to the
following equation

Sd(bInput) =
{
bInitial ∈ {−1,+1}PK |‖bInitial − bInput‖ ≤ d

}
. (5)

where Sd(bInput)is the Hamming sphere solution space with the center bInput

and radius d, PK is the dimension of the sphere solution space. Therefore, the
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Hamming distance between the input chromosome bInput and the other selected
initial chromosomes bInitial is d.

In this paper, we focus on d=1. Then, the Hamming distance between the
input chromosome and the other chromosomes in the initial population is 1,
and the maximum Hamming distance between arbitrary two chromosomes is 2.
Since the input chromosome is already a better solution, the initial population
constructed by the aforementioned method can exploit the effective information
embedded in the input chromosome more completely than the initial population
obtained by randomly perturbing all the genes of the input chromosome. So the
Hamming sphere space based initial population ensures the subsequent evolution
towards the advantaged direction.

3.3 Hamming Sphere Solution Space Based Genetic Multi-User
Detection (HSSSGMUD)

The implementation of HSSSGMUD consists of the followed procedures.

(1) Encoding
Binary encoding and float encoding are two approaches to transform the pos-
sible solution to chromosome. Binary encoding is used widely for its simplicity
and systematic theories. In binary encoding, each gene in the chromosome has
only two possible values, +1 or –1. In multi-user detection, since the binary solu-
tion vector b of length PK is a chromosome by origin, there is no need to encode.

(2) Hamming Sphere Space Based Population Initialization
The number of chromosomes in the population is denoted as population size
Np, which depends on the complexity of the problem to be solved. To keep the
balance between the variety of population and the computing time, the value of
Np should be moderate. In this paper, Np is set to 20.

The initial population can be constructed by selecting several chromosomes
from the solution space randomly. Generally, prior knowledge is incorporated in
the construction of initial population to provide a better start for the evolution.

In this paper, the output of DEC detector is selected as the input chromosome,
i.e., bDEC= bInput. Using the Hamming sphere space based initial population
discribed in Section 3.2, and let the radius of sphere space d=1, the rest Np-1
chromosomes in the initial population can be obtained.

If the radius of sphere space d=PK, the Hamming sphere space based pop-
ulation initialization is equivalent to the completely random population initial-
ization.

(3) Establishment of Fitness Function
To assess the performance of chromosomes, it is necessary to establish a non-
negative fitness function. The better the chromosome is, the higher its fitness
value should be. From the output of OMD in equation (3), it is easy to find the
purpose of multi-user detection is to maximize the followed cost function,

c(b) = 2yT b− bT Hb. (6)
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Since the cost function c(b) is not non-negative, the following fitness function
is defined

f(b) = K + (c(b)− cw), (7)

where K is a positive constant, cw is the lowest fitness value in the current pop-
ulation.

(4) Selecting Genetic Operator
Genetic operators including selection, crossover and mutation, they determine
the evolution fashion of the chromosomes in the population, and directly affect
the speed and performance of the evolutions.

This paper uses two kind selection operators, elitist model and fitness propor-
tional model. Firstly, the chromosome with the highest fitness value is directly
copied to the next generation according to the elitist model. Then, uses the
roulette wheel in fitness proportional model to select parent chromosomes to
give birth to offspring chromosomes for next generation.

For the crossover operator concerned, the one-point crossover scheme is adop-
ted in the paper. Firstly, a crossover point, which is less than the length of the
chromosomes, is selected randomly. Then the portions after the crossover point
are exchanged between two parent chromosomes.

In this paper, the mutation operator is the simple but widely used one-point
mutation. Similar to crossover operator, one or more mutation points are selected
randomly. Then the genes on these mutation points are flipped from +1 to –1
one by one, and vice versa.

After the selection, crossover and mutation, the newly obtained offspring chro-
mosomes are ready for next generation.

(5) Termination condition
The termination condition of HSSSGMUD can be a maximum evolution gener-
ations or the best chromosome in the population satisfies the requirements.

4 Simulation Results and Analysis

In the following three sets of simulations, the Gold sequences of length L=31
are used as spreading sequences, and there are 10 users in the asynchronous DS-
CDMA system in AWGN channels. The first user is assumed to be the desired
one. All detectors that incorporated with genetic algorithm use the following
default parameters: the population size Np=20, crossover probability pc=0.85,
mutation probability pc=0.05, and the maximum evolution generations of the
first two sets of experiments Ng=10. For simplicity, experiments are mainly
focused on the case that the output of DEC detector is selected as the input
chromosome for GAMUD. Similar results can be obtained for minimum mean
square error detector, multi-stage detector, decision-feedback detector, etc.

In the first set of experiments, assume all users have the same signal power.
The cumulative BERs’ varying with the SNR values are plotted in Fig.1 for
the CD detector, DEC detector, GAMUD and HSSSGMUD with the output of
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DEC detector as the input chromosome (denoted as GADEC and HSSSGDEC
respectively). For comparison, the BER curve for single user case is also plotted
in Fig.1. Obviously, the HSSSGDEC detector achieves the lowest BERs, it can
provide about 1dB gains over GADEC detector when the BER is 10−3.

2 3 4 5 6 7 8
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-2

10
-1

SNR [dB]
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E

R

CD
DEC
GADEC
HSSSGDEC
Single User

Fig. 1. BERs of CD, DEC, GADEC and HSSSGDEC detectors versus SNR

Furthermore, the cumulative BERs’ of CD, MMSE, GAMMSE, HSSSGMMSE
detectors varying with the SNR values are plotted in Fig.2. This figure indicates
the HSSSGMMSE detector possesses the best BERs performance. And the per-
formance of HSSSGMMSE detector and HSSSGDEC detector shown in Fig.1
are close.

It should be noted the HSSSGDEC and HSSSGMMSE are still random search.
The main difference between HSSSGDEC/HSSSGMMSE and GADEC/
GAMMSE is the populatin initialization method.

In the second set of experiments, the near-far resistance ability of CD, DEC,
GADEC and HSSSGDEC detectors are compared. Assume the SNR of the first
user is fixed on 10dB, while the signal power of other users (interfering users)
are varying. Then the BER curves of the first user are depicted in Fig.3 for the
above four detectors.

As expected, the HSSSGDEC detector with the initial population constructed
by the method introduced in Section 3.2 apparently outperforms the common
GADEC with the initial population constructed randomly. The HSSSGDEC
detector possesses the best near-far resistance ability among all the detectors.

In the third set of experiments, assume all users have the same signal power,
and the SNR is fixed at 6dB. Then, the convergence performance of GADEC and
HSSSGDEC detectors are compared in Fig.3. This figure indicates the HSSS-
GDEC detector converges to a satisfying solution after 10-15 generations, and
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Fig. 2. BERs of CD, MMSE, GAMMSE and HSSSGMMSE detectors versus SNR
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Fig. 3. BERs of CD, DEC, GADEC, HSSSGDEC detectors versus the near-far ratio

this convergence speed is much faster than that of GADEC. For example, the
performance of GADEC after 40 generations is only equivalent to that of HSSS-
GDEC after 6 generations. In other words, the BER performance curves tell us
the HSSSGDEC detector can find much better suboptimal solution vectors than
GADEC while with less computing complexity.

In a word, the aforementioned experiment results demonstrate the efficiency
of HSSSGADEC detector, and verify the important role of initial population
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Fig. 4. BERs of GADEC and HSSSGDEC detectors versus the number of generations

in GAMUD. Good initial population is an important guarantee for excellent
performance and fast convergence.

5 Conclusions

The concept of Hamming sphere solution space is used to construct initial popu-
lation, and a kind of HSSSGMUD is proposed. Using different detectors’ outputs
as the input chromosome leads to a series of HSSSGMUDs. This paper mainly
focuses on the HSSSGDEC detector, which uses the output of DEC detector as
input chromosome. Simulation results demonstrate with moderate population
size and 10 generations evolution, HSSSGDEC detector can achieve excellent
performance in BER and near-far resistance ability. Compared with common
GADEC, HSSSGDEC converges quickly that is propitious to the real-time im-
plementation. The results of HSSSGDEC detector can be extended to other
HSSSGMUDs.
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Abstract. How to detect global optimums of the complex function is of
vital importance in diverse scientific fields. Though stochastic optimiza-
tion strategies simulating evolution process are proved to be valuable
tools, the balance between exploitation and exploration of which is diffi-
cult to be maintained. In this paper, some established techniques to im-
prove the performance of evolutionary computation are discussed firstly,
such as uniform design, deflection and stretching the objective function,
and space contraction. Then a novel scheme of evolutionary algorithms
is proposed to solving the optimization problems through adding evolu-
tion operations to the searching space contracted regularly with these
techniques. A typical evolution algorithm differential evolution is chosen
to exhibit the new scheme’s performance and the experiments done to
minimize the benchmark nonlinear optimization problems and to detect
nonlinear map’s unstable periodic points show the put approach is very
robust.

1 Introduction

Evolutionary algorithm is an umbrella term used to describe computer-based
problem solving systems which use computational models of some of the known
mechanisms of evolution as key elements in their design and implementation.
Although simplistic from a biologist’s viewpoint, these algorithms are sufficiently
complex to provide robust and powerful adaptive search mechanisms [1,2].

A variety of evolutionary algorithms (EAs) have been proposed, such as ge-
netic algorithms, evolution strategies, evolutionary programming, particle swarm
optimization (PSO) and differential evolution (DE) algorithm, Bayesian opti-
mization algorithm (BOA) et al.[1,2,3]. They have been successfully applied for
tackling diverse optimization problems during the past few years without the as-
sumptions on the continuity and differentiability of the objective function while
those are indispensable to deterministic approaches such as Feasible Direction
and Generalized Gradient Descent methods.

EAs maintain a population of structures that evolve according to rules of
genetic operators, such as reproduction, recombination and mutation. Each
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individual in the population receives a measure of its fitness in the environment.
Much EA research has assumed that the two processes that most contribute
to evolution are crossover and fitness based selection/reproduction. Evolution,
by definition, absolutely requires diversity in order to work. And in nature, an
important source of diversity is mutation[2,3].

Mutation prevents the GA from converging prematurely, by introducing di-
versity in the population, but the mutation rate has to be carefully chosen: a too
small mutation rate makes this operator ineffective, while a too large mutation
rate may destroy the good genetic material found by the other search operators
(selection and crossover)[2,3].

Reproduction focuses attention on high fitness individuals, thus exploiting
(cf. eploitation) the available fitness information. Recombination and mutation
perturb those individuals, providing general heuristics for exploration[3]. How
to maintain a proper balance of exploration-exploitation as the problems solved
need become a dilemma in studies.

To overcome this dilemma and to decrease the EAs’ tendency towards lo-
cal optima, firstly some established techniques to improve the performance of
evolutionary computation are discussed to design EAs to obtain a more effec-
tive search mechanism by combining exploitation with exploration of the search
space. Then a novel scheme of evolutionary algorithms is proposed and as the
experiments done the put scheme is valid.

The rest of this paper is organized as follows. In Section 2, we introduce some
established techniques as uniform design, deflection and stretching the objective
function, and space contraction. In Section3 Details of the novel scheme are pro-
posed. In Section4 experiments done with the benchmark nonlinear optimization
problems and nonlinear map’s unstable periodic points are given and the results
are analyzed. And Section 5 summarizes the paper.

2 Some Established Techniques

In this section, some established techniques as uniform design[4], deflection and
stretching the objective function [5] is introduced, and space contraction to EA
is proposed.

2.1 Uniform Design

We uses uniform design method [4] to generate the initial population in feasible
field so as to have the property of convergence in large scale without better
approximation of the unknown parameter as iterative initial point.

Suppose ui j is the element of uniform design table Un

(
nN
)
, ai j = (2ui j −

1)/2n, j = 1, . . . , N , then set PM = {ak = (ak1, . . . , akN ) , k = 1, . . . ,M} con-
tains M points uniformly distributed[4] in [0, 1]N .

It is known that set generated by uniform design method is better than by
random method statistically in reflecting the objective function’s distribution
property [4] just as Fig.1. shows.
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Fig. 1. Sets generated by uniform design and random method

2.2 Deflection and Stretching

We restrain the normal EA’s local convergence limitation virtually through de-
flection and stretching[5] of objective function.

If the objective function f(x) is full of local optimums and more than one
minimizer is needed, we choose another established techniques to guarantee the
detection of a different minimizer, such as deflection and stretching are intro-
duced. Suppose objective function is f(x), we use deflection technique[5] as below
to generate the new objective function F (x):

F (x) =
k∏

i=1

[tanh(λi ‖x− x∗i ‖)]
−1
f(x) (1)

where x∗i (i = 1, 2, · · ·k) are k minimizes founded, λi ∈ (0, 1).
We also introduce stretching technique[5] to generate the new objective func-

tions G(x) and H(x) as new objective functions:

G(x) = f(x) + β1 · ‖x− x∗i ‖ · [1 + sgn (f(x)− f(x∗i ))] (2)

H(x) = G(x) + β2 ·
1 + sgn (f(x)− f(x∗i ))
tanh [δ (G(x) −G(x∗i ))]

(3)

where λ1, λ2, δ > 0.
Fig.2. shows deflection and stretching effects on f(x) = cosx at x = π. In this

way, we see that the searching algorithms will not locate x = π.

2.3 Space Contraction

To avoid exploitation excessively in redundant space and searching efficiency in
the whole feasible space, make EA with relative fewer generations as a step, we
put a novel technique through a technique space contraction simulating the idea
of sequential number theoretic optimization (SNTO)[6] as below.
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Fig. 2. Deflection and stretching effects on f(x)

If a local optimum Qg is found, we define a new searching space D(t+1) =
[a(t+1), b(t+1)] centering Qg from the current searching space D(t) = [a(t), b(t)] as
below: {

a
(t+1)
i = max(x(t)

i − γc(t)i , a
(t)
i ),

b
(t+1)
i = min(x(t)

i + γc(t)i , b
(t)
i ),

(i = 1, 2, · · · , s) (4)

where γ in (0,1) is pre-given contraction ratio. Then we use EA to search in the
new space to get a new optimum Q′g , save the better one in Q′g and Qg .

3 A Novel United Evolutionary Algorithm Scheme

With these techniques, we can put a novel United Evolutionary Algorithms
Scheme (UEAS) to progress the EAs.

Algorithm 1. United Evolutionary Algorithms Scheme (UEAS)
Step0: Initialization. t = 0, D(0) = D, a(0) = a, b(0) = b, γ ∈ (0, 1);
Step1: Outer cycle Termination condition Judging. If the optimums wanted are
found, output them and terminate, otherwise deal with the objective function
with the deflection and stretching techniques;
Step2: Generate the initial set A(t) on [a(t), b(t)] by uniform design method,
evaluate the fitness and note the best one Qg ;
Step3: Use EA to get a current optimum; update the best one Qg;
Step4: Inner cycle Termination condition Judging. Given δ > 0 enough small,
c(t) = (b(t) − a(t))/2, if max c(t) < δ, then x(t),M(t) are accept, go to Step1,
otherwise go to Step5;
Step5: Space contraction. Define a new region D(t + 1) = [a(t+ 1), b(t+ 1)] by
(4) with γ = 0.5, t = t+ 1, go to Step2.

As many experiment results reported suggest that too many generations do
not bring the optimum better than the local one [7], thus the EA in Step3 of
Algorithm1 has relatively fewer generations contrast to the normal EAs, usually
30 to 1000.
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Through Algorithm 1, firstly UEAS can detect the objective function’s char-
acter as far as possible with the initial set by uniform design method. Secondly
UEAS can get more optimums and avoid premature through the deflection and
stretching techniques. Thirdly UEAS can avoid exploitation excessively in re-
dundant space and search in the most prospective space of the feasible field,
so it can jump the local optimum easier. Fourthly with the help of Outer cycle
Termination condition Judging UEAS can find all the optimums sequentially.
And lastly if EA in Step3 is valid enough, UEAS will not contract the searching
space, and in this sense EAs are the special cases of UEAS, then UEAS can com-
bine most of current stochastic optimization strategies such as such as Genetic
Algorithms, Evolutionary Programming, PSO, DE algorithm, BOA et al.

Now we choose a typical stochastic optimization strategies DE [8,9] as the
Step3 of UEAS to show its advantages.

DE algorithm grew out of Price’s attempts to solve the Chebychev Poly-
nomial fitting Problem that had been posed to him by Storn [9]. It utilizes
Mn–dimensional vectors, xi = (xi1, · · · , xin) ∈ S, i = 1, · · · ,M as a population
for each iteration, called a generation, of the algorithm. At each generation,
two operators, namely mutation and crossover (recombination), are applied on
each individual, thus producing the new population. Then, a selection phase
takes place, where each individual of the new population is compared to the
corresponding individual of the old population, and the best between them is
selected as a member of the population in the next generation [8,10]. The details
of the DE are given as below [8]:

Algorithm 2 [8]. Differential Evolution (DE) Algorithm
Step1. Initialization. Random generateM individuals in feasible region S,G = 0,
crossover constant CR > 0, mutation constant CF = 0.5, Gmax, define a fitness
function f(x), value the population and label the best individual in current
population as Q.
Step2. DE Evolution. g = g + 1, for each xi = (xi 1, xi 2, · · · , xi n):

(1) Mutation. Random choose four mutually different individuals xa, xb, xc,
xd in the current population to get a vector Dabcd = (xa − xb) + (xc − xd), use
it to generate new vector ξi = (ξi 1, . . . , ξi n) as below:

ξi = Q+ CF ×Dabcd (5)

(2)Crossover. To get a new testing vector Ui = (ui 1, . . . , ui n) with ξi :

ui j =
{
ξi j , if (randb(j) < CR) or (j = rnbr(i));
xi j , if (randb(j) ≥ CR) and (j �= rnbr(i)). (6)

where rnbr(i) is random integer in {1, 2, . . . , n}, randb(j) is j-th random real in
[0, 1], j = 1, 2, . . ., n.

(3) Replacement. Remain the better one between xi and Ui:

xi =
{
Ui , if f(Ui) < f(xi);
xi, if f(Ui) ≥ f(xi).

(7)
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Step3. Updating. Find the current best Q′ and remain the better between Q and
Q′ as the new Q.
Step4. Termination. If g > Gmax, then export the Q, else go back to Step2.

4 Experiments

With DE as Step3 of UEAS, we will deal with the benchmark nonlinear opti-
mization problems and nonlinear map’s unstable periodic points and analyze the
results.

eg.1. Rastrigrin function[11] f(x) =
20∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]
, ‖x‖2 ≤ 100

For this function’s optimization, make the inner cycle 200, γ = 0.5 in Algo-
rithm1 and combine DE with Deflection and Stretching techniques and uniform
design method to initial set, we can get optimums with the same value 0 as
reported as below:

Fig. 3. Comparison of the best and average fitness in each contraction

From Fig.3, it can be concluded that UEAS can avoid local optimum easily
and locate the best one through contraction.
eg.2 f2(x, y) = −[20+x sin(9πy)+ y cos(25πx)], where (x, y) ∈ D = {(x, y)|x2 +
y2 ≤ 81}, its minimum value −32.71788780688353, correspond global minim
point is (−6.44002582194051,−6.27797204163553). Fig.4 is f2 on D, where its
value out of D is put as −40.
f2 is a multi–modal function difficult to be optimized. Its definition region D

is big, x sin(9πy) and y cos(25πx) oscillate in different directions in their ways
and it has deep valley clatters near to 4 points.

For this function’s optimization, make the outer cycle just 1, and combine DE
with Deflection and Stretching techniques and uniform design method to initial
set, we can get 6 optimums with the same value −32.7178878068835 as reported
as below:

(−6.44002582207099, −6.2779720144943), (−6.44002582208887, −6.2779720122268),
(−6.44002582235322, −6.2779720135692), (−6.4400258222786, −6.2779720141167),
(−6.44002582226788, −6.2779720144792), (−6.44002582235673, −6.2779720134721)
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Fig. 4. f2 on D

eg.3 Hénon map (
xn+1
yn+1

)
= φ

(
xn

yn

)
=
(
a+ byn − x2

n

xn

)
(8)

When a and b of system (8) is a∗ = 1.4, b∗ = 0.3, (8) is chaotic, Hénon chaos
has strange attractor with a unstable fixed point in it [12,13].

With a new defined function (9) below as fitness function we can use UEAS
with DE to get its different unstable period orbits.

F (X) = ‖φp(X)−X‖2 (9)

where parameter p is the order of period orbits, X = (xn, yn)T . And Fig.5 shows
the figure of function

∥∥φ11(X)−X
∥∥

2, we can see it is so difficult to optimize.

Fig. 5. The figure of function
∥∥φ11(X) − X

∥∥
2

With the parameters above for UEAS with DE, various period points found
by UEAS are given in Table 1, where D is value of F (X).

Fig.6 shows the correspondent unstable period orbits in Table 1 in two
dimensions.

Experiments done above illustrate that UEAS with DE for optimization prob-
lems can improve the global convergence and have the advantages of high preci-
sion and robustness to such a certain extent.
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Table 1. Hénon map’s unstable period points

p Period points D

1 (0.883896267925307, 0.883896267925306) 1.23259516440783×10−32

11 (0.462401211021121,0.943311629120628) 1.97215226305253×10−31

13 (0.554806969558445,0.870801140362593) 5.47204354507602×10−21

23 (0.535985487833863,0.886448189518229) 6.04937684913244×10−6

Fig. 6. Hénon map’s period orbits

5 Conclusions

In this paper we propose a novel scheme UEAS combining with the concept
of evolutionary calculation technique and some established techniques. And the
experiments done show the proposed scheme is robust.

Though experiments are done only by UEAS with DE, we can derive from it
that UEAS with the other evolutionary algorithms straightforwardly.
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Implicit Elitism in Genetic Search
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Abstract. We introduce a notion of implicit elitism derived from the mutation
operator in genetic algorithms. Probability of mutation less than 1/l (l being the
chromosome size) along with probability of crossover less than one induces im-
plicit elitism in genetic search. It implicitly transfers a few chromosomes with
above-average fitness unperturbed to the population at next generation, thus main-
taining the progress of genetic search. Experiments conducted on one-max and
0/1 knapsack problems testify its efficacy. Implicit elitism in combination with
traditional explicit elitism enhances the search capability of genetic algorithms.

Keywords: Genetic Algorithms, Premature Convergence, Elitism.

1 Introduction

Genetic algorithms (GAs) [8] are general purpose optimization procedures based on
law of survival of the fittest in natural genetics. GAs explore and exploit a population of
potential solutions through crossover, mutation and selection operators over a number
of generations and march toward the global optimum. But it stops progressing toward
the global optimum after a few generations and gets trapped at a sub-optimal solution,
which is termed premature convergence.

Loss of diversity in the population is commonly regarded as the cause for occurrence
of premature convergence [1]. Suitable genetic representation [13], choice of suitable
values of the genetic parameters such as the population size, the probability of crossover
and the probability of mutation are important to avoid the phenomenon. Generally, the
parameter values are tuned and fixed before the start of GA run. Adaptation of genetic
parameters has also been used with mixed results [5]. In addition, several methods in-
volving extra computation such as crowding, sharing, restricted mating, etc. have been
used with genetic algorithms to avoid premature convergence [15].

Traditionally, mutation operator has been given a background role of maintaining
diversity in the population. Recently, importance of the operator in successful genetic
search has been recognized [12]. In this paper, we introduce a notion of implicit elitism
based on mutation operator in GAs [2]. Implicit elitism causes some of the high-fitness
chromosomes to pass on unperturbed to the population at the subsequent generations,
maintaining the progress of genetic search. We report the results obtained from the
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experiments on one-max and 0/1 knapsack problems to demonstrate efficacy of implicit
elitism.

One-max problem consists of finding a binary string of length n so as to maximize
the number of ‘1’ bits in the string. The problem is frequently used to verify theoretical
aspects of genetic algorithms [10].

0/1 knapsack problem is a well studied real-world problem [3, 4, 11]. It is defined
as: given a profit vector pi, a weight vector wi and knapsack capacity C

Maximize
n∑

i=1

pixi subject to
n∑

i=1

wixi ≤ C

where xi = 0 or 1, (i = 1, . . . , n), n is the number of items.

The paper is organized as: section 2 introduces the notion of implicit elitism, sec-
tion 3 explains the experimental setup and the results obtained, and section 4 contains
our concluding remarks.

2 Implicit Elitism

A randomly generated chromosome represents a random sample from the search space
of the candidate objective function [12]. A function value corresponding to a point in the
search space can be considered as a cumulative effect of the n variables of the function.
The sum or cumulative effect of mutually independent random variables with a common
distribution follows normal distribution approximately under certain conditions (central
limit theorem [7]). The theorem holds for large classes of dependent variables also [7]
and even if the individual random variables have different distributions [9]. For normal
distribution, the maximum frequency occurs at the mean value and it has a crowding
of values around the mean. This leads us to the inference that the function value of a
randomly generated chromosome will be around the mean function value. Likewise,
random perturbations in the strings caused by crossover and mutation operators push
the strings toward the mean function value.

The selection operator in a GA pulls the strings toward the optimum. GA converges
to a suboptimal value when equilibrium is reached between the two opposite forces.
Elitism has been used in GAs to obtain near optimal results, where the individual having
the best function value in a population is retained explicitly in the population at the
next generation. We call this traditional form of elitism explicit elitism. Elitist GA has
theoretically been shown to converge to the global optimum [12, 14].

Mutation operator is applied to every gene in a chromosome with a pre-specified
probability1. A pm = 1/l indicates that on an average one gene will be changed in a
string of length l. Mutation with pm ≥ 1/l perturbs gene(s) in each chromosome, thus
perturbing all the chromosomes in the population. With pm ≥ 1/l, even the elite copied
to the new population with explicit elitism is subject to perturbation by the mutation
operator and has a tendency to move toward the mean function value. Thus, with the

1 We denote the probability of mutation as pm, the probability of crossover as pc and the string
length as l.
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pm ≥ 1/l, a GA with or without explicit elitism is likely to lose its strength to march
toward the global optimum after a few generations.

There is a non-zero probability of all the genes remaining unperturbed in a string
with pm < 1/l and hence that of the string remaining unperturbed. Mutation operator
leaves a few strings unperturbed in the population with this value of the pm. Crossover
operator with pc < 1 also leaves a few strings unperturbed. Overall, a few strings pass
on unperturbed to the new population with the above values of pm and pc. Further,
the selection operator is fitness biased and selects the high fitness strings with higher
probability. Thus, the probability of a few high fitness strings being copied without any
change to the new population is non-zero. We call the process implicit elitism.

With implicit elitism, the population at the next generation is a mixture of the per-
turbed chromosomes and the chromosomes passed on unperturbed from the previous
generation. If the perturbed chromosomes have higher fitness than the unperturbed chro-
mosomes, they get selected to form the population at the subsequent generation. Other-
wise, the unperturbed chromosomes are passed on to the population at the subsequent
generation. The elite retained through explicit elitism also has a non-zero probability
of passing on unperturbed to the subsequent population. Thus, the GA with implicit
elitism maintains its strength till it reaches the global optimum, because it is either at
the same level of fitness or it is moving ahead.

Let pm = h. 1l , where h is a mutation factor. Value of h < 1 makes the pm < 1/l.
Crossover operator is applied after selection of parents for reproduction. The selected
chromosomes undergo crossover with a pre-specified value of pc. After selection and
crossover, all the chromosomes in the population are subjected to a gene-level mutation
operator. Values of h < 1 and pc < 1 imply occurrence of implicit elitism in GAs.

3 Experiments and Results

3.1 One-Max Problem

Experiments have been conducted on problem instances of sizes 100, 500 and 1000.
We use a binary-coded GA with single-point crossover, pc = 0.5, linear rank se-

lection, population size equal to 60 and number of generations equal to 2000. GA is
executed with and without the explicit elitism. Values of the mutation factor h are taken
as 0.7, 1.0 and 1.5. Implicit elitism occurs when values of both pc and h are less than
one. A value of h = 1.0 is at the boundary of occurrence and non-occurrence of implicit
elitism. We take still higher value of h = 1.5 for comparison purposes.

Table 1 shows the results of 10 experiments. Effect of implicit elitism is evident from
the results. GA with explicit elitism as well as without explicit elitism provides the best
results when h = 0.7. Explicit elitism has a positive effect on the results. The GA with
implicit elitism alone can provide better results compared with the GA using explicit
elitism only. GA without explicit elitism provides an average function value of 965.9
with h = 0.7 (implicit elitism), which is better than the average value of 962.6 reached
by the GA with explicit elitism and h = 1.5 (no implicit elitism).

Figures 1 and 2 show the search progress of the GA without and with explicit elitism
repectively on the one-max problem instance of size 1000 (single experiment). The
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Table 1. Result of GA execution on One-max problem. (W-worst, B-best, A-average, SD-
standard deviation) The best results for the categories ‘best’ and ‘average’ are highlighted. Ex-
plicit elitism is the same as the traditional form of elitism in genetic algorithms. Implicit elitism
occurs when h < 1 and pc < 1.

n Without explicit elitism With explicit elitism
h = 0.7 h = 1.0 h = 1.5 h = 0.7 h = 1.0 h = 1.5

100 W 98 95 90 100 100 100
B 100 98 95 100 100 100
A 99.5 96.3 91.5 100 100 100

SD 0.6 0.8 0.9 0 0 0
500 W 487 464 440 500 498 489

B 495 472 446 500 500 499
A 490.3 469.1 443.6 500 499 494

SD 2.0 2.6 1.8 0 0.6 2.6
1000 W 960 927 871 996 983 955

B 977 934 883 1000 992 969
A 965.9 930.2 876.3 998.1 988.1 962.6

SD 4.7 2.4 3.6 1.1 2.7 3.9

GA with implicit elitism (h = 0.7) can reach much better maximum function value
compared with the other two values of h that don’t exhibit implicit elitism.

3.2 0/1 Knapsack Problem

Test data for 0/1 knapsack problem are generated for n equal to 100, 500 and 1000
using the values: wi = uniform[1, 100], pi = uniform[1, 100] and C = 0.5

∑n
i=1 wi.

Binary coding is used for the 0/1 knapsack problem. Being a constrained optimiza-
tion problem, the strings may represent infeasible region of the search space. GAs can
be used to solve such problems by incorporating a penalty term in the objective function

Table 2. Result of GA execution on 0/1 Knapsack problem instances

n Optimum Without explicit elitism With explicit elitism
h = 0.7 h = 1.0 h = 1.5 h = 0.7 h = 1.0 h = 1.5

100 4345 W 4105 3979 3796 4279 4254 4166
B 4182 4120 3954 4326 4318 4274
A 4143 4030 3887 4310 4278 4240

SD 22 38 56 14 19 32
500 20602 W 18696 18228 17619 19801 19438 19101

B 19149 18576 18163 20041 19875 19357
A 18978 18437 17780 19927 19660 19226

SD 136 107 155 69 108 90
1000 40887 W 36481 35520 34550 38250 37791 36657

B 37095 36643 35402 38752 38284 37624
A 36844 36064 34854 38491 38007 37215

SD 178 324 223 159 142 264
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Fig. 2. Progress of the GA with explicit elitism on One-Max Problem instance of size 1000

[11]. Alternately, the infeasible strings may be removed from the population altogether
resulting in death penalty. Repair algorithms can also be used to convert the infeasible
strings into feasible ones. We use the method of death penalty where an infeasible string
in the population is replaced with a newly generated feasible string.

All the genetic operators and parameter values taken for the 0/1 knapsack problem
are the same as described for the One-Max problem in the subsection 3.1. Table 2 shows
the results obtained for the three test instances in 10 experiments. The best results are
obtained with h = 0.7. Average profit values obtained are equal to 18978 with h = 0.7,
18437 with h = 1.0 and 17780 with h = 1.5 for the instance of size 500 when the
GA is run without explicit elitism. Overall, the best results are obtained for all the three
problem instances when explicit elitism is combined with implicit elitism (h = 0.7),
demonstrating synergetic role of the two forms of elitism in this problem also.

A single experiment of the GA has been conducted to study the progress of GA with
the three values of h on the 0/1 knapsack problem instance of size 1000. Figures 3 and 4
show the progress of GA without and with explicit elitism respectively. GA with higher
values of h starts faster due to exploration of the search space of this combinatorial
problem. But the performance with higher values of h is ultimately subdued. The best
profit values are reached when h = 0.7.
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Fig. 4. Progress of the GA with explicit elitism on 0/1 Knapsack Problem instance of size 1000

3.3 Effect of Mutation Factor (h)

Genetic algorithms require a balance between exploration and exploitation of the search
space for effective problem solving [6]. GA with a very small value of mutation prob-
ability can’t explore the search space. We have conducted experiments with the values
of h varying between 0.1 and 2.0 to observe the point where the GA can explore as well
as exploit the seach space to the maximum. We take one instance of size 1000 for both
the test problems for this purpose. GA has been executed for 5000 generations. All the
other genetic operators and parameters are the same as described in the subsection 3.1.
Ten experiments have been conducted for each value of h.

Figure 5 shows the results obtained for the One-Max problem instance using the
GA with and without explicit elitism. The GA without explicit elitism can reach the
global optimum with values of h equal to 0.1, 0.2 and 0.3. Performance of the GA starts
deteriorating from h = 0.4 onward. GA can reach a value of 846 only when h = 2.0.
The GA with explicit elitism can reach the global optimum in all the experiments with
values of h equal to 0.1 to 0.8. The average function value reached with h = 2.0 is 980.
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Fig. 6. Performance of the GA with values of h varying from 0.1 to 2.0 on 0/1 Knapsack Problem
instance of size 1000

Figure 6 shows the performance of GA with and without explicit elitism on the 0/1
knapsack problem instance of size 1000. GA without explicit elitism provides the maxi-
mum average function value of 39276 against the global optimum equal to 40887 when
h = 0.2. The function value reached declines with increase in the value of h. The GA
with h = 2.0 provides an average profit value equal to 34095. The GA with explicit
elitism provides the maximum average function value of 40244 when h = 0.3. The
average profit value reached is equal to 37858 when h = 2.0.

The best combination of exploration and exploitation occurs when value of h is very
small for both the problems. What value of h will be most effective for solving a prob-
lem remains open for further investigation.

4 Conclusion

A GA with probability of mutation less than 1/l (l being the chromosome size) and
the probability of crossover less than one exhibits implicit elitism. GA with these val-
ues of the parameters copies some of the high-fitness chromosomes unperturbed to the
subsequent generation, thus maintaining the progress of genetic search. Experiments
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on one-max and 0/1 knapsack problems demonstrate efficacy of implicit elitism. Tra-
ditional elitism (referred explicit elitism in this paper) provides the best results when
combined with the implicit elitism, thus demonstrating synergetic role of the two forms
of elitism. The experiments demonstrate that GAs have an effective balance of explo-
ration and exploitation when the probability of mutation is very small, making use of
implicit elitism.
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Abstract. TSP(Traveling Salesman Problem) used widely for solving the opti-
mization is the problem to find out the shortest distance out of possible courses 
where one starts a certain city, visits every city among N  cities and turns back 
to a staring city. At this time, the condition is to visit N  cities exactly only 
once. TSP is defined easily, but as the number of visiting cities increases, the 
calculation rate increases geometrically. This is why TSP is classified into NP-
Hard Problem. Genetic Algorithm is used representatively to solve the TSP.  
Various operators have been developed and studied until now for solving the 
TSP more effectively. This paper applied the new Population Initialization 
Method (using the Random Initialization method and Induced Initialization 
method simultaneously), solved TSP more effectively, and proved the im-
provement of capability by comparing this new method with existing methods. 

Keywords: Genetic Algorithm, GA, Optimization, Initialization. 

1   Introduction 

To solve the optimization problem effectively, this paper used TSP as an experiment 
model. TSP is one of basic and important problems which is used widely in modern 
industrial fields such as physical distribution, the network of telephone, the design of 
integrated circuit, industrial robot-programming, optimization of network etc.  

TSP is the optimization problem of sequence mixture finding the shortest course. 
The shortest course means the minimum course visiting every city only once among 
N cities in two dimension. This problem is defined easily, however, as the number of 
cities increases, the calculation rate increases geometrically. Therefore, this is classi-
fied into NP(Nondeterministic Polynomial)-Hard problem. 

Owing to this problem, Genetic Algorithm(GA) proposed by John Holland is used 
representatively to obtain the optimal solution. [1],[2],[3]  

The investigation space of TSP is },.....,,{ 21 nTTT , the set of all traveling, and the 

size of it is !N . The solution is the shortest traveling distance.  
This paper drew the new Mixture Initialization method using both Random Initiali-

zation method and Induced Initialization method at the same time for Population 
Initialization which should be preceded to apply GA, applied this to Population Ini-
tialization and experimented to get the nearest value to the optimal solution. 
                                                           
* Correspondent author. 
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2   Operator Used in This Paper for Experiment 

In Table 1, there are operators used to prove the capability of methods proposed in 
this paper.  

Table 1. Operators used in experiment 

Roulette wheel  Selection Operator 
Rank-based selection 
PMX 
Edge Recombination  
One-Point Crossover 

Crossover Operator 

Multi-Point Crossover 
Inversion  Mutation Operator 
Swapping mutation  

2.1   Selection Operator 

The common rule is that the probability for superior solution to be chosen should be 
high although various Selection Operators have been presented so far. This paper used 
Roulette wheel selection and Rank-based selection operators.  

Roulette wheel selection operator is the most representative Selection Operator. 
This operator estimates the quality of each solution and adjusts the fitness of the best 
solution to be k times than that of the worst solution. The fitness of solution i  in the 
set of solutions is calculated like this: 

1),1/()()( >−−+−= kkCeCtCiCtfi  (1) 

Ct : Cost of the worst solution in group 

Ce : Cost of the best solution in group 
Ci : Cost of  i  

If the value of k  is made high, the choice probability becomes high. Generally, the 

commonest value of k  is 3~4. This is chosen by the standard of fitness value. 

By adjusting k  value, Roulette wheel selection can prevent good-quality solution 
and bad-quality solution from having excessive difference of fitness, but cannot adjust 
the distribution of solutions. Rank-based selection makes a rank in the order of quali-
ties of solutions in solution group, and then allocates fitness first-functionally from 
the best solution. The formula (2) is showing the allocation function of fitness of 
Rank-based selection. The fitness of the i th chromosome among n  chromosomes 
can be calculated like this: In this formula, choice probability can be adjusted through 
changing the difference of max and min values. The fitness of solutions is distributed 
regularly between max and min. [3],[4]. 

)1/(max)(min)1(max −−×−+= nifi  (2) 
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Fig. 1. The allocation function of fitness of Rank-based selection 

2.2   Crossover Operator 

Crossover Operator is the most various and representative operator in GA. PMX, 
One-Point Crossover, Multi-Point Crossover, and Edge Recombination(ER) was used 
in this paper. ER operator is one kind of heuristic Crossover Operator introduced by 
Grenfensetette and is introduced by Starkweather. [5],[6],[7] 

 

Fig. 2. Edge Recombination 

Edge Recombination is a crossover operator which focuses on the adjacency rela-
tion. As illustrated in Fig 2, Edge Recombination uses an edge table to record parental 
edges, and then limits the generation of offspring to the edges contained in this table. 
In other words, the candidates of offspring edges come from parental edges principally.  

With reference to the edge table, Edge Recombination builds a tour according to 
specific heuristics. In the original Edge Recombination(Edge-1)[8], the building proc-
ess intends to select the city with the fewest links, namely, the most isolating city. 
Edge-1 initially generates the edge table by scanning both parents. Afterwards, Edge-
1 begins the process of building the filial tour. [9] 

(1) Select one of the first parental cities as the starting city. 
(2) Select its next city from the remaining adjacent cities of the current city. We 

call these links candidates for the next city. According to the heuristic's "priority 
of isolating cites", the candidates with the smallest number of links is chosen. 

(3) Repeat (2) until the complete tour is built.  
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2.3   Mutation Operator 

Each population becomes stronger and more look-alike by Selection Operators and 
Crossover Operators. However, the more the generation goes down, the less the vari-
ety of genes is. Mutation Operators is used to compensate these faults. With Mutation 
Operators, new population can be made by preventing a specific bit from fixing from 
the early generation.  

In this paper, Swapping Mutation and Inversion were used out of Mutation Opera-
tors. [1],[4] 

3   Proposed Method 

This paper proposes Mixture Initialization method to obtain a superior solution of TSP.�

3.1   Mixture Initialization Method 

There are two methods in Population Initialization. One is Random Initialization 
method where population is produced by extracting at random without any rules. And 
the other is Induced Initialization method where population is produced consistently 
by using background knowledge and information relating to given values. 

The Population Initialization is more important than any other thing to get the near-
est value to the optimal solution. Random Initialization method has been used mostly 
for Population Initialization of TSP.  

This paper proposes Mixture Initialization using both Random Initialization 
method and Induced Initialization method at the same time. (Random Initialization 
method uses a random generator and Induced Initialization method is based on back-
ground knowledge or experience.) 

 

Fig. 3. Mixture Initialization Method 

Like Fig 3, one chooses a starting city through random generator, and lists cities 
orderly from the city with the shortest distance to the city with the farthest distance, 
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referring already-known information about distance among cities. If N  cities are 

listed like this order, NN ×  matrix is formed. This matrix is considered as the first 
population.  

4   Consequence of Experiment 

To measure the capability of Mixture Initialization method for TSP, this paper used 2 
Selection Operators, 4 Crossover Operators, and 2 Mutation Operators and preserved 
2 superior genes by using elitism in each generation. Used values of variables are 
shown in Table 2. 

Table 2. Used values of variables 

Variables Values 

Total cities 60 

Population size 500 

Total generations 600 
Probability of Crossover(

cP  ) 0.7 
Probability of Mutation (

mP ) 0.2 

This experiment was realized by using PowerBuilder6.5 based on Windows2000 in 
P-4 2.0GHz and data were saved and analyzed by Oracle 8i.  

 

Fig. 4. Application used in experiment 

Fig 4 is the TSP program for proving the capability of Mixture Initialization 
method proposed in this paper. 
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Fig. 5. Optimal value graph using Random Initialization method 

 

Fig. 6. Optimal value graph using newly-proposed method 

Fig 5 and Fig 6 are graphs showing the most superior results of each experiment 
with Random Initialization method and Mixture Initialization method.  

 

Fig. 7. Process of order change of visiting each city 

Fig 7 shows the courses of visiting city in every generation, and the changes of 
courses of objectives with the best value of each generation among from the 1st gen-
eration to the last generation. That is, by Genetic Algorithm based on this method 
proposed in this paper, as generations are going by, the process of finding the shortest 
distance is being shown.  
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Table 3. Comparison of Experiment Result 

newly-proposed method  Selection Crossover Mutation 
Min Gen Min Gen 

Inversion 3300 501 3458 554 PMX 
Swapping 3285 499 3390 509 
Inversion 3598 519 3380 487 ER 
Swapping 3478 589 3928 508 
Inversion 3470 557 3315 496 Multi-Point 

Crossover Swapping 3901 457 3903 485 
Inversion 4002 576 4488 587 

Roulette 
Wheel 

One-Point 
Crossover Swapping 3502 499 3702 578 

Inversion 2967 501 3330 499 PMX 
Swapping 4157 545 4098 518 
Inversion 3968 511 4012 547 ER 
Swapping 2934 546 3123 579 
Inversion 3310 497 3377 505 Multi-Point 

Crossover Swapping 4123 457 4225 471 
Inversion 4411 513 4507 555 

Rank-base 
Selection 

One-Point 
Crossover Swapping 3442 518 3518 497 

 

ER : Edge Recombination      Min : Minimum Distance     Gen : Generation 

Table 3 is the results of experiment with Mixture Initialization method proposed in 
this paper. As you know from this table, the shortest distance was 3315Km when 
various operators were applied to the value of initialization produced through Random 
Initialization method. But, better result, 2934Km, was obtained through Mixture Ini-
tialization method proposed in this paper. Also, it is shown that the distances by 
newly-proposed Initialization method are on the whole shorter in most operators.  
Experiment using various operators achieved improvement rate from max 12.9% to 
min -1.9% and about 4.0% on an average. 

5   Conclusion  

To solve the optimization problem, this paper proposed Mixture Initialization method 
using Random Initialization method and Induced Initialization method at the same time. 

It is known that Mixture Initialization method helps the capability improved more 
than Random Initialization method or Induced Initialization method. This is because 
Mixture Initialization method uses already-known distances among cities so makes it 
high probability for only superior gene to be chosen. With this method, average im-
provement rate, approximately 4.0% was obtained. 

Mixture Initialization method is applicable to existing various operators of GA and 
this method proved the improvement of capability. Mixture Initialization method can 
be used valuably in fields such as physical distribution, the network of telephone, the 
optimization of network etc. classified in the optimization problem. 

Another study should be progressed constantly to solve the optimization problems 
with more complex structures or apply newly-will-be-proposed operators.�
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Abstract. Fuzzy rules are suitable for describing uncertain phenomena and 
natural for human understanding and they are, in general, efficient for 
classification. In addition, fuzzy rules allow us to effectively classify data 
having non-axis-parallel decision boundaries, which is difficult for the 
conventional attribute-based methods. In this paper, we propose an optimized 
fuzzy rule generation method for classification both in accuracy and 
comprehensibility (or rule complexity). We investigate the use of genetic 
algorithm to determine an optimal set of membership functions for quantitative 
data. In our method, for a given set of membership functions a fuzzy decision 
tree is constructed and its accuracy and rule complexity are evaluated, which 
are combined into the fitness function to be optimized. We have experimented 
our algorithm with several benchmark data sets. The experiment results show 
that our method is more efficient in performance and complexity of rules 
compared with the existing methods. 

Keywords: fuzzy classification rule, fuzzy decision tree, genetic algorithm, 
Optimization. 

1   Introduction 

A decision tree such as ID3 and C4.5 is one of the most widely used classification 
methods [1], [2], [3]. One of the difficult problems in classification is to handle 
quantitative data appropriately. Conventionally, a quantitative attribute domain is 
divided into a set of crisp regions and by doing so the whole data space is partitioned 
into a set of (crisp) subspaces (hyper-rectangles), each of which corresponds to a 
classification rule describing that a sample belonging to the subspace is classified into 
the representative class of the subspace. However, such a crisp partitioning is not 
natural to human and inefficient in performance because of the sharp boundary 
problem. Recently, fuzzy decision trees have been proposed to overcome this problem 
[4], [5]. It is well known that the fuzzy theory not only provides natural tool for 
describing quantitative data but also generally produces good performance in many 
applications. However, one of the difficulties with fuzzy decision trees is determining 
an appropriate set of membership functions representing fuzzy linguistic terms. 
Usually membership functions are given manually, however, it is difficult for even an 
expert to determine an appropriate set of membership functions when the volume and 
dimensionality of data are large.  
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In this paper we investigate combining the fuzzy theory and the conventional 
decision tree algorithm for accurate and comprehensible classification. We propose an 
efficient fuzzy rule generation method using the fuzzy decision tree (FDT) algorithm, 
which integrates the comprehensibility of decision trees and the expressive power of 
fuzzy sets. We also propose the use of genetic algorithm for optimal set of fuzzy rules 
by determining an appropriate set of fuzzy sets for quantitative data. In our method 
for a given fuzzy membership function a fuzzy decision tree is constructed and it is 
used to evaluate classification accuracy and rule complexity. Fuzzy membership 
functions evolve so that they optimize the fitness function combining both 
classification accuracy and rule complexity.  

This paper is organized as follows: in Section 2 we describe fuzzy rules and fuzzy 
inference we use for classification, followed by fuzzy decision tree construction. In 
Section 3, we describe the use of genetic algorithm for determining an appropriate set 
of membership functions. In Section 4, we briefly describe some related works [6]. In 
Section 5 we describe experiments of our algorithm with a variety of the benchmark 
data sets. In Section 6 we conclude the paper. 

2   Fuzzy Inference  

2.1   Fuzzy Classification Rules 

We use a simple form of fuzzy rules and inference for better human understanding. 
Each fuzzy rule is of the form “if A then B” where A and B are called an antecedent 
and a consequent, respectively. In our approach the antecedent is simple conditions 
conjoined while the consequent is “Class is k.” A simple condition is of the form “Att 
is Val” where Att represents an attribute name and Val represents a value of the 
attribute. Each fuzzy rule is associated with a CF (Certainty Factor) to represent the 
degree of belief that the consequent is drawn from the antecedent satisfied. Rule (1) is 
a typical form of fuzzy classification rules used in our approach. 

)('')()()(: 221 iimimiiilij CFkisClassthenVisAandVisAandVisAifR  (1) 

In the rule Aik represents an attribute and Vik represents a fuzzy linguistic term 
represented by a fuzzy set associated with attribute Aik. Application of the rule to a 
sample X results the confidence with which X is classified into class k given that the 
antecedent is satisfied. In this paper among a variety of fuzzy inference methods we 
adopt the standard method as described in the following. 

For a given sample X, the confidence of class k is obtained as 
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μ  

Where jx is the value for attribute ijA of X 

(2) 

In Equation (2) )(xVμ  represents the membership degree that x belongs to fuzzy 

set V, R(k) represents the set of all rules that classify samples into class k (their 
consequent parts are 'Class is k') . The class of the maximum Confk(X) is the final 
classification of X.  
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2.2   Fuzzy Decision Tree 

Optimized fuzzy rules are often derived from fuzzy decision tree. A fuzzy decision 
tree is similar to a (crisp) decision tree. It is composed of nodes and arcs representing 
attributes and attribute values or value sets, respectively. The major difference is that 
in a fuzzy decision tree each arc is associated with a fuzzy linguistic term, which is 
usually represented by a fuzzy set. Also in a fuzzy decision tree a leaf node 
represents a class and it is associated with a certainty factor representing the 
confidence of the decision corresponding to the leaf node. In a fuzzy decision tree a 
decision is made by aggregating the conclusions of multiple rules (paths) fired as 
Equation (2) describes while in a crisp decision tree only a single rule is fired for a 
decision.  

Let us assume that A1, A2, , , Ad  represent attributes in consideration for a given 
data set, where d represents the dimension of the data. The whole data space W can be 
represented as 

dUUUW ×××= ...21
, where iU  represents the domain of attribute Ai. A 

sample X can be represented as a point in W as ) ,( 21 d,  ,  ,  xxxX = , where ii Ux ∈ . 

In a fuzzy decision tree each arc (l, m) from node l to node m is associated with a 
fuzzy set F(l, m) representing a fuzzy linguistic term as a value of the attribute 
selected for node l. Suppose we have a fuzzy decision tree and let n be a node and Pn 
be the path from the root node to node n in the tree. Then we can consider that node n 
is associated with a fuzzy subspace nW  of W defined as follows.  

dn SSSW    ,  ,  ,  21 ×××=  
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Here, F(l,m) is a fuzzy set corresponding to arc (l,m) and att(l) represents the attribute 
selected for node l. Let )(Xvn

 represent the membership that X belongs to Wn, then 

we have the following according to the above definitions: 
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Now we define some important parameters that we use in fuzzy decision tree 
construction. The entropy of attribute Ai for node m, E(m, Ai) is a measure indicating 
how good it is if attribute Ai is selected as the test attribute for node m and it is defined 
as in Equation (3). Here, child(m, Ai) represents the set of children nodes of node m, 
each of which corresponds to a value of attribute Ai, C denotes the set of classes, and 
D and Dk denote the set of training samples and the set of training samples of class k, 
respectively. In the above equations, n is a child node of node m, which corresponds 
to a value of the attribute selected for node m, and arc (m, n) corresponds to a fuzzy 
membership function for attribute Ai.  Equation (4) calculates the entropy for node n, 
Equation (5) represents the probability that node n represents class k, and Equation (6) 
represents the degree that a sample belongs to the subspace corresponding to node n 
compared with other sibling nodes for a given attribute selected for node m. 

Our fuzzy decision tree construction algorithm is as follows. 

<Step 1> 
Starting with the root node, continue to grow the tree as following until the 
termination conditions are satisfied. If one of the following conditions is satisfied, 
then make node m a leaf node. 
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In condition (2) class k* represents the representative class of the corresponding 
fuzzy subspace. In this case it is the leaf node whose class is k* and the associated CF 
is determined by the left hand side of  the inequality in condition (2). Otherwise,  

<Step 2>  
(1) Let )),((min),( * i

i
i AmEAmE = . 

(2) For each fuzzy membership functions of attribute Ai*, make a child node of node m. 
(3) Go to Step 1 and apply the algorithm to all newly generated nodes, recursively.  

Node expansion ((2) in Step 2) corresponds to partitioning the fuzzy subspace 
corresponding to node m into fuzzy subspaces each of which corresponds to a value 
of the attribute selected for the node. In Step 1 the threshold parameters eθ  and dθ  

determine when partitioning terminates. Condition (1) prohibits further partitioning 
sufficiently sparse fuzzy subspaces while condition (2) prohibits further partitioning 
fuzzy subspaces having sufficiently large portion of a single class samples. The 
parameters 

eθ  and dθ  are used to control overfitting by prohibiting too much detail 

rules to be generated.  
After constructing a fuzzy decision tree, we name each fuzzy membership function 

with an appropriate linguistic term.  
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3   Membership Function Optimization Using Genetic Algorithm 

In fuzzy rules membership functions are important since they affect both of accuracy 
and comprehensibility of rules. However, membership functions are usually given 
manually and it is difficult even for an expert to determine an appropriate set of 
membership functions when the volume and dimensionality of data are large. In this 
paper, we propose the use of genetic algorithm to determine an optimal set of 
membership functions for a given classification problem. For simplicity we adopt a 
triangular membership function and it is represented by a triple of real numbers (l, c, 
r), where l, c and r represent the left, the center and the right points of the triangular 
membership function, respectively. 

3.1   Genetic Algorithm 

Genetic algorithm is an efficient search method simulating natural evolution, which is 
characterized by survival of the fittest.  

Our fuzzy decision tree construction using genetic algorithm is following.  

(1) Generate an initial population of chromosomes of membership functions; 
(2) Construct fuzzy decision trees using the membership functions; 
(3) Evaluate each individual set of membership functions corresponding to a  

chromosome by evaluating the performance and tree complexity of its 
corresponding fuzzy decision tree; 

(4) Test if the termination condition is satisfied; 
(5) If yes, then exit; 
(6) Otherwise, generate a new population of chromosomes of membership 

functions by applying genetic operators, and go to (2). 

We use genetic algorithm to generate an appropriate set of membership functions 
for quantitative data. Membership functions should be appropriate in the sense that 
they result in a good performance and they result in as simple a decision tree as 
possible.  

In our genetic algorithm a chromosome is of the form <
dφφφ ,...,, 21

> where iφ  

represents a set of membership functions associated with attribute Ai, which is, in 
turn, of the form })( , , , )()({ 21 ilii AfA, fA f  where )( ij A f  represents a triplet of 

membership function for attribute Ai. The number of membership functions for an 
attribute may not necessarily be fixed.  

3.2   Genetic Operations and Evaluation 

We have genetic operations such as crossover, mutation, addition, and merging as 
described in the following. 

1) Crossover: it generates new chromosomes by exchanging the whole sets of 
membership functions for a randomly selected attribute of the parent 
chromosomes. 

2) Mutation: we combine random mutation and heuristic mutation. In random 
mutation membership functions randomly selected from a chromosome are 
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mutated by adding Gaussian noise to the individual membership functions. In 
heuristic mutation membership functions are adjusted to classify correctly the 
misclassified data. 

3) Addition: for any attribute in a chromosome, the set of associated membership 
functions are analyzed and new appropriate membership functions are added if 
necessary. For example, when some attribute values are not covered or poorly 
covered by the current membership functions, new membership functions are 
added to cover those values properly.  

4) Merging: any two close membership functions of any attribute of a 
chromosome are merged into one. 

We apply the roulette wheel method for selecting candidate chromosomes for the 
crossover operation. We also adopt the elitism in which the best fit chromosome in 
the current population is selected for the new population.  

If membership functions are determined for each attribute, we generate an fuzzy 
decision tree according to the algorithm described in Section 2.3. We use the 
performance of the generated fuzzy decision tree in fitness evaluation of a chromosome. 
Suppose a fuzzy decision tree τ(e) is generated from the membership functions 
represented by chromosome e. The fitness score of chromosome e is given by  

10  , ))(()1())(()( ≤≤−−= weCwewPeFit ττ  (7) 

where P(τ(e)) represents the performance of decision tree τ(e)  and C(τ(e)) represents 
the complexity of τ(e), measured in terms of the number of nodes of τ(e)  in this paper. 

We also can use genetic algorithm to generate fuzzy rules by evolving the form of 
rules (selection of attributes and their associated values) and membership functions 
simultaneously. However, genetic algorithm is generally time-consuming and our 
method trades off between classification accuracy and computational time. 

4   Related Works 

A fuzzy decision tree is more powerful, efficient, and natural to human understanding, 
particularly compared with crisp decision trees such as in ID3 and C.4.5.  

[4] proposed fuzzification of CART (Classification And Regression Tree) using 
sigmoidal fuzzy splits replacing Boolean tests of a crisp CART tree and applying the 
back-propagation algorithm to learn parameters associated with fuzzy splits to 
optimize the global impurity of the tree. However, the structure of fuzzy decision tree 
proposed in [4] is different from that we propose in this paper and it is difficult to 
directly compare them.  

[5] proposed a method for automatically generating fuzzy membership functions 
for continuous valued attributes based on the principle of maximum information gain 
in cut point selection for each attribute.  

Hisao Ishibuchi proposed the evaluation standard to extract candidate fuzzy 
classification rules and the genetic rule selection using evolutionary multi-objective 
optimization to select useful fuzzy classification rules from among candidate fuzzy 
classification rules [7]. The error correcting learning method is proposed to learn the 
membership functions by generating highly accurate rules from predefined 
membership functions in [8]. This method adjusts membership functions of a fuzzy 
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classification rules that cause misclassification of an input datum in an error-
correction manner. Another method in [9] predefines triangular membership 
functions, divides the space, then generates fuzzy classification rules, and finally 
learns the certainty factor of the generated rules to adjust classification boundary to 
increase accuracy of the rule. 

J. Abonyi et. al. suggested a method of generating rules by generating initial fuzzy 
classification rules according to class distribution without predetermining 
membership functions and optimizing the conditional terms of the rules with 
evolution algorithm so that the initial rules can be generated accurately and concisely. 
In their approach they assume that each class is described by a single, compact 
construct in the input space. Therefore the number of clusters is limited to the number 
of classes. If this is not the case, accurate rules cannot be generated because there are 
an insufficient number of rules. To supplement this problem in [10], the input space 
with the C4.5 decision tree algorithm is divided and one initial fuzzy classification 
rule for each grid area is generated. 
A fuzzified ID3 (FID3) have been proposed in [5] and [6] and fuzzy membership 
functions are generated automatically based on based on the principle of maximum 
information gain in selection of cut points for each continuous valued attribute. We 
compared our method with FID3 in [11]. 

5   Experiment 

We have conducted several experiments with various benchmark data sets in the UCI 
machine learning databases [12] (see Table 1). We cited simulation results in [13] and 
[10] for comparison of our method with the existing ones. Our experiments are 
described in the following. 

First, we compared the accuracy and compactness of the fuzzy rules generated with 
different weights w used in (8) and the results are shown in Table 2. The accuracy is 
represented as the recognition rate and the compactness is represented as the number 
of rules and the total number of terms in the antecedents of the rules. In our fuzzy 
decision tree, two prepruning parameters θd (density) and θe (exception) are used to 
determine when we terminate growing a tree. The density threshold prohibits 
generating rules for sparse fuzzy subspaces while the exception threshold prohibits 
generating rules for minor classes having insufficient number of data in a fuzzy 
 

Table 1. Benchmark data sets 

Data Name #  Data # Attributes # Classes # Data Per Class 
iris 150 4 3 (50, 50, 50) 

pima 768 8 2 (500, 268) 
bcw 

1
 683 9 2 (444, 239) 

glass 214 9 6 (70, 76, 17, 13, 9, 29) 
ionosphere 351 34 2 (126, 225) 

thyroid 215 5 3 (150, 35, 30) 
heart 270 13 2 (150, 120) 

                                                           
1 Wisconsin Breast Cancer data. 
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Table 2. Perpormance comparison for varying weights 

w = 0.1 w = 0.5 w =0.9 
Data Accuracy 

 (%) 
# of 

Rules 
# of 

Terms 
Accuracy 

(%) 
# of  

Rules
# of 

Terms
Accuracy 

(%) 
# of 

Rules 
# of  

Terms 
iris 97.3 3 4 97.3 3 4 98.0 3 4 

pima 75.0 2 2 75.8 17 55 80.1 74 313 
bcw 97.1 2 4 97.1 2 5 97.7 4 14 
glass 79.0 54 114 80.8 65 153 95.3 182 441 

thyroid 94.9 3 5 97.7 8 21 97.2 11 36 
heart 78.9 3 10 82.6 7 29 81.9 5 22 

Averag
e 87.0 11.2 23.2 88.6 17.0 44.5 91.7 46.5 138.3 

subspace. In general the prepruning parameters are used to control overfitting by 
prohibiting too much detail rules to be generated. Table 2 shows the results when we 
have θd = 0.02 and θe=1.0. In the experiment, the population size was 20, the 
maximum number of generations was set to 100, and the crossover probability and the 
mutation probability were 0.9 and 0.1, respectively. 

As w is close to 1.0 in (8), it places more weight on the accuracy of rules than the 
complexity of rules. Each time the weight increases the average accuracy increased by 
about 2.0% but the average numbers of rules and terms get nearly doubled. 
Accordingly the weight was set to 0.1 to satisfy both accuracy and compactness. 

In the next experiment, the weight is fixed to 0.1 while the prepruning parameters 
θd and θe were varied as in Table 3. For the glass data, as θe was lowered from 1.0 to 
0.85 and θd increased from 0.02 to 0.04, the numbers of rules and terms decreased by 
about 50.0% so that it was possible to generate rules with better compactness; 
however, due to the difficulty of classification with a small number of data, the 
accuracy decreased by about 11.0%. 

Table 4 compares the performance of our method with those of two existing 
methods. [13] proposed a method for generating a fuzzy decision tree with heuristic 
information using predefined membership functions. The table shows the results of 
determining three membership functions for each attribute in advance and generating 
fuzzy classification rules using the proposed method. Another existing method proposed 
in [10] uses evolutionary algorithm to evolve the initial fuzzy classification rules into 
accurate and concise rules. Initial fuzzy classification rules were generated by C4.5. 

Table 3. Perpormance comparison with varying prepruning parameters 

w = 0.1 w = 0.1 
Data Accuracy  

(%) 
#  of 
Rules 

#  of 
Terms

θd θe 
Accuracy

 (%) 
#  of 
Rules

#  of 
Terms

θd θe 

iris 97.3 3 4 0.02 1.00 98.0 3 4 0.06 1.00 
bcw 97.1 2 4 0.02 1.00 96.6 2 4 0.01 1.00 
pima 75.0 2 2 0.02 1.00 75.7 3 4 0.01 0.85 

thyroid 94.9 3 5 0.02 1.00 93.5 3 3 0.04 0.85 
heart 78.9 3 10 0.02 1.00 81.1 3 9 0.03 0.85 
glass 79.0 54 114 0.02 1.00 69.6 26 48 0.04 0.85 

Average 87.0 11.2 23.2 - - 85.8 6.7 12.0 - - 
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Fuzzy classification rules generated in [10] produce a bit lower accuracy but the 
better compactness than those generated in [13]. However, when comparing the 
proposed method in [10] with our method, the average accuracy is about 3.0% lower, 
the number of rules is similar, and there are twice as many antecedent terms. In the 
generated fuzzy decision tree, our method generated the tree less depth and more 
breadth than [10] because our method creates the tree by a global discretization 
method while [10] used a local discretization method. Therefore, for the glass data, 
our method has more rules but fewer antecedent terms than [10]. 

The efficiency of our method was examined by comparing it with the existing 
method in terms of accuracy and conciseness of the fuzzy classification rules 
generated with several benchmark data sets. 

Table 4. Performance comparison of our method with two existing methods  

Accuracy (%) # of Rules # of Terms 
Data 

[13] [10] 
Our 

method
[13] [10]

Our 
Method

[13] [10]
Our 

method 
iris 97.0 96.1 98.0 9.7 3.0 3.0 16.0 4.0 4.0 

pima 80.0 73.0 75.6 34.7 11.2 3.0 53.2 40.0 4.0 
ionosphere - 86.4 91.4 - 3.4 3.0 - 10.2 6.0 

glass - 66.0 69.6 - 19.2 26.0 - 90.8 48.0 
bcw - 96.8 96.6 - 2.0 2.0 - 3.0 4.0 

Average - 83.7 86.2 - 7.8 7.4 - 29.6 13.2 

6   Conclusion 

Our method to generate fuzzy classification rules focus on both the accuracy and the 
compactness. The method optimizes membership functions using evolutionary 
algorithm so that the generated fuzzy rules perform well. Initial membership functions 
for evolutionary algorithm are generated by a supervised clustering algorithm in 
which the number of clusters is determined according to class distribution using 
evolutionary algorithm. The experiment results show that our method is more 
efficient in classification accuracy and compactness of rules compared with the 
existing methods. We consider adopting measures proposed in [14] for elaborate 
evaluation of fuzzy decision trees. 

Acknowledgments. This work was supported by Korean Research Foundation Grant 
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Abstract. This paper presents a genetic-inspired multicast routing al-
gorithm with Quality of Service (i.e., bandwidth and end-to-end delay)
constraints. The aim is to efficiently discover a minimum-cost multicast
tree (a set of paths) that satisfactorily helps various services from a des-
ignated source to multiple destinations. To achieve this goal, state of the
art genetic-based optimization techniques are employed. Each chromo-
some is represented as a tree structure of Genetic Programming. A fitness
function that returns a tree cost has been suggested. New variation opera-
tors (i.e., crossover and mutation) are designed in this regard. Crossover
exchanges partial chromosomes (i.e., sub-trees) in a positionally inde-
pendent manner. Mutation introduces (in part) a new sub-tree with low
probability. Moreover, all the infeasible chromosomes are treated with a
simple repair function. The synergy achieved by combing new ingredients
(i.e., representation, crossover, and mutation) offers an effective search
capability that results in improved quality of solution and enhanced rate
of convergence. Experimental results show that the proposed GA achieves
minimal spanning tree, fast convergence speed, and high reliability. Fur-
ther, its performance is better than that of a comparative reference.

1 Introduction

In multi-hop networks such as Internet, Wireless Mesh, and Mobile Ad-hoc net-
works, the design of multicast routing algorithms (MRAs) with a view to finding
a minimal spanning tree (MST) with satisfying Quality of Service (QoS) (i.e.,
bandwidth, end-to-end delay, and delay-jitter) from a specified source to a set
of destinations is a very important enterprise [1,2,7,14]. This is because MRAs
have significant influences on the capacity of networks. In recent days, MRAs
have attracted due to attention from the research community because multi-
cast services (e.g., video broadcasting, multimedia teleconference, and massive
mailing) are becoming common place [1,2,3,4,5,9,10,11,12,13,14]. The point-to-
multipoint services need to transmit multiple copies of a message from one node

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 807–816, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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(i.e., a source) to a subset of nodes (i.e., destinations). In other words, they fall
within the purview of multiple destination routing (MDR) problems [2,5,12].

In the MDR problems, a good routing algorithm finds low-cost tree that con-
nects all of the routers that have attached host members of multicast group and
then route packets along this tree from a source to multiple destinations ac-
cording to the multicast routing tree [1,2,3,4,5,6,10,11,12,13,15,16,17]. Finding
the link tree with the minimum cost is known as Steiner tree problem in graph
theory [6,9,16,17]. On the other hand, there are two reasons why a tree structure
efficiently supports multicast routing [14]. First, the data can be transmitted in
parallel (to the multiple destinations) along the branches of the tree. Second, a
minimal number of copies of the data are transmitted in this way. From the above
reasons, many MRAs have been evolved to construct such tree with minimum
cost. These approaches can be classified into two categories: Group-shared tree,
where only a single routing tree is constructed for the entire multicasting group,
and Source-based tree, where a tree is constructed for each individual sender
in the group. In general, the former is efficient for large-scale stable networks;
and the latter is useful for small-scale dynamic networks. Due to the increasing
importance of wireless networks, the source-based tree approach appears to be
more attractive. Moreover, multicast routing problems consist of a single QoS
constraint [3,10,11,16] or multiple QoS constraints [4,6,13]. In wireless networks,
multiple-QoS scenario is more promising.

In this paper, a genetic-inspired MRA that discovers a multicast tree that
satisfies the bandwidth and end-to-end delay constraints (i.e., multiple QoS con-
straints) is presented. The focus is on determining a multicast routing tree, (in
the source based tree category), from a designated source to a set of destina-
tions with strict end-to-end delay requirements (in multicast group) and specified
bandwidth (between adjacent nodes). MDR-friendly encoding and variation op-
erators are devised. In the encoding, a sequence of integers (i.e., nodes’ IDs)
forms a chromosome. Each chromosome represents a (spanning) tree and its
length is variable. Every locus (of the chromosome) is related to an order of the
node (indicated by the gene of the locus) in multiple routing paths. The crossover
generates new chromosomes by exchanging partial chromosomes (i.e., sub-trees)
without positional consistency of potential crossing site between two chromo-
somes. It maximally increases the exploratory power of the proposed algorithm.
The mutation that promotes genetic diversity introduces a new sub-tree from
the mutation node to selected destination. It maintains a fair measure of genetic
diversity (of population) so as to escape from local optima. Finally, a repair
function treats infeasible chromosomes possibly generated after crossover. The
proposed algorithm discovers a minimum-cost multicast tree while satisfying the
bandwidth and end-to-end delay constraints.

The rest of the paper is organized as follows. Section 2 describes a math-
ematical model for the representing multicast routing problem. The proposed
MRA is presented in Section 3. Section 4 shows experimental results. The paper
concludes in Section 5.
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2 Problem Formulation

A communication network is modeled as an undirected, connected weighted
graph G = (V,E), where V and E denote the set of nodes and the set of
connected links, respectively. Further, |V | and |E| denote the number of nodes
and links in the network respectively. Each link eij connects two nodes i and j in
V. It is characterized by an ordered triple (Bij , Dij , Cij) representing capability
of bandwidth, delay, and cost between nodes i and j. An example is shown in
Fig. 1. A multicast tree is defined by T = (VT , ET ), where VT ⊆ V , ET ⊆ E, and
T ⊆ G, and there exists a path PT (s, dk) from the source node s to each desti-
nation node dk ∈ D = {d1, · · · , dn} in T . Here, n is the number of destinations.

This paper considers two QoS constraints: the bandwidth constraint between
adjacent nodes and end-to-end delay constraint from a source to each destination.
These are generally employed in real-world applications:

– QoS Constraints
1. Bandwidth: It is a basic requirement for transmitting information, and

directly influences the balance of network load and the routing request
success ratio for large-scale multicast sessions (i.e., video on demand). It
is required that the minimum value of link bandwidth in the multicast
tree T must be greater than the required bandwidth (Breq), along the
path from a source node s to each destination node d ∈ D. That is,

BT = min
{i,j|eij∈ET }

Bij ≥ Breq. (1)

2. Delay bound : It represents an upper bound on the acceptable end-to-end
delay along each path from a source to a set of destinations. One should
ensure that the maximum value of path delays (from a source to each
destination) is smaller than the required path delay (Dreq), i.e.,

DT = max
{k|k∈D}

( ∑
{i,j|eij∈

PT (s,dk)}

Dij

)
≤ Dreq. (2)
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– Objective Function
Tree Cost : The total cost of multicast tree must be minimized (while satis-
fying the above two QoS constraints):

min
∑

{i,j|eij∈T}
Cij . (3)

3 Proposed Genetic Algorithm

This section describes a genetic algorithmic multicast routing technique with
bandwidth and end-to-end delay constraints. It consists of several key compo-
nents: representation, fitness function, selection, variation operators (i.e., cross-
over and mutation), and repair function. Chromosomes are expressed by tree
data structure. Fitness function returns the sum of link costs between all the
connected nodes. Variation operators (i.e., crossover and mutation) efficiently
promote the search capability, and repair function fixes the infeasible solutions.
Note that every step takes account of the bandwidth and end-to-end delay con-
straints. Fitness function and genetic operators iterate until the termination con-
ditions are satisfied. Overall procedures of the algorithm are depicted in Fig. 2.

3.1 Representation

We design an efficient chromosome representation scheme; a tree structure of the
genetic programming (GP) [1]. Variable-length chromosomes encoded by positive
integers are employed, and the integers (of genes) express IDs of nodes. Each
locus of the chromosome represents the node’s order in the corresponding routing
path. However, the length of a chromosome is not more than the total number
of nodes. The procedure assembles a multicast tree while taking into account
the connection between nodes. The gene of the first locus is always reserved for
the source node. A chromosome (i.e., a set of routing paths) encodes the IDs
of the nodes from the source to each of destinations. Fig. 3 shows an example
of the proposed encoding method in the context of the Fig. 1. The first locus
in each chromosome is assigned by the source node set to ‘1’. Each multicast
tree extends the source s to the set of destinations D = {3, 5, 7, 9}. The routing
paths in the example are expressed as follows: the first path is (1 → 2 → 3), the
second path is (1 → 5), the third path is (1 → 5 → 6 → 7), and the last path is
(1 → 2 → 9).

In the course of constructing the multicast tree, the nodes that are already
included in the current (sub-)tree are excluded, thereby avoiding reentry of the
same node. Moreover, chromosomes are encoded under the (link) bandwidth and
(path) delay constraints. In case they are violated, the encoding process is usually
repeated in part so as to satisfy the requirements. Thus, it effectively constructs
a multicast routing tree whose root is the source node and whose terminal nodes
are a specified set of destinations with bandwidth constraint (Breq) and end-to-
end delay constraint (Dreq). In the chromosome in Fig. 3, it is seen that BT = 10
and DT = 7. The number of branches (of a tree) is proportional to the number
of destinations because terminal nodes always specify destinations.
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3.2 Fitness Function

This function must accurately evaluate the quality of the solution (i.e., a mul-
ticast routing tree) encoded by its chromosome in the population. The fitness
function is crucial as the MDR computation amounts to finding the minimum-
cost multicast tree. The proposed fitness function only involves network link
costs; in other words, the objective function (3) is considered. The QoS con-
straints are directly incorporated in the course of constructing and assembling
the trees.

The value of the fitness function for the solution (e.g., a multicast tree) is rep-
resented by the chromosome. Given an initial population H = {h1, h2, . . . , hN},
the fitness value of each chromosome is computed as follows. Let Tk be a mul-
ticast tree represented by the chromosome hk, and CTk

be the sum of the link
costs of the tree Tk. The fitness value of the chromosome hk, denoted as F (hk),
is given by

F (hk) = [CTk
]−1 =

⎡
⎣ ∑
{i,j|eij∈Tk}

Cij

⎤
⎦
−1

. (4)

3.3 Selection

Selection (i.e., reproduction) plays an important role in improving the average
quality of the population by passing the high quality chromosomes to the next
generation. The selection of chromosome is based on the value of fitness function.
Note that high selection pressure leads to premature convergence. In this regard,
ordinal selection such as tournament selection is preferable. In the tournament
selection, the selection pressure increases with the tournament size. The proposed
GA employs pair-wise tournament selection without replacement as it is effective
in adjusting the selection pressure and coping with the selection noise [1]. The
selection scheme randomly picks two different chromosomes and chooses the
better one from a parent.
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3.4 Crossover

Crossover processes the current solutions so as to find better ones [8]. The
crossover in the proposed GA produces diverse chromosomes by exchanging the
partial chromosomes (i.e., sub-trees) without positional consistency of potential
crossing sites between two chromosomes [1]. This dictates one-point crossover
as a good candidate scheme for the proposed GA. The crossover between two
(dominant) chosen chromosomes should have at least one common gene (node)
except in the case of source and a set of destination nodes. The common nodes
are called “potential crossover points.” There is no requirement that they be
located at the same locus. One partial routing path connects an origin to an in-
termediate node, and the other partial routing path from the intermediate node
to a designated destination node. The crossover exchanges the latter partial path
(the intermediate node → the destination node). In two dominant chromosomes,
they have common genes in each branch. If the (chosen) crossover point satisfies
probability of crossover pc, the crossover will exchange the partial route path
(from selected ID’s node to each destination node) between two candidate chro-
mosomes. However, it ensures that the chromosomes are valid in view of the
required constraints, Breq and Dreq. To sum up, the crossover performs an ef-
fective global search for discovering a multicast routing tree. Fig. 4 shows an
example of the crossover procedure. In the Fig. 4, the selected gene number is
‘8’ (i.e., node 8) with respect to the first destination set to 15. The sub-trees
are (8 → 9 → 10 → 15) and (8 → 15). The crossover swaps the two sub-trees
if each end-to-end delay is less than path delay constraint. With regard to the
other destination, i.e., node 20, the same steps are repeated.

3.5 Mutation

The population undergoes mutation by a slight change or flipping of genes of
the candidate chromosomes. This also helps it keep away from local optima [1,8].
Physically, it generates an alternative partial route from the mutation node (i.e.,
mutation point) to the chosen destination (in the proposed GA) according to
the mutation probability of pm. If there are several branches from the mutation
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node, one of them is chosen in a random fashion. The mutation replaces the
sub-branch by a randomly generated partial route. It also keeps the two QoS
constraints. After the mutation, it produces a new path from the mutation point
to the selected destination. In principle, it enhances local search capability of the
GA by maintaining the genetic diversity of population. Fig. 5 gives the overall
procedure of the operation of mutation. As can be seen in the Fig. 5, a gene (i.e.,
node 8) is randomly selected. The partial route between the intermediate node
8 and the destination node 20 is replaced.

3.6 Repair Function

The repair function treats infeasible chromosomes that contain lethal genes
that possibly form a loop. Often, they are occurred by variation operator (i.e.,
crossover and mutation). It means that the tree condition is violated, and thus
it needs to fix. Note that no chromosome (in the initial population) is infeasi-
ble. The repair function in [1] is extended to the case of multiple routes. Note
that all the chromosomes regardless of their validity satisfy the QoS constraints
because they have already been taken into consideration. Thus, the proposed re-
pair function always returns better constraint conditions. The proposed method
is exhibited in Fig. 6. It shows that an offspring produced after crossover con-
tains lethal genes, i.e., nodes 7, 6 and 8 that form a loop. By a simple search
procedure, the loop is discovered. It is found to be due to the presence of node
8 in two possible routes to the destination (i.e., node 20). The first and second
branches lead to (1 → 8 → 11 → 12 → 15) and (1 → 8 → 20), respectively.

4 Experimental Results

In this section, the proposed GA is compared with a comparative reference
through computer simulation. The proposed GA uses a sub-quadratic population
size, viz., k × N1.5, where N is the total number of nodes in the network, and
k is a fixed number [1]. In the experiments, k is set to 3. Pair-wise tournament
selection (i.e., tournament size s = 2) without replacement is employed. In all
the experiments, crossover and mutation probabilities are set to 0.75 and 0.15,
respectively. Each experiment is terminated when all the chromosomes in the
population have converged to the same solution [1,8].

The proposed algorithm is compared with Chen’s algorithm [12], with a view
to investigating its search capability. Chen’s algorithm uses the fitness function
(4), with identical constraints. In the algorithm, each locus constitutes a possible
path from a source to each destination (i.e., d1, d2, . . . , dn, where n is the number
of destinations) without repeating any node in the chromosomes [5,10]. Thus,
the length of all the chromosomes is equal to the number of destinations. In
the algorithm, differences in the genetic operator lie in the encoding method
and the mechanisms of crossover and mutation. Each gene encodes a path; the
nth gene represents a route from a source to the nth destination. The crossover
operation interchanges a gene between two dominant chromosomes, viz., pair-
wise recombination. Mutation replaces the (end-to-end) path represented by the
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selected gene with a feasible path from the source to the designated destination.
Crossover and mutation probabilities are set to 0.9 and 0.2, respectively [12].

Fig. 7 compares the objective function (3) values (i.e., tree costs) returned by
the algorithms as applied to the network with 60 nodes. Both bandwidth and
delay constraints are set to 10. It is seen that the proposed GA has a higher rate
of convergence than that of Chen’s algorithm. The final objective function value
returned by the proposed GA has minimal cost.

The quality of the solutions is compared in Figs. 8, 9 and 10 for a range
of networks with 20-100 nodes (i.e., coarse to dense networks). All the results
are averaged over 100 runs. Fig. 8 illustrates the average bandwidth. The pro-
posed GA and Chen’s algorithm achieve similar performance in each network.
Fig. 9 shows that the proposed GA involves a smaller end-to-end delay than
does Chen’s algorithm. Fig. 10 illustrates that the tree-cost found by the pro-
posed approach is far less than that of Chen’s algorithm. It is concluded that
the proposed GA is superior to Chen’s algorithm in respect of total tree cost.
The reason is explained below. First, the encoding method does not allow of any
redundancy when constructing a multicast tree, due to preventing reentry of the
nodes that are already included in the current (sub-)tree. Second, the genetic
operators newly designed provide higher exploratory power and a fair measure
of genetic diversity. Third, the repair function cures all the infeasible trees by
simply removing lethal (sub-)paths forming a loop in each tree.
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To sum up, the proposed GA logs better cost values, less aggregate path delay
and comparable (link) bandwidth performance; that is, it finds the minimum-
cost multicast (routing) tree while satisfying QoS constraints (i.e., bandwidth
and end-to-end delay).

5 Conclusion

This paper has presented a genetic-inspired multicast routing algorithm. It can
find a minimum-cost multicast tree with bandwidth and end-to-end delay con-
straints from a designated source to multiple destinations. The chromosome is
formed by a tree data structure of Genetic Programming (GP). Variable-length
chromosomes expressed by positive integers are employed. Since the integers ex-
press the nodes’ ID, their sequences directly represent possible routes. The fitness
function returns the total tree costs about each chromosome. It plays a key role
in searching for multicast routing tree with minimizing cost of multicast tree.
The proposed GA is applied with tournament selection without replacement.
Variation operators (i.e., crossover and mutation) efficiently promote the search
capability, and a repair function fixes the infeasible solutions. The crossover ex-
changes the partial paths between intermediate node and destination, and this
is independent on the location of the crossing site. It maximally increases the ex-
ploratory power of the proposed algorithm. The mutation maintains the genetic
diversity of the population by producing a new sub-tree with a low probability.
It maintains a fair measure of genetic diversity (of population) so as to escape
from local optima. The synergy achieved by integrating the new components
(i.e., representation, crossover, mutation, and repair function) provides a search
capability that results in improved quality of the solution and enhanced rate of
convergence.

Experimental results demonstrated that the proposed algorithm discovers the
minimum-cost multicst tree more quickly than does Chen’s algorithm. Further,
it satisfies the QoS (i.e., bandwidth and end-to-end delay) constraints for diverse
networks.

It is thought that the proposed GA provides a conservative tool to solve multi-
cast routing problems with diverse QoS constraints. However, further elaboration
on generalizing the idea is necessary.
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Abstract. In this paper, we propose to integrate real coded genetic algorithm 
(GA) and cultural algorithms (CA) to develop a more efficient algorithm: cul-
tural genetic algorithm (CGA). In this approach, GA’s selection and crossover 
operations are used in CA’s population space. GA’s mutation is replaced by CA 
based mutation operation which can attract individuals to move to the semi-
feasible and feasible region of the optimization problem to avoid the ‘eyeless’ 
searching in GA. Thus it is possible to enhance search ability and to reduce 
computational cost. This approach is applied to solve constrained optimization 
problems. An example is presented to demonstrate the effectiveness of the pro-
posed approach. 

1   Introduction 

Genetic algorithm is a highly paralleled and efficient method based on natural evolu-
tion. It has enjoyed increasing popularity in solving optimization problems. The tradi-
tional GA can be divided into two categories: binary-encoding GA and real coded GA 
(called RGA), where the real coded version has the advantages of high precision and 
easy to search in large space, meanwhile it avoids the troublesome encoding and de-
coding process of computing the objective function. It has been reported that RGA 
outperforms binary-coded GA in many design problems [1]. Therefore RGA has been 
widely studied and applied in different fields, such as controller design [2, 3], engi-
neering optimization [4, 5, 6] and neural network training [7]. Chang put forward a 
three-chromosome multi-crossover RGA, which can provide a more precise adjusting 
direction for finding problem solutions [8]. This improved GA has been successfully 
utilized to estimate the parameters of nonlinear process systems. Hrstka and Kucerova 
proposed to introduce differential operators into real coded genetic algorithm to pre-
vent it to fall into local extremes [9]. Alba and Luna et al. addressed the physical 
parallelization of a gradual distributed multi-subpopulation real-coded GA for con-
tinuous optimization problems [10]. 

However, how to solve nonlinear constrained optimization problem remains a dif-
ficult and open question for real coded GA. Many constraint-handling methods resort 
to the concept of penalty functions, which imposes penalties on infeasible individuals 
that violate the problem constraints. The major difficulty in using penalty functions is 
still how to design an appropriate penalty function for a specific problem. Another 
alternative method is to add additional compulsory mutation operation on the infeasi-
ble individuals after three standard GA operations, but the new created individuals are 
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possibly infeasible. Both the two methods seem “eyeless” to avoid violating the con-
straint, and therefore their efficiencies will be decreased for much result less opera-
tions. It seems necessary to add intelligence to real coded GA to solve the constrained 
optimization problem.  

Cultural algorithm (CA) is an intelligent technique that incorporates domain 
knowledge obtained during the evolutionary process as to make the search process 
more efficient [11, 12]. In cultural algorithms, the information acquired by an indi-
vidual can be shared with the entire population, unlike most evolutionary techniques, 
where the information can be only shared with the individual’s offspring [13]. Cul-
tural algorithm has been successfully applied to solve optimization problems and 
promises to overcome some shortcomings of the above optimization methods [14], 
such as data mining and job-shop scheduling etc [15, 16]. Here, we propose to inte-
grate real coded genetic algorithm and cultural algorithm to develop a more efficient 
algorithm, called CGA, in which GA’s selection and crossover are still used, and its 
mutation operation is replaced by CA based mutation, which are guided by the con-
straint knowledge of  cultural algorithms and able to ‘attract’ the individuals to move 
to the feasible region of the optimization problem. It is possible to enhance the global 
search ability and to reduce the computational cost. 

2   Cultural Algorithm 

2.1   Overview 

Cultural algorithm, proposed by Reynolds [11], is an  evolutionary computation 
model derived from the cultural evolution process. It has become a candidate for 
many optimization applications due to its flexibility and efficiency [17]. In detail, 
cultural algorithm utilizes culture as a vehicle for storing relevant information that is 
accessible to all members of the population over the course of many generations. A 
cultural algorithm contains two main parts: a population space and a belief space. The 
population space consists of a set of possible solutions to the problem, and can be 
modeled using any population based technique. The belief space is the information 
repository in which the individuals can store their experiences for other individuals to 
learn them indirectly. A framework for a CA can be depicted in Fig. 1[11, 14]. CA 
takes two levels of evolution in the population space level and the belief space level 
respectively. The two spaces are connected together by an explicit communication 
protocol composed of two functions: an acceptance function accept() and an influence 
function influence(). The function accept() is used to collect the experience of the 
selected individuals from the population; then the contents of the belief space can be 
added via an update function, denoted as update(); Next, the function influence() can 
make use of the problem-solving knowledge in the belief space to guide the evolution 
of the population space [14]. In the population space, like traditional evolutionary 
population models, individuals are first evaluated by a performance function obj(). 
Then, the new individuals are created by a generation function generate(). Further, a 
selection function select() is used to select the population for next generation. The two 
feedback paths of information, one through the accept() and influence() functions and 
the other through individual experience and the obj() function create a system of dual 
inheritance [15]. 
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Fig. 1. Framework of cultural algorithms 

2.2   Cultural Algorithm Using Regional Schemata 

Jin and Reynolds explored the use of cultural algorithms for global optimization with 
very encouraging results [14]. They proposed a new framework based on cultural 
algorithms and regional schemata to solve constrained optimization problems. The 
regional schemata is an extension of the classic symbolic schemata, and it represents 
the regional knowledge that can be used to provide the functional landscape informa-
tion and to guide the algorithm search in the population. In detail, an n -dimensional 
regional-based schema, called belief-cell, is as an explicit mechanism that supports 
the acquisition, storage and integration of knowledge about non-linear constraints in 
cultural algorithms. This belief-cell can be used to guide the search of an evolutionary 
computation technique by pruning the infeasible individuals in the population space 
and promoting the exploration of promising regions of the search space[14,15]. 

3   CGA Algorithm for Constrained Optimization 

When CA is used for a constrained optimization problem, the domain space of the 
optimization problem can be partitioned into many feasible, infeasible and semi-
infeasible regions, which is stored and continuously updated in belief space as con-
straint knowledge [14]. The knowledge is further used to conduct individual evolution 
in population space by adjust it into feasible regions of problem. By contrast with CA, 
GA is a random search algorithm lacking of similar intelligence technique of CA. In 
our cultural genetic algorithm (CGA), GA is supervised by CA, and intelligently 
adjusts its individuals into feasible and semi-feasible regions to avoid blindness 
searching and to reduce computation cost.  

3.1   Parameter Encoding and Fitness Value 

GA is a random search technique simulating natural evolution. It deals with a popula-
tion, and each individual represents a candidate solution. In the real-coded GA, encod-
ing of the parameter set are just the parameters themselves. For example, assume 

1x , 2x ,…, nx to be the design variables, so the corresponding coding is the set of 

{ 1x , 2x ,…, nx }. After encoding, an initial population is randomly generated. Each indi-

vidual from the population is evaluated and assigned a fitness value. Herein, individuals 
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are evaluated by a fitness function )( iXf , which can be same as the performance func-

tion obj(). The function obj() is the sum of objective function and a penalty function. 

3.2   Genetic Operators  

Our CGA algorithm also uses three operators, namely selection (reproduction), cross-
over and mutation in the population space. 

Selection. The selection operation is a random selection process. However, the 
individuals with best fitness values would have the more chance to be chosen for 
reproduction. By means of roulette wheel selection approach, the i th individual is 
chosen according to probability sP as  

∑
=

=
N

i

iis XfXfP
1

)(/)( , (1) 

where N is population size of GA, )( iXf is fitness function for the i th individual as 

mentioned above. 
The individuals among the population starting with the highest values are selected 

with higher probability for reproduction. 

Crossover. After selection operations, two parent individuals exchange information 
to produce a new offspring. This process is called crossover. Crossover is governed 
by a crossover probability cP , which tells the GA program whether to execute 

crossover. In this operation, two individuals iX and jX are randomly selected as 

parents from the pool of individuals formed by the selection procedure and crossover 
operations between them are executed according to the following equations: 

jii XXX ⋅−+⋅=′ )1( αα , 

jij XXX ⋅+⋅−=′ αα )1( , 
(2) 

where α  is a random number extracted from region (0, 1). iX ′ and jX ′ are new off-

springs created by crossover. 
A crossover operation can thus yield better solutions by combining the good fea-

tures of existing solutions. If no crossover is performed due to the crossover probabil-
ity, the offspring is the exact copy of the parent solution. 

Mutation. Each offspring created from crossover is altered in a process called 
mutation. The effect of this operation is to create diversity in the solution population, 
thus the operation can avoid trapping in local minimum. In the real coded GA, 
mutation alters each offspring as the follow: 

dXX ii ⋅+′=′′ β , (3) 
                                    

where iX ′ is the parent individual selected for mutation. β  and d  are the step size 

and random direction of mutation, respectively. iX ′′  is the new offspring by mutation. 
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Using the above mutation operation, the offspring generated could violate the con-
straints of the problem. In this paper, we introduce the intelligent mutation scheme 
used in the regional-based  sliding window cultural algorithm [14, 15]. Instead of Eq. 
(3), the new offspring can be created as  

⎩
⎨
⎧

∈′′⋅−⋅+′′
∈′′

=′′′
}{)1,0()(

}{]))[((

, otherwiseXifNluX

cellseasibleXiflCellchoosemoveTo
X

ijijji

i

i γ
inf

, (4) 

where jl  and ju  represent the current lower bound and upper bound, respectively, for 

the j th dimension of iX . γ  is a certain positive number. ][•Cell  is a r -dimensional 

template, called regional schemata, which is maintained in the belief space. This tem-
plate is used to record the constraint characteristics of a certain region in the search 
space. For a given cell i , namely a small region in domain space of optimization 
problem，it may be:  

(1) a feasible cell including only valid individuals;  
(2) an infeasible cell including only invalid individuals; 
(3) a semi-feasible cell including both valid individuals and invalid ones; 
(4) a unknown cell with no individuals in it, so no knowledge about it now. 

Based on which types all individuals in the cell belongs to, the i th cell can be as-
signed a different weight as follows[14]:                        

⎪
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Wi . (5) 

The choose (cell[l]) function in Eq. (4) is a function to be used to select a target cell 
from all cells for the moveTo() function. This process can be implemented by roulette 
wheel selection based on the weights values in Eq. (5), just similar to the previous 
selection operation. 

Assuming that the kth cell kC  is selected by roulette wheel selection, moveTo ( kC ) 

creates a new offspring as follows[14]: 

kki CsizeLeftX ⋅+=′′′ 1)uniform(0,  (6) 

where kLeft is a r×1 array which denotes the left-most position of cell kC , kCsize is a 

r×1  array which represents the sizes of kC  in all dimensions, and 1)uniform(0,  gen-

erates a r×1  array of numbers within [0,1] by uniform distribution. 
It can be seen that the above mutation operation is guided by constraint knowledge 

preserved in belief space. The individuals continuously adjust its direction to semi-
feasible and feasible area of the problem space. These cultural based intelligences will 
enhance the search ability of CGA. 
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3.3   Pseudo-code of CGA 

The Pseudo-code of the cultural genetic algorithm is as follows: 

Step 1. t=0; 

Step 2. Initialize the population Pt ; 

Step 3. Initialize the Belief Space Bt=<Nt ,Ct>; 

Step 4. Evaluate each individual’s performance of Pt; 

Step 5. Update the Belief Space which includes: 

Update the normative knowledge component Nt, 

Update the constraint knowledge component Ct ; 

Step 6. Execute selection operation according to Eq.(1); 

Step 7. Execute crossover operation according to Eq.(2); 

Step 8. Execute mutation operation according to Eq.(4); 

Step 9. t=t+1; 

Step 10. Repeat to Step 4 until the termination condition is 

achieved. 

3.4   Discussion 

Genetic algorithm is modeled based on simulating of natural evolution, whereas the 
computational model of cultural algorithm derived from the cultural evolution process 
of human society. In GA, individuals are replicated in the population for the next 
generation according to their relative fitness. New individuals are created for the next 
generation by operations that simulate biological crossover and mutation. Good genes 
are continuously inherited for the whole population by selection and crossover. Be-
sides, mutation is used to keep the diversity of the population and occasionally create 
new better genes. It can be seen that vertical inheritance is a noticeable feature in GA. 
In CA, culture is used as a vehicle for storing knowledge that influences all members 
of the population space, and in the mean time, is accumulated by each member. All 
members share with culture and “co-evolve”. This definite “interactive” dual evolu-
tion mechanism can make the individual evolution with more definite direction, and 
meanwhile speed up the transverse search ability of cultural algorithm. Thus, the 
integration of GA and CA can synthesize both their advantages, and shows good 
ability both in depth and breadth search. 

For constrained optimization problems, the belief space can store constraint infor-
mation about the solved problem, and guides the evolution of GA in the population 
space, which can make full use of GA’s search ability and CA’s intelligence.  

4   Numerical Example 

The general optimization problems, minimization or maximization, can occur in many 
economic, technical and scientific projects. Solving it remains a difficult and open 
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problem for evolutionary algorithms. The common opinion about evolutionary algo-
rithms is that they are good optimization methods but can’t handle constraints well 
[14, 15]. Cultural algorithms can learn constrain knowledge during the search instead 
of having to acquire it beforehand and benefit from this acquired knowledge. The 
example of nonlinear constrained optimization problem in literature [14] is used to 
illustrate the approach. It is given as follows: 

         Objective function:     2712),(min yyxyxf +−−= , 

         Constraints:                              20 ≤≤ x ; 
30 ≤≤ y ;  

22 4 +−≤ xy . 

The GA population size N= 60, and other main parameters setting are: cP =0.3, 

γ =0.3, 221 == ww , 3w =3, 14 =w . Simulations are performed with Matlab on 2.6G 

Pentium PC. The illustrated test run is shown in Fig. 2-(c). The proposed algorithm is 
tested statistically using the above example as listed in Table 1. To examine the per-
formance, a standard real coded GA (called RGA) and CA by X. D. Jin are used as 
the comparison as shown in Fig. 2-(a),(b) and Table 1.  
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(a) RGA                              (b) CA                          (c) CGA 

Fig. 2.  Iteration process of algorithms 

Table 1.  Statistical contrast results of algorithms 

Algorithms 
Mean of number 
of generations 

Standard deviation of 
number of generations 

Mean of run-
ning times 

RGA 728 223 5.2 
CA 5.4 1.58 4.8 

CGA 4.1 1.26 3.4 

From Table 1, it can be seen that RGA needs a large number of iteration genera-
tions because of its “blindness” in search process, but its running takes no long time 
since its simple algorithm results in lower computation cost of each iteration. The 
improved CA has much fewer iteration generations and less time because its popula-
tion space evolves under guidance of the belief space and has better adjusting direc-
tion to the optimal solution. Further, the CGA shows better performance to some 
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extent because it synthesizes both the advantages of GA and CA, which is a GA-
based search scheme meanwhile under intelligent guidance. 

5   Conclusions 

We present a cultural real coded genetic algorithm by integrating GA and CA. GA’s 
selection and crossover operators are used in CA’s population space, and GA’s muta-
tion is replaced by CA based mutation under guidance of the constraint knowledge of 
cultural algorithm.  

It can synthesize both the advantages of genetic algorithm and cultural algorithm. 
Compared with the traditional RGA, the proposed approach improves mutation direc-
tion in search process. Compared with CA by X. D. Jin et al., the proposed approach 
also increases the search ability and takes less computation cost.  

Compared with GA, CA and CGA both employ a dual evolution mechanism and its 
algorithm is relative complicated. Computation cost is relative more than GA in their 
each iteration, which is compensated by relative less iteration times. The division of 
belief cell usually costs more computation, which becomes more noticeable, espe-
cially for high dimensional optimization problem, Thus how to design a more time-
saving belief-cell  division scheme is worth to further analyzing.  
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Abstract. This paper presents a neuro-genetic approach for solving constrained 
nonlinear optimization problems. Genetic algorithm must its popularity to make 
possible cover nonlinear and extensive search spaces. On the other hand, 
artificial neural networks have high computational rates due to the use of a 
massive number of simple processing elements and the high degree of 
connectivity between these elements. Neural networks with feedback 
connections provide a computing model capable of solving a large class of 
optimization problems. The association of a modified Hopfield network with 
genetic algorithm guarantees the convergence of the system to the equilibrium 
points, which represent feasible solutions for constrained nonlinear optimization 
problems. Simulated examples are presented to demonstrate that proposed 
method provides a significant improvement. 

1   Introduction 

Mathematical optimization problems have been widely applied in practically all 
knowledge areas. The nonlinear optimization plays a fundamental role in many 
problems involved with the areas of sciences and engineering, where a set of 
parameters is optimized subject to inequality and/or equality constraints [1]. 

In the neural networks literature, there exist several approaches used for solving 
constrained nonlinear optimization problems. The first neural approach applied in 
optimization problems was proposed by Tank and Hopfield in [2], where the network 
was used for solving linear programming problems. More recently, it was proposed in 
[3] a recurrent neural network for nonlinear optimization with a continuously 
differentiable objective function and bound constraints. In [4], it was developed a 
multilayer perceptron for nonlinear programming, which transforms constrained 
optimization problems into a sequence of unconstrained ones by incorporating the 
constraint functions into the objective function of the unconstrained problem. Basically, 
most of these neural networks presented in the literature for solving nonlinear 
optimization problems contain some penalty parameters. The stable equilibrium points 
of these networks, which represent a solution of the constrained optimization problems, 
are obtained only when those parameters are properly adjusted, and in this case, both the 
accuracy and the convergence process can be affected. In this paper, we propose a 
neuro-genetic hybrid system for solving constrained nonlinear optimization problems.  

More specifically, a modified Hopfield network is associated with a genetic 
algorithm to guarantee convergence of the system to the equilibrium points. The 
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Hopfield network performs the optimization of constraints, whereas the genetic 
algorithm is responsible to minimize the objective function. The neuro-genetic system 
has been applied to several nonlinear optimization problems and has shown promise 
for solving such problems efficiently. 

The organization of the present paper is as follows. In Section 2, the modified 
Hopfield network is presented. Section 3 describes the genetic algorithm applied to 
optimization of the objective function. In Section 4, a mapping of constrained 
nonlinear optimization problems is formulated using the neuro-genetic architecture. 
Simulation results are presented in Section 5 to demonstrate the advanced 
performance of the proposed approach. In Section 6, the main results of the paper are 
summarized and conclusions are presented.   

2   The Modified Hopfield Neural Network 

Besides providing a new approach for solving constrained optimization problems, 
artificial neural networks provide a method for exploring intrinsically parallel and 
adaptive processing architectures. In this paper, a modified Hopfield network with 
equilibrium points representing the problem solution has been developed. As 
introduced in [5], Hopfield networks are single-layer networks with feedback 
connections between nodes. In the standard case, the nodes are fully connected, i.e., 
every node is connected to all others nodes, including itself. The node equation for the 
continuous-time network with N-neurons is given by: 

∑
=

++−=
N

j

b
ijijii itvTtutu

1

)(.)(.)( η . (1) 

))(()( tugtv ii =  . (2) 

where: 
ui(t) is the current state of the i-th neuron. 
vj(t) is the output of the j-th neuron. 
ii

b is the offset bias of the i-th neuron. 
η.ui(t) is a passive decay term. 
Tij is the weight connecting the j-th neuron to i-th neuron. 

In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits 
the output of each neuron to ensure that network output always lies in or within a 
hypercube. It is shown in [5] that the network equilibrium points correspond to values 
v(t) for which the energy function (3) associated with the network is minimized: 

bTT ttttE ivvTv .)()(..)(
2

1
)( −−= . (3) 

The mapping of constrained nonlinear optimization problems using a Hopfield 
network consists of determining the weight matrix T and the bias vector ib to compute 
equilibrium points. A modified energy function Em(t) is used here, which is defined by: 
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Em(t) = Econf(t) + Min f(v) . (4) 

where Econf(t) is a confinement term that groups all the constraints imposed by the 
problem, and Min f(v) refers to the minimization of the objective function associated  
with the constrained optimization problem in analysis, which conducts the network 
output to the equilibrium points. Thus, the minimization of Em(t) of the modified 
Hopfield network is conducted in two stages: 

i) Minimization of the Term Econf(t) 

confTconfTconf ttttE ivvTv .)()(..)(
2

1
)( −−= . (5) 

where: v(t) is the network output, Tconf is weight matrix and iconf is bias vector 
belonging to Econf. This corresponds to confinement of v(t) into a valid subspace that 
confines the inequality constraints imposed by the problem. An investigation 
associating the equilibrium points with respect to the eigenvalues and eigenvectors of 
the matrix Tconf shows that all feasible solutions can be grouped in a unique subspace 
of solutions. As consequence of the application of this subspace approach, which is 
named the valid-subspace method, a unique energy term can be used to represent all 
constraints associated with the optimization problem. A detailed explanation on the 
valid-subspace technique can be found in [6]. 

ii) Minimization of the Objective Function f(v) 
After confinement of all feasible solutions to the valid subspace, a genetic algorithm 
(GA) is applied in order to optimize the objective function by inserting the values v(t) 
into the chromosomes population. Thus, a great variety of constrained optimization 
problems can be solving by the modified Hopfield network in association with the 
genetic algorithm.  

The operation of this hybrid system consists of three main steps as shown in Fig. 1:  

 

Fig. 1. The modified Hopfield network 
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Step (I): Minimization of Econf, corresponding to the projection of v(t) in the valid 
subspace defined by: 

v(t+1) = Tconf.v(t) + iconf . (6) 

where: Tconf is a projection matrix (Tconf.Tconf = Tconf) and (Tconf.iconf = 0). This 
operation corresponds to an indirect minimization process of Econf(t) using orthogonal 
projection de v(t) on the feasible set. 

Step (II): Application of a nonlinear 'symmetric ramp' activation function 
constraining v(t) in a hypercube: 
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where ] ,[)( supinf
iii limlimtv ∈ . 

Step (III): Minimization of f(v), which involves the application of a genetic algorithm 
to move v(t) towards an optimal solution that corresponds to network equilibrium 
points, which are the solutions for the constrained optimization problem considered in 
a particular application. 

As seen in Fig. 1, each iteration represented by the above steps has two distinct 
stages. First, as described in Step (III), v is updated using the genetic algorithm. 
Second, after each updating given in Step (III), v is projected directly in the valid 
subspace by the modified Hopfield network. This second stage is an iterative process, 
in which v is first orthogonally projected in the valid subspace by applying Step (I) 
and then thresholded in Step (II) so that its elements lie in the range defined by [limi

inf 
, limi

sup] . This process moves the network output to the equilibrium point that 
corresponds to the optimal solution for the constrained optimization problem. The 
convergence process is concluded when the values of vout during two successive loops 
remain practically constant, where the value of vout in this case is equal to v. 

3   Genetic Algorithm for Objective Function Optimization 

The components and parameters of the genetic algorithm employed in the hybrid system 
are presented in this section. To this end, one begins with a chromosomal representation 
of the individuals of the population. Each individual is a possible solution for the 
problem. The algorithm begins by randomly developing the first population. From this 
point, the fitness value in relation to each individual is computed. Based on this value, 
the elements that will belong to the next generation are selected (by election based on 
probabilistic criteria). To complete the population, the selected parents are reproduced 
through the implementation of genetic operators such as Crossing and Mutation. Each 
genetic operator has a proper occurrence rate expressed as a biological metaphor. The 
process is repeated until a specified stop condition is met. This condition may be either 
the successive repetition of the best individual or a maximum limit of generations. 
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Codification: In this stage, the chromosomes Ci=(ci1, ci2,…, cim) are encoded into 
sequences of binary digits and have a fixed size m, which represents the number of 

bits necessary to codification of a real number into the interval ] ,[ supinf
ii limlim . In our 

simulations, the value of m was assumed as 16.  

Population Size: The size of the population used here was one hundred individuals, 
which allowed for a better coverage of the search space and proved efficient in our 
experiment. 

Initial Population: The initial population is generated by introducing a chromosome 
that represents the values v(t) previously obtained into Steps (I) and (II) described at 
Section 2. The remaining chromosomes are generated randomly. 

Number of Generations: As stop criterion, it is verified the variation of the best 
individual from a generation to another one, and when there is no variation, the 
algorithm must finish its execution. Associated to this criterion, a maximum number 
of one hundred generations was also established, being enough for reach the 
minimum value to the objective function of a constrained nonlinear optimization 
problem. Therefore, there is no significant difference in the best individual after one 
hundred generations. 

Fitness Function: The fitness function evaluates each chromosome verifying its 
environment adaptation. The fitness function for constrained optimization problems is 
the own objective function to be minimized. The most adapted individual will have 
the small fitness value. 

Intermediate Population: Given a population in which each individual has received a 
fitness value, there are several methods to select the individuals upon whom the 
genetic algorithms of crossing and mutation will be applied. The selected individuals 
will make up a population called intermediate population. The selection method used 
here to separate the intermediate population was the Roulette method [7] and the 
Crossing and Mutation rates were defined, respectively, at 70% and 1%, as 
recommended in the literature [7]. An elitism percentage of 10% was also used. 

4   Formulation of the Nonlinear Optimization Problem 

Consider the following constrained optimization problem, with m-constraints and n-
variables, given by the following equations:  

Minimize f(v) (8) 

Subject to:  }{1..    0,  )( mihi ∈≤v  (9) 

zmim ≤ v ≤ zmax (10) 

where v, zmin, zmax ∈ ℜn, f(v) and hi(v) are continuous, and all first and second order 
partial derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax 

define the bounds on the variables belonging to the vector v. The parameters Tconf and 
iconf are calculated by transforming the inequality constraints in (9) into equality 
constraints by introducing a slack variable w ∈ ℜN for each inequality constraint: 
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where wj are slack variables, treated as the variables vi , and qij is defined by the 
Kronecker impulse function: 
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After this transformation, the problem defined by equations (8), (9) and (10) can be 
rewritten as: 

Minimize f(v+) . (13) 

Subject to: 0  )( =++ vh . (14) 

zmim ≤ v+ ≤ zmax,  i ∈ {1..n} . (15) 

0 ≤ v+ ≤ zmax, i ∈ {n+1..N+} . (16) 

where N = n + m, and v+T = [vT  wT] ∈ ℜN is a vector of extended variables. Note that 
f(v) does not depend on the slack variables w. In [8] has been shown that a projection 
matrix to the system (9) is given by: 

Tconf = I – ∇h(v) T.(∇h(v).∇h(v) T)-1.∇h(v) . (17) 

where: 
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Inserting the value of (17) in the expression of the valid subspace in (6), we have: 

v+ ← [I – ∇h(v+)T.(∇h(v+).∇h(v+)T)
-1

.∇h(v+)]. v+ + iconf (19) 

Results of the Lyapunov stability theory [9] should be used in (19) to guarantee the 
stability of the nonlinear system, and consequently, to force the network convergence to 
equilibrium points that represent a feasible solution to the nonlinear system. By the 
definition of the Jacobean, when v leads to equilibrium point implicates in ve = 0. In this 
case, the value of iconf should also be null to satisfy the equilibrium condition, i.e., ve = 
v(t) = v(t + 1) = 0. Thus, h(v+) given in equation (19) can be approximated as follows: 

h(v+) ≈ h(ve) + J.( v+ – ve) . (20) 

where J = ∇h(v+) and h(v+) = [h1(v
+)  h2(v

+) ... hm(v+)]T. 
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In the proximity of the equilibrium point ve = 0, we obtain the following equation 
related to the parameters v+ and h(v+): 

0=+

+

→+ ||||

||)(||
lim

v

vh

vv e
. (21) 

Finally, introducing (20) and (21) in equation given by (19), we obtain: 

v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)
-1

.h(v+) . (22) 

Therefore, equation (22) synthesizes the valid-subspace expression for treating 
systems of nonlinear equations. In this case, for constrained nonlinear optimization 
problems the original valid-subspace equation given in (6), which is represented by 
Step (I) in Fig. 1, should be substituted by equation (22). Thus, according to Fig. 1, 
successive applications of the Step (I) followed by the Step (II) make v+ convergent to 
a point that satisfies all constraints imposed to the nonlinear optimization problem. 

To demonstrate the advanced behavior of the neuro-genetic system derived in this 
section and to validate its properties, some simulation results are presented in the next 
section. 

5   Simulation Results 

In this section, the neuro-genetic hybrid system proposed in previous sections has 
been used to solve nonlinear optimization problems. We provide two examples to 
illustrate the effectiveness of the proposed architecture. 

Problem 1. Consider the following constrained optimization problem, which is 
composed by inequality and equality constraints: 

Min f(v) = 33
2
2

3
1 22 vvvv +⋅+  

Subject to:  42
32

2
1 =++ vvv  

 22 32
2
1 ≤+− vvv  

 0 ,  , 321 ≥vvv  

The optimal solution for this problem is given by v* = [0.00   4.00   0.00]T, where 
the minimal value of f(v*) at this point is equal to zero. Figure 2 shows the trajectories 
of the system variables starting from the initial point v0 = [1.67   1.18   3.37]T.  

The trajectory of the objective function starting from initial point presented above 
is illustrated in Fig. 3. The system has also been evaluated for different values of 
initial conditions. All simulation results obtained by the neuro-genetic system show 
that the proposed architecture is globally asymptotically stable at v*.  

These results show the ability and efficiency of the neuro-genetic system for 
solving nonlinear optimization when equality and inequality constraints are 
simultaneously included in the problem. 
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Fig. 2.  Evolution of the neuro-genetic system output (Problem 1) 

 

Fig. 3. Objective function behavior 

Problem 2. Consider the following constrained nonlinear optimization problem, 
which is composed by inequality constraints and bounded variables: 

Min f(v) = 32
2
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2
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This problem has a unique optimal solution v* =  [0.00  1.50  0.00]T and the 
minimal value of  f(v*) at this point is equal to –3.50. All simulation results provided 
by the neuro-genetic system show that it is convergent to v*.  

Figure 4 shows the trajectories of the neuro-genetic system starting from v0 = [9.50 
2.31 6.07]T and converging towards the equilibrium point v*. The bound constraints 
represented by the last three equations are directly mapped through the piecewise 
activation function defined in (7).  

The network has also been evaluated for different values of initial conditions. All 
trajectories lead toward the same equilibrium point. These results show also the 
ability and efficiency of the neuro-genetic system for solving constrained nonlinear 
optimization composed by inequality constraints and bounded variables. 

 

 

Fig. 4. Evolution of the neuro-genetic system output (Problem 2) 

6   Conclusions  

This paper presents a neuro-genetic approach for solving constrained nonlinear 
optimization problems. In contrast to the other neural approaches used in these types of 
problems, the main advantages of using the proposed approach in nonlinear 
optimization are the following: i) consideration of optimization and constraint terms in 
distinct stages with no interference with each other, i.e., the modified Hopfield network 
performs the optimization of constraints and the genetic algorithm is responsible to 
minimize the objective function, ii) unique energy term (Econf) to group all constraints 
imposed on the problem, iii) the internal parameters of the modified Hopfield network 
are explicitly obtained by the valid-subspace technique of solutions, which avoids the 
need to use training algorithm for their adjustments; and iv) optimization and 
confinement terms are not weighted by penalty parameters, which could affect both 
precision of the equilibrium points and their respective convergence processes. 

Some particularities of the neuro-genetic approach in relation to primal methods 
normally used in nonlinear optimization are the following: i) it is not necessary the 
computation, in each iteration, of the active set of constraints; ii) the initial solution 
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used to initialize the network can be outside of the feasible set defined from the 
constraints. The simulation results demonstrate that the neuro-genetic system is an 
alternative method to solve constrained nonlinear optimization problems efficiently. 
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Abstract. Inspired by the complementary and dominance mechanism in nature, 
the Primal-Dual Genetic Algorithm (PDGA) has been proved successful in dy-
namic environments. In this paper, an important operator in PDGA, primal-dual 
mapping, is discussed and a new statistics-based primal-dual mapping scheme 
is proposed. The experimental results on the dynamic optimization problems 
generated from a set of stationary benchmark problems show that the improved 
PDGA has stronger adaptability and robustness than the original for dynamic 
optimization problems. 

1   Introduction 

As a kind of robust optimization techniques for stationary optimization problems 
where the fitness landscape or objective function does not change during the course of 
computation, genetic algorithms (GAs) have extended their application areas to time-
varying system as the necessary for solving real-world non-stationary problems in-
creases recently. For these time-varying problems, the goal of GAs is no more to find 
a satisfactory solution, but to track the trajectory of the moving optimum point in the 
search space. This presents serious challenge to conventional GA because they fail to 
track the changing optimal solution once the population converges to one point. 

To improve GA’s performance in dynamic environments, researchers have devel-
oped many approaches [1, 2] to make GA maintain sufficient diversity for continu-
ously adapting to fitness changes. Among these researches, the multiploidy and domi-
nance mechanism that broadly exist in nature has been introduced into GAs and 
achieved some success for dynamic optimization problems. The multiploid represen-
tation that store redundant information in the genotype can provide a latent source of 
diversity in the population and allows population to respond more quickly to changing 
landscape [3]. Inspired this complementarity and dominance mechanism in nature, a 
genetic algorithm called Primal-Dual Genetic Algorithm [4, 5] (PDGA) is proposed, 
which is proved well suited for dynamic discrete optimization problems especially in 
binary-encoded space. In PDGA, a chromosome is defined a dual chromosome that is 
calculated through an operator called primal-dual mapping (PDM). In this work, a 
new primal-dual mapping scheme that can adaptively adjust the distance in genotype 
between a chromosome and its implement is proposed for PDGA instead of maximum 
distance in a given distance space. And we compare the performance of the PDGA 
with adaptive PDM scheme over the original in the following experiments on some 
dynamic optimization problems. 
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The paper’s outline is as follows: Section 2 reviews relevant literature in brief. The 
next section the new adaptive primal-dual mapping scheme and the framework of 
modified PDGA are described. Then, a set of dynamic optimization problems are 
introduced in Section 4 and the experimental results and analysis are reported in Sec-
tion 5. The conclusions are drawn in the final section. 

2   Related Researches 

In dynamic environments, the main problem with traditional GAs appears to be that 
they eventually converge to an optimum and thereby loose their diversity necessary 
for efficiently exploring the search space. Over the past few years, some researchers 
have begun to address this problem in the complement-based ways. The related works 
will be surveyed in this section. 

The most prominent approach to complementary mechanism seems to be mul-
tiploidy. Goldberg and Smith [6, 7] report their examinations on a genetic algorithm 
with using diploid and dominance which achieves better adaptive qualities than a 
simple GA on a time-varying knapsack problem. Hadad and Eick [8] use multiploidy 
and a dominance vector as an additional part of an individual that breaks ties when-
ever there are an equal amount of 0’s and 1’s at a specific gene location. Ryan [9] 
uses additive multiploidy, where the genes determining one trait are added in order to 
determine the phenotypic trait. Lewis [10] et al. have compared several multiploid 
approaches and observed some interesting results: a simple dominance scheme is not 
sufficient to track the optimum well. If the methods are extended with a dominance 
change mechanism, much better result can be obtained. 

Collard and his co-workers propose their Dual Genetic Algorithm [11] (DGA), 
which has exhibited the complementary mechanism in nature too. The DGA operates 
on a search space by introducing a meta-gene added in front of the regular bits that, 
when set to’0’, has no effect, but all regular bits are translated to their compliment for 
fitness evaluation when set to ‘1’. Thus, each point in search space has two comple-
mentary representations, e.g. the two individuals [0 011] and [1 100] have the same 
phenotypic meaning. The added meta-bit undergoes the same genetic operations 
within DGA as other regular bits do. 

3   Improved Primal-Dual Genetic Algorithm 

3.1   Primal-Dual Genetic Algorithm 

Inspired by the complementary mechanism in nature, Yang has proposed his PDGA 
for dynamic 0-1 optimization problems. Here we first introduce its framework simply. 
A chromosome recorded explicitly in the population is called a primal chromosome in 
PDGA. The chromosome that has maximum distance to a primal chromosome in a 
distance space is called its dual chromosome. In binary-encoded space, the Hamming 
distance (the number of locations where the corresponding bits of two chromosomes 
differ) is usually used as the definition of distance. Given a primal chromosome 

1 2( , ,..., ) {0,1}L
Lx x x x I= ∈ = of fixed length L, its dual or its implement 

' ' ' '
1 2( ) ( , ,..., ) {0,1}L

Lx dual x x x x I= = ∈ = , where ( )dual ⋅  is the primal-dual mapping 
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Fig. 1. An Example Operation of PDM 

function and ' 1i ix x= − , Fig. 1 shows an example of applying primal-dual mapping 

operator to a 6-bit string chromosome. 
With above definition, a set of low fitness primal chromosomes are selected to 

evaluate their duals during the run of PDGA and before the next generation starts. For 
every candidate, it is replaced with the dual if the dual is evaluated to be fitter; other-
wise it is survived into the next generation. 

3.2   Adaptive Primal-Dual Mapping Operator 

In PDGA, the primal-dual mapping function is a crucial operator, which is originally 
designed the maximum distance in Hamming distance space. That is, each bit of a 
chromosome string is translated to its complement during the course of PDM calcula-
tion. However, this hyper-mapping scheme however might become helpless, e.g. 
because the individuals converging into the high performance area in the late itera-
tions makes their dual become inferior, or because the system changing little makes 
PDM become invalid. And the invalid PDM is usually not also able to benefit GA’s 
performance. Here a new adaptive PDM operator, called statistic-based primal-dual 
mapping (SPDM), is proposed to improve mapping validity. In SPDM, not each bit 
participates in the PDM calculation any more and whether they are calculated is de-
termined by a statistic probability in the population.  

Within SPDM, the mapping probability of each locus is an important variant. Here 
an adaptive scheme to decide the value of mapping probability by the statistic infor-
mation of each gene locus in the population is introduced. Let p(i) denote the mapping 
probability of the locus i; fki denote the frequency of k’s in the gene locus i over the 
population, where i=1,2,…,L and k is one of the gene values. Then in the 0-1 encoding 
space, we have f1i+f0i=1, 0≤f0i, f1i≤1, and f1i can be regarded as the tendency to “1” for 
the locus i. If each f1i tends to equal to 1 or 0, the whole population is converging to 
one point. Thus the one-dimension vector { f11, f12, …,f1L } can express the conver-
gence degree of the population. Then the calculation equation from f1i to p(i) is given 
as follows: 

1 1

1 1

0.5 , 0.5
( )

0.5, 0.5
i i

i i

f f
p i

f f

− ≤⎧
= ⎨ − >⎩

 (1) 

Obviously, the same result also can be gained through f0i in a binary-encoded 
space. From equation 1, we can find that p(i) can achieve the minimum value when f1i 
is equal to 0.5 and the maximum value while equaling to 1 or 0. That is, the more the 
allele value in a gene locus converges, the more the mapping probability is. It is 
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mostly considered that a diverse, spread-out population can adapt to changes more 
easily. From the statistics-based method, PDM can be adjusted by the convergence 
degree of population. And the original mapping scheme is looked as a special instance 
when p(1)=p(2)=…=p(L)=1. Fig. 2 shows an example of applying the statistic opera-
tor to the same individual as Fig. 1.  

 

Fig. 2. An Example operation of SPDM 

In Yang’s PDGA, the dual chromosomes’ representation is unique and only the 
chromosomes selected into the PDM set have the chance to jump to their comple-
ments. However, there are multiple genotypes for an individual’s complement in 
improved PDGA (IPDGA) with SPDM operator. This mechanism is similar to the 
polyploidy in nature but a pseudo-multiploidy is used actually since the encoding is 
not multi-stranded but single-stranded chromosome and it works at the chromosome 
level. Thus, IPDGA can keep more diversity and help to explore the solution space 
more effectively than the original. And another difference between the improved 
algorithm and the original lies that all chromosomes are requested to evaluate their 
duals in IPDGA in order to enforce the sufficient diversity in the population.  

4   The Test Problems 

A set of well studied stationary problems is selected to compare the performance 
between two kinds of PDGA, DGA and SGA. The dynamic problems are constructed 
from these stationary problems by a special dynamic problem generator. 

4.1   Stationary Optimization Problems 

1 Bit-Matching Problem 
The bit-matching problem is one of One-Max problems where the individual’s func-
tion is the number of bits matching a given template. The template is a 100-bit binary 
string for this study. So the optimum solution’s fitness is 100. 
2 Royal-Road Function 
This function is studied by Michel, Forrest and Holland [12], which is defined on a 
64-bit string consisting of eight continuous building blocks (BBs) of eight bits. The 
fitness is calculated by summing the contributions ci corresponding to each of given 
BBs si, of which x is an instance (denote x∈si). That is, the fitness of a bit string x is 
calculated as follows: 
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where ci=8, and δi (x)={1, if x is an instance of si; 0, otherwise}. And the fitness value 
of optimum string is 64. 
3 Deceptive Function 
The deceptive functions are a family of functions where there exist low-order BBs 
that do not combine to form the higher-order BBs. Here a deceptive function consist-
ing of 10 copies of the order-3 fully deceptive function [13] is constructed for this 
study. And the optimum fitness value is 300. 

4.2   Dynamic Problem Generator 

In this paper, a dynamic test problem generator from a given stationary problem is 
introduced as follows. Given a binary-encoded stationary problem f(x), a binary tem-
plate T of the chromosome length is created first randomly or in a controlled way. 
Second, each chromosome x in the population performs the operation x⊕T where ⊕is a 
bit-wise exclusive-or operator (i.e. 0⊕0=0, 1⊕0=1, 1⊕1=0). If the environment changes 
in the generation t, we have f(x,t+1)=f(x⊕T,t) at the generation (t+1).  

The advantage of this way is the fitness landscape can still keep the certain prop-
erties in the original landscape after a change occurs since the environmental change 
is brought by a bit operation to the individuals. Moreover, when a bit is one in the 
template T, the corresponding allele in the chromosome x is reversed (i.e. form 0 to 
1, or form 1 to 0), that does not take place when it is zero. So the total number of 1’s 
in the template T can be looked as the severity of change. Let s devote the percent of 
1’s the template T contains, which allows controlling the severity of a change. In our 
experiments, s is set to 0.1, 05 and 0.9 which denotes the slightly changing environ-
ment, the randomly changing environment and the strongly changing environment 
respectively. 

5   Experiments 

For our experiments, we will compare IPDGA with original PDGA, traditional SGA 
and Collard and his co-worker’s DGA. The population size N is set to 100 for all the 
GAs and typical genetic operators are used and parameter settings: one-point cross-
over with a fixed probability pc=0.6, bit mutation with the mutation probability 
pm=0.001, and fitness proportionate selection with roulette wheel. The best N chromo-
somes among all the parents and children are always transferred to the next genera-
tion. And each experiment result is averaged over 100 runs with different random 
seed. 

Since for dynamic optimization problems a single, time-invariant optimal solution 
does not exist, the goal is not to find the extrema but to track their progression 
through the space as closely as possible. We will here report an offline performance 
function as measuring performance, which is the average of the best solutions at each 

time step, i.e. * *( ) /1
Tx e TtT t

= ∑ = with *e
t

 being the best solution at time t. Note that 
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the number of values that are used for the average grows with time, thus the curves 
tend to get smoother and smoother. 

5.1   Experiments and Analysis on Bit-Matching Problem 

We first compare and analyse the experimental results of different GAs on the 
periodically shifting Bit-Matching problem. The maximum allowable generation is set 
to 2000 and the fitness landscape is shifted every 200 generations. That is, there are 
10 change periods for all GAs.  Fig. 3 shows the results on the Bit-Matching problems 
in different severity environments. 

 

Fig. 3. Experimental results on Bit-Matching Problem in dynamic environments  

From Fig. 3, IPDGA outperforms the other GAs in all periods especially when s 
equals 0.5. For PDGA, its performance curves almost overlap with DGA’s and SGA’s 
when the environment change is slight while it performs much better when the change 
becomes very strong. For DGA, the similar results can also be obtained but it is 
beaten by PDGA in the high-severity environments. 

In IPDGA, the SPDM operator can keep sufficient diversity in the population and 
make the individuals to jump quickly to the new optimum point or nearby when the 
environment changes. Though the original PDM operator also enforces some diversity 
in PDGA, the efficiency responding to a change becomes very low since most primal-
dual mapping operations can become valid if the environment change is not strong. 
And DGA behaves much less efficiently than the above algorithms due to the blind-
ness in mutating the meta-bit. Within SGA, the performance curves gain a little im-
provement since a re-initialization method is used that 10% individuals in the popula-
tion is generated again randomly after a change occurs. 

5.2   Experiments and Analysis on Royal Road Function 

The same parameters on Royal Road function are set as on Bit-matching problem. 
The experimental results are shown in Fig. 4. 
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Fig. 4. Experimental results on Royal Road Function in dynamic environments  

From Fig. 4, IPDGA now outperforms PDGA, DGA and SGA with a much higher 
degree on the Royal Road function than it does on the Bit-Matching problem. PDGA 
has always achieved more BBs than DGA and SGA in all period, but cannot find the 
optimum solution for the dynamic periods as IPDGA does. DGA is disappointing here 
and even performs worse than SGA. 

The basis BBs in the Royal Road function are of order-8, which is very hard to be 
searched for the GAs. In IPDGA, the adaptive complementary mechanism can offer 
any block the chance translating to a building block while only the block, where all 
the bits are equal to zero, has such the chance in PDGA. So IPDGA can adapt more 
effectively to the environment than PDGA. In DGA, the efficiency of diversity-
keeping is poor and even worse than that of SGA. 

5.3   Experiments and Analysis on Deceptive Function 

Fig. 5 shows the experimental results on the Deceptive function, which seems a little 
similar to the situation in Fig. 3. IPDGA performs best and SGA performs worst and 
PDGA outperforms DGA. The reason is explained on the Bit-matching problem and 
the Royal Road function.  

 

Fig. 5. Experimental results on Deceptive Function in dynamic environments 
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All the experimental results show that IPDGA has stronger robustness and adapta-
bility than PDGA in the dynamic environments. The meta-bit scheme used in DGA 
also improves its adaptability under dynamic environments. However, the effect is 
limited due to blindness in applying the complementary mechanism. 

6   Conclusions 

In this paper, a genetic algorithm, Primal-Dual Genetic Algorithm, for dynamic opti-
mization problems is introduced and the key operator with PDGA, the primal-dual 
mapping operator, is discussed and improved by an adaptive statistics-based scheme 
which uses the statistic information of allele distribution in the current population to 
adjust the operation probability for each gene locus. Experiment study over the dy-
namic optimization problems suggests that IPDGA can solve the complex dynamic 
problems more effectively than original PDGA, traditional GA and Collard and co-
workers’ DGA. Experimental results show that the mechanism of primal-dual chro-
mosomes in PDGA is a very effective diversity-keeping idea. So many questions 
retain open and are worthy for future study in PDGA. For example, the idea of dual-
ism can be extended to real-code GAs and also generalized to other optimization 
algorithms, which are very interesting works.  
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Abstract. A hybrid mechanism is a configuration that combines the motions of 
two characteristically different electric motors by means of a mechanism to 
produce programmable output. In order to obtain better integrative perform-
ances of hybrid mechanism, based on the dynamics and kinematic analysis for a 
hybrid five-bar mechanism, a multi-objective optimization of hybrid five bar 
mechanism is performed with respect to four design criteria in this paper. Opti-
mum dimensions are obtained assuming there are no dimensional tolerances 
and clearances. By the use of the properties of global search of genetic algo-
rithm (GA), an improved GA algorithm is proposed based on real-code. Finally, 
a numerical example is carried out, and the simulation result shows that the op-
timization method is feasible and satisfactory in the design of hybrid actuator.  

1   Introduction 

Hybrid mechanism is a new type of planar controllable mechanism. A hybrid mecha-
nism is to combine the motion of a large constant speed motor, with a small servomotor 
via a two degree of freedom (DOF) mechanism, where, the constant speed motor pro-
vides the main torque and motion requirements, while the servomotor contributes to 
modulations on this motion. Such machines will introduce to users greater flexibility 
with programmability option, and energy utilization will be realized at maximum. Al-
though some points are partially explored, there is still a need for optimal design studies 
to guide potential users for possible industrial applications with hybrid machines.  

Previous work in hybrid machine can be found in some studies and publications. 
Tokuz and Jones [1] have used a hybrid machine configuration to produce a recipro-
cating motion. A slider crank mechanism was driven by a differential gearbox hav-
ing two separate inputs; constant speed motor and a pancake servomotor to simulate 
a stamping press. A mathematical model was developed for the hybrid machine-
motor system. The model results were compared with the experimental ones, and 
model validation was achieved. Later Greenough et al. [2] have presented a study on 
optimization design of hybrid machines, and a Svoboda linkage is considered as a 
two degree of mechanism. Kinematic analysis of Svoboda linkage was presented 
with inverse kinematics issue. Kireçci and Dülger [3] have proposed a different hy-
brid arrangement driven by two permanent magnet DC servomotors and a constant 
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speed motor. In the configuration, a slider crank mechanism having an adjustable 
crank was used together with two power screw arrangements to produce a motion in 
x-y plane. A mathematical model was prepared and the simulation results were pre-
sented for different motion requirements including electrical drive properties. Kireçci 
[4] has then offered a hybrid drive system involving a servomotor and a constant 
speed motor for a printing machine. Kireçci and Dülger [3] had given description of 
a different hybrid actuator configuration consisting of a servomotor driven seven link 
mechanism with an adjustable crank. Wang [5] has design a variable structure gener-
alized linkage, the linkage is optimized to perform exactly the complicated motion 
required. 

The above design of hybrid mechanism employed mainly traditional optimization 
design methods. However, these traditional optimization methods have drawbacks in 
finding the global optimal solution, because it is so easy for these traditional methods 
to trap in local minimum points [6]. 

GA refer to global optimization technique based on natural selection and the ge-
netic reproduction mechanism [7], [8]. GA is a directed random search technique that 
is widely applied in optimization problems. This is especially useful for complex 
optimization problems where the number of parameters is large and the analytical 
solutions are difficult to obtain [9]. GA can help to find out the optimal solution glob-
ally over a domain. In this paper, the standard GA is modified and new genetic opera-
tors are introduced to improve its performance.  

Optimal dynamic design is an important subject in designing a hybrid mechanism. 
The aim of our study is to optimize the synthesized mechanism. It is necessary to take 
into account not only the kinematic performance but also the dynamic performance. 
Hybrid five bar mechanism is the most representative one of hybrid mechanism, and 
is presented in this paper. The paper presents kinematic analysis, dynamic analysis, 
and the multi-objective optimization design of hybrid mechanism by deriving its 
mathematical model. By means of four optimization goals, optimal design for hybrid 
five bar mechanism is taken by using GA. The calculation results of the example are 
obtained in this system herein.  

2   Hybrid Mechanical Description 

Figure 1 represents five link mechanism configuration having all revolute joints ex-
cept one slider on output link. Fig.2 shows the positional, the geometrical and the 
dynamic relationships. Notations shown in Fig. 1 and 2 are applied throughout the 
study. The hybrid mechanism has an adjustable link designed to include a power 
screw mechanism for converting rotary motion to linear motion by means of a small 
slider. The slider is assumed to move on a frictionless plane. 

The crank is driven by a DC motor (the main motor) through a reduction gearbox; 
the slider is driven by a lead screw coupled the second servomotor (the assist motor). 
Here the main motor is applied as a constant speed motor, and the constant speed 
motor profile is applied. Point-to-point positioning is certainly achieved for both mo-
tors, and the system output is taken from the last link. 
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Fig. 1. Schematic diagram of five link mechanism 
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Fig. 2. Configuration of five link mechanism 

a, b, d, e  link lengths of the mechanism (m) 
φ ,θ ,ϕ ,ψ  angular displacement of the links (rad) 

φ ,θ ,ϕ ,ψ  angular velocity of the links (rad/s) 

φ ,θ ,ϕ ,ψ  angular acceleration of the links (rad/s2) 
x

iS , y

iS (i = a, b, e, l) positions to the centre of gravity in local coordinates (m) 

im  masses of the links (kg) 

iG  gravity of the links (N) 

isJ  link moment of inertias on the mass centre of the links(kgm2) 

LLL ,,  displacement, velocity, and acceleration of the slider on output link (m, m/s, 
m/s2) 
F  the assist driving force (N) 
M0  the main driving torque (Nm) 

ψM drag torque on output link (Nm) 

X

QiR , Y

QiR  inertia forces of the links (N) 

QiM  inertia torques of the links (N) 

ii YX ,  positions to the mass centre of the links in fixed coordinates (m) 
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3   Kinematic Analysis of Hybrid Mechanism 

Kinematic analysis of five bar linkage is needed while carrying out derivations for the 
mathematical model. The mechanism is shown with its position vectors in Fig. 1. The 
output of system is dependent on two separate motor inputs and the geometry of five 
bar mechanism. 

By referring to Fig. 1, the loop closure equation is written as: 

EDAECDBCAB +=++                               (1) 
By solving vector loop equation (1), we can obtain angular position of the each link. 
Having found the angular displacements of each linkage in the five bar linkage, time 
derivatives can be taken to find angular velocity and accelerations. They are also 
definitely needed during the analysis of dynamic model.  

4   Dynamic Analysis of Hybrid Mechanism 

In general, the model of a mechanical system can simply be considered as inertial 
rigid system. Simplifying assumptions are required while developing the mathemati-
cal model. Friction and clearance in all joints are neglected. The mechanism operates 
in vertical plane and gravity effects are included. Figure 3 shows the bond graph 
model of hybrid five-bar mechanism [10]. It is composed of three parts: (1) Multi-
ports element MCHANISM, (2) Inertial field, (3) Source field. 

In Fig. 3, there exist N 1-Junctions corresponding to velocities vector of mecha-

nism, Kq ( T
KDKIK qqq ][= ). According to bond graph theory [11], an algebraic sum 

of all efforts (ei) on the bonds attached to a 1-Junction is zero. From the bond graph in 
Fig. 3, the effort summations at two 1-Junctions associated with the independent gen-
eralized velocities KIq  vectors are written as follows: 

PIKDSI eee +=                                                 (2) 

The effort summations at (N-2) 1-Junctions associated with dependent velocity 

KDq  vectors are written as follows: 

PDKISD eee +−=                                              (3) 

where KIe  , PIe , SIe  are  2-effort vector , and KDe , PDe , SDe  are (N-2)-effort vector. 

According to literature [10] and equations (2), (3), we can get 

))(,()( SDPDK
T

PISI eeqTee −=− Ψ                               (4) 

From (4), we may found the dynamic equation of hybrid mechanism in the form 

0241321 =+++ UAUAqAqA KIKI                                (5) 

where 321 ,, AAA and 4A are coefficient matrixes of dynamic equation， 1U  represent 

input torques(forces) vector, and 2U represent other torques(forces) on hybrid mecha-

nism. Thus, the 2-vector 1U can be found from equation (5) 

)()1( 52421
1

31 AUAqAqAAU KIKI +++−= −                           (6) 
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Fig. 3. Bond graph model of hybrid five bar mechanism 

5   Optimum Dynamics Design of Hybrid Mechanism 

5.1   Design Variables 

Hybrid mechanism can be determined by selecting a design vector as follows： 
Txxxxxx ],,,,[ 54321=                                                 (7) 

where， 0504321 xxdexdbxdax ψφ ===== ,,,, . 

5.2   Objective Functions 

The problem of determining mechanism dimensions can be expressed as a constrained 
optimization problem. In order to ensure the synthetical performance of the hybrid 
mechanism, five performance criteria are simultaneously considered in the optimiza-
tion of the mechanism as follows. 

minmax1 )( LLxf −=                                               (8) 

)max()(2 Lxf =                                                    (9) 

)max()(3 Fxf =                                                  (10) 

)max()(4 LFxf =                                                (11) 

Considering the difference on unit of each sub-objective function value, order of 
magnitude of them must be harmonized in the course of optimization. Thus the multi-
objective optimization function is designed as follows. 

Source Field

Inertial Field 

L  

L  
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1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )f x f x f x f x f xω ω ω ω′ ′ ′′= + + +                    (12) 

where ( )if x′ is sub-objective function harmonized order of magnitude, and there is a 

relationship among weighting coefficients iω ,  

4

1

1i
i

ω
=

=∑   (i=1,2,3,4)                                      (13) 

5.3   Constraint Functions 

These functions consist of inequality constraints with stand type according to Matlab 
optimization toolbox. They are functions of design variables. 

1) Inequality constraint related to the movable condition of hybrid mechanisms  
To ensure existence of the hybrid five-bar mechanism, the follow inequality con-

straints are to be satisfied. 

0),,min(
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                                        (14) 

2) Inequality constraint due to the transmission angle 
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                                  (15) 

where [ ]γ is allowable transmission angle of mechanism.  

5.4   Improved  GA  

5.4.1   Initial Population 
The initial population is a potential solution set Q. The first set of population is usu-
ally generated randomly.  

)}(,),(,),2(),1({ NqiqqqQ =                                 (16) 

)],(),(),2(),1([)( ipqijqiqiqiq =                     (17) 

),(),(),( maxmin ijqijqijq ≤≤                                   (18) 

where N denotes the population size; p denotes the number of variables to be tuned; 
),( ijq  ;,,2,1( Ni …= ),,2,1 pj …= are parameters to be tuned; It can be seen from 
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equations (16)–(17) that the potential solution set Q contains some candidate solutions 
(chromosomes). The chromosome contains some variables ),( ijq  (genes).  

5.4.2   Evaluation 
Each chromosome in the population will be evaluated by a defined fitness function. 
The better chromosomes will return higher values in this process. According to char-
acteristics of objective functions, the fitness function to evaluate a chromosome in the 
population can be written as 

)](/[1)fitness( ifi += δ                                          (19) 

where δ is an adjustment parameter for preventing that denominator is zero. The form 
of the fitness function depends on the application. 

Check every individual whether meet constraints function, if they meet constraints 
function，then calculate their objective function value and fitness function value；if 
some or other individual dissatisfy constraints function，then it may bring on over-
flow problem of numerical calculation，optimization may not be performed. So, the 
algorithm is improved as follows：we do not calculate objective function value of the 
individual，and directly set fitness value for zero，the individual can also be called 
lethal gene. 

5.4.3   Selection 
Two chromosomes in the population will be selected to undergo genetic operations 
for reproduction by the method of spinning the roulette wheel. It is believed that high 
potential parents will produce better offspring. The chromosome having a higher 
fitness value should therefore have a higher chance to be selected. The selection can 
be done by assigning a probability ip  to the chromosome )(iq , 

∑
=

=
N

i
i iqfiqfp

1

))((/))(( ),,2,1( Ni =                           (20) 

The cumulative probability ip′ for the chromosome kp is defined as  

∑
=

=′
i

k
ki pp

1

),,2,1( Ni =                                          (21) 

The selection process starts by randomly generating a nonzero floating-point number, 
][ 10d ∈ . Then, the chromosome ip is chosen if i1i pdp ′≤<′− 0)p0 =′( . It can be 

observed from this selection process that a chromosome having a larger ))(( iqf will 

have a higher chance to be selected. Consequently, the best chromosomes will get 
more offspring, the average will stay and the worst will die off.  

5.4.4   Genetic Operations 
1) Crossover: the crossover operation is mainly for exchanging information from the 
two parents, chromosomes ),( 1ijq and ),( 2ijq , obtained in the selection process. The 

two parents will produce one offspring. First, four chromosomes will be generated 
according to the following mechanisms: 



852 K. Zhang 

2/)),(),((),( 211 ijqijqijqc +=                                    (22) 

ωω )),(),,(max()1)(,(),( 21max2 ijqijqijqijqc +−=                   (23) 

ωω )),(),,(min()1)(,(),( 21min3 ijqijqijqijqc +−=                   (24) 

2/))),(),(()1))(,(),((),( 21minmax4 ωω ijqijqijqijqijq c ++−+=         (25) 

where ]10[∈ω denotes the weight to be determined by users, 

)),(),,(max( 21 ijqijq denotes the vector with each element obtained by taking the 

maximum among the corresponding element of ),( 1ijq  and ),( 2ijq . Similarly, 

)),(),,(min( 21 ijqijq  gives a vector by taking the minimum value. Among ),(1 ijqc to 

),(4 ijq c , the one with the largest fitness value is used as the offspring of the crossover 

operation. The offspring is defined as ),( ijq c

osk , osk denotes the index k which gives a 

maximum value of )),(( ijqf c
k , 4,3,2,1=k . 

2) Mutation: the offspring will then undergo the mutation operation. The mutation 
operation is to change the genes of the chromosomes. Consequently, the features of 
the chromosomes inherited from their parents can be change. Three new offspring 
will be generated by the mutation operation 

),(),(),( ijqbijqijq m
j

c

osk
m
k Δ+=  3,2,1=k                           (26) 

where jb , pj ,,2,1= , can only take the value of 0 or 1, ),( ijq mΔ , pj ,,2,1= , 

are randomly generated numbers such that ]10[),(),( ∈+ ijqijq mc

osk Δ . The first new 

offspring (j = 1) is obtained according to equation (26) with that only one ( jb being 

randomly generated within the range) is allowed to be one and all the others are zeros. 
The second new offspring is obtained according to equation (26) with that some 

jb randomly chosen are set to be one and others are zeros. The third new offspring is 

obtained according to equation (26) with all 1jb = . These three new offspring will 

then be evaluated using the fitness function of (19). A real number will be generated 
randomly and compared with a user-defined number ]10[∈ap . If the real number is 

smaller than ap , the one with the largest fitness value among the three new offspring 

will be replace the chromosome with the smallest fitness sf  in the population. If the 

real number is lager than ap , the first offspring ),(1 jiq m  will replace the chromosome 

with the smallest fitness value sf in the population if s
m fijqf >)),(( 1 ; the second and 

the third offspring will do the same. ap is effectively the probability of accepting a 
bad offspring in order to reduce the chance of converging to a local optimum. Hence, 
the possibility of reaching the global optimum is kept. 

After the operation of selection, crossover, and mutation, a new population is gen-
erated. This new population will repeat the same process. Such an iterative process 
can be terminated when the result reaches a defined condition; a defined number of 
iteration has been reached. 
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6   Numerical Examples 

In order to prove the effect of the proposed optimization design procedure numerical 
examples have been performed. Mechanical properties of five link mechanism, link 
lengths, positions to the center of gravity of each link, link masses, and link inertias on 
the masses center are shown in Table. 1. These link lengths and angle values for hybrid 
five bar mechanism in the studies of optimal kinematic design were obtained by Wang 
and Gao [5]. The output motion profile is designed as the law of sine acceleration. 

Table 1. Mechanical properties of five link mechanism 

a＝0.04m, b＝0.3902m, e＝0.0694m, d＝0.4m; 

0φ ＝8.8 π× /180rad , 30/240 πφ ×= rad/s, ≈φ 0 rad/s
2
; 

ma＝12.9 kg, mb＝2.3 kg, me＝1.8kg, ml＝15.0 kg； 

JaS＝34.2×10
-3 

kgm
2
， JbS＝70.4×10

-3 
kgm

2
，JeS＝3.6×10

-3 
kgm

2
,  

JlS＝447×10
-3 

kgm
2
； 

x
aS ＝0.0m, y

aS ＝0.0m, x
bS ＝0.2405m, y

bS ＝0.0m, x
eS ＝0.0227m, 

y
eS ＝0.0m, x

lS ＝0.0m, y
lS ＝0.0 m； 

 

Experimental model in Fig. 1 have been designed that kinematic sizes can be ad-
justed statically relative to crank, the masses of links, inertias and positions to the 
masses center of links in the local coordinates are independent of the static adjusment. 

Using the improved GA for the multi-objective optimization design, a computer 
program has been written. Initial values of design varibles can be obtained with link 
lengths of link and angle 0φ  in Table.1. If we choose [ γ ] = 45°, and 0.25iω =  

(i=1,2,3,4), mechanism dimensions obtained for hybrid five bar mechanism in this 
studies of multi-objective optimization design are shown in Table.2. Here, we analyze 
kinematic and dynamic performance of the multi-objective optimization design 
mechanism, compared with single objective kinematic and dynamic optimization 
design using objective functions as equations (9) and (11). 

For kinematic performance index of the actuator, we choose the actuator manipula-

bility index μ , det( )Tμ = ⋅J J [12], where matrix J is known as the Jacobin. Most 

of the measures of kinematic performance of linkage actuators are based on the Jaco-
bin matrix. According to kinematic analysis of hybrid five bar actuator in Fig. 1, the 
Jacobin matrix can be found as follows 

( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

a sin cos

e sin L sin e sin L sin

φ φ θ ψ ψ θ
ϕ θ ψ ψ θ ϕ θ ψ ψ θ

⎡ ⎤⋅ + − + −
= ⎢ ⎥⋅ − + ⋅ + − ⋅ − + ⋅ + −⎣ ⎦

J    (27) 

Figure 4 shows the change of manipulability index μ values of the actuator. As shown 

in these graphs, manipulability index μ obtained by using multi-objective optimiza-
tion is satisfactory, compared with kinematic and dynamic optimization. Hybrid ac-
tuator can get good kinematic performance.  
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Table 2. Optimal results of hybrid five bar mechanism 

 a b e d 0φ (°) 

Optimal results 0.04 0.3862 0.0755 0.395 9.8 

 

Fig. 4. The manipulability index of the hybrid five bar mechanism  

 

Fig. 5. The assist driving power of the hybrid five bar mechanism 

For dynamic performance index of the actuator, we choose the assist driving power 
of the actuator. Figure 5 shows the assist driving power for the assist motor driving the 
slider on the lead screw. In Fig. 5, three curves represent respectively the calculations 
results for optimal kinematic design, optimal dynamic design and multi-objective  
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optimization design. As seen in Fig. 5, multi-objective optimization can reduce the 
peak power of the assist drive, compared with optimal kinematic design. According to 
the above analysis, hybrid mechanism can obtain better integrative performance by 
using multi-objective optimization design. 

7   Conclusions 

The main aim of this study was while optimization hybrid mechanism, to consider 
simultaneously their kinematic performance, dynamic performance. Hybrid mecha-
nism dimensions have been determined via multi-objective optimization based with 
four design goals: minimum displacement of the assist motion, minimum of the maxi-
mum velocity of the assist motion, minimum of the maximum driving force of the 
assist motion, and minimum of the maximum driving power of the assist motion. The 
optimal design for a hybrid five bar mechanism is performed by using an improved 
GA in this paper. Although some simplifications are made during derivations, this 
study illustrates how well the method. As a result of the comparisons, better integra-
tive performances have been obtained in terms of multi-objective functions.  
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Abstract. The aim of this paper is to investigate a control framework for mo-
bile robots, operating in shared environment with humans. The Intelligent 
Space (iSpace) can sense the whole space and evaluate the situations in the 
space by distributing sensors. The mobile agents serve the inhabitants in the 
space utilizes the evaluated information by iSpace. The iSpace evaluates the 
situations in the space and learns the walking behavior of the inhabitants. The 
human intelligence manifests in the space as a behavior, as a response to the 
situation in the space. The iSpace learns the behavior and applies to mobile 
agent motion planning and control. This paper introduces the application of 
fuzzy-neural network to describe the obstacle avoidance behavior learned from 
humans. Simulation and experiment results are introduced to demonstrate the 
efficiency of this method. 

1   Introduction 

The Intelligent Space (iSpace) is a space (room, corridor or street), which has ubiqui-
tous distributed sensory intelligence (various sensors, such as cameras and micro-
phones with intelligence) actuators (TV projectors, speakers, and mobile agent) to 
manipulate the space [1], [3].  

The iSpace propagates mobile robots in the space, which act in the space in order 
to change the state of the space. These mobile robots are called mobile agents. Mobile 
Agents cooperating with each other and core of the iSpace to realize intelligent ser-
vices to inhabitants. The intelligence in iSpace has capability of evaluation of situa-
tions inside the space [2]. The evaluated situations are applied for learning the behav-
ior of inhabitants. The evaluated behaviors are given to the control system of mobile 
agent. There are many definitions of the intelligence. The intelligence can be consid-
ered as a reaction against a given action. Behavior is a generalized mapping between 
situations (state of the space) and actions. But the intelligence is also means capability 
of learning. The iSpace integrates both types of definitions. Inhabitants in the iSpace 
are producing intelligent reactions against instantaneous situation. 



 Human Hierarchical Behavior Based Mobile Agent Control in ISpace 857 

The iSpace evaluates situations (actions-reactions) from sensed information [4]. 
The evaluated situations are given to the learning system, where behaviors are con-
cluded from situations. The mobile agents serve the inhabitants in the space utilizes 
the evaluated information by iSpace [5]. The mobile agents have sensors and/or actua-
tors with computational devices and computer network communication capabilities. 
The iSpace senses the space and acting in the space. The sensing is done through 
distributed sensory network, and the acting is done by global actuators like projectors 
or speaker systems, or by local actuators like mobile agents. The mobile agents can 
sense the space and can act in the space locally. 

The rest of this paper is organized as follows. The following section summarizes 
the pedestrian behavior models and proposes a mobile agent control framework. Sec-
tion II explains the obstacle avoidance behavior and introduces a mathematical model 
to describe the particular behavior.  Obstacle avoidance behavior is modeled by artifi-
cial potential fields. Fuzzy-Neural Non-linear Function Approximation is applied to 
describe the artificial potential functions. Section III introduces the evaluation and 
learning capability of Fuzzy Neural Network. The evaluation is done by walking path 
extraction from spatially distributed camera sensors. Section IV introduces some 
simulation examples to demonstrate the effectiveness of this method. 

2   Modeling Obstacle Avoidance Behavior 

Let us consider two typical styles (Figure 1.). One, main navigation behavior of an 
aircraft carrying dangerous material is to keep "as far from the mountains as possible" 
Two, remaining in secret while seeking a mouse leads to the opposite behavior for a 
cat, namely, "get as close to the object as possible" 

A simple combination of these basic behavior styles can characterize the main rule 
of a traffic system: "keep close to the right or the left side". Let’s consider a simple 
example to illustrate the importance of this knowledge. Let's assume that Japanese 
and American person are walking towards each other. Recognizing this situation, they 
try to avoid each other. Using their national traffic rule, the Japanese person keeps left 
and the American keeps right and they are again in front of each other. It might be 
ended in a collision. (see Figure 2.). 

 

Fig. 1. Basic obstacle avoidance strategies: “As Far As Possible” (left) and “As Close As 
Possible” (right)   
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Fig. 2. Two different obstacle avoidance strategy may result dangerous situation  

2.1   Direct Evaluation of Sensor Information 

Artificial potential based guiding approach is applied to handle the dynamic and un-
certain environment around the robot ([6] and [7]). The robot can detect objects in the 
scanned area (Figure 3.). 

 

Fig. 3. Scanning area of the robot (left), direct evaluation of sensor information (right) 

The scanned area is divided into n scanned lines that are pointed into directions of 

ie  (unique vectors, where i = 1… n). The radial scanned lines structure has an impor-

tant advantage that spatial density of the scanning is growing with the decreasing 
distance between the obstacle and the robot. The sensor system provides the distance 
between the robot and the object on the scanned lines [10]. The main idea of the po-
tential based guiding is to repulse (or attract) the robot from/to the obstacles [8]. The 
objects and the target generate imaginary forces ( iy , i=1…n) acting on the robot. 

Summing the effect of these virtual forces, the desired moving direction can be ob-
tained. The virtual vectors must be calculated for each location as quickly as possible 
to achieve a smooth and reactive guiding. The magnitudes of the repulsive forces are 
usually inversely proportional to the distance between the obstacles and the robot but 
they can be described by any non-linear functions. 
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The virtual force along the scanned line: 

iiii exwy )(=  (1) 

where i = 1…n (n is the number of scanned lines) from the measured distances ( ix ) to 

each scanned lines. The )( ii xw  is the weight function of the scanned line. The virtual 

force vectors are pointed into the opposite of the scanned direction (key idea of poten-
tial based guiding), and their absolute values depending on the detected distances are: 

)( iii xwy = . The overall force is the summation of the virtual forces along the direc-

tions of the scanned lines:   

∑
=

=
n

i
iii exwy

1

)(  (2) 

In many cases this kind of evaluation is not effective. For example let the weight 
function on each scanned line the same. Applying (2) to symmetrically located obsta-
cles, will result attractive and repulsive force, and the sum results zero vector (see 
Figure 4.). The attractive force represents the goal reaching behavior, while the repul-
sive force represents the obstacle avoidance behavior. Choosing one of the iy , what 
is perpendicular to the attractive and repulsive force, in the evaluation would lead to 
escape from the local minimum. 

 

Fig. 4. Local minimum point of the potential based guiding  

2.2   Indirect Evaluation of Sensor Information 

To avoid the local minimum problem (Figure 4.) an extension of the above mentioned 
method is introduced. All sensor information is propagated to all outputs (Figure 5.). 
Weight function is introduced between scanned inputs i and the output nodes j (j=1… m): 

∑
=

=
n

i
iiij exwy

1
, )(  (3) 

The summarized vector output is calculated as in (2), but with extended weight func-
tions as in (3): 

∑∑
= =

=
m

j

n

i
iiij exwy

1 1
, )(  (4) 
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2.3   Printing Area Fuzzy-Neural Approximation 

The weight functions are approximated by fuzzy sets. The fuzzy approximation gives 
piece-wise linear approximation in case of triangular antecedent fuzzy set. The num-
ber of antecedent fuzzy sets are denoted with k, where k=1… l. Fuzzy approximation 
of direct sensor evaluation is shown first. The weight function of direct evaluation of 
sensor input [9]: 

∑
=

=
l

k
kiiAii bxxw

ki

1
,)()(

,
μ  (5) 

The )(
, iA x
ki

μ  is the membership values of the sensor value, ix  case of antecedent set 

k, and direction of scanned line i. The kib ,  is the consequent set for antecedent set k, 

and direction of scanned line i. In this model the consequent set is only one value set. 
The virtual vector along the scanned line i is generated by: 

∑
=

=
l

k
ikiiAi ebxy

ki

1
,)(

,
μ  (6) 

Where ie  is a unique vector pointed into the direction of scanned line as in (2). Sum-

marized vector output (2) approximated by fuzzy sets: 

 

Fig. 5. Fuzzy approximation of indirect evaluation of sensor information  

Summarized vector output of the fuzzy-neural network: 

∑∑∑
= =

=
m

j

n

i

l

k
ikijiAi ebxy

ki

1 1
,,)(

,
μ  (7) 
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Figure 5 illustrates the applied fuzzy neural network architecture. Each sensor data 
( niXi ...1, = ) is distributed to each sensor node ( iy ) via the weight function, 

)(, iij XW . Weight functions are piece-linear approximated by fuzzy sets. The input 

fuzzy set are is Ruspini partitions in our case. The consequent fuzzy sets are one val-
ued fuzzy sets. This simple architecture enables fast computation, and simple imple-
mentation algorithm. 

3   Evaluation and Learning of Pedestrian Behaviors 

3.1   Evaluation and Learning Framework 

This section illustrates the learning capability of the obstacle avoidance behavior of 
mobile robot. The learning capability enables by the fuzzy-neural network which is 
applied for approximation of direct and indirect sensor evaluation. Figure 6 shows the 
actual configuration of learning. The picture of the human walking is taken by the 
DIND and sent to the Human Localization Module. The module calculates the human 
position and sends to the Learning module. The result of the leaning is a potential 
function, what is given to the robot control module. 

 

Fig. 6. Learning and evaluation framework in iSpace 

3.2   Learning Method of Fuzzy Neural Network 

Learning method is introduced for indirect sensor evaluated control (Section 2.1). The 
human walking path (p[t]) calculated by Human Localization module. The walking 
path is a discrete series of position, along time series t:={t=t(k)|k=1… z}. The path is 
scaled to the obstacle avoidance control: 

|][|

][
|][|][

tp

tp
tytd =  , (8) 

where ][t•  denotes vector value at t=t(k) time instance. |][| ty  is the absolute value 

of obstacle avoidance initial rule base. The training algorithm does not tune all sets, 
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but the absolute value of the consequent vectors, namely values ][,, tb kij . The t-th 

training pattern contains input values ][txi  and the desired output direction ][kd . 

The error criteria is the instantaneous error between the reference vector and the robot 
(Figure 7.). Consequently, the tuned consequent sets: 

])[cos(|][|])[(][]1[
,,,,, tttxptbtb iiAkijkij ki

ϑεμ+=+  (9) 

where ][iiϑ  is the angle of the error vector ][tε  and the unique vector ie . 

Figure 7 shows the obstacle avoidance behavior learning method. The error defines 
as the difference between, the reference moving direction (Reference vector) (walking 
habit from the observed path) and the Robot's moving direction (Robot vector). This 
error vector is evaluated back to the direction of the sensors, and tunes the weight 
constants, ][,, tb kij . 

 
Fig. 7. Evaluation of error vector, difference between the reference vector and the robot vector  
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Fig. 8. Speed of Learning: fall of error vector absolute value at different learning parameter (P) 
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Figure 8 shows the convergence of the training procedure with different values of 
learning parameters, P. When P=2 almost 10 learning iterations is necessary with the 
same training data for small error. Increasing learning parameter, P may not means 
faster learning. In this training session, P=5 gives faster learning, than P=7. The 
learning parameter should be tuned for each training session, as a conclusion of train-
ing process. 

4   Examples 

Tactical Level Control of Mobile Agent is considered in this section. The control 
framework for tactical control is shown in Figure 9. The output of this layer is Mov-
ing Vector which points toward the moving direction, and its absolute value repre-
sents the desired instantaneous traveling speed. 

 

Fig. 9. Tactical Level Control of Mobile Agent 

The Moving Vector ( M ) is weighted summary of the Obstacle Vector ( y ) and the 

Target Vector (T ): 

)()()( tTbtyatM +=  (10) 

To approach the target and avoid objects behavior can be tuned by the weight parame-
ter a and b. If b is positive, then the mobile agent approaches the target even there is 
no obstacles 0=y . If b is negative, than the mobile agent is pushed by the target. 

Figure 10 shows a basic example of obstacle avoidance. The robot moves from 
start position to goal position. The robot can not move directly form start to goal posi-
tion because of corner. Figure 10(a) shows the resulted path according to (17). The 
resulted path and the resulted behavior can be changed by parameter a and b. 

Figure 11 shows three cases of trained obstacle avoidance behavior. The basic ob-
stacle avoidance behaviors of manual control were: 1) keep on left side. 2) keep on 
right side. 3) get as far from the objects as necessary. Figure 11 shows the obstacle 
avoidance behavior of the three trained mobile agent among the new set of objects. 
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We concluded that the robot is able to pick up the main human obstacle avoidance 
behaviors. The next demonstration illustrates the limitation of the presented method to 
describe the obstacle avoidance behavior. The thick lines represent wall-type objects.  

   
(a)                                                                      (b) 

Fig. 10. Path of the Mobile Robot (a) and the Obstacle Vectors along the Path (b) 

 

Fig. 11. Path of the Mobile Robot (left) and the Obstacle Vectors along the Path (right) 

5   Conclusion 

The aim of this paper is to investigate a control framework for mobile robots, operat-
ing shared environment with humans. The principle of control framework is derived 
from pedestrian behavior model. The obstacle avoidance behavior is a characteristic 
feature of the proposed framework. Virtual potential based obstacle avoidance method 
is applied to describe the obstacle avoidance behavior. The virtual potential method is 
approximated by fuzzy-neural network. The learning capability of fuzzy-neural net-
work, and learning methods is also presented. The learning methods, and the learning 
configuration in the iSpace will be revised as a future work. 
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Abstract. A computer virus is a program that can generate possibly evolved 
copies of itself when it runs on a computer utilizing the machine’s resources, 
and by some means each copy may be propagated to another computer in which 
the copy will have a chance to get executed. And we call a virus instance as a 
viral agent since it is autonomous during its execution by choosing what action 
to perform in the computer without a user’s intervention. In the paper we 
develop a computational model of viral agents based on the persistent Turing 
machine (PTM) model which is a canonical model for sequential interaction. 
The model reveals the most essential infection property of computer viruses 
well and overcomes the inherent deficiency of Turing machine (TM) virus 
models in expressing interaction. It is conceivable that viral agents have much 
potential to evolve in various environments according to the model. Therefore 
we also discuss the evolution of viral agents with two existing relevant works. 

Keywords: Viral Agent, Persistent Turing Machine, Evolution. 

1   Introduction 

A computer virus is a program that can generate possibly evolved copies of itself 
when it runs on a computer utilizing the machine’s resources, and by some means 
each copy may be propagated to another computer in which the copy will have a 
chance to get executed. And we call a virus instance as a viral agent since it is 
autonomous during its execution by choosing what action to perform in the computer 
without a user’s intervention. Computer viruses are always a serious threat against 
information security. Although various countermeasures have hitherto been adopted, 
computer viruses can not be prevented radically. 

To understand computer viruses in essence, a proper computational models of viral 
agents is certainly necessary. There have been a few such models [1–3] which leave 
out an important property of viral agents – interaction. This is due to the inherent 
limitations of the classical computational models, such as the most typical Turing 
machines (TMs). A TM can only model a function-based transformation of an input 
to an output. When the area of computation is extended from algorithms to processes, 
TMs are no longer appropriate to capture all the features of computation including 
interaction. A computing agent has the interaction property if it has input and output 
actions that interact with an external environment not under its control [4]. To model 
interactive computation, Wegner [4] proposed the notion of interaction machines 
(IMs) which extend TMs with input and output actions that interact dynamically with 
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the external environment. In terms of concurrency of interaction, IMs can be divided 
into sequential interaction machines (SIMs) and multiple-stream interaction machines 
(MIMs). Persistent Turing machines (PTMs) are a canonical model for sequential 
interaction and are equivalent to SIMs in expressiveness [5]. The concepts of PTMs 
have been well defined in [6] and we can use PTMs to model sequentially interactive 
agents. In general a viral agent interacts with its environment sequentially because no 
viral agent works like an engaged web server, and so PTMs are quite suitable for viral 
agent modeling. 

In the paper we develop a computational model of viral agents based on PTMs 
which are a canonical model for sequential interaction. The model reveals the most 
essential infection property of computer viruses well and overcomes the inherent 
deficiency of TM virus models in expressing interaction. It is conceivable that viral 
agents have much potential to evolve in various environments according to the model. 
Therefore we also discuss the evolution of viral agents with two existing relevant 
works. The rest of the paper is organized as follows. Firstly in section 2 we develop a 
computational model of viral agents based on PTMs. Then in section 3 we explore the 
evolution of viral agents. Finally we draw the conclusion. 

2   Modeling Viral Agents with PTMs 

2.1   Modeling Viral Agents with PTMs 

A PTM is a nondeterministic 3-tape TM (N3TM) with a read-only input tape, a 
read/write work tape, and a write-only output tape [6]. Upon receiving an input token 
from its environment on its input tape, a PTM computes for a while and then outputs 
the result to the environment on its output tape, and this process is repeated forever. A 
PTM performs persistent computations in the sense that the work tape contents are 
maintained from one computation step to the next, where each PTM computation step 
represents an N3TM computation. 

Definition 2.1. An N3TM is a quadruple >∑< 0,,, sK δ , where: 

• K  is a finite set of states. 
• ∑  is a finite alphabet containing the blank symbol #, but not containing L (left) 

and R (right). 
• }),{(}),{(}),{(}){( RLRLRLhKK ∪∑×∪∑×∪∑×∪×∑×∑×∑×⊆δ  is the transition 

relation. 
• Ks0 ∈  is the initial state. 

• Kh∉  is the halting state. 

Definition 2.2. A PTM is N3TM having a read-only input tape, a read/write work 
tape, and a write-only output tape. 

Definition 2.3. Let M be a PTM having alphabet ∑ , and let wi, w, w' and wo be 

words over ∑ . We say that '
/

w
M

ww
w oi >  (yields in one macrostep) if M, when 

started in its initial control state with its heads at the beginning of its input, work, and 
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output tapes containing wi, w, and Є respectively, has a halting computation that 
produces wi, w' and wo as the respective contents of its input, work, and output tapes. 

Should M’s computation diverge, we write div
i s
M

w
w >

μ/
, where ∑∉μ,divs  and sdiv is 

a special “divergence state” such that div
i

div s
M

w
s >

μ/
 for all inputs wi; and μ  is a 

special output symbol signifying divergence. 

Definition 2.4. Let M be a PTM with alphabet ∑ , then reach(M), the reachable 
states of M, is defined as: 
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Definition 2.5. Let U be a PTM with alphabet U∑ , let M be a PTM with alphabet 

M∑ , let wi, wo, w and w' be strings over M∑ , and let UMM **,: ∑→∑η  be a one-to-

one encoding function for the transition relation and alphabet of M. Then, U is a 
universal PTM simulating M if: 

• U has an initial macrostep >><
><

)(),(
/)(),(

wM
U

wM ηηεηηε . 

• If M has a halting computation '
/

w
M

ww
w oi > , the U has a halting computation 

>><>< )'(),(
)(/)(

)(),( wM
U

ww
wM oi ηηηηηη . 

• If M diverges, written div
i s
M

w
w >

μ/
, then U diverges, written 

div
i s

U

w
wM >><

μηηη /)(
)(),( . 

• If div
i

div s
M

w
s >

μ/
, then div

i
div s

U

w
s >

μη /)(
. 

Theorem 2.1. There is a PTM U that is a universal PTM. (Refer to [6] for the proof) 

2.2   Viral Agent Modeling 

Modern general-purpose computers are implemented in accordance with the idea of 
universal TMs. However, as the theoretical basis of computers universal TMs are 
unable to describe a continuous computational process of a computer during which 
unpredictable interaction events sequentially happen. It is conceivable that universal 
PTMs can be used to make up the deficiency since a universal PTM can simulate a 
computational process of an arbitrary PTM which can represent a program properly. 
Upon that we model viral agents with PTMs based on our previous work in [7]. 
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Definition 2.6. For a given universal PTM U, the set of all its programs 
PTM}aisM|(M){TP η= . 

Definition 2.7. For a given universal PTM U, V is a program set iff φ≠⊆ VandTPV . 

Definition 2.8. For a given universal PTM U, the set of all the program sets 
}|{ φ≠⊆= VandTPVVTS . 

Definition 2.9. For a given universal PTM U, for TSV ∈  and VMv ∈= )(η , Vv
U
⇒  iff 
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>><><
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Definition 2.10. With respect to all kinds of universal PTMs, the whole viral set 

},,,|),{( VvVvandUforTSVPTMuniversalaisUVUWS
U
⇒∈∀∈= . 

Definition 2.11. V is a viral set with respect to a universal PTM U iff WSVU ∈),( . 

Definition 2.12. v is a viral agent with respect to a universal PTM U iff 
WSVUandVv ∈∈ ),( . 

These definitions recursively model a viral agent as a PTM which can generate 
possibly evolved isogenous PTMs through interaction with the environment. In this 
way the model adequately exhibits the infection essence of a viral agent. And it is 
conceivable that viral agents have much potential to evolve in various environments 
according to the model. Several relevant definitions and theorems are given below. 

Definition 2.13. v directly evolves into v' for a universal PTM U iff v and v' are both 

viral agents with respect to U and }',{ vvv
U
⇒ . 

Definition 2.14. v' is directly evolved from v for a universal PTM U iff v directly 
evolves into v' for U. 

Definition 2.15. v' is a evolution of v for a universal PTM U iff WSVU ∈),(  and 
VV ⊆∃ '  such that NmlandvintoevolvesdirectlyvVv kkk ∈∃∈∀ + ,,,' 1  such that 

'., vvandvvml ml ==<  

Definition 2.16. A smallest viral set with respect to a given universal PTM is a viral 
set of which no proper subset is a viral set. 

Theorem 2.2. For an arbitrary universal PTM there exists a smallest viral set which 
is a singleton set. 

Proof. For an arbitrary universal PTM U, we can construct a PTM M so that: 
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Therefore WSvUvv
U

∈⇒ }){,(},{ , and so {v} is just a singleton viral set for U. 



870 J. Hao, J. Yin, and B. Zhang 

Theorem 2.3. For any finite number n and an arbitrary universal PTM U, there 
exists a smallest viral set with n elements. 

Proof. For any finite number n and an arbitrary universal PTM U, we can construct 
n PTMs M1, …, Mn, so that: 
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Therefore WSVUVvVMMv
U

n ∈⇒=∈∀ ),(,,)}(),...,({ 1 ηη  and no proper subset of V can 

be a viral set, and so V is a smallest viral set with n elements. 

Theorem 2.4. Any union of viral sets is also a viral set, i.e., if WSVU ∈),( 1  and 

WSVU ∈),( 2  then WSVVU ∈∪ ),( 21 . 

Proof. ,21 VVv ∪∈∀  
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These theorems may not be much comprehensive, but may be helpful for further 
understanding of the evolution of viral agents. 

3   Evolution of Viral Agents 

Generally speaking, evolution is a gradual process in which something changes into a 
different and usually more complex or better form. It has been argued that whether 
computer viruses are a form of artificial life to which evolution is a prerequisite [8, 9]. 
However, no computer virus has shown to be really evolvable since evolution implies 
changes in functionality while polymorphic or metamorphic viruses represent only 
cases of random changes in structure but not functionality. 

As for living organisms, evolution can be divided into two types: accidental and 
pre-programmed [9]. Accidental evolution might be the result of a stray cosmic ray 
striking some organism and altering its genetic structure. Such alternations could be 
harmful, neutral or even beneficial. In a beneficial situation, the mutated organism 
would reproduce successfully, and possibly replace the original in a large number of 
generations. Pre-programmed evolution infers that some technique of modifying the 
genetic structure of an organism from generation to generation is built into its very 
coding. For example, human genetic information is broken up into chromosomes, and 
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each one of which has an equal chance to get selected at conception. In addition, a 
crossover phenomenon occasionally occurs in which two adjacent chromosomes 
break apart and combine with each other to form two different new chromosomes. 
Computer viruses clearly can evolve and use evolution to overcome challenges to 
their survival similarly [9]. In the following two different efforts towards exploring 
the evolution of viral agents are presented. 

3.1   Computer Virus Project 2.0 

Nechvatal's Computer Virus Project 2.0 [10] has brought his earlier computer virus 
project into the realm of artificial life, that is, into a synthetic system which exhibits 
behaviors characteristic of natural living systems. With Computer Virus Project 2.0, a 
virus is modeled to be autonomous agents living in an image, thereby introducing 
elements of artificial life. The project simulates a population of active viral agents 
functioning as an analogy of a viral biological system. 

In Computer Virus Project 2.0, the world is modeled as an image via a set of pixels. 
Every pixel's color is defined by RGB vectors which represent the red, green and blue 
components of every pixel's color. The image world has no edges. Every square on the 
edge of the image is adjacent to another on the opposite edge. The behavior of a viral 
agent is modeled as a generated looping activity in which the agent will pick up 
information from its environment, decide on a course of action, and carry it out. A viral 
agent will perceive the pixel which the agent is on and the eight adjacent ones, and it 
can get information on its color and on the possible presence of other agents. In order 
to decide on a course of action, each viral agent is programmed with a set of 
randomized instructions of different kinds. As the viral agent executes, it moves to one 
of the adjacent squares and changes the current pixel. It can even reproduce itself and 
its genome-program changes with the mutation operator. In addition to these changes, 
every cycle produces a change in the energy level of the viral agent. The agent will 
lose a set amount of energy with every run, and when it runs out of energy it dies. In 
order to survive, a viral agent needs to pick up energy, which it can only do by 
degrading the image. The more it changes the color of a pixel, the more energy it 
acquires. A viral attack will generally develop as follows (see Fig. 1): 

• A world is created from an image. 
• A population of viral agents is generated randomly and introduced into the image. 

Each agent takes on its very own behavior as its program is defined randomly. 
• Once the viral agents have been placed in an image, the attack can start. It will 

consist of a series of action cycles that will only come to an end when there is no 
viral agent left alive (or after a given time limit). 

The instruction 'divide' will reproduce slightly mutated replicas of a viral agent. 
The creation of these replicas will immediately trigger a considerable loss of energy 
in the agent. This means that a viral agent that is not capable of drawing energy from 
its environment will not survive much longer. On the other hand, the fact that these 
replicas are not identical to the original offers the possibility of examining new types 
of behavior. When an adapted individual appears, it can remain in the image for some 
time. If it executes the 'divide' instruction, its descendants will most probably be 
equally adapted. The number of these agents will generally increase exponentially, 
and thereby create a large population of active viral agents. 
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Fig. 1. Viral agent dynamics in an image (left at the start point and right at the end point) [10] 

3.2   Genetic Programming in Computer Viruses 

ValleZ in 29A which is the most famous organization of computer virus writers in the 
world proposed to use genetic programming in computer viruses [11]. To use genetic 
programming, a virus program must be composed of a set of high level operational 
elements, such as a ChangeDir element that changes the current directory, an Infector 
element that infects files, a Worm element or a Payload element, etc. These elements 
of code must work by themselves and in any direction of memory, and could be 
named as blocks. Two important genetic programming mechanisms can be similarly 
applied into virus programming: 

• Mutation. If we have a set of operational blocks we generate randomly a set of 
generation 0 programs and we take one: 

gen0->ChangeDir-ChangeDir-Infector-Payload-Infector-Payload-ChangeDir-Payload 

We could program an Infector block with ability of mutating current code. It could 
change a block by another or change the order of blocks. For example, this Infector 
block infects a file and changes the order of two blocks: 

gen1->ChangeDir-Infector-ChangeDir-Payload-Infector-Payload-ChangeDir-Payload 

The gen1 viral agent can infect two directories in one execution. Now it infects a 
file, but this time it mutates by changing a block by another: 

gen2->ChangeDir-Infector-ChangeDir-Antidebug-Infector-Payload-ChangeDir-Payload 

The gen1 viral agent may also infect a file with a bad combination of blocks: 

gen2->ChangeDir-Payload-ChangeDir-Payload-Infector-Payload-ChangeDir-Payload 

This gen2 viral agent will have the less probability of surviving. Mutations must 
not occur always because if we have a good individual and when it reproduces it 
always mutates, it will lose its advantages rapidly. 

• Crossover. For crossover, we need two viral progenitors. Crossover may occur 
when a viral agent tries to infect an already infected file. If a viral agent detects it's 
trying to infect an infected file, it will not infect it. However, it could "learn" a 
block (randomly) from the infected file and keep it to use it in next infection. In 
this manner, the next generation of the viral agent will be a descendant from two 
viral progenitors. 



 Evolvable Viral Agent Modeling and Exploration 873 

4   Conclusion 

In the paper we develop a computational model of viral agents based on PTMs which 
are a canonical model for sequential interaction. The model reveals the most essential 
infection property of computer viruses well and overcomes the inherent deficiency of 
TM virus models in expressing interaction. It is conceivable that viral agents have 
much potential to evolve in various environments according to the model. Therefore 
we also discuss the evolution of viral agents with two existing relevant works. But 
due to the limitation of time, we still have many problems left to solve which will be 
done in our subsequent work. 
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Abstract. The knowledge of human walking behavior has primary importance 
for mobile agent in order to operate in the human shared space, with minimal 
disturb of other humans. This paper introduces such an observation and learning 
framework, which can acquire the human walking behavior from observation of 
human walking, using CCD cameras of the Intelligent Space. The proposed be-
havior learning framework applies Fuzzy-Neural Network(FNN) to approxi-
mate observed human behavior, with observation data clustering in order to ex-
tract important training data from observation. Preliminary experiment and re-
sults are shown to demonstrate the merit of the introduced behavior. 

1   Introduction 

The iSpace propagates mobile robots in the space, which act in the space in order to 
change the state of the space. These mobile robots are called mobile agents. Mobile 
Agents cooperating with each other and with the core of the iSpace to realize intelli-
gent services to inhabitants. Mobile robots become more intelligent through interac-
tion with the iSpace. Moreover, robots can understand the requests (e.g. gestures) 
from people, so that the robots and the space can support people effectively. The 
Intelligent Space can physically and mentally support people using robot and VR 
technologies; thereby providing satisfaction for people. These functions will be an 
indispensable technology in the coming intelligence consumption society (Fig. 1). 

The Intelligent Space proposes an infrastructure for collection of distributed sensory 
data, and offers adaptive data filtering to extract the necessary information for the mobile 
agent. All sensing nodes cover a fixed partial area of the space. The mobile agents only 
acquire the observation data from that sensing node, which is related with the robot in-
stantaneous position. The intelligent space shares its intelligence to the mobile robots, to 
extend the functionalities both the mobile robot and the intelligent space. The acquired 
data is projected to an intention-free representation of the mobile agent’s local area.  

This paper is organized as follows. This section introduces the concept of Intelligent 
Space. Section 2 introduces the mobile agent and human behavior model, which is 
used to understand human behavior directly from observation. Section 3 shows ex-
periment for observation of human behavior using the distributed sensory intelligence 
of the Intelligent Space and control the mobile agent using the acquired behavior. 
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Fig. 1. Vision of intelligent space, as a human support system for more comfortable life 

2   Mobile Agent and Human Walking Behavior Model 

2.1   Input of the Behavior: Local Space 

This paper uses the following definition: 

Definition 1 (Mobile Agent): Mobile Agent is a mobile robot integrated in the Intel-
ligent Space. The mobile agent utilizes the intelligence of the intelligent space: re-
ceives the information of the state of the space, and sends information, using his own 
sensor system. 

Definition 2 (Behavior): The behavior is a process of nonlinear mapping between 
instantaneous sensory input, and the output (action). 

Definition 3 (Local Space): Local Space is an intention-free representation of the 
environment surrounded by the observed object, such as human or mobile robot. The 
collected sensor data is projected into the Local Space and the conditions of the space 
is represented by features. Occupancy, Mobility and Speed features are used to de-
scribe other object’s state. 

Fig. 2 shows the idea of the Local Space. The sensor data are projected to a polar 
occupancy space. The occupancy space is divided into sectors. All the important fea-
tures in the local space are described in the coordinate system of the observed object, 

i.e. rcsrcs yx − . Fig. 2 shows three kind of typical objects that may exist in the space. 

The first is a wall, which is a large static object, occupies several sectors, second a 
static object and a moving object. 

The sectors of the local space contain the following information: 

• Occupancy: Proportional with the occupied area of the sector. 
• Relative speed: The relative speed of the obstacle in the local space. 
• Mobility: describes the mobility of the given obstacle.  
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Fig. 2. Local space, the data Structure for sensor data collection. The observation data is col-
lected by many nodes in the Intelligent Space, and classified by the viewpoint of each observed 
individual. 

2.2   Output of the Behavior: MOT Movement Model 

Two efforts, (sub-behaviors) are considered in this walking behavior model, obstacle 
avoidance effort and target tracing effort. The name of MOT movement model is 
defined by the movement vectors, what are considered in this model: moving, object 
and target vector. One may notice that the human walking behavior is far more com-
plex than the mentioned two sub-behaviors, but these two behaviors can easily be 

observed from human walking. The imagination of object vector ( O ) is related to the 
effort of human to adapt itself to the instantaneous state of the surrounding environ-
ment. The obstacle vector is a result of complex decision making mechanism (behav-
ior) where all the features of the surrounding environment are considered. This 

mechanism is approximated with one object vector. The target vector (T ) points to 
the target area or target point, beyond the perception area. The goal or target area of 
human walking can be observed in the Intelligent Space. After the explanation of 
object and target imaginary vectors, we may define the moving vector. 

Definition 4 (Moving Vector): Moving Vector is an imaginary object (represented as 
a speed vector) related to the effort of movement to the target area, while adapting to 
the surrounding instantaneous features of the perception area (Local Space). 

The general equation of MOT movement model is: 

,TOM scsc +=  (1) 

where the notation of vectors are shown on Fig. 3. For the actual calculation of these 
vectors, the following assumption is defined in the movement model: 

The following additional vectors and notation are introduced to calculate the vec-
tors (Fig. 3). The following equations introduce the method to calculate vector com-
ponent from observation of human movement. This way called the indirect way, be-

cause the aim is to calculate the components of (1), i.e. obstacle vector Osc , and 
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target vector Tsc  from observation in order to learn human walking behavior. The 

relative target vector ( Trel ) is calculated from the instantaneous position ( R ) of the 

robot or human location (Fig. 3.(left)): 

 

Fig. 3. MOT movement model. The model helps to understand human movement from obser-
vation, involving obstacle avoidance and target tracing. The model can be used for indirect way 
for observation (left) and direct way for control (right). 

,RTTrel +=  (2) 

where T  is the location of the target area. The target tracing vector is scaled to the 
moving vector and the relative target vector. The absolute value of the target tracing 
vector is scaled to the absolute value of the moving vector. The direction of the target 
tracing vector is scaled to the relative target vector. Finally, the object vector is calcu-
lated as follows: 

TMO scsc −=  (3) 

The vectors are represented into ωυ −  coordinate system of the observed individual. 

2.3   Behavior Approximation Framework 

The proposed behavior approximation framework is shown on Fig. 4. The framework 
contains adaptive blocks, and fixed connections. The adaptive blocks approximate the 
observed human behavior, namely, the Obstacle Avoidance block approximates the 
obstacle avoidance behavior, which calculates a direction to avoid collision with the 

local obstacles rcs
sc Oφ ; the Target Tracing block approximates target tracking behav-

ior, and calculates a direction to cruise toward the target zone rcs
scTφ ; the Action Se-

lection block controls the balance between the two behaviors by calculating the abso-

lute values of the obstacle avoidance and target tracing vectors, rcs
rsc O  and rcs

rscT .  
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The fix connection part calculates the moving vector M  from output of the sub-
behavior’s block. The basic equation of the wired part of the approximation frame-
work, based on (1), is: 
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where rcs
r•  and rcs

φ•  denote the r  and φ  coordinate value in the φ−r  coordinate 

system, what is a polar coordinate system of ωυ −  coordinate system. Equ. (4) is the 

direct way to calculate moving vector M  as shown on Fig. 3(right). 

 

Fig. 4. The behavior approximation framework for human walking behavior. The input of the 
framework is the local space and the desired target point, and the output is the moving vector 
M . Target Tracing, Action Selection and Obstacle Avoidance blocks contain Fuzzy-Neural 
Networks, which approximate the observed behavior. 

2.4   Behavior Approximation with Fuzzy-Neural Network 

Fuzzy-Neural Netwoks (FNN) is applied in the behavior approximation framework 
(Fig. 4.) in order to handle the non-linear mapping of Target Tracking, Obstacle 
Avoidance and Action Selection. The FNN is class of adaptive network that is func-
tionally equivalent to fuzzy inference systems. Takagi-Sugeno fuzzy inference system 
(TS-FIS) is an effort to develop a systematic approach to generating fuzzy rules from 
a given input-output data set [7]. A typical fuzzy rule of the TS-FIS model: 
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where iR  denotes the thi  fuzzy rule, )1( ri …= , r  is the number of fuzzy rules, x  is 

the input vector, =x T
nj xxx ],,[ 1 …… , jiA ,  denotes the antecedent fuzzy sets, 

)1( nj …= , iy  is the output of the thi  linear subsystem, and ijw  are its parameters, 

)0( nl …= . The nonlinear system of FNN forms a collection of loosely coupled mul-

tiple linear models. The degree of firing of each rule is proportional to the level of 
contribution of the corresponding linear model to the overall output of the TS-FIS 
model. For Gaussian-like antecedent fuzzy set, the degree of membership is 

,
2*

ijj xx
ij e

−−
=μ  (6) 

where jx  is the thj  input, *
ijx  denotes the center of ijA  membership function, 

24 r=α  and r  is positive constant, which defines the spread of the antecedent and 

the zone of the influence of the thi  model (radius of the neighborhood of a data 
point); too large value of r leads to averaging. The firing level of rules are defined as 
Cartesian product or conjunction of respective fuzzy sets for this rule, The output of 
the TS-FIS model is calculated by the weighted averaging of individual rules’ contri-
butions, 
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where )/(
1 j

r

jii ττλ
=∑=  is the normalized firing level of the thi  value, iy  represents 

the output of the thi  linear model, =iπ T
inijii wwww ],,,,,[ 10 ……  is the vector of 

parameters of the thi  linear model, and TT
e xx ]1[=  is the expanded data vector. 

2.5   Training of Fuzzy-Neural Network 

The FNN network output is linear in the parameters of the consequent linear models, 
thus these linear parameters can be identified by linear least-squares-method. This 
approach leads to the hybrid learning rule [10], which combines steepest descent and 
the least-squares-method for fast identification of parameters. For fixed antecedent 
parameters the second subtask, estimation of the parameters of the consequent linear 
models can be transformed into a least-square-problem [9]. This is accomplished by 
eliminating the summation operation in (7) and replacing with an equivalent vector 
expression of y , 

,)(
2
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where *yk  is the thk  training data. The aim of the delta rule is to minimize Ek . The 

partial derivative of Ek  with respect to ijk w  is as follows, 
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To update the thk )1( +  consequence parameter of the thi  rule as, 
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where 0<L  is the learning parameter. 

3   Experiment: Learning-Evaluation-Control 

A human is walking straight toward the position of the teacher. The teacher avoids colli-
sion to change its heading and velocity. The knowledge of this basic behavior is funda-
mental for mobile agent control in human shared environment. Fig. 5 shows the teacher 
and human path in world coordinate system. The figure shows the navigation of the 
teacher who turns right to avoid the collision. The teacher returns its original path, when 
the observed human leaves the teacher forward zone. The following important points 
are selected from the teachers’ path, what contains characteristic information about the 
observed behavior. Subtractive clustering has been applied on the observed data [8]. 

The following situations are happened at the characteristic points, 

• Point 14. The behavior starts from this point. 
• Point 35. The teacher stops turning and goes parallel to the avoided human. 
• Point 51. The teacher goes parallel to the avoided human. 
• Point 59. The teacher starts to turn back toward to the original target point. 
• Point 75. The teacher goes straight toward to the target area. 

 
Fig. 5. Teacher and human path in world coordinate system 
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After the selection of characteristic observation point, the training of the fuzzy neu-
ral network takes place. According to the proposed behavior approximation frame-
work (Fig. 4), the Obstacle Avoidance, Target Tracing, and Action Selection blocks 
are contain a fuzzy neural network to learn the nonlinear mapping between Local 
Space (Fig. 2) and MOT behavior parameters (Fig. 3(right)). The following Fuzzy 
Neural Networks are used: The inputs of the fuzzy neural networks are features of the 
local space, extended with the relative target vector in polar coordinate, 

),( rcs
rel

rcs
rrel TT φ  for target tracing and action selection behavior. The output of the 

fuzzy neural networks is the direction of the scaled obstacle vector, rcs
sc Oφ  for obsta-

cle avoidance; the direction of the scaled target vector, rcs
scTφ  for target tracing; and 

the length of scaled target vector )( rcs
rrelT  and scaled obstacle vector )( rcs

rrel O  for 

action selection. 
The teacher and the robot path in world coordinate system are shown on Fig. 6. The 

mobile agent follows the teacher’s path quite close, if we neglect the initial heading 
difference. The mobile agent produces more sharp turn in the process of navigation, 
than the human. 

As regards the experimental results, Fig. 7 presents the path deviation error with re-
spect to the teacher and the robot path in world coordinate system. During the moving 
time of 3〜9 sec and 9〜12 sec, the path deviation error is at most 0.02m and 0.05m, 
respectively. The response of the position is reasonably smooth, whereas the orienta-
tion continues to be very noisy during the moving time 10sec. This is due to distor-
tions of the images caused by the human’s motion and walking speed.  

The application of tracking control is effective and the target trajectory of a mobile 
robot is continuous and smooth when the usual tracking control is applied. The hu-
man-walking trajectory that is to be tracked by the robot is generally also stable.  

 

Fig. 6. Teacher and mobile agent path in world coordinate system 
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Fig. 7. Error of local tracking control 

4   Conclusion 

This paper investigates a behavior learning framework to acquire human walking 
behavior directly from observation of walking humans. The observed walking behav-
ior is decomposed of obstacle avoidance and target tracing using MOT movement 
model. Obstacle avoidance and target tracing is approximated with Fuzzy-Neural 
Networks. The whole walking behavior approximation framework consider the target 
of the observed human and the instantaneous situation around the human as an input, 
and calculates the appropriate movement of the pedestrian as an output. The intro-
duced behavior approximation framework is used to train the observation of walking 
human using the technology of the Intelligent Space. The trained behavior approxima-
tion framework controls the mobile agent, and performs identical as the observed 
human in similar situation.  

Future studies will involve improving the tracking accuracy for the mobile robot 
and applying this system to complex environments where many people, mobile robots 
and obstacles coexist. Moreover, it is necessary to survey the influence of the mobile 
agent which maintains a flexible distance between the robot and the human, and in-
troduces the knowledge of cognitive science and social science. 
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Abstract. This paper presents the experiments which where made with
the Clustering and Coevolution to Construct Neural Network Ensemble
(CONE) approach on two classification problems and two time series
prediction problems. This approach was used to create a particular type
of Evolving Fuzzy Neural Network (EFuNN) ensemble and optimize its
parameters using a Coevolutionary Multi-objective Genetic Algorithm.
The results of the experiments reinforce some previous results which have
shown that the approach is able to generate EFuNN ensembles with ac-
curacy either better or equal to the accuracy of single EFuNNs generated
without using coevolution. Besides, the execution time of CONE to gen-
erate EFuNN ensembles is lower than the execution time to produce
single EFuNNs without coevolution.

1 Introduction

Several approaches have been developed to optimize parameters of Evolving
Connectionist Systems (ECoSs) [1] using evolutionary algorithms, e.g. [2], [3],
[4], and [5]. Nevertheless, ensembles of learning machines have been formally
and empirically shown to generalize better than single predictors [6]. Instead
of utilizing just one neural network to solve a specific problem, an ensemble
of neural networks combines a set of neural networks. In order to improve the
accuracy of a particular type of ECoSs called Evolving Fuzzy Neural Network
(EFuNN), a multi-module classifier called multiEFuNN has been proposed in [7].

However, the construction of ensembles of neural networks is not an easy task
[6]. Besides, the choice of the best EFuNN parameters set is also a difficult task
and the execution time of evolutionary algorithms to optimize the EFuNN pa-
rameters is high. Therefore, a new approach to construct ensembles of neural
networks has been proposed in [8] and experiments have been made using a
Coevolutionary Genetic Algorithm to generate a particular type of EFuNN en-
sembles. These experiments have shown that CONE is able to generate EFuNN
ensembles with accuracy either better or equal to the accuracy of single EFuNNs
generated using a Genetic Algorithm (GA). Moreover, the execution time of
CONE to produce EFuNN ensembles is lower than the execution time of the GA.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 884–891, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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However, the Coevolutionary GA used in [8] demands the predefinition of some
parameters for the fitness function. These parameters have great influence on the
results of the evolutionary process. Besides, CONE needs to be evaluated using
other coevolutionary algorithms in order to be validated. Thus, a coevolutionary
multi-objective GA has been used with CONE in [9] to perform experiments on
four classification problems. Nevertheless, CONE needs to be evaluated using not
only classification problems, but also time series prediction problems in order to
be validated. Thus, this paper presents experiments which have been made with
CONE and a coevolutionary multi-objective GA on two classification problems
and two time series prediction problems.

This paper is organized as follows: Sect.2 contains an explanation about ECoSs
and EFuNNs. Section 3 presents CONE and explains a particular instance of it
(i.e. a clustering method, a particular type of EFuNN ensemble and a coevo-
lutionary multi-objective GA which can be used by the approach). Section 4
presents the results of the experiments made with this instance of CONE. Sec-
tion 5 presents the conclusions and future works.

2 ECoS and EFuNNs

The ECOSs presented in [1] are systems constituted by one or more neural
networks. Some of their characteristics are that their learning is on-line, incre-
mental, fast and local [4]. EFuNNs [10] are a class of ECOSs which join the
neural networks functional characteristics to the expressive power of fuzzy logic.

The EFuNN learning has some predefined parameters. Using different pa-
rameters sets, EFuNNs attain different performances and different weights are
learned. The optimal parameters set usually depends on the input and output
data presented. Thus, it is important to correctly choose the parameters which
define the EFuNN learning according to the data presented.

Some of the predefined parameters of the EFuNN leaning algorithm are the
number of membership functions; the initial sensitivity threshold (S) of the nodes
(it is also used to determine the initial radius of the receptive field of a node);
the error threshold (E); the m-of-n value (number of highest activation nodes
used in the learning); and the maximum radius of the receptive field (Mrad).
It is recommended to read [10] to get more details about the EFuNN learning
algorithm and its parameters.

3 CONE

This section briefly describes CONE [8]. The general idea of this approach is to
construct neural network ensembles using a clustering method to partition the
input space in clusters. The training and test patterns are used by the clustering
method to create the clusters. After that, the clusters are used to separate the
training and the test patterns themselves in various subsets of training and test
patterns with empty intersection.Each subset is used to train/test a different
population of neural networks, which composes a species that is evolved through
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a cooperative coevolutionary algorithm. Thus, each cluster is associated with a
training subset, a test subset and a species.

At the end of the evolutionary process, the representatives of each species
in the last generation are used to constitute the ensemble. In order to use/test
the ensemble, the clusters to which the input test pattern belongs are deter-
mined. After that, the outputs of the EFuNNs correspondent to these clusters
are calculated and combined using a predefined combining method. Examples of
combining methods can be found in [11].

The patterns used by the approach are divided into 3 types: training patterns
(used to create clusters and to train the neural networks), test patterns (used to
create clusters and to test the neural networks during the evolutionary process),
and final test patterns (used to test the neural network ensemble generated at
the end of the evolutionary process).

The following sections explain the instance of CONE which has been used in
the experiments to produce EFuNN ensembles: Sect.3.1 explains the clustering
method used to partition the input space, Sect.3.2 explains the EFuNN ensembles
created and Sect.3.3 explains the coevolutionary algorithm used.

3.1 Clustering Method

The clustering method used in the experiments is similar to the Evolving Clus-
tering Method [7]. It is recommended to read [8] to get more details about the
clustering method used. The main information about the clustering method for
this paper is the Dthrs parameter. This is the most important parameter to
determine whether a cluster could be updated to accommodate a particular pat-
tern, or if a new cluster would have to be created to accommodate this pattern.

3.2 Creating EFuNN Ensembles

In the experiments performed with CONE, the coevolutionary algorithm was
used to optimize the predefined parameters of the EFuNN learning which where
cited in Sect.2, and the EFuNN learning algorithm itself was used to train the
EFuNNs. A representative of a species was considered the best fit individual of
the species. Two combining methods were used to combine the outputs of the
EFuNNs that compose the ensemble. One of them is the arithmetic average of
the outputs of the EFuNNs to which the pattern presented belongs. The other
one is the weighted average of the outputs of the EFuNNs to which the pattern
presented belongs. The value used as the weight of a cluster Cj , j = 0, 1, ...N is
1/||xi − Ccj ||), where xi is the pattern presented and Ccj is the cluster center.
If a pattern does not belong to any cluster, the output of the ensemble is the
output of the EFuNN correspondent to the cluster whose center is the nearest
center to the pattern.

3.3 Coevolutionary Algorithm

This section describes the coevolutionary multi-objective GA which was used in
the experiments. It is recommendable to read [9] to get more details about it.
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The coevolutionary multi-objective GA used in the experiments has a binary
representation of the EFuNN parameters to be optimized, bitwise bit-flipping
mutation, one-point crossover, generational survivor selection, and the learn-
ing algorithm of the neural networks being optimized is used with the training
patterns right before the calculation of the objective values.

The initial population of each species is composed by individuals created
randomly choosing values for each of the EFuNN parameters to be optimized.
In this population, the objectives vector of an individual i is:

[RMSE Obji = RMSEi, SIZE Obji = sizei] , (1)

where RMSEi is the Root Mean Squared Error (RMSE) obtained testing the
EFuNN correspondent to the individual i using the test subset correspondent to
its species, and sizei is the size of this EFuNN. Thus, the objectives are calculated
without considering the individuals of the other species. The size component of
the objectives vector is used to penalize the size of the EFuNNs and reduce the
execution time of the evolutionary algorithm, as suggested in [5].

In all generations after the initial one, the objectives of an individual i are
calculated using not only the output error and the size of the EFuNN corre-
spondent to i, but also the output error and size of the EFuNNs correspondent
to the representatives of the other species in the previous generation. Thus, the
objectives vector of an individual i is [RMSE Obji, SIZE Obji], where:

RMSE Obji =

√
SSEi + repr sse

total test patterns number
and (2)

SIZE Obji = sizei + repr size . (3)

In these equations, SSEi is the Sum of Squared Error (SSE) obtained test-
ing the EFuNN correspondent to the individual i with the test subset corre-
spondent to its species; sizei is the size of this EFuNN; repr sse is the sum
of the SSEs and repr size is the sum of the sizes of the EFuNNs correspon-
dent to the representatives of all other species in the previous generation; and
total test patterns number is the total number of test patterns, including the
patterns of all species.

An individual i dominates an individual j if (RMSEi ≤ RMSEj) and
(SIZEi ≤ SIZEj) and (RMSEi < RMSEj or SIZEi < SIZEj).

After the calculation of the objective values, the rank of each individual is
calculated. As it is done in [12], the rank of an individual i of the population p
in the generation g is the number of individuals j �= i, j ∈ p which dominate
the individual i in the generation g. In this way, a pareto optimal individual (an
individual which is not dominated by any other individual of the population)
has always rank equal to 0.

The best individual of a population is the individual which has the lowest
rank. When more than 1 individual has the same rank, the best between them
is the one which has the lowest SSE obtained testing the EFuNN correspondent
to it with the test subset correspondent to its species.
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The parents selection is made using the roulette wheel method and is propor-
tional to the value determined by be following equation:

Probi,p,g =
max rankp,g − ranki,p,g∑pop sizep−1

j=0 (max rankp,g − rankj,p,g)
, (4)

where max rankp,g is highest rank of the population p in the generation g,
ranki,p,g is the rank of the individual i of the population p in the generation g,
and pop sizep is the size of the population p.

4 Experiments

This section explains the experiments which have been made with the instance
of CONE described in Sects.3.1, 3.2 and 3.3. The experiments have utilized two
classification databases (Card and Diabetes) [13] and two time series prediction
problems (Mackey-Glass (MG) [14] and Gas Furnace (GF) [15]).

Section 4.1 shows the parameters which were used in the experiments and
Sect.4.2 presents the results of the experiments.

4.1 Parameters and Executions

The parameters utilized in the experiments were the same as the parameters
used in [9], except the Dthrs. The Dthrs was empirically determined for each
database and it was 0.40 for Card database, 0.25 for Diabetes database, 0.20
for Mackey-Glass time series and 3.00 for Gas Furnace time series. The EFuNN
parameters optimized during the coevolutionary process were also the same as
the optimized in [9]: m-of-n, E, Mrad, S and membership functions number.

Three different partitions of the training+test and final test data sets of the
classification problems were used and three different time series were used to
compose 3 partitions of the training+test and final test data sets for the time
series problems:

– Mackey-Glass:
w(1) = [x(t − 12)x(t− 8)x(t− 4)x(t); y(t+ 4)]
w(2) = [x(t − 18)x(t− 12)x(t− 6)x(t); y(t+ 6)]
w(3) = [x(t − 24)x(t− 16)x(t− 8)x(t); y(t+ 8)]

– Gas Furnace:
w(1) = [y(t− 1)y(t− 2)x(t− 1)x(t− 2); y(t)]
w(2) = [y(t− 1)y(t− 3)x(t− 1)x(t− 3); y(t)]
w(3) = [y(t− 2)y(t− 3)x(t− 2)x(t− 3); y(t)]

Ten executions with different random seeds were performed for each partition,
thus totalizing 30 executions for each database. Executions with the above com-
binations of parameters were also made using a multi-objective GA to generate
single EFuNNs. The multi-objective GA utilized was the same as the algorithm
presented in Sect.3.3, but using the objectives (1) for all generations and just
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one species. In this way, 30 executions of the multi-objective GA were made for
each database.

The objective of the executions explained above was to compare:

– EFuNN ensembles generated using CONE with weighted average combining
method (weighted EFuNN ensembles – WEns);

– EFuNN ensembles generated using CONE with arithmetic average combining
method (arithmetic EFuNN ensembles – AEns);

– Single EFuNNs generated using multi-objective GA (Sing).

The characteristics compared were the execution times of the evolutionary
approaches, and the output classification errors/sum of squared errors(SSEs) of
the EFuNN ensembles and of the single EFuNNs generated.

4.2 Results

In this section, the classification errors and the SSEs are those obtained using
the final test patterns set to test the single EFuNNs or the EFuNN ensembles
generated after the evolutionary processes. The classification errors are used for
the classification problems and the SSEs are used for the time series problems.

Table 1 shows the classification error/SSE and execution time averages, stan-
dard deviations, minimal and maximum values, considering the 30 executions
for each database. Table 2 shows the statistics of the T student tests [16] per-
formed to compare the classification errors/SSEs and the execution times. As it
can be seen, the classification error/SSE averages of the ensembles created for
all databases were considered statistically equal to the classification error/SSE
averages of the single EFuNNs. The classification error averages of the weighted
EFuNN ensembles were also considered statistically equal to the classification
error averages of the arithmetic EFuNN ensembles, for the classification prob-
lems. However, for the time series problems, the SSE averages of the weighted
EFuNN ensembles were statistically lower than the SSE averages of the arith-
metic EFuNN ensembles.

For all databases, the execution time average among all 30 executions of
CONE to generate EFuNN ensembles was statistically lower than the execu-
tion time average among all 30 executions of the multi-objective GA to generate
single EFuNNs. Table 2 shows the statistics of the T student tests made to prove
this analysis.

The execution time of the CONE to generate EFuNN ensembles was lower
than the multi-objective GA execution time to generate single EFuNNs prob-
ably because in the optimization process of a single EFuNN, for each pattern
presented to train/test the EFuNN, the activation levels of all rule nodes of
the EFuNN have to be calculated. When an EFuNN ensemble is being created,
just the activation levels of the rule nodes of the correspondent EFuNNs have
to be calculated. A single EFuNN is usually higher than each EFuNN which
compose an ensemble because a single EFuNN has to accommodate all training
patterns and a component of an ensemble has to accommodate only the patterns
correspondent to a particular cluster of the input space.
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Table 1. Measures related to the class error/SSEs and execution times

Class errors SSEs Execution times

Card Diabetes MG GF Card Diabetes MG GF

WEns Av 0.1611 0.2717 0.0621 182.2633 3122.5333s 804.6s 155s 70.8333s
SD 0.0276 0.0304 0.0188 118.8774 652.2496s 174.3222s 45.8333s 16.7396s
Min 0.1214 0.2083 0.0323 79.9432 2063s 500s 76s 49s
Max 0.2370 0.3281 0.1262 429.2530 4228s 1174s 232s 106s

AEns Av 0.1611 0.2744 0.0645 184.3665
SD 0.0281 0.0363 0.0184 119.1835 Equal to WEns
Min 0.1214 0.1875 0.0357 81.7392
Max 0.2370 0.3594 0.1274 432.929

Sing Av 0.1694 0.2722 0.0536 171.2507 6717.9333s 2200.8333s 746.8333s 184.8s
SD 0.0294 0.0289 0.0270 124.6976 1285.7797s 467.8189s 208.9156s 55.9411s
Min 0.1272 0.2187 0.0194 70.7992 4274s 1172s 297s 101s
Max 0.2312 0.3333 0.1028 391.727 9536s 3396s 1112s 275s

Table 2. T Student test statistics comparing the class error/SSE averages and the
execution time averages, using level of significance equal to 0.05

Card Diabetes MG GF

Class error/SSE WEns x AEns -0.0001 -1.0523 -7.8697 -5.3195
averages comparisons WEns x Sing -1.5590 -0.0893 1.4294 1.3073

AEns x Sing -1.5548 0.3334 1.8200 1.5590

Execution time WEns x Sing -13.2646 -15.5206 -15.1242 -12.4373
averages comparisons AEns x Sing Equal to WEns x Sing

5 Conclusions

This paper presents experiments which have been made with CONE using a
coevolutionary multi-objective GA. The experiments have used two classification
problems and two time series prediction problems.

The experimental results have shown that the EFuNN ensembles construction
using CONE has a lower execution time than the single EFuNNs construction
using a multi-objective GA. The standard deviations of the execution times are
also lower for CONE. Even so, the EFuNN ensembles generalization abilities are
statistically equal to the single EFuNNs ones. These results contribute to the
validation of CONE, reinforcing the results presented in [8] and [9], which have
shown that CONE is able to produce EFuNN ensembles with either equal or bet-
ter generalization using a lower execution time than similar non-coevolutionary
algorithms to produce single EFuNNs.

Future works include the use of other clustering methods and coevolutionary
algorithms to create neural network ensembles using CONE.
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Abstract. Since the manual construction of our knowledge-base has several 
crucial limitations when applied to intelligent systems, mental development has 
been investigated in recent years. Autonomous mental development is a new 
paradigm for developing autonomous machines, which are adaptive and flexible 
to the environment. Language development, a kind of mental development, is 
an important aspect of intelligent conversational agents. In this paper, we pro-
pose an intelligent conversational agent and its language development mecha-
nism by putting together five promising techniques; Bayesian networks, pattern 
matching, finite state machines, templates, and genetic programming. Knowl-
edge acquisition implemented by finite state machines and templates, and lan-
guage learning by genetic programming are developed for language develop-
ment. Several illustrations and usability tests show the usefulness of the pro-
posed developmental conversational agent. 

1   Introduction 

Mental development is a primary human characteristic, and vision, audition, behavior, 
and language are the principal ingredients (Johnson & Munakata, 2005; Weng, 2000). 
Matured people are usually better than the younger in these areas, since they are more 
mentally developed. Similarly, an intelligent system that has a richer and more so-
phisticated knowledge base might be better than other systems. It is, however, very 
difficult to construct any kind of knowledge base during the initial stage of the man-
ual development of the system (Lauria, 2001). Manual construction is apt to make a 
system static and stiff toward its environment. Therefore, recent research on intelli-
gent systems has focused on an autonomous mental development (AMD) mechanism. 
Like humans, this mechanism develops its mental capabilities through autonomous 
real-time interactions with its environment. This includes interactions with human 
supervisors. AMD, a new paradigm for developing autonomous machines, constructs 
an intelligent system that is based on incremental learning (Joshi & Weng, 2003) and 
is adaptive and flexible to the environment. 

Linguistic sense is highly related to mental development. Since adults generally 
accumulate more knowledge and skill than children, they can generate more sophisti-
cated and informative sentences (Clack, 2004). A conversational agent, a popular type 
of intelligent system, provides users with informative answers based on such a lin-
guistic sense. Since experiments are commonly based on pattern-response pairs, the 
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level of the knowledge base determines the quality of the response. That is, if the 
knowledge-base of the conversational agent is composed of lots of qualified pattern-
response pairs, the agent works well enough to respond to the user’s queries. Autono-
mous Language Development (ALD) of a conversational agent is different from the 
conventional manual approach.  

Computational implementations of learning mechanisms provide language acquisi-
tion researchers with important clues as to how the brain starts to use language 
(Plunkett, 1997). Moreover, these implementations promote the development of intel-
ligent systems that interact with humans by using a realistic and scalable conversa-
tional interface. Lauria et al. proposed an instruction-based learning method for per-
sonal robots (Lauria, 2001), while Dominey and Boucher developed a system for 
language learning. Zhou proposed a robot learning method with GA-based fuzzy 
reinforcement learning (Zhou, 2003), while Jerbic et al. examined an autonomous 
agent based on reinforcement learning and an adaptive shadowed network. Joshi and 
Weng introduced the concept of AMD and studied the autonomous learning of speech 
production under reinforcement learning (Joshi & Weng, 2003). 

2   The Developmental Conversational Agent 

2.1   Conversational Agent Architecture 

The proposed conversational agent is composed of three parts: language interpreta-
tion, language generation, and language development. Language interpretation infers 
the intention of the user’s queries, while language generation generates answers that 
correspond to those queries. When it does not understand the query, language devel-
opment learns the pattern by interacting with the human. Language development also 

 

 

Fig. 1. The process of the proposed conversational agent 
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evolves its linguistic sense for generating answers by using genetic programming. Fig. 
1 shows the management of the input query. A pattern is analyzed and accumulated 
into the knowledge base, while the answer is used to evaluate the genetic program-
ming that produces the sentence plan trees (SPTs). 

1) Two-stage inference for dialogue management 
At first, words that infer the user’s intention are extracted from the input query. This 
inference is determined by two methods: the Bayesian network and keyword match-
ing. The Bayesian network infers the user’s intention, while keyword matching selects 
a proper pattern-response pair for generating the corresponding answer. Analyzing 
queries in these stages makes it feasible to infer the detailed intention of the user and 
to model the context of the conversation. Furthermore, dividing the knowledge base 
improves the scalability and portability of the conversational agent. 

Topic Inference using the Bayesian Network: The Bayesian network is used to infer 
the topic of a user’s query and model the context of dialogue. This leads to a defini-
tion of the scope of the dialogue. Since Bayesian networks are based on graph theory, 
they are effective in inference and representation. In this paper, the Bayesian network 
is hierarchically constructed with three levels based on function: keyword, concept, 
and topic. The keyword level consists of words related to topics in the domain. The 
concept level is composed of the entities or attributes of the domain, while the topic 
level represents entities whose attributes are defined.  

Response Selection using Keyword Matching: Once the topic is selected for an input 
query, keyword matching (using the knowledge base associated with the topic) is 
performed to find the corresponding response. When there are many scripts, perform-
ance declines because of the redundancy of information. In this paper, we divide the 
scripts into several groups based on their topics. This reduces the number of scripts to 
be compared. A script is stored as an XML form. A set of candidate scripts are se-
quentially matched to find an appropriate response. The matching scores are calcu-
lated by the F-measure, which is a popular measurement in text classification. When 
there is a corresponding pattern-response pair, language generation is used to generate 
the answer.  

2) Answer generation using the sentence plan trees (SPTs) 
Once a pattern-response pair is selected, language generation is applied to the corre-
sponding response primitives. In language generation, a SPT is selected and filled 
with response primitives to construct an answer. A SPT is a binary tree with leaves 
labeled by pre-defined templates of simple sentences (SSs), and with interior nodes 
labeled with joint operators (JOs) that combine two sentences (Ratnaparkhi, 2002). 
We define five types of JOs (suitable for the Korean language) to combine 2 sen-
tences, as follows.  

Sentence A = subject (s1) + response primitive (t1) + verb (v1). 
Sentence B = subject (s2) + response primitive (t2) + verb (v2). 

 JO 1: Combine sentences A and B by using the conjunction ‘and’. The result is ‘s1 t1 v1, and 
s2 t2 v2.’ 

 JO 2: Combine two sentences that have the same subject (s1 = s2). The result is ‘s1 t1 v1 and 
t2 v2.’ 
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 JO 3: Combine two sentences that have the same subject (s1 = s2) and the same verb (v1 = 
v2). The result is ‘s1 t1 t2 v1.’ 

 JO 4: Combine two sentences that have the same response primitive (t1 = t2) and the same 
verb (v1 = v2) by making a proper subject (s3). The result is ‘s3 t1 v1’ where s3 is the 
subject that includes s1 and s2. 

 JO 5: Combine two sentences that have the same subject (s1 = s2) and different verbs but can 
be replaced by a verb v3, which includes both v1 and v2. The result is ‘s1 t1 t2 v3.’ 

2.2   Autonomous Language Development in the Conversational Agent 

1) Dialogue-based knowledge acquisition 
For the developmental conversational agent, knowledge acquisition is accomplished 
(as shown in Fig. 1) through dialogue. It first analyzes the pattern of the input query 
and then constructs the response through interaction with a human. The pattern of a 
script is composed of the topic and a set of words. The topic is obtained by the Bayes-
ian network, while the words are extracted by preprocessing. 

We consider the dialogue act of an input query to select a proper answer template 
that is used to collect the response primitives. An automaton extracts a dialogue act, 
and then 30 automata are designed for 30 dialogue acts, as shown in Table 1. A sub-
sumption architecture is adopted to select one dialogue act for per query. 

Table 1. Dialogue acts defined in this paper 

Category Dialogue act 

Question 
Ability, Description, Fact, Location, Method, Miscellaneous, Obligation, R
eason, Time, WhatIf, Who, Acquisition, Comparison, Confirmation, Cost, 
Direction, Example, More, Possession 

Statement 
Act, Fact, Message, Miscellaneous, Possession, Status, Want, Cause, Cond
ition, Feeling, Time 

Each dialogue act has corresponding answer templates. This template technique is 
useful to represent static information in situations where variables change dynami-
cally. In the answer template, “class” means the dialogue act, and “question” is a 
sentence to collect the response primitive. “Requirement (information collected from 
the user)” is the response primitive for constructing the answers. We define 64 tem-
plates: three templates for each question dialogue act, and six positive/negative tem-
plates for each statement dialogue act. Finally, the response is completed with the 
template and saved as the response part of the script. The pattern-response pair is 
generated with the patterns and the responses.  

2) GP-based language generation 
Genetic programming, as proposed by John R. Koza, is used to generate the adaptive 
structure of answers to the domain (Koza, 1994). An individual represented as an SPT 
denotes a structure of answers. As mentioned before, the leaf node of an SPT contains 
an SS that corresponds to the response primitive. The parent nodes represent JOs. 
SPTs can evolve by genetic programming when humans are involved. 

An individual exposed to genetic programming is represented as an SPT that con-
sists of the joint operator set {JO1, JO2, JO3, JO4, JO5} and the response primitive 
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set {r1, r2, …, rn} where n is the number of response primitives. The grammar for the 
SPT is: G={V={EXP, OP, VAR}, T={ JO1, JO2, JO3, JO4, JO5, r1, r2, …, rn}, P, 
{EXP}}, where the rule set P is as the following: 

EXP→EXP OP EXP | VAR 
OP→JO1 | JO2 | JO3 | JO4 | JO5 
VAR→ r1 | r2 | … | rn 

Crossover and mutation are employed to generate diverse sentence structures. 
Crossover randomly selects and changes sub-trees from two individuals, while muta-
tion changes a sub-tree into a new one. These processes are conducted according to 
predefined probabilities. Through the evolution in real time, the system develops its 
linguistic sense for generating sentences. 

3   Experimental Results 

3.1   Implementation 

To show the usefulness of the proposed method, we have developed an artificial secre-
tary system using MFC. It consists of a main window for displaying information, an 
input text box, and the avatar system with a speech generation engine. When a user 
types a query, the avatar provides the answer in speech with a corresponding action. Q-
avatar1 is employed as the avatar system, while ‘Voiceware2’, a solution for speech 
recognition and generation, is used to provide user a realistic and convenient interface. 

The target domain of the genetic programming of the proposed method is travel 
planning, and Table 2 describes six response primitives of the domain. When the 
user’s query arrives, it extracts the response primitives from the query to collect in-
formation for planning a train trip. There are six SPTs based on the number of re-
sponse primitives collected. If there is no information on travel, the agent uses the 
 

Table 2. Response primitives used by a travel planning agent 

Response primitive Simple Sentence 
Question Where are you leaving from? Departure 

Location Statement You leave [dLocation]. 
Question Where are you going? Arrival 

Location Statement You are going to [aLocation]. 
Question What day do you leave? Departure 

Date Statement You are leaving on [Date]. 
Question What time do you leave? Departure 

Time Statement You leave at [dTime]. 
Question What time do you want to arrive? Arrival 

Time Statement You arrive at [aTime]. 
Question What kinds of seats do you want? Seat 

Type Statement You’ll take [tGrade]. 

                                                           
1 http://www.qavatar.com 
2 http://www.voiceware.co.kr 
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first SPT to generate a sentence structure, while if all travel information is collected, it 
locates a proper train from the database. Genetic programming evolves each SPT, 
while a human scores as fitness between 0 and 10 through evolution.  

Fig. 2 shows the example of autonomous linguistic mental development through 
knowledge acquisition. Contrary to manual operations, a user only needs to provide 
what the agent requires through dialogue. It automatically performs all processes such 
as stemming words, defining the dialogue act, and constructing the answers.  

User:   Where is the laboratory? 
Agent:  Hmm, I don’t know. Change mode to knowledge acquisition. 
⇒ analyzing query (keyword: laboratory, where) 
   (topic: laboratory’s location) 
   (dialogue act: location question) 
Agent:   Where is it? 
User:    Number 529, the 3rd engineering building, 134, Yonsei University. 
⇒ analyzing answer (response primitive: 529, the 3rd engineering building, 134, Yonsei

 University) 
⇒ generating the pattern-response pair 

<SCRIPT> 
<PATTERN> where laboratory </PATTERN> 
<RESPONSE> 529, the 3rd engineering building, 134, Yonsei
 University </RESPONSE> 
<TYPE> location </TYPE> 
</SCRIPT> 

User:   Where is the laboratory? 
Agent:  Number 529, the 3rd engineering building, 134, Yonsei University 

Fig. 2. Knowledge acquisition when using the proposed method 

3.2   Usability Test for the Language Development 

We conducted a usability test to demonstrate the proposed method. First, we col-
lected a number of dialogues from eight subjects who perform three tasks that  
requested to search for information. 50 dialogues were used as training data to con-
struct pattern-response pairs, while another 50 dialogues were used as test data. Both 
experts and novices performed the experiment. Table 3 shows the results of the us-
ability test for knowledge acquisition. For queries with the same pattern, designers 
did not recognize them manually, while they did notice them when using the pro-
posed method. Therefore, the size of knowledge base is optimized. In terms of con-
struction time and user feedback, the proposed method is outstandingly superior to 
manual construction.  

For the demonstration of autonomous language development by genetic program-
ming, we also performed the usability test with 10 subjects iteratively interacting with 
the system in 90 generations. The crossover rate and mutation rate were set as 0.6 and 
0.2, respectively. For each generation, the subjects evaluated the fitness of all indi-
viduals. For simplicity, we set the population size as 20. 
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Table 3. Results of the usability test for autonomous linguistic mental developmentmodel 

Manual construction Proposed method  
Experts Novices Experts Novices 

Pattern-response pairs 
generated 

50 50 44 44 

File size 28 KB 30 KB 24 KB 24 KB 
Construction time 20 min. 1 hour 5 min. 8 min. 

Training 92% 84% 100% 96% 
Accuracy 

Test  84% 82% 88% 86% 
Feedback (0~5) 2 1 4 4 

 

Fig. 3. Score distribution through evolution 

Fig. 3 presents the changes of the average score as the generation grows. GP n means 
the STP whose number of response primitives given is n. We limited the generation to 
90 steps because more steps cause overfitting and a decrease in diversity. As a result, 
the score increased rapidly during the first 10 generations and decreased between the 
10th and 20th generations, then increased continuously after the 20th generation. 

The system used the responses primitives of departure location, arrival location, 
and departure data. The initial sentence was disorderly and complex, while the sen-
tence obtained through evolution became more refined. 

 Generation 0: You leave Seoul on October 10th and what time do you want to arrive? 
And what time do you leave? And you are going to Pusan. 

 Generation 30: What kind of train do you want to take and what time do you want to 
leave? And you leave Seoul on October 10th. 

 Generation 60: What time do you leave Seoul? And you are going to Pusan. 
 Generation 90: What time do you leave Seoul for Pusan? 

4   Conclusion 

We have proposed a conversational agent with autonomous language development. 
Since the manual construction of intelligent systems presents several problems, it was 
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necessary to propose a developmental conversational agent that might adapt itself to 
the environment. In language development, we addressed the autonomous increasing 
of the knowledge base and linguistic sense obtained by genetic programming. In this 
paper, various illustrations and usability tests demonstrated the usefulness of the pro-
posed conversational agent. 

Language is very important in mental development, and people improve their lin-
guistic sense of understanding queries and generating sentences. Research on autono-
mous language development might not only be useful to demonstrate various cogni-
tive language models in cognitive science, but also provide a direction in engineering 
to construct an effective communication method between humans and intelligent 
systems. In our future work, we will develop an intelligent system that includes 
autonomous mental and language development.  
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Abstract. The object of multiple Unmanned Aerial Vehicles(UAVs) co-
operative reconnaissance is to employ a limit number of UAVs with differ-
ent capabilities conducting reconnaissance on a set of targets at minimum
cost, without violating real world constraints. This problem is a multi-
objective optimization problem. We present a Pareto optimality based
multi-objective evolutionary algorithm MUCREA to solve the problem.
Integer string chromosome representation is designed which ensures that
the solution can satisfy the reconnaissance resolution constraints. A con-
struction algorithm is put forward to generate initial feasible solutions
for MUCREA, and Pareto optimality based selection with elitism is in-
troduced to generation parent population. Problem specific evolutionary
operators are designed to ensure the feasibilities of the children. Simula-
tion results show the efficiency of MUCREA.

1 Introduction

Multiple Unmanned Aerial vehicles (UAVs) cooperative reconnaissance remains
key activities in military operations. Multi-UAV cooperative reconnaissance prob-
lem(MUCRP) can be described as that,NV kinds of UAVs with different capabili-
ties are required to conduct reconnaissance onNT targets located in different sites.
Mission plans should be quickly made for UAVs that meet the reconnaissance de-
mands and can deal with the real-world constraints such as reconnaissance resolu-
tion, time windows, number of UAVs available, and capabilities of the UAVs(i.e.
imagery resolution, maximum permitted travel time etc.).

Some solutions have been proposed for the multiple UAVs cooperative recon-
naissance problem, such as [1][2][3]. Although those previous studies are proven
to be efficient to some extent, the reconnaissance demands on the targets are
not considered thoroughly, such as reconnaissance resolution and time window
constraints. Further more, in previous studies, the limited number of UAVs was
not considered, but in the real world only a limited number of UAVs is available,
thus one of the objectives for cooperative reconnaissance should be maximizing
the number of reconnoitered targets with limited number of UAVs, which has
never been considered in previous researches.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 900–909, 2006.
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In this paper, we first present a mathematical model for MUCRP. The model
focuses on maximizing the number of targets reconnoitered with limited number
of UAVs as well as minimizing the reconnaissance cost. Then a Pareto optimality
based multi-objective evolutionary algorithm is proposed to solve the problem.
The rest of the paper is organized as follows. Section 2 presents the mathematical
model of MUCRP. The proposed algorithm is described in detail in section 3.
Section 4 shows the simulation results and section 5 concludes the paper.

2 Problem Formulation

The reconnaissance targets set is denoted by T0 = {1, 2, ..., NT}, and T =
{0, 1, ..., NT} denotes the extended targets set, where 0 indicates the base that
UAVs depart from and return to, NT is the number of targets. Ri is the recon-
naissance resolution demand of target i ∈ T0. Each target i ∈ T0 has a time
window [ei, li], where ei is the earliest time allowed for reconnaissance on it and
li is the latest time. Ti is the time to begin reconnaissance on target i. An UAV
may arrive before ei, which incurs the waiting time wi until reconnaissance is
possible. However, no UAV may arrive past li. V = {V 1, V 2, ..., V NV } denotes
UAVs set with different capabilities, where V k denotes the k -th kind of UAVs
set and vk

q is the qth UAV in V k. The maximum travel time permitted for UAVs
in V k is TLk, and the reconnaissance resolution is rk, r1 < r2 < ... < rNv. Nk

v

is the number of UAVs available in V k. ski denotes the reconnaissance duration
that an UAV in V k conducts reconnaissance on target i. The routes set between
target pairs is denoted by A = {(i, j)|i, j ∈ T, i �= j}. Each route (i, j) ∈ A is
associated with a distance dij denoting the length of (i, j) and a travel time tkij
denoting the travel time for UAV in V k between target i and j. The decision
variable is

xk
pij =

{
1 if route (i, j) is used by UAV vk

p

0 otherwise

The MUCRP model can be mathematically formulated as follows:

(MUCRP) min f = (f1, f2) (1)

f1 = NT −
∑
j∈T0

∑
V k∈V

∑
vk

p∈V k

xk
pij (2)

f2 =
∑

V k∈V

∑
vk

p∈V k

∑
(i,j)∈A

fk
ijx

k
pij (3)

Where fk
ij = αdij + β(Ti + ski + tkij + wj).

Subject to:
∑
j∈T0

xk
p0j = 1,

∑
j∈T0

xk
pj0 = 1, ∀vk

p ∈ V k, V k ∈ V (4)



902 J. Tian and L. Shen

∑
vk

p∈V k

∑
(i,j)∈A

xk
pij ≤ Nk

v , ∀V k ∈ V (5)

∑
V k∈V

∑
vk

p∈V k

∑
i∈T

xk
pij ≤ 1 ∀j ∈ T0 (6)

ei ≤ Ti ≤ li ∀i ∈ T0 (7)

If xk
pij = 1, then Ti + ski + tkij + wj = Tj (8)

wj = max(0, ej − (Ti + ski + tkij)) (9)∑
(i,j)∈A

xk
pij(t

k
ij + skj + wj) ≤ TLk ∀vk

p ∈ V k, V k ∈ V (10)

If xk
pij = 1, then rk ≤ Rj (11)

MUCRP has two objectives to minimize. f1 means to minimize the number
of targets not be reconnoitered. f2 means to minimize the total UAVs travel
distances and the consumed time for finishing the cooperative reconnaissance
mission. f1 is called the number of unreconnoitered targets(NUT) and f2 is
called the cooperative reconnaissance cost(CRC) in the rest of the paper. Eq.(4)
specifies that each UAV should begin at the base and return to the base finally.
Eq.(5) constrains that the number of UAVs employed in reconnaissance should
not exceed the number of UAVs available. Eq.(6) ensures that each target can be
reconnoitred by at most one UAV. The time feasibility constraints are defined in
equations (7)-(10). Inequality (7) imposes the time window constraints. Waiting
time is the amount of time that an UAV has to wait if it arrives at a target
location before the earliest time for that target. Inequality (10) states that the
total travel time of an UAV could not exceed the maximum permitted travel
time of it. Inequality (11) restricts that the UAV conducting reconnaissance on
a target should satisfy its reconnaissance resolution demand.

3 Multiobjective Evolutionary Algorithm for MUCRP

MUCRP is a typical multi-objective optimization problem(MOP) and the op-
timal solutions to MOP are non-dominated solutions known as Pareto optimal
solutions. Two objective vectors u = (u1, u2) and v = (v1, v2), u is said to domi-
nate v if and only if ∀i ∈ {1, 2} : ui ≤ vi∧∃j ∈ {1, 2} : ui < vi, which is denoted
as u ≺ v. A solution x is said to dominate solution y iff f (x) ≺ f (y). x0 is
Pareto optimal if there is no other solution in the search space that dominates
x0. The set of all Pareto optimal solutions is called as Pareto optimal set.

Multi-objective Evolutionary Algorithm(MOEA) has been increasingly inves-
tigated to solve MOP and has been proven to be a general, robust and powerful
search mechanism[4][5]. This section provides a MOEA based approach to find
the approximate Pareto optimal set of MUCRP, Multi-UAV cooperative recon-
naissance evolutionary algorithm(MUCREA). Fig.1 illustrates the flowchart of
MUCREA, which provides an overall view of the algorithm.
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Initial population creation 

Vector objective computation 

Pareto optimality based 

Selection 

Crossover 

Mutation 

Update Archive

 Meet stopping 

criteria?  

End

Start 

Yes 

No 

New population 

Fig. 1. The flowchart of proposed MUCREA

3.1 Chromosome Representation

To facilitate chromosome representation in MUCREA, all targets in T0 are clus-
tered according to their reconnaissance resolution demands and the reconnais-
sance resolutions of the UAVs. For a target t ∈ T0, if rj < Rt < rj+1, then
t ∈ Cj , which means that only UAVs in V 1, V 2, ..., V j can satisfy the reconnais-
sance resolution demands of target t.

A chromosome is shown in Fig.2, which consists of NV sequences and is repre-
sented as S = {s1, s2, ..., sNv}. Sequence si is the reconnaissance targets sequence
for UAVs in V i. Each sequence si = {si1, ..., sin} comprises several subsequences,
where subsequence sip is the reconnaissance targets sequence for UAV vi

p. Ac-
cording to the target categorizes, all targets in Cj could only appear in one of
the sequences in {si|i ≤ j}. Thus the solution that the chromosome encodes can
satisfy the constraint(11). Because only a limited number of UAVs is available,
a solution of MUCRP contains some targets not be reconnoitered. Therefore,
rejection pool(RP), a data structure to store the unreconnoitered targets, is
associated with each chromosome.

3.2 Creation of Initial Population

In MUCREA, we generate a mix population comprising feasible solutions and
random solutions. The reason for constructing this mix population is that, a
population of entirely feasible members gives up the opportunity of exploring
the whole regions; and a completely random population may be largely infeasi-
ble taking a long time to convergence. To generate initial feasible solutions, an



904 J. Tian and L. Shen

A chromosome encodes 
a complete solution  A sub-sequence: reconnaissance 

target sequence for an UAV  

Chromosome 

A sequence: reconnaissance target 
sequence for UAVs in one kind  

0 15 07 919 

0 0 613 210 16 0

0 4 01 511 17 18 14 0 

Rejection Pool 3  8  12  20

RP: store the targets not be reconnoitered  

Fig. 2. Data structure of chromosome representation and Rejection Pool

algorithm Construction-Initial-Feasible-Solution(CIFS), is presented. The detail
steps of CIFS are shown in Fig.3. Due to the randomness in step(4), repeat
running of CIFS will generate different feasible solutions.

In CIFS, Csk in step(1) is a data structure used to store targets that will be
reconnoitered by UAVs in V k. For a target t in Ck, Csi, i ∈ {1, ..., k} is randomly
chosen, then t is added into Csi. Steps(6-14) describe how to insert all targets
in Csi to sequence sk which is initially null. The cost function for inserting a
target t as the first target to a new subsequence is as follows:

Cost1(t) = −αt0t + βd0t (12)

The target with the lowest cost t∗ is selected as the first target in a new sub-
sequence, see step(9). Eq.(12) implies that the desired target is the one that is
distant from the base and has an early time window. The weights were derived
empirically and were set to α = 0.7, β = 0.3.

Once the first target t∗ is selected for the current subsequence skr , CIFS se-
lects from the rest targets the target t which minimizes the total insertion cost
between every two adjacent targets p and q in skr without violating the time
window and maximum permitted travel time constraints. The cost of inserting
target t between p and q in skr is:

Cost2(t, p, q) = αD + βW + γO + ηT (13)

Where, D =
∑

(i,j)∈s̃k
r
dij is the total distance travelled by UAV vk

r .
W =

∑
(i,j)∈s̃k

r
(Ti + ski + tkij + wj) is the total consumed time of UAV vk

r .
O =

∑
(i,j)∈s̃k

r
max{0, (Ti + ski + tkij − lj)} is the penalty for tardiness.

T = max{0,W −TLk} is the penalty for exceeding the maximum travel time.
Here, s̃kr is the subsequence after t is inserted between p and q.

The target t is inserted to the least cost position between (p∗, q∗) ∈ skr and
step(10) and step(11) are repeated until no more target can be inserted. At this
stage, a new subsequence is created and steps(7-11) are repeated until all targets
in Csk are inserted to sequence sk.
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Algorithm 1 Construction-Initial-Feasible-Solution(CIFS)
(1) Set all Csi=NULL, i = 1, ..., NV , k = 1
(2) If k > NV , go to step(6)
(3) If Ck = NULL, go to step(5)
(4) For a target t in Ck,

Randomly choose i ∈ {1, ..., k}, add t into Csi.
Delete t from Ck. Go to Step(3)

(5) k = k + 1. Go to step (2).
(6) Set all sequences si = NULL, i = {1, ..., NV }, RP = NULL, k = 1.
(7) r = 1
(8) sk

r = NULL

(9) Select the target t∗ = arg mint∈Csk Cost1(t), set sk
r = (0, t∗, 0).

Delete target t∗ from Csk.
(10) If Csk = NULL, go to step(12).
(11) For a target t in Csk,

(p∗, q∗) = arg min(p,q)∈sk
r

Cost2(t, p, q)
Check the feasibilities of s̃k

r=insert t between p∗ and q∗

If all the constraints are satisfied
sk

r = s̃k
r , delete target t from Csk. Go to step (12).

Else r = r + 1, go to step (8)
(12) If r > Nk

v ,
Delete extra subsequences with the fewest targets.
Add the targets in the deleted subsequences into RP.
k = k + 1.

Else k = k + 1.
(13) If k > NV , go to step (14). Else go to step (7).
(14) Output S = {s1, s2, ..., sNv} and RP. Stop CIFS.

Fig. 3. Construction-Initial-Feasible-Solution

Because the number of UAVs are limited, in each sequence sk, only the Nk
v

subsequences with the largest numbers of targets are kept. All other subsequences
are removed from the solutions and the targets in these subsequences are copied
to the RP, see step(12).

3.3 Pareto Optimality Based Selection with Elitism

To find the approximate Pareto set of the problem and avoid bias to any ob-
jective, we introduce a Pareto dominance based tournament selection strategy
combined with diversity preservation to generate a new population.

Two individuals are randomly selected from the population. Firstly, the fea-
sibilities of the two individuals are checked. If the two individuals are all in-
feasible solutions, one is randomly chosen to be the parent. If only one of the
two individuals is a feasible solution, the feasible one is chosen to be the par-
ent. If the two individuals are all feasible solutions, the vector objectives of the
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individuals are computed according to Eq.(1)-(3). Based on the vector objectives,
the non-dominated individual is to be the parent. If none of the two individuals
dominate the other, we choose the one according to diversity preservation, that is
the density estimation of the individuals. In our approach, we use crowding dis-
tance defined by Deb[6] as the density estimation. The crowding distance is the
average distance of the two points on either side of a particular point along each
of the objectives, which indicates the density of solutions surrounding the point
in the population. Then, for the two feasible solutions which do not dominate
each other, the one with bigger crowding distance is chosen to be the parent.

Elitism is introduced to avoid losing good solutions due to random effects. A
secondary population, archive is maintained during the evolutionary process, to
which non-dominated solutions in the population are copied at each generation.
An individual in the current population can be copied to archive if and only if
that it is non-dominated in the current population and is not dominated by any
of the individuals in the archive.

3.4 Evolutionary Operators

Sequence Exchange Crossover. According to the special chromosome rep-
resentation described above, a novel sequence exchange crossover operator is
introduced. Given two parents, P1 = {s11, ..., s1Nv} and P2 = {s21, ..., s2Nv}, a
random integer pc between 1 and NV is generated. The sequence s1pc and s2pc

are exchanged. Then the repeated targets in other subsequences and in the RP
are deleted. The next step is to locate the best possible locations for the missing
targets that do not exit in the chromosome or in the RP. A missing target t be-
longing to Cpt is inserted into a chromosome C = {s1, ..., sNv} or its associated
RP using the algorithm Insert-Target(IT) described in Fig4.

Algorithm 2 Insert-Target(IT)
(1) Select a sequence sk randomly from {si|i ≤ pt ∧ i �= pc}
(2) Compute σk

i of all the subsequences as in Eq.(14)
(3) Sort ascending the subsequences according to σk

i

(4) r = 1
(5) If r > n then go to step (7)
(6) For current subsequence sk

r

(p∗, q∗) = arg min(p,q)∈sk
r

Cost2(t, p, q)
Check the feasibilities of s̃k

r=insert t between p∗ and q∗

If all the constraints are satisfied, sk
r = s̃k

r , go to step (8)
Else r = r + 1, go to step(5)

(7) If r < Nk
v , add a new subsequence sk

r = (0, t, 0) to sk, go to step(8)
Else add t to RP. Exit.

(8) Exit. Output sk

Fig. 4. Insert-Target
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First, a sequence sk is selected randomly from {si|i ≤ pt ∧ i �= pc}. Then,
all the subsequences ski in sk = {sk1 , ..., skn} are sorted according to the mission
saturation σk

i defined as
σk

i = RTi/TLk (14)

Where RTi is the time spent for UAV vk
i travelling along subsequence ski , and

TLk is the maximum permitted travel time for UAV vk
i . σk

i > 1 means that the
subsequence ski violates the constraint (9). The subsequence ski with the smallest
σk

i is selected as the subsequence that target t inserted to.
Then target t is inserted to the least cost position between (p∗, q∗) in ski (the

insertion cost is computed as Eq.15). If t cannot be inserted to any subsequences
in sk and no more UAVs in V k is available, t is added to RP.

Mutation Operators. Three different problem specific mutation operators are
put forward for MUCREA:

– Relocate to RP : Selecting a target in the chromosome randomly and adding
it into the RP.

– Relocate from RP : Selecting a target in the RP randomly and inserting it to
the chromosome using algorithm IT.

– Exchange with RP : Selecting a target in the chromosome randomly and
adding it into the RP; Selecting a target in the RP randomly and inserting
it to the chromosome using algorithm IT.

For an individual, the above three mutation operators are applied with mu-
tation probabilities pmt, pmf and pme respectively. The three different mutation
operators ensure that the mutated individuals will still satisfy all the constraints
defined in the problem formulation.

4 Simulation Results

Simulation experiments are carried out to verify the performance of MUCREA.
In our experiments, 3 different kinds of UAVs with different capabilities are
employed in conducting reconnaissance on 100 targets. The reconnaissance res-
olutions of the 3 kinds UAVs are r1 = 1m, r2 = 5m, r3 = 10m respectively.
The locations and time windows of 100 targets are the same with those of
the customers in the Solomon’s Vehicle Routing Problems with Time Window
instances[7]. The reconnaissance resolution demands of the targets are generated
randomly between 1 and 30m, and reconnaissance duration time are generated
randomly between 10 and 100 time units.

4.1 Good Convergence Trace

The convergence trend is a useful indication to validate the performance of any
optimization algorithm. MUCRP has two objectives, CRC and NUT. We show
how minimization of both objectives occurs throughout the generations. Fig.5(a)
shows the reducing of NUT over generations and Fig.5(b) shows the reducing of
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CRC. Although it is difficult to prove that we have found the optimal solution,
it is reasonable to believe that MUCREA is able to optimize the two objectives
of MUCRP concurrently and effectively.
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Fig. 5. NUT and CRC over generation

4.2 Good Multi-objective Optimization Effort

To verify the multi-objective optimization effort of our algorithm, the non-
dominated solutions in the archive at several generations are shown in Fig.6.
From the results, we can see that MUCREA moves toward Pareto optimal front
through evolutions.
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Fig. 7. Results with no elitism

The introduction of elitism is to ensure that the non-dominated solutions will
not deteriorate during the evolutionary process. To prove this, an experiment
is conducted in which the optimization algorithm is the same with MUCREA
except that it does not adopt elitism. Fig.7 shows the results, which indicates
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that some non-dominated solutions in the earlier generations are lost during the
evolutionary process. Comparing the results in Fig.6 and Fig.7, we can draw
easily the conclusion that elitism plays an important role in the MUCREA. It
prevents losing the non-dominated solutions due to random effects during the
evolutionary process.

5 Conclusions

A multi-objective evolutionary algorithm is presented for Multi-UAV coopera-
tive reconnaissance problem. MUCRP is a typical MOP and the solutions to it
are Pareto optimal. The proposed algorithm MUCREA tries to find the approx-
imate Pareto optimal set of MUCRP. The integer string representation is de-
signed which ensures that the solution that the chromosome encodes can satisfy
the reconnaissance resolution of the targets, and a construction heuristic algo-
rithm CIFS is presented to generate initial feasible solutions for MUCREA. Then
Pareto optimality based selection mechanism combined with diversity preserva-
tion is introduced to generate parent population. Archiving strategy is combined
to prevent losing the non-dominated solutions during the evolutionary process
due to random effects. Problem specific evolutionary operators, including a se-
quence exchange crossover operator and three different mutation operators are
presented to ensure the feasibilities of the offsprings. The simulation results show
that MUCREA has good convergence and multi-objective optimization effort.
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Abstract. A new contrast enhancement algorithm for image is proposed comb-
ing genetic algorithm (GA) with wavelet neural network (WNN). In-complete 
Beta transform (IBT) is used to obtain non-linear gray transform curve so as to 
enhance global contrast for an image. GA determines optimal gray transform 
parameters. In order to avoid the expensive time for traditional contrast en-
hancement algorithms, which search optimal gray transform parameters in the 
whole parameters space, based on gray distribution of the image, a classifica-
tion criterion is proposed. Contrast type for original image is determined by the 
new criterion. Parameters space is given respectively according to different con-
trast types, which greatly shrinks parameters space. Thus searching direction of 
GA is guided by the new parameter space. In order to calculate IBT in the 
whole image, WNN is used to approximate the IBT. In order to enhance the lo-
cal contrast for image, discrete stationary wavelet transform (DSWT) is used to 
enhance detail in an image. Having implemented DSWT to an image, detail is 
enhanced by a non-linear operator in three high frequency sub-bands. The coef-
ficients in the low frequency sub-bands are set as zero. Final enhanced image is 
obtained by adding the global enhanced image with the local enhanced image. 
Experimental results show that the new algorithm is able to well enhance the 
global and local contrast for image. 

1   Introduction 

Traditional image enhancement algorithms are as following: point operators, space 
operators, transform operators and pseu-color enhancement [1]. S.M. Zhou gave a 
kind of algorithm for contrast enhancement based on fuzzy operator [2]. However, the 
algorithm cannot be sure to be convergent. Lots of improved histogram equalization 
algorithms were proposed to enhance contrast for kinds of images [3]. The visual 
quality cannot be improved greatly with above algorithms. Tubbs gave a simple gray 
transform algorithm to enhance contrast for images [4]. However, the computation 
burden of the algorithm was large. Existing many enhancement algorithms’ intelli-
gence and adaptability are worse and much artificial interference is required. 

To solve above problems, a new algorithm employing IBT, GA and WNN is pro-
posed. To improve optimization speed and intelligence of algorithm, a new criterion 
is proposed based on gray level histogram. Contrast type for original image is deter-
mined employing the new criterion. Contrast for original images are classified into 
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seven types: particular dark (PD), medium dark (MD), medium dark slightly (MDS), 
medium bright slightly (MBS), medium bright (MB), particular bright (PB) and good 
gray level distribution (GGLD). IBT operator transforms original image to a new 
space. A certain objective function is used to optimize non-linear transform parame-
ters. GA is used to determine the optimal non-linear transform parameters. In order to 
reduce the computation burden for calculating IBT, a new kind of WNN is proposed 
to approximate the IBT in the whole image. 

2   IBT 

The incomplete Beta function can be written as following: 

10,0,)1(),()(
0

111 <<−×= ∫ −−− βαβα βα dtttBuF
u

 (1) 

All the gray levels of original image have to be unitary before implementing IBT. 

All the gray levels of enhanced image have to be inverse-unitary after implementing 

IBT.  

3   Contrast Classification for Image Based on Histogram 

Based on gray level histogram, contrast classification criterion can be described in 
Fig.1: 

 

 

 

Fig. 1. Image classification sketch map based on gray level histogram 

Given that original image has 255 gray levels, the whole gray level space is divided 
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Following classification criterion can be obtained: 
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        Image is PB; 

( ) ( )2 4 5 6& &elseif B B B B> > ( ) ( ) ( )5 1 5 6 2 3& &B A B A A A> > >  

        Image is MD; 

( ) ( )2 4 5 6& &elseif B B B B> > ( ) ( ) ( )5 1 5 6 2 3& &B A B A A A> > <  

        Image is MDS; 

( ) ( )2 4 5 6&elseif B B B B> < ( ) ( ) ( )1 6 6 6 4 5& & &A B A B A A< < >  

        Image is MBS; 

( ) ( )2 4 5 6& &elseif B B B B> < ( ) ( ) ( )1 6 6 6 4 5& &A B A B A A< < <  

        Image is MB; 

( ) ( )6 6 3&elseif M A A B= >  

        Image is PB; 
else  
        Image is GGLD; 
end   

Where symbol &  represents logic “and” operator. 

4   Transform Parameters Optimization by GA 

GA can find the near-global optimal solutions in a large solution space quickly. 
GA has been used extensively in many application areas, such as image proc-
essing, pattern recognition, feature selection, and machine learning. We will em-
ploy the GA to optimize transform parameters [5]. If the algorithm is used directly to 
enhance the global contrast for an image, it will result in large computation burden. 
The range of α and β  can be determined by Tab.1 so as to solve above problems. 

Table 1. Range of α and β  

Parameter PD MD MDS MBS MB PB 
α  [0 , 2] [0 , 2] [0 , 2] [1 , 3] [1 , 4] [7 , 9] 

β  [7 , 9] [1 , 4] [1 , 3] [0 , 2] [0 , 2] [0 , 2] 

Let ),( βα=x ， )(xF is the fitness function for GA, where 

ii ba << βα , （ 1,2i = ）， ia  and ib （ 2,1=i ）can be determined by Tab.1. 

GA consists of the following steps (procedures): 

A. Initialization. An initial population size P for a genetic algorithm should be gen-

erated, which may be user-specified or randomly selected. 
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B. Evaluation. Fitness of each chromosome within a population will be evaluated. 
The fitness function maps the binary bit strings into real numbers. The larger (or 
smaller) the fitness function value is, the better the solution (or chromosome) will be. 

C. Selection. Based on the fitness values of bit strings in the current population, pairs 
of “parent” bit strings are selected which undergo the genetic operation “crossover” to 
produce pairs of “offspring” bit strings forming the next generation. The probability 
of selection of a particular chromosome is (directly or inversely) proportional to the 
fitness function value. 

D. Crossover. Crossover exchanges information between two parent bit strings and 
generates two offspring bit strings for the next population. Crossover is realized by 
cutting individually the two parent bit strings into two or more bit string segments and 
then combining the two bit string segments undergoing crossing over to generate the 
two corresponding offspring bit strings. Crossover can produce off-springs which are 
radically different from their parents. 

E. Mutation. Mutation is to perform random alternation on bit strings by some opera-
tions, such as bit shifting, inversion, rotation, etc. which will create new offspring bit 
strings radically different from those generated by the reproduction and crossover opera-
tions. Mutation can extend the scope of the solution space and reduce the possibility of 
falling into local extremes. In general, the probability of applying mutation is very low. 

F. Stopping criterion. There exists no general stopping criterion. The following two 
stopping criteria are usually employed:  

(1) No further improvement in the fitness function value of the best bit string is ob-
served for a certain number of iterations or 

(2) A predefined number of iterations have been reached. Finally, the best bit string 
obtained is determined as the global optimal solution. 

Before running GA, several issues must be considered as follows. 

A. System parameters. In this study, the population size is set to 20 and the initial 
population will contain 20 chromosomes (binary bit strings), which are randomly se-
lected. The maximum number of iterations (generations) of GA is set to 50 or 100. 

B. Fitness function. The fitness (objective) function is used to evaluate the 
goodness of a chromosome (solution). In this study, the fitness function is 
formed by Equation (2)[1]: 

( ) ( )
2

2

1 1 1 1

1 1
, ,

M N M N

ctr
i j i j

F g i j g i j C
MN MN= = = =

⎡ ⎤
′ ′= − +⎢ ⎥

⎣ ⎦
∑∑ ∑∑  (2) 

Where ,M N show width and height of original image. ( ),g i j′  Shows gray level at 

( ),i j  in enhanced image. In order to be sure the fitness function ctrF  is positive, we 

add a constant C  to ctrF  and here 100C = . Less ctrF  is, more well proportioned 

the distribution of image gray level is.  
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C. Genetic operations. For GA, the three genetic operations, namely, reproduction, 
crossover, and mutation, will be implemented. In this study, a multi-point crossover is 
employed. For the multi-point crossover, the crossover-point positions of the bit string 
segments of pair-wise bit strings are randomly selected. Mutation is carried out by 
performing the bit inversion operation on some randomly selected positions of the 

parent bit strings and the probability of applying mutation, mP , is set to 0.001. 

The GA will be iteratively performed on an input degraded image until a stopping 
criterion is satisfied. The stopping criterion is the number of iterations is larger than 
another threshold (here they are set as 50, 50 and 80 respectively in order to enhance 
three images). Then the chromosome (the solution) with the smallest fitness function 
value, i.e., the optimal set of IBT for the input degraded image, is determined. Using 
the optimal set of IBT enhances the degraded image. Totally there are two parameters 
in the set of IBT (α  and β ). The two parameters will form a solution space for 

finding the optimal set of IBT for image enhancement. Applying GA, the total two 
parameters will form a chromosome (solution) represented as a binary bit string, in 
which each parameter is described by 20 bits. We will employ the GA to optimize 
continuous variables [5]. If the algorithm is used directly to enhance image contrast, it 
will result in large computation cost. 

5   IBT Calculation with WNN 

IBT is calculated pixel-to-pixel. Operation burden is very large when pixels in origi-
nal image are large. Different IBT have to be calculated to different α  and β . Dif-

ferent IBT need to be calculated one time in every iterative step during optimization. 
To improve operation speed during the whole optimization, a new kind of wavelet 
neural network is proposed. 

Let )()( 2 nRLxf ∈ , WNN can be described approximately as follows: 

∑
=

−=
N

i
iii τxawxWf

1

)][()( ψ  (3) 

where iτ  is translation factor, ia  is scale factor, )(xWf  shows the output of WNN. 

The translation factor, scale factor and wavelet basis function, which are on the same 
line, is called wavelet unit. 

Parameters to be estimated are iw ， ia ， iτ ， Ni ,,2,1= (where N  is the 

number of wavelet unit. 
Let  

],,,,,,,[ 2121 NN τττaaa=θ  (4) 

)()( iii τxaxz −=ψ  (5) 
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Equation (6) is rewritten as: 

t
τ
t

N

i
ii xzwxWf Wφ==∑

=1

)()(  (6) 

Definition 

T
Nt tztztz )](,),(),([ 21=φ  (7) 

T
Nt twtwtw )](,),(),([ 21=W  (8) 

Where )(tzi  and )(twi  show the output of ith wavelet unit at time t and corre-

sponding to weight respectively. T  shows transpose of matrix. “Forgetting factor” 
algorithm can be used to estimate W  [6]. Parameter matrix θ can be estimated by it-
erative prediction error algorithm [6]. Weight, translation factors and scale factors are 
trained iteratively and mutually with above two algorithms. 

IBT can be calculated by the above WNN. Parameters α , β , g  are input to 

trained WNN and output g′ for IBT is obtained directly. 100000 points are selected 

as sample sets. Parameter α and β , which are between 1 and 10, are divided into 10 

parts at the same interval. Parameter x , which is between 0 and 1, is divided into 
1000 parts at the same interval. 25 wavelet units are selected. The dimension number 
of input layer and output layer are determined according to the dimension number of 
input samples and output samples. Mexican hat wavelet is selected as mother wavelet: 

2/2 2

)1()( xexx −−=ψ  (9) 

The “forgetting factor” 0.97α =  in the WNN. Mean square error is selected as 

error index and set as 0.00001. 

6   Local Contrast Enhancement by Non-linear Operator 

Based on DSWT, a non-linear enhancement operator, which was proposed by A. 

Laine in 1994, is employed to enhance the local contrast for image [7]. For conven-

ience, let us define following transform function to enhance the high frequency sub-

band images in each decomposition level respectively: 

]},[{],[ jifMAGjig =  (10) 

Where ],[ jig  is sub-band image enhanced, ],[ jif  is original sub-band image to be 

enhanced, MAG  is non-linear enhancement operator, NM ,  is width and height of 

image respectively. Let ],[ jif r
s  is the gray values of pixels in the thr  sub-band in 
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the ths  decomposition level, where Ls ,,2,1= ； 3,2,1=r . r
smaxf  is the 

maximum of gray value of all pixels in ],[ jif r
s . ],[ jif r

s  can be mapped 

from ],[ r
s

r
s maxfmaxf−  to ]1,1[− . Thus the dynamic range of cba ,,  can be set 

respectively. The contrast enhancement approach can be described by: 

[ , ], [ , ]

[ , ] max {sigm[ ( [ , ] )]

sigm[ ( [ , ] )]}, [ , ]

r r r
s s s

r r r
s s s

r r r
s s s

f i j f i j T

g i j a f c y i j b

c y i j b f i j T

⎧ <
⎪⎪= ⋅ − −⎨
⎪

− + ≥⎪⎩

 
(11) 

r
s

r
s

r
s maxfjifjiy /],[],[ =  (12) 

7   Experimental Results 

We use two images (plane and tank) to prove the efficiency of our algorithm. Fig.2 is 
relationship curve between number of evolution generation and Best, 

where ctrBest F C= − . Fig.3 (a) represents transform curve obtained by GA, where 

1.9846,α =  2.3221β = . Fig.3 (b) is a non-linear gain curve used to obtain the 

detail image, where 0.15b = , 20c = . Fig.3 is used to enhance the global contrast 
and obtain the detail image in Fig.4 (a). Two traditional contrast enhancement algo-
rithms are compared with the new algorithm. They are histogram equalization (HE) 
and unsharpened mask algorithm (USM) respectively. Fig.4 (b)-(d) are enhanced im-
ages by using HE, USM and the new algorithm respectively. Although the global con-
trast is good when HE is used to enhance Fig.4 (a), background clutter is also 
enlarged while some detail information also lost, such as detail symbol in Fig. (b). Al-
though local detail is well enhanced when USM is used to enhance Fig.4 (a), the 
global contrast is bad in Fig.4 (c). The new algorithm can well enhance the global and 
local contrast in Fig.4 (d), and the background clutter is also well suppressed. It is 
very obvious that the new algorithm is better in visual quality than HE and USM. 

 

(a) Plane                                               (b) Tank 

Fig. 2. Relationship curve between generation and best individual fitness 
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                  (a) IBT curve                               (b) Non-linear gain curve 

Fig. 3. IBT curve and non-linear gain curve 

     

  (a) Plane image                                      (b) Enhancing by HE 

      

          (c) Enhancing by USM                   (d) Enhancing by new method 

Fig. 4. Enhancement by three methods 

Fig.5 (a) represents transform curve obtained by GA, where 1.9928,α =  

8.7512β = . Fig.5 (b) is a non-linear gain curve used to obtain the detail image, 

where 0.15b = , 30c = . Fig.5 is used to enhance the global contrast and obtain the 
detail image in Fig.6 (a). Fig.6 (a) represents an infrared tank image. Fig.6 (b)-(d) are 
enhanced images using HE, USM and the new algorithm respectively. It is very obvi-
ous that the new algorithm is better in visual quality than HE and USM. 
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         (a) IBT curve                                     (b) Non-linear gain curve 

Fig. 5. IBT curve and non-linear gain curve 

       

(a) Infrared tank image                           (b) Enhancing by HE 
 

        

      (c) Enhancing by USM            (d) Enhancing by new method 

Fig. 6. Enhancement by three methods 

From the experimental results, it is very obvious that the new algorithm is better 
than HE and USM. Most of detail is lost in infrared tank when HE is used to enhance 
contrast in Fig.6 (b). The global contrast is bad when USM is used to enhance contrast 
in Fig.6 (c). The overall contrast quality is better than HE and USM when the new al-
gorithm is used to enhance contrast in Fig.6 (d). 

In order to show the efficiency of the new algorithm, Equation (2) is used to evalu-
ate the enahnced image quality. Evaluation results are list in Tab.2. From Tab.2, it is  
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Table 2. Contrast evaluation of the three algorithms 

Algorithms Plane Tank 

USM 5.6011e+003 8.0439e+002 

HE 5.6522e+003 5.6183e+003 

NEW -6.2671e-002 -1.9911e-002 

obvious that the fitness function value of the new algorithm is the smallest, so the vis-
ual quality is better than HE and USM. This can draw the same conclusion as in Fig.4 
and Fig.6. 

8   Conclusion 

Experimental results show that the new algorithm can adaptively enhance the global 
and local contrast for an image. The new algorithm is better than HE and USM in vis-
ual quality. 
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Abstract. In this paper, a novel constrained genetic algorithm is proposed and 
also successfully applied to the optimization of the active bar placement and 
feedback gains in intelligent truss structures. Based on the maximization of en-
ergy dissipation due to active control action, a mathematical model with con-
strains is initially developed. Then, according to the characteristics of the opti-
mal problem, a new problem-specific encoding scheme, some special “genetic” 
operators and a problem-dependent repair algorithm are proposed and dis-
cussed. Numerical example of a 72-bar space intelligent truss structure is pre-
sented to demonstrate the rationality and validity of this methodology, and 
some useful conclusions are obtained. 

1   Introduction 

Intelligent truss structure is a self-adaptive structure which is widely used in astro-
nomical installations. Due to the facts that truss-type astronomical structures have 
high flexibility, and they must maintain micron-level geometric-shape accuracy when 
subjected to static, thermal and dynamic disturbances, active control using piezoelec-
tric active bar has become one of the important and effective strategies to suppress the 
structure vibration. In the design of vibration control system for intelligent truss struc-
tures, there are two sets of design parameters: feedback gains and positions of ac-
tive/passive members. The feedback gains are continuous variables, while positions of 
active/passive members only take discrete values. Thus, the resulting optimization 
problem has discrete-continuous design variables, which is difficult to solve through 
the traditional optimal algorithms. In the past, structural and control design were con-
sidered separately, as in [1], [2] and [3]. At present, simultaneous optimization 
method is a hot topic studied in the design of intelligent structures in order to enhance 
the overall performance of the controlled system. Ref. [4] presented an optimal design 
method for placement and gains of actuators and sensors in output feedback control 
systems. Their new contribution was the derivation of analytical expressions for the 
gradients of the performance function. The quadratic performance function was mini-
mized using nonlinear programming. Ref. [5] developed a method of concurrent  
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design of both placements and gains. This method was based on the maximization of 
dissipation energy due to control action. The solution to the optimization problem was 
obtained by a gradient-based nonlinear programming technique. Recently, genetic 
algorithms (GAs) have proved to be effective tools for solving this kind of complex 
optimization problems. Ref. [6] presented a float-encoded genetic algorithm and ap-
plied it to an integrated determination of actuator and sensor locations and feedback 
gains for a cantilever beam. Ref. [7] developed an integrated optimization method of 
structure and control for intelligent truss structures based on the approach of inde-
pendent modal space control. In this paper, the genetic algorithm was used to solve 
the optimization problem. The design variable set, including structural sizing vari-
ables, control parameters and actuator/sensor placement, are encoded as a binary code 
string. By the Penalty Function method, a constrained optimization problem was 
transformed to an unconstrained optimization problem. Ref. [8] presented an inte-
grated optimal design of vibration control system for smart beams using genetic algo-
rithms, in which the size of piezoelectric patches was encoded as integer, while the 
placement of piezoelectric patches and the feedback control gains were encoded as 
real numbers. In addition, by introducing the exterior penalty functions, a constrained 
optimal problem was transformed into an unconstrained problem.  

In this paper, the simultaneous optimization of the active vibration control system 
for intelligent truss structures, including feedback gains and positions of ac-
tive/passive members, has been formulated. Based on the maximization of energy 
dissipation due to control action, the performance function is initially developed for 
the vibration suppression. A novel constrained genetic algorithm has been developed 
to solve the simultaneous optimization problem with discrete and continuous design 
variables. The results of a numerical example show that the simultaneous optimiza-
tion of structure and control is feasible and effective. In addition, the proposed genetic 
algorithm with the problem-specific chromosome representation, special “genetic” 
operators and a problem-dependent repair algorithm presents the advantages of glob-
alization and robustness of GAs. 

2   Mathematical Modeling and Optimal Criterion 

Following the finite element formulation described in [1], the equation of motion for 
an intelligent truss can be expressed as 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ } { } ( ){ }e pM u t C u t K u t F t B F t+ + = + , (1) 

where [ ] [ ],M C  and [ ]K  are the n n×   mass, damping and stiffness matrices, respec-

tively. ( ){ } ( ){ },u t u t and ( ){ }u t are structure displacement, velocity and acceleration 

vectors, respectively. The term ( ){ }eF t  is 1n×  external nodal force vector. The term 

( ){ }pF t  represents the 1m× control force vector and m is the number of active 

members. The matrix [ ]B  consists of the active bar’s direction cosines.  
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Assuming that the system is of proportional damping and no external force, will 
not affect the generality of the results. With the modal approxima-

tion ( ){ } [ ] ( ){ }u t q tφ= , the equation of motion takes the form 

{ } [ ]{ } [ ]{ } [ ] [ ]{ }T

pq D q q B Fφ+ + Ω = , (2) 

where [ ] 2 j jD diag wξ⎡ ⎤= ⎣ ⎦ , [ ] 2
jdiag w⎡ ⎤Ω = ⎣ ⎦ , ( )1, 2,j n= … , [ ] [ ]1 2 nφ φ φ φ= … , 

jw and jξ  are j th order inherent frequency and modal damping ratio of structure, 

respectively. 
Considering direct output velocity feedback control, the output vector and control 

force vector can be expressed as 

{ } [ ]{ } [ ][ ]{ }
{ } [ ]{ } [ ][ ][ ]{ }p

y C u C q

F G y G C q

φ

φ

= =

= − = −
, (3) 

where [ ]C and [ ]G represents the output and control matrices respectively. Since each 

active member can be considered a collocated actuator/sensor pair, the output matrix 

[ ]C  is the transpose of the input matrix [ ]B , i.e., [ ] [ ]T
C B= . 

Substituting (3) into (2) yields the corresponding equation of the closed-loop system 

{ } [ ] [ ] [ ][ ][ ] [ ]( ){ } [ ]{ } { }0
T T

q D B G B q qφ φ+ + + Ω = . (4) 

In the state-space representation, the equation of motion for the closed-loop system 
becomes 

{ } [ ]{ }x A x= , (5) 

where { } [ ]T
x q q=  and 

[ ]
[ ]

[ ] [ ] [ ] [ ][ ][ ] [ ]( )
0

T T

I
A

D B G Bφ φ

⎡ ⎤
⎢ ⎥=
− Ω − +⎢ ⎥⎣ ⎦

. 

Based on the maximization of dissipation energy due to the active control action, 
the optimization criterion can be expressed as 

{ } [ ] [ ][ ][ ] [ ]{ }
0

T
T T

J q B G B q dtφ φ
∞

= ∫ , (6) 

When the solution of ( )5 ,{ } [ ]( ){ }0expx A t x= , is used, The Eq. ( )6  becomes 

( ){ } [ ] ( ){ }0 0
T

J x P x= , (7) 
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where ( ){ } 0

0

0
q

x
q

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

is the initial state and [ ]P  is the solution of the following 

Lyapunov equation: 

[ ] [ ] [ ][ ] [ ]T
A P P A Q+ = , (8) 

where  

[ ] [ ]
[ ]
0

0
Q

I

⎡ ⎤Ω
= ⎢ ⎥
⎣ ⎦

. 

When the method described in [9] is used, the performance function can be 
written as 

[ ]J tr P= . (9) 

Thus, the problem can be expressed as a nonlinear optimization problem with con-
straints: 

Maximize: [ ] [ ]( ),J B G  ,  (10) 

Subject to the constraints: 

[ ] [ ]B B
∗⊂ , [ ] [ ]G G

∗⊂ . (11) 

In this model, [ ]B  and [ ]G  are design variables. [ ]B
∗

is the bounds of [ ]B , and [ ]G
∗
 

is the upper bounds of the feedback gains. 

3   Realization of the Constrained Genetic Algorithm 

The GA is a kind of stochastic optimization method which is originally derived from 
the Darwinian evolutionary principle of “survival-of-the-fittest”. Its basic procedures 
include encoding, selection, crossover and mutation. In this paper, to solve the simul-
taneous optimization problem of the placement of active/passive bar and feedback 
gains in intelligent truss structures, a novel constrained genetic algorithm, with a 
novel problem-specific encoding scheme, some special “genetic” operators and a 
problem-dependent repair algorithm, is initially presented. 

3.1   Encoding 

Encoding is the genetic representation of design variables. The genetic representation 
is called as a chromosome in GA, representing a design parameter set in an organized 
manner. The design of the encoding method and the related problems are discussed in 
detail below. 
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3.1.1   Code Design 
In the vibration control system of intelligent truss structures, there are two sets of 
design parameters: feedback gains and positions of active/passive members. The feed-
back gains are continuous variables, while positions of active/passive members only 
take discrete values. Considering each design variable has its own physical meaning, 
a new combined encoding method is presented in this paper. Its typical chromosome 
representation can be illustrated in Fig.1, where feedback gain variables are encoded 
with floating-point numbers, while the locations of active/passive bars are encoded as 
binary-code string, in which 1 indicates an active bar and 0 a passive bar.  

1 …… 1 …… 0 G1 … Gn 

Fig. 1. A typical chromosome representation 

Obviously, this binary-float-encoded chromosome representation is consistent to 
the description of the design parameters in the problem space. Therefore it is not only 
easily comprehended but also much easier to design special “genetic” operators for 
handling the nontrivial constraints. In addition, this encoding method shortens the 

length of chromosome string，and avoids the difficult encoding and decoding of the 
binary data that is required in standard GAs, thus decreasing the computational bur-
den and improving the computation precision. 

3.1.2   Constraint Problem 
Considering the constraints of design variables presented above, some special “ge-
netic” operators are carefully designed, which can guarantee to keep all the individu-
als always within the feasible space. These special “genetic” operators will be dis-
cussed in detail.  

In order to simplify evolution process, one chromosome is divided into two parts, 
i.e., binary-code part and floating-point-number-code part. In addition, different ge-
netic operators, i.e., mutation and crossover, are employed for the binary- and float-
ing-point parts of one chromosome, respectively. The non-uniform mutation and the 
whole arithmetical crossover are adopted for the floating-point number part in order 
to keep evolutionary individuals always in feasible space. The non-uniform mutation 
is a special dynamic mutation operator, which can improve single-element tuning and 
reduce the disadvantage of random mutation in the floating point implementation, as 
in [10].  

The whole arithmetical crossover produces two complimentary linear combinations 
of the parents as 

(1 )

(1 )
k k k

k k k

v rv r w

w r v rw

= + −
= − +

. (12) 

where r is a random number, kv  and kw  are the parents, and kv  and kw  are the off-

spring. 
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The mutation and crossover for the binary-code part are the same as the standard 
binary-encoded GAs. Besides, in order to satisfy the placement constraint, i.e., the 
number of active members is unchangeable, a specific repair algorithm has been de-
signed for this particular optimal problem. Its characteristic is by a forced mutation 
technique to repair an infeasible individual as a feasible individual. 

3.2   Optimization Procedure 

The procedure flow of the optimization of the novel problem-dependent GA is de-
scribed as follows: 

Step 1: Specify GA parameters, including the population size Psize , the crossover 
probability cP and the mutation probability mP ; 

Step 2: Randomly generate the initial population in the feasible space; 
Step 3: Calculate the fitness value for the population; 

In this step, the mN  individuals ahead are selected into the “Evolutive Memory 

Pool” according to the fitness value rank. The number mN  is a predetermined value. 

Step 4:  Generate the next generation offspring population; 
Firstly, allow the mN individuals in the “Evolutive Memory Pool” to descend di-

rectly into the next generation. The other cN  individuals are produced using the rou-

lette selection. Here c mN N N= − . 

Step 5: Execute the genetic operators, i.e., crossover and mutation; 
Step 6: Terminate the optimal process according to the termination criterion.  

If the termination criterion is met, the optimal process is stopped. Otherwise, the 
steps 3, 4 and 5 are repeated until the termination criterion is met. The termination 
criterion is the maximal iteration number, which is a predetermined value. Besides, it 
has to be pointed out that the repair algorithm is always used to repair infeasible indi-
viduals as feasible individuals through the evolution process. 

4   Numerical Example  

In this section, the integrate optimization of active bar placement and feedback gains 
for a 72-bar space intelligent truss with two active bars is used to evaluate the feasibil-
ity and effectiveness of the proposed optimal scheme, as shown in Fig. 2. The nodal 
masses of passive and active members are 0.29kg  and 0.5kg , respectively. The pas-

sive bar is aluminum alloy tube with diameter 20mm  and thickness 1.5mm . The 

Young’s module of aluminum alloy is 10 27.0 10 /N m× , and density 3 32.74 10 /kg m× . 

The lengths of two connected bars for piezoelectric active member are the same. The 
mass density and Young’s module of piezoelectric stacks are 3 37.5 10 /kg m× and 

10 26.3 10 /N m× , respectively. The equivalent stress coefficient 33e  is 218.62 /C m . 

The piezoelectric stack is made of circular piezoelectric patches with the diameter of 
10mm and its corresponding length is120mm . 
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The optimization problem as previously formulated is a nonlinear optimization with 
constraints. In this case, besides the geometric constraints, a simple bound constraint is 
imposed on the feedback control gain matrix G ; i.e., 0 150ijG≤ ≤ . The Population 

size, the crossover rate and the mutation rate are 100, 0.8 and 0.2, respectively. 
After the stopping criterion is achieved, the most optimal individual is obtained. 

The optimal positions of active bars is (1)，(16), the Feedback gains are  147.85 and 
149.88. The curve of the maximal fitness with respect to the number of iteration, 
shown in Fig.3, demonstrates that the constrained genetic algorithm proposed in this 
paper has good global convergence performance. 

0.5
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Fig. 2. The 72-bar space intelligent truss 
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Fig. 3. Curve of the maximal fitness with respect 
to the number of iteration 

5  Conclusions 

In this paper, the integrated optimization of the active vibration control system for the 
intelligent truss structures, including feedback gains and positions of active/passive 
members, has been formulated. Based on the maximization of energy dissipation due 
to control action, the performance function was developed. A novel constrained ge-
netic algorithm has been proposed to solve the simultaneous optimization problem 
with discrete and continuous design variables. The results of a numerical example 
show that the simultaneous optimization of structure and control is feasible and effec-
tive. Moreover, the proposed genetic algorithm with the problem-specific chromo-
some representation, special “genetic” operators and problem-dependent repair algo-
rithm can greatly decrease computation burden and improve computation precision. In 
conclusion, the problem-specific optimal idea proposed in this paper is very heuristic 
for solving the complex optimization problem. 
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Abstract. In this study, a double-stage genetic optimization algorithm is pro-
posed for portfolio selection. In the first stage, a genetic algorithm is used to 
identify good quality assets in terms of asset ranking. In the second stage, in-
vestment allocation in the selected good quality assets is optimized using a ge-
netic algorithm based on Markowitz’s theory. Through the two-stage genetic 
optimization process, an optimal portfolio can be determined. Experimental re-
sults reveal that the proposed double-stage genetic optimization algorithm for 
portfolio selection provides a very feasible and useful tool to assist the investors 
in planning their investment strategy and constructing their portfolio.  

1   Introduction 

In modern portfolio theory, the mean-variance model originally introduced by 
Markowitz [1] has been playing an important and critical role so far. Since Marko-
witz’s pioneering work [1] was published, the mean-variance model has revolution-
ized the way people think about portfolio of assets, and has gained widespread accep-
tance as a practical tool for portfolio optimization. But Markowitz’s portfolio theory 
only provides a solution to asset allocation among the pre-determined assets. In the 
investment markets, several hundred of different assets, such as stocks, bonds, foreign 
exchanges, options, commodities, real estates and future contracts, are available for 
trading. The qualities of these assets vary from very good to extremely poor. Usually, 
investors are difficult to find out those good quality assets because of information 
asymmetry and asset price fluctuations. Therefore, it is not wise to use portfolio the-
ory blindly for optimizing asset allocation among some low quality assets. The suit-
able way of constructing a portfolio is to select some good quality assets first and then 
to optimize asset allocation using portfolio theory. 

But an obvious challenge is how to select and optimize some good assets. With fo-
cus on the business computing, applying artificial intelligence to portfolio selection 
and optimization is one good way to meet the challenge. Some studies have been 
presented to solve asset selection problem. Levin [2] applied artificial neural network 
(ANN) to select valuable stocks. Chu [3] used fuzzy multiple attribute decision analy-
sis to select stocks for portfolio. Similarly, Zargham [4] used a fuzzy rule-based  
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system to evaluate the listed stocks and realize stock selection. Recently, Fan [5] 
utilized support vector machine (SVM) to train universal feedforward neural networks 
(FNN) to perform stock selection. For portfolio optimization, Berger [6] applied tabu 
search to find the optimal asset allocation. While some researchers, such as Casas [7] 
and Chapados [8], trained neural networks to predict asset behavior and used the 
neural network to make the asset allocation decisions. In addition, Mulvey [9] applied 
dynamic programming to construct a multi-stage stochastic model for solving asset 
allocation problem. 

However, these approaches have some drawbacks in solving the portfolio selection 
problem. For example, fuzzy approach [3-4] usually lack learning ability, while neu-
ral network approach [2, 5, 7-8] has overfitting problem and is often easy to trap into 
local minima. In order to overcome these shortcomings, we use two-stage genetic 
algorithm (GA) to solve the portfolio selection and optimization problem. Comparing 
with tabu search [6], GA is less problem-dependent and provides a high chance of 
reaching the global optimum. In comparison with the dynamic programming [9], GA 
allows the users to get the sub-optimal solution while dynamic programming cannot, 
which is very important for some financial problems. Since the time is a limit in fi-
nancial world, the investors often use a sub-optimal but acceptable solution to allocate 
assets. Due to these advantages, we use GA to perform portfolio selection. 

The main motivation of this study is to employ a two-stage genetic optimization 
algorithm for portfolio selection. In the first stage, a genetic algorithm is used to iden-
tify good quality assets in terms of asset return ranking. In the second stage, asset 
allocation in the selected good quality assets is optimized using a genetic algorithm 
based on Markowitz’s theory. Through the double-stage genetic optimization process, 
an optimal portfolio can be determined. The rest of the paper is organized as follows. 
Section 2 describes the basic selection and optimization process based on the two-
stage genetic algorithm in detail. In order to test the efficiency of the proposed algo-
rithm, a simulation study is performed in Section 3. And Section 4 concludes.  

2   Double-Stage Genetic Algorithm for Portfolio Selection 

Generally, GA imitates the natural selection process in biological evolution with se-
lection, crossover and mutation, and the sequence of the different operations of a 
genetic algorithm is shown in the left part of Fig. 1. Usually, GA is based on the sur-
vival-of-the-fittest fashion by gradually manipulating the potential problem solutions 
to obtain the more superior solutions in population. Optimization is performed in the 
representation rather than in the problem space directly. To date, GA has become a 
popular optimization method as they often succeed in finding the best optimum by 
global search in contrast to most common optimization algorithms. Interested readers 
can be referred to [10-11] for more details. 

2.1   Stage I: Asset Ranking Using Genetic Algorithm 

The aim of this stage is to identify the quality of each stock so that investors can 
choose some good ones for investment. Here a genetic algorithm is used as a stock 
ranking tool. In this study, some financial indicators of the listed companies are em-
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ployed to determine and identify the quality of each stock. That is, the financial indi-
cators of the companies are used as input variables while a score is given to rank the 
stocks. The output variable is stock ranking. Through the study, four important finan-
cial indicators, return on capital employed (ROCE), price/earnings ratio (P/E Ratio), 
earning per share (EPS) and liquidity ratio are utilized in this study. Their definition is 
formulated as 

ROCE = (Profit)/(Shareholder’s equity)*100% (1) 

P/E ratio = (stock price)/(earnings per share)*100% (2) 

Earnings per share = (Net income)/(The number of ordinary shares) (3) 

Liquidity Ratio = (Current Assets)/(Current Liabilities)*100% (4) 

When the input variables are determined, we can use GA to distinguish and iden-
tify the quality of each stock, as illustrated in Fig. 1. The detailed procedure is illus-
trated as follows. 

 

Fig. 1. Stock ranking with genetic algorithm 

First of all, a population, which consists of a given number of chromosomes, is ini-
tially created by randomly assigning “1” and “0” to all genes. In the case of stock 
ranking, a gene contains only a single bit string for the status of input variable. The 
top right part of Fig. 1 shows a population with four chromosomes, each chromosome 
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includes different genes. In this study, the initial population of the GA is generated by 
encoding four input variables. For the testing case of ROCE, we design 8 statuses 
representing different qualities in terms of different interval, varying from 0 (Ex-
tremely poor) to 7 (very good). An example of encoding ROCE is shown in Table 1. 
Other input variables are encoded by the same principle. That is, the binary string of a 
gene consists of three single bits, as illustrated by Fig. 1. 

Table 1. An example of encoding ROCE 

ROCE value Status Encoding 
(-∞, -30%] 0 000 

(-30%, -20%] 1 001 
(-20%,-10%] 2 010 
(-10%,0%] 3 011 
(0%, 10%] 4 100 

(10%, 20%] 5 101 
(20%, 30%] 6 110 
(30%,+∞) 7 111 

The subsequent work is to evaluate the chromosomes generated by previous opera-
tion by a so-called fitness function, while the design of the fitness function is a crucial 
point in using GA, which determines what a GA should optimize. Since the output is 
some estimated stock ranking of designated testing companies, some actual stock 
ranking should be defined in advance for designing fitness function. Here we use 
annual price return (APR) to rank the listed stock and the APR is represented as 

1

1

−

−−
=

n

nn
n ASP

ASPASP
APR  (5) 

where APRn is the annual price return for year n, ASPn is the annual stock price for 
year n. Usually, the stocks with a high annual price return are regarded as good 
stocks. With the value of APR evaluated for each of the N trading stocks, they will be 
assigned for a ranking r ranged from 1 and N, where 1 is the highest value of the APR 
while N is the lowest. For convenience of comparison, the stock’s rank r should be 
mapped linearly into stock ranking ranged from 0 to 7 according to the following 
equation: 
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Thus, the fitness function can be designed to minimize the root mean square error 
(RMSE) of the difference between the financial indicator derived ranking and the next 
year’s actual ranking of all the listed companies for a particular chromosome, repre-
senting by 
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1

21  (7) 
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After evolving the fitness of the population, the best chromosomes with the highest 
fitness value are selected by means of the roulette wheel. Thereby, the chromosomes 
are allocated space on a roulette wheel proportional to their fitness and thus the fittest 
chromosomes are more likely selected. In the following crossover step, offspring 
chromosomes are created by some crossover techniques. A so-called one-point cross-
over technique is employed, which randomly selects a crossover point within the 
chromosome. Then two parent chromosomes are interchanged at this point to produce 
two new offspring. After that, the chromosomes are mutated with a probability of 
0.005 per gene by randomly changing genes from “0” to “1” and vice versa. The mu-
tation prevents the GA from converging too quickly in a small area of the search 
space. Finally, the final generation will be judged. If yes, then the optimized results 
are obtained. If no, then the evaluation and reproduction steps are repeated until a 
certain number of generations, until a defined fitness or until a convergence criterion 
of the population are reached. In the ideal case, all chromosomes of the last genera-
tion have the same genes representing the optimal solution [12]. 

2.2   Stage II: Asset Allocation Optimization Using Genetic Algorithm 

In the previous stage, some good quality stocks can be revealed in terms of stock 
return ranking. However, portfolio management does not only focus on the return but 
also on risk minimization. Therefore, good stock ranking is not enough for portfolio 
management; risk factor must be taken into account in terms of portfolio theory. 

Modern portfolio theory originally by Markowitz [1] is based on a reasonable 
trade-off between expected return and risk. As earlier noted by Equation (2), portfolio 
optimization model can be solved by quadratic programming (QP). But the QP model 
can also be solved by genetic algorithm. Since it is a typical optimization model, GA 
is suitable for this task. The basic procedure of GA for this problem is similar to Sec-
tion 3.1, but a suitable chromosome representation is needed to encode its solution 
space and an appropriate fitness function should be designed. In order to apply the 
model, the values of the expected return E(Ri) and covariance σij for all i and j should 
be determined, which are represented by 
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where Rit is the return of stock i for time t, SCPit is stock closing price for stock i at 
time t, n is the number of time period for available data. 

Solution for asset allocation for stock should be a composition of the stock quantity 
to be held so as to minimize the risk on a given level of expected return which will get 
the optimal solution. Thus the chromosome can be designed as follows: each of the 
stock weight (w) is a composite of eight bits, representing the value from 0 to 255, 
thus the normalized weight (x) of each stock can be calculated with the Equation (9) 
and the detailed chromosome representation is shown in Fig. 2. 
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Fig. 2. The chromosome design of portfolio optimization 
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The fitness function is another important issue in genetic algorithms for solving the 
problem. In the portfolio optimization, the fitness function must make a rational trade-
off between minimizing risk and maximizing return. Thus the fitness function can be 
designed as follows: 
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From Equation (10), we find that the fitness function can be broken up into two 
parts. The first one is required to minimize the risk while the second part also needs to 
be minimized so that the portfolio’s overall return will stick to the expected return 
that we pre-defined. Therefore, the GA can be performed by minimizing this fitness 
function. The fitness function for each chromosome is the indicator for GA to perform 
the selection. After crossover and mutation, the new chromosome is generated for the 
next iterative evaluation procedure. 

Through the optimization process of two-stage GA, the most valuable portfolio, 
i.e., good stock combination with optimal asset allocation can be mined and discov-
ered to support investors’ decision-making. 

3   Experiment Analysis 

3.1   Data Description and Experiment Design 

The daily data used in this study is stock closing price obtained from Shanghai Stock 
Exchange (SSE) (http://www.sse.com.cn). The sample data span the period from 
January 2, 2001 to December, 31 2004. Monthly and yearly data in this study are 
obtained by daily data computation. For simulation, 100 stocks are randomly selected. 
In this study, we select 100 stocks from Shanghai A share, and their stock codes vary 
from 600000 to 600100. 

In the first stage, the company financial information as the input variables is fed 
into the GA to obtain the derived company ranking. This output is compared with the 
actual stock ranking in terms of APR, as indicated by Equations (5) and (6). In the 
process of GA optimization, the RMSE between the derived and the actual ranking of 
each stock is calculated and served as the evaluation function of the GA process. The 
best chromosome obtained is used to rank the stocks and the top n stocks are chosen 
for the portfolio in the next stage. For experiment purpose, the top 10, 20 and 30 
stocks are chosen for testing according to the ranking of stock quality using GA. 
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In the second stage, the top 10, 20 and 30 stocks with the highest rank derived from 
the previous stage are selected. The portfolio optimization is then performed for asset 
allocation. Expected return of the previous 12 months and covariance of return are 
needed to calculate according to the Equation (8) for each stock by accumulating the 
return of each month. Consequently, the portfolio allocation, weight of stock in the 
portfolio, will be obtained from GA process by minimizing the fitness function (i.e., 
Equation (10)). Therefore, the most valuable portfolio can be mined and discovered 
by the two-stage genetic optimization algorithm. 

3.2   Experimental Results 

In the first stage, four financial indicators of different stocks as input variables are fed 
into GA process to derive the stock rank and meantime the good quality stock ranks 
are obtained by minimizing the discrepancies between the derived rank and the actual 
rank. Again, the RMSE is used to measure the quality of the solution. For simulation, 
the RMSE results of the top 10, 20 and 30 stocks are reported in Table 2. As can be 
seen from Table 2, the RMSE increases with the increase of the number of stocks 
selected. 

Table 2. The RMSE results for stock ranking using GA optimization 

Number of Stocks Top 10 Top 20 Top 30 
2001 0.8756 0.9231 0.9672 
2002 0.8935 0.9056 0.9247 
2003 0.8542 0.9098 0.9111 
2004 0.9563 0.9352 0.9793 

After ranking the stock, some good quality stocks can be selected as the component 
of the portfolio. The selection of the good quality stocks is depended on a threshold 
for the stock ranking that investor pre-defined. When the number of stocks is deter-
mined by investors in terms of stock ranking, the subsequent process is that these 
selected stocks will be sent to the second optimization stage for finding out the pro-
portion of investment. For testing purpose, the best 10, 20 and 30 stocks are selected 
as the input values for the stock allocation process. Of course, the investor’s expected 
return is also required as an input variable. It should be noted that for a month basis 
evaluation process, the expected monthly return should be the result of annual return 
divided by 12. Based upon the algorithm proposed by Section 2.2, the optimal asset 
allocation for the stocks can be obtained using GA. For interpretation, two important 
comparisons are performed. Assumed that expected return is set to 10% and net ac-
cumulated return is used as performance evaluation criterion in the simulation. 

A. Return comparison between optimal portfolio and equally weighted portfolio 
In this comparison, equally weighted portfolio is that assets are equally assigned to 
every stock in the portfolio while optimal portfolio is obtained by GA optimization. In 
addition, only the top 10 stocks are included into the portfolio in this comparison. 
Accordingly, the performance results are shown in Fig. 3 below. 
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From Fig. 3, the net accumulated return of the equally weighted portfolio is found 
to be the worse than that of the optimal portfolio. This implies that if one investor 
with no experience randomly chooses a portfolio of stock to invest, the expected 
return for the portfolio will be approximately the same as that value. It is not a sur-
prising fact because there are so many bad quality stocks in the stock market that 
may lower the overall performance of the portfolio. Even one gets no loss in the 
random investment; he has already had a loss due to the opportunity cost of capital. 
Meantime, this result also indicates that the selection of good quality stock is very 
important step in the portfolio selection, which is often neglected by Markowitz’s 
theory. 

 

Fig. 3. The return comparison between optimal portfolio and equally weighted portfolio 

B. The return comparison with different number of stocks 
In this study, three portfolios with 10, 20 and 30 stocks are compared. The optimal 
asset allocation is performed by GA. Accordingly the results are shown in Fig. 4. 

From Fig. 4, we can find that the portfolio performance decreases with the increase 
of the number of stock in the portfolio and the portfolio performance of the 10 stocks 
is the best in the testing. As earlier noted, portfolio management does not only focus 
on the expected return but also on risk minimization. The larger the number of stocks 
in the portfolio is, the more flexible for the portfolio to make the best composition to 
avoid risk. However, selecting good quality stocks is the prerequisite of obtaining a 
good portfolio. That is, although the portfolio with the large number of stocks can 
lower the risk to some extent, some bad quality stocks may include into the portfolio, 
which influences the portfolio performance. This result also demonstrates that if the 
investors select good quality stocks, the portfolio with the large number of stocks 
does not necessary outperform the portfolio with the small number of stocks. There-
fore it is wise for investors to select a limit number of good quality stocks for portfo-
lio optimization. 
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Fig. 4. The result comparison with different number of stocks 

In addition, Fig. 4 also shows that the performance trend for different portfolios 
with different number of stocks is very similar except for the magnitude. Although a 
portfolio can reduce asymmetric risk, it can do little in the case where overall market 
has poor performance. For example, the market condition is good for the first two 
years and all the portfolios perform well, however, for the last two years, especially 
for 2004, the market trend reverses and that causes all the portfolios to have reversal 
trends too. 

4   Conclusions 

In this study, a two-stage genetic optimization algorithm is proposed to mine the most 
valuable portfolio. In the first stage, GA is used to rank the stock and select the good 
quality stock for portfolio optimization. In the second stage, optimal asset allocation 
for portfolio can be realized by GA. Simulation results demonstrate that the proposed 
two- stage genetic optimization algorithm is an effective portfolio optimization ap-
proach, which can mine the most valuable portfolio for investors. In addition, experi-
ment results also find that (1) selecting some good quality stocks before portfolio 
asset allocation is very important; (2) the quantity of stocks in the portfolio may not 
necessary satisfy the principle of “the more, the better”, therefore a limit number of 
stock in the portfolio can generally improve the portfolio performance. 
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Abstract. In electrical impedance tomography (EIT), various image reconstruc-
tion algorithms have been used in order to compute the internal resistivity dis-
tribution of the unknown object with its electric potential data at the boundary. 
Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed 
inverse problem. This paper presents a genetic algorithm technique for the solu-
tion of the static EIT inverse problem. The computer simulation for the 32 
channels synthetic data shows that the spatial resolution of reconstructed im-
ages in the proposed scheme is improved compared to that of the modified 
Newton–Raphson algorithm at the expense of increased computational burden. 

1   Introduction 

EIT plays an important role as a new monitoring tool for engineering applications 
such as biomedical imaging and process tomography, due to its relatively cheap elec-
tronic hardware requirements and nonintrusive measurement property [1]. In EIT, 
different current patterns are injected to the unknown object through electrodes and 
the corresponding voltages are measured on its boundary surface. The physical rela-
tionship between inner resistivity (or conductivity) and boundary surface voltage is 
governed by the nonlinear Laplace equation with appropriate boundary conditions, so 
that it is impossible to obtain the closed-form solution for the resistivity distribution. 
Hence, the internal resistivity distribution of the unknown object is computed using 
the boundary voltage data based on various reconstruction algorithms. 

Yorkey et al. [2] developed a modified Newton-Raphson (mNR) algorithm for a 
static EIT image reconstruction and compared it with other existing algorithms such 
as backprojection, perturbation and double constraints methods. They concluded that 
the mNR reveals relatively good performance in terms of convergence rate and resid-
ual error compared to those of the other methods. However, in real situations, the 
mNR method is often failed to obtain satisfactory images from physical data due to 
large modeling error, poor signal to noise ratios (SNRs) and ill-posed characteristics.  

The major difficulties in impedance imaging are in the nonlinearity of the problem 
itself and the poor sensitivity of the boundary voltages to the resistivity of the flow 
domain deep inside. Several researchers suggested various element or mesh grouping 
methods where they force all meshes belonging to certain groups to have the same 
resistivity values [3,4]. 

In this paper, we will discuss the image reconstruction based on a genetic  
algorithm approach in EIT. We have broken the procedure for obtaining the internal 
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resistivity distribution into two steps. In the first step, each mesh is classified into 
three mesh groups: target, background, and temporary groups. In the second step, the 
values of these resistivities are determined using a genetic algorithm (GA) [5]. This 
two-step approach allows us to better constrain the inverse problem and subsequently 
achieve a higher spatial resolution. 

2   Mathematical Model 

The numerical algorithm used to convert the electrical measurements at the boundary 
to a resistivity distribution is described here. The algorithm consists of iteratively solv-
ing the forward problem and updating the resistivity distribution as dictated by the 
formulation of the inverse problem. The forward problem of EIT calculates boundary 
potentials with the given electrical resistivity distribution, and the inverse problem of 
EIT takes potential measurements at the boundary to update the resistivity distribution. 

2.1   The Forward Model 

When electrical currents lI  are injected into the object 2RΩ ∈  through electrodes le  

attached on the boundary ∂Ω  and the resistivity distribution ( , )x yρ  is known over 

Ω , the corresponding induced electrical potential ( , )u x y  can be determined 

uniquely from the following nonlinear Laplace equation [6] which can be derived 
from the Maxwell equation, Ohm’s law, and the Neumann type boundary condition.  

1( ) 0  in  uρ −∇ ⋅ ∇ = Ω  (1) 
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where lz  is effective contact impedance between the l th electrode and the object, lU  

is the measured potential at the l th electrode and n is outward unit normal. In addi-
tion, we have the following two conditions for the injected currents and measured 
voltages by taking into account the conservation of electrical charge and appropriate 
selection of ground electrode, respectively. 
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The computation of the potential ( , )u x y  for the given resistivity distribution ( , )x yρ  

and boundary condition lI  is called the forward problem. The numerical solution for 

the forward problem can be obtained using the finite element method (FEM). In the 
FEM, the object area is discretized into small elements having a node at each corner. 
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It is assumed that the resistivity distribution is constant within an element. The poten-
tial at each node is calculated by discretizing (1) into C CYU I= , where CU  is the 

vector of boundary potential, CI  the vector of injected current patterns and the matrix 

Y  is a functions of the unknown resistivities. 

2.2   The Tikhonov Regularization Method 

The inverse problem, also known as the image reconstruction, consists in reconstruct-
ing the resistivity distribution ( , )x yρ  from potential differences measured on the 

boundary of the object. The relatively simple situation depicted so far does not hold 
exactly in the real world. The methods used for solving the EIT problem search for an 
approximate solution, i.e., for a resistivity distribution minimizing some sort of resid-
ual involving the measured and calculated potential values. From a mathematical 
point of view, the EIT inverse problem consists in finding the coordinates of a point 
in a M -dimensional hyperspace, where M  is the number of discrete elements whose 
union constitutes the tomographic section under consideration. To reconstruct the 
resistivity distribution inside the object, we have to solve the nonlinear ill-posed in-
verse problem. Regularization techniques are needed to weaken the ill-posedness and 
to obtain stable solutions. Generalized Tikhonov regularized version of the EIT in-
verse problem can be written in the form [6] 

2 2( ) min{|| ( ) || || || }E U V R
ρ

ρ ρ λ ρ= − +  (4) 

where NRρ ∈ is the resistivity distribution. ( ) LKV Rρ ∈  is the vector of voltages 

obtained from the model with known ρ , LKU R∈ are the measured voltages and 

R ( λ ) are the regularization matrix (parameter), respectively. L  and K  are the 
numbers of electrodes on the surface and injected current patterns, respectively. There 
are many approaches in the literature [7] to determine R  and α, but the usual choice 
is to fix MR I=  with the identity matrix and to adjust λ  empirical. 

Minimizing the objective function ( )E ρ  gives an equation for the update of the re-

sistivity vector 
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where the partial derivative of E  with respect to ρ  has been approximately by a 

Taylor series expansion around kρ . The Jacobian kJ  is a matrix composed of the 

derivative of the vector of predicted potentials with respect to the unknown resistivi-
ties. The Hessian kH  is the second derivative of the predicted potentials with respect 

to the resistivity and is approximated as the square of the Jacobian for computational 
efficiency. Since the objective function ( )E ρ   is multimodal (i.e., it presents several 

local minima), the inversion procedure does not always converge to the true solution. 
The reconstruction algorithms are likely to be trapped in a local minimum and some-
times the best solution of a static EIT problem is rather unsatisfactory. 
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3   Image Reconstruction Based on GA Via Two-Step Approach 

In some applications like visualization of two-component systems, we may assume 
that there are only two different representative resistivity values; one resistivity value 
for the background and the other for the target. In this paper, we will discuss the im-
age reconstruction in EIT using two-step approach. We have broken the procedure for 
obtaining the internal resistivity distribution into two parts. 

Step One – mNR Method and Mesh Grouping. In the first step, we adopted a mNR 
method as a basic image reconstruction algorithm. After a few initial mNR iterations 
performed without any grouping, we classify each mesh into one of three mesh 
groups: BGroup (or TGroup) is the mesh group with the resistivity value of the 
background (or target). RGroup is the group of meshes neither in BGroup nor in 
TGroup. All meshes in BGroup and in TGroup are forced to have the same but 
unknown resistivity value ( backρ  and tarρ ), respectively. However, all meshes in 

RGroup can have different resistivity vaules ( , ( 1, , 2)temp i i nρ = −… ). 

Let ( 1,..., )is i n=  be the resistivity distribution after this rearrangement. Then, the 

typical shape of is  becomes the curve shown in Fig. 1 during the reconstruction proc-

ess. In Fig. 1, it is natural to assume that meshes in regions I and III belong to BGroup 
and TGroup, respectively. All meshes in region II can be classified into RGroup. 

However, since we cannot always expect to get such a well-distinguished restivity 
distribution curve as shown in Fig. 1, it is useful to divide the regions and determine a 
typical resistivity value of each region. Let ( 1,...,3)i iρ =  be the representative resis-

tivity value in each region and ( 1,2)ik i =  be the boundary location between regions. 

Then, we can formulate the following optimization problem to determine iρ  and ik : 

1

3
2

1

( ) min{ ( ) }
i

i

k

j i
x

i j k

J x s ρ
−= =

= −∑ ∑  (6) 

where 1 2 3 1 2( , , , , )x k kρ ρ ρ= , 0 1k = , and 3k n= . 

I II III

1k 2k

is

i  

Fig. 1. Typical distribution of the sorted resistivity values during image reconstruction 
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We solve the problem in (6) using the GA and the solution provides one way of di-
viding regions [4].  

Step Two – Image Reconstruction Based on the Genetic Algorithm. In the second 
step, a set (population) of EIT images is generated for the simplest implementation of 
GA in EIT. Each individual consists in a n -tuple of resistivity values ( n  is the 
number of elements discretizing the section under measurement), i.e., the EIT 
chromosome is a sequence of n  resistivities. After mesh grouping, in this paper, we 
will determine the values of these resistivities using two GAs. The first GA searches 
for the optimal range of resistivities by generating and evolving a population of 
individuals whose chromosome consists of two real genes ( backρ  and tarρ ), 

representing the BGroup and TGroup values. Furthermore, we will use backρ  (or tarρ ) 

as the minimum (or maximum) values of the unknown resistivity distribution. The 
second GA solves the EIT problem, searching for the resistivity distribution 
( , ( 1, , 2)temp i i nρ = −… ) minimizing the reconstruction error. The computed 

resistivities is constrained between the minimum and maximum values obtained in the 
first GA. 

We will iteratively reconstruct an image that fits best the measured voltages lU  at 

the l -th electrode. To do so, we will calculate at each iteration the pseudo voltages 
( )lV ρ  that correspond to the present state of the reconstructed image. We assume that, 

by minimizing the difference between the measured voltages and the pseudo voltages, 
the reconstructed image will converge towards the sought-after original image. 

A fitness value is computed for each individual. In the present case, the fitness 
function is the reciprocal of the reconstruction error, a function of the relative differ-
ence between the computed and measured potentials on the object boundary 

1( 1)
2

1

( )( 1)

2

L L

i i
c

i i

U VL L
f

U

ρ
−−

=

⎡ ⎤−− ⎢ ⎥=
⎢ ⎥
⎣ ⎦
∑  (7) 

where L  is the number of electrodes on the surface. 

4   Computer Simulation 

The proposed algorithm has been tested by comparing its results for numerical simu-
lations with those obtained by mNR method. For the current injection the trigonomet-
ric current patterns were used. For the forward calculations, the domain Ω  was a unit 
disc and the mesh of 3104 triangular elements (M=3104) with 1681 nodes (N=1681) 
and 32 channels (L=32) was used as shown in Fig. 2(a). A different mesh system with 
776 elements (M=776) and 453 nodes (N=453) was adopted for the inverse calcula-
tions as shown in Fig. 2(b). In this paper, under the assumption that the resistivity 
varies only in the radial direction within a cylindrical coordinate system [8], the re-
sults of the two inverse problem methods can be easily compared. The resistivity 
profile given to the finite element inverse solver varies from the center to the bound-
ary of object and is divided into 9 radial elements ( 1 9, ,ρ ρ ) in Fig. 2(b). 
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(a)                                          (b) 

Fig. 2. Finite element mesh used in the calculation. (The resistivities of the elements within an 
annular ring are identical.) (a) mesh for forward solver, (b) mesh for inverse solver. 

Synthetic boundary potentials were computed for idealized resistivity distributions 
using the finite element method described earlier. The boundary potentials were then 
used for inversion and the results were compared to the original resistivity profiles. 
The resistivity profile appearing in Fig. 3 has a step change at /r R =0.43. The in-
verted profile using mNR method matches the original profile very well near the 
boundary of the object at /r R =1 and the jump in resistivity was located successfully. 
However, the inverse method using mNR searches for a resistivity profile which is 
smooth, which explains the deviation near the center at /r R =0 and the boundary of 
target and background at /r R =0.43. 

We started the mNR iteration without any mesh grouping with a homogeneous ini-
tial guess. In Table 1, we see that the mNR algorithm may roughly estimate the given 
true resistivities. Since the mNR have a large error at the boundary of target and back-
ground in Fig. 3, we can not obtain reconstructed images of high spatial resolution. 
This kind of poor convergence is a very typical problem in the NR-type algorithms.  
However, we can significantly improve the mNR’s poor convergence by adopting the 
proposed GA via a two-step approach as follows. 

 

Fig. 3. True resistivities(solid line) and coumputed resistivities using mNR(dashed line) and 
GA(dotted line) 
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Table 1. True resistivities and computed resistivities using mNR and GA 

 1ρ  2ρ  3ρ  4ρ  5ρ  6ρ  7ρ  8ρ  9ρ  

Real 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 
mNR 0.516 0.495 0.489 0.535 0.594 0.604 0.599 0.601 0.600 
GA 0.505 0.505 0.505 0.600 0.600 0.600 0.600 0.600 0.600 

In the first step, we adopted a mNR method as a basic image reconstruction algo-
rithm. After a few initial mNR iterations performed without any grouping, we classify 
each mesh into one of three mesh groups. After the mesh grouping in (6), we could 
obtained the following result that 2 meshes ( 2 3,ρ ρ ) and 5 meshes ( 5 6 7 8 9, , , ,ρ ρ ρ ρ ρ ) 

among 9 are grouped to TGroup ( )tarρ  and BGroup ( )backρ , respectively. The re-

mainders of meshes 1 4( ,  )ρ ρ  are grouped to RGroup. Hence, the number of un-

knowns is reduced to 4. 
In the second step, after mesh grouping, we will determine the values of these re-

sistivities using two GAs. The first GA searches for the optimal range of resistivities 
by generating and evolving a population of individuals whose chromosome consists 
of two real genes ( backρ  and )tarρ . 1ρ  and 3ρ  in (6) are used the initial value of tarρ  

and backρ  in BGroup and TGroup, respectively. Table 2 shows the computed resistivi-

ties as a function of the population size at generation 200. The reconstructed errors at 
a given generation generally decrease when the population size is increased. Hence, 
even if error does not depend linearly on the population size due to the stochastic 
nature of GA’s, 40 or 60-individual GA reconstruction gives a higher spatial resolu-
tion than a mNR method. 

The second GA solves the EIT problem, searching for the resistivities of remain-
ders 1 4( ,  )ρ ρ  minimizing the reconstruction error. The computed resistivities in this 

second GA is constrained between the minimum and maximum values obtained in the 
first GA. In Fig. 3, the inverted profile using GA matches the original profile very 
well near the wall at /r R =1.0 as well as the center at /r R =0.0. Furthermore, the 
GA reconstruction is practically perfect for the jump of resistivity at /r R =0.43.  

Table 2. True and computed resistivities using GA vs population size at generation 200 

backρ  tarρ  
Popsize 

True Computed True Computed 
20 0.5 0.4898 0.6 0.6000 
40 0.5 0.5051 0.6 0.6001 
60 0.5 0.4998 0.6 0.6039 

5   Conclusion 

In this paper, an EIT image reconstruction method based on GA via two-step ap-
proach was presented to improve the spatial resolution. A technique based on two 
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binary-coded GA’s with the knowledge of mNR was developed for the solution of the 
EIT inverse problem. One GA calculates the resistivity values of target group and 
background group, and the other GA is used to search for the resistivities of remain-
ders. Although GA is expensive in terms of computing time and resources, which is a 
weakness of the method that renders it presently unsuitable for real-time tomographic 
applications, the exploitation of a priori knowledge will produce very good recon-
structions.  
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Mitigating Deception in Genetic Search Through
Suitable Coding
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Abstract. Formation of hamming cliff hampers the progress of genetic algo-
rithm in seemingly deceptive problems. We demonstrate through an analysis of
neighbourhood search capabilities of the mutation operator in genetic algorithm
that the problem can somtimes be overcome through proper genetic coding. Ex-
periments have been conducted on a 4-bit deceptive function and the pure-integer
programming problem. The integer-coded genetic algorithm performs better and
requires less time than the binary-coded genetic algorithm in these problems.

Keywords: Genetic algorithm, Deception, Neighbourhood search.

1 Introduction

Genetic algorithms (GAs) [6] are a class of adaptive search procedures derived from the
Darwin’s law of survival of the fittest. GAs start from a randomly generated population
of individuals representing potential solutions of the candidate problem. These individ-
uals are selected according to their fitness values. Genetic operators such as crossover
and mutation alter the composition of the selected individuals and make them ready to
be part of the population in later generations. GA marches towards the global optimum
over a number of generations. Successful implementation of GA involves suitable ge-
netic coding, genetic operators, and the values of genetic parameters such as population
size, crossover probability, mutation probability and number of generations. Genetic al-
gorithms have been used to find the global optimum in a number of hard optimization
problems.

In a fully deceptive function, the string with the next higher fitness value has differ-
ing bit on each of the locus compared with the string with lower fitness value. It results
in formation of hamming cliff and genetic algorithms get trapped at a sub-optimal so-
lution. Other genetic codings have been used to solve hard problems because of the
bottleneck of formation of hamming cliff in binary-coded genetic algorithms. Real-
number-coded GA have been used for solving continuous function optimization prob-
lems [9]. Specialized codings based on problem structure have been devised for many
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problems such as bin-packing problem, which equip the GA with neighbourhood search
capabilities [5, 4].

In this paper, we analyze the neighbourhood search capabilities of mutation opera-
tor in deceptive functions using GA with binary and integer codings. We apply genetic
algorithm with the two codings to solve 4-bit deceptive function and pure-integer pro-
gramming problem.

A 4-bit deceptive function [8] is shown in the table 1 . The function is called fully
deceptive because the string ‘0000’ has a fitness value equal to 3 while the string ‘1111’
has the next higher fitness value of 4. The GA gets stuck up at the suboptimal value with
string ‘0000’ and cannot escape from this trap.

Table 1. 4-bit deceptive function

Number of ‘1’s in Fitness
a 4-bit string

0 3
1 2
2 1
3 0
4 4

We also take a real-world pure-integer programming problem [11], which is defined
below.

max {cx : Ax ≤ b, x ∈ Zn
+} (1)

where c is an n-component cost vector, A is (m,n) coefficient matrix, b is a m-com-
ponent resource vector, x is an n-component integer vector, n is the number of variables
andm is the number of constraints.

The paper is organized as: section 2 analyzes the neighbourhood search capabilities
of genetic algorithm in the deceptive functions, section 3 describes the experimental
setup, section 4 presents the results obtained, and section 5 contains our concluding
remarks.

2 Genetic Coding and Neighbourhood Search

Traditionally, the crossover has been considered the major recombination genetic oper-
ator and the mutation has been given a background role of maintaining diversity in the
population. In reality, the crossover recombines two (or more) parents to produce off-
springs which are at a large hamming distance from the parents [12]. Thus, the operator
helps genetic algorithm to jump over peaks in a multi-modal landscape. The mutation
operator results in producing a chromosome at a very small hamming distance from the
parents and is an instrument for neighbourhood search in genetic algorithms.

With binary coding, neighbourhood search is effective in solving the 4-bit deceptive
problem if GA can reach the string ‘1111’ from the string ‘0000’, resulting in a better
function value. Integer coding can also be used to solve the problem where each gene
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consists of an integer corresponding to the number of ‘1’s and has the corresponding
fitness value shown in table 1. The neighbourhood search is effective with the integer
coding if we can reach the gene ‘4’ from the gene ‘3’ at a locus. The following analysis
shows that the probability of getting a string with next higher fitness value with binary-
coding is very small compared with the integer-coding in deceptive problems.

We consider a function with n variables, each in the range [0, I − 1], where I = 2k.
With the binary coding, each variable can be represented as k = log2(I) bits so that

n variables are coded as a string of n.k bits. The binary coding provides a chromosome
size l = n.k. We assume a probability of mutation equal to 1/l. Thus, we get the
probability of mutation (pm) equal to 1

n.k .
With the integer coding, each gene consists of an integer in the range [0, I − 1]. It

provides a chromosome size l = n and we get pm = 1
n . The mutation operator in this

coding is implemented by updating a gene with a uniform[0, I − 1] integer with the
given probability of mutation.

For neighbourhood search to be effective, we require a chromosome having one gene
with the next higher fitness value while all the other genes remain unperturbed. We
denote this probability as pn. The pn with binary coding (pnb) and with integer coding
(pni) are calculated below.

pnb =
(

1− 1
n.k

)(n−1)k

.

(
1
n.k

)k

pni =
(

1− 1
n

)(n−1)

.
1
n
.
1
I

As n becomes large,
(
1− 1

n.k

)(n−1)k �
(
1− 1

n

)(n−1) � 1
e .

Let M =
pni

pnb

�
1
n .

1
I( 1

n.k

)k �
1
n .

1
2k

1
nk.kk

= nk−1.

(
k

2

)k

The factorM is the order of magnitude by which pni > pnb. Large values of M for
given values of n and k indicate that neighbourhood search is much more effective with
integer coding compared to binary coding in fully deceptive problems.

3 Experimental Setup

3.1 Test Data

Three test instances for the 4-bit fully deceptive function are formed by concatenating
20, 50 and 125 copies of the four bits to make strings of length 80, 200 and 500 bits.
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Test instances for the pure-integer programming problem are generated according
to the procedure developed by Lin and Rardin [10] and used in [1]. The procedure
generates problem instances of the form:

Maximize cBxB + cNxN

subject to BxB + NxN = b

with xB, xN ≥ 0 and integral, B is (m,m) basic matrix, N is (m,n −m) nonbasic
matrix, xB , cB and b are m-vectors, xN and cN are (n −m)-vectors, n is the number
of variables and m is the number of constraints. Elements of B, N, cB, cN and b are
integers.

We discard the terms cNxN and NxN to obtain the problem instances of the form
(1). It generates the instances with the number of variables (n) equal to the number of
constraints (m).

Further, without loss of generality, we generate the problem instances in a way so that
all the elements of the coefficient matrix A and the resource vector b are positive. This
facilitates calculation of the lower bounds (li) and upper bounds (ui) for the variables
(xi) required for genetic coding. With this relaxation, we get the bounds as:
li = 0, ui = �max{bj/aji}�, aji �= 0 and i = 1 · · ·n ; j = 1 · · ·m ; aji is the (j, i)th

element of the matrix A, bj is the jth element of the vector b.
Four test instances of sizes 20, 50, 100 and 200 have been generated using the above

procedure.

3.2 Genetic Operators and Parameters

We solve the 4-bit deceptive function with the binary as well as the integer coding. The
binary strings are constructed by concatenating the 4-bit strings corresponding to a fit-
ness value shown in the table 1. The integer-coded strings are formed by concatenating
integers in the range [0,4] corresponding to the number of bits for a fitness value. A lo-
cus can take values in this range and a gene has the function values according to table 1.
Chromosome sizes with this coding are 20, 50 and 125 instead of 80, 200 and 500 with
the binary representation. Initial population is generated with the traditional method,
where each locus can have an allele from the alphabet with equal probability.

The pure-integer programming problem also utilizes both the codings. In the binary
coding, a variable of the problem is coded as a group of bits and decoded as the integer
value of this group of bits. A chromosome is formed as a string of these groups of bits
arranged in the sequence of the variables xi, i = 1 · · ·n. The number of bits required
for coding a variable xi is �log2(ui − li + 1)�. Table 2 shows the chromosome sizes of
the four pure-integer programming problem instances.

Genetic algorithm is unable to solve the pure-integer programming problem with the
traditional method of initial population generation as all the individuals remain infeasi-
ble throughout the GA run. We use the genetic algorithm by taking the initial population
with gene-induction approach [3]. The approach uses an initial population consisting of
single-gene strings where a randomly selected locus has an allele from the alphabet
and all the other genes are made ‘0’. The infeasible strings are replaced with the newly
generated single-gene strings. ‘0010000000’ and ‘0000300000’ are examples of single-
gene binary string and single-gene integer string of size ten, respectively.
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Table 2. Number of variables and chromosomes size with binary coding in the pure-integer pro-
gramming problem instances

Problem Problem Chromosome
Instance Size (n) Size
1 20 94
2 50 242
3 100 529
4 200 1070

The population size is fixed at 60 for both the problems. Linear rank selection is
utilized with the value 1.5 assigned to the best string in the population [7]. Single-point
crossover is used with a crossover probability equal to 0.5. The probability of mutation
is fixed at 1/l where l is the string length. The maximum number of generations used
are 2000. We use elitism in the experiments.

4 Results

4.1 4-bit Deceptive Function

Table 3 shows the results obtained with both the binary-coded and the integer-coded
GA on the three instances of the 4-bit deceptive function. All the results are summary
of ten experiments.

Table 3. Result of binary-coded GA execution on 4-bit deceptive problem instances in 10 experi-
ments. (W-worst, B-best, A-average, SD-standard deviation). n is the number of 4-bit substrings.

n Optimum Binary-coding Integer-coding
20 80 W 67 80

B 71 80
A 68.8 80

SD 1.3 0
50 200 W 167 200

B 177 200
A 168.8 200

SD 2.9 0
125 500 W 404 499

B 419 500
A 411.0 500

SD 4.2 0.3

Binary-coded GA cannot reach the global optimum due to trap in the local optimum
when all the bits in a substring of 4-bits are ‘0’. The integer-coded GA can reach the
global optimum in all the three instances. The average function values obtained are
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Fig. 1. Progress of the GA on 4-bit deceptive problem instance of size 125

411 and 500 with the binary-coding and the integer-coding respectively in the problem
instance of size 125 substrings.

Figure 1 shows the progress of a single execution of GA with binary coding and
integer coding on the 4-bit deceptive function instance of size 125. The integer-coded
GA marches much faster towards the optimum function value and it can reach the global
optimum. The binary-coded GA cannot reach the optimum. It stops moving towards the
optimum in the last phase of the GA run.

4.2 Pure-Integer Programming Problem

Table 4 shows the results of both the binary-coded and integer-coded GAs on the pure-
integer programming problem instances. The results are summary of ten experiments.
Optimum value of the test instances have been found with Lp solve [2].

Integer-coded GA provides better results compared with those reached by the binary-
coded GA. The average function values reached are 14903 and 15347 with binary-
coding and integer-coding respectively against the optimum of 16594 in the problem
instance of size 200.

Figure 2 shows the progress of a single execution of GA with the binary coding as
well as the integer coding on the pure-integer programming problem instance of size
200. GAs with both the codings start marching towards the optimum. Integer-coded
GA takes over the binary-coded GA in the last phase of the GA execution.

Table 5 shows the computational time used by both the GAs for the two test problem
instances. Integer-coded GA uses less time compared to the binary-coded GA in both
the test problems. Integer-coded GA is computationally fast mainly due to small array
size required to represent a chromosome in computer. In the 4-bit deceptive problem, a
binary-coded GA requires array size of 80 integer variables to represent a chromosome
for the problem size of 20 substrings. Integer-coded GA requires array size of 20 for
the same instance.
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Table 4. Result of GA execution on pure-integer programming problem instances (10 experi-
ments). (W-worst, B-best, A-average, SD-standard deviation).

n Optimum Binary coding Integer coding
20 722 W 696 710

B 722 722
A 716.6 718.4

SD 7.7 4.5
50 4098 W 3836 3946

B 3998 4078
A 3909.8 4016.6

SD 50.5 28.4
100 8770 W 8122 8418

B 8436 8572
A 8295.4 8507.4

SD 77.9 49.3
200 16594 W 14740 15104

B 15120 15704
A 14903.3 15347.4

SD 135.8 211.8

Table 5. Average computational time (seconds) used by binary-coded and integer-coded GAs on
a PC (Pentium III 733 MHz, 64 MB RAM)

Test problem n Binary-coded GA Integer-coded GA
4-bit deceptive 20 2.3 1.0

50 5.1 2.1
125 13.5 4.9

Pure-integer programming 20 9.2 4.9
50 32.1 22.6

100 111.0 82.9
200 516.0 468.3

5 Conclusion

Genetic algorithms get trapped at the local optimum in deceptive functions due to
formation of hamming cliff. The problem can be mitigated through proper coding,
which empowers genetic algorithms with neighbourhood search capabilities necessary
to reach the global optimum. Analysis of the neighbourhood search capabilities of ge-
netic algorithm using mutation operator shows that the probability of getting chromo-
some having better fitness value in deceptive problems is much higher with integer
coding compared with binary coding. The analysis has been corroborated through ex-
periments conducted on the 4-bit deceptive function and the pure-integer programming
problem. It is observed that the integer-coded GA performs better than the binary-coded
GA and requires less time. The results lead us to the conclusion that deception in genetic
search can also be mitigated through suitable genetic coding.
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Abstract. In this paper, a hybrid genetic algorithm for blind signal separation 
that extracts the individual unknown independent source signals out of given 
linear signal mixture is presented. The proposed method combines a genetic 
algorithm with local search and is called the hybrid genetic algorithm. The im-
plemented separation method is based on evolutionary minimization of the 
separated signal cross-correlation. The convergence behaviour of the network is 
demonstrated by presenting experimental separating signal results. A computer 
simulation example is given to demonstrate the effectiveness of the proposed 
method. The hybrid genetic algorithm blind signal separation performance is 
better than the genetic algorithm at directly minimizing the Kullback-Leibler 
divergence. Eventually, it is hopeful that this optimization approach can be 
helpful for blind signal separation engineers as a simple, useful and reasonable 
alternative. 

1   Introduction 

The Blind Signal Separation (BSS) problem consists of recovering unknown signals 
or sources from their several observer mixtures. Typically, these mixtures are 
acquired by a number of sensors in which each sensor receives signals from all 
sources. Blind Source Separation [1] is the central part of Independent Component 
Analysis (ICA) [2], a developed signal processing technique for representing given 
noisy signal mixtures as a linear combination of statistically independent signals. This 
technique is important for many applications such as communication systems [3], 
speech enhancement and noise reduction [4] and speech recognition [5].  

From the mathematical point of view, the solution to the BSS problem is a 
separating matrix which transforms the mixed signals into signals with a maximal 
degree of independence by estimating the original source signals [6,7]. This recogni-
tion, as well as the Signal to Interference Ratio (SIR) results [8], although promising 
for the field of speech recognition, showed a certain incompetence in performing 
efficiently due to the stochastic nature of the gradient descent optimization technique 
that was used. Furthermore, the convergence behavior of the above optimization 
methods depends on the step size choice and the initial separation filter coefficient 
values. The Genetic Algorithm (GA) [9] is a global optimization technique, which is 
able to find the global optimum solution without being trapped in local minima. In 
this optimization framework, a novel Blind Signal Separation method based on the 
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minimization of the separated signal cross-correlation function was proposed in [10, a 
method proposed to separate a noise component, which directly minimizes the Kull-
back-Leibler divergence using a genetic algorithm [11]. These proposed genetic algo-
rithms for BSS can find the global optimum solution without being trapped in local 
minima. However, there exist some disadvantages in genetic algorithms such as pre-
mature convergence and a long convergence time. To solve these problems, local 
improvement procedures are used as part of the evaluation of individuals. For many 
problems a well-developed, efficient search strategy exists for local optimization 
improvement. These local search strategies compliment the genetic algorithm global 
search strategy, yielding a more efficient overall search strategy. The idea of combin-
ing a genetic algorithm and local search heuristics for solving combinatorial optimiza-
tion problems was proposed to improve the genetic algorithm search ability in [12]. 
High performance was reported. For the genetic algorithm, the stopping criteria set up 
uses the trial and error method. When comparing hybrid genetic algorithms with the 
genetic algorithm method, the hybrid genetic algorithm iteration automatically stops 
when the predefined criteria is reached. 

2   Blind Signal Separation 

The basic two-input two-output (TITO) Blind Signal Separation (BSS) network is 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Two Input Two Output (TITO) Blind Signal Separation Network 

In the linear BSS problem, signals )(tSi  for [ ],2,1∈i  are assumed which are consid-
ered to be zero meaned, mutually stochastic independent. These signals are acquired 
from a set of sensors, so )(tX i  for [ ]2,1∈i  is obtained.  

    The BSS objective is to recover the original signals )(tS , without any prior knowl-
edge of the mixing coefficients given the mixed signals )(tX . 
    Under these circumstances, a more general mixing scenario, known as the convo-
lutive mixture, is used. To adequately express the mixing phase, the Finite Impulse 
Response (FIR) Matrix Algebra proposed by Lambert [13]. Using its notation, the 
convolved mixing case is expressed as the following form: 
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Let )(1 tX  and )(2 tX  be the mixed signal of both )(1 tS  and )(2 tS . From Fig. 1, 

the network output )(1 tU  and )(2 tU  denotes that the separated signals can be ex-

pressed as: 
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Using its notation, the source signal estimation is expressed in the form: 
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where W  is the separating matrix. 
Substituting equation (2) into equation (3) yields 
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Based on evolutionary minimization of the cross-correlation of the separated sig-
nals, the equation (6) is obtained as follows: 
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If the inverse of A is find, then  1−= AW , thus 
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Comparing each element in equation (7) yields  
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From equations (7) and (8), equation (6) becomes 
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If equation (9) is equal to zero, then the output signals are independent of each other. 
Therefore, equation (9) minimizes the dependency among the output signals as much 
as possible. According to the above statement, it can be utilized to separate the mixed 
signals. 

3   The Hybrid Genetic Algorithm  

In the proposed blind signal separation method for a TITO network, the hybrid ge-
netic algorithm is applied to minimize the output signal cross-correlation. The follow-
ing evaluation (fitness) function can be introduced as follows: 

C=Xcorr( )(1 tU , )(2 tU ) and fitness_value=
CC *

1                                     (10) 

With fitness function given in equation (10), a hybrid genetic algorithm is used to 
minimize the output signal cross-correlation. Genetic algorithms are used in many 
disciplines because of their efficient optimization capabilities. Local Search, also 
referred to as neighborhood search or hill-climber, is the basis of many heuristic 
methods. In this local search procedure the current solution (initially obtained by a 
constructive heuristic) is replaced by the neighboring solution that results in the great-
est improvement in the evaluation function to be optimized. The process continues 
until a solution with no improving neighbor in a fixed generation number has been 
reached, i.e., until an optimum has been found. Its advantage can set up reasonable 
stopping criteria flexibly and avoid the shortcoming for the stopping criteria of the try 
and error of genetic algorithms. 

The hybrid genetic algorithm combines the advantages of efficient heuristics in-
corporating domain knowledge and population-based search approaches for optimiza-
tion problems. In this study, the usefulness of a hybrid genetic algorithm for global 
search and flexibly reasonable stopping criteria is shown. In this study, the usefulness 
of a hybrid genetic algorithm for global search and flexibly reasonable stopping crite-
ria are shown. 

In this section, the hybrid genetic algorithm implementation for blind signal 
separation is described.  

Step 1. Initialization: A set of chromosomes is randomly generated. A chromo-
some is composed of genes. For this problem, the gene is W . So, the initial step is 
generating a collection of random matrix vectors.  Define a vector and variable, to 
which the gradually optimized chromosome and its fitness are saved separately. 
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Their initial values are the first chromosome of the generated chromosome set and 
its fitness. 

Step 2. Evaluation: For every chromosome, the fitness objective functions are calcu-
lated for evaluating its fitness. Check every chromosome’s fitness step by step. 

Step 3. Selection: At first, roulette wheel selection was used to select pairs of indi-
viduals for reproduction. The best fitness of the population always survives. 

Step 4. Crossover: Pairs of parents are selected from these survivors. Single point 
crossover is selected to produce the next generation. The string of the element of 
matrix from the beginning of chromosome to the crossover point is copied from one 
parent; the rest are copied from the second parent.  

Step 5. Mutation: Some useful genes are not generated in the initial step. This diffi-
culty can be overcome using the mutation technique. The basic mutation operator 
randomly generates a number as the crossover position and then changes the value of 
this gene randomly. 

Step 6. Local Search: A hill-climber in hybrid genetic algorithm, which used as local 
search. Apply the modified local search procedure in the current population [14]. 

Step a : Specify an initial solution x. 
Step b : Examine a neighborhood solution y of the current solution x. 
Step c : If y is a better solution than x, replace the current solution x with y and re-

turn to step b. 
Step d : If the current solution x has no better than the chosen k front neighborhood 

solutions (i.e., if there is no worse solution among the examined k front 
neighborhood solutions of x), then end this procedure. Otherwise return to 
Step 2. 

This algorithm is terminated if no better solution is found among k neighborhood 
solutions that are randomly selected from the neighborhood of the current solution. 
Therefore, if a very small value of k is used, the local search procedure may be termi-
nated soon. However, it cannot be certain of good convergence. Conversely, if a large 
value of k is used, the local search procedure examines many solutions. But it will 
take long convergence time. In the modified local search procedure method, accord-
ing to the experience, the value of k in the local search procedure in our hybrid ge-
netic algorithm is setup. 

Step 7. Termination Criteria: If the number of the current generation is equal to or 
larger than the predefined number of generations, end the algorithm. Otherwise return 
to Step 2. 

4   Simulation Results 

The following simulations were performed to evaluate the performance of the 
proposed method for blind signal separation for a TITO network. 
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Example 1 
The source signals are illustrated in Fig. 2 and defined by 
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Fig. 2. The source signals S1 and S2 
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Fig. 3. The mixed signals X1 and X2 

The defining parameters for the hybrid genetic algorithm are as follows: population 
size=20, probability of crossover =0.65, probability of mutation=0.01. The stopping 
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criteria of hybrid genetic algorithm are no better solution among the examined 50 
neighbor generations, and the number of the current generation is equal to or larger 
than 200 generations.   

The mixed signals )(tX i
are depicted in Fig. 3. The convergence behavior is illus-

trated in Fig. 4. From Fig 4, it can be shown that the hybrid genetic algorithms can 
minimization the cross correlation of the output signal.  As the result of the simula-
tion, the separating matrix W  is shown as follows: 
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Fig. 4. Convergence of the cross-correlation (example1) 
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Fig. 5. The separated signals 
1U  and 
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The separated signals U  are shown in Fig 5. Comparing source signals in Fig 2 
with the separated signals in Fig 5, the best result is achieved for the separated signal, 
which corresponds at the same time to the best primary signal. 

The blind signal separation using performance the hybrid genetic algorithm based 
on evolutionary minimization of the cross-correlation has proven more efficient than 
that based on the genetic algorithm, which directly minimize the Kullback-Leibler 
divergence [10]. 

Example 2 
The defining parameters for the MA are as follows: population size=40, probability of 
crossover =0.7, probability of mutation=0.008. The convergence behavior is illus-
trated in Figure 6. From Figure 6, it can be shown that the MA can minimization the 
cross correlation of the output signal.  

 

Fig. 6. Convergence of the cross-correlation (example 2) 

 

Fig. 7. Input signal, reference noise and signal with noise 
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Fig. 8. Results of separated signal and separated noise 

The mixing matrix with each element being a FIR filter are shown as follows: 
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The input signal S1 , reference noise S2 (a white noise with variance 75/12 =σ ) 

and input signal with reference noise X 1 are shown in Fig 7. The separated signal 

U1 and separated noise U 2 are shown in Fig 8. From Fig 7 to Fig 8, it is easy to see 

that the best result is achieved for the separated signal, which corresponds at the same 
time to the best primary signal. 

5   Conclusion 

This paper presented a hybrid genetic algorithm for blind signal separation based on 
the minimization of the output signal cross-correlation. The network convergence 
behaviour was demonstrated using simulation results. As the result of simulation, the 
blind signal separation performance based on the hybrid genetic algorithm verified 
that evolutionary minimization of the cross-correlation is better than that based on the 
genetic algorithm, which directly minimizes the Kullback-Leibler divergence. Even-
tually, it is hopeful that this optimization approach can be helpful for blind signal 
separation engineers as a simple, useful and reasonable alternative. 
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Abstract. The problem of assigning customers to satellite channels is
considered. Finding an optimal allocation of customers to satellite chan-
nels is a difficult combinatorial optimization problem and is shown to
be NP-complete in an earlier study. We propose a genetic algorithm
(GA) approach to search for the best/optimal assignment of customers
to satellite channels. Various issues related to genetic algorithms such as
solution representation, selection methods, genetic operators and repair
of invalid solutions are presented. A comparison of this approach with
the standard optimization method is presented to show the advantages
of this approach in terms of computation time.

1 Introduction

The problem of satellite customer assignment is considered in [1], and an ex-
cellent discussion on bandwidth resource issues related to satellite-based com-
munication is presented. An integer programming formulation is presented for
the satellite customer assignment problem. It is shown in [1] that the optimal
assignment of customers to channels has real and observable costs and benefits,
both in terms of dollars and customer ratings. The basic idea in their study
is to determine the optimal resource utilization. Efficient resource utilization is
one problem that has been studied in satellite communication [2,3]. A detailed
overview of the scheduling problems that arise in satellite communication is de-
scribed in [4]. Satellite customer assignment problem has a lot of similarities with
the well-known generalized assignment problem (GAP). The GAP is known to
be NP-complete combinatorial optimization problem and has received a lot of
attention in literature [5]. The GAP involves finding the minimum cost assign-
ment of I jobs to J machines (agents) such that each job is exactly assigned to
only one machine, subject to machine’s available capacity. Another problem in
this context well studied is flow shop scheduling [6].

Genetic Algorithm (GA) is perhaps the most well-known of all evolution based
search technique. GA is a search algorithm based on natural selection that

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 964–973, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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transforms a set of individuals within the population of solutions into a new
set for the next generation using genetic operators such as crossover and muta-
tion [7,8,9,10]. A survival of the fittest strategy is adopted to identify the best
solutions and subsequently genetic operators are used to create new solutions for
the next generation. This process is repeated generation after generation until a
satisfactory solution is found. Genetic algorithms have been successfully used to
obtain solutions for many combinatorial optimization problems. It is difficult to
include all the applications. So we refer only applications that are closely related
to our satellite customer assignment problem.

Genetic algorithm for a combinatorial optimization problem works as follows:
The search space contains all the search nodes for the given problem. GA starts
with an initial population of search nodes from the search space. Each search
node has a fitness value assigned to it using the objective function. New search
nodes are generated for next generation based on the fitness value and applying
genetic operators to the current search nodes. These process is repeated for
generation after generation until the algorithm converges.

We propose a genetic algorithm with a new solution representation for the
satellite customer assignment problem. This new solution representation is a
particular sequence of integers. The integers are the channel numbers to which
a customer is assigned. We present genetic operators for this new solution repre-
sentation and a repair algorithm, when the genetic operators produce an invalid
solution. We show via numerical examples that this genetic algorithm approach
can obtain near-optimal or optimal solution very fast, in terms of computation
time, in comparison with standard optimization method.

2 Satellite Customer Assignment Problem

Problem Formulation: For ease of understanding, we follow the same notation
used in an earlier study [1]. Let there be I customers to be assigned to one of
the J channels. As in [1], we assume the following data is available:

– SBWj : satellite bandwidth available in channel j,
– SPj : satellite power available in channel j,
– CBWi : bandwidth required by customer i, and
– CPi : power required by customer i.

The decision variable is xij . The decision variable xij = 1 if customer i is
assigned to channel j and xij = 0 otherwise. The satellite customer assignment
problem is

Minimize

J∑
j=1

∣∣∣∣∣
∑I

i=1 CBWixij

SBWj
−
∑I

i=1 CPixij

SPj

∣∣∣∣∣ . (1)
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The constraints are:

I∑
i=1

CBWi ∗ xij ≤ SBWj , j = 1, 2, ..., J (2)

I∑
i=1

CPi ∗ xij ≤ SPj , j = 1, 2, ..., J (3)

J∑
j=1

xij = 1, i = 1, 2, ..., I (4)

xij = 0 or 1 (5)

This objective function is used in the earlier study [1]. The objective function
(1) minimizes the total deviation of fraction of bandwidth utilized from fraction
of power utilized. The constraint (2) represents that the capacity restriction
of available bandwidth, and the constraint (3) takes into account the capacity
restrictions of available power. Constraint (4) ensures that each customer is
assigned to only one channel. From the above, we see that, this satellite customer
assignment problem is similar to the generalized assignment problem and hence
it is NP-complete. Genetic algorithms have been used for such NP-complete
combinatorial optimization problems [11,12,13,14]. Now we will illustrate the
various steps involved in applying genetic algorithms to our satellite customer
assignment problem.

Solution Representation: Solution representation is an important step in the
genetic algorithm. In earlier studies of genetic algorithms a binary representa-
tion of the solution is used. For our problem, we use the solution representation
as given in [11,12,13]. The solution representation for our problem is an I di-
mensional vector of integers. The integer values range from i to J , the number
of channels available. One possible solution (assignment) for 5 customers and 3
channels in our representation is

{2 3 1 1 2}. (6)

This solution representation takes care of the constraint (4). Also note that
this representation does not take care of the constraints (2) and (3). A valid
solution in our problem should satisfy the constraints (2) and (3). Hence, we must
keep in mind the constraints (2) and (3), when we generate initial population
and design genetic operators.

Consider an example with 5 customers (I=5) and 3 channels (J=3). Let one
solution be {3 1 3 2 1}. The meaning of the representation is:

Customers 1 and 3 are assigned to channel 3.
Customers 2 and 5 are assigned to channel 1.
Customer 4 is assigned to channel 2.
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This is equivalent to: x13 = 1, x33 = 1, x21 = 1, x51 = 1, and x42 = 1 and
all other xij = 0 for i = 1, ..., 5 and j = 1, ..., 3. This solution {3 1 3 2 1} is a
valid solution only if the constraints (2) and (3) are satisfied. The advantage is
that the solution representation is a vector of size I (number of customers), and
constraint (4) is automatically satisfied.
Population Initialization: The first step in genetic algorithms is to create an
initial population of solutions to the problem. All the solutions in the initial
population should satisfy the constraints (2) and (3). In our study, the initial
population is chosen completely at random. In order to satisfy the constraints
(2) and (3), we have used a repair algorithm. By using this repair algorithm, we
convert any solution in the population which violates the constraints (2) and (3)
to a valid solution. The repair algorithm used in our study is given below.
Repair Algorithm: In an invalid solution either constraint (2) or constraint
(3) or both are violated. The repair algorithm first find out the channel number
for which the constraints are violated. It randomly removes one of the customer
assigned to that channel. This removed customer is assigned to one of the other
channels. We will show how our repair algorithm works with the following nu-
merical example.
Numerical Example: Let the number of customers (I) be 5, and the number
of channels (J) be 3. The channels are numbered from 0 to 2. Consider the
customers with the following bandwidth requirements: CBW1 = 5, CBW2 = 4,
CBW3 = 6, CBW4 = 7, and CBW5 = 3. The satellite bandwidth available in
channels are: SBW0 = 10, SBW1 = 16, and SBW2 = 14. Consider the solution
{2 0 0 2 0}. In this solution customers 2,3 and 5 are assigned to channel 0. This
is an invalid solution because constraint (2) is violated for channel 0. Assigned
bandwidth is 4+6+3 = 13 and the available channel bandwidth is 10. Randomly
select one of the customers assigned to this channel (say, customer 3 is randomly
selected). Randomly select another channel and assign this customer 3 to that
channel. The channel randomly selected is 1. Now the solution after the repair
algorithm is {2 0 1 2 0}. In this example, we considered constraint (2) is violated.
Repeat this repair algorithm to constraint (3) also if it is violated. In this manner
we will always have a valid solution.
Selection Function: Selection methods use survival of the fittest idea. The se-
lection of a solution from the population of solutions to produce new solutions for
next generation plays an important role. In literature there are several selection
schemes such as roulette wheel selection and its extensions, scaling techniques,
tournament, elitist models and ranking methods are presented [7,8,9,10]. In our
study we have used roulette selection method.

2.1 Genetic Operators

Genetic operators such as crossover and mutation provide basic search mechanism
in genetic algorithms. We now describe the genetic operators used in our study.

Crossover Operator: The crossover operator is considered as the main search
operator in genetic algorithms. The role of crossover operator is to produce
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new solutions that have some portions of both parent solutions. The crossover
operator takes two solutions (parents) from the existing population and produces
two new solutions. In our study, we have used the simplest form of crossover
namely single point crossover.

Single Point Crossover: Let C1 and C2 are the two solutions selected for
crossover operation. This operator first selects a random point k in the solution.
Two new solutions are produced as:

C1 = {0 1 1 2 0},
C2 = {1 0 0 0 2}.

Let the crossover point be 3. The two new solutions produced are H1 and H2.

H1 = {0 1 0 0 2},
H2 = {1 0 1 2 0}.

It is possible in the above crossover method that some of the new solutions pro-
duced may not be a valid solution to the problem. In other words, the constraints
(2) and (3) may not be satisfied. In that situation, we use the repair algorithm
and obtain a valid solution. Many crossover methods are available in literature.

Mutation Operator: The mutation operator uses one solution to produce a
new solution. Mutation operator is needed to ensure diversity in the population
and to avoid premature convergence and local minima problems. The mutation
operator used in our study is the following.

Let C1 be the solution selected for mutation operation. This operator first se-
lects a mutation point i randomly. The new solutionH1 is generated by changing
the channel at the mutation point by another randomly generated channel.

C1 = {0 1 1 2 0}.

Let the mutation point be 3. The new solution produced is H1.

H1 = {0 1 2 2 0}.

Here the channel at the mutation point is changed from 1 to 2. In this operation
one customer from a channel is removed and assigned to a different channel.
Here also if H1 is an invalid solution, we use the repair algorithm to get a valid
solution.

Fitness Function: Fitness is the driving force in genetic algorithms. The only
information used in the execution of genetic algorithms is the observed values
of fitness of the solutions in the population. The fitness function is the objective
function. In our problem, the objective function minimizes the total deviation of
fraction of bandwidth utilized from fraction of power utilized. The calculation
of the fitness function is easy. The solution gives the assignment of customers to
various channels. In other words xijs are given by the solution. We substitute the
values of xij in the objective function and obtain the value. The value represents
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total deviation of fraction of bandwidth utilized from fraction of power utilized
for this solution. Our problem is a minimization problem whereas the genetic
algorithms will try to maximize the fitness. Hence the fitness for our problem is

F = −
J∑

j=1

∣∣∣∣∣
∑I

i=1 CBWixij

SBWj
−
∑I

i=1 CPixij

SPj

∣∣∣∣∣ . (7)

Termination Function: In genetic algorithm, in each generation, solutions are
selected on the basis of their fitness and subject to genetic operations such as
crossover and mutation. The evolution process is repeated until a termination
criterion is satisfied. The most frequently used convergence criterion is the av-
erage fitness value from generation to generation. This algorithm stops if these
average values are equal. Other convergence criteria are population convergence
criterion: the algorithm stops when the solutions in the population are the same
in two successive generations. Another criterion used for termination is a spec-
ified maximum number of generations. In our studies, we have used a specified
maximum number of generations.

3 Simulation Results

The GA approach to search for the best assignment of customers to satellite
channels is tested with some test problems. Two sets of test problems were
generated. The first set of problems were generated with 5 customers and 3
channels. The second set of test problems were generated with 20 customers and
10 channels.

For the first set of problems (I=5, and J=3), parameters used in our study
are given as in Table 1.

Table 1. Satellite Bandwidth (SBWj), and Power (SPj) for the channels

Problem SBW1 SBW2 SBW3 SP1 SP2 SP3

1.1 30 35 40 40 45 50
1.2 9 11 9 21 17 11
1.3 10 16 14 15 31 14
1.4 20 13 11 33 21 15
1.5 11 17 19 28 14 17
1.6 18 11 19 21 21 21

The advantage with genetic algorithm approach is that it starts with random
solutions to the problem and modify the solutions in successive generations, and
the best solution is obtained. So in our study, we have used the genetic algorithm
for each problem 5 times and the best assignment of customers to channels is
taken as the solution.
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To verify the assignment of customers to satellite channels obtained using ge-
netic algorithms, we have solved the same problems (1.1-1.6) using the zero-one
linear programming formulation given in [1]. The objective function in our prob-
lem is non-linear and hence the following approach is used in [1]. The problem is:

Minimize

J∑
j=1

(d+j + d−j )

The constraints are:

∑I
i=1 CBWi ∗ xij

SBWj
−
∑I

i=1 CPi ∗ xij

SPj
− (d+j + d−j ) = 0

I∑
i=1

CBWi ∗ xij ≤ SBWj , j = 1, 2, ..., J

I∑
i=1

CPi ∗ xij ≤ SPj , j = 1, 2, ..., J

J∑
j=1

xij = 1, xij = 0 or 1, i = 1, 2, ..., I

d+j , d
−
j ≥ 0, for (j = 1, ..., J) (8)

It is shown that the number of possible solutions to this problem is JI [1]. For
our problem with 5 customers (I = 5) and 3 channels (J = 3), the number of
possible solutions is 243. Note that all the 243 solutions may not be feasible. If
the number of channels and the number of customers increase then the number
of possible solutions increases rapidly. We have solved the problems (1.1-1.6)
formulated as zero-one linear programming using LINGO 4.0 solver. The best
assignment obtained from genetic algorithm approach is the same as the optimal
assignment obtained for all these problems. Here, we are able to obtain the
optimal assignment because the search space is small. The computation time
is almost same for both the genetic algorithm approach and the LINGO 4.0
solution.

Next, we consider a 20 customer (I=20) and 10 channel (J=10) problem.
This is really a tough problem because the number of possible solutions are
1020. Hence, the genetic algorithm approach will be very much useful here. The
numerical values of satellite bandwidth available in channels (SBW ) and the
satellite power available (SP ), used in our study are given in Table 2.

For the problem 2.1, the values of CBWi for the customers from 1 to 20 are
5, 5, 5, 5, 4, 4, 3, 7, 6, 5, 6, 3, 6, 7, 4, 3, 6, 6, 4, and 4, respectively. The values
of SPi for customers from 1 to 20 are 5, 8, 9, 5, 7, 6, 8, 6, 7, 8, 6, 7, 9, 9, 7, 7,
5, 7, 5, and 9, respectively.
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Table 2. Satellite Bandwidth (SBWj), and Power (SPj) for the channels

Problem SBW1 SBW2 SBW3 SBW4 SBW5 SBW6 SBW7 SBW8 SBW9 SBW10

2.1 22 13 15 20 15 15 15 22 19 13
2.2 20 22 16 17 23 14 14 15 21 14

Problem SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10

2.1 31 19 24 26 25 24 18 28 23 29
2.2 33 18 30 26 28 31 28 19 33 18

For the problem 2.2, the values of CBWi for each customer are: 6, 7, 7, 7, 4,
7, 4, 6, 6, 4, 3, 3, 6, 3, 6, 6, 4, 3, 7, and 6, respectively. The values of SPi are 8,
6, 9, 8, 6, 7, 6, 9, 8, 9, 9, 9, 8, 7, 5, 8, 6, 7, 7, and 7, respectively.

Analysis of the Results: The optimal solution obtained for problem 2.1, using
LINGO is: {0 2 5 7 7 0 4 0 4 2 5 0 3 7 3 0 3 7 3 5}. The meaning of the assignment
is:

– Customers 1, 6, 8, 12 and 16 are assigned to channel 0.
– Customers 2 and 10 are assigned to channel 2.
– Customers 13, 15, 17, and 19 are assigned to channel 3.
– Customers 7, and 9 are assigned to channel 4.
– Customers 3, 11, and 20 are assigned to channel 5.
– Customers 4, 5, 14, and 18 are assigned to channel 7.

Note that no customers are assigned to channels 1, 6, 8 and 9. The objective
function value for this assignment is 0.0000. The computation time to obtain
this assignment is 2 hours on Pentium machine (over Windows 2000).

Now consider the genetic algorithm approach. The assignment obtained at
the end of GA is: {7 4 4 3 0 1 7 0 3 4 1 3 5 0 5 1 7 3 7 0}. Note that no
customers are assigned to channels 2, 6, 8 and 9. The objective function value
for this assignment is 0.003246. The computation time to obtain this assignment
is 46 seconds.

3.1 How Good Is Genetic Algorithm Assignment?

To show that the customer assignment obtained from genetic algorithm is close
to the optimal assignment, consider problem 2.1. First we consider the optimal
assignment. For each channel, we evaluate the objective function:

– Customers 1, 6, 8, 12, and 16 are assigned to channel 0: The objective func-
tion for this assignment is (22/22)-(31/31)=0.

– Assign customers 2 and 10 to channel 2:(10/15)-(16/24)=0.
– Assign customers 13, 15, 17 and 19 to channel 3:(20/20)-(26/26)=0.
– Assign customers 7 and 9 to channel 4:(9/15)-(15/25)=0.
– Assign customers 3, 11 and 20 to channel 5:(15/15)-(24/24)=0.
– Assign customers 4, 5, 14 and 18 to channel 7:(22/22)-(28/28)=0.
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Hence the objective function value is 0, which is optimal. Now, consider the
assignment obtained from genetic algorithm. For each channel, similarly, we
evaluate the objective function and found channel 7, for which the objective
function value is not zero and is given as:

– Assign customers 1, 7, 17 and 19 to channel 7:(18/22)-(23/28)=0.0032467.

We see that only for channel 7, the objective function value is non-zero and
is 0.0032467. From this assignment (or solution), if we try any crossover or
mutation, the resulting solution will be either inferior or invalid. So, our GA will
result in this assignment. Hence, we can say that this solution is very close to
the optimal solution. But the computation time taken by GA to find a solution
close to the optimal solution is just 46 seconds. The LINGO solver takes 2 hours
to obtain the optimal solution. In terms of computation time, our GA approach
gives a good solution to this problem.

We consider problem 2.2, and conduct a similar study between optimal as-
signment and assignment obtained from GA. The computation time for optimal
solution using LINGO is 6 hours and we obtain a good solution in genetic algo-
rithm in just 56 seconds.

It is known that the solution obtained from genetic algorithms can not be
guaranteed to be optimal; i.e., no formal proof of optimality is available. But for
a large class of difficult combinatorial optimization problems, it has been shown
that the GA produces solution that are very close to the optimal solution, in
less computation time. The GA parameters used in our simulation are: the pop-
ulation size is 20, the crossover probability is 0.8, and the mutation probability
is 0.5.

4 Discussions and Conclusions

Discussions: Genetic algorithms have been successfully used for many schedul-
ing problems. The performance of genetic algorithms depend on a number of fac-
tors such as: population size, initial population, type of genetic operators and the
probability of genetic operations. The performance of genetic algorithms is com-
pared with heuristics for the case of scheduling problems in parallel processors
is presented in [15]. This study [15] will be very much useful for understanding
the conditions under which a genetic algorithm performs best.

We can see similar assignment problems arise in mobile networks. They are
known as channel-assignment problem for mobile cellular systems and are solved
using graph-coloring algorithms, heuristics, and optimization methods. The ob-
jective function considered is driven by considerations of battery operations
(which impacts the lifetime of satellite) [1].

Conclusions: Assigning customers to satellite channels is a difficult combinato-
rial optimization problem. Hence, a genetic algorithm approach is presented for
this problem. In this approach, a new solution representation scheme is proposed.
This new solution representation is an ordered structure of integer numbers. The
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integer numbers are the channel numbers to which a customer is assigned. We
present genetic operators for this new solution representation. A repair algorithm
is also presented to convert the invalid solutions to valid solution. Numerical ex-
amples are presented to show that this approach takes very little computation
time to get very-near optimal assignment for this problem, in comparison with
standard optimization techniques.

Acknowledgement. This work was in part supported by ITRC under the aus-
pices of Ministry of Information and Communication, Korea.
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Abstract. Lot output time series is one of the most important time series data in 
a wafer fab (fabrication plant). Predicting the output time of every lot is there-
fore a critical task to the wafer fab. To further enhance the effectives and effi-
ciency of wafer lot output time prediction, a look-ahead fuzzy back propagation 
network (FBPN) is constructed in this study with two advanced features: the fu-
ture release plan of the fab is considered (look-ahead); expert opinions are in-
corporated. Production simulation is also applied in this study to generate test 
examples. According to experimental results, the prediction accuracy of the 
look-ahead FBPN was significantly better than those of four existing ap-
proaches: multiple-factor linear combination (MFLC), BPN, case-based reason-
ing (CBR), and FBPN without look-ahead, by achieving a 12%~37% (and an 
average of 19%) reduction in the root-mean-squared-error (RMSE) over the 
comparison basis – MFLC. 

1   Introduction 

Lot output time series is one of the most important time series data in a wafer fab. 
Predicting the output time for every lot in a wafer fab is a critical task not only to the 
fab itself, but also to its customers. After the output time of each lot in a wafer fab is 
accurately predicted, several managerial goals can be simultaneously achieved [5]. 
Predicting the output time of a wafer lot is equivalent to estimating the cycle (flow) 
time of the lot, because the former can be easily derived by adding the release time (a 
constant) to the latter. There are six major approaches commonly applied to predicting 
the output/cycle time of a wafer lot: multiple-factor linear combination (MFLC), 
production simulation (PS), back propagation networks (BPN), case based reasoning 
(CBR), fuzzy modeling methods, and hybrid approaches. Among the six approaches, 
MFLC is the easiest, quickest, and most prevalent in practical applications. The major 
disadvantage of MFLC is the lack of forecasting accuracy [5]. Conversely, huge 
amount of data and lengthy simulation time are two shortages of PS. Nevertheless, PS 
is the most accurate output time prediction approach if the related databases are con-
tinuingly updated to maintain enough validity, and often serves as a benchmark for 
                                                           
* This work was support by the National Science Council, R.O.C. 
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evaluating the effectiveness of another method. PS also tends to be preferred because 
it allows for computational experiments and subsequent analyses without any actual 
execution [3]. Considering both effectiveness and efficiency, Chang et al. [4] and 
Chang and Hsieh [2] both forecasted the output/cycle time of a wafer lot with a BPN 
having a single hidden layer. Compared with MFLC approaches, the average predic-
tion accuracy measured with the root mean squared error (RMSE) was considerably 
improved with these BPNs. On the other hand, much less time and fewer data are 
required to generate an output time forecast with a BPN than with PS. Chang et al. [3] 
proposed a k-nearest-neighbors based case-based reasoning (CBR) approach which 
outperformed the BPN approach in forecasting accuracy. Chang et al. [4] modified 
the first step (i.e. partitioning the range of each input variable into several fuzzy inter-
vals) of the fuzzy modeling method proposed by Wang and Mendel [15], called the 
WM method, with a simple genetic algorithm (GA) and proposed the evolving fuzzy 
rule (EFR) approach to predict the cycle time of a wafer lot. Their EFR approach 
outperformed CBR and BPN in prediction accuracy. Chen [5] constructed a fuzzy 
BPN (FBPN) that incorporated expert opinions in forming inputs to the FBPN. 
Chen’s FBPN was a hybrid approach (fuzzy modeling and BPN) and surpassed the 
crisp BPN especially in the efficiency respect. 

To further enhance the effectiveness and efficiency of wafer lot output time predic-
tion, a look-ahead FBPN is constructed in this study with two advanced features: 

1. The future release plan of the fab is considered (look-ahead). 
2. Expert opinions are incorporated to enhance the network learning efficiency. 

PS is also applied in this study to generate test examples. Using simulated data, the 
effectiveness of the look-ahead FBPN is shown and compared with those of four 
existing approaches, MFLC, BPN, CBR, and FBPN without look-ahead. 

2   Methodology 

The look-ahead FBPN is composed of two parts. Firstly, the future release plan of the 
fab is incorporated (look-ahead). 

2.1   Incorporating the Future Release Plan (Look-Ahead) 

All aforementioned traditional methods are based on the historical data of the fab. 
However, a lot of studies have shown that the performance of sequencing and sched-
uling in a fab relies heavily on the future release plan, which has been neglected in 
this field. In addition, the characteristic re-entrant production flows of a fab lead to 
the phenomenon that a lot that will be released in the future might appear in front of 
another lot that currently exists in the fab. For these reasons, to further improve the 
accuracy of wafer lot output time prediction, the future release plan of the fab has to 
be considered (look-ahead). There are many possible ways to incorporate the future 
release plan in predicting the output time of a wafer lot currently existing in the fab. 
In this study, the three nearest future discounted workloads on the lot’s processing 
route (according to the future release plan) are proposed for this purpose: 
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1. The 1st nearest future discounted workload (FDW(1)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now, now + T1]. 

2. The 2nd nearest future discounted workload (FDW(2)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now + T1, now + T1 + T2]. 

3. The 3rd nearest future discounted workload (FDW(3)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now + T1 + T2, now + T1 + T2 + T3]. 

Note that only the operations performed on the machines on the lot’s processing route 
are considered in calculating these future workloads, which then become three addi-
tional inputs to the FBPN. 

Subsequently, a FBPN that incorporates expert opinions is applied for wafer lot 
output time prediction. The procedure for determining the parameters is described in 
the next section.  

2.2   Output Time Prediction with FBPN That Incorporates Expert Opinions 

The configuration of the FBPN is established as follows: 

1. Inputs: nine parameters associated with the n-th example/lot including the average 
fab utilization (Un) [5], the total queue length on the lot’s processing route (Qn) [2, 
5, 14] or before bottlenecks (BQn) [5] or in the whole fab (FQn) [2, 5], the fab WIP 

(WIPn) [2, 5], the latenesses ( )(i
nD ) of the i-th recently completed lots [2, 5, 14], 

and the three nearest future discounted workloads on the lot’s processing route 
(FDW(1), FDW(2), and FDW(3)). These parameters have to be normalized so that 
their values fall within [0, 1]. Then some production execution/control experts are 
requested to express their beliefs (in linguistic terms) about the importance of each 
input parameter in predicting the cycle (output) time of a wafer lot. Linguistic as-
sessments for an input parameter are converted into several pre-specified fuzzy 
numbers. The subjective importance of an input parameter is then obtained by av-
eraging the corresponding fuzzy numbers of the linguistic replies for the input pa-
rameter by all experts. The subjective importance obtained for an input parameter 
is multiplied to the normalized value of the input parameter. After such a treat-
ment, all inputs to the FBPN become triangular fuzzy numbers, and the fuzzy 
arithmetic for triangular fuzzy numbers is applied to deal with all calculations in-
volved in training the FBPN. 

2. Single hidden layer: Generally one or two hidden layers are more beneficial for the 
convergence property of the network. 

3. Number of neurons in the hidden layer: the same as that in the input layer. Such a 
treatment has been adopted by many studies (e.g. [2, 5]). 

4. Output: the (normalized) cycle time forecast of the example. The output is chosen 
according to the purpose. Besides, the same output has been adopted in many pre-
vious studies (e.g. [2-5]). 

5. Transfer function: Delta rule. 
6. Network learning rule: Back propagation (BP) rule. 
7. Transformation function: Sigmoid function, 
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).1/(1)( xexf −+=  (1) 

8. Learning rate ( ): 0.01~1.0. 
9. Batch learning. 

The procedure for determining the parameter values is now described. A portion of 
the examples is fed as “training examples” into the FBPN to determine the parameter 
values. Two phases are involved at the training stage. At first, in the forward phase, 
inputs are multiplied with weights, summated, and transferred to the hidden layer. 
Then activated signals are outputted from the hidden layer as: 
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and )(−  and )(×  denote fuzzy subtraction and multiplication, respectively; jh
~

’s are 

also transferred to the output layer with the same procedure. Finally, the output of the 
FBPN is generated as: 
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To improve the practical applicability of the FBPN and to facilitate the comparisons 
with conventional techniques, the fuzzy-valued output o~  is defuzzified according to 
the centroid-of-area (COA) formula: 

.4/)2()~(COA 321 ooooo ++==  (8) 

Then the defuzzified output o is applied to predict the actual cycle time a, for which 
the RMSE is calculated: 

.examplesofnumber/)( 2∑ −= aoRMSE  
(9) 

Subsequently in the backward phase, the deviation between o and a is propagated 
backward, and the error terms of neurons in the output and hidden layers can be cal-
culated, respectively, as 
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Based on them, adjustments that should be made to the connection weights and 
thresholds can be obtained as 
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Theoretically, network-learning stops when the RMSE falls below a pre-specified 
level, or the improvement in the RMSE becomes negligible with more epochs, or a 
large number of epochs have already been run. In addition, to avoid the accumulation 
of fuzziness during the training process, the lower and upper bounds of all fuzzy 
numbers in the FBPN will no longer be modified if Chen’s index [5] converges to a 
minimal value. Then test examples are fed into the FBPN to evaluate the accuracy of 
the network that is also measured with the RMSE. Finally, the FBPN can be applied 
to predicting the cycle time of a new lot. When a new lot is released into the fab, the 
six parameters associated with the new lot are recorded and fed as inputs to the 
FBPN. After propagation, the network output determines the output time forecast of 
the new lot. 

3   A Demonstrative Example from a Simulated Wafer Fab 

In practical situations, the history data of each lot is only partially available in the 
factory. Further, some information of the previous lots such as Qn, BQn, and FQn is 
not easy to collect on the shop floor. Therefore, a simulation model is often built to 
simulate the manufacturing process of a real wafer fabrication factory [1-7]. Then, 
such information can be derived from the shop floor status collected from the simula-
tion model [3]. To generate a demonstrative example, a simulation program coded 
using Microsoft Visual Basic .NET is constructed to simulate a wafer fabrication 
environment with the following assumptions: 

1. The distributions of the interarrival times of orders are exponential. 
2. The distributions of the interarrival times of machine downs are exponential. 
3. The distribution of the time required to repair a machine is deterministic. 
4. The percentages of lots with different product types in the fab are predetermined. 

As a result, this study is only focused on fixed-product-mix cases. However, the 
product mix in the simulated fab does fluctuate and is only approximately fixed in 
the long term. 
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5. The percentages of lots with different priorities released into the fab are controlled. 
6. The priority of a lot cannot be changed during fabrication. 
7. Lots are sequenced on each machine first by their priorities, then by the first-in-

first-out (FIFO) policy. Such a sequencing policy is a common practice in many 
foundry fabs. 

8. A lot has equal chances to be processed on each alternative machine/head available 
at a step. 

9. A lot cannot proceed to the next step until the fabrication on its every wafer has 
been finished. No preemption is allowed. 

The basic configuration of the simulated wafer fab is the same as a real-world wa-
fer fabrication factory which is located in the Science Park of Hsin-Chu, Taiwan, 
R.O.C. A trace report was generated every simulation run for verifying the simulation 
model. The simulated average cycle times have also been compared with the actual 
values to validate the simulation model. Assumptions (1)~(3), and (7)~(9) are com-
monly adopted in related studies (e.g. [2-5]), while assumptions (4)~(6) are made to 
simplify the situation. There are five products (labeled as A~E) in the simulated fab. 
A fixed product mix is assumed. The percentages of these products in the fab’s prod-
uct mix are assumed to be 35%, 24%, 17%, 15%, and 9%, respectively. The simulated 
fab has a monthly capacity of 20,000 pieces of wafers and is expected to be fully 
utilized (utilization = 100%). POs with normally distributed sizes (mean = 300 wa-
fers; standard deviation = 50 wafers) arrive according to a Poisson process, and then 
the corresponding MOs are released for these POs a fixed time after. Based on these 
assumptions, the mean inter-release time of MOs into the fab can be obtained as (30.5 
* 24) / (20000 / 300) = 11 hours. An MO is split into lots of a standard size of 24 
wafers per lot. Lots of the same MO are released one by one every 11 / (300/24) = 
0.85 hours. Three types of priorities (normal lot, hot lot, and super hot lot) are ran-
domly assigned to lots. The percentages of lots with these priorities released into the 
fab are restricted to be approximately 60%, 30%, and 10%, respectively. Each product 
has 150~200 steps and 6~9 reentrances to the most bottleneck machine. The singular 
production characteristic “reentry” of the semiconductor industry is clearly reflected 
in the example. It also shows the difficulty for the production planning and scheduling 
people to provide an accurate due-date for the product with such a complicated rout-
ing. Totally 102 machines (including alternative machines) are provided to process 
single-wafer or batch operations in the fab. Thirty replicates of the simulation are 
successively run. The time required for each simulation replicate is about 12 minute 
on a PC with 512MB RAM and Athlon™ 64 Processor 3000+ CPU. A horizon of 
twenty-four months is simulated. The maximal cycle time is less than three months. 
Therefore, four months and an initial WIP status (obtained from a pilot simulation 
run) seemed to be sufficient to drive the simulation into a steady state. The statistical 
data were collected starting at the end of the fourth month. For each replicate, data of 
30 lots are collected and classified by their product types and priorities. Totally, data 
of 900 lots can be collected as training and testing examples. Among them, 2/3 (600 
lots, including all product types and priorities) are used to train the network, and the 
other 1/3 (300 lots) are reserved for testing. The three parameters in calculating the 
future discounted workloads are specified as: T1 = one week; T2 = 1.5 weeks; T3 = 2 
weeks. 
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3.1   Results and Discussions 

To evaluate the effectiveness and efficiency of the look-ahead FBPN and to make 
some comparisons with four approaches – MFLC, BPN, CBR, and FBPN without 
look-ahead, all the five methods were applied to five test cases containing the data of 
full-size (24 wafers per lot) lots with different product types and priorities. The con-
vergence condition was established as either the improvement in the RMSE becomes 
less than 0.001 with one more epoch, or 1000 epochs have already been run. The 
minimal RMSEs achieved by applying the five approaches to different cases were 
recorded and compared in Table 1. RMSE is adopted instead of mean absolute error 
(MAE) because the same measure has been adopted in the previous studies in this 
field (e.g. [2-5]), namely, to facilitate comparison. As noted in Chang and Liao [5], 
the k-nearest-neighbors based CBR approach should be fairly compared with a BPN 
trained with only randomly chosen k cases. MFLC was adopted as the comparison 
basis, and the percentage of improvement on the minimal RMSE by applying another 
approach is enclosed in parentheses following the performance measure. The optimal 
value of parameter k in the CBR approach was equal to the value that minimized the 
RMSE [5].  

Table 1. Comparisons of the RMSEs of various approaches 

RMSE A(normal) A(hot) A(super hot) B(normal) B(hot) 
MFLC 185.1 106.01 12.81 302.86 79.94 
BPN 177.1(-4%) 102.27(-4%) 12.23(-5%) 286.93(-5%) 75.98(-5%) 

FBPN 171.82(-7%) 89.5(-16%) 11.34(-11%) 286.14(-6%) 76.14(-5%) 
CBR 172.44(-7%) 86.66(-18%) 11.59(-10%) 295.51(-2%) 78.85(-1%) 

L/a FBPN 163.45(-12%) 85.6(-19%) 8.09(-37%) 264.8(-13%) 69.65(-13%) 

 
According to experimental results, the following discussions are made: 

1. From the effectiveness viewpoint, the prediction accuracy (measured with the 
RMSE) of the look-ahead FBPN was significantly better than those of the other 
approaches by achieving a 12%~37% (and an average of 19%) reduction in the 
RMSE over the comparison basis – MFLC. The average advantage over CBR was 
12%. 

2. The effect of incorporating the future release plan (look-ahead) is revealed by the 
fact that the prediction accuracy of the look-ahead FBPN was considerably better 
than that of FBPN without look-ahead in all cases with an average advantage of 
10%. 

3. As the lot priority increases, the superiority of the look-ahead FBPN over BPN and 
CBR becomes more evident. 

4. In the respect of efficiency, after observing the fluctuations in the RMSEs during 
the learning processes of these two networks, the FBPN (with or without look-
ahead) appeared to start with a considerably smaller value of the initial RMSE, and 
reached the minimum RMSE with much fewer epochs than the crisp BPN did (see 
Fig. 1). 
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Fig. 1. Fluctuations in the RMSEs during the learning processes of BPN and FBPN 

4   Conclusions and Directions for Future Research 

To further enhance the effectiveness of wafer lot output time series prediction, a look-
ahead FBPN is constructed in this study with two advanced features: the future re-
lease plan of the fab is considered (look-ahead); expert opinions are incorporated. For 
evaluating the effectiveness of the intelligent neural system and to make some com-
parisons with four approaches – MFLC, BPN, CBR, and FBPN without look-ahead, 
PS is applied in this study to generate test data. Then all the five methods are applied 
to five cases elicited from the test data. According to experimental results, the predic-
tion accuracy of the look-ahead FBPN was significantly better than those of the other 
approaches by achieving a 12%~37% (and an average of 19%) reduction in the 
RMSE over the comparison basis – MFLC. The effect of incorporating the future 
release plan (look-ahead) is revealed with an average advantage of 10% over FBPN 
without look-ahead. In the respect of efficiency, the FBPN (with or without look-
ahead) appeared to start with a considerably smaller value of the initial RMSE, and 
reached the minimum RMSE with much fewer epochs than the crisp BPN did. 

However, to further evaluate the effectiveness and efficiency of the proposed look-
ahead FBPN, it has to be applied to fab models of different scales, especially a full-
scale actual wafer fab. In addition, the proposed look-ahead FBPN can also be applied 
to cases with changing product mixes or loosely controlled priority combinations, 
under which the cycle time variation is often very large. These constitute some direc-
tions for future research. 
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Abstract. We propose methods to extract fuzzy features from fMR time-
series in order to detect brain activation. Five discriminating features are
automatically extracted from fMRI using a sequence of temporal-sliding-
windows. A fuzzy model based on these features is first developed by gradi-
ent method training on a set of initial training data and then incrementally
updated. The resulting fuzzy activation maps are then combined to pro-
vide a measure of strength of activation for each voxel in human brain; a
two-way thresholding scheme is introduced to determine actual activated
voxels. The method is tested on both synthetic and real fMRI datasets
for functional activation detection, illustrating that it is less vulnerable to
correlated noise and is able to adapt to different hemodynamic response
functions across subjects through incremental learning.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive technique mea-
suring functional activity of the brain in vivo, both spatially and temporally.
The signal is based on the blood-oxygenation-level-dependent (BOLD) contrast,
derived from the increase in blood oxygenation followed by neuronal activity,
resulting in a larger magnetic resonance (MR) signal. The detection of the fMRI
signal is not a trivial process as the BOLD signal change due to a typical ex-
perimental stimulation of the brain is very subtle, ranging from 1 to 5% on
a 1.5 T scanner [1]. Furthermore, various noise and artifacts such as motion,
electronic, physical, and physiological processes significantly confound the fMRI
signal. Therefore, the techniques for fMRI analysis should be insensitive to the
uncertainties and fuzziness introduced by these interference signals.

Two groups of methods have been used to detect activated voxels in fMRI
data: hypothesis-driven and data-driven. Statistical Parametric Mapping (SPM)
is the most widely used hypothesis-driven method for fMRI analysis, which as-
sumes a linear regression model for the fMR signal with a specific noise structure.
It is voxel-based and tests the hypothesis about fMR time-series by construc-
tion and assessment of spatially extended statistical processes based on Gaussian
Random Field (GRF) theory [2]. However, it has become clear that there is a

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 983–992, 2006.
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nonlinear relationship between the variation in the fMRI signal and the stimulus
presentation [3]; and the hemodynamic response function (HRF) varies spatially
and between subjects [4]. Moreover, the structure of noise in fMRI is not well
understood and remains a contentious subject [5]. Thus, the validity of the sta-
tistical models depends on the extent to which the data satisfies the underlying
assumptions.

In contrast, data-driven methods do not require any prior knowledge of the
hemodynamic behaviors and are considered more powerful and relevant for fMRI
studies in which unknown or complex differential responses are expected [6].
Generally, these data-driven methods can be divided into two groups: transfor-
mation-based and clustering-based. Principle component analysis (PCA) [7] and
independent component analysis (ICA) belongs to the first group, which trans-
form the original high-dimensional input space in order to separate functional
responses and various noise sources from each other. ICA is an information
theoretic approach which enables recovery of underlying signals or independent
components from linear data mixtures. It has been applied to fMRI analysis
both spatially [8] and temporally [9]. The second clustering group consists of
fuzzy clustering [10] and self-organizing map [11], attempting to classify time
signals of the brain into several patterns according to temporal similarity. For
these data-driven methods, usually the contents of one class or component are
interpreted as activations but how the signal is divided into classes is diffi-
cult to ascertain or comprehend. Certain class with a particular activation pat-
tern has physiological interpretation but others are still unknown. Other fMRI
analysis methods include specified-resolution wavelet analysis [12] and Bayesian
modelling [4].

Our objective is to develop a new functional activation detection approach
from fMRI data, which is less vulnerable to noise and HRF variability than
hypothesis-driven methods and is more interpretable than previous data-driven
method. Because of the complex, nonlinear, and imprecise nature and noise,
accurately model fMRI signal using a conventional nonlinear mathematical ap-
proach is a difficult task with limited prior knowledge in this case. In contrast,
fuzzy modeling is a practical way to model fMRI data of high uncertainty us-
ing limited available information. Moreover, methods based on raw fMRI data
often give high computational complexity and high vulnerability to noise be-
cause of its large volume. The proposed feature extraction from time-series is
able to decrease computational complexity and increase system ability to han-
dling noise. In order to account for HRF variability across subjects, incremental
learning is used to adapt the fuzzy model to individual subject in order to bet-
ter identify activated regions. Here, we propose a novel fuzzy feature modelling
(FFM) approach to detect activated voxels in human brain. It consists of (1)
features based on temporal-sliding-windows (TSW) extracted from fMR time-
series; (2) fuzzy feature modeling by incremental learning; (3) thresholding on
fuzzy activation map. The details of our approach will be described in next
section. In experiment and results section, the performance of this approach is
illustrated with functional activation detection for both synthetic and real fMRI
data.
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2 Method

2.1 Extracting Features

Different voxels have different hemodynamic behaviors, for example, the signal
magnitude at activated or deactivated states and hemodynamic response time
to reach its peak could differ. The principle behind our feature extraction based
on temporal-sliding-window (TSW) is that by shifting a set of windows over a
time-series, the activated and deactivated voxels for each condition could have
consistent discriminating patterns regardless of different shape, magnitude, or
delay of hemodynamic response function. Let F : Ω × Θ → Y be a functional
time-series where Ω ⊂ N3 denotes the three-dimensional (3D) spatial domain
of image voxels, Θ = {1, 2...n} indexes n number of 3D scans taken during the
experiments. Let Y = {yt

i : i ∈ Ω, t ∈ Θ, yt
i ∈ Q} is a 4D data where Q denotes

range of image intensity and yt
i represents the voxel intensity of voxel i at time

t. Let ΩB denote the set of brain voxels.
Here, we consider an experiment C, consisting of K conditions: C = {Ck :

k = 1, 2...K}. Each condition Ck is presented, alternatively or randomly for
Pk times in a single run while n 3D brain scans are taken, so each block of
condition Ck is denoted by Cp

k , p = 1, 2..Pk. Block Cp
k lasts for a duration of

length Lp
k and the beginning of Cp

k is denoted as Bp
k where k = 1, 2...K and

p = 1, 2...Pk. The above represents a general paradigm design, which applies to
both block and event-related designs of fMRI experiments. Then, a sequence of
Temporal-Sliding-Windows (TSW) for each condition Ck is constructed for from
time-series F as follows:

1. For each condition Ck, create a sequence of Pk number of windows denoted
by Wk = {W p

k : p = 1, 2...Pk, k = 1, 2...K}; in other words, one window W p
k

for each condition block Cp
k . The length of window W p

k equals to Lp
k and the

initial starting point of window W p
k is given by Bp

k.
2. For each condition Ck, shift the sequence of windowsWk temporally forward

by a sliding time interval s simultaneously, resulting in a new set of windows
denoted by W (s) = {W p

k (s) : s = 0, 1...S, k = 1, 2...K, p = 1, 2...Pk}. De-
pending on different inter-scan time, the maximum sliding time interval S
varies: S = 32/RT (seconds) based on the fact that the total length of
hemodynamic response function is approximately 32s. Thus, the starting
and ending time of window W p

k (s) is Bp
k + s and Bp

k + s+ Lp
k − 1, denoted

by T 1W p
k (s) and T 2W p

k (s) respectively for simplicity reason.
3. For each window W p

k (s) of condition block Ck for s = 0, 1, ..S, calculate the
average intensity Ap

k(s, i) of each voxel i as:

Ap
k(s, i) =

∑T2∗
W

p
k

(s)

t=T1W
p
k

(s)
yt

i

T 2∗
W p

k (s))− T 1W p
k (s)

(1)

where T 2∗W p
k (s) = min(n, T 2W p

k (s)).
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Thus, we can observe a curve Ap
k(i) = {Ap

k(s, i) : s = 0, 1...S} for each voxel
i in each condition block Cp

k , whose shape is highly discriminating between ac-
tivated and non-activated voxels. We call it Quasi-Hemodynamic Curve (QHC)
since it is similar to HRF in a general sense over the whole time-series. Five dis-
criminating features F k

f,p(i), f = 1, 2...5, are extracted from this QHC for each
voxel i in each condition block Cp

k as follows:

1. Area under curve ratio for QHC:

F k
1,p(i) =

∑L∗
k,p

s=0 A
p
k(s, i)

(maxsA
p
k(s, i)−minsA

p
k(s, i)) · L∗

k,p

(2)

where L∗
k,p = min(Lp

k, S).
2. Area difference ratio for QHC:

F k
2,p(i) =

∑L∗
k,p

s=0 A
p
k(s, i)∑S

s=L∗
k,p+1A

p
k(s, i)

(3)

3. Correlation between QHC Ap
k(i) and the standard QHC SAp

k:

F k
3,p(i) =

∑L∗
k,p

s=0 (Ap
k(s, i)−Ap

k(s, i))(SAp
k − SA

p
k)√∑L∗

k,p

s=0 (Ap
k(s, i)−Ap

k(s, i))2
∑L∗

k,p

s=0 (SAp
k − SA

p
k)2

(4)

where SAp
k = {SAp

k(s) = −(s− L∗
k,p/2)2 : s = 0, 1...L∗

k,p}.
4. Time ratio at peak amplitude for QHC:

F k
4,p(i) = args∈[0,L∗

k,p] max
s
Ap

k(s, i)/L∗
k,p (5)

5. Time ratio at lowest amplitude for QHC:

F k
5,p(i) = args∈[0,L∗

k,p] min
s
Ap

k(s, i)/L∗
k,p (6)

Two curves have been normalized to [0, 1] before correlation computation in
feature 3 for easy comparison between voxels. Since the shape of QHC of an
activated and nonactivated voxel are usually quite the opposite with each
other, the five five features could be significantly discriminating.

The above five features of each condition block are sum up over all blocks as
in equation 7, resulting in a robust and simple 5D feature space for fuzzy feature
modeling in next stage because it is less vulnerable to noise or changes in HRFs.
Note that we assume Lp

k is smaller than S, so for case like Lp
k is larger than S,

we should use window length equal to 32 seconds while the maximum sliding
time for each window SW p

k
= Lp

k. The properties of the resulting curve is similar
to QHC and same features could be extracted.

F k
f (i) =

Pk∑
p=1

F k
f,p(i)/Pk (7)
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2.2 Learning Fuzzy Activation Maps

Based on the feature space developed in the previous section, we use gradi-
ent technique to derive a fuzzy feature model. A new incremental learning
scheme is proposed to extract useful knowledge not only from prior standard
hemodynamic response function but also from fMRI data of each subject it-
self. This scheme is able to adapt to the variability of hemodynamic response
function among subjects. The resulting fuzzy model is able to (1) calculate the
strength of activation of each voxel to each condition and (2) provide a rule-
base for activation pattern interpretation. For each condition Ck, one five-input
Fk(i) = {F k

f (i) : f = 1, 2...5}, single-output Zk(i) (activation strength) fuzzy
model Mk is developed for all voxels i ∈ ΩB. The proposed incremental learning
scheme to derive model Mk is as follows:

1. Building initial training data: For activation class, randomly select para-
meters of the canonical hemodynamic response function within a certain
range to create a set of time-series, consisting of H different variations of
original HRF, e.g. time and dispersion derivatives. Add all these time-series
to the initial training set O(1) with the desired output D as 1. For initial
training time-series of non-activation class, time-series of constant ([0, 1])
amplitude are added to O(1) with the desired output as 0. The initial test
dataset is the time-series of all brain voxels in the target subject, denoted
by Y (1) = {yt

i : i ∈ ΩB , t ∈ Θ}.
2. Extracting features : For incremental learning iteration r, extract features
Fk(O(r)) from training data O(r) as described in section 2.1.

3. Training: Apply Gradient Method (GM) to train the fuzzy model Mk(r)
based on features space Fk(O(r)) until convergence criterion is met. The
objective of GM based training is to minimize the error between the predicted
output value Zk(i) and the desired output value Dk(i) for training data i
defined as:

ε =
1
2
[Zk(i)−Dk(i)]2 (8)

Gaussian fuzzy membership functions are presumed for input features as in
Eq. 9 and the mechanism of fuzzy model Mk employ a product t-norm for
the input features (premise of the rule base) and a product implication as in
Eq. 10. Delta output fuzzy membership function is used.

μk
f (i) = exp[−1

2
(
F k

f (i)− αf

σf
)2] (9)

Zk(i) =

∑2
c=1 bc

∏5
f=1 μ

k
f (i)∑2

c=1
∏5

f=1 μ
k
f (i)

(10)

where c = 1 and c = 2 denotes the classes of activated and non-activated
voxels for condition k, respectively. Therefore, parameters of the fuzzy model
include input center αf , input variance σf and output center bc, where c ∈
{1, 2} and f = 1, 2...5. GM is able to tune these parameters of the fuzzy
model and detailed parameter updating equations can be found in [13].
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4. Testing: Feed the extracted features from testing data at current round to
the resulting fuzzy model Mk(r) in step 3 to determine output Zk(i).

5. Updating training data: Select the top H activated voxels and non-activated
voxels in terms of high or low outputs Zk(i) and add into the training data
set of next round O(r + 1). The desired output is again 1 for activation and
0 for non-activation respectively. Remove those points from the testing data
set Y (r) to form Y (r + 1). Repeat steps 2-5 till certain criteria is reached
e.g. maximum learning round R is reached or no more suitable voxels can
be added into training set.

6. Final testing: Apply the whole fMRI data Y (1) to the final fuzzy model
Mk(R) once more to obtain finalized output Zk = {Zk(i) : i ∈ ΩB}.

2.3 Detecting Activation

In order to detect activation by thresholding, a half-triangular fuzzy membership
function is designed to convert original activation strength map Zk(i) to a fuzzy
activation map Z∗

k = {Z∗
k(i) : i ∈ ΩB, Z

∗
k(i) ∈ [0, 1]} as in Eq.11 where 1 for

activated and 0 for nonactiveted. This map represents the activation strength
of each voxel in terms of fuzzy membership values, which enables a rather con-
sistent and effective performance across different data by the following two-way
thresholding method.

First, a simple thresholding is applied as in Eq. 12 based on two parameters
ζ1 and ζ2 (ζ1 > ζ2) for addding high confident voxels to the activated set Υ1 and
the non-activated set Υ2. Then, for undetermined voxels i where Z∗

k(i) < ζ1 &
Z∗

k(i) > ζ2, an ordered list is formulated based on the value of Z∗
k(i). A screen

process begins simultaneously from the two ends of this list and assign voxels in
the list to be activated or nonactivated according to Eq. 13.

Z∗
k(i) =

⎧⎨
⎩

1 if Zk(i) >= b1
(Zk(i)− b2)/(b1 − b2) if Zk(i) < b1 & Zk(i) > b2
0 if Zk(i) <= b2

(11)

βk(i) =
{

1 if Z∗
k(i) >= ζ1

0 if Z∗
k(i) <= ζ2

(12)

βk(i) =
{

1 if χ(1, i, v) > χ(0, i, v)
0 if χ(1, i, v) < χ(0, i, v) (13)

where χ(c, i, v) =
∏

j∈ϕ(i,v),j∈Υc,βk(j)=c |Z∗
k(j) − Z∗

k(i)| · distance(i, j); ϕ(i, v) is
the neighborhood of voxel i within a cube of size v3. Each voxel i is removed from
list and added into the Υ1 or Υ2 accordingly and the screen continues until there
is no more voxels in the list. For other interested contrasts related to different
conditions, fusion of the fuzzy activation maps Z∗

k is required to form a specific
fuzzy activation map for that contrast; and the same thresholding procedure can
be applied.
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3 Experiments and Results

All simulations were done in MATLAB. Both synthetic and real fMRI data were
used in experiments and a comparison between the results produced by our
approach and Statistical Parametric Mapping (SPM2) is given.

3.1 Synthetic Data

A 2D synthetic functional data was simulated consisting six cycles (8 ON and 8
OFF, TR = 2s, n=96). The response of the activated pixels was generated by
convolving a box-car time-series with a hemodynamic response function, which is
a mixture of two gamma functions, while the inactive pixels remained unchanged
as zero-amplitude. True activation pattern is shown Figure 1 a. Since the nature
of noise in fMRI time-series are often correlated, synthetic image series with
different levels of spatially correlated noises (the average of neighboring i.i.d.
Gaussian noises) were tested. The SPM analysis followed the standard procedure
in SPM2 [15] on the smoothed data (FWHM=6mm).

For the present (FFM) approach, H = 20, 40 time-series (20 for activated
class and 20 for non-activated class) are used as initial training data set and 20
voxels are selected for each class at training data updating step. This small value
of H recruits fewer confounding voxels for training purpose. It is observed that
more iterations of incremental training in FFM approach can adapt to the data
to a large extent, but overfitting and performance deterioration will occur when
confounding voxels are added into training data. Also computational complexity
will increase. Thus, 10 incremental learning iterations is used. For step 3 in
section 2.2, initial conditions for fuzzy membership parameters are set to the
same values: input center αf = Ff of the first training sample; input variance
σf = 1; output center b1 = 1 for activated class and b2 = 0 for non-activated
class. Parameters controlling the updating steps for α, σ and b were all initialized
to 1. The training stop when the average error is less than 10−3 or the absolute
changes between rounds is less than 10−5. In section 2.3, the neighborhood size
for undetermined voxels is v = 5 and if no neighbors with known class was found,
continue searching by increasing v by 1. However, the neighborhood was limited
to 1/125 of the whole brain volume.

The performance of FFM is compared to SPM by plotting the ROC curves for
functional activation detection. Figure 1 (b) & (c) shows the results by threshold-
ing on SPMs using different significance levels and on the final fuzzy activation
map Z∗

k using various ζ1 and ζ2 for both correlated noise level SNR=2.0 and 1.2.
It is observed that FFM approach outperforms SPM for data at both noise levels
and it is important to note that incremental training does improve the perfor-
mance (comparing ROC of round 1 and round 11). Statistical parametric map
and fuzzy activation map are compared in row 1 of Figure 2. The thresholded
map produced by SPM (T-contrast with FDR p < 0.05) is compared to FFM
(ζ1 = 0.95, ζ2 = 0.3) in row 2 of Figure 2. It is observed that our approach is able
to discover more important and detailed signal pattern than SPM, especially in
high correlated noise case.
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(a) Truth (b) SNR=2 (c) SNR=1.2

Fig. 1. ROC curve for detecting activation on synthetic functional data

(a) (b) (c) (d)

Fig. 2. Detected activation for synthetic data having correlated noise by (a) SPM at
SNR=2.0, (b) FFM at SNR=2.0, (c) SPM at SNR=1.2, and (d) FFM at SNR=1.2.
Row 1 are unthresholded SPMs and fuzzy activation maps while row 2 are thresholded
activation maps for each case.

3.2 Real Data

A set of real fMRI data obtained from experiments with ’visual stimulus’ are
analyzed. Please refer to [14] for further details about this data set. For SPM,
all functional images were first corrected for movement artifacts, resampled and
smoothed with FWHM=4.47mm 3D Gaussian filter. F-contrast is used for statis-
tical analysis in SPM2 based on canonical hemodynamic function plus time and
dispersion derivatives as basis function. Voxels with p < 0.05 corrected using
family-wise-error (FWE) is determined to be activated. For our fuzzy feature
modeling (FFM) approach, same parameters have been used as for synthetic
data. Figure 3 (a) shows the similar activated regions of visual task on a sin-
gle slice for both SPM and FFM approach. Since there are no ground truth, it
is rather difficult to evaluate the performance, but still expected activation is
found in visual cortex for both approach. Figure 3 (row 1 in (b) & (c)) illustrates
typical Quasi-Hemodynamic Curve (QHC) for activated voxel and non-activated
voxel in real fMRI data with visual task (L = 4, S = 6) respectively. Other vox-
els in the same class does not necessarily follow the exact same shape, but their
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QHCs often comprise of similar discriminating features. QHC also have variabil-
ity across subject, brain regions and task similar to HRF and it is related to the
length of condition block L and maximum sliding time S = 32s/RT . Activated
and nonactivated QHCs for real fMRI data on one subject performing motor
task (L = 10, S = 16) in Figure 3 (row 2 in (b) & (c)) demonstrates this differ-
ence as compared to QHC for visual data. However, it is observed that activated
and nonactivated class have quite the opposite QHC shape for both datasets
and common discriminating features could still be discovered with some degrees
of uncertainty.

Fig. 3. Detected activation on selected axial slice by SPM (row 1 a) and by (FFM)
(row 2 a) for visual task and QHC for visual (row 1) and motor (row 2) fMRI data:
activated (b) and nonactivated (c)

4 Conclusion

By a novel fuzzy feature extraction method, we are able to convert 4D fMRI
dataset into a much simpler and robust feature space to detect functional acti-
vation. A fuzzy feature model (FFM) is first built on limited prior knowledge as
initial training set, and is further updated by incremental learning to account
for different hemodynamic response functions across subjects. A general two-
way thresholding scheme is proposed to obtain actual activation regions from
resulting fuzzy activation map effectively. Experiments on both synthetic and
real fMRI data shows that our FFM approach is less vulnerable to correlated
noise and more sensitive to discover significant signals. Activated and nonacti-
vated class for each condition is discovered simultaneously so no interpretation
problem exists. Future work includes taking into account the spatial variability
of hemodynamic response function within a single subject. Current algorithm
can be easily extended to comparison between conditions and group study by
fuzzy activation map fusion. Moreover, the resulting parameters in fuzzy mod-
els could give us meaningful relationship between input features and output
class.
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Abstract. In this paper, we propose a new design methodology that adopts In-
formation Granulation to the structure of fuzzy-neural networks called Fuzzy 
Set–based Polynomial Neural Networks (FSPNN). We find the optimal struc-
ture of the proposed model with the aid of symbolic genetic algorithms which 
has symbolic gene type chromosomes. We are able to find information related 
to real system with Information Granulation through numerical data. Informa-
tion Granules obtained from Information Granulation help us understand real 
system without the field expert. In Information Granulation, we use conven-
tional Hard C-Means Clustering algorithm and proposed procedure that handle 
the apex of clusters using ‘Union’ and ‘Intersection’ operation. We use genetic 
algorithm to find optimal structure of the proposed networks. The proposed 
networks are based on GMDH algorithm that makes whole networks dynami-
cally. In other words, FSPNN is built dynamically with symbolic genetic algo-
rithms. Symbolic gene type has better characteristic than binary coding GAs 
from the size of solution space’s point of view. . Symbolic genetic algorithms 
are capable of reducing the solution space more than conventional genetic algo-
rithms with binary genetype chromosomes. The performance of genetically  
optimized FSPNN (gFSPNN) with aid of symbolic genetic algorithms is quanti-
fied through experimentation where we use a number of modeling benchmarks 
data which are already experimented with in fuzzy or neurofuzzy modeling. 

1   Introduction 

In recent, a great deal of attention has been directed towards usage of Computational 
Intelligence such as fuzzy sets, neural networks, and evolutionary optimization to-
wards system modeling. A lot of researchers on system modeling have been interested 
in the multitude of challenging and conflicting objectives such as compactness, ap-
proximation ability, generalization capability and so on which they wish to satisfy. 
Fuzzy sets emphasize the aspect of linguistic transparency of models and a role of a 
model designer whose prior knowledge about the system may be very helpful in fa-
cilitating all identification pursuits. In addition, to build models with substantial ap-
proximation capabilities, there should be a need for advanced tools. 

As one of the representative and sophisticated design approaches comes a family of 
fuzzy polynomial neuron (FPN)-based self organizing neural networks (abbreviated 
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as FPNN or SOPNN and treated as a new category of neuro-fuzzy networks) [1], [2], 
[3], [4]. The design procedure of the FPNNs exhibits some tendency to produce 
overly complex networks as well as comes with a repetitive computation load caused 
by the trial and error method being a part of the development process. The latter is in 
essence inherited from the original GMDH algorithm that requires some repetitive 
parameter adjustment to be completed by the designer. 

In this study, in addressing the above problems coming with the conventional 
SOPNN (especially, FPN-based SOPNN called “FPNN”) [1], [2], [3], [4] as well as 
the GMDH algorithm, we introduce a new genetic design approach as well as a new 
FSPN structure treated as a FPN within the FPNN. Bearing this new design in mind, 
we will be referring to such networks as genetically optimized FPNN with fuzzy set-
based PNs (“gFPNN” for brief). The determination of the optimal values of the pa-
rameters available within an individual FSPN (viz. the number of input variables, the 
order of the polynomial corresponding to the type of fuzzy inference method, the num-
ber of membership functions(MFs) and a collection of the specific subset of input 
variables) leads to a structurally and parametrically optimized network. The network is 
directly contrasted with several existing neurofuzzy models reported in the literature. 

2   The Architecture and Development of Fuzzy Set-Based 
Polynomial Neural Networks (FSPNN) 

The FSPN encapsulates a family of nonlinear “if-then” rules. When put together, 
FSPNs results in a self-organizing Fuzzy Set-based Polynomial Neural Networks 
(FSPNN). Each rule reads in the form. 

if xp is Ak then z is Ppk(xi, xj, apk) 
if xq is Bk then z is Pqk(xi, xj, aqk) 

(1) 

where aqk is a vector of the parameters of the conclusion part of the rule while P(xi, xj, 
a) denoted the regression polynomial forming the consequence part of the fuzzy rule. 
The activation levels of the rules contribute to the output of the FSPN being computed 
as a weighted average of the individual condition parts (functional transformations) 
PK. (note that the index of the rule, namely “k” is a shorthand notation for the two 
indices of fuzzy sets used in the rule (1), that is K=(l,k)). 
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In the above expression, we use an abbreviated notation to describe an activation level 
of the “k”th rule to be in the form 
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Fig. 1. A general topology of the FSPN based FPNN along with the structure of the generic 
FSPN module (F: fuzzy set-based processing part, P: the polynomial form of mapping) 

Table 1. Different forms of the regression polynomials forming the consequence part of the 
fuzzy rules 

No. of inputs 
Order of  
the polynomial 

1 2 3 

0 (Type 1) Constant Constant Constant 

1 (Type 2) Linear Bilinear Trilinear 

2 (Type 3) Biquadratic-1 Triquadratic-1 

2 (Type 4) 
Quadratic 

Biquadratic-2 Triquadratic-2 

1: Basic type, 2: Modified type 

3   Information Granulation Through Hard C-Means Clustering 
Algorithm 

Information granules are defined informally as linked collections of objects (data 
points, in particular) drawn together by the criteria of indistinguishability, similarity 
or functionality [9]. Granulation of information is a procedure to extract meaningful 
concepts from numeric data and an inherent activity of human being carried out with 
intend of better understanding of the problem. We granulate information into some 
classes with the aid of Hard C-means clustering algorithm, which deals with the con-
ventional crisp sets.  
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3.1   Definition of the Premise and Consequent Part of Fuzzy Rules Using 
Information Granulation 

We assume that given a set of data X={x1,x2,…,xn} related to a certain application, 
there are some clusters which are capable of being found through HCM. The center 
point and the membership elements represent each cluster. The set of membership 
elements is crisp. To construct a fuzzy mode, we should transform the crisp set into 
the fuzzy set. The center point means the apex of the membership function of the 
fuzzy set. Let us consider building the consequent part of fuzzy rule. We can think of 
each cluster as a sub-model composing the overall system. The fuzzy rules of Infor-
mation Granulation-based FSPN are as followings. 

if xp is A*
k then z-mpk = Ppk((xi-v

i
pk),(xj- v

j
pk),apk) 

if xq is B*
k then z-mqk = Pqk((xi-v

i
qk),(xj- v

j
qk),aqk) 

(4) 

Where, A*
k and B

*
k mean the fuzzy set, the apex of which is defined as the center 

point of information granule (cluster) and mpk is the center point related to the output 
variable on clusterpk, v

i
pk is the center point related to the i-th input variable on clus-

terpk and aqk is a vector of the parameters of the conclusion part of the rule while P((xi-
vi),(xj- v

j),a) denoted the regression polynomial forming the consequence part of the 
fuzzy rule which uses several types of high-order polynomials (linear, quadratic, and 
modified quadratic) besides the constant function forming the simplest version of the 
consequence; refer to Table 1. If we are given m inputs and one output system and the 
consequent part of fuzzy rules is linear, the overall procedure of modification of the 
generic fuzzy rules is as followings. The given inputs are X=[x1 x2 … xm] related to a 
certain application, where xk =[xk1 … xkn]

T, n is the number of data and m is the num-
ber of variables and the output is Y=[y1 y2 … yn]

T. 

Step 1) build the universe set 
Universe set U={{x11, x12, …, x1m, y1}, {x21, x22, …, x2m, y2}, …, {xn1, xn2, …, xnm, yn}} 
Step 2) build m reference data pairs composed of [x1;Y], [x2;Y], and [xm;Y]. 
Step 3) classify the universe set U into l clusters such as ci1, ci2, …, cil (subsets) by 
using HCM according to the reference data pair [xi;Y]. Where cij means the j-th clus-
ter (subset) according to the reference data pair [xi;Y]. 
Step 4) construct the premise part of the fuzzy rules related to the i-th input variable 
(xi) using the directly obtained center points from HCM.  
Step 5) construct the consequent part of the fuzzy rules related to the i-th input vari-
able (xi). On this step, we need the center points related to all input variables. We 
should obtain the other center points through the indirect method as followings. 

Sub-step1) make a matrix as equation (5) according to the clustered subsets 
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Where, {xk1, xk2, …, xkm, yk}∈cij and Ai
j means the membership matrix of j-th subset 

related to the i-th input variable.  

Sub-step2) take an arithmetic mean of each column on Ai
j. The mean of each column is 

the additional center point of subset cij. The arithmetic means of column is equation (6)  

1 2 m

ij ij ij ij
center points v v v m= ⎡ ⎤⎣ ⎦  (6) 

Step 6) if i is m then terminate, otherwise, set i=i+1 and return step 3. 

4   Genetic Optimization of FSPNN with Aid of Symbolic  
Gene-Type Genetic Algorithms 

Let us briefly recall that GAs is a stochastic search technique based on the principles 
of evolution, natural selection, and genetic recombination by simulating a process of 
“survival of the fittest” in a population of potential solutions (individuals) to the given 
problem. GAs are aimed at the global exploration of a solution space. They help pur-
sue potentially fruitful search paths while examining randomly selected points in 
order to reduce the likelihood of being trapped in possible local minima. The main 
features of genetic algorithms concern individuals viewed as strings, population-based 
optimization (where the search is realized through the genotype space), and stochastic 
search mechanisms (selection and crossover). The conventional genetic algorithms 
use several binary gene type chromosomes. However, symbolic gene type genetic 
algorithms use symbolic gene type chromosomes not binary gene type chromosomes. 
We are able to reduce the solution space with aid of symbolic gene type genetic algo-
rithms. That is the important advantage of symbolic gene type genetic algorithms.  In 
order to enhance the learning of the FPNN, we use GAs to complete the structural 
optimization of the network by optimally selecting such parameters as the number of 
input variables (nodes), the order of polynomial, and input variables within a FSPN.  
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Fig. 2. Overall genetically-driven structural optimization process of FSPNN 
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In this study, GA uses the serial method of binary type, roulette-wheel used in 
the selection process, one-point crossover in the crossover operation, and a binary 
inversion (complementation) operation in the mutation operator. To retain the best 
individual and carry it over to the next generation, we use elitist strategy [3]. The 
overall genetically-driven structural optimization process of FPNN is visualized in 
Fig. 2. 

5   The Design Procedure of Genetically Optimized FSPNN 
(gFSPNN) 

The framework of the design procedure of the genetically optimized Fuzzy Polyno-
mial Neural Networks (FPNN) with fuzzy set-based PNs (FSPN) comprises the fol-
lowing steps  

[Step 1] Determine system’s input variables 
[Step 2] Form training and testing data 
[Step 3] specify initial design parameters 

- Fuzzy inference method 
- Type of membership function : Triangular or Gaussian-like MFs 
- Number of MFs allocated to each input of a node 
- Structure of the consequence part of the fuzzy rules 

[Step 4] Decide upon the FSPN structure through the use of the genetic design 
[Step 5] Carry out fuzzy-set based fuzzy inference and coefficient parameters estima-
tion for fuzzy identification in the selected node(FSPN) 
[Step 6] Select nodes (FSPNs) with the best predictive capability and construct their 
corresponding layer 
[Step 7] Check the termination criterion 
[Step 8] Determine new input variables for the next layer 

6   Experimental Studies 

We demonstrate how the IG-gFSPNN can be utilized to predict future values of a 
chaotic Mackey-Glass time series. This time series is used as a benchmark in 
fuzzy and neurofuzzy modeling. The performance of the network is also con-
trasted with some other models existing in the literature [5-7]. The time series is 
generated by the chaotic Mackey-Glass differential delay equation. To come up 
with a quantitative evaluation of the network, we use the standard RMSE per-
formance index. 

Fig. 3 depicts the performance index of each layer of gFPNN with Type T* accord-
ing to the increase of maximal number of inputs to be selected.  

Fig. 4 illustrates the different optimization process between gFSPNN and the pro-
posed IG-gFSPNN by visualizing the values of the performance index obtained in 
successive generations of GA when using Type T*.  
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Table 2 summarizes a comparative analysis of the performance of the network with 
other models.  

Table 2. Comparative analysis of the performance of the network; considered are models 
reported in the literature 

Performance index Model 
PI PIs EPIs 

0.044   
0.013   Wang’s model[5] 
0.010   

ANFIS[6]  0.0016 0.0015 
FNN model[7]  0.014 0.009 

Triangular 
(2nd layer) 

Max=5  1.72e-4 3.30e-4 
Proposed 

IG-gFSPNN 
Type T* 

Gaussian 
(2nd layer) 

Max=5  1.48e-4 2.61e-4 

7   Concluding Remarks 

In this study, we have surveyed the new structure and meaning of fuzzy rules and 
investigated the GA-based design procedure of Fuzzy Polynomial Neural Networks 
(FPNN) along with its architectural considerations. The whole system is divided into 
some sub-systems that are classified according to the characteristics named informa-
tion granules. Each information granule seems to be a representative of the related 
sub-systems. A new fuzzy rule with information granule describes a sub-system as a 
stand-alone system. A fuzzy system with some new fuzzy rules depicts the whole 
system as a combination of some stand-alone sub-system.  

The GA-based design procedure applied at each stage (layer) of the FSPNN leads 
to the selection of the preferred nodes (or FSPNs) with optimal local characteristics 
(such as the number of input variables, the order of the consequent polynomial of 
fuzzy rules, and input variables) available within FSPNN. The comprehensive ex-
perimental studies involving well-known datasets quantify a superb performance of 
the network in comparison to the existing fuzzy and neuro-fuzzy models. 
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Abstract. In this paper, a novel hybrid self-learning approach termed
Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for
automatically generating a Fuzzy Inference System (FIS) is presented.
In the EDSGFQL approach, the structure of an FIS is generated via Re-
inforcement Learning (RL) while the centers of Membership Functions
(MFs) are updated by an extended Self Organizing Map (SOM) algo-
rithm. The proposed EDSGFQL methodology can automatically create,
delete and adjust fuzzy rules without any priori knowledge. In the EDS-
GFQL approach, fuzzy rules of an FIS are regarded as agents of the
entire system and all of the rules are recruited, adjusted and terminated
according to their contributions and participation. At the mean time,
the centers of MFs are adjusted to move to the real centers in the sense
of feature representation by the extended SOM approach. Comparative
studies on a wall-following task by a mobile robot have been done for
the proposed EDSGFQL approach and other current methodologies and
the demonstration results show that the proposed EDSGFQL approach
is superior.

1 Introduction

Generation of Fuzzy Inference Systems (FISs) is always an attractive area for
research. However, the conventional approaches for designing FISs are subjec-
tive, which require significant human’s efforts. Other than time consuming, the
subjective approaches may not be successful if the system is too complex or un-
certain. Therefore, many researchers have been seeking automatic methods for
generating the FIS [1]- [5]. A paradigm of acquiring the parameters of fuzzy rules
was proposed in [1] and a self-identified structure was achieved by a Supervised
Learning (SL) approach termed Generalized Dynamic Fuzzy Neural Networks
(GDFNN) in [2]. However, the training data are not always available especially
when a human being has little knowledge about the system or the system is
uncertain. In those situations, Unsupervised Learning (UL) and Reinforcement
Learning (RL) are preferred over SL as UL and RL are learning processes that
do not need any supervisor to tell the learner what action to take. A number
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of researchers have applied RL to train the consequent parts of an FIS [3]- [5].
However, the preconditioning parts of the FIS are either predefined as in [3] or
through the ε-completeness and the squared TD error criteria in [4] or through
the ”aligned clustering” in [5]. The TD error criterion proposed in [4] generates
new rules when the squared TD error is too big. However, this criterion is not
applicable for RL methods which are not based on TD, and the thresholds of
this TD error criterion are hard to define. An ”aligned clustering algorithm”
which is similar to the ε-completeness criterion in [4] has been adopted by the
author of [5] in online Clustering and Q-value based Genetic Algorithm learn-
ing schemes for Fuzzy system design (CQGAF) to generate a fuzzy structure.
However, both DFQL and CQGAF cannot delete fuzzy rules once they are gen-
erated even when the rules become redundant. To reduce the computational cost
and the training time, dormant or unnecessary rules should be deleted. Thus,
a scheme termed Dynamic Self-Generated Fuzzy Q-learning (DSGFQL) which
is capable of automatically generating and pruning fuzzy rules as well as fine
tuning the premise parameters of an FIS by RL was proposed in [6]. Based on
the key idea of the DSGFQL algorithm, an enhanced approach termed Enhanced
Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) is proposed in this pa-
per. In this novel EDSGFQL method, an extended Self Organizing Map (SOM)
approach is adopted to adjust the centers of the EBF neurons. The main reason
of choosing the SOM is that the EBF networks are local approximation and the
centers of local units (EBF neurons) are adjusted to move to the real centers in
the sense of feature representation [7].

By virtue of the capability of generating and pruning fuzzy rules as well
as adjusting the Membership Functions (MFs) by the EDSGFQL methodology,
experimental results and comparative studies on a wall-following task by a mobile
robot demonstrate that the proposed EDSGFQL approach is superior.

2 Self-Generated Fuzzy Inference Systems by EDSGFQL

2.1 Architecture of the EDSGFQL System

The architecture of the EDSGFQL system is based on extended EBF neural
networks, which are functionally equivalent to TSK fuzzy systems [1]. The neural
networks structure of the EDSGFQL system is depicted in Fig. 1. Layer one is
an input layer and layer two is a fuzzification layer which evaluates the MFs of
the input variables. The MF is chosen as a Gaussian function and each input
variable xi (i = 1, 2, ..., N) has L MFs. Layer three is a rule layer. Normalization
takes place in layer 4 and nodes of layer five define output variables. For details
of the architecture, readers may refer to [4].

2.2 Sharing Mechanism for Newly Generated Rules

Similarly to that in [4] and [5], a new rule will be created if the ε-completeness
criterion fails. For details of the ε-completeness criterion, readers may refer to [2]
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Fig. 1. Structure of the EDSGFQL System

and [4]. In order to reduce the training time, the initial Q-values for the newly
generated fuzzy rule are set by the nearest neighbors. For instance, if rules Rm

and Rn are the two nearest neighbors to the newly generated rule Ri, then

q(i, j) =
q(m, j) ∗ fm(i) + q(n, j) ∗ fn(i)

fm(i) + fn(i)
, j = 1, 2, · · ·M. (1)

where fm(i) and fn(i) stand for the firing strengths of the center of the newly
generated ith rule Ri to rules Rm and Rn.

2.3 Generating an FIS Via RL

The objective of RL is to maximize the expected reward value. Therefore, the
reward value function becomes a natural criterion for judging the performance
of the RL agents. The reward is to be checked periodically, e.g. 1000 training
steps or an episode, i.e.

Avg Reward =
∑t=k+T

t=k r(t)
T

(2)

At the mean time, a reward sharing mechanism which is proposed in [8] is
used here to share the reinforcement with each local rule according to its con-
tributions. The local reward for each fuzzy agent is given, as in [8], as follows:

rjlocal(t) = φjr(t) j = 1, 2, ..., L (3)

The local reward offers a direct evaluation of contributions of fuzzy agents.
The higher the local reward is obtained, the better contributions are offered by
the fuzzy agent. If the FIS passes the ε-completeness criterion but the global



A Hybrid Self-learning Approach for Generating Fuzzy Inference Systems 1005

average reward is less than a threshold kg, it means that the input space is well
partitioned but the overall performance needs to be improved. To resolve this
problem, the weights of some good agents should be increased which means that
the system will be modified by promoting the agent with the best performance.
In this case, the width of the jth fuzzy rule’s MF (the one with the best local
reward) will be increased as follows

σij = κσij , i = 1, 2...N (4)

where κ is slightly larger than 1.
On the other hand, a fuzzy agent should be punished if the local reward is

too bad. If local reward of a fuzzy agent is less than a certain threshold klh, the
individual contributions are unsatisfactory and that fuzzy rule will be deleted.

Moreover, if the local reward is larger than klh, but smaller than a light
threshold kll, a punishment will be given to the agent by decreasing its width of
the MF as follows:

σik = τσik , i = 1, 2...N (5)

where τ is a positive value less than 1.
Besides the reward evaluation, firing strength should also be considered for

system evaluation as it is a measurement for participation. If a fuzzy agent
has very low firing strength during the entire episode or a long period of time
recently, it means that this rule is unnecessary for the system. As more fuzzy
rules mean more computation and longer training time, the rule whose mean
firing strength over a long period of time is less than a threshold kf should be
deleted.

Remark: If a fuzzy rule keeps failing the light local reward check, its firing
strength will be reduced by decreasing the width of its MF. When the width
is reduced to a certain level, it will fail the firing strength criterion and will be
deleted.

At the early stage of training, each fuzzy agent needs time to adjust its own
performance. For a training system, it is natural to set the demanding require-
ment small at the beginning and increase it later when the training becomes
stable. Thus, the idea of gradualism learning in [2] and [9] which uses coarse
learning in the early training stage and fine learning in the later stage is adopted
here. For details, reader may refer to [2] and [6].

2.4 Extended Self Organizing Map

The development of the Self Organizing Map (SOM) is inspired by the research
in neurobiology. During the training of the EDSGFQL algorithm, online SOM is
performed for each incoming training pattern. Extended from the original SOM
in [10], the concept of fuzzy region is applied to take the place of lattice point. In
the original SOM, the distances between the input data and the center points are
considered. The neuron whose center is with the smallest distance with the input
is regarded as the best matching neuron. The shortcoming of this method is that
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it does not consider the width or the size of the fuzzy region. To circumvent this,
the M-distance or firing strength of the input data is considered for deciding the
winning neuron. The fuzzy agent who is with the smallest M-distance or with
the biggest firing strength is appointed as the best matching agent. Obviously,
the extended method is more suitable as it considers each fuzzy agent as a region
instead of a point. In other words, the extended SOM algorithm considers not
only the center position but also the width of the fuzzy region.

Similar to as the original SOM, the winning fuzzy agent and its topological
neighbors are updated so that they move closer to the current input X(k) in the
input space. The update rules for the centers are as follows:

Cj(t+ 1) = Cj(t) + β(t)φν (j)hνj(t)[X(t)− Cj(t)],
j = 1, 2, ..., L (6)

where ν denotes the winning neuron, β(t) is the adaptation coefficient and φν(j)
is the firing strength of the center of the jth rule Rj to the winning neuron ν.
The term hνj(t) is the neighborhood kernel centered on the winner unit and is
given by

hνj(t) = exp(−||Cν − Cj ||2
2σ2(t)

) (7)

Here, β(t) and hνj(t) decrease monotonically with t. Therefore, as an enhance-
ment from the DSGFQL algorithm, the centers of MFs are updated according
to the extended SOM algorithm for the EDSGFQL approach.

The flowchart of the EDSGFQL algorithm is presented in Fig. 2.

3 Simulation Studies

In order to apply the EDSGFQL algorithm and compare them with other related
methodologies, the approaches have been applied to control a Khepera mobile
robot of [11] for a wall-following task.

The Khepera mobile robot is cylindrical in shape, with 55 mm in diameter
and 30 mm in height. It is a light robot with only 70g. The robot is equipped
with two dc motors coupled with incremental sensors, eight analogue Infra-Red
(IR) proximity sensors and an on-board power supply which is the same as
that in [4] which is shown in Fig. 3. Each IR sensor is composed of an emitter
and an independent receiver. The dedicated electronic interface uses multipliers,
sample holds and operational amplifiers. This allows absolute ambient light and
estimation, by reflection, of the relative position of an object to the robot to be
measured. By this estimation, the distance between the robot and the obstacle
can be derived.

Similar to the experiment in [4], the task is to design a controller for wall-
following, while the robot is only moving in clockwise direction at a fixed speed.
Four input variables, which are the values of sensors Si (i = 0, 1, 2, 3), are
considered and all values are normalized. The output of the controller is the
steering angle of the robot. In this experiment, the set of discrete actions is
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Fig. 2. Flowchart of the learning algorithm for EDSGFQL

Fig. 3. Position and orientation of sensors on the Khepera II

A = [−30,−25,−20,−15,−10,−5, 0, 5, 10, 15, 20, 25, 30] and continuous actions
will be generated by fuzzy approaches.



1008 Y. Zhou and M.J. Er

Fig. 4. Training environment

The aim of the wall-following task is to control the mobil robot to follow a
wall while keeping a distance from the wall in the range of [d , d+]. The same
reward function as what is used in [4] is adopted:

r =

⎧⎨
⎩

0.1, if(d < d < d+) and (U ∈ [−8o,+8o])
−3.0, if(d ≤ d ) or (d+ ≤ d)
0.0, otherwise.

(8)

Here, d = 0.15 and d+ = 0.85 which are normalized values, U is the output
steering angle and all the settings are the same as the settings used in [4].

The simulation version of the Khepera robot reported in [12] is used for com-
parison studies. A complicated environment which is shown in Fig. 4 is adopted.
In [4], it was shown that the DFQL algorithm is superior to the basic fuzzy con-
troller, fixed FQL [3] and continuous-action Q-learning [13]. Hence, it is sufficient
for us to compare the EDSGFQL approach with the DFQL of [4] and CQGAF of
[5] and DSGFQL in this work. The performances of these different approaches are
evaluated at every episode of 1000 control steps. Three criteria, namely number
of failures, rewards and number of rules, are considered for measuring the perfor-
mance. The first two criteria are to measure how well the task has been performed
and the last one is to measure how much computational cost has been spent.

For the DFQL, the same setting as in [4] has been adopted, i.e. initial Q-value,
kq = 3.0, exploration rate, Sp = 0.001; discounted factor, γ = 0.95; trace-decay
factor, λ = 0.7; learning rate, α = 0.05; ε-completeness, ε = 0.5; similarity
of MF, kmf = 0.3; TD error factor K = 50; TD error criterion, ke=1 and
set of discrete actions, A = [−30,−25,−20,−15,−10,−5, 0, 5, 10, 15, 20, 25, 30].
The CQGAF proposed in [5] utilizes Genetic Algorithms (GA) to obtain an
optimal solution for the action set and employs the aligned clustering algorithm
for structure identification of the FIS. As this paper focuses on self-generation
of the FIS structure, the same action set as that for the DFQL is applied for the
CQGAF, which does not apply the GA approach to train the action set. The
aligned clustering algorithm in [5] is adopted and the consequent part of FIS is
trained through normal FQL which does not apply the GA in the CQGAF. As
the aligned clustering algorithm is similar to the ε-completeness criterion in the
DFQL but described in another way, all parameters for the aligned clustering
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algorithm are set the same as those listed above for the DFQL. For the DSGFQL,
the global reward thresholds are kmax

g = −0.05 and kmin
g = −0.45; heavy local

thresholds are kmax
lh = −0.30 and kmin

lh = −0.10; light local reward thresholds
are kmax

ll = −0.20 and kmin
ll = 0; the firing strength thresholds are kf = 0.0002

and Kr = 20, κ = 1.05 and τ = 0.95. The adaption coefficient is β=0.05 and
σ=1 for the EDSGFQL approach.

0 5 10 15 20 25 30 35 40

40

60

80

100

120

140

160

180

200

220

240

Episodes

N
um

be
r 

of
 fa

ilu
re

s

Number of failures vs Episodes

DFQL
CQGAF (without GA)
DSGFQL (reward)
EDSGFQL (reward)

Fig. 5. Comparison of performances of DFQL, CQGAF, DSGFQL and EDSGFQL:
Number of failures vs number of episodes

0 5 10 15 20 25 30 35 40
−700

−600

−500

−400

−300

−200

−100

0

Episodes

R
ew

ar
ds

Rewards vs Episodes

DFQL
CQGAF (without GA)
DSGFQL (reward)
EDSGFQL (reward)

Fig. 6. Comparison of performances of DFQL, CQGAF and DSGFQL and EDSGFQL:
Reward value vs number of episodes



1010 Y. Zhou and M.J. Er

0 5 10 15 20 25 30 35 40
15

20

25

30

35

40

45

50

55

60

65

Episodes

N
um

be
r 

of
 r

ul
es

Number of rules vs Episodes

DFQL
CQGAF (without GA)
DSGFQL (reward)
EDSGFQL (reward)

Fig. 7. Comparison of performances of DFQL, CQGAF and DSGFQL and EDSGFQL:
Number of fuzzy rules vs number of episodes

In this work, comparison studies among the DFQL, the CQGAF, the original
DSGFQL and the EDSGFQL algorithms are carried out. The performances of
these four approaches have been measured and the mean values for 40 episodes
over 10 runs have been presented in Figs. 5-7.

From Figs. 5-7, it can be concluded that the EDSGFQL algorithm is supe-
rior to the DFQL, CQGAF without the GA approach and the DSGFQL as
the EDSGFQL methods achieve similar or even better performances than those
approaches but with much smaller number of rules. The superiority of the EDS-
GFQL algorithm is due to the pruning capability as well as the self-modification
of the fuzzy MFs. By updating the centers of MFs through the extended SOM
approach, the original DSGFQL is enhanced.

4 Conclusions

In this paper, a dynamic self-generated FIS methodology has been proposed.
Compared with conventional subjective approaches to generate an FIS, the pro-
posed EDSGFQL approach can automatically generate an FIS without any priori
knowledge. Compared with recent self-generation approaches, the EDSGFQL al-
gorithm can self-generate and delete fuzzy rules. Normal fuzzy RL is actually
using the continuity of fuzzy logic to convert discrete states and actions to con-
tinues ones. On the other hand, the EDSGFQL approach proposed employs the
idea of RL to generate the structure and adjust the antecedent parameters of an
FIS. Compared with conventional FQL approaches which apply FIS to enhance
Q-learning, the key feature of the EDSGFQL methodology is that they adopt
the RL approach to train the the structure and premises of an FIS. Therefore,
not only the consequent parts of the FIS are trained by RL, but also the entire
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structure and parameters are self-generated through RL. Moreover, by utiliz-
ing the SOM to update the centers of MFs, the original DSGFQL algorithm
is enhanced. By virtue of structure identification and parameter modifications,
simulation studies demonstrate that the EDSGFQL approach is superior to the
original DSGFQL which is superior to the DFQL and CQGAF in generating
an FIS.
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Abstract. The recording of symbolic interval data has become a com-
mon practice with the recent advances in database technologies. This
paper presents a fuzzy c-means clustering algorithm for symbolic inter-
val data. This method furnishes a partition of the input data and a
corresponding prototype (a vector of intervals) for each class by optimiz-
ing an adequacy criterion which is based on a suitable single adaptive
Euclidean distance between vectors of intervals. Experiments with real
and synthetic symbolic interval data sets showed the usefulness of the
proposed method.

1 Introduction

Cluster analysis have been widely used in numerous fields including pattern
recognition, data mining and image processing. Their aim is to organize a set
of items into clusters such that items within a given cluster have a high degree
of similarity, whereas items belonging to different clusters have high degree of
dissimilarity [10].

Partitioning methods can be divided in hard clustering and fuzzy clustering.
Hard clustering furnishes a hard partition where each object of the data set
is assigned to one and only one cluster. Fuzzy clustering [1] generates a fuzzy
partition that furnishes a degree of membership of each pattern in a given cluster.
In many real applications fuzzy clustering outperforms hard clustering methods
particularly when the classes are not well separated.

The partitioning dynamic cluster algorithms [6] are iterative two steps relo-
cation hard clustering algorithms involving at each iteration the construction
of the clusters and the identification of a suitable representative or prototype
(means, factorial axes, probability laws, groups of elements, etc.) of each cluster
by locally optimizing an adequacy criterion between the clusters and their corre-
sponding prototypes. This optimization process begins from a set of prototypes
or an initial partition and interactively applies an allocation step (the prototypes
are fixed) in order to assign the patterns to the clusters according to their prox-
imity to the prototypes. This is followed by a representation step (the partition

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1012–1021, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is fixed) where the prototypes are updated according to the assignment of the
patterns in the allocation step, until achieving the convergence of the algorithm,
when the adequacy criterion reaches a stationary value.

The adaptive dynamic clustering algorithm [7] also optimize a criterion based
on a measure of fitting between the clusters and their prototypes, but there are
distances to compare clusters and their prototypes that change at each iteration.
These distances are not determined once and for all, and moreover, they can be
different from one cluster to another. The advantage of these adaptive distances
is that the clustering algorithm is able to recognize clusters of different shapes
and sizes. The initialization, the allocation step and the stopping criterion are
nearly the same in the adaptive and non-adaptive dynamic clustering algorithms.
The main difference between these algorithms occurs in the representation step
which has two stages in the adaptive case: a first stage, where the partition and
the distances are fixed and the prototypes are updated, is followed by a second
one, where the partition and their corresponding prototypes are fixed and the
distances are updated.

Often, objects to be clustered are represented as a vector of quantitative fea-
tures. However, the recording of interval data has become a common practice
in real world applications and nowadays this kind of data is often used to de-
scribe objects. Symbolic Data Analysis (SDA) is an area related to multivariate
analysis, data mining and pattern recognition, which has provided suitable data
analysis methods for managing objects described as a vector of intervals [2].

Concerning dynamical cluster algorithms for symbolic interval data, SDA has
provided suitable tools. [8] have presented an ad-hoc fuzzy c-means algorithm to
cluster data on the basis of different types of symbolic variables. [12] introduced
an algorithm considering context dependent proximity functions and [3] proposed
an algorithm using an adequacy criterion based on Hausdorff distances. [11]
presented a dynamic cluster algorithm for symbolic interval data based on L1
Minkowsky distances. [5] proposed an algorithm using an adequacy criterion
based on adaptive Hausdorff distances for each cluster. More recently, [4] have
introduced (adaptive and non-adaptive) fuzzy c-means clustering algorithm to
symbolic interval data.

This paper introduces a fuzzy c-means clustering algorithm for symbolic in-
terval data based on a suitable single adaptive Euclidean distance. This method
furnishes a partition of the input data and a corresponding prototype (a vector
of intervals) for each class by optimizing an adequacy criterion which is based
on a single adaptive Euclidean distance between vectors of intervals. In order to
show the usefulness of this method, synthetic interval data sets ranging from dif-
ferent degree of difficulty to be clustered and an application with a real data set
were considered. The evaluation of the clustering results is based on an external
validity index.

This paper is organized as follow. Section 2 presents the previous fuzzy c-
means clustering methods for symbolic inteval data based on (adaptive and
non-adaptive) Euclidean distances and it is introduced the model based on a
single adaptive Euclidean distance. In section 3 it is presented the evaluation
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of this method in comparison with previous fuzzy c-means clustering methods
having adequacy criterion based on Euclidean (non-adaptive and adaptive for
each cluster) distances. The accuracy of the results furnished by these clustering
methods is assessed by the corrected Rand index [9] considering synthetic interval
data sets in the framework of a Monte Carlo experience and an applications with
a real data set. Finally, section 4 gives the conclusions and final remarks.

2 Fuzzy Clustering Algorithms for Symbolic Interval
Data

In this section we recall some previous fuzzy clustering methods for symbolic
interval data and we introduce the model based on a single adaptive Euclidean
distance. Let Ω be a set of n objects indexed by k and described by p interval
variables indexed by j. An interval variable X [2] is a correspondence defined
from Ω in � such that for each i ∈ Ω,X(k) = [a, b] ∈ �, where � is the set
of closed intervals defined from �. Each object k is represented as a vector of
intervals xk = (x1

k, · · · , x
p
k), where xj

k = [aj
k, b

j
k] ∈ � = {[a, b] : a, b ∈ �, a ≤ b}.

A prototype gi of cluster Pi is also represented as a vector of intervals gi =
(g1i , · · · , g

p
i ), where gj

i = [αj
i , β

j
i ] ∈ �.

2.1 Fuzzy c-Means Clustering Method for Symbolic Interval Data

Here we present a version of the fuzzy c-means clustering method for symbolic
interval data (labeled as FCMNAD). This methode has been introduced by [4].

As in the standard fuzzy c-means algorithm [1], the FCMNAD clustering
method for symbolic interval data is a non-hierarchical clustering method the
aim of which is to furnish a fuzzy partition of a set of patterns in c clusters
{P1, . . . , Pc} and a corresponding set of prototypes {g1, . . . ,gc} such that a
criterion J1 measuring the fitting between the clusters and their representatives
(prototypes) is locally minimized. This criterion J1 is based on a non-adaptive
Euclidean distance and it is defined as:

J1 =
c∑

i=1

n∑
k=1

(uik)mφ(xk,gi) =
c∑

i=1

n∑
k=1

(uik)m

p∑
j=1

[
(aj

k − α
j
i )

2 + (bjk − β
j
i )2
]

(1)

where

φ(xk,gi) =
p∑

j=1

[
(aj

k − α
j
i )

2 + (bjk − β
j
i )

2
]

(2)

is the square of an Euclidean distance measuring the dissimilarity between a pair
of vectors of intervals, xk = (x1

k, . . . , x
p
k) is a vector of intervals describing the

k− th item, gi = (g1i , . . . , g
p
i ) is a vector of intervals describing the prototype of

class Pi, uik is the membership degree of pattern k in cluster Pi and m ∈]1,+∞[
is a parameter that controls the fuzziness of membership for each pattern k.
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As in the standard fuzzy c-means algorithm [1], this algorithm sets an initial
membership degree for each item k in each cluster Pi and alternates a repre-
sentation step and an allocation step until convergence when the criterion J1
reaches a stationary value representing a local minimum.

Representation Step: Definition of the Best Prototypes. In the represen-
tation step, the membership degree uik of each item k in cluster Pi is fixed and
the prototype gi = (g1i , . . . , g

p
i ) of class Pi (i = 1, . . . , c), which minimizes the

clustering criterion J1, has the bounds of the interval gj
i = [αj

i , β
j
i ] (j = 1, . . . , p)

updated according to the following expression:

αj
i =
∑n

k=1(uik)maj
k∑n

k=1(uik)m
and βj

i =
∑n

k=1(uik)mbjk∑n
k=1(uik)m

(3)

Allocation Step: Definition of the Best Fuzzy Partition. In the alloca-
tion step, each prototype gi of class Pi (i = 1, . . . , c) is fixed and the membership
degree uik (k = 1, . . . , n) of each item k in each cluster Pi, minimizing the clus-
tering criterion J1 under uik ≥ 0 and

∑c
i=1 uik = 1, is updated according to the

following expression:

uik =

⎡
⎢⎣

c∑
h=1

⎛
⎝
∑p

j=1

[
(aj

k − α
j
i )

2 + (bjk − β
j
i )2
]

∑p
j=1

[
(aj

k − α
j
h)2 + (bjk − β

j
h)2
]
⎞
⎠

1
m−1
⎤
⎥⎦
−1

(4)

2.2 Fuzzy c-Means Clustering Method for Symbolic Interval Data
Based on a Single Adaptive Euclidean Distance

This section presents a fuzzy c-means clustering method for symbolic interval
data based on a single adaptive Euclidean distance (labeled as SFCMAD). The
main idea of these methods is that there is a distance to compare clusters and
their representatives (prototypes) that changes at each iteration but that is the
same for all clusters.

This adaptive method looks for a fuzzy partition of a set of items in c clusters
{P1, . . . , Pc}, the corresponding c prototypes {g1, . . . ,gc} and the square of a
single adaptive Euclidean distance defined on vectors of intervals which is the
same for all the clusters such that a criterion J2 measuring the fitting between
the clusters and their representatives (prototypes) is locally minimized. This
criterion J2 is based on a single adaptive Euclidean distance and it is defined as:

J2 =
c∑

i=1

n∑
k=1

(uik)mϕ(xk,gi) =
c∑

i=1

n∑
k=1

(uik)m
p∑

j=1

λj
[
(aj

k − αj
i )

2 + (bj
k − βj

i )2
]

(5)

where xk,gi, uik and m are defined as before and

ϕ(xk,gi) =
p∑

j=1

λj
[
(aj

k − α
j
i )

2 + (bjk − β
j
i )

2
]

(6)
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is a single adaptive Euclidean distance measuring the dissimilarity between an
object xk (k = 1, . . . , n) and a cluster prototype gi(i = 1, . . . , c), parameterized
by the weight vector λ = (λ1, . . . , λp), which changes at each iteration but is the
same for all clusters.

The algorithm starts from an initial membership degree for each pattern k in
each cluster Pi and alternates a representation step and an allocation step until
the convergence of the algorithm when the criterion J2 reaches a stationary value
representing a local minimum. The representation step has now two stages.

Representation Step: Definition of the Best Prototypes. In the first
stage, the membership degree uik of each pattern k on cluster Pi and and the
weight vector λ are fixed.

Proposition 1. The prototype gi = (g1i , . . . , g
p
i ) of cluster Pi (i = 1, . . . , c),

which minimizes the clustering criterion J2, has the bounds of the interval gj
i =

[αj
i , β

j
i ] (j = 1, . . . , p) updated according to equation (3).

Representation Step: Definition of the Best Distance. In the second
stage, the membership degree uik of each pattern k in cluster Pi and the proto-
types gi of class Pi (i = 1, . . . , c) are fixed.

Proposition 2. The vector of weights λ= (λ1, . . . , λp), which minimizes the
clustering criterion J2 under λj > 0 (j = 1, . . . , p) and

∏p
j=1 λ

j = 1, is updated
according to the following expression:

λj =

{∏p
h=1

[∑c
i=1
∑n

k=1(uik)m
(
(ah

k − αh
i )2 + (bhk − βh

i )2
)]} 1

p

∑c
i=1
∑n

k=1(uik)m
[
(aj

k − α
j
i )2 + (bjk − β

j
i )2
] (7)

Allocation Step: Definition of the Best Fuzzy Partition. In the allocation
step, the prototypes gi of class Pi (i = 1, . . . , c) and the vector of weights λ=
(λ1, . . . , λp) (i = 1, . . . , c) are fixed.

Proposition 3. The membership degree uik (k = 1, . . . , n) of each item k in
each cluster Pi, minimizing the clustering criterion J2 under uik ≥ 0 and∑c

i=1 uik = 1(i = 1, . . . , c), is updated according to the following expression:

uik =

⎡
⎢⎣

c∑
h=1

⎛
⎝
∑p

j=1 λ
j
[
(aj

k − α
j
i )

2 + (bjk − β
j
i )

2
]

∑p
j=1 λ

j
[
(aj

k − α
j
h)2 + (bjk − β

j
h)2
]
⎞
⎠

1
m−1
⎤
⎥⎦
−1

(8)

2.3 Fuzzy c-Means Clustering Method for Symbolic Interval Data
Based on an Adaptive Euclidean Distance for Each Cluster

Here we present a fuzzy c-means clustering method for symbolic interval data
based on an adaptive Euclidean distance for each cluster (labeled as FCMADC).
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This method has been introduced by [4]. The main idea of these methods is
that there is a different distance associated to each cluster to compare clusters
and their representatives (prototypes) that changes at each iteration, i.e., the
distance is not determined once for all, furthermore is different from one cluster
to another. Again, the advantage of these adaptive distances is that the clustering
algorithm is able to find clusters of different shapes and sizes.

The FCMADC adaptive method looks for a fuzzy partition of a set of items
in c clusters {P1, . . . , Pc}, the corresponding c prototypes {g1, . . . ,gc} and the
square of an adaptive Euclidean distance defined on vectors of intervals which
is different for each class such that a criterion J3 measuring the fitting between
the clusters and their representatives (prototypes) is locally minimized. This
criterion J3 is based on an adaptive Euclidean distance for each cluster and it
is defined as:

J3 =
c∑

i=1

n∑
k=1

(uik)mψi(xk,gi) =
c∑

i=1

n∑
k=1

(uik)m
p∑

j=1

λj
i

[
(aj

k − αj
i )

2 + (bj
k − βj

i )2
]

(9)

where xk,gi, uik and m are defined as before and

ψi(xk,gi) =
p∑

j=1

λj
i

[
(aj

k − α
j
i )

2 + (bjk − β
j
i )

2
]

(10)

is now the square of an adaptive Euclidean distance measuring the dissimi-
larity between an object xk (k = 1, . . . , n) and a cluster prototype gi(i =
1, . . . , c), defined for each class and parameterized by the vectors of weights
λi = (λ1

i , . . . , λ
p
i ) (i = 1, . . . , c), which change at each iteration.

The algorithm starts from an initial membership degree for each pattern k in
each cluster Pi and alternates a representation step and an allocation step until
the convergence of the algorithm when the criterion J3 reaches a stationary value
representing a local minimum. The representation step has also two stages.

Representation Step: Definition of the Best Prototypes. In the first
stage, the membership degree uik of each pattern k on cluster Pi and the vectors
of weights λi = (λ1

i , . . . , λ
p
i ) (i = 1, . . . , c), are fixed and the prototype gi =

(g1i , . . . , g
p
i ) of class Pi (i = 1, . . . , c), which minimizes the clustering criterion

J3, has the bounds of the interval gj
i = [αj

i , β
j
i ] (j = 1, . . . , p) updated according

to equation (3).

Representation Step: Definition of the Best Distances. In the second
stage, the membership degree uik of each pattern k in cluster Pi and the pro-
totypes gi of class Pi (i = 1, . . . , c) are fixed and the vectors of weights λi =
(λ1

i , . . . , λ
p
i ) (i = 1, . . . , c), which minimizes the clustering criterion J3 under

λj
i > 0 (j = 1, . . . , p) and

∏p
j=1 λ

j
i = 1, is updated according to the following

expression:

λj
i =

{∏p
h=1

[∑n
k=1(uik)m

(
(ah

k − αh
i )2 + (bhk − βh

i )2
)]} 1

p

∑n
k=1(uik)m

[
(aj

k − α
j
i )2 + (bjk − β

j
i )2
] (11)
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Allocation Step: Definition of the Best Partition. In the allocation step,
the prototypes gi of class Pi (i = 1, . . . , c) and the vectors of weights λi =
(λ1

i , . . . , λ
p
i ) (i = 1, . . . , c) are fixed and the membership degree uik (k = 1, . . . , n)

of each item k in each cluster Pi, minimizing the clustering criterion J3 under
uik ≥ 0 and

∑c
i=1 uik = 1(i = 1, . . . , c), is updated according to the following

expression:

uik =

⎡
⎢⎣

c∑
h=1

⎛
⎝
∑p

j=1 λ
j
i

[
(aj

k − α
j
i )

2 + (bjk − β
j
i )

2
]

∑p
j=1 λ

j
h

[
(aj

k − α
j
h)2 + (bjk − β

j
h)2
]
⎞
⎠

1
m−1
⎤
⎥⎦
−1

(12)

3 Experimental Results

To show the usefulness of these methods, experiments with synthetic symbolic
interval data sets of different degrees of clustering difficulty (clusters of different
shapes and sizes, linearly non-separable clusters, etc) and an application with a
real data set are considered.

3.1 Synthetic Data Sets

In each experiment, we considered two standard quantitative data sets in �2.
Each data set has 450 points scattered among four classes of unequal sizes and
ellipses shapes: two classes of size 150 each and two classes of sizes 50 and 100.
Each class in these quantitative data sets were drawn according to a bi-variate
normal distribution.

We consider two different configurations for the standard quantitative data
sets: 1) data drawn according to a bi-variate normal distribution where the class
covariance matrices are unequal and 2) data drawn according to a bi-variate
normal distribution where the class covariance matrices are almost the same.

Each data point (z1, z2) of each one of these synthetic quantitative data sets is
a seed of a vector of intervals (rectangle): ([z1− γ1/2, z1 + γ1/2], [z2− γ2/2, z2 +
γ2/2]). These parameters γ1, γ2 are randomly selected from the same prede-
fined interval. The intervals considered in this paper are: [1, 10], [1, 20], [1, 30]
and [1, 40].

Symbolic interval data set 1 were constructed from standard data drawn ac-
cording to the following parameters (configuration 1):

a) Class 1: μ1 = 28, μ2 = 23, σ2
1 = 144, σ2

2 = 16 and ρ12 = 0.8;
b) Class 2: μ1 = 62, μ2 = 30, σ2

1 = 81, σ2
2 = 49 and ρ12 = 0.7;

c) Class 3: μ1 = 50, μ2 = 15, σ2
1 = 49, σ2

2 = 81 and ρ12 = 0.6;
d) Class 4: μ1 = 57, μ2 = 48, σ2

1 = 16, σ2
2 = 144 and ρ12 = 0.9;

Symbolic interval data set 2 were constructed from standard data drawn ac-
cording to the following parameters (configuration 2):

a) Class 1: μ1 = 28, μ2 = 23, σ2
1 = 100, σ2

2 = 9 and ρ12 = 0.7;
b) Class 2: μ1 = 62, μ2 = 30, σ2

1 = 81, σ2
2 = 16 and ρ12 = 0.8;
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c) Class 3: μ1 = 50, μ2 = 15, σ2
1 = 100, σ2

2 = 16 and ρ12 = 0.7;
d) Class 4: μ1 = 57, μ2 = 37, σ2

1 = 81, σ2
2 = 9 and ρρ12 = 0.8 ;

It is expected, for example, that the SFCMAD clustering method performs
well if the data are drawn considering configuration 2.

The evaluation of these clustering methods was performed in the framework of
a Monte Carlo experience: 100 replications are considered for each interval data
set, as well as for each predefined interval. In each replication a clustering method
is run (until the convergence to a stationary value of the adequacy criterion) 50
times and the best result, according to the corresponding criterion, is selected.

In order to compare the clustering results furnished by the adaptive and non-
adaptive fuzzy clustering methods for interval data presented in this paper an
external index, the corrected Rand index (CR), will be considered [9]. The CR
index measures the similarity between an a priori hard partition and a hard
partition obtained from the fuzzy partition furnished by the fuzzy clustering al-
gorithm. A hard partition P = {P1, . . . , Pc} is obtained from a fuzzy partition
defining the class Pi (i = 1, . . . , c) as: Pi = {k ∈ {1, . . . , n} : uik ≥ ujk, ∀j ∈
{1, . . . , c}}. CR takes its values from the interval [-1,1], where the value 1 indi-
cates perfect agreement between partitions, whereas values near 0 (or negatives)
correspond to cluster agreement found by chance.

Table 1 shows the values of the average and standard deviation of CR index
according to the different methods and data configurations.

Table 1. Comparison between the clustering methods for interval data sets 1 and 2

Range of values Interval Data Set 1 Interval Data Set 2
of γi i = 1, 2 FCMNAD SFCMAD FCMADC FCMNAD SFCMAD FCMADC

0.689 0.683 0.777 0.478 0.819 0.833
γi ∈ [1, 10] (0.110) (0.108) (0.108) (0.099) (0.136) (0.117)

0.687 0.693 0.755 0.455 0.771 0.772
γi ∈ [1, 20] (0.037) (0.032) (0.040) (0.063) (0.039) (0.046)

0.668 0.661 0.691 0.429 0.644 0.632
γi ∈ [1, 30] (0.033) (0.033) (0.046) (0.056) (0.049) (0.058)

0.620 0.623 628 0.395 0.548 0.505
γi ∈ [1, 40] (0.035) (0.032) (0.035) (0.035) (0.043) (0.063)

As expected, in data configuration 1 (the class covariance matrices are un-
equal) the method based on an adaptive distance for each cluster (FCMADC)
outperforms the method based on a single adaptive distance (SFCMAD). For
this configuration, the method based on a non-adaptive distance (FCMNAD)
presented a similar performance to SFCMAD method.

Data configuration 2 presents class covariance matrices that are almost the
same. As expected, in this case the method based on a single adaptive distance
(SFCMAD) outperform the method based on an adaptive distance for each clus-
ter (FCMADC). The method based on a non-adaptive distance (FCMNAD) has
the worst performance.

In conclusion, for these data configurations, the methods based on adaptive
distances outperform the FCMNAD method. Concerning the adaptive methods,
their performance depend on the intra-cluster structure: the method based on
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a single adaptive distance performs well when the a priori classes have similar
dispersions whereas the method based on an adaptive distance for each cluster
performs well when the a priori classes have dissimilar dispersions.

3.2 Applications with a Real Data Set

A data set with 33 car models described by 8 interval variables is used in this ap-
plication. These car models are grouped in four a priori classes of unequal sizes:
Utilitarian (size 10), Berlina (size 8), Sporting (size 7) and Luxury (size 8). The
symbolic interval variables are: Price, Engine Capacity, Top Speed, Acceleration,
Step, Length, Width and Height.

For this data set, each clustering method was run until the convergence to a
stationary value of the adequacy criterion Jl (l = 1, 2, 3) 60 times and the best
result, according to the corresponding adequacy criterion, is selected. Moreover,
m was set equal to 2.

FCMNAD, SFCMAD and FCMADC clustering algorithms have been applied
to this data set. The 4-cluster hard partition obtained with these clustering
methods were compared with the 4-cluster hard partition known a priori. The
comparison index used is the corrected Rand index CR which is calculated for
the best result. The CR indices were 0.254, 0.500 and 0.526, respectively, for
these clustering methods. In conclusion, for this interval data set, FCMADC
method presents the best performance whereas the FCMNAD method presents
the worst one.

4 Conclusions

In this paper, a fuzzy c-means clustering method for symbolic interval data is
introduced. This method furnish a partition of the input data and a correspond-
ing prototype for each class by optimizing an adequacy criterion which is based
on a single adaptive Euclidean distance between vectors of intervals.

The evaluation of this method in comparison with previous fuzzy c-means
clustering methods having adequacy criterion based on (non-adaptive and adap-
tive for each cluster) Euclidean distances have been carried out. The accuracy
of the results furnished by these clustering methods were assessed by the cor-
rected Rand index considering synthetic interval data sets in the framework of a
Monte Carlo experience and an application with a real data set. Concerning the
average CR index for synthetic and real symbolic interval data sets, the meth-
ods with adaptive distances outperform the method with non-adaptive distance.
Regarding the adaptive methods, their performance depend on the intra-cluster
structure: the method based on a single adaptive distance performs well when
the a priori classes have a similar dispersion whereas the method based on an
adaptive distance for each cluster performs well when the a priori classes have
a dissimilar dispersion.

Acknowledgments: The author would like to thank CNPq (Brazilian Agency) for
its financial support.
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Abstract. Although many works have been done in recent years for
the designing Fuzzy-Neural Networks (FNN) from input-output data,
the results concerning how to analyze the performance of some methods
from a rigorous mathematical point of view are somewhat few. In this
paper, the approximation bound for the Table Look-up Scheme with the
Bell Membership Function is established. The detailed formulas of the
error bound between the nonlinear function to be approximated and the
FNN system designed based on the input-output data are derived.

1 Introduction

FNN systems are hybrid systems that combine the theories of fuzzy logic and
neural networks. Designing the FNN system based on the input-output data is
a very important problem [1,2,3]. Some universal approximation capabilities for
a broad range of neural network topologies have been established by T. P. Chen
[4]. More results concerning the approximation of Neural Network can be found
in [5,6,7].

In paper [2], an approach so called Table Lookup Scheme was introduced for
training of Fuzzy Logic System. The paper [3] studied the relevant approximation
accuracy of the table lookup scheme with Triangular Membership Function and
Gaussian Membership Function. In this paper, taking advantage of some similar
techniques of paper [3], we obtain the upper bound for the approximation by
using the table lookup scheme with Bell Membership Function.

2 Table Lookup Scheme with Bell Membership Function

Before introducing the main results, we firstly introduce some basic knowledge
on the designing FNN systems with table lookup scheme, which was proposed
in [2] and also can be found in [3]. Given the input-out data pairs

(xq
0, y

q
0), q = 1, 2, · · · (1)
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where xq
0 ∈ U = [α1, β1] × . . . × [αn, βn] ⊂ Rn and yq

0 ∈ Uy = [αy, βy] ⊂ R.
If the data are assumed to be generated by an unknown nonlinear function
y = f(x), the table lookup scheme in [2] can help us to design a FNN system to
approximate the function f(x). For convenience to illustrate the main result of
this paper, we describe this method in a brief way as follows.

Step 1. To begin with define fuzzy sets to cover the input and output spaces.
Define Ni(i = 1, 2, · · · , n) fuzzy sets Aji

i (ji = 1, 2, · · · ,Ni) on each [αi, βi]
with the following bell membership functions:
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where ji = 1, 2, · · · , Ni and αi = e1i < e
2
i < · · · < eNi

i = βi. Similarly, define
Ny fuzzy sets Bl(l = 1, 2, · · · , Ny) on [αi, βi] with centers at αy = e1y < e

2
y <

· · · < eNy

i = βy.
Step 2. Generate one fuzzy IF-THEN rule from one input-output pair. For each

input variable xi(i = 1, 2, · · · , n), determine the fuzzy set Ajp
i

i such that
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j
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0i) ≥ μA
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i

(xp
0i), ji = 1, 2, · · · , Ni. (3)

Similarly, determine μBlp such that μBlp(yp
0) ≥ μBl(yp

0) for l = 1, 2, · · · , Ny.
Finally, obtain a fuzzy IF-THEN rule as

Ru(P ) : IF x1 is Ajp
1

1 and · · · and xn is Ajp
n

n THEN y is Blp. (4)

Step 3. Assigned a degree to each rule generated in Step 2. If there exist con-
flicting rules, i.e., rules with the same IF parts but different THEN parts,
then assign a degree to each generated rule in Step 2 as follows:

D(Ru(P )) =
n∏

i=1

μ
A

j
p
i

i

(xp
i ) · μBlp(yp) (5)

Keep only one rule from a conflicting group that has the maximum degree.
Step 4. Create the fuzzy rule base as follows:

Ru(j) : IF x1 is Aj1
1 and · · · and xn is Ajn

n THEN y is B(j). (6)

where j = (j1, · · · , jn) ∈ J and J is the index set of the fuzzy rule base. For
convenience of discussing of the following text, let ‖j ∈ J‖ = N .

Step 5. Construct the fuzzy system as

f̂(x) =

∑
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] (7)

where y(j) is the center of B(j).



1024 W. Ma

The above FNN system is constructed by using the membership functions
that achieve the lagest values at the sampling points of the input-output pairs,
as detailed in [2]. This paper concentrates on the approximation bound for this
method with bell membership function.

3 Approximation Bound with Bell Membership Function

The following theorem gives the approximation bound of FNN system f̂(x) of
(7) which is constructed by using the clustering method with bell membership
function.

Theorem 1. Let f(x) be a continuous function on U that generates the input-
output pairs in (1). Then the following approximation property holds for the FNN
system f̂(x) of (7):

|f(x) − f̂(x)| ≤ hy

2
+

n∑
i=1

{∥∥∥∥ ∂f∂xi
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∞
·
[
hi

2
+ dx + 2n−1 ·N ·

(
σ +

d2x
σ

)]}
(8)

where the infinite norm ‖·‖∞ is defined as ‖d(x)‖∞ = supx∈U |d(x)| and,

hi = max
1≤ji≤Ni−1

|eji+1
i − eji

i |

hy = max
1≤l≤Ny−1

|el+1
i − eli|

dx = min
j
|x− ej| (9)

Proof. From (7) we have

|f(x)− f̂(x)| ≤

∑
j∈J

[
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Paper [3] obtain the following result when the relevant approximation bound for
the clustering method with triangular membership function was discussed:

|f(x)− y(j)| ≤
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Combining the (10) and (11), we have

|f(x)− f̂(x)| ≤

∑
j∈J

{[
n∑

i=1

∥∥∥ ∂f
∂xi

∥∥∥
∞
·
(
|xi − eji

i |+ hi

2

)
+ hy

2

]
·

n∏
i=1

[
1

1+
(xi−e

ji
i

)2

σ2

]}

∑
j∈J

n∏
i=1

[
1

1+
(xi−e

ji
i

)2

σ2

]

≤ hy

2
+

n∑
i=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∥∥∥∥ ∂f∂xi

∥∥∥∥
∞

⎡
⎢⎢⎢⎢⎣
hi

2
+

∑
j∈J

|xi − eji

i | ·
n∏

i=1

(
1

1+
(xi−e

ji
i

)2

σ2

)

∑
j∈J

n∏
i=1

(
1

1+
(xi−e

ji
i

)2

σ2

)

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)

Now, we just focus on analyzing the term

∑
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on the right-hand side of (12). We only consider the case i = 1 and the proof
remains the same for i = 1, 2, . . . , n.

Employing the similar method in [3], given any point x = (x1, x2, . . . , xn) ∈ U ,
we divide space U in to 2n areas and define some sets concerning the table lookup
center as follows:

Ux
1 = {x ∈ U : x1 − x1 ≥ 0, . . . , xn − xn ≥ 0}
Ux

2 = {x ∈ U : x1 − x1 ≥ 0, . . . , xn − xn < 0}
. . .

Ux
2n−1 = {x ∈ U : x1 − x1 < 0, . . . , xn − xn ≥ 0}
Ux

2n = {x ∈ U : x1 − x1 < 0, . . . , xn − xn < 0} (13)

And define some sets concerning the cluster centers

V x = {x ∈ U : |x1 − x1| < dx},
V

x
= {x ∈ U : |x1 − x1| ≥ dx},

V x
m = V

x ∩ Ux
m, (m = 1, . . . , 2n). (14)

Apparently, there are two cases need to consider.
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Case 1: xl
c ∈ V x, which indicates |xl

c,1 − x1| < dx, we have
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Case 2: ej ∈ V x
=
⋃2n

m=1 V
x
m. We only consider the case ej ∈ V x

1 . For the cases
ej ∈ V x

2 , . . . , V
x
2n , the same result can be obtained. From (12), (13) and (14), we
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The second inequality of (16) holds for the following reason
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Considering cases ej ∈ V x
2 , . . . , V

x
2n , we have
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From (18) and (19), we have
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Combining (14), (15) and (20), it can be shown that

∑
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From (12) and (21), we get the desired result.  !

4 Concluding Remarks

In this paper, an upper bound, hy

2 +
n∑

i=1

{∥∥∥ ∂f
∂xi

∥∥∥
∞

[
hi

2 + dx + 2n−1N
(
σ + d2

x

σ

)]}
,

concerning the approximation bound of table lookup scheme with Bell Member-
ship Function is proved in a rigorous mathematical way. The techniques employed
in the proof of the theorem are expected to be used to obtain or improve other
approximation bound of other methods of FNN.
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Abstract. Understanding data is usually done extracting fuzzy or crisp logical 
rules using neurofuzzy systems, decision trees and other approaches. Prototype-
based rules are an interesting alternative providing in many cases simpler, more 
accurate and more comprehensible description of the data. Algorithm for 
generation of threshold prototype-based rules are described and a comparison 
with neurofuzzy systems on a number of datasets provided. Results show that 
systems for data understanding generating prototypes deserve at least the same 
attention as that enjoyed by the neurofuzzy systems. 

1   Introduction 

Data mining and knowledge discovery algorithms are focused on understanding of 
data structures, still one of most important challenges facing computational 
intelligence. Data understanding requires extraction of crisp or fuzzy logical rules. For 
some datasets surprisingly accurate and simple logical rules may be generated [1], but 
in some cases sets of logical rules may be too large or too complicated to be useful. 
Crisp rules partition the input space into hyperboxes and thus even relatively simple 
tasks that require oblique decision borders may lead to complicated sets of rules. All 
major data mining software suits use as their important component decision trees for 
crisp logical rule extraction. C4.5 [3] and CART [4] are the most popular algorithms 
used in many packages, but there are many others, for example SSV trees [5] used in 
the Ghostminer package [6]. Inductive machine learning algorithms are rarely used in 
data mining systems. Fuzzy rules (F-rules) are more flexible and have been used in 
many successful real word applications reported in literature [7]. Unfortunately this 
group of methods is also limited; usually they are less transparent then crisp logical 
rules (C-rules) and may be difficult to understand, therefore they are rarely found in 
data mining software suits. F-rules work well with continuous numerical attributes but 
the real word applications often require analysis of mixed data, including symbolic or 
nominal attributes, which are not supported directly by fuzzy rules.  

An alternative approach to data understanding, based on similarity [8] rather than 
logic, extracts rules based on prototypes (P-rules). People making decisions rarely use 
logic, but most often use their memory to recall similar cases and outcomes of 
previous decisions. In similarity-based learning framework (SBL) two major types of 
P-rules have been defined [9]: nearest neighbor rules, where classification decisions 
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are based on rules assigning query vectors to the same class that majority of the 
closest prototypes belong to, and the threshold rules, where each prototype has an 
associated distance threshold which defines subspace around the prototype with 
associated class label.  

One way to define prototypes threshold rules is by using heterogeneous decision 
trees (HDT) [10], a classical decision tree algorithm that is extended to use new 
attributes based on distances between training vectors. This algorithm has found some 
of the most accurate and simplest descriptions of several datasets. Another approach 
to threshold rules is based on a Prototype Threshold Decision List (PTDL), where 
linear list of ordered rules is created. In this paper the PTDL algorithm is introduced 
and compared with HDT. The next section describes how P-rules support different 
types of attributes, the third section presents threshold rules decision list algorithm, in 
the fourth section results of numerical experiments are presented, and the last section 
contains conclusions and discussion. 

2   Heterogeneous Distance Functions 

Real word datasets often contain different types of features, creating serious 
difficulties for large group of computational intelligence algorithms, including most 
methods based on fuzzy rules [7][11][13]. P-rules solve the problem of combination 
of continuous, discrete, symbolic and nominal attributes using heterogeneous distance 
function (HDF). 

HDFs introduced by Wilson and Martinez [14] allow for calculation of distance for 
all types of attributes. Several types of HDF have been introduced, based on an 
assumption that distances are additive: 

( ) ( )
1

, ,
n

i i
i

D d x r
α α

=
=∑x r  (1) 

where ( )rx,D  is the distance between two vectors and ( )ii rxd ,  is the distance 

calculated for a single dimension. In the SBL framework [8] HDF allow for treating 
different types of features in a natural way. For real-valued or ordered discrete 
features Minkovski’s distances (2) are used and for symbolic features probabilistic 
distance functions (3) are used, for example:  

( )
1

,
n

Mink i i
i

D x r
αα

=
= −∑x r  (2) 

( ) ( ) ( )
1 1

, | |
n C

VMD j i j i
i j

D p c x p c r
αα

= =

= −∑∑x r  (3) 

where x and r are respectively data and reference vectors, n is the number of features, 
C is the number of classes, and α is the value of exponent (α=2 for Euclidean 

functions). ( )|j ip c x  and ( )|j ip c r  are calculated as 
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( )|
Nxij

p c xj i
Nxi

=  (4) 

where Nxi is the number of instances in the training set that have value x for attribute 
i, and Nxij is the some as Nxi but for class j. 

This types of distance functions are additive, so the overall distance function can 
be calculated as a sum of contributions from both types of distance measures, 
depending on the attribute types (4): 

( ) ( ) ( )ααα
bbaa rxrxrx ,,, VDMMink DDD +=  (5) 

where xa and ra are subsets of continuous attributes of vectors x and r, and xb and rb 
are subsets of their symbolic features. Features should be normalized to assure that 
each distance component has the some or comparable influence.  

In P-rules α parameter have significant influence on the shape of decision borders. 
Changing α value from 1 to ∞ different shapes of hypersurfaces of constant value are 
obtained. For α equal 1 rhomboidal shape is obtained, for α=2 spherical, higher α 
values lead to rectangular shapes, and for α=∞ lines of constant distance reach a 
square shape. This aspect of P-rules can allow for smooth transition to crisp logical 
rules if it is necessary. Also fuzzy rules can be extracted from datasets in this way, as 
discussed in [15].  

3   Threshold Rules 

P-rules based on distances from prototypes create tessellation of the input space, with 
most distance functions leading to convex polytope cells with hyperplane faces. Some 
cells are infinite, and the use of only two prototypes r1, r2 is equivalent to the linear 
discrimination, defining single hyperplane perpendicular to the line that joins them. 
Threshold based rules are not based on competition for the closest prototype, but 
simply assign all vectors x with D(x,r)<θ to the same class as the prototype r. The 
effect is somehow similar to the use of basis expansion networks with localized 
functions, such as RBFs with Gaussian functions. However, the emphasis here is not 
on approximation but on data understanding, generation of a small number of simple 
rules with distance functions based only on relevant features. 

A constructive algorithm is recommended, creating first quite general P-rules, and 
then more detailed rules and possible exceptions until the whole input space is 
covered. Two strategies to solve the problem of adding new rules developed so far are 
based on: 

− Heterogeneous Decision Trees; 
− ordered prototype threshold decision list. 

3.1   Heterogeneous Decision Trees 

Standard decision trees, such as the C4.5 [3], CART [4] or SSV trees [5], use only 
one type of test to split the data, T(xi < θ), dividing the range of feature values xi into 
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two or more branches. Heterogeneous decision trees (HDT), introduced in [10] use at 
least two qualitatively different types of tests. Adding the second test T(D(x,rk) < θk) 
based on similarity to prototypes provides localized decision borders to the 
hyperplanes contributed by the standard tests. In the simplest case all training vectors 
are initially taken as prototypes, using the square [N x N] distance matrix D(ri,rj), 
where N is the number of input vectors. Then prototype vectors are consecutively 
removed and accuracy checked, until a small number of prototypes is left and 
accuracy starts to degrade. Similarities may be calculated either using Euclidean 
distances or Gaussian kernel functions.  

Combination of hyperplanes obtained from binary splits of features with spherical 
decision borders from distance based threshold tests is quite powerful and may lead to 
interesting rules, although the search for the prototype by elimination of the training 
vectors is a rather costly procedure, with complexity of O(N2). This approach applied 
to the Wisconsin Breast Cancer data generated a single distance based P-rule with 
97.3% accuracy, providing the simplest and most accurate description of this data 
found so far [10]. 

3.2   Prototype Threshold Decision List Algorithm 

Heterogeneous classification trees used for extraction of prototype threshold rules 
create hierarchical sets of rules. An alternative is given by a covering algorithm that 
creates ordered list of rules that may overlap, called here Prototype Threshold 
Decision List (PTDL). This algorithm is based on similar criteria like HDT 
algorithms, however individual rules are stored in an ordered list, starting from the 
most general rule to the most detailed. Because they are overlapping this list of rules 
should be applied in an order, beginning from the most specific (and least reliable), 
and if its conditions are not fulfilled the next more general rule should be checked. In 
the end if none of the rules may be applied, the output label is assigned to the else 
condition, covering all the remaining vectors (Fig. 1). 

PTDL searches among all training vectors for a prototype that maximizes 
appropriate decision tree criterion, like separability (SSV), the Gini index (CART) or 
Information Gain (C4.5). Each prototype and threshold define particular rule, splitting 
the data into vectors in the subspace covered by this prototype with selected threshold 
(vectors that fall inside of the rule borders), and the remaining vectors that fall outside 
of this subspace (outside of the rule). For multiclass problems these two types of 
prototype threshold rules should be explicitly distinguished: inside rules with D(x,rk) 
< θk, and outside rules with D(x,rk) ≥ θk, where each rule is defined for one particular 
class. In the first case prototype rk belong to the subspace, and in the second case it 
does not belong to the subspace defined by the prototype and threshold. For two class 
problems distinguishing between these two types of rules is not important, however 
for the multiclass problems it has significant meaning, increasing generalization and 
model simplicity.  

The sketch of the PTDL code is presented in Fig. 2, where for simplicity two class 
problem is described. In the first step CreateList function calculates distances or 
similarities between all training vectors, storing them in the square matrix D of size  
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NxN where N is the number of training vectors. Then search for all possible splits of 
each training vector that may increase criterion value is performed (for loop). Only 
splits between pairs of neighboring vectors in each column of matrix D belonging to 
different classes are considered, because only such situation guarantees maximization 
of the criterion function. The middle points between these pairs of vectors are taken as 
thresholds. All parameters: the criterion value (C_Crit), threshold (C_Threshol) , 
and rule consequence – class labels are calculated by the function CalcCriterion, 
which returns column vectors with appropriate parameter values for currently 
analyzed i-th training vector . 

 

Fig. 1. Example of threshold rules: Rule 1 – most general; Rule 2 – more accurate; and Else 
area in the remaining subspace 

The best among N training vectors with appropriate threshold maximizing 
particular criterion function is stored in the rule set list. When a new rule is accepted 
all training vectors are classified with the current set of rules to mark all vectors that 
are incorrectly classified and should be used to search for further rules. The PTDL 
algorithm stops if the maximum number of rules is reached, or when all vectors are 
correctly classified.  

This straightforward covering algorithm does not assure good generalization. To 
remedy its weakness optimal number of rules is found using internal crossvalidation 
on the training data (as it is done in the SSV trees [5][10]). Using k-fold 
crossvalidation test for each fold a new decision list is created. In the end at each level 
of the list appropriate criterion is checked (Gini has been used here, but information 
gain, balanced accuracy, separability or other criteria may be optimized), and the 
optimal number of rules that maximize the desired criterion is selected. Rule 
extraction algorithms frequently generate quite different sets of rules, suffering from 
high variance of solutions. To avoid such situation the difference between accuracy 
and standard deviation in crossvalidation calculations is optimized, selecting highly 
accurate low variance solutions.  
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function [P,PLab,TH] = CreateList(T,TLab,MaxRules) 
1. input: 
 T – training set 
 TLab – labels of training vectors 
 MaxRules – maximum number of rules 

2. output: 
 P – set of prototypes 
 PLab–set of labels associated with each prototype P 
 TH – set of thresholds for appropriate prototypes 

3. var 
 N – Number of training vectors 
 D – distance matrix NxN  
 RulN – number of created rules 
 splits – list of possible splits where evaluation 
 of the criterion is calculated 
 C_Crit - vector of criterion values calculated for 
        each split 
 C_Threshold – appropriate threshold for each split 
 C_PLab – class label for current split 
 CurLab – Class labels predicted by set of rules,  
      initially all vectors are wrong classified 
 MXcrit – maximum criterion value for i-th prototype 
 idx – index of best split  

begin 
4. D = dist(T,T);// distances between training vectors; 
5. RulN=1; 
6. while (RulN < MaxRuls) or ErrorsN == 0 
7.     for I = 1:N  // considered each training vector

         as prototype 
8.     splits = FindPossibleSplits(D,Lab); //find all 

           possible thresholds 
9.    [C_Crit,C_Threshold,C_PLab]=   

 CalcCriterion(Dat,LabT,splits,CurLab); //For each 
 threshold calculate criterion value 

10.    [MXcrit,idx]=max(C_Crit);//Find max. criterion value 
11.       if MXcrit > bestCrit 
12.         bestCrit = MXcrit; 
13.         P(RulN) = T(i); 
14.          TH(RulN) = C_Threshold(idx); 
15.      PLab = C_PLab(idx); 
16.         RulN = RulN+1; 
17.       end; 
18.     end 
19.   CurLab = ApplyRules(D,Lab,P,PLab,TH);  
20.   endwhile; 
21. end; 

Fig. 2. The PTDL algorithm code 

4   Experiments with Real Datasets 

To compare results obtained with PTDL, HDT and other well established methods 
WEKA software was used with two popular rule extraction methods: C4.5 decision 
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tree and the Decision Table algorithm, as implemented in WEKA [19]. Results 
obtained with the neurofuzzy rule extraction system NefClass [12][17] are also given 
for comparison. The NefClass calculations were carefully optimized changing the 
number and the type of membership functions to obtain the best solution (the 
difference between accuracy and standard deviation). 

4.1   Datasets 

For tests six different datasets were used, all from the UCI machine learning database 
repository [16], except for Lancet data obtained from the authors of [16]. Each data 
represents a two class problem with mixed type of attributes. A summary of these 
datasets follows: 

Appendicitis – small dataset with 7 attributes and 106 cases, 85 from the first class 
and 21 from the second class. From this dataset 2 most relevant features were selected 
using SSV tree and all tests were performed for these two features. 

Cleveland Heart Disease (Cleveland) – 5 continuous attributes and 8 discrete, 303 
vectors describing healthy and sick persons; 6 cases with missing values were 
removed, leaving 297 vectors. 

Ionosphere – two different types of radar signals reflected from ionosphere; 351 
vectors with 34 attributes.  

Lancet dataset – 692 breast cancer cases, 235 malignant, 457 benign, characterized 
by age plus 10 binary indicators obtained from fine-needle aspirates of breast lumps, 
with the final diagnosis confirmed by biopsy. 

Pima Indians Diabetes (Diabetes) – 768 cases describing results of tests for 
diabetes, with 500 healthy and 268 cases sick people, 8 features.   

Wisconsin Breast Cancer (Wisconsin) – well known breast cancer data from a 
Wisconsin hospital, with 241 cases of malignant, and 458 of benign tumors, each case 
described by 9 discrete features. 

4.2   Classification Results 

10-fold stratified crossvalidation calculations on each dataset were performed using 5 
algorithms that generate crisp and fuzzy rules, providing estimates of their 
generalization. Mean accuracy obtained on test partitions is presented in Table 1. The 
best results obtained for each dataset are marked as bold.  

From Table 1 it is evident that the accuracy of the PTDL algorithm is almost 
always among the best among algorithms tested, creating a small number of rules and 
achieving in most cases best results. The Appendicitis dataset is very small and 
although NefClass has produced slightly better result it has used much larger number 
of fuzzy rules. For the Cleveland dataset only three P-rules were created by PTDL, 
reaching significantly higher accuracy than other systems. In the diabetes case all 
rule-based results are relatively poor, while MLP or SVM results on this dataset reach 
77.5±2.5%, close to the simple linear discrimination analysis (LDA) reported in [20]. 
Therefore a single P-rule based on the shortest distance to two prototypes is sufficient 
in this case instead of the threshold based rules. PTDL did surprisingly well on the 
Ionosphere data, but HDT has an advantage here, achieving almost the same accuracy 
with only 3 rules. Insignificant differences are found on the Lancet data, with an 
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exception of C4.5 rules that are less accurate, with PTDL using just 3 P-rules and 
NefClass 85 F-rules. Also on the Wisconsin dataset only two P-rules were used to 
reach the highest accuracy with the lowest standard deviation.   

Table 1. Classification results, accuracy (Acc) and standard deviation (Std) in %, the number of 
rules estimates the complexity of the model 

 C4.5 
Decision 

Table 
NefClass 

PTDL 
(Gini) 

HDT 
(Gini) 

10 x CV Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules Acc Std Rules 

Appendicitis 85.82 8,51 3 82,00 11,65 2 87.73 8.6 33 85.77 8.6 5 83.78 9,0 3 

Cleveland  76.77 7,17 17 82.09 9,14 8 82.82 6.8 6 84.21 5.1 3 80.83 6,1 5 

Diabetes 74,48 4,42 20 74,87 5,16 32 73.83 2,3 5 70.43 3.5 8 71.74 4.1 2 

Ionosphere 94.94 2.5 9 93,06 3,66 23 72,67 6.7 9 93.45 3.1 15 93.15 2,9 3 

Lancet 92,29 4,62 18 90,33 4,42 22 94.51 2.6 85 93,94 2,5 3 94,51 2,1 4 

Wisconsin  94,58 2,87 11 95.75 1,65 20 94.86 2,6 6 97.66 1.4 2 96.93 1.85 1 

5   Conclusions and Future Works 

The prototype threshold decision list (PTDL) rule extraction algorithm presented in 
this paper is a simple method that creates a small number of accurate P-rules. Results 
obtained on several benchmark datasets are quite encouraging, even though only one 
criterion (Gini) has been considered so far and the simplest heterogeneous distance 
functions have been used. In a few cases these results are significantly better 
comparing to crisp rules obtained with C4.5 decision trees or decision table, or F-rules 
generated by the NefClass, a leading neurofuzzy algorithm. In some cases P-rules 
based on nearest neighbors rather than thresholds should lead to better results. As 
show in [15] prototype-based rules may be converted directly into fuzzy rules, 
therefore algorithms generating P-rules provide and interesting and little explored 
alternative to the neurofuzzy approaches.  

The PTDL algorithm has the following advantages: 

− it supports all attribute types; 
− different types of rules may be generated, depending on the desired requirements: 

C-rules, P-rules or F-rules; 
− it is simple to program and provides flexible decision borders; 
− various distance functions may be used to improve generalization; 
− small number of accurate and comprehensible rules are generated. 

These properties make PTDL algorithm a very interesting and promising tool for 
data analysis. It can be further extended by adding various feature selection 
techniques. In PTDL the output of each rule is binary and each rule may operate on a 
different, independent, locally relevant subset of attributes. This is not quite true for 
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the nearest neighbor type of P-rules where common feature space is required for pairs 
of prototypes, although different pairs may operate in different subspaces. 

Unfortunately the PTDL algorithm has some limitations. Its computational 
complexity is relatively high, requiring O(N2) operations for N training vectors to 
calculate all distances between the training vectors. All distance-based algorithms 
have O(N2) complexity and are thus much slower than simple decision trees and 
therefore quite costly to use on datasets with very large number of vectors. However, 
initial clusterization or a similar technique will significantly reduce the effort [21]. 
For example, joint information obtained from the whole dataset and clustered 
prototypes may be used, in the first step selecting best prototypes from all those 
obtained after clusterization, and then making a local search among training vectors 
close to the selected prototype to tune the rules. A combination of P-rules in both 
threshold and the nearest neighbor style may lead to the best of both worlds: localized 
decision regions combined with the hyperplanes, that sometimes are necessary for 
high accuracy (as in the case of Pima Indian Diabetes data). If a small number of 
features is used to evaluate similarity P-rules have simpler interpretation (the case is 
more similar to a given prototype than to any other) than combinations of features 
used in definition of hyperplanes.  

These and other improvements of the PTDL algorithm will be explored in the near 
future. However, it is already clear that P-rules deserve at least as much attention as 
that enjoyed by the neurofuzzy systems.  
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Abstract. A fuzzy LMS (least-mean-square algorithm) neural network evalua-
tion model, with fuzzy triangular numbers as inputs, is set up to compare the 
importance of different indices. The model can determine attribute or index 
weights (importance) automatically so that they are more objectively and accu-
rately distributed. The model also has a strong self-learning ability so that cal-
culations are greatly reduced and simplified. Further, decision maker’s specific 
preferences for uncertainty, i.e., risk-averse, risk-loving or risk-neutral, are con-
sidered in the evaluation model. Hence, our method can give objective results 
while taking into decision maker’s subjective intensions. Meanwhile, it is sim-
ple. A numerical example is given to illustrate the method. 

1   Introduction 

Multi-attribute decision making involves selecting an alternative that most satisfies the 
objectives after examining and comparing the multiple attributes of the alternatives. 
However, it is often difficult to express all the attributes in crisp numbers. Therefore, we 
have to describe some attributes with linguistic words such as “very important”, or 
“equally important”, and so on. Hence, fuzzy theory was introduced into multi-attribute 
decision making to form the branch of fuzzy multi-attribute decision making [1]. 

Multi-attribute decision making are widely applied in a number of fields relating to 
economic evaluation, project evaluation, performance evaluation, investment decisions, 
etc. It has long been an important topic in decision making. In multi-attribute decision 
making problems, the determination of weights plays an important role. At present, 
weight determination methods could be roughly divided into two categories: subjective 
and objective weight determination methods. Subjective methods can fully reflect the 
intensions of decision makers, so decision results are more likely to be in agreement with 
decision makers desires. However, they tend to be, sometimes, too subjective. Objective 
methods often do not take the decision maker’s intensions into account, so they can yield 
objective results at the expense of  fully reflecting decision maker’s intensions. In multi-
attribute decision making, the decision maker’s different preferences for uncertainty,i.e., 
risk-loving, risk-averse or risk-neutral, will have an effect on the decision results 
[1].Therefore, how to combine both subjective and objective information into decision 
making to make results both objective and able to reflect decision maker’s subjective 
intensions is of both theoretical and practical importance [2, 3, 4]. 

Fuzzy decision making is a mathematical method to deal with decision making under 
fuzzy environments [5, 6, 7]. Prevalent fuzzy decision methods, such as multi-objective 
fuzzy decision making, analytical weighting decision analysis, fuzzy priority ratio  
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approximation method, consensus opinion ranking, etc, usually strive to order the alter-
natives under fuzzy environments, or select the optimal alternative, with certain fuzzy 
restrictions, from a universe of discourse. The huge number of calculations needed 
makes these methods very complex. Hence, we put forward a fuzzy neural network 
model which uses triangular fuzzy numbers as inputs. The feature of our model is that it 
trains and assigns the weights of attributes automatically so that weights are allocated 
more objectively and accurately. This model has a strong self-learning ability. At the 
same time, this model, being an objective method, can also reflect the influence of the 
decision-maker’s subjective preferences for uncertainty on decision results. 

We give a brief introduction to the fuzzy theory in section 2. In section 3, a fuzzy 
LMS (least-mean-square algorithm) neural network evaluation model, with fuzzy trian-
gular numbers as inputs, is set up to solve fuzzy multi-attribute decision making 
(MADM) problems. A numerical simulation is shown in section 4. Section 5 concludes.  

2   Neural Network Model with Fuzzy Inputs 

This paper uses normalized triangular fuzzy numbers as inputs to the neural network 
model [1, 2] for MADM. 

2.1   Neurons with Triangular Fuzzy Numbers as Inputs 

Denote the membership function of triangular fuzzy numbers ),,( 321 jjjj xxxx =  by 
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Specifically, when 321 jjj xxx == , the fuzzy numbers become crisp numbers. 
Linguistic terms can be transformed into triangular fuzzy numbers according to 

certain rules [8, 9, 10]. 
In order to combine the decision maker’s subjective preferences for uncertainty into 

this method, and at the same time make the output unaffected after inputting the 
above-mentioned neurons into crisp numbers, we set up, based on weighted fuzzy 
Hamming distance, the following output function: 
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xj1

xj2                                                                       zj

j
xj3  

Fig. 1. Fuzzy input neurons, j, with triangular fuzzy numbers as inputs 

where jβ  represents the coefficient of the decision maker’s preference for uncer-

tainty, or the decision maker’s uncertainty preference weight for the j-th attribute. 

2.2   Fuzzy LMS Neural Networks with Triangular Fuzzy Numbers as Inputs 

Fuzzy LMS neural network method for fuzzy MADM was developed from the LMS 
neural network [4]. It is a three-leveled network, with the input level being composed 
of initial uncertain signal sources, the second level being the input revision level 
which adjusts inputs after taking into account the decision-maker’s specific prefer-
ences for uncertainty, and the third level being the output level. 

Suppose a multi-attribute decision making problem has M fuzzy attributes (inde-
ices) and m crisp attributes, then there are (M+m) input neurons and one output neu-
ron, as is shown in Fig. 2. 

x11

x12

x13

xM1

xM2

xM3

y

xM+1

xM+m

Input 
level

Revised input 
level

Output level
 

Fig. 2. Fuzzy  LMS neural network 
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After the adjustment of the input sample Xk, the output in the network becomes: 

∑
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=
N

i
kik Xwy

1

 (3) 

where wi represent the weights of the output level, kX  represent the input revision 

level which adjusts inputs after taking into account the decision-maker’s specific 
preferences for uncertainty. 

2.3   Leaning Algorithm for Fuzzy LMS Neural Networks 

We adopt the monitored centre-selection algorithm. The specific learning procedures 
are as follows. 

Define the objective function to be: 
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with 21 ,ηη  being the learning rate.  

3   Fuzzy LMS Neural Network MADM Method 

Our fuzzy LMS neural network multi-attribute decision making model is fairly 
straightforward. We only need to input the attribute scales of the alternatives and the 
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evaluation results into our model and train them. In order to take into account the 
decision-maker’s specific preferences, the positive and negative ideal solutions are 
introduced into our fuzzy LMS model. 

If there are K alternatives, with M fuzzy attributes and m crisp attributes, then, the 
decision matrix is: 
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Decisions are made according to n-2 alternatives or input samples, whose evalua-
tion results have already been obtained. 
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The corresponding evaluation results, or output samples, are: 

),...,,( 221 −= NdddD . 

For crisp attributes, the attribute scales of the ideal and negative ideal solutions re-
spectively are (Benefit type scales are used as examples to illustrate): 

}{max ij
i

j ac =+ ; }{min ij
i

j ac =−  (10) 

For fuzzy attributes, the attribute scales of the ideal and negative ideal solutions re-
spectively are (Benefit type scales are used as examples to illustrate): 

}{maxsup ij
i

j ac =+ ; }{mininf ij
i

j ac =−  (11) 

These attribute scales can also be given by the decision maker, according to her 
subjective judges. Let the expected output of the positive and negative ideal solutions 
be 0.95 and 0.05 respectively. 

Input the above data into the network  and begin training,  we can get the final 
weights of the index wj and jβ , with wj being the importance of each index.  

4   Numerical Simulations 

A firm now has to decide which product to develop. Suppose there are already 15 
similar products in the market, whose attribute indices and overall market perform-
ances are shown in Table 1. 

In Table 1, the former 3 are crisp attributes and the latter 5 are fuzzy attributes. For 
the fuzzy attributes, we could transform them into triangular fuzzy numbers according 
to Table 2. 
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Table 1. Attribute scales and overall market performances of similar products prevalent in the 
market 

 Production 
cost ($) 

Operational 
cost ($) Noise (db) Function Maintenance Reliability Flexibility Safety 

Overall 
performances 

1 42 64 35 VG RB VG RB RG 0.78 

2 20 52 70 A RB RG G A 0.56 

3 35 47 65 A RG G G RG 0.73 

4 40 30 40 G G G RG G 0.92 

5 30 55 55 RG G G A VG 0.80 

6 63 75 79 G RG RB G RG 0.57 

7 64 40 40 RG RG VG G RG 0.67 

8 84 40 54 RG VG A VG RG 0.82 

9 38 70 88 RG G RG G G 0.46 

10 75 41 50 A RG G RG VG 0.69 

11 49 68 79 G A G G VG 0.56 

12 44 35 90 RG G A VG A 0.63 

13 80 31 46 G RG A RG A 0.74 

14 41 45 42 VG RG VG A VG 0.87 

15 57 68 53 RG A RG A G 0.58 

Table 2. Transformation rules for fuzzy linguistic words 

Order Linguistic words Corresponding triangular fuzzy numbers 

1 Very good (VG) (0.85,0.95,1.00) 

2 Good (G) (0.70,0.80,0.90) 

3 Relatively good (RG) (0.55,0.65,0.75) 

4 Average (A) (0.40,0.50,0.60) 

5 Relatively bad (RB) (0.25,0.35,0.45) 

6 Bad (B) (0.10,0.20,0.30) 

7 Very bad ( VB) (0.00,0.05,0.15) 

Then select the ideal and negative ideal solutions (see Table 3). After normaliza-
tion, input the 17 samples into the fuzzy neural network. 

Having the network trained, input the data in Table 4 into the network, we will get 
the weights and the values of jβ  (see Table 4). 

Negative weights show that the less the value of this index, the more satisfaction 
the index gives the decision maker. The decision maker is risk averse if jβ  is greater 

than 0.5.  
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Table 3. The ideal and the negative ideal solutions 

 Ideal solution Negative ideal solution 

Production cost ($) 20 85 

Operational cost ($)  30 75 

Noise  (dB) 19 70 

Performance (1.0,1.0,1.0) (0.4,0.4,0.4) 

Maintenance (0.9,0.9,0.9) (0.25,0.25,0.25) 

Reliability (1.0,1.0,1.0) (0.4,0.4,0.4) 

Flexibility (1.0,1.0,1.0) (0.4,0.4,0.4) 

Safety (1.0,1.0,1.0) (0.4,0.4,0.4) 

Overall performances 0.95 0.05 

Table 4. Values of weights and jβ  

Indices Production 
cost ($) 

Operational 
cost ($) Noise (db) Function Maintenance Reliability Flexibility Safety 

Importance -0.035 -0.111 -0.164 0.220 0.230 0.240 0.133 0.154 

jβ  -- -- -- 0.571 0. 642 0.621 0.513 0.782 

5   Conclusion 

Most multi-attribute decision making methods are either too objective or too subjective to 
give decision results that are both scientific and in agreement with the decision maker’s 
intensions. Many of the methods also have the shortcoming of complexity as huge 
amount of calculations are often needed. In this paper an LMS neural network model was 
set up with fuzzy triangular numbers as inputs to solve multi-attribute decision making 
problems. The model can determine the weights of attributes automatically so that 
weights are more objectively and accurately distributed. The model also has a great self-
learning ability so that calculations are greatly reduced and simplified. Further, decision 
maker’s specific preferences for uncertainty, i.e., risk-averse, risk-loving or risk-neutral, 
are considered in the determination of weights. Hence, this method can give objective 
results after taking into decision maker’s subjective intensions.  
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Abstract. This paper studies how to compare and select one best alternative, 
from the new alternatives, according to historical or current ones. Previous 
methods not only need a lot of data but also are complex. So, we put forward an 
RBF neural network method that not only has the advantages of common neural 
network methods, but also need much less samples and are straightforward. The 
number of neurons at the hidden level is easily determined. This model can de-
termine attribute weights automatically so that weights are more objectively and 
accurately distributed. Further, decision maker’s specific preferences for uncer-
tainty, i.e., risk-averse, risk-loving or risk-neutral, are considered in the deter-
mination of weights. Hence, our method can give objective results while taking 
into decision maker’s subjective intensions. A numerical example is given to il-
lustrate the method. 

1   Introduction 

Fuzzy multi-attribute decision making ( MADM) is widely applied in both social and 
economic environments. Researches on this subject centers essentially around the 
following aspects[1-5]. 

Selection and normalization of indices. Up to now, researches on this subject are 
fairly rich and developed. 

Comparison and ranking of fuzzy numbers. There are many researches on this sub-
ject. However, most of them do not take into account decision makers’ subjective 
features so as to give results in agreement with their intesions. Only a few of them, 
such as reference, which gave a method to compare the fuzzy numbers based on deci-
sion makers’ different preferences for uncertainty. 

Determination of the weights of the multiple attributes. There are also many meth-
ods in this aspect, for example, linear weighting, TOPSIS, etc, but different method 
can often achieve quite contradictory results. 

This paper studies how to compare and select one best alternative from the new 
ones according to historical or current alternatives. Previous methods not only need a 
lot of data but also are complex. So, we put forward an RBF neural network method 
that not only has the advantages of common neural network methods, but also need 
much less samples and are straightforward. 

In this paper, a neural network model with triangular fuzzy numbers is given in sec-
tion 2. In section 3, we set up the fuzzy RBF nueral network model for MADM. A 
numerical example is given to illustrate the method in section 4. Section 5  concludes. 
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2   Neural Network Model with Fuzzy Inputs 

In this paper, we use standardized triangular fuzzy numbers as input neurons of the 
fuzzy RBF neural network [1, 2]. See Fig 1. 

xj1

xj2                                                                       zj

j
xj3  

Fig. 1. Fuzzy input neurons, j, with triangular fuzzy numbers as inputs 

2.1   Neurons with Triangular Fuzzy Numbers as Inputs 

Denote the membership function of triangular fuzzy numbers ),,( 321 jjjj xxxx =  by 
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Specifically, when 321 jjj xxx == , the fuzzy numbers become crisp numbers. 
Linguistic terms can be transformed into triangular fuzzy numbers according to cer-

tain rules [8, 9, 10]. See Table 1. 
In order to combine the decision maker’s subjective preferences for uncertainty into 

this method, and at the same time make the output unaffected after inputting the 
above-mentioned neurons into crisp numbers, we set up, based on weighted fuzzy 
Hamming distance, the following output function: 
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where jβ  represent the coefficient of the decision maker’s preference for uncertainty, 

or the decision maker’s uncertainty preference weight for the j-th attribute. 
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Table 1. Transformation rules for fuzzy linguistic words 

Order Linguistic words 
Corresponding triangular 

fuzzy numbers 

1 Very good (VG) (0.85,0.95,1.00) 

2 Good (G) (0.70,0.80,0.90) 

3 Relatively good (RG) (0.55,0.65,0.75) 

4 Average (A) (0.40,0.50,0.60) 

5 Relatively bad (RB) (0.25,0.35,0.45) 

6 Bad (B) (0.10,0.20,0.30) 

7 Very bad ( VB) (0.00,0.05,0.15) 

2.2   Fuzzy RBF Neural Networks with Triangular Fuzzy Numbers as Inputs 

Fuzzy RBF neural network method for fuzzy MADM was developed from the RBF 
network put forward by Powell [4]. It is a four-leveled network, with the input level 
being composed of initial uncertain signal sources, the second level being the input 
revision level which adjusts inputs after taking into account the decision-maker’s 
specific preferences for uncertainty, the third level being hidden levels whose num-
bers are determined according to the specific problems under consideration and whose 
transfer functions are nonnegative, nonlinear and central Radial-symmetric, and the 
fourth level being the output level. 

x11 Hidden unit 1

x12

x13

xM1 Hidden unit l

xM2

xM3

y

xM+1

Hidden unit n

xM+m

Hidden unit N

Input 
level

Revised input 
level

Hidden level Output level
 

Fig. 2. Fuzzy RBF neural network 
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Suppose a multiple attribute decision making problems has M fuzzy attributes and 
m crisp attributes, then there are (M+m) input neurons, and one output neuron. Fur-
ther suppose there are N hidden units, or N training samples, in the hidden levels of 
the network, as is shown in Fig. 2. 

After the adjustment of the input sample Xk, the output in the network becomes: 

),(
1

i

N

i
kik ZXwy ∑

=
= ϕ  (3) 

where wi represent the weights of the output level, ),( ik XXϕ  represent the incentive 

output functions of the hidden levels, which generally are Gauss functions: 
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where Zi=(zi1, zi2,…, zi,M+m) represent the centre of the Gauss functions, and 2
iσ  repre-

sents the variance. 

2.3   Leaning Algorithm for Fuzzy RBF Neural Networks 

We adopt the monitored centre-selection algorithm. The specific learning procedures 
are: 

Define the objective function to be: 
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where dk represent the expected output of network samples. 
The learning of the network is in fact the solving of freedom parameters, 

jiii wt β and ,,, 1−Σ  to minimize the objective function. 
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where 1−Σ i  are the freedom parameters of the hidden levels related to the variance of 

Gauss function, 
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    For the freedom parameters of the hidden levels, 1−Σ i , there is, 
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with 4321 ,,, ηηηη  being the learning rate.  

3   Fuzzy RBF Neural Network Model for MADM 

Our fuzzy RBF neural network multiple attribute decision making model is fairly 
straightforward. We only need to input the attribute scales of the alternatives and the 
evaluation results into our model and train them. In order to take into account the 
decision-maker’s specific preferences, the positive and negative ideal solutions are 
introduced into our fuzzy RBF model. 

We are to select one best alternative from P new alternatives. Decisions are to be 
made according to the evaluation results of some alternatives similar to the P new 
ones. Suppose we have already had K (K=n-2) similar alternatives, with M fuzzy 
attributes and m crisp attributes,  and their evaluation result. Then, the data matrix, C, 
of the K alternatives are: 
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The normalized data matrix, A, of the N-2 samples is: 
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The K=n-2 alternatives are used as input samples, whose evaluation results have 
been obtained. The corresponding evaluation results, or output samples, are: 

),...,,( 221 −= NdddD . 

Then determine the ideal solutions and the negative ideal solutions.  
For crisp attributes, the attribute scales of the ideal and negative ideal solutions re-

spectively are (Benefit type scales are used as examples to illustrate): 

},{max ijij
i

j acc ≥+  

},{min ijij
i

j acc ≤−  
(14) 

For fuzzy attributes, the attribute scales of the ideal and negative ideal solutions re-
spectively are (Benefit type scales are used as examples to illustrate): 

},{maxsup ijij
i

j acc ≥+  

},{mininf ijij
i

j acc ≤−  
(15) 

These attribute scales can also be given by the decision maker, according to her 
subjective judges. Let the expected output of the positive and negative ideal solutions 
be 1.0 and 0 respectively. 

Input the N samples into the fuzzy RBF neural network. Having the network 
trained, input the data of the new alternatives into the network, we will get the ranking 
outputs of the P new alternatives. 

4   Numerical Simulations 

A firm has four new product development alternatives, A1, A2, A3, and A4. The four 
alternatives are evaluated from eight aspects, namely, production cost, operational 
cost, performance, noise, maintenance, reliability, flexibility and safety. The firm 
decides to select an alternative according to the overall market performances of simi-
lar products in the market.   

Suppose there are already 15 similar products in the market, whose attribute index 
scales and overall market performances are shown in Table 2. 

In Table 2, the former 3 attributes are crisp attributes and the latter 5 are fuzzy  
attributes.  

For the fuzzy attributes, we could transform them into triangular fuzzy numbers 
according to Table 1. 

Then select the ideal and negative ideal solutions (see Table 3). After normaliza-
tion of the 17 samples, input the 17 samples into the fuzzy neural network. 
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The normalization equation is (Cost type scales are used as examples to illustrate): 
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where, +
jc and −

jc are the j-th attribute scale of ideal solution and negative ideal solu-

tion respectively. 

Table 2. Attribute scaless and overall market performances of similar products prevalent in the 
market 

 Production 
cost ($) 

Operational 
cost ($) Noise (db) Function Maintenance Reliability Flexibility Safety 

Overall 
performances 

1 42 64 35 VG RB VG RB RG 0.78 

2 20 52 70 A RB RG G A 0.56 

3 35 47 65 A RG G G RG 0.73 

4 40 50 40 G G G RG G 0.92 

5 30 55 55 RG G G A VG 0.80 

6 63 65 79 G RG VB G RG 0.57 

7 64 40 40 RG RG VG G RG 0.87 

8 84 60 54 RG VG A VG RG 0.82 

9 38 40 88 RG G RG G G 0.76 

10 75 41 50 A RG G RG VG 0.69 

11 49 68 79 G A G G VG 0.76 

12 44 35 90 RG G A VG A 0.73 

13 80 31 46 G RG A RG A 0.74 

14 41 45 42 VG RG VG A VG 0.87 

15 57 68 53 RG A RG A G 0.58 

Table 3. The ideal and the negative ideal solutions 

 Ideal solution Negative ideal solution 

Production cost ($) 20 48 

Operational cost ($)  35 65 

Noise  (dB) 19 70 

Performance (1.0,1.0,1.0) (0.4,0.4,0.4) 

Maintenance (0.9,0.9,0.9) (0.25,0.25,0.25) 

Reliability (1.0,1.0,1.0) (0.4,0.4,0.4) 

Flexibility (1.0,1.0,1.0) (0.4,0.4,0.4) 

Safety (1.0,1.0,1.0) (0.4,0.4,0.4) 

Overall performances 1.00 0.00 
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Having the network trained, input the data in Table 4 into the network, we will get 
the outputs (see Table 4). 

Table 4. Alternative indexes values of the product being developed 

Type of product being developed 
Attribute 

A1 A2 A3 A4 

Production cost ($) 45 25 35 48 

Operational cost ($)  35 50 45 65 

Noise  (db) 25 60 50 19 

Performance G RG A RG 

Maintenance A A G RB 

Reliability G G A RG 

Flexibility G A VG A 

Safety RG VG RG G 

Overall performances 0.83 0.72 0.75 0.71 

The ordering of the alternatives are: 4231 AAAA . 

5   Conclusion 

Most multiple attribute decision making methods are either too objective or too sub-
jective to give decision results that are both scientific and in agreement with the deci-
sion maker’s intensions. Many of the methods also have the shortcoming of complex-
ity as huge amount of calculations are often needed.  

This paper sets up a fuzzy RBF neural network model with fuzzy triangular num-
bers (or fuzzy linguistic words) as inputs to solve multiple attribute decision making 
problems. The model can determine the weights of attributes automatically so that 
weights are more objectively and accurately distributed. The model also has a great 
self-learning ability so that calculations are greatly reduced and simplified. Further, 
decision maker’s specific preferences for uncertainty, i.e., risk-averse, risk-loving or 
risk-neutral, are considered in the determination of weights. Hence, this method can 
still give objective results even after taking into decision maker’s subjective intensions. 
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Abstract. After the network has been constructed, with the increas-
ing demand, the network must be faced with the capacity expansion
problem. In this paper, a mathematic model is formulated to solve the
bottleneck capacity expansion problem of network with fuzzy demand.
A linear program model with fuzzy coefficient is put forward. We present
a decomposition algorithm to solve the model. The results show the de-
composition algorithm can improve the solving speed greatly. So, we can
minimize the expansion cost and provide evidence for the decision maker
to make reasonable and effective decision.

1 Introduction

There are a lot of networks in real-world such as transportation networks, power
networks, water/gas supply networks and logistics networks. With the develop-
ment of socio-economy, the old networks can not meet the increasing demands, so
it may be faced with the capacity expansion problem. For example, one path in
power network need to be expanded, but what decides the capacity of the path is
its bottleneck capacity, that is the minimum capacity of the segment of the path,
so we call it the bottleneck capacity expansion problem. Yang Chao studied the
bottleneck capacity expansion problem with budget constraints and put forward
a strong polynomial algorithm for a special case [1,2,3]. Wu Yun studied the bot-
tleneck capacity expansion problem with budget constraints based on the Yang’s
model, in which the unit expansion cost is stochastic. He devised a mixed intelli-
gent algorithm using stochastic programming [4]. Usually, with the development
of socio-economy, the needs which the network should meet may be difficult to
forecast. In many cases, the needs are manifested in uncertain forms such as
stochastic and fuzzy. Although, the stochastic model can deal with uncertainty
better, it needs the known probability distribution. So, it has limitation. There
are plenty of applications in virtue of fuzzy theory to describe demands [5,6,7]. In
this paper, we put forward a new problem that we have a set of facilities which
have different prices and expansion capabilities to expand the bottleneck capac-
ity of the network. We want to decide which facility portfolio be employed to
expand the bottleneck capacity of the network and minimize the expansion cost.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1055–1062, 2006.
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For example, there are a communication network need be expanding. We have
cablesoptical fibers and multiplexers to expand it. These facilities have different
prices and expansion capabilities. Which facility portfolio should we choose to
meet the increasing needs so that the investment will be minimized. The paper
is organized as follows. In Section 2 we define the problem and we propose a
model for the problem. Section 3 descibes the decomposition algorithm to solve
the model. In section 4, we give an example and the computational experiences
are also presented.

2 Model

2.1 Parameter

Let G (A,E,C) be a network, in which A = {a1, a2, · · · am} is a vertex set
and E = {e1, e2, · · · , en} is an arc set. C = {c1, c2, · · · cn} is initial capac-
ity set of corresponding arcs. In this network, there are K paths, denoted as
pk (k = 1, 2, · · ·K). There is a set of facilities denoted as t (t = 1, · · · , T ) to ex-
pand the arcs in the network. Facility t’s price is ft and expansion capability
is dt. For simplicity, we only consider the fixed cost of facilities. Let D̃k be the
fuzzy demand of path pk (k = 1, 2, · · ·K).

2.2 Fuzzy Demand

A fuzzy number is a normal convex fuzzy set. For the fuzzy number Ñ , its

membership function can be expressed as μÑ =
{
L (x) , l ≤ x ≤ m
R (x) ,m ≤ x ≤ r in which

L (x) is a continuous increasing function, 0 ≤ L (x) ≤ 1.R (x) is a continuous
decreasing function, 0 ≤ R (x) ≤ 1. If both L (x) and R (x) are linear function,
then Ñ is called triangle fuzzy number and denoted as Ñ (l,m, r). Generally,
fuzzy demand is described as triangle fuzzy number. That is to say, the most
possible value of fuzzy demand Ñ (l,m, r) is m, the optimistic value of that is
r and pessimistic value is l. The membership function μÑ is the probability
measure of fuzzy demand. If the demand is m, then the membership value is 1
which denote the most possible case. If the demand is r or l, then the membership
value is 0 which denote the most impossible case.

2.3 Model

Now, we will expand some paths in the network so to let the expanded paths
satisfying demands. At the same time, we should decide which facility portfo-
lio be employed so that the investment will be minimized. Since what decides
the capacity of a path is its segment (arc) that has the minimum capacity of
all the segments in the path, for the path pk (k = 1, 2, · · ·K), the capacity be-
fore expanding is defined Cap (pk) = min

e∈pk

c (e). The model P1 is formulated as

follows:

min
n∑

i=1

T∑
t=1

ftxit (1)
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s.t.Cap (pk) = min
e∈pk

w (e) ≥ D̃k k = 1, 2, · · ·K (2)

0 ≤ wi (ei)− ci (ei) ≤
T∑

t=1

dtxit i = 1, 2, · · ·n (3)

xit = 0, 1, 2, · · · i = 1, 2, · · · , n t = 1, 2, · · ·T (4)

In the above model,xit is a decision variable that indicates the number of
facility t employed in arc i. W = {w1, w2, · · · , wn} is a vector that denotes the
corresponding arc’s capacity after expanded. D̃k (lk,mk, rk) is a triangle fuzzy
number.

3 Decomposition Algorithm

The above model is a linear programming model with fuzzy coefficients. There
are several approaches for this kind of problems [8]. In this paper, we employ the
method based on fuzzy number sorting criteria to transform the fuzzy inequality
in the model to non fuzzy inequality, so that an equivalent deterministic model
P2 is formulated as follows:

min
n∑

i=1

T∑
t=1

ftxit (5)

s.t.Cap (pk) = min
e∈pk

w (e) ≥ lk k = 1, 2, · · ·K (6)

Cap (pk) = min
e∈pk

w (e) ≥ mk k = 1, 2, · · ·K (7)

Cap (pk) = min
e∈pk

w (e) ≥ rk k = 1, 2, · · ·K (8)

0 ≤ wi (ei)− ci (ei) ≤
T∑

t=1

dtxit i = 1, 2, · · ·n (9)

xit = 0, 1, 2, · · · i = 1, 2, · · · , n t = 1, 2, · · ·T (10)

Remove formula (6) and (7) from the above model, the feasible zone will not
be changed. So the model P2 can be reformulated to model P3 as follows:

min
n∑

i=1

T∑
t=1

ftxit (11)

s.t.Cap (pk) = min
e∈pk

w (e) ≥ rk k = 1, 2, · · ·K (12)

0 ≤ wi (ei)− ci (ei) ≤
T∑

t=1

dtxit i = 1, 2, · · ·n (13)

xit = 0, 1, 2, · · · i = 1, 2, · · · , nt = 1, 2, · · ·T (14)
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If we remove formula (12) from model P3, it will be transformed into a knap-
sack problem. Since the knapsack problem was proved NP-complete problem
and our model’s computational complexity is not less than knapsack problem,
so our problem is also NP-complete problem. Although Model P3 is formulated
as integer programming which can be solved by branch and bound method,
as to median and large-size problem, the computation time will become in-
tolerable. In order to reduce computation time, a decomposition algorithm is
brought forward according to the problem’s characteristics to convert model P3
into a two-phase decision model. For formula (12),Cap (pk) = min

e∈pk

w (e) ≥ rk,

that is to expand the capacity of arcs on path pk to rk when the capacity of
arcs are less than demand rk. If the capacity of arcs after expanded is larger
than rk, and what decides the capacity of a path is its arc that has the min-
imum capacity, then doing this will increase the value of objective function,
namely the cost, thus we can’t get the optimum solution. Bearing in mind
of this, the first phase of our decomposition algorithm is to determine the
arcs need to be expanded, denoted E′ ⊆ E. Usually, the arcs need to be ex-
panded are far less than the arcs in network. Therefore, the number of con-
straints (13) is greatly reduced. The second phase is to solve the sub-problem of
knapsack problem. We give the specific steps of our decomposition algorithm as
follows:

Step 1: initialize, let k = 1, q = 0, set E′ = Φ
Step 2: searche ∈ Pk and c (e) < rk, if e /∈ E′, put e into E′, let q = q + 1; if

all arcs have been searched, go into step 3
Step 3: let k = k + 1, if k ≤ K, turn to step 2; otherwise, go into step 4
Step 4: solve the following sub- problem of knapsack problem

zi = min
T∑

t=1

ftxit (15)

s.t.0 ≤ wi (ei)− ci (ei) ≤
T∑

t=1

dtxit e ∈ E′i = 1, 2, · · · q (16)

Step 5: sum upzi (i = 1, · · · , q), then we obtain the gross expanding cost.

4 Example and Computational Experience

Consider the following network shown in figure 1. There are 36 arcs on the
network and their initial capacities are shown in table 1. There are 9 paths need
to be expanded which are shown in table 2. We have 6 facilities shown in table 3
which have different price and expanding capability. Without losing generality,
here we do not consider units.
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Fig. 1. A network to be expanded

Table 4. Results

Arcs need
expanding

Capacity
need

Facility employed
and its number

Expanding
cost

3 4 3(1) 320
7 18 2(3),3(1),5(1) 1440
8 4 3(1) 320
5 8 2(1),5(1) 640
28 1 1(1) 200
16 29 2(5),3(1),5(2) 2320
27 6 2(2) 480
15 1 1(1) 200
34 11 2(1),3(2) 880
33 18 2(3),3(1),5(1) 1440
25 3 2(1) 240
36 3 2(1) 240
4 16 3(4) 1280
12 6 2(2) 480
30 9 3(1),5(1) 720
1 11 2(1),3(2) 880

We solved the example by programming in MATLAB7.0. The results are
shown in table 4. The first figure of the 3rd column refers to the facility employed
and the figure in bracket refers to its number. The minimum cost is 12080.

The computational experiments described in the following section were de-
signed to evaluate the performance of our solution procedure with respective to
a serials of test problems. It was coded in matlab7.0 and run on a computer with
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Table 5. Comparison of decomposition algorithm and LP+BB

|N|a |K|b |T|c LP+BB Decomposition
algorithm

40 10 8 2:04 0:28
45 12 8 3:21 0:36
50 14 8 5:28 0:47
55 16 8 7:49 0:58
60 18 8 9:08 1:05
65 20 12 12:17 1:07
70 22 12 15:51 1:16
75 24 12 19:22 1:36
80 26 12 24:37 1:48
85 28 12 33:49 2:08
a number of arcs
b number of paths need expanding
c number of facilities

Intel Celeron 2.1G Processor and 256MB memory. Ten problem sets were gener-
ated randomly but systematically to capture a wide range of problem structures.
The numbers of arcs and paths needing expanded vary from 40 to 85 and from
10 to 28, respectively. The number of facility was fixed to either 8 or 12. The
initial capacity of every arc was generated from Normal distribution N (30, 10).
Expansion costs was generated from uniform distribution U (2, 4). We compared
the solutions obtained by our decomposition algorithm with that obtained by
linear programming with branch and bound. The LP+BB are generated by the
commercial package LINGO. Since both approaches can obtain the optimal so-
lution, we only compared the computational time. The results are presented in
table 5. From our test problems, We can see the decomposition algorithm is
outperformed to LP+BB. As the problem’s size increasing, the decomposition
algorithm can greatly improve the computational speed.

5 Conclusions

1. In this paper, a mathematic model is developed to solve the network bot-
tleneck capacity expansion problem with fuzzy demand. A linear program
model with fuzzy coefficient is put forward. We present a decomposition al-
gorithm to solve the model. The results show the decomposition algorithm
can improve the solving speed greatly.

2. In our model, we only consider the fixed cost of facility and didn’t consider
the variable cost. In different settings, the variable cost has relation with
different factors. Therefore, the only thing we should do is to modify the
above model a little.

3. We employ the method based on fuzzy number sorting criteria to transform
the fuzzy inequality to non fuzzy inequality in this paper. In fact, it is a most
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conservative strategy. Although we can use tolerance approach, the capacity
expansion is a tactic decision. So, it is appropriate to use our method.

4. We only consider the capacity expansion of arcs in this paper. In fact, we
also need to consider the capacity expansion of nodes. As regard to this,
we can transform the node-based capacity expansion into arc-based capacity
expansion as the following figure 2. In fig 2, we want to expand node A’s
capacity, we split the node A into two nodes A1 and A2 linked by arc a,
then we expand capacity of arc a. This is equivalent to expand capacity of
node A.

Fig. 2. node-based capacity expansion to arc-based capacity expansion

Acknowledgements

The authors are grateful to the two anonymous referees for their helpful com-
ments which greatly helped improve this paper. This study is partially spon-
sored by a National Natural Science Foundation of China under Grant number
70471042.

References

1. Yang, C., Zhang, J. A Constrained Maximum Capacity Paths Problem on Network.
International Journal of Computer and Mathematics. 70(1998) 19–33.

2. Zhang J, Yang C, Lin Y. A Class of Bottleneck Expansion Problems. Computer
&Operation Research. 28(2001)505–519.

3. Yang, C., Zhu, Y. Capacity Expansion of Network System. Journal of Huazhong
University of Science and Technology. 19(2001)102–104

4. Wu, yun., Zhou, Jian., Yang, Jun. Dependent-Chance Programming Model for
Stochastic Network Bottleneck Capacity Expansion. Chinese Journal of Manage-
ment Science,12(2004) 113–117.

5. Tang, Jia, fu., Wang, Ding., Wei., Xu, Bao, don. Fuzzy modeling approach to ag-
gregate production planning with multi product. Journal of Management Sciences
in China. 6(2003)44–50.

6. Ge, Jian., Li, Yan., Feng., Xia, Guo, Ping. Research on global supply chain produc-
tion planning under uncertain environment. Computer Integrated Manufacturing
Systems. 11(2005)1120–1126.

7. Tang, J., Wang, D., Fung, R. Fuzzy Formulation for Multi-product Aggregate Pro-
duction Planning. Production planning and control. 11(2000)670–676

8. Tang, J, Wang, D., Fung, R. Understanding of Fuzzy Optimization: Theory and
Methods. Journal of System Science and Complexity. 17(2004)1–20



I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1063 – 1069, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Workpiece Recognition by the Combination of Multiple 
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Abstract. Simplified fuzzy ARTMAP(SFAM) is a simplification of fuzzy 
ARTMAP(FAM) in reducing architectural redundancy and computational 
overhead. The performance of individual SFAM depends on the ordering of 
training sample presentation. A multiple classifier combination scheme is 
proposed in order to overcome the problem. The sum rule voting algorithm 
combines the results from several SFAM’s and generates reliable and accurate 
recognition conclusion. A confidence vector is assigned to each SFAM. The 
confidence element value can be dynamically adjusted according to the historical 
achievements. Experiments of recognizing mechanical workpieces have been 
conducted to verify the proposed method. The experimental results have shown 
that the fusion approach can achieve reliable recognition. 

Keywords: ARTMAP, Neural network, workpiece recognition. 

1   Introduction 

FAM is an neural network which can be used as classifier. FAM is able to receive 
analog data and recognize accurately. But the structure of FAM is too complicated. 
SFAM is a modification to the conventional FAM. SFAM reserves the ability of FAM 
to overcome the stability-plasticity dilemma. The supervise learning method of SFAM 
can incorporate additional classes at any time. The SFAM needs less computation 
efforts than FAM.  

One drawback of SFAM is that the network performance is affected by the ordering 
of training sample presentation[1]. Good initial formation of the cluster prototypes is 
important to SFAM. Recent years, some researchers have proposed fusion techniques 
to overcome this problem. Jervls et al [2] combines SFAM and Baye’s classifier for 
reliable recognition. Loo[3] proposed a method in which effective probabilistic 
plurality voting technique is used to produce outputs from multiple SFAM’s. The 
accuracy rate is monotonously improved with increased number of SFAM network . 

A mechanical workpiece recognition scheme is proposed based on multiple 
classifier combination. The effective recognition is obtained by using sum rule voting 
algorithm according to the outputs from several SFAMs. The image features are 
Orthogonal Fourier-Mellin Memonts (OFMMs) which are invariant to shift, rotation, 
and scale. Experiments have been conducted to recognize mechanical workpieces. 
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2   SFAM for Workpiece Recognition  

As shown in Fig.1, there are four fields in SFAM: F0 , F1, F2 and FM. .The nodes of F0 
represent a current input vector. F1 field receives both bottom-up of input from F0 and 
top-down of input from F2. F2 represents the active code or category. FM is map field to 
generate recognition class. The inputs to the network are in the complement code 
form I (a, a)= . A vector Wj of adaptive weights are associated with a F2 category 
node j(j=1,…，N). For the input vector I and node j in the F2 field, the choice function 
Tj(I) is defined as: 

j

j

j

I w
T (I)=

w

∧

α +
                                                            (1)  

where ∧ and |·|are AND and norm operators in fuzzy theory, respectively. 
           α(α>0) is choice parameter. 

Fig. 1. The structure of SFAM 

The category choice operation is performed to search the node in F2 field for 
satisfying the following condition. 

TJ=max{Ti: i=1,…，M} (2) 

F2 field resonance occurs if the match function value of chosen category J meets the 
vigilance criterion. 

｜I∧Wj｜／｜I｜≥ρ (3) 

where ρis the vigilance parameter. 
Map field FM is activated when one of the F2 categories becomes active. When the 

Jth F2 node is chosen , the Fm output vector Xm obeys, 

             M
m Jx w=                                                                   (4) 

where Xm is weight connecting the Jth F2 node and Fm nodes. 
In the supervised learning procedure, match tracking is triggered by a mismatch at 

the map field Fm if 
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Xm≠y (5) 

where y denotes designed class vector. 
Match tracking increases vigilance parameterρuntil it is slightly larger than the F2 

match value ｜I∧Wj｜／｜I｜. As result, the Jth F2 node doesn’t satisfy the resonant 
condition (3). New search in F2 field is performed until a node satisfies the matching 
criterions in F2 and Fm. If no such node exists, an uncommitted node is assigned. 

In the unsupervised learning procedure, the weight vector Wj is updated whenever F2 

field resonance occurs. 

(i 1) i i
j j jw (I w ) (1 )w+ = β ∧ + − β       (6) 

where βis learning rate. β=1 for fast learning. 
           i denotes the ith learning iteration  

3   Sum Rule Voting Algorithm for Workpiece Recognition 

Multiple classifier combination can improve the recognition performance. The voting 
can be unweighted or weighted. The structure of mechanical workpiece recognition by 
multiple classifiers is shown in Fig.2. Several SFAMs are voters which receive visual 
features of workpieces and generate recognition results. Since the individual SFAM is 
sensitive to the sequence of training sample presentation, each SFAM is off-line trained 
with different orders. On-line training is also possible but the input vectors are applied 
to the network once only in the order in which they are generated. The voting algorithm 
combines the information provided by the SFAMs and produces final conclusion. 

Fig. 2. The architecture of multiple classifier combination 

For each SFAM, the output of the network is a class recognition vector with M 
element Sj(j=1,…，M) which can be 0 or 1. Since each SFAM has its own experience 
of training, the performance of each SFAM is different each other. We assign a 
confidence vector to each SFAM. The ith element of jth SFAM confidence vector is 
defined, 

sum rule voting

SFAM1 SFAM2 SFAMn

final diagnosis conclusion

input patterns
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t
ji

ji 0
ji

S
C 1

S
= +  (7) 

Where  
t
jiS represents the times of successful recognition. 

        
0
jiS represents the overall times of recognition. 

In initial stage, as no recognition is performed, the value of Cji equals to 1. If in the 
recognition history, no false recognition happens, the value of Cji will approach to 2. 
The confidence value Cji is dynamically adjusted according to their historical 
achievements. 

The voting algorithm combines the outputs from the multiple SFAMs and generates 
a conclusion vector R. The ith element of vector R can be calculated according to sum 
rule voting mechanism.  

         
l

i ji j
j 1

R C S
=

= ⋅∑   (i=1,…，M) (8) 

The final voting result is the element with maximum value, 

I iR max{R : i 1, M}= = …
                                             (9) 

4   Experiments of Workpiece Recognition  

4.1    Feature Extraction 

The features for workpiece recognition are OFMM’s which is based on a set of radial 
polynomials defined in a polar coordinate system (r,θ).                

2 1

n,m n0 0
0

1
f (r, )Q (r) exp( jm )rdrd

2 a

π
φ = θ − θ θ

π ∫ ∫  (10) 

where  f(r,θ) is the image. M=0,±1，±2，… is the circular harmonic order.  
        a0 is a normalization constant. 
Qn(r) is a polynomial in r of degree n. The set of Qn(r) is orthogonal over the range 

0≤r≤1. 

nmφ  with n s
ns

(n s 1)!
a ( 1)

(n s)!s!(s 1)!
+ + += −

− +
 (11) 

The radical polynomials with low degree are independent of the circular harmonic 
order m. The OFMMs are invariant to rotation changes in the image.  

If we assign a frame to the center of the image. All the moments calculated in this 
frame are shift invariant. The scale and intensity factors can be obtained by using the 
low order FMMs. The normalized OFMMs based on the factors are scale and intensity 
invariant.  
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The properties of OFMMs being invariant to shift, rotation ,scale and intensity are 
very useful in pattern recognition, especially in our application case of mechanical 
workpiece recognition. 

4.2   The Computation of OFFMs 

The computation procedure of OFMMs consists of four steps 

Step 1: Determing the center of the image by the first order geometric moments. 

10

00

m
x

m
= , 01

00

m
y

m
=  (12) 

where p q
pq

x y

m x y f (x, y)=∑∑  (x, y)  is the coordinate value of the image center . 

Step 2:  Assigning a frame to the image center and calculating the FMMs in this frame. 
Step 3:  Calculating the scale and intensity factors by low order FMM’s and 

normalizing the FMMs by the scale and intensity factors. 
Step 4:  Normalizing OFFMs from normalized FMM. 

The modulus of the OFMMs, 
nmφ , is shift, rotation ,scale and intensity invariant. 

4.3   Experimental Results 

The mechanical workpieces for recognition experiments are nuts, bolts, cushions and 
spindles with different positions, orientations and dimensions. A CDD camera is used 
to acquire the images of workpieces. The image processing and recognition 
computation are performed in a Pentium 4 PC with image card PCI-OK2 plugged into 
one of the expansion slots. Forty workpieces and twenty OFMMs (n=0,1,2,3 and 
m=0,1,2,3,4) for each workpiece are used to train the SFAMs off-line. The sum rule 
voting algorithm combines the six SFAMs and generates recognition conclusion. 

The original images of some mechanical workpieces are shown in Fig.3. Table  1 
lists the OFMMs feature values of one typical workpiece. Table 2 shows the 
recognition errors by multiple SFAMs. For comparison, the recognition errors by 
conventional ART2 are listed in Table 3. Nearly 10 percent improvement of 
recognition accuracy is obtained . 

 

Fig. 3. Four kinds of mechanical parts 
 



1068 Z. Yuan, G. Wang, and J. Yang 

Table 1. The OFMMs feature values of hexangular screw 

Φnm m=0 m=1 m=2 m=3 m=4 

n=0 3.5299e+010 1.1090e+009 8.1499e+009 1.7834e+009 5.1311e+009 

n=1 3.8800e+018 4.4369e+009 4.0074e+017 1.7021e+017 1.2996e+018 

n=2 4.0653e+026 3.0445e+026 1.2721e+026 1.1031e+026 9.1379e+025 

n=3 4.2952e+034 1.8643e+033 1.8817e+034 1.9027e+033 1.8027e+034 

Table 2. Recognition errors by multiple SFAMs  

Transformation Method Bolt Round backup plate Nut Circlip 

Diaplacement 2% 3% 4% 5% 

Enlargement 3% 4% 3% 3% 

Rotate 4%  5% 5% 

Intensity 4% 4% 3% 2% 

Table 3. Recognition errors by conventional ART2 

Transformation method Bolt Round backup plate Nut Circlip 

Diaplacement 12% 14% 13% 13% 

Enlargement 12% 13% 13% 14% 

Rotate 12%  13% 12% 

Intensity 15% 13% 16% 15% 

5   Conclusion 

A multiple classifier combination scheme is proposed to recognize the mechanical 
workpieces. Each SFAM of the classifier group is trained with different sample order. 
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Sum rule voting algorithm assigns a confidence vector to each SFAM and combines the 
results from the SFAMs. Experimental results have demonstrated the improvements of 
recognition accuracy. 
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Abstract. In this paper, we investigate fuzzy bidirectional associative
memory (BAM) neural networks with finite distributed delays. Easily
verifiable sufficient conditions for global exponential periodicity of fuzzy
BAM neural networks with finite distributed delays are obtained.

1 Introduction

After Kosko [1,2] proposed bidirectional associative memory neural networks:

dxi(t)
dt

= −xi(t) +
n∑

j=1

aijfj(yj(t)) + Ii(t), i = 1, · · · ,m;

dyj(t)
dt

= −yj(t) +
m∑

i=1

bjifn+i(xi(t)) + Im+j(t), j = 1, · · · , n (1)

many researchers [3-5,10] have studied the dynamics of BAM neural networks
with or without delays, including stability and periodic solutions. In this paper,
we would like to integrate fuzzy operations into BAM neural networks and main-
tain local connectedness among cells. Speaking of fuzzy operations, Yang el al.
[13-15] first combined those operations with cellular neural networks and investi-
gated the stability of fuzzy cellular neural networks (FCNNs). So far researchers
have found that FCNNs are useful in image processing, and some results have
been reported on stability and periodicity of FCNNs [7-9, 18]. However, to the
best of our knowledge, few results reported on periodicity of FCNNs or fuzzy
BAM neural networks with finite distributed delays. It is believed that the con-
clusions made from finite distributed delays could provide us insight into their
counterparts with unbounded delays.

In this paper, we investigate the exponential periodicity for the following fuzzy
BAM neural networks:

dxi(t)
dt

= −dixi(t) +
n∧

j=1

∫ τ

0
αji(s)fj(yj(t− s))ds+

n∧
j=1

Tjiμj(t)

n∨
j=1

∫ τ

0
βji(s)fj(yj(t− s))ds+

n∨
j=1

Hjiμj(t) + Ii(t), i = 1, · · · ,m;
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dyj(t)
dt

= −djyj(t) +
m∧

i=1

∫ τ

0
ζij(s)fn+i(xi(t− s))ds+

m∧
i=1

Tijμn+i(t)

m∨
i=1

∫ τ

0
ηij(s)fn+i(xi(t− s))ds+

m∨
i=1

Hijμn+i(t) + Im+j(t), j = 1, · · · , n;

(2)

where ci > 0, dj > 0, for i = 1, · · · ,m, j = 1, 2, · · · , n; αij(s) & ζij(s), βij(s)
& ηij(s) which denote elements of fuzzy feedback MIN templates, fuzzy feed-
back MAX templates, are continuous in the interval [0, τ ], where τ is a constant;
Tij and Hij are fuzzy feed-forward MIN template and fuzzy feed-forward MAX
template, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR opera-

tion, respectively; xi, yj are activations of the ith neuron and the jth neuron,
respectively; for k = 1, · · · ,m + n, μk, Ik, denote inputs, bias of the ith neu-
ron, respectively; function fk are activation functions; moreover, functions μk(t),
Ik(t) are continuously periodic functions with period ω, i.e. μk(t) = μk(t + ω),
Ik(t) = Ik(t+ ω), t ∈ R, for k = 1, · · · ,m+ n.

The initial conditions associated with (1) are the following

xi(s) = ϕi(s), −τ ≤ s ≤ 0, i = 1, · · · ,m;
yj(s) = ϕm+j(s), −τ ≤ s ≤ 0, j = 1, 2, · · · , n. (3)

In this paper, we assume that
H : fi is a bounded function defined on R and satisfies Lipschitz condition

|fi(x)− fi(y)| ≤ li|x− y|, i = 1, · · · ,m+ n, (4)

for any x, y ∈ R.
Let’s define that for any ω ∈ Rm+n, ||ω|| = max1≤k≤m+n |ωk|;
Let Cτ = C([−τ, 0], Rm+n) be the Banach space of all continuous functions

mapping from [−τ, 0] to Rm+n with norm defined as follows: for each ϕ ∈ Cτ ,
||ϕ||τ = sup−τ≤t≤0 max1≤i≤m+n |ϕi(t)|. Now we define the exponentially peri-
odic solution of Fuzzy BAM neural networks.

To be convenient, for given ϕ ∈ Cτ , let z(t, ϕ) = (x1(t, ϕ), · · · , xm+n(t, ϕ))=
(x1(t, ϕ), · · · , xm(t, ϕ), y1(t, ϕ), · · · , yn(t, ϕ))T ∈ Rm+n represent the solution of
system (1) with initial condition: z(t) = ϕ(t) when −τ ≤ t ≤ 0.

Definition 1. The solution z(t, ϕ∗) is exponentially periodic if z(t, ϕ∗) is pe-
riodic and there exist positive constants M , α such that any solution z(t, φ)
satisfies

||z(t, φ)− z(t, ϕ∗)|| ≤M ||φ− ϕ∗||τe−αt, t ≥ 0. (5)

Here, we present a lemma which we will use in the proof of the main theorem.

Lemma 1. ([13]). For any aij ∈ R, xj , yj ∈ R, i, j = 1, · · · , n, we have the
following estimations,

|
n∧

j=1

aijxj −
n∧

j=1

aijyj | ≤
∑

1≤j≤n

(|aij | · |xj − yj|) (6)
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and

|
n∨

j=1

aijxj −
n∨

j=1

aijyj | ≤
∑

1≤j≤n

(|aij | · |xj − yj|) (7)

2 Main Results

In this section, sufficient conditions to guarantee exponentially periodic solution
of fuzzy BAM neural networks are obtained.

First, we would like to present the main result.

Theorem 1. Fuzzy BAM neural networks (1) is exponentially periodic if there
exist λ1, · · · , λm+n such that the following two inequalities hold:

λi(2di−
n∑

j=1

lj

∫ τ

0
(|αji(s)|+|βji(s)|)ds)>ln+i

n∑
j=1

λm+j

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds,

λm+j(2cj −
m∑

i=1

li

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds) > lj

m∑
i=1

λi

∫ τ

0
(|αji(s)|+ |βji(s)|)ds

(8)

where i = 1, · · · ,m, j = 1, 2, · · · , n.

Proof. First let us prove the following claim.
Claim: Let z(t, ϕ) = (x1(t, ϕ), · · · , xm(t, ϕ), y1(t, ϕ), · · · , yn(t, ϕ))T , z(t, φ) =
(x1(t, φ), · · · , xm(t, φ), y1(t, φ), · · · , yn(t, φ))T be the solutions to system (1). Un-
der the conditions of this theorem, there are positive constants M and ε which
depend on λi, i = 1, · · · ,m+ n and known coefficients of (1) such that

||z(t, φ)− z(t, ϕ)|| ≤M ||φ− ϕ||τe−εt, t ≥ 0. (9)

Since z(t, φ), z(t, ϕ) are the solutions to system (1), we have

dxi(t, ϕ)
dt

= −dixi(t, ϕ) +
n∧

j=1

∫ τ

0
αji(s)fj(yj(t− s, ϕ))ds+

n∧
j=1

Tjiμj(t)

n∨
j=1

∫ τ

0
βji(s)fj(yj(t− s, ϕ))ds +

n∨
j=1

Hjiμj(t) + Ii(t), i = 1, · · · ,m;

dxi(t, φ)
dt

= −dixi(t, φ) +
n∧

j=1

∫ τ

0
αji(s)fj(yj(t− s, φ))ds +

n∧
j=1

Tjiμj(t)

n∨
j=1

∫ τ

0
βji(s)fj(yj(t− s, φ))ds +

n∨
j=1

Hjiμj(t) + Ii(t), i = 1, · · · ,m;

(10)
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Thus, for i = 1, · · · ,m, we have

dxi(t, ϕ)
dt

− dxi(t, φ)
dt

= −di(xi(t, ϕ) − xi(t, φ))

+
n∧

j=1

∫ τ

0
αji(s)(fj(yj(t− s, ϕ))− fj(yj(t− s, φ)))ds

+
n∨

j=1

∫ τ

0
βji(s)(fj(yj(t− s, ϕ))− fj(yj(t− s, φ)))ds

(11)

Similarly, for j = 1, · · · , n, we have

dyj(t, ϕ)
dt

− dyj(t, φ)
dt

= −dj(yj(t, ϕ) − yj(t, φ))

+
m∧

i=1

∫ τ

0
ζij(s)(fn+i(xi(t− s, ϕ))− fn+i(xi(t− s, φ)))ds

+
m∨

i=1

∫ τ

0
ηij(s)(fn+i(xi(t− s, ϕ))− fn+i(xi(t− s, φ)))ds

(12)

By the condition (8), there exists a positive number ε such that

λi(2di − ε−
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)ds) > ln+i

n∑
j=1

λm+j

∫ τ

0
eεs(|ζij(s)|

+|ηij(s)|)ds,

λm+j(2cj − ε−
m∑

i=1

li

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds) > lj

m∑
i=1

λi

∫ τ

0
eεs(|αji(s)|

+|βji(s)|)ds (13)

Now let us define the Lyapunov functional V (z(t, ϕ), z(t, φ))=V1(z(t, ϕ), z(t, φ))+
V2(z(t, ϕ), z(t, φ)), where

V1(z(t, ϕ), z(t, φ))=
m∑

i=1

λi{(xi(t, ϕ)− xi(t, φ))2eεt+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+|βji(s)|)

∫ t

t−s

(yj(r, ϕ) − yj(r, φ))2eε(r+s)drds}

V2(z(t, ϕ), z(t, φ)) =
n∑

j=1

λm+j{(yj(t, ϕ) − yj(t, φ))2eεt

+
m∑

i=1

li

∫ τ

0
(|ζij(s)|+ |ηij(s)|)

∫ t

t−s

(xi(r, ϕ)− (xi(r, φ))2eε(r+s)drds} (14)
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Take the derivative of V1, using Lemma 1 and inequality 2ab ≤ a2 + b2 in the
following process, we have

d

dt
V1(z(t, ϕ), z(t, φ)) =

m∑
i=1

λi{εeεt(xi(t, ϕ)− xi(t, φ))2

+2eεt(xi(t, ϕ)− xi(t, φ))(ẋi(t, ϕ)− ẋi(t, φ))

+
n∑

j=1

lj

∫ τ

0
eεt(|αji(s)|+ |βji(s)|)[eεs(yj(t, ϕ)− yj(t, φ))2

−(yj(t− s, ϕ)− yj(t− s, φ))2ds]}

= eεt
m∑

i=1

λi{ε(xi(t, ϕ)− xi(t, φ))2 − 2di(xi(t, ϕ)− xi(t, φ))2

+2(xi(t, ϕ)− xi(t, φ))
n∧

j=1

∫ τ

0
αji(s)(fj(yj(t− s, ϕ))− fj(yj(t− s, φ)))ds

+2(xi(t, ϕ)− xi(t, φ))
n∨

j=1

∫ τ

0
βji(s)(fj(yj(t− s, ϕ))− fj(yj(t− s, φ)))ds

+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)[(yj(t, ϕ)− yj(t, φ))2eεs

−(yj(t− s, ϕ)− yj(t− s, φ))2]ds}

≤ eεt
m∑

i=1

λi{(ε− 2di)(xi(t, ϕ) − xi(t, φ))2

+2|xi(t, ϕ)− xi(t, φ)|
n∑

j=1

∫ τ

0
lj |αji(s)||yj(t− s, ϕ)− yj(t− s, φ)|ds

+2|xi(t, ϕ)− xi(t, φ)|
n∑

j=1

∫ τ

0
lj |βji(s)||yj(t− s, ϕ)− yj(t− s, φ)|ds

+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)[(yj(t, ϕ)− yj(t, φ))2eεs

−(yj(t− s, ϕ)− yj(t− s, φ))2]ds}

≤ eεt
m∑

i=1

λi{(ε− 2di)(xi(t, ϕ) − xi(t, φ))2

+
n∑

j=1

∫ τ

0
lj |αji(s)|((xi(t, ϕ)− xi(t, φ))2 + (yj(t− s, ϕ)− yj(t− s, φ))2)ds

+
n∑

j=1

∫ τ

0
lj |βji(s)|((xi(t, ϕ) − xi(t, φ))2 + (yj(t− s, ϕ)− yj(t− s, φ))2)ds
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+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)[(yj(t, ϕ) − yj(t, φ))2eεs

−(yj(t− s, ϕ)− yj(t− s, φ))2]ds}

= eεt
m∑

i=1

λi{[ε− 2di +
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)ds](xi(t, ϕ)− xi(t, φ))2

+
n∑

j=1

lj(yj(t, ϕ)− yj(t, φ))2
∫ τ

0
(|αji(s)|+ |βji(s)|)eεsds} (15)

Similarly, we can obtain that
d

dt
V2(z(t, ϕ), z(t, φ))

≤ eεt
n∑

j=1

λm+j{[ε− 2cj +
m∑

i=1

ln+i

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds](yi(t, ϕ)− yi(t, φ))2

+
m∑

i=1

ln+i(xi(t, ϕ)− xi(t, φ))2
∫ τ

0
(|ζij(s)|+ |ηij(s)|)eεsds} (16)

By inequalities (15), (16) and (13), we have

d

dt
V (z(t, ϕ), z(t, φ)) =

d

dt
V1(z(t, ϕ), z(t, φ)) +

d

dt
V2(z(t, ϕ), z(t, φ))

≤ eεt
m∑

i=1

λi{[ε− 2di +
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)ds](xi(t, ϕ)− xi(t, φ))2

+
n∑

j=1

lj(yj(t, ϕ)− yj(t, φ))2
∫ τ

0
(|αji(s)|+ |βji(s)|)eεsds}

+eεt
n∑

j=1

λm+j{[ε− 2cj +
m∑

i=1

ln+i

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds](yi(t, ϕ)− yi(t, φ))2

+
m∑

i=1

ln+i(xi(t, ϕ)− xi(t, φ))2
∫ τ

0
(|ζij(s)|+ |ηij(s)|)eεsds}

= eεt
m∑

i=1

λi[ε− 2di +
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)ds

+ln+i

n∑
j=1

λm+j

∫ τ

0
eεs(|ζij(s)|+ |ηij(s)|)ds](xi(t, ϕ)− xi(t, φ))2

+eεt
n∑

j=1

λm+j [ε− 2cj +
m∑

i=1

ln+i

∫ τ

0
(|ζij(s)|+ |ηij(s)|)ds

+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)eεsds](yi(t, ϕ)− yi(t, φ))2

≤ 0 (17)
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Thus, V (z(t, ϕ), z(t, φ)) ≤ V (z(0, ϕ), z(0, φ)). For k = 1, · · · ,m+ n, we have

eεt|zk(t, ϕ)− zk(t, φ)|2 ≤ eεt

min1≤l≤m+n{λl}
{

m∑
i=1

λi(xi(t, ϕ) − xi(t, φ))2

+
n∑

j=1

λm+j(yj(t, ϕ)− yj(t, φ))2}

≤ V1(z(t, ϕ), z(t, φ)) + V2(z(t, ϕ), z(t, φ))
≤ V1(z(0, ϕ), z(0, φ)) + V2(z(0, ϕ), z(0, φ))

=
m∑

i=1

λi{(xi(0, ϕ)− xi(0, φ))2 +
n∑

j=1

lj

∫ τ

0
(|αji(s)|

+|βji(s)|)∫ 0

−s

(yj(r, ϕ)− yj(r, φ))2eε(r+s)drds}

+
n∑

j=1

λm+j{(yj(0, ϕ)− yj(0, φ))2 +
m∑

i=1

li

∫ τ

0
(|ζij(s)|

+|ηij(s)|)∫ 0

−s

(xi(r, ϕ)− (xi(r, φ))2eε(r+s)drds}

=
m∑

i=1

λi{(ϕi(0)−φi(0))2+
n∑

j=1

lj

∫ τ

0
(|αji(s)|+|βji(s)|)

∫ 0

−s

(ϕm+j(r) − φm+j(r))2eε(r+s)drds}

+
n∑

j=1

λm+j{(ϕm+j(0)− φm+j(0))2 +
m∑

i=1

li

∫ τ

0
(|ζij(s)|

+|ηij(s)|)∫ 0

−s

(ϕi(r) − φi(r))2eε(r+s)drds}

≤ ||ϕ− φ||2τ [
m∑

i=1

λi{1 +
n∑

j=1

lj

∫ τ

0
(|αji(s)|+ |βji(s)|)

∫ 0

−s

eε(r+s)drds}

+
n∑

j=1

λm+j{1 +
m∑

i=1

li

∫ τ

0
(|ζij(s)|+ |ηij(s)|)

∫ 0

−s

eε(r+s)drds}] (18)
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From the above inequalities, we have

|zk(t, φ)− zk(t, ϕ∗)| ≤M ||φ− ϕ∗||τe−
ε
2 t, t ≥ 0, k = 1, · · · ,m+ n. (19)

where M =
∑m

i=1 λi{1 +
∑n

j=1 lj
∫ τ

0 (|αji(s)|+ |βji(s)|)
∫ 0
−s e

ε(r+s)drds}
+
∑n

j=1 λm+j{1+
∑m

i=1 li
∫ τ

0 (|ζij(s)|+ |ηij(s)|)
∫ 0
−s
eε(r+s)drds}. So far, we have

completed the proof of the Claim. By the Claim, to complete this theorem, we
just need to prove that there exists a ω−periodic solution for model (2).

Let zt(ϕ)(ϑ) = z(t, ϕ)(ϑ) = z(t + ϑ, ϕ), for ϑ ∈ [−τ, 0] and z(t + ϑ, ϕ) is
a solution of model (2) with initial solution of (3). Now, we define a Poincare
mapping P : C → C by Pϕ = zω(ϕ). By Claim, there are positives M and ε,

||zt(φ)− zt(ϕ∗)||τ ≤M ||φ− ϕ∗||τe−
ε
2 (t−τ), t ≥ 0. (20)

Choose a positive big integer l, such that Me−
ε
2 (ωl−τ) ≤ 1

3 .
Thus, we have ||P lφ−P lϕ||τ ≤ 1

3 ||φ−ϕ||τ . It implies that P l is a contraction
mapping, so there exists a unique fixed point ϕ∗ ∈ C such that P lϕ∗ = ϕ∗. Note
that P l(Pϕ∗) = P (P lϕ∗) = Pϕ∗, so Pϕ∗ is a fixed point of mapping P l. By the
uniqueness of the fixed point of the contraction map, Pϕ∗ = ϕ∗, i.e., ϕ∗ is a fixed
point of P . Thus, zt+ω(ϕ∗) = zt(zω(ϕ∗)) = zt(ϕ∗), i.e, z(t+ω, ϕ∗) = z(t, ϕ∗), for
any t > 0. This proves that there exists one ω-periodic solution, and from the
Claim, it is clear that all solutions converge exponentially to z(t, ϕ∗) as t→∞.
So far, we have completed the proof of the theorem.

3 Conclusion

In this paper, we discuss the existence and exponential stability of the equilib-
rium of FCNN with finite distributed delays. Sufficient condition set up here by
using Lyapunov functional is easily verifiable.
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Abstract. In this paper, we propose design methodology of optimized Informa-
tion granulation based genetically optimized Hybrid Self-Organizing Fuzzy 
Polynomial Neural Networks (IG_gHSOFPNN) by evolutionary optimization. 
The augmented IG_gHSOFPNN results in a structurally optimized structure and 
comes with a higher level of flexibility in comparison to the one we encounter 
in the conventional HSOFPNN. The GA-based design procedure being applied 
at each layer of IG_gHSOFPNN leads to the selection of preferred nodes (FPNs 
or PNs) available within the HSOFPNN. The obtained results demonstrate su-
periority of the proposed networks over the existing fuzzy and neural models. 

1   Introduction 

GMDH-type algorithms have been extensively used since the mid-1970’s for predic-
tion and modeling complex nonlinear processes [1]. While providing with a system-
atic design procedure, GMDH comes with some drawbacks. To alleviate the problems 
associated with the GMDH, Self-Organizing Polynomial Neural Networks 
(SOPNN)[2] Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN)[3], and 
Hybrid Self-Organizing Fuzzy Polynomial Neural Networks (HSOFPNN)[4] intro-
duced. In this paper, to address the above design problems coming with the develop-
ment of conventional self-organizing neural networks, in particular, HSOFPNN, we 
introduce the IG_gHSOFPNN with the aid of the information granulation [6] as well 
as the genetic algorithm [5]. The determination of the optimal values of the parame-
ters available within an individual PN(viz. the number of input variables, the order of 
the polynomial and the collection of preferred nodes) and FPN(viz. the number of 
input variables, the order of the polynomial, the collection of preferred nodes, the 
number of MFs for each input variable, and the selection of MFs) leads to a structur-
ally and parametrically optimized network.  

2   The Architecture and Development of HSOFPNN 

2.1   Fuzzy Polynomial Neuron : FPN 

This neuron, regarded as a generic type of the processing unit, dwells on the con-
cept of fuzzy sets. When arranged together, FPNs build the first layer of the 
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HSOFPNN. The FPN consists of two basic functional modules. The first one, la-
beled by F, is a collection of fuzzy sets that form an interface between the input 
numeric variables and the processing part realized by the neuron. The second mod-
ule (denoted here by P) concentrates on the function – based nonlinear (polynomial) 
processing.  

In other words, FPN realizes a family of multiple-input single-output rules. Each 
rule, reads in the form: 

If xp is Al and xq is Bk then z is Plk(xi, xj, alk) (1) 

The activation levels of the rules contribute to the output of the FPN being computed 
as a weighted average of the individual condition parts (functional transformations) 
PK. 

∑∑
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∑
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Table 1. Different forms of the regression polynomials building a FPN and PN 

                             No. of inputs 
Order of the polynomial 

Type 
Order 

FPN PN 

1 2 3 

0 Type 1  Constant Constant Constant 
1 Type 2 Type 1 Linear Bilinear Trilinear 

Type 3 Type 2 Biquadratic-1 Triquadratic-1 
2 

Type 4 Type 3 
Quadratic 

Biquadratic-2 Triquadratic-2 
    1: Basic type, 2: Modified type 

2.2   Polynomial Neuron : PN 

The SOPNN algorithm in the PN based layer of HSOFPNN is based on the GMDH 
method and utilizes a class of polynomials such as linear, quadratic, modified quad-
ratic, etc. to describe basic processing realized there.  

The input-output relationship for the above data realized by the SOPNN algorithm 
can be described in the following manner: 

y=f(x1, x2, …, xN) (3) 

Where, x1, x2, , xN denote the outputs of the lst layer of FPN nodes(the inputs of the 

2nd layer(PN nodes)). 
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3   Optimization of HSOFPNN by Information Granulation and 
Genetic Algorithms 

3.1   Optimization of HSOFPNN by Information Granulation 

3.1.1   Definition of the Premise Part of Fuzzy Rules Using IG 
We assume that given a set of data X={x1, x2, …, xn} related to a certain application, 
there are some clusters revealed by the HCM[7]. Each cluster is represented by its 
center and all elements, which belong to it. Each membership function in the premise 
part of the rule is assigned to be complementary with neighboring ones. 

3.1.2   Restructure of the Consequence Part of Fuzzy Rules Using IG 
Here, let us concentrate on building the consequent part of the fuzzy rule. Each cluster 
(and the resulting rule) can be regarded as a sub-model of the overall system. The 
premise parts of the fuzzy rules help quantify how much overlap occurs between the 
individual sub-models. The consequent part of the fuzzy rule is a polynomial with 
independent variables for which the center point on this cluster (that is the sub-model) 
is mapped onto the point of origin. Therefore, all data belonging to the cluster are 
mapped into new coordinates. This is done by subtracting the value of the center point 
from all data belonging to the corresponding cluster.  

3.2   Optimization of HSOFPNN by Genetic Algorithm 

GAs has been theoretically and empirically demonstrated to provide robust search 
capabilities in complex spaces thus offering a valid solution strategy to problems 
requiring efficient and effective searching. It is eventually instructive to highlight the 
main features that tell GA apart from some other optimization methods: (1) GA oper-
ates on the codes of the variables, but not the variables themselves. (2) GA searches 
optimal points starting from a group (population) of points in the search space (poten-
tial solutions), rather than a single point. (3) GA's search is directed only by some 
fitness function whose form could be quite complex; we do not require it need to be 
differentiable.  

In this study, for the optimization of the HSOFPNN model, GA uses the serial 
method of binary type, roulette-wheel used in the selection process, one-point cross-
over in the crossover operation, and a binary inversion (complementation) operation 
in the mutation operator. To retain the best individual and carry it over to the next 
generation, we use elitist strategy [5].  

4   The Algorithm and Design Procedure of IG_gHSOFPNN 

Overall, the framework of the design procedure of the IG_gHSOFPNN architecture 
comprises the following steps. 

[Step 1] Determine system’s input variables. 

[Step 2] Form training and testing data. 
The input-output data set (xi, yi)=(x1i, x2i, …, xni, yi), i=1, 2, …, N is divided into two 
parts, that is, a training and testing dataset.  
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[Step 3] Decision of axis of MFs by Information granulation 
As mentioned in ‘3.1.1 Definition of the premise part of fuzzy rules using IG’, we 
obtained the new axis of MFs by information granulation. 

[Step 4] Decide initial information for constructing the HSOFPNN structure. 
a) Initial specification of the fuzzy inference method and the fuzzy identification  
b) Initial specification for decision of HSOFPNN structure  

[Step 5] Decide a structure of the PN and FPN based layer of HSOFPNN using ge-
netic design. 
This concerns the selection of the number of input variables, the polynomial order, the 
input variables, the number of membership functions, and the selection of member-
ship functions to be assigned at each node of the corresponding layer.  

In nodes (PN and FPNs) of each layer of HSOFPNN, we adhere to the notation of 
Fig. 3.  

N T

xi

xj

z

No. of inputs
Polynomial order(Type T)

PNn

nth Polynomial Neuron(PN)

N T

xi

xj

z

No. of inputs

Polynomial order(Type T)

FPNn

nth Fuzzy Polynomial Neuron(FPN)

MF

Mi

Membership Function

Mj

No. of Membership function for
each input variable

 
(a) PN                                                             (b) FPN 

Fig. 3. Formation of each PN or FPN in HSOFPNN architecture 

[Step 6] Estimate the coefficient parameters of the polynomial in the selected node 
(PN or FPN).  
[Step 6-1] In case of a PN (PN-based layer) 
The vector of coefficients Ci is derived by minimizing the mean squared error be-
tween yi  and zmi. 

∑
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mii
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zy
N
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1  (5) 

Using the training data subset, this gives rise to the set of linear equations  

Y=XiCi (6) 

Evidently, the coefficients of the PN of nodes in each layer are expressed in the form 

y=f(x1, x2, …, xN)  Ci=(Xi
TXi)

-1Xi
TY (7) 

[Step 6-2] In case of a FPN (FPN-based layer) 
i) Simplified inference 
The consequence part of the simplified inference mechanism is a constant. Using 
information granulation, the new rules read in the form 
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The consequence parameters (aj0) are produced by the standard least squares method. 
ii) Regression polynomial inference 
The use of the regression polynomial inference method gives rise to the expression. 
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The coefficients of consequence part of fuzzy rules obtained by least square 
method(LSE) as like a simplified inference. 

[Step 7] Select nodes (PNs or FPNs) with the best predictive capability and construct 
their corresponding layer. 
All nodes of this layer of the IG_gHSOFPNN are constructed genetically. To evaluate 
the performance of PNs or FPNs constructed using the training dataset, the testing 
dataset is used. Based on this performance index, we calculate the fitness function. 
The fitness function reads as 

EPI
FunctionfitnessF

+
=

1

1
)(  (13) 

where EPI denotes the performance index for the testing data (or validation data).  

[Step 8] Check the termination criterion. 
As far as the depth of the network is concerned, the generation process is stopped at a 
depth of less than three layers. This size of the network has been experimentally 
found to build a sound compromise between the high accuracy of the resulting model 
and its complexity as well as generalization abilities. 
In this study, we use a measure (performance indexes) that is the Mean Squared Error 
(MSE) 

[Step 9] Determine new input variables for the next layer. 
The outputs of the preserved nodes (zli, z2i, …, zWi) serves as new inputs to the next 
layer (x1j, x2j, …, xWj)(j=i+1). This is captured by the expression 
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x1j = z1i, x2j = z2i, …, xWj = zWi (14) 

The IG_gHSOFPNN algorithm is carried out by repeating steps 4-9 of the  
algorithm. 

5   Simulation Study 

To demonstrate the high modeling accuracy of the proposed model, we apply it to a 
highly nonlinear of pH neutralization of a weak acid and a strong based [8], [9], [10]. 
pH is the measurement of the acidity or alkalinity of a solution containing a propor-
tion of water. We consider 500 pairs of the original input-output data. Total data are 
used as learning set. Table 2 summarizes the list of parameters used in the genetic 
optimization of the networks. 

Table 2. Computational overhead and a list of parameters of the GAs and the HSOFPNN 

Parameters 1st layer 2nd layer 3rd layer 
Maximum generation 100 100 100 
Total population size 150 150 150 

Selected population size 30 30 30 
Crossover rate 0.65 0.65 0.65 
Mutation rate 0.1 0.1 0.1 

GAs 

String length 3+3+30+5+1 3+3+30+5 3+3+30+5 
Maximal no. of inputs to be se-

lected(Max) 
1≤l≤Max(2~

3) 
1≤l≤Max(2~

3) 
1≤l≤Max(2~

3) 
Polynomial type (Type T) of the conse-

quent part of fuzzy rules 
1≤T_F≤4 1≤T_P≤3 1≤T_P≤3 

Triangular   
Membership Function (MF) type 

Gaussian   

HSOF
PNN 

No. of MFs per each input(M) 2 or 3   
l, T_F, T_P : integer, T_F : Type of SOFPNN, T_P : Type of SOPNN. 

Table 3 summarizes the results: According to the information of Table 2, the se-
lected input variables (Node), the selected polynomial type (T), the selected no. of 
MFs (M), and its corresponding performance index (PI) was shown when the genetic 
optimization for each layer was carried out. 

Table 3. Performance index of IG_gHSOFPNN for nonlinear function process 

1st layer 2nd layer 3rd layer Max 
Node(M) T MF PI Node T PI Node T PI 

 (a) In case of selected input 
2 5(3) 6(3) 3 T 0.036102 18 19 2 0.030198 15 30 2 0.025244 
3 1(2) 2(3) 3(3) 3 G 0.000148 7 10 27 2 0.000137 7 11 20 2 0.000133 
 (b) In case of entire system input 

2 3(3) 6(2) 3 T 0.000132 16 22 2 0.000131 4 20 2 0.000130 
3 3(3) 6(2) 0 3 T 0.000132 14 18 23 3 0.000130 11 26 30 2 0.000130 

 



 Design Methodology of Optimized IG_gHSOFPNN and Its Application 1085 

In case of entire system input, the result for network in the 3rd layer is obtained 
when using Max=2 with Type 2 polynomials (quadratic functions) and 2 node at input 
(node numbers are 4, 20); this network comes with the value of PI=0.000130.  

ypHˆ
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2 2
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2 2
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Fb(t-3)
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ypH(t-1)  

Fig. 4. Optimal IG_gHSOFPNN architecture 

Fig. 5 illustrates differences in learning observed between selected input and entire 
system input by visualizing the values of the performance index obtained in succes-
sive generations of GA when using Max=2 and Max=3. 
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(a) Max=2                                                            (b) Max=3 

Fig. 5. Optimal procedure by IG and GAs 

Table 4. Comparative analysis of the performance of the network; considered are models 
reported in the literature 

Model Performance Index 
USOCPN 0.230 Nie’s model [11] 
SSOCPN 0.012 

Case 1 0.0015 Basic SOPNN 
(15th layer) Case 2 0.0052 

Case 1 0.0039 
SOPNN [2] 

Modified SOPNN 
(10th layer) Case 2 0.0124 

3rd layer (Max=2) 0.025244 
Selected input 

3rd layer (Max=3) 0.000133 
3rd layer (Max=2) 0.000130 

Our model 
Entire system input 

3rd layer (Max=3) 0.000130 
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Table 4 includes a comparative analysis of the performance of the proposed net-
work with other models.  

6   Concluding Remarks 

In this paper, we have introduced and investigated a class of Information Granulation 
based genetically optimized Hybrid Self-Organizing Fuzzy Polynomial Neural Net-
works (IG_gHSOFPNN) driven to genetic optimization and information granulation 
regarded as a modeling vehicle for nonlinear and complex systems. 

The GA-based design procedure applied at each stage (layer) of the HSOFPNN 
driven to information granulation leads to the selection of the preferred nodes (or 
FPNs and PNs) with optimal local. These options contribute to the flexibility of the 
resulting architecture of the network.  

Through the proposed framework of genetic optimization we can efficiently search 
for the optimal network architecture (being both structurally and parametrically opti-
mized) and this design facet becomes crucial in improving the overall performance of 
the resulting model. 
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Abstract. This paper outlines all the computational methods which
have been applied to the conflict management. A survey of all the per-
tinent literature relating to conflict management is also presented. The
paper then introduces the Takagi-Sugeno fuzzy model for the analysis of
interstate conflict. It is found that using interstate variables as inputs,
the Takagi-Sugeno fuzzy model is able to forecast conflict cases with an
accuracy of 80.36%. Furthermore, it found that the fuzzy model offers
high levels of transparency in the form of fuzzy rules. It is then shown
how these rules can be translated in order to validate the fuzzy model.
The Takagi-Sugeno model is found to be suitable for interstate modeling
as it demonstrates good forecasting ability while offering a transparent
interpretation of the modeled rules.

1 Introduction

With the frequency at which wars are occurring, it has become imperative that
more research effort be directed towards conflict management. The focus of this
study over the years has been centered on finding improved approaches to conflict
forecasting at the same time not neglecting causal intepretation of interstate
interactions [1]. Understanding the reasons why countries go to war is just as
significant as forecasting the onset of war because it proposes the steps that can
be taken to avoid conflict. Therefore a successful interstate conflict tool is one
which is able to forecast dispute outcomes fairly accurately at the same time
allowing for an intuitive causal intepretation of interstate interactions.

International conflict has been studied using mainly techniques found in the
fields of Statistics and Computational intelligence. These techniques have been
applied on quantitative measures which have been collected over the years. It is
widely accepted that improvements in conflict forecasting can mainly be acheived
in two ways [1]. The first improvement that can be made is with the data and
measures of interstate interactions [2] and secondly by improving the forecast-
ing of interstate conflict involves finding models which approximate interstate
interactions better.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1087–1094, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper a survey of the work performed on international conflict is pre-
sented. The paper focuses mainly on the techniques applied to analyse quanti-
tative descriptions of interstate interactions. An outline of the methods together
with their shortcomings is discussed. Finally, neuro-fuzzy modeling is presented
as an alternative technique which addresses the current shortcomings that exist
in international conflict studies.

2 Background and Literature Survey

Militarised interstate dispute (MID) is defined as a set of interactions between
or among states that can result in the actual use, display or threat of using mil-
itary force in an explicit way [3]. Projects such as the Correlates of War (COW)
facilitate the collection, dissemination and use of accurate and reliable quanti-
tative data in international relations [4]. The collected data, called interstate
variables, are used to study the conditions associated with MID. The measures
used in MID studies are People Oriented Government, Dependency, Capability,
Alliance, Contiguity, Distance and Major power. Any set of measures describing
a particular context has a dispute outcome attached to it. The dispute outcome
is either a peace or conflict situation.

Statistical methods such as logit and probit have been used in the analysis
of interstate variables. However, it has been found that these methods have sev-
eral shortcomings [1]. Some of the problems associated with the use of logit and
probit is that they require the use of a priori knowledge usually obtained from
the analyst. A problem then arises when the analyst pushes their data analyses
extremely hard in search of effects they believe exist but are difficult to discover
[1]. The consequence of this is that the results vary from researcher to researcher
and are therefore not exactly repeatable. The other problem, as one might ex-
pect, is that conflict cases occur far less frequently than peace cases. Interstate
conflict is therefore a rare event and the processes which drive it are likely to
be different from those found elsewhere. This has led quantitative researchers
to conclude that the relationship between the interstate variables and dispute
outcomes is highly nonlinear and highly correlated [1]. The conclusion is further
confirmed by the studies performed by Lagazio and Russet [5]. This means that
statistical techniques, linear-normal models in particular, would perform poorly
at modeling the relationship between interstate disputes and their outcomes.

The neural network has also been applied to interstate conflict modeling and
forecasting. The neural network was first introducted by Schrodt [6] in 1995 and
by Zeng [7] in 1999 as a method of analysing conflict without the need for the re-
searcher to incorporate qualitative a priori knowlege or make assumptions about
the problem space. The neural network was presented as a function approxima-
tor which is able to model highly nonlinear and interdependant relationships.
However the neural network itself suffers similar problems to statistical meth-
ods in that a model selection technique must be considered. In recent studies,
Beck et al [1] make use of a neural network, which is trained using the Bayesian
framework outlined in [8]. The Bayesian training of neural networks involves
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the use of Bayesian framework to identify the optimal weights and biases in a
neural network model. It is found that the use of neural networks yields results
expressed in the form of classification accuracy. This interpretation of the re-
sults is found to be unambigious compared to previous methods. However, the
resulting neural network model is regarded as a black box due to the fact that it
does not provide a way of obtaining a causal interpretion of dispute outcomes.
The weights extracted from the neural network offer no understanding as to why
countries go to war.

In [9], Marwala and Lagazio propose the use of Automatic Relevance Detec-
tion (ARD) as a means to making the neural network more transparent. The
result of ARD reveals that the importance of the interstate variable in predicting
dispute outcomes is as follows (listed in decreasing relavance): Peoples Oriented
Government, Capability, Dependancy, Allies, Contiguity, Distance and Major
power. From this work on neural networks we can conclude that neural network
models have a fairly strong forecasting ability but only a limited amount of
knowledge can be extracted.

In [10], Habtemariam et al introduce support vector machines (SVMs) to
the study of conflict management. It is found that SVMs offer an improved
forecasting ability over neural networks. However, a sensitivity analysis which
aims to determine the influence of each variable on a dispute outcome reveals that
results obtained from neural networks are much more intuitive. Therefore, while
SVMs offer better forecasting ability they lack the ability to give an intuitive
causal interpretation of the results.

As stated earlier on in the paper, the main focus of studies in international
conflict has been on the ability of a model to accurately forecast dispute outcomes
while at the same time allow the analyst to extract knowledge from the model.
In the next section a Neuro-fuzzy model is proposed as a method of modeling
interstate interaction which has a fairly accurate forecasting ability and at the
same time offers intuitive causal explainations of disputes obtained from a fuzzy-
rule extraction process.

3 Fuzzy Systems and Neuro-fuzzy Modeling

Fuzzy logic concepts provide a method of modelling imprecise models of reason-
ing, such as common sense reasoning, for uncertain and complex processes. Fuzzy
set theory resembles human reasoning in its use of approximate information and
uncertainty to generate decisions. In fuzzy systems, the evaluation of the output
is performed by a computing framework called the fuzzy inference system. The
fuzzy inference system is a computing framework that maps fuzzy or crisp inputs
to the output - which is usually a fuzzy set [11]. The inference system performs
a composition of the inputs using fuzzy set theory, fuzzy if-then rules and fuzzy
reasoning to arrive at the output. More specifically, the fuzzy inference involves
the fuzzification of the input variables, evaluation of rules, aggregation of the
rule outputs and finally the defuzzification of the result. The are two popular
fuzzy models: the Mamdani model and the Takagi-Sugeno (TS) model [12].
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A fuzzy rule-based system can be viewed as a layered network similar to
Radial basis function (RBF) artificial neural networks [12]. When training RBF
networks several parameters of the kernel have to be optimised. Similarly when
setting up a Fuzzy rule-based system we are required to optimise parameters such
as membership functions and consequent parameters. In order to optimise these
parameters, the neuro-fuzzy system relies on training algorithms inherited from
artificial neural networks such as gradient descent [12]. There are two approaches
to training neuro-fuzzy models [12]:

1. Fuzzy rules may be extracted from expert knowledge and used to create an
initial model. The parameters of the model can then be fine tuned using data
collected from the operational system being modelled.

2. The number of rules can be determined from collected numerial data using a
model selection technique. The parameters of the model are also optimised
using the existing data. The Takagi-Sugeno model is mostpopular when it
comes to data-driven identification and has been proven to be a universal
approximator [11].

The major motivation for using a neuro-fuzzy model in this work is that it
is considered by many to be a ‘gray-box’ [12]. Unlike neural networks, once
the neuro-fuzzy model has been optimised it is possible to extract the fuzzy
rules and perhaps interpret the obtained results in an intuitive and qualitative
manner. With neural networks e.g. the multilayer perceptron, it is not possible to
intuitively explain input-output relationships using the weights of the network.
In this study the neuro-fuzzy hybrid system is used to model the relationship
between interstate (input) variables and the outcome of a dispute (output) from
MID data.

4 Conflict Forecasting Using a Neuro-fuzzy Model

In our study, the TS neuro-fuzzy model has been optimised to map the relation-
ship between the input variables (interstate variables) and the output i.e. the
dispute outcome. The neuro-fuzzy model is trained using a balanced set of 500
peace cases and 500 conflict cases. The remaining 26845 peace instances and 392
conflict instance are then used for testing the forecasting ability of the model.
The model selection process involves selecting the optimum number of rules of
the TS model. This is done by creating models with rules ranging from 2 to 7
and evaluating them using 5 fold cross-validation. It is found that the optimum
model consists of 2 fuzzy rules. The forecasting ability of the neuro-fuzzy model
is then tested using the test examples. The prediction ability of the neuro-fuzzy
model is evaluated based on how well it is able to predict both conflict and peace
outcomes. The receiver operating characteristic (ROC) curve in fig 1 is used to
illustrate the results.

As the output of the neuro-fuzzy is expressed as a decision value, an optimum
threshold needs to be determined as the decision point which allows the overall
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Fig. 1. A ROC curve illustrating the performance of the neuro-fuzzy model

Table 1. Results for the TS neuro-fuzzy model

Conflict cases Peace cases
Correctly predicted 315 17967
Incorrectly predicted 77 8378

maximum peace and conflict prediction accuracy. This threshold is found to be
0.488 and the results are expressed as a confusion matrix shown in Table 1.

The results show the TS neuro-fuzzy model predict conflict cases with an ac-
curacy of 80.36% while predicting peace cases with an accuracy of 66.93%. In the
work done by Habtemariam et al [10], it was found that SVM predicts peace and
conflict with 79% and 75%, respectively. From these results it is clear that the TS
neuro-fuzzy model predicts conflict with a much higher accuracy but sacrifices its
performance on peace outcomes. This biased result will be accepted as the predic-
tion of conflict is considered more important than the prediction of peace.

5 Fuzzy Rule Extraction

The TS neuro-fuzzy model used for forecasting in the previous section can also
be used for rule extraction. Two fuzzy rules can be extracted from the model
and they are shown below.

1. If u1 is A11 and u2 is A12 and u3 is A13 and u4 is A14 and u5 is A15 and
u6 is A16 and u7 is A17 then
y(k) = −1.86 · 10−1u1 − 1.33 · 10−1u2 + 0.00 · 100u3 − 6.05 · 10−1u4 − 1.26 ·
10−1u5 − 1.33 · 100u6 + 4.71 · 10−1u7 + 8.95 · 10−1
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Fig. 2. A ROC illustrates the performance degradation of the neuro-fuzzy model when
several inputs are pruned

2. If u1 is A21 and u2 is A22 and u3 is A23 and u4 is A24 and u5 is A25 and
u6 is A26 and u7 is A27 then
y(k) = −2.79 · 10−1u1 + 6.26 · 10−2u2 + 2.47 · 10−1u3− 7.56 · 10−1u4 − 8.85 ·
10−1u5 − 9.04 · 100u6 + 0.00 · 100u7 + 3.73 · 10−1

The symbols from u1 to u7 are the input vector which consists of People
oriented Government, Dependancy, Capability, Alliance, Contiguity, Distance
and Major power. The rest of the symbols are as previously defined.

It is clear that the rules are quite complex and need to be simplified in order to
obtain a didactic interpretation. In fact it is often found that when automated
techniques are applied to obtaining fuzzy models, unnecessary complexity is
often present [13]. Setnes et al [13] present a similarity measure for fuzzy rule
based simplification. Two methods of simplifying rules that are proposed are the
removal and/or merging of similar fuzzy sets. Removal of a fuzzy set is proposed
in the event that it is similar to the universal set i.e. μ ≈ 1 and the merging
of fuzzy sets is proposed in the event that fuzzy sets from different rules but
belonging to the same premise are similar.

In our case the TS fuzzy model contains only two fuzzy rules. The removal
of a fuzzy sets similar to the universal set leaves only one remaining fuzzy set.
This results in the input being partitioned into only one fuzzy set and therefore
introduces difficulty when expressing the premise in linguistic terms. To simplify
the fuzzy rules and avoid the redundant fuzzy sets the number of inputs into the
TS neuro-fuzzy model have been pruned down to four variables. These variables
are People oriented Government, Dependancy, Alliance and Contiguity. Fig 2
illustrates how the output deteriorates when three of the inputs are pruned. The
ROC curve shows that the performance degradation is minimal.

The rules extracted can then be converted so that they are represented in
the commonly used linguistic terms. However it is only possible to translate the
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antecedent of the fuzzy statement into english. The consequent part together
with the firing strength of the rule are still expressed mathematically. The trans-
lated fuzzy rules with the firing strengths omitted can be written as shown below.

1. If Government orienting towards people is low and Alliance is strong and
Contiguity is true then
y(k) = −3.87 · 10−1u1 − 9.19 · 10−1u3 − 7.95 · 10−1u4 + 3.90 · 10−1

2. If Government orienting towards people is high and Alliance is weak and
Contiguity is false then
y(k) = −1.25 · 10−1u1 − 5.62 · 10−1u3 − 2.35 · 10−1u4 + 4.23 · 10−1

To validate the model we can then apply expert knowledge of the problem
domain. For instance if the level of people oriented Government of two countries
is low, they have a weak alliance and they share a border there is a reasonable
chance that the countries can find themselves in a conflict situation. If we find
values of Majority rule, Alliance and Contiguity which have a membership value
of one, we can then use these as inputs to the model to see if it confirms our
existing knowledge. It is found that by using these values and and an arbitrary
Dependency value the model gives a prediction of 0.6743 which is above the
conflict threshold of 0.5360 calculated from the ROC curve. By validating the
model with similar statements, we can get a feel for how much confidence we can
put in the system. The neuro-fuzzy model therefore offers an improved method
of forecasting international conflict as it allows for accurate prediction of dis-
pute outcomes while also catering for the cases where causal interpretations are
required.

6 Conclusion and Recommendataion

A background on conflict management has been presented in the form of a liter-
ature survey. The methods that have been used in the past to predict interstate
disputed have been highlighted. The performance criteria that is expected of a
forecasting model has been stated i.e. a satisfactory model must be able to ac-
curately predict dispute outcome and at the same time be able to give a causal
explaination of the results. It has been found that previous models have either
lacked a sufficient prediction ability or transparency. A Takagi-Sugeno fuzzy
model which is trained using concepts from neural network learning is then pro-
posed. It is shown that the TS model is able to predict conflict cases with an
accuracy of 80.36%. Further, the TS model is expressed as a set of fuzzy rules
which are made readable by expressing them using common linguistic terms.
The TS model therefore is able to meet the specified peformance criteria.

However, we recommend the Takagi-Sugeno model for prediction only as it
is able to predict the conflict cases accurately. The transparency of the fuzzy
model allows for improved validation and therefore increases the chances of user
acceptance. It is not advisable for the system to be used to source expert knowl-
edge because of its accuracy. A prediction accuracy of 80.36% is considered good
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especially on a rare-event prediction problem. However, this means that under
certain conditions the fuzzy rules may offer incorrect knowledge. To increse the
validity of the model we also recommend that the way some of the interstate
variables are expressed be reviewed. For instance, variable such as contiguity
have values of either true or false. In the fuzzy domain these are considered
exceptions and are commonly termed as fuzzy singleton. Therefore, expressing
these fuzzy sets as Gaussian membership functions might introduce flaws into
the model.
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Abstract. In this paper, hardware implementation of a wavelet neural network 
(WNN) is described. The WNN is developed in MATLAB and implemented 
on a Field-Programmable Gate Array (FPGA) device. The structure of the 
WNN is similar to the radial basis function (RBF) network, except that here 
the radial basis functions are replaced by orthonormal scaling functions. The 
training of the WNN is simplified due to the orthonormal properties of the 
scaling functions. The performances of the proposed WNN are tested by ap-
plying for the function approximation, system identification and the classifica-
tion problems. Because of their parallel processing properties, the FPGAs pro-
vide good alternative in real-time applications of the WNN. By means of the 
simple scaling function used in the WNN architecture, it can be favorable to 
multilayer feedforward neural network and the RBF Networks implemented on 
the FPGA devices.  

1   Introduction 

Recently, the WNN’s have become a popular tool in networks. Wavelets have been 
applied successfully to multi scale time-frequency analysis and synthesis in signal 
processing, function approximation and fault detection [4],[5],[6]. The multi layer 
perceptron (MLP) with the back-propagation (BP) training algorithm is the mostly 
used type of neural network in practical application. But this structure is complicated 
due to multilayer structure and its convergence is too slow. The RBF network has a 
simpler structure (one hidden layer) than the MLP. The training of the RBF networks 
can be obtained much easier than the MLP networks by preprocessing the training 
data, such as clustering, However, due to the basis functions in the RBF, the RBF 
network representation is not unique and not the most efficient for a given function 
[3]. A WNN is obtained by using wavelet scaling functions as the basis functions [3]. 
Unlike the basis functions in RBF [6], the scaling functions have orthonormal proper-
ties. Therefore, the wavelet neural networks have improved training performances and 
convergence rates [7].  

In real-time applications, parallel implementation of the neural networks is an im-
portant property. The FPGA consists of many logic gates. We can enter a description 
of our logic designs using a hardware description language (HDL) such as VHDL or 
VERİLOG. These devices allow to implement neural network designs in parallel 
architectures in order to use for real-time applications [9-10]. 
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In this paper, an FPGA implementation of a WNN consisting of the haar wavelet 
function [8] is described.  The performance of the WNN is tested by applying for the 
function approximation, the system identification and classification problems.    

The remaining of the paper is organized as follows. In section 2, a brief review of 
the wavelets is given. The architecture of the wavelet neural network with haar scal-
ing function is described in section 3. In section 4, the steps of the implementation of 
the wavelet neural network in the FPGA are given. The simulation and the FPGA 
implementation results are given in section 5. Section 6 concludes the paper. 

2   Wavelets 

A wavelet is a base (basis) function which has the ability to allow simultaneous time 
and frequency analysis. Wavelets have adjustable and adaptable parameters so that 
they are ideal for adaptive systems to give a tool for the analysis of transient, nonsta-
tionary, time-varying phenomena [1]. 

The wavelets are functions whose dilations and translations form a orthonormal 
basis of  L2( R ), the space of all square integrable functions on R. There exists a func-
tion Ψ(t) ( the “mother wavelet”) such that 

)2(2)( 2/
, ntt mm
nm −Ψ=Ψ                                                  (1) 

form an orthonormal basis of  L2( R ). Therefore, the wavelet basis induces an or-
thogonal  decomposition  of   L2( R ). 

m
m

WRL ⊕=)(2                                                                    (2) 

where mW  is a subspace spanned by 
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mm nt )2(2 2/                                                 (3)  

The wavelet Ψ(t) is often generated from a companion Φ(t) known as the scaling 

function (the “father wavelet”) and mV  be the subspace spanned by  

+∞=
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The relation between mW  and mV  is 
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The dilations and translations of the scaling function induce a multiresolution analysis 
(MRA) of L2 ( R ): 
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The Haar scaling and wavelet function [1] are shown in Fig.1. 

 
                     (a)                                       (b) 

Fig. 1. Haar Wavelet and Scaling Functions; a)Scaling Function: b) Wavelet Function: 

)()( 2 RLxf ∈  can be extract inverse wavelet transform: 

∑ Ψ〉Ψ〈=
nm

nmnm tftf
,

,, )(,)(                                                  (8) 

and 

∑∑
≥

Ψ〉Ψ〈+Φ〉Φ〈=
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n

nmnm tftftf
,0

,,,0,0 )(,)(,)(                       (9) 

where <.,.> represents the inner product and 0m  is an arbitrary integer, representing 
the lowest resolution or scale in the decomposition [1],[4],[6,[8]. In fact that, any 

)()( 2 RLxf ∈  can be approximated arbitrarily closely in mV , for some integer M. 

That is, for any ∈>0, there exists an M  sufficiently large such that 

〈∈Φ〉Φ〈−∑
n

nMnM tftf )(,)( ,,                                     (10) 

In the d-dimensional analysis and synthesis, the scaling function is defined by the 
tensor products of one-dimensional scaling functions [2],[4],[6],[8]. For example, a d-
dimensional scaling function can be generated by 

∏
=

Φ=Φ=Φ
d

j
jddd ttttt

1
21 )(),.......,()(                              (11) 

3   Wavelet Neural Network 

In this section, the structure and training procedure of the wavelet neural network is 
described.  

Let )()( 2 RLtf ∈  be an arbitrary function which has to be approximated. )(tf  

can be estimated by means of a set of given training data. 



1098 A. Karabıyık and A. Savran 

{ }N

jiiN tftT 1)(,( ==                                                       (12) 

From the wavelet theory explained Section 2, )(tf  can be approximated with an 

arbitrarily accuracy by selecting a sufficiently large M such that 

∑ Φ〉Φ〈≅
k

kMkM tftf )(,)( ,,                                            (13) 

∑ Φ=
k

kMk tc )(,                                                           (14) 

where  

)2(2)( 2/
, ktt MM
kM −Φ=Φ                                             (15) 

The network structure is shown in Fig. 2. It is a three-layer network similar to the 
multilayer feedforward neural networks. The input layer is one node with input x. The 
hidden layer contains a countable number of nodes indexed by k, and the threshold for 
the k-th node of the hidden layer is k. The weights and nonlinearities of the hidden-

layer nodes are identical, i.e., M2 and )(xΦ , respectively. The weights of output 

layer are kc  and which has one linear node. The hidden nodes run from    –K to K for 

some positive integer K [3-4-6-8]. 

 

Fig. 2. The Wavelet Neural Network 

For a given set of M and K, the WNN described above implements the function )(tg  

∑
−=

Φ=
K

Kk
kMk tctg )()( ,                                                 (16) 
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In this equation, if kc  are properly selected, the )(tg  could be used to approximate 

)(tf . 

In WNN, the number of hidden nodes is, for a given resolution M, determined by 
the input signal range which is 2(2M+p) for 1-dimensional case. If we use d-
dimensional, it will be 2d(2M+p)d [8]. 

p ≥ 1                                                                       (17) 

If the input signal range lies in the interval [-1,1], the number of hidden nodes is 
2(2M+1) for 1-dimensional case. 

With BP training algorithm, when the training data set TN is avaible, kc  can be 

found by minimizing the mean square (training) error ),,( gfeN  
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[3] and N is the length of training data. For minimizing the mean square error, kc  can 

be updated by 
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∂
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−=+ λ                                (19) 

for some λ ,  10 〈〈λ , 

where λ  is learning rate. 

4   Implementation of Wavelet Neural Network in FPGA 

The FPGA implementation of the WNN, which is firstly simulated with MATLAB, is 
performed by using the VHDL (Very High Speed Integrated Circuit Hardware De-
scription Language). The choice of VHDL is justified by its flexibility and the fact 
that it is a standard language (IEEE 1076). Furthermore, it is a target device inde-
pendent designing tool, i.e. with one design description many device architectures can 
be included. After learning process, the WNN is implemented in FPGA devices for 
parallel processing. 

The data types of the WNN’s weights, bias coefficients and inputs have to be 
changed from real type into binary. The latter can be used immediately in the VHDL. 
To be more specific, it can be easily represented as std_logic_vector type, which is 
the most suitable data type for digital processing in an FPGA. If the input and coeffi-
cients lie in the interval [-5,5], which can be represented with 10 bit binary number. 

The structure of WNN in FPGA consists of three units. 

1.Input Layer-Coder: The input signal has to be changed from real type into bi-
nary. The wide of binary number is generally 10 bit. For this purpose, we described a 
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look-up-table (LUT). If the input signals lie in the interval [-5,5], the resolution of 10 
bit binary number is: 

009765.0
2

)5(5
10

=−−=resolution                                   (20) 

2. Hidden Layer-Neuron Structure:  The neuron structure in hidden layer consists 
of multiplier, accumulator and activation function which are described by VHDL. The 
input signal is multiplied with input weights by using multiplier. The output of multi-
plier is summed with bias coefficient to give the net results for activation function. 
The activation function is described by LUT. The Haar scaling function is used in this 
work. Every neurons in the hidden layer work parallel at the same clock signal. 

3.Output Layer-Decoder: The output of the activation functions are weighted by 
multiplying with the output weights. In the output layer, the output of each hidden  
layer neurons are summed by accumulator and then the results are transferred from 
binary digit to the decimal digit by using LUT in order to show on the displays of the 
FPGA card. 

We enter describe our network using  VHDL. Implementation on an FPGA usually 
requires a number of steps. After using a logic synthesizer program to transform the 
HDL into netlist, the WNN structure is designed by various logic gates. And then, we 
use the implementation tools to map the logic gates and interconnections into the 
FPGA. The logic operations are performed by using configurable logic blocks in the 
FPGA. Ones the implementation phase is completed, a program extracts the state of 
the switches in the routing matrices and generates a bitstream where the ones and 
zeroes correspond to open or closed switches. And finally, the bitstream is 
downloaded into a physical FPGA chip. 

We use the parallel port of host computer for data transfer to the designed WNN in 
the FPGA. The input of WNN is carried out in the Pentium computer using MATLAB 
from parallel port of host computer and then the output of WNN can be seen on 
FPGA displays. 

5   Experimental Results 

The examples in this section are simulated using MATLAB. Then, the results ob-
tained from the FPGA are compared with the simulation results. The FPGA board is 
Xilinx Spartan 2E XC2S200E which has 200.000 gates, 50 MHz oscillator, RS-232 
serial port, parallel port, seven segment and LED-pushbutton for basic I/O. 

Example 1: The first example is the XOR problem. In this problem, the output is one 
when the inputs are different, otherwise it is zero. The WNN has 2-inputs, 16 neurons 
in the hidden layer and 1 output. The WNN is scaled with M=0. In 1000 epochs, the 
sum-squared error between the desired output and the output of WNN is 10-8. After 
training process, the structure is implied on the FPGA. The parallel port is used to 
data transfer between the host computer and the FPGA. The output of the system is 
displayed on the 7-segment displays of FPGA. The sum-squared error through the 
training process, the desired-the WNN output (blue line) and the WNN output (red 
line) obtained in the FPGA are shown in Fig. 3.  
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Fig. 3. Simulation -FPGA Results for XOR 

Example 2: This example illustrates a classification problem which has two-
dimensional input and one-dimensional output. Where the inputs are 

xd=[-3 -2 -2 0 0 0 0 2 2 3;                                                    (21) 
                                     0 1 -1 2 1 -1 -2 1 -1 0]; 

and the output is 

d=[0 0 0 1 1 1 1 0 0 0]                                                        (22) 

The WNN is described by 2-dimensional inputs, 16 neurons in the hidden layer and 
1-dimensional output in MATLAB. WNN is scaled with M=0, the sum-squared error 
is 10-8 in 344 epoch and the sum-square error and the desired-WNN output (green) in 
MATLAB and the FPGA output (red) are given in Fig. 4.  

 

Fig. 4. Simulation-FPGA Results for Classification 
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Example 3: We consider a function approximation problem which is expressed as [8]  

[ ]
1)(

)(
)(

2 +
=

ky

ky
kyf

p

p
p                                                  (23) 

where )(ky p  is the output of system. The system is described by the first order dif-

ference equation 

)()(5.0)1( kukyky pp +=+                                            (24) 

where )
10

2sin(3.0)
25

2sin(2.0)(
kk

ku ππ += . The WNN is described by 1-

dimensional input, 36 neurons in the hidden layer and 1-dimensional output in the 
MATLAB taking M=4. In 300 epochs, the sum-squared error between the desired 
output and the output of the WNN is 10-8. The sum-square error in learning phase, the 
WNN output in the FPGA and the MATLAB, are given Fig. 5, respectively.  

 

Fig. 5. Results for the function approximation application 

Example 4: In this example, the identification of a nonlinear system is considered. It 
is given as 

32 )1(])1(2.081).1()1(5.0)( −+−+−+−= tutytutyty                     (25) 

where, u and y is the input and output variable of the system, respectively. The inputs 
are generated randomly in the interval [-0.5,0.5]. The WNN has 2 inputs, 100 neurons 
in the hidden layer and 1 output. The WNN are trained with 2000 data samples and 
test with 200 data samples. Taking M=2, the the sum-squared error between the de-
sired output and the output of the WNN decreased to 2.10-4 in the 40 epochs,. The  
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sum-square error , the desired and FPGA outputs, and the WNN outputs for 
MATLAB simulation and the FPGA implementation are all given in Fig. 6. 

 

Fig. 6. Results for the system identification application 

6   Conclusions 

In this paper, a wavelet neural network implemented in an FPGA device has been 
described. The Haar wavelet function which has a simple structure has been used to 
simplify the FPGA implementation and form an orthonormal basis.  

The good performances for the WNN are obtained by applying for the classifica-
tion, the function approximation, and the system identification problems.  

As a future work, the online training of the WNN in the FPGA will be studied  
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Abstract. The usage of the FPGA (Field Programmable Gate Array) for neural 
network implementation provides flexibility in programmable systems. For the 
neural network based instrument prototype in real time application, 
conventional specific VLSI neural chip design suffers the limitation in time and 
cost. With low precision artificial neural network design, FPGAs have higher 
speed and smaller size for real time application than the VLSI design.  In 
addition, artificial neural network based on FPGAs has fairly achieved with 
classification application. The programmability of reconfigurable FPGAs yields 
the availability of fast special purpose hardware for wide applications. Its 
programmability could set the conditions to explore new neural network 
algorithms and problems of a scale that would not be feasible with conventional 
processor. The goal of this work is to realize the hardware implementation of 
neural network using FPGAs. Digital system architecture is presented using 
Very High Speed Integrated Circuits Hardware Description Language (VHDL) 
and is implemented in FPGA chip. The design was tested on a FPGA demo 
board. 

1   Introduction 

Artificial Neural Networks (ANNs) can solve great variety of problems in areas of 
pattern recognition, image processing and medical diagnostic. The biologically 
inspired ANNs are parallel and distributed information processing systems. This 
system requires the massive parallel computation. Thus, the high speed operation in 
real time applications can be achieved only if the networks are implemented using 
parallel hardware architecture [1].  

Implementation of ANNs falls into two categories: Software implementation and 
hardware implementation. ANNs are implemented in software, and are trained and 
simulated on general-purpose sequential computers for emulating a wide range of 
neural networks models. Software implementations offer flexibility. However 
hardware implementations are essential for applicability and for taking the advantage 
of ANN’s inherent parallelism [2]. Specific-purpose fixed hardware implementations 
(i.e. VLSI) are dedicated to a specific ANN model. VLSI implementations of ANNs 
provide high speed in real time applications and compactness. However, they lack 
flexibility for structural modification and are prohibitively costly.  
                                                           
* Corresponding author. ybecerikli@kou.edu.tr, ybecer@ieee.org  
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We are interested in building a different class of hardware environment, i.e. FPGA-
based reconfigurable computing environment for implementing ANNs. FPGA offer 
speed comparable to dedicated and fixed hardware systems for parallel algorithm 
acceleration, while as with a software implementation, retaining a high degree of 
flexibility for device reconfiguration as the application demands [3]. With the 
introduction of FPGAs, it is feasible to provide custom hardware for application 
specific computation design. The changes in designs in FPGAs can be accomplished 
within a few hours, and thus result in significant savings in cost and design cycle. A 
method of implementing a fully connected feed forward network with Xilinx FPGAs 
for image processing that the single processing node was partitioned into two XC3090 
chips is proposed [4]. A neural associative memories implementation based RAMs 
and XC3090 FPGAs is reported [2]. 

This paper explores that how to efficiently use 32 bit floating-point numeric 
representation in FPGA based ANNs. By making use of the features of SpartanIIE 
series FPGAs. A VHDL library was designed for using ANN's on FPGAs. The library 
supports to the IEEE-754 standards for single-precision (32-bit) floating point 
arithmetic, and it is referred to fp_lib. 

2   Artificial Neural Network 

The concept of ANNs is emerged from the principles of brain that are adapted to 
digital computers. The first works of ANNs were the models of neurons in brain using 
mathematics rule [5]. These works show that each neuron in ANNs take some 
information as an input from another neuron or from an external input. This 
information is propagated as an output that are computed as weighted sum of inputs 
and applied as non-linear function. 

Architectural ANNs parameters such as number of inputs per neuron and each 
neuron’s conductivity change remarkably from application to application. Thus, for 
special purpose network architectures parameters must be carefully balanced for 
efficient implementation. 

It is apparent that there are three kinds of parallelism to explain within ANNs when 
carefully exanimate to the data flow and structure of ANNs. The first is spatial 
parallelism i.e. every neuron in the same layer runs simultaneously. The second is 
algorithmic parallelism that is related to the formulation of the algorithm itself. In 
addition, computation on successive layers can be pipelined [3]. 

3   Field Programmable Gate Arrays and Very-High Hardware 
Description Language 

FPGAs consist of three basic blocks that are configurable logic blocks, in-out blocks 
and connection blocks. Logic blocks perform logic function. Connection blocks 
connect logic blocks with in-out blocks. These structures consist of routing channels 
and programmable switches. Routing process is effectively connection logic blocks 
exist different distance the others [6]. 
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FPGAs are chosen for implementation ANNs with the following reason: 

• They can be applied a wide range of logic gates starting with tens of thousands 
up to few millions gates.  

• They can be reconfigured to change logic function while resident in the 
system. 

• FPGAs have short design cycle that leads to fairly inexpensive logic design.   
• FPGAs have parallelism in their nature. Thus, they have parallel computing 

environment and allows logic cycle design to work parallel. 
• They have powerful design, programming and syntheses tools. 

The architecture of ANNs must be specified with schematic or algorithmic at first step 
of FPGAs based system design. When ANNs based FPGAs system design specify the 
architecture of ANNs from a symbolic level. This level allows us using VHDL which 
stands for VHSIC (Very High Speed Integrated Circuit) Hardware Programming 
Language [7]. VHDL allows many levels of abstractions, and permits accurate 
description of electronic components ranging from simple logic gates to 
microprocessors. VHDL have tools needed for description and simulation which leads 
to a lower production cost. 

4   Data Representation 

There are two problems during the hardware implementation of ANNs. How to 
balance between the need of reasonable precision (number of bit), that is important 
for ANN and the cost of more logic area associated with increased precision. How to 
choose a suitable number format that dynamic range is large enough to guarantee that 
saturation will not occur for a general-purpose application. So before beginning 
ANN’s based FPGAs system design with VHDL, number format (floating point, fixed 
point etc.) and precision which used for inputs, weighs and activation function must 
be considered.  This important that precision of the numbers must be as high as 
possible are used during training phase. Because, precision has a great impact in the 
learning phase [9]. However low precision is used during the propagation phase [10]. 
So especially in classification’s applications the resulting errors will be small enough 
to be neglected [10,5,11]. 

Floating point offers the greatest amount of dynamic range, making it suitable for 
any application so it would be the ideal number format to use. The objective of this 
paper is to determinate feasibility of 32 bit floating point arithmetic in FPGAs based 
ANNs. 

5   Application 

In this section FPGA based ANN’s architecture, works and system results is 
represented. The application is implementing fully parallel neural network in FPGA. 
The network is implemented in Xilinx Spartan IIE chip consist of 200000 typical 
gates, 2352 slices. 
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5.1   Arithmetic Architecture for ANN's 

The first work must be, trained ANN's is mapped on FPGA in application phase. So 
ANN’s architecture was developed using VHDL with 32 bit floating point arithmetic. 
Because of floating point have greatest amount of dynamic range for any applications. 
Unfortunately, there is currently no clear support for floating-point arithmetic in 
VHDL [4, 12]. As a result, a VHDL library was designed for using ANN's on FPGAs. 
The library supports to the IEEE-754 standards for single-precision (32-bit) floating 
point arithmetic, and it is referred to fp_lib. The fp_lib has tree separate library, for 
floating point addition fp_add, floating point subtraction fp_sub and floating point 
multiplication fp_mul.  

The single precision floating point numeric representation supports to IEEE-754 
standard shown in Figure 1. 

 

Fig. 1. 32 bit Floating Point Format 

The floating point number (n) is computed by: 

 
(1) 

In Figure 1, sign field is referred to 's' is bit 31 and is used to specify the sign of the 
number. Exponent field is referred to 'e' is bits 30 down to 23 are the exponent field. 
The bias of 127 is used. Because of 8 bit quantity is a signed number representation. 
To store binary representation (b) of floating point number bits 22 down to 0 are used. 
The leading one in the mantissa is implicit. So the mantissa is (1.b). 

5.2   Network Architecture 

By using of the FPGA features hardware implementation of fully parallel ANN's is 
possible. In the fully parallel ANN's architecture number of multipliers per  neuron  
equals to number of connections to this neuron and number of the full adders equals 
to number of connections to the previous layer mines one [9].  For example in 2-4-1 
network output neuron have 4 multipliers and 3 adders. In this work a VHDL library 
were designed for floating point addition fp_add and floating point multiplication 
fp_mul. But most resources of FPGAs are used by multiplication and addition 
algorithm. So in fully parallel ANN's must be used low number precision (for 
example 8 bit). With the low number precision fully parallel network is not suitable 
for any application. With the using fp_lib (32 bit floating point number precision)in  
ANN's is suitable for any application. But the architecture has one multipliers and one 
adders per layer and is not full parallel because of area resource of FPGAs. 

In this structure there is one multiplier and one adder per layer. The inputs from 
previous layer enter the layer parallel and multiplier serially with their corresponding 
weights. The results of multiplication are stored in their neuron area in the addition  
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storage ROM. Multiplied value of per neuron are inputs for adder. The inputs of adder 
are added serially and each addition are inputs for sigmoid lookup table. The results 
of look up table are stored for next layer. This ANNs architecture is shown in Figure 
2. In this design number of layer and number of neuron are changed easily during the 
working phase. 

 

Fig. 2. Block diagram of ANNs 

5.3   Modeling Tree Layer (2-3-1) ANNs 

ANNs consist of input layer, one hidden layer and output layer as shown in Table 1. 
Sigmoid function is used as an activation function. Sigmoid function input vector 
consist of 100 value from -10 to 10 by chosen 0.2 step size. Results of sigmoid 
function are stored in the ROM 

Weights are using this application are shown in Table 1. 

Table 1. Weights Used in the Application 

w111 w121 w131 w112 w122 w132 
0.5 1 0.5 1 0.5 1 
w211 w212 w213    
0.5 1 0.5    
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Fig. 3. A three layer MLP 

5.4   Tree Layer (2-3-2) ANNs Architecture 

In our design the external inputs entered the first layer serially. Input value and tree 
control signal that are start signal (1 bit), finish signal (1 bit) and neuron count signal 
(4 bit) must be entered. Before entered input value start signal must be set and after 
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the entered input value finish signal must be set. If finish signal must be set system 
calculate entered input value number. So, the input number depends on the ones. 
Weight number is multiplied of input number in the BFR and neuron number. 

Then first input, its corresponding and weights are stored in MULT_ROM1 and 
they are multiplied serially. The results are stored in area of first neuron in 
MULT_ROM2. The same process is repeat for other inputs. The value and bias in the 
same neuron area are added serially. The results are input for sigmoid look-up table. 
Look-up table outputs are stored OUT_BFR. The value that is this layer outputs must 
be next layer inputs. This working is controlled by control unit. Control unit controls 
time and makes several signals (for example enable signal) for other unit (see .Fig. 4) 

6   Implementation Results 

Digilentic demo board is used for implementation. The board has Xlinx Spartan II 
2s200epq208-6 and 50 MHz clock. Spartan II chip has 2352 slices and 14 block 
RAM. VHDL libraries that it is referred to fp_lib were designed for using ANN's on 
FPGAs. The fp_lib has tree separate library are shown in Table 2. The comparison of 
FPGA based tree layer (2-3-1) ANNs and software based tree layer (2-3-1)  ANNs are 
shown in Table 3 with inputs g1 = 0.5 and g2 = -0.25.  

Table 2. Summary of custom arithmetic VHDL libraries 

HDL 
Design 

Description 

fp_lib IEEE 32-bit single precision floating point library 
fp_mul IEEE 32-bit single precision floating point piplined parallel 

multiplier  
fp_add IEEE 32-bit single precision floating point piplined parallel 

adder  
Log_rom IEEE 32-bit single precision floating point Single Port 

Block Memory   

Table 3. Comparison of FPGA base ANNs and software based ANNs 

 Software 
based ANNs 

FPGA 
based ANNs 

ERROR 

g1=0.5 
g2=-0.25 

2.3274321322 2.268109 0.059323 

7   Conclusions 

In general, it is shown that implementation of neural networks using FPGAs. The 
resultant neural networks are modular, compact, and efficient and the number of 
neurons, number of hidden layers and number of inputs are easily changed.  
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The choice of dynamic range, precision and arithmetic hardware architecture used 
in neural networks application has a direct impact on the processing density achieved. 
Using suitable precision arithmetic design, one can be achieve adequately high speed 
and small size for real time ANNs implementations. 

However this study shows that FPGAs are versatile devices for implementing 
many different applications. The VHDL-FPGA combination is shown to be a very 
powerful embedded system design tool, with low cost, reliability, and multi-faceted 
applications. As FPGAs allow the hardware design via configuration software control, 
the improvement of circuitry design is just a matter of modifying, debugging and 
downloading the new configuration code in a short time. 
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Abstract. In a multi-input an multi-output feedforward wavelet neural network, 
orthogonal wavelet basis functions are used as activate function instead of 
sigmoid function of feedforward network. This paper adresses the solution on 
processing biological data such as cardiac beats, audio and ultrasonic range, 
calculating wavelet coefficients in real time, with processor clock running at 
frequency of present ASIC’s and FPGA. The Paralell Filter Architecture for 
DWT has been improved, calculating wavelet coefficients in real time with 
hardware reduced up to 60%. The new architecture, which also processes 
IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant 
multipliers. One integrated circuit Encoder/Decoder, ultrasonic range, is 
presented. 

1   Introduction 

In artificial neural networks, wavelet series has the ability of functional approximation. 
The Discrete Wavelet Transform (DWT) is a good tool for time-frequency localization. 
Combining the localization feature of DWT and the self-modification function of 
Wavelet Neural Network (WNN), parameters of dyadic wavelet functions are modified 
through training [5]. The DWT algorithm [1,2,6] provides efficient multi-resolution 
subband coding representation in the time-scale plane. In each step, the signal is high-
pass and low-pass filtered. An algorithm for the calculation of 1-D DWT is proposed 
[1]. In this algorithm, DWT coefficients in one level are calculated with DWT 
coefficients of the previous level. The input data sequence l 0 has N 0 = p2 J samples, 
where p is an integer and J is the number of levels of the transform. Each 
decomposition level   j , 1 ≤  j ≤ J , can be seen as  the  further decomposition of the 
sequence l j-1 , which  has N j-1 samples, into two subbands l j and h j , both with    N j = 
N j-1 / 2 samples. Such a decomposition is produced by two convolutions followed by a 
decimation by two. In equation (1), a i and c i denote coefficients on  low-pass L j and 
high-pass H j, M  tap filters,  l n

j = 0 for n < 0 and n ≥ J. 

1Nn0   l j
1j

i2ni

1M

0i

j
n ch −≤≤⋅= −

−∑
−

=

                               (1) 
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−
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∑                              (2) 

For computing the DWT coefficients of the input discrete-time data, it is assumed 
that the input data represents DWT coefficients of a higher resolution level. 
Coefficients of subsequent levels are obtained from equations (1) and (2). Hence, 
DWT extracts information from the signal at different scales. The first level of wavelet 
decomposition extracts the high-frequency components of the signal, while the second 
and all subsequent wavelet decompositions extract, progressively, lower frequency 
components. A few levels are enough to have a good approximation of the signal with 
discrete wavelet coefficients. Four level   1-D DWT with low-pass eight order filter 
wavelet coefficients are presented in equation (3). Numerical equations for high-pass  
direct and  1-D IDWT inverse filters are obtained from equations (2), (4) and (5). 

      l 1(0)   = a 0 l 0(0) + a 1 l 0(-1) + a 2 l 0(-2) + a 3 l 0(-3) + 

                 + a 4 l 0(-4) + a 5 l 0(-5) + a 6 l 0(-6) + a 7 l 0(-7)   (3a) 

      l 1(2)   = a 0 l 0(2) + a 1 l 0(1) + a 2 l 0(0) + a 3 l 0(-1) + 

                 + a 4 l 0(-2) + a 5 l 0(-3) + a 6 l 0(-4) + a 7 l 0(-5)   (3b) 

      l 1(4)   = a 0 l 0(4) + a 1 l 0(3) + a 2 l 0(2) + a 3 l 0(1) + 

                 + a 4 l 0(0) + a 5 l 0(-1) + a 6 l 0(-2) + a 7 l 0(-3)   (3c) 

      l 1(6)   = a 0 l 0(6) + a 1 l 0(5) + a 2 l 0(4) + a 3 l 0(3) + 

                 + a 4 l 0(2) + a 5 l 0(1) + a 6 l 0(0) + a 7 l 0(-1)   (3d) 

      l 1(8)   = a 0 l 0(8) + a 1 l 0(7) + a 2 l 0(6) + a 3 l 0(5) + 

                 + a 4 l 0(4) + a 5 l 0(3) + a 6 l 0(2) + a 7 l 0(1)   (3e) 

      l 1(10) = a 0 l 0(10) + a 1 l 0(9) + a 2 l 0(8) + a 3 l 0(7) + 

                + a 4 l 0(6) + a 5 l 0(5) + a 6 l 0(4) + a 7 l 0(3)   (3f) 

      l 1(12) = a 0 l 0(12) + a 1 l 0(11) + a 2 l 0(10) + a 3 l 0(9) + 

                 + a 4 l 0(8) + a 5 l 0(7) + a 6 l 0(6) + a 7 l 0(5)   (3g) 

      l 1(14) = a 0 l 0(14) + a 1 l 0(13) + a 2 l 0(12) + a 3 l 0(11) + 

                 + a 4 l 0(10) + a 5 l 0(9) + a 6 l 0(8) + a 7 l 0(7)   (3h) 

      l 2(0)   = a 0 l 1(0) + a 1 l 1(-2) + a 2 l 1(-4) + a 3 l 1(-6) + 

                + a 4 l 1(-8) + a 5 l 1(-10) + a 6 l 1(-12) + a 7 l 1(-14)   (3i) 

      l 2(4)   = a 0 l 1(4) + a 1 l 1(2) + a 2 l 1(0) + a 3 l 1(-2) + 

 + a 4 l 1(-4) + a 5 l 1(-6) + a 6 l 1(-8) + a 7 l 1(-10)   (3j) 

      l 2(8)   = a 0 l 1(8) + a 1 l 1(6) + a 2 l 1(4) + a 3 l 1(2) + 

      + a 4 l 1(0) + a 5 l 1(-2) + a 6 l 1(-4) + a 7 l 1(-6)   (3k) 
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      l 2(12) = a 0 l 1(12) + a 1 l 1(10) + a 2 l 1(8) + a 3 l 1(6) + 

     + a 4 l 1(4) + a 5 l 1(2) + a 6 l 1(0) + a 7 l 1(-2)   (3l) 

      l 3(0)   = a 0 l 2(0) + a 1 l 2(-4) + a 2 l 2(-8) + a 3 l 2(-12) + 

       + a 4 l 2(-16) + a 5 l 2(-20) + a 6 l 2(-24) + a 7 l 2(-28)  (3m) 

      l 3(8)   = a 0 l 2(8) + a 1 l 2(4) + a 2 l 2(0) + a 3 l 2(-4) + 

      + a 4 l 2(-8) + a 5 l 2(-12) + a 6 l 2(-16) + a 7 l 2(-20)   (3n) 

      l 4(0)   = a 0 l 3(0) + a 1 l 3(-8) + a 2 l 3(-16) + a 3 l 3(-24) + 

      + a 4 l 3(-32) + a 5 l 3(-40) + a 6 l 3(-48) + a 7 l 3(-56) .     (3o) 

To reconstruct the analyzed signal, equations (4) and (5), 1-D DWT coefficients 
are upsampled and inverse filtered with transfer functions Pj and Qj,  coefficients sets 
a’ and c’, 
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This analysis on the signal is done with power of two, or dyadic bands. For 
computing the DWT coefficients of the input discrete-time data, it is considered that 
the input data represents DWT coefficients of a higher resolution level. Coefficients 
of subsequent levels are obtained from equation (1). Hence, DWT extracts 
information from the signal at different scales. The first level of wavelet 
decomposition extracts the high-frequency components of the signal, while the second 
and all subsequent wavelet decompositions extract, progressively, lower frequency 
components. A few levels are enough to have a good approximation of the signal with 
discrete wavelet coefficients. It has a very wide array of applications such as 
biomedicine [3], signal processing, ultrasonic analysis [4], speech compression, 
numerical analysis, statistics, etc. One original Common Architecture for the DWT 
and the IDWT is designed. One logical circuit for data compression is presented. This 
circuit controls compression rates in compression schemes used with the Percent of 
Root-mean-square Difference (PRD) control index. With one DWT module, one 
IDWT module and delay memory, one Encoder/Coder is designed. It was simulated 
with three and four levels to evaluate precision for several lengths data samples and 
filter coefficients. 

To process high frequency signals, combinational multipliers are required. The 
Booth multiplier implements a paralell serial multiplier with additional control logic. 
However, it requires less operations. One combinatorial version is designed, the 
proposed multiplier is faster, needs less area and is simple to implement. With this 
high efficiency element processor the Encoder/Decoder frequency range is extended 
to one eighth processor clock frequency. One four-level Asynchronous Folded 
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Paralell Filter Architecture (AFPFA) with the Radix-2 multiplier and eight filter 
coefficients is implemented in VHDL. 

This work presents an original hardware, 1-D Encoder/Decoder, for VLSI and 
FPGA integrated circuits. The PRD quality criterion to evaluate precision on DWT 
and IDWT processing modules is one of the most widely adopted nowadays [13] in 
data compression algorithms. A wavelet coder/decoder general architecture presented 
in [12] has a low frequency response band and shows some graphics about results 
from simulations. Selected wavelet band synthesizers such as [10] employs a Digital 
Signal Processor board connected to a VXI standard interface to process power line 
frequency range signals with three levels DWT. The most important achievement in 
this work is the perfect synthesis architecture for DWT algorithm with any number of 
levels. Synthesized data is obtained with precision depending on the word length on 
filter coefficients and input data. This work is the solution to implement data 
compression algorithms with integrated circuits. Equations for perfect synthesis are 
implemented in DWT and IDWT algorithms on the Encoder/Decoder. The precision 
evaluation was made quantizing  data and filter coefficients for n bits word 
processing, n = 4 + 4i, 1 ≤ i ≤ 7. With synchronous input and constant processing 
elements, real time analysis and synthesis is assured for signal sampling in mega 
Hertz range. 

2   Asynchronous Folded Paralell Filter Architecture 

The Paralell Filter Architecture is optimal with respect to both area and computing 
time [6]. For each N data samples, N wavelet coefficients are output. It is an 
architecture that has simple register allocation scheme and two filters, with high 
processor efficiency. The proposed architecture has only one filter to calculate both 
low-pass and high-pass wavelet coefficients in each algorithm step. Real time 
transform is achieved with two clocks. The data sampling clock and the processor 
clock. The ratio between the two clocks is a real number, the new design (Fig. 1) 
employs an Asynchronous Control Circuit rather than the classical approach 
presented in [7]. With ACL, maximum sampling frequency is fp/2m, where fp is the 
processor clock frequency and m is the number of processor cycles in each step. 
Wavelet coefficients are obtained multiplying M samples by M coefficients in a M tap 
FIR digital filter. For each data sample, two wavelet coefficients are calculated and 
the result is output to a bidirectional bus with the Recursive Pyramid Algorithm 
(RPA) [8]. 

2.1   Timing 

When computing DWT, the first octave are scheduled every even data sampling clock 
cycle 2k. Second octave computations are executed in clock cycles 4k + 1. Third 
octave computations are done at  8k + 3 clock cycles and final results, fourth octave 
computations, at 16k + 7 clock cycles. The delay to present first results is the period, 
in data sampling clock cycles, to fill up CRB3 for the first time, in addition to the 
number of periods to compute the next fourth level wavelet coefficient. First results 
were output with 71 data sampling clock cycles. 
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Fig. 1. Asynchronous Folded Paralell Filter Architecture with four levels 

3   Common Architecture for Encoding and Decoding 

To encode a signal with the Discrete Wavelet Transform consists on calculating two 
coefficients, outputs of a high-pass and a low-pass Finite Input Filter (FIR). To 
synthesize a signal consists on inverse filtering two output signals from the low-pass 
and high-pass FIRs, with two sets of odd and even inverse filter coefficients for each 
set of input samples. Slight modifications on AFPFA, such as splitting each 
coefficient register bank in a set of two, and on the synchronization, accessing twice 
the same set of coefficients to calculate subsequent reconstructed data, are necessary 
to implement the synthesis module. For inverse operation, the Inverse Recursive 
Pyramid Algorithm (IRPA) is used. The IRPA is structurally similar to the RPA. In 
each step, both wavelet coefficient sequences are upsampled inserting zeros. Inverse 
filtering an add operations are done with two sets of even and odd coefficients. Sets of 
registers IRB, CRB1, CRB2, CRB3 for DWT are split in two for IDWT and 
multiplexers B0, B1, B2, and B3 are inserted (Fig. 2) to form the Common Architecture 
for DWT and IDWT. 

When D=1, the outputs of  BL i  are connected to the inputs of BH i  , i = 0, 1, …, 3, 
and eight data samples or low-pass wavelet coefficients from sets IRB, CRB1, CRB2 or 
CRB3 in Figure 1 are selected on RBM multiplexer for high-pass or low-pass filtering.  

When D=0, four high-pass wavelet coefficients from BH i and four low-pass 
reconstructed wavelet coefficients from BL i , i = 0, 1, …, 3 are selected on RBM and 
multiplied by even and odd coefficient sets for synthesis wavelet coefficients and 
data. Table 1 presents filters coefficients sets selection with control lines D and F. The  
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Fig. 2. Common Architecture for DWT and IDWT 

control line D defines the architecture mode, Direct (DWT) or Inverse Direct Wavelet 
Transform (IDWT). The control line F chooses high-pass or low-pass filters in DWT 
mode, and even or odd inverse filtering coefficient sets in  IDWT mode. 

4   Experimental Results 

FPGA prototyping tools reduces development time to a minimum. Reconfigurable 
processors are viable platforms for a broad range of specialized applications such as 
DWT algorithms. Other DWT algorithms have been implemented using CMOS 
technology [2,6] or DSP-based architecture [10]. 

Table 1. Filter coefficients sets 
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The AFPFA has been implemented in VHDL. Numerical equations define low-
pass and high-pass eight order filter operations. The Radix-2 multiplier was 
implemented first, the 8 tap filter was developped next and one four level DWT 
algorithm was implemented. 

4.1   DWT Algorithm 

Control lines sel1 sel0 select one of the four register banks for filter input data in 
multiplexer RBM. Control lines FCLK2, FCLK3 and FCLK4 stores wavelet 
coefficients at the end of each processor cycle (Fig. 3). External control line RDT 
access to send data samples to IRB or wavelet coeficients to CB (Fig. 1). 

In this paper, we have presented the VHDL implementation of a DWT 
architecture for real time processing with minimum area. FPGAs like the ACEX 
EP1K50 have high density and speed to implement complex algorithms directly in 
hardware. The 8 bits four level VHDL AFPFA requires about 1630 logic cells 
(56%). The clock has been set to 30 MHz. The implementation defines bit to bit 
control lines, data buses and high level digital system design. DWT with different 
analytic wavelets is performed during operation. It was first developped for real-time 
analysis and compression of biological signals such as ECG. Due to its outstanding 
performance, AFPFA process audio and ultrasonic signals up to 450 KHz. To extend 
frequency response to MHz range, the Radix-2 multiplier is replaced by the Booth-
Wallace Constant multiplier, one improved version of the Booth-Wallace Tree 
multiplier. 

 

Fig. 3. DWT algorithm timing for filter coefficients write and first states 0 – 10 

5   Conclusion 

This article presents an original Common Architecture for DWT or IDWT, the 
Asynchronous Folded Paralell Filter Architecture and an Encoder/Decoder. In this 
work, the IRPA is implemented including output reconstructed data in the 
calculations with one processor.        
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In literature, from 1996 to 2000, we find only a few publications about 
DWT/IDWT hardware implementations. 

The folded common architecture drawn in [11], scheduled with IRPA, requires 
twice the number of filters and buffers to calculate IDWT than AFPFA, presented in 
details. The VXI signal analyzer presented in [10] performs only power line analysis, 
with a DSP. The FPGA coder/decoder in [12] presents some simulations for DWT 
and IDWT algorithms. 

The AFPFA, developped from 2002 to 2003 in São Paulo State University, 
Department of Electrical Engineering, Ilha Solteira, SP Brazil has a flexible design. 
The number of levels on DWT/IDWT is changed without affecting algorithm state 
chart. Only the size and the number of memory buffers is changed, the control logic is 
the same. The asynchronous feature improves processing speed on biological signals 
and audio. On an FPGA with Radix-2 processing elements, the analytical wavelet 
may be software configured. With this processor, the hardware required for a 
complete Encoder/Decoder is minimized. The implementation with Radix-2 
multipliers reduces the hardware up to 60% the hardware on the implementation with 
Wallace multipliers. Depending on the signal frequency response, the required circuit 
area is reduced. 

An example, for classifying ECG data, only one arithmetic unit implemented with 
Radix-2 processing elements is required, instead of four when implementing the 
Encoder/Decoder with the same number of levels with Booth-Wallace Constant 
processing elements, ultrasonic range. PRD precision for the four level integrated 
circuit is 0.043 % on 16 bits input data and filter coefficients. Table 2 presents the 
PRD index on synthesized data for 8, 12, 16, 20, 24, 28 and 32 bits input data and 
filter coefficients, fixed point processing elements. Two architectures are evaluated, 
one with three and other with four levels. Precision for DWT module only, fixed point 
processing elements, is performed synthesizing DWT wavelet coefficients with a 
floating point ALU in the IDWT module and then calculating the difference between 
original and reconstructed data. Three and four level IDWT precisions calculated this 
manner, in a 32 bits microcomputer, are 1.58 10-10 % and 2.39 10-10 % respectively. 
Each PRD measured index is the mean value for 20 ECGs. 

Table 2. Encoder/Decoder precision evaluation 
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Abstract. The hardware random number generator is a source of unpredictable, 
statistically random stream sequences. Critical cryptography applications re-
quire the production of an unpredictable and unbiased stream of binary data  
derived from a fundamental noise mechanism. In this paper, we analyzed hard-
ware random number generator with Gaussian noise using randomized algo-
rithm in respect of security consideration. In this paper, hardware random num-
ber system on embedded Linux on chip (LOC) processor, MC68328, is  
reviewed to reduce the statistical property of the biased bit stream in the output 
of a random number generator. In experiments of the randomness evaluation for 
the randomized algorithm, we evaluated the statistical evaluation for 10 test 
samples, the severe biased and the moderate biased stream. Although the ran-
dom bit stream has the biased characteristics. But the differential quantities are 
compensated using the randomized process by chaos function. Therefore in the 
randomness evaluation of hardware generator, the proposed randomized algo-
rithm is always satisfied the randomness test condition. 

1   Introduction 

An hardware random number generator uses a non-deterministic source to produce 
randomness, and more demanding random number applications, such as cryptogra-
phy, a crypto module engine, and statistical simulation, then benefit from the se-
quences produced by an random number generator (RNG), a cryptographic system 
based on a hardware component [1]. As such, a number generator is a source of un-
predictable, irreproducible, and statistically random stream sequences, and a popular 
method for generating random numbers using a natural phenomenon is the electronic 
amplification and sampling of a thermal or Gaussian noise signal. However, since all 
electronic systems are influenced by a finite bandwidth, 1/f noise, and other non-
random influences, perfect randomness cannot be preserved by any practical system. 
Thus, when generating random numbers using an electronic circuit, a low-power 
white noise signal is amplified, then sampled at a constant sampling frequency. Yet, 
when using an RNG with only a hardware component, as required for statistical ran-
domness, it is quite difficult to create an unbiased and stable random bit stream. The 
studies reported in [3-4] show that the randomness of a random stream can be en-
hanced when combining a real RNG, linear feedback shift register (LFSR) number 
generator, and hash function. Hence, in previous studies about RNG schemes in the 
security area, Fabrizio Cortigiani, et al. (2000) examined a very high speed true ran-
dom noise generator, S. Rocchi and V. Vignoli (1999) proposed a high speed chaotic 
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CMOS true random analog/digital white noise generator, Adel et al. (2001) investi-
gated the design and performance analysis of a high speed AWGN communication 
channel emulator, and a noise-based random bit generator IC for applications in cryp-
tography was considered (Craig S, et al. 1998 [4]).  

However, the randomness of such combined methods is still dependent on the se-
curity level of the hash function and LFSR number generator. Thus, a previous paper 
proposed a real RNG that combines an RNG and filtering technique that is not de-
pendent on the security level of the period. In particular, it is important that the RNG 
hardware offers an output bit stream that is always unbiased. Even though the hard-
ware generating processor generates an output bit stream quickly, if the software 
randomized algorithm is inefficient, the RNG becomes time consuming, thereby re-
stricting the conditions when an RNG can be applied. Accordingly, this paper pro-
poses an efficient method of randomized filtering for an RNG processor in the  
embedded crypto module. To consistently guarantee the randomness of the output 
sequence from an RNG, the origin must be stabilized, regardless of any change of 
circumstances. Therefore, an RNG is proposed that applies a randomized algorithm 
that guaranteed the pass probability of random bit stream, plus the computational 
burden is analyzed when the randomized algorithm is applied. Hereinafter, in chap. 2, 
the framework of hardware random number generator is introduced. In chap. 3 & 4, 
experimental results using the system are presented and concluded in respect of secu-
rity considerations. 

2   The Framework of Hardware Random Number Generator 

We would like to stress that the class/style files and the template should not be ma-
nipulated and that the guidelines regarding font sizes and format should be adhered to. 
This is to ensure that the end product is as homogeneous as possible. The hardware 
random number generator includes common components for producing random bit-
streams, classified as follows: characteristics of the noise source, amplification of the 
noise source, and sampling for gathering the comparator output. The embedded Linux 
on chip system using dragonball CPU, MC68328, which is an integrated controller for 
handhel products, based on MC68EC000 microprocessor core, is used to generate 
hardware random bit stream.  

The probability density )(xf of the Gaussian noise voltage distribution function is 

defined by Eq. (1): 
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Where σ is the root mean square value of Gaussian noise voltage. The noise diode is 
used the diode with white Gaussian distribution. The power density for noise is con-
stant with frequency from 0.1Hz to 10MHz and the amplitude has a Gaussian distribu-
tion. When the frequency range is given, the voltage of noise is decided by a factor of 
frequency. The crest factor of a waveform is defined as the ratio of the peak to the rms 
value. A crest value of approximately 4 is used for noise. When the output of a fast 
oscillator is sampled on the rising edge of a slower reference clock, the comparator 
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features differential analog inputs and TTL logic outputs with an active internal pull-up 
and supplies a fast propagation delay for the sampling circuits. The applied voltage is 
±5Vdc and propagation delay is 8nsec. The frequency range can be stably operated up 
to 100MHz. First, the sampled stream is gathered, then a randomized algorithm is used 
to enhance the statistical randomness.  

3   The Characteristics of the Random Bit Stream 

3.1   Random Bit Stream for the Uniformed Distribution 

The relationship of characteristics of output random bit stream and the entropy, as 
followed the Shannon’s theory, is defined by Eq.(2).         

∑
=

−=
n

i
ii ppMxH

1

log)(  (2) 

In this equation, Pi is the probability of state i out of sample n, and M is a constant. 
The entropy of the output random bit stream of the random number generator is ap-
proached at the length of a bit; the probability Pi to generate k bits in the random 
number generator is 2-k; and the entropy of the random bit stream is equal to k bits and 
is presented as equal to the possible output bit stream. If k is 4, the output bit stream is 
as follows: 

)1,1,1,1(),0,1,1,1(),...,1,0,0,0(),0,0,0,0( 15141 ==== UUUU o
 (3) 

The class Ui, is consists of 4 bits block, is the pattern of 16 symbols, if the each pat-
tern give the uniform distribution, then the each pattern is approached the probability 
of 2-4. In Eq.(4), the duty information (D) during the one cycle is as follows: 

T

t
D =  (4) 

Where t is the number of “1” bit streams, and T is the number of “1” and “0” during 
one period. In the considerations of the duty cycle, during the one cycle, the class 
about “0” bit pattern and “1” bit pattern is as follows:  

)}...1,0,0,1(),0,1,0,1(),0,0,1,1(),0,1,1,0(),1,0,1,0(),1,1,0,0{(

)}0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{()},0,0,0,0{(

2

1

=
==

U

UU o  (5) 

During the one cycle, if the duty value will be 0.5, the class will have characteris-
tics of random, and in the respect of mono bit test, the characteristic distribution of the 
pattern “0” bit and “1” bit is uniformed, and in poker test, the characteristic distribu-
tion of the pattern is uniformed. The proposed filter mechanism is driven statistically 
the uniformed distribution through the reduction of the biased distributed characteris-
tics from the biased random bit stream. In the random number generator, to generate 
the un-biased output random bit stream, it is needed to sustain the uniformed distribu-
tion of random bit stream. In the discrete time series, the output bit stream during the 
one period is consists of even time series and odd time series, as follows by Eq.(6).  



 Randomized Algorithm in Embedded Crypto Module 1125 

 

∑ +
+=

n
tt nn

VVtV )()(
1

 
(6) 

Where n is the even number. The total discrete time series V(t) is summed to the even 
time series 

nt
V  and the odd time series 

1ntV . The even time series V1(t) is as follows:  
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The odd time series V2(t) is as follows:   

∑ +=
n

tn
VtV 12 )(  (8) 

Let the density distribution of random bit stream in the odd time series during the 
one period be 1 and the density distribution of “1” pattern bit stream be 0.6, the bias 
characteristics of the odd time series has 20%. If the density distribution of random bit 
stream in the even time series during the one period be 1 and the density distribution 
of “1” pattern bit stream be 0.6, the bias characteristics of the even time series has 
20%. The total bias distribution of random bit stream during one period has 40%. 
However the duty value of the ideal total time series V(t) is required 0.5 to gather 
always the un-bias of output bit stream. To sustain statistically the randomness of 
output bit stream, it is required to alter the bias distribution through the decision of the 
biased position and the control of the biased quantities. In Eq.(9), to the control of 
biased quantities, it is proposed to alter the bias distribution for the biased bit stream.  
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3.2   Mechanism of Randomized Algorithm 

The proposed randomized algorithm is applied to the duty information in Eq. (4). The 
duty factor is the critical factor for an enhancement of the randomness, and the bit 
steam during one period is set at 20,000 bits. When the unit of the output bit stream is 
20,000 bits, the number of the “1” pattern bits is t bits. If the value of the duty infor-
mation within one period is included within the significance level (p), the decision 
will be considered as a state of “pass”.  

Output bit stream
(at each 20000 bits)

Save t bits (“1” bits) Calculate : Duty data t/T  

T

t
p ≤

T

t
p ≤Process :  software filtering

Check : the # of 
“1”pattern<p

yes

no

“0” pattern “1” pattern “1” pattern “0” pattern

Save: the passed bit stream

no

The decision of bit position
(for each 20000bits)

yes

�

Fig. 1. Mechanism of randomized Algorithm 
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If the condition of “pass” is determined, this is added as pass data to the buffer 
memory. If “fail” is determined through the software filtering process, this is included 
in the decision process. When the size of the desired bit stream is gathered, the proc-
ess is then completed. If the value of the duty cycle of the collected output bit stream, 
P is not satisfied the condition of significance level, then the conversion of the bit 
pattern is started, as much as the number of bit, which is included in the significance 
level. If the density distribution of “0” bit pattern is more than the number of the sig-
nificance level, it is accomplished the conversion process, for example, “0” bit pattern 
is converted “1” bit pattern, as much as the number of the marginal bit. In the process 
of the proposed randomized algorithm of Fig.1, it is generated the output bit stream, 
20,000bits, to calculate the duty information, the number of “1” bit pattern is saved. If 
the calculated duty value is included in significance level, it is evaluated about the un-
biased bit stream. Then the bit stream is not accomplished the randomized process 
and defaulted the bit stream. But if it is not included within the significance level, 
then the randomized process is started about the bit stream. In this case, the range of 
the defined significance level about “1” bit pattern is decided the value between 9,654 
bits and 10,346 bits in the reference of mono bit test, which is defined FIPS 140-1, for 
the unit of 20,000bits. During one cycle, when the number of “1” bit pattern of ran-
dom bit stream is not included within the significance level (9,654bits out of 
20,000bits), the randomized process is started, as much as the difference bits. Other-
wise when the number of the “1” bit pattern is upper than that of the significance level 
(10,346 bits out of 20,000bits), it is randomized as much as the differential bits from 
“1” to “0” bit pattern. If the randomized process is accomplished, the algorithm for 
the decision of location is applied the uniform distribution of the chaos function and 
the randomized iteration about the same position is processed only by one round. The 
logistic function, which is the discrete chaos map is applied for the randomized proc-
ess, is as follows:  

)1(1 nnn XXX −−=+ α  (10) 

Where the range of α  is 40 ≤≤ α , and the range of the initial value 0X is 

10 0 ≤≤ X . The value of 1+nX  is derived from the previous state value nX . Inversely, 

given 1+nX , 0X  has resolved the two values of the solution in an equation of the sec-

ond degree. The logistic map has the characteristic of irreversibility, and α  is the 
sensitivity parameter that determines the dependence of the next value derived from 
the initial value. If the value of α  is increased, the resulting value varies greatly from 
the result of the slight variation of the initial value after the recursive calculation. For 
the condition 1<α , when the process of nX  is performed recursively, the value 

of nX  converges to 0. For the convergence to the direction of the chaos domain, 

which continues to infinity, the value of α must be 56.3>α . However, the distribu-
tion of the output bit stream of the chaos function has an independent and uniform 
distribution, and is an integral number between [0, d-1]. To apply the random number 
generator, the integral number between [0, 1] is distributed uniformly by the tent 
transformation function.  By the tent function )(' xhx = , the non-linear value of the 

discrete chaos function becomes a linear value.  
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In tent transformation process, if the initial value is 0x , the transformed value 

is )()0(' 0xhx = .  
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Let 0y be 0'x , it is driven the equation )( 01 yfy = , )( 0
2

2 yfy = ,...,  

)( 0yfy k
k = . From f function and T function, we can be driven as follow:  

 ))(())(( xThxhf kk =  (13) 

Where k is 0, 1, 2, .., . The non-linear value of the 'x axis by the tent function is trans-
formed to a linear value of the x axis, which has a uniform distribution. Therefore, the 
output of the chaos function is uniformly generated by the position of the randomized 
region during one duty cycle, and the randomized process is performed using the 
generated position information. 

3.3   Experimental Results  

For the decision regarding the position information in the randomized process, the 
chaos function is used through the utilization of a logistic map.  

 
(a) At the initial value=0.315001       (b) At the initial value =0.315002�

Fig. 2. nX according to the logistic initial value of 0X  

A logistic map when the initial value of 0X  is 0.315001 and the initial value of  

another 0X  is 0.315002 after 100 iterations is shown in Fig.2. In the initial state, the 

logistic map according to the initial value is slightly varied; however, with additional 
iteration rounds, any deviation is magnified by the factor in the each iteration. Given an 
initial deviation, it will eventually become as large as the actual signal itself. After a 
number of iterations, the error will be of the same order of magnitude as the correct 
values. This section presents the results obtained from the proposed system. First, the 
effect of the randomness of the output random bit stream was investigated. More quanti-
tative tests for randomness can be found in technical literature [9-10]. To diagnosis the 
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output bit stream of random number generator, it is used the randomness test items such 
as, mono bit test, poker test, run test of FIPS 140-1. The mono bit test is evaluated for 
the successive 20,000 bits out of random bit stream. If the tested bit stream is included 
in significance level [9,654, 10,346], the bit stream is evaluated the non-biased stream. 
The poker bit test is consists of 500 classes (1 class is 4 bits), and the number of the 
pattern, which is consists of 4btis, is 16 (0<i<15), From Eq.(14), if the range of result 
value is between 1.03 and 57.4, its stream is evaluated the non-biased stream.  

∑ −= 5000))((*)
5000

16
( 2iCZ  (14) 

Where C(i) is the tested bit stream, the run test can detect a monotonic trend in a time 
series x(i), i=1,…, N, by evaluating the number of runs in a second time series derived 
from x(i). A “run” is defined as a sequence of identical observations that is followed 
by a different observation. If x(i) is a stationary random process, the number of runs is 
a random variable with mean = N/2+1 and variance =(N(N-2))/(4(N-1)). In experi-
ments concerning the randomness evaluation for the randomized algorithm, a statisti-
cal evaluation for 10 test samples consisting of severely biased and moderately biased 
streams was evaluated. Although the random bit stream has biased characteristics, the 
differential quantities are offset using the randomized process by the chaos function. 
Therefore, in the randomness evaluation of a hardware generator, the proposed ran-
domized algorithm always satisfies the randomness test conditions in comparison 
with the algorithm without software filtering. For the biased bit stream, which is not 
applied to the software algorithm, the probability of the random bit stream generated 
successively in a specific pattern is high, and the condition of the significance level 
for the poker test is not satisfied. In the run test, for the severely biased bit stream, the 
length of the run is dependent on a specific length, such as 3 or 4, and the tested data 
from the experiments can be evaluated readily, especially when the length of run is 3. 
In Fig. 3, the loss quantity of a random bit stream is represented according to the 
probability of whether a pass will occur. If the randomized algorithm is not applied, 
the distribution of the loss quantity is suggested in Fig.3. In typical pass/fail bounda-
ries, the measured average of 10 iteration tests based on 7.2x108 bits samples per hour 
is used, depending on whether the sequence passes all the trial tests. 
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Fig. 3. Loss Quantity according to the probability of pass 
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The test results were extremely positive; here the proposed system passed all of the 
trial tests. In Fig.4, the relationship of delay time and probability of pass is presented, 
for each pass probability on embedded LOC processor. Given in the previous test 
condition, if the probability of pass is 95%, it is consumed about 200seconds. If the 
pass probability is reduced, it needs additional consumed time, due to position process 
by chaos function, to gather the non-biased bit stream from experimental by embed-
ded LOC process. 
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Fig. 4. Delay Time according to the probability of pass 

4   Conclusion 

The current paper presented and tested a hardware random number generator using 
the randomized algorithm by chaos function on embedded LOC processor. The pro-
posed method, directly derived from results obtained from the Gaussian noise genera-
tor, is based on filtering a noise sequence using a software filter. The hardware ran-
dom number generator is well suited for applications such as data encryption, circuit 
testing and measurement, and mathematical simulations. A method of combing real 
noise technology and software filter mechanism by logistic chaos function is pre-
sented, extending this concept to a hardware random generator.  
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Abstract. Analog neural systems that can automatically find the min-
imum value of the outputs of unknown analog systems, described by
convex functions, are studied. When information about derivative or
gradient are not used, these systems are called analog nonderivative
optimizers. An electronic circuit for the analog neural nonderivative
optimizer proposed by Teixeira and Żak, and its simulation with soft-
ware PSPICE, is presented. With the simulation results and hardware
implementation of the system, the validity of the proposed optimizer
can be verified. These results are original, from the best of the authors
knowledge.

1 Introduction

The most popular optimization algorithms for unconstrained optimization use
derivative or gradient information of the objective function. However, in many
applied problems the gradient of the objective function may not be accessi-
ble or too expensive to evaluate. Thus, there is a need for nonderivative op-
timization algorithms. Korovin and Utkin [1] proposed an approach to non-
derivative optimization using ideas from the theory of variable structure sliding
mode systems. They proposed and analyzed in detail an one-dimensional non-
derivative optimizer and suggest using the one-dimensional network to solve
multi-dimensional optimization problems by varying the direction of search in
a multi-dimensional parameter space. However, the implementation issues of
how and when to change the search direction were left open. In [2] and [3],
an one-dimensional nonderivative optimizer that can be used to solve multi-
dimensional unconstrained optimization problems was proposed. The proposed
optimizer is robust. It has the property of disturbance rejection in the sense
that it will be performing the correct line search in spite of the presence of
disturbances with bounded time derivatives. In this paper, an electronic cir-
cuit for the analog neural nonderivative optimizer, described in [2] and [3] is
proposed.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1131–1140, 2006.
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2 Nonderivative Line Search Network

We now describe our network [2], [3], that performs a line search with no deriva-
tive information. One of the main components of our network is a minimum peak
detector.

2.1 Minimum Peak Detector

A minimum peak detector can be implemented using standard circuit compo-
nents like a capacitor, a diode, and an operational amplifier—see, for example,
Stout [4, Chapter 8]. It tracks the input signal and holds the minimal value of
its output since the last reset. The input signal is continuously compared with
the stored minimal value to determine if the stored value should be updated.

In the following, we analyze a class of minimum peak detectors. Let y = y(t)
be the input waveform, and yd = yd(t) be the output waveform of a minimum
peak detector. Then, a mathematical model of a class of minimum peak detectors
can be represented as

ẏd =
{

0 if yd − y ≤ 0
−M if yd − y > 0, (1)

where M > 0 is a design parameter. A particular realization has the form

ẏd = −M
2

(sign(yd − y) + 1) .

Let ε = yd − y. We assume that the time derivative of the function y = y(t) is
bounded by a known constant M > 0, that is,

∣∣∣∣ ddty(t)
∣∣∣∣ < M.

We now consider two cases. The first case is when ε ≤ 0. In this case y ≥ yd, and
the network holds the previously detected minimum value of the input signal y.
The second case is when ε > 0, that is, when y < yd. We will show that in this
case the error ε→ 0. Let

v(t) =
1
2
ε2(t) (2)

be the measure of the error magnitude. Then, the time derivative of v = v(t)
evaluated on the trajectories of (1) is

d

dt
v(t) = εε̇(t) = ε(ẏd − ẏ) ≤ ε(−M + |ẏ|) < 0.

The speed with which the error goes to zero depends on the magnitude of the
design parameter M . Thus, in this case, the output of the network will converge
to the input waveform.
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2.2 The Proposed Optimizer

Suppose that the function y = f(x) that we wish to minimize has only one
minimizer, say x∗, in the interior of the closed interval [a, b]. We assume that
the slope of f in [a, b] is bounded, that is, there is a finite constant L > 0 such
that ∣∣∣∣ ddxf(x)

∣∣∣∣ ≤ L. (3)

A block diagram of the proposed optimizer is shown in Figure 1. Note that the
optimizer depicted in Figure 1 contains a minimum peak detector as a component.

RESTART

COMPARATOR

INTEGRATOR

SCHMITT TRIGGER

INTEGRATOR FUNCTION

f = f(x)

�

�

�

�

�

A

A

0

� �

B
k

Z

Z

M

�

yxẋ

ydẏd

w

Fig. 1. A block diagram of the analog neural optimizer

The minimum peak detector operates on its input signal y. The output signal
of the minimum peak detector is yd. There are two hysteresis elements in the
optimizer, where δ < Δ. Both δ and Δ are design parameters. Other design
parameters are A, B, and M . We now describe the network operation. A typical
trajectory of the network is shown in Figure 2. For the sake of argument let the
initial condition x0 = x(t0) = x(0) be such that

df

dx
(x(0)) > 0,

that is, the initial point x0 is located on the right side of the minimizer x∗. Next,
let ε = 0, w = 0, and u = A. Then, since ẋ = u, we have for t > t0 = 0,

x(t) = At+ x(0).

This means that initially we will be moving away from the minimizer denoted
as x∗. The output of the minimum peak detector yd will be constant because
ẏd = 0. As a result, the error ε = yd − y will become negative and will be
decreasing until at some time t1 it reaches the value ε = −δ. This will force u to
change from A to −A and for t > t1,

x(t) = −A(t− t1) + x(t1),
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which means that x will start moving toward x∗ and the value of y = f(x) will
decrease. Once ε = 0 is reached, the signal out of the minimum peak detec-
tor changes its value from yd = y(x(0)) to follow the trajectory y(x(t)). The
parameter value M should be chosen so that

|ẏ(t)| =
∣∣∣∣df(x)dx

ẋ(t)
∣∣∣∣ ≤ LA < M.

The output of the minimum peak detector yd tracks y until x reaches x∗. Then,
since ε is still zero, x will still be moving to the left. But now yd will be locked
at y(x∗) = y∗ and the error ε will start decreasing, assuming negative values, till
it reaches the value of ε = −Δ at some time t = t2. At this instant of time the
signal w kicks in, that is, w takes on the value B. This implies that for ε ≤ 0,
we have

ε̇ = ẏd − ẏ = B − ẏ.

For ε > 0, we have ε̇ = B −M − ẏ. We assume that B > 2M . Thus, as long as
w �= 0, we have ε̇ > 0. The minimum peak detector is reset to a new value.

Fig. 2. A typical trajectory of the optimizer

Details of this process are illustrated in Figure 3.

Fig. 3. Resetting the minimum peak detector
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Over the time interval when ε is growing from −Δ to δ, we have ẋ = −A,
and hence y will be increasing. When ε reaches the value of δ, the signal u
will take the value of A, that is ẋ = A, and y will start decreasing, while ε is
still increasing. The trajectory x will start moving back toward x∗ because now
ẋ = A. When ε achieves the value of Δ the signal w will be set to zero, and ε will
start decreasing till it becomes zero. The output of the minimum peak detector,
yd, will track y till x moves past x∗. Then, yd will take on the value y(x∗) and
z = 0. The error ε will decrease till it reaches the value of −δ. At the time
instance t = t3, the trajectory x will reverse its travel because now ẋ = −A. The
error is negative and it will increase till it reaches the zero value. The trajectory
x will still be moving to the left. The error will be taking on negative values till
it reaches the value of −Δ which will activate the signal w at time t4. We note
that this is exactly the same scenario that took place at time t2. The oscillations
of y around the minimum value y∗ will now be repeated, with their period being
t4 − t2 and peak-to-peak value approximately equal to Δ. Since Δ is a design
parameter, we can choose its value as small as we wish, thereby reducing the
amplitude of oscillations of x around the minimizer x∗. In the above analysis,
for the sake of argument, we assumed specific initial conditions. However, in the
course of this analysis we covered all other possible initial conditions.

The proposed minimizer has the attractive property of disturbance rejection.
Indeed, suppose that a disturbance signal d corrupts the output of the integra-
tor as shown in Figure 4 (a). For clarity, we only show a relevant portion of
the network. The complete diagram of the network is shown in Figure 1. An
equivalent representation of the diagram shown in Figure 4 (a) is given in Fig-
ure 4 (b), where we use the well known fact that d(t) = d(t0)+

∫ t

t0
ḋ(s)ds. Using

this equivalent representation we conclude that as long as
∣∣∣ḋ(t)
∣∣∣ < A, the sign of

the input signal to the integrator is the same as it would be with no disturbance.
Therefore, the network will be performing the correct line search in spite of the
presence of the disturbance.

According to [5], analog nonlinear dynamical systems with nonlinearities such
as hard limiter, hard limiter with hysteresis and comparator, can be considered
an Analog Neural Network (ANN). Therefore, the dynamical system in Figure
1 is an ANN.

Fig. 4. An illustration of the disturbance rejection property of the proposed network
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3 Optimizer Applications

The application of the Korovin and Utkin optimizer in Anti-lock Braking Sys-
tems (ABS) was presented in [6] and [7]. The ABS was designed to prevent
wheel lock-up. By preventing the wheels from locking, it enables the driver to
maintain steering control and to stop in the shortest possible distance. In the
system presented in [6] and [7] was necessary to identify the type of the road
surface. At this moment, there is not a sensor able to give this information.
However the type of road surface can be deduced from the brake pressure, the
skid extension and the car decelerating. In [6,7,8,9,10] was showed that the typ-
ical adhesion curve of asphalt with ice versus wheel skid extension has only
one maximum point. In this way is possible to use the optimizer suggested
in [3] to find this point. Other application, presented in [11], was to use the
optimizer in power factor correction of electrical systems. In [11] was showed
that the apparent power versus reactance curve presents only one minimum
point. In this way the optimizer can be used to control de capacitor reactance
or the variable inductance in order to adequate the power factor with different
loads.

4 Optimizer Implementation

In this work a simulation of the optimizer using the PSPICE software and the
electronic breadboard implementation in laboratory, using operational ampli-
fiers, resistors and capacitors was presented. Figure 5 shows the optimizer com-
plete diagram. The circuits blocks are designated as the block diagram illustrated
in Figure 1.

In Figure 5, the circuits of the adder and gain blocks were not showed be-
cause they can be easily designed using operational amplifiers. The integrators
behave as a low-pass filter. The integrator unitary gain frequency (wint) is de-
fined as wint = 1

RC . In this frequency the gain is 0 dB, but the gain changes
for different frequencies. For calibration purpose a multiplier is put in series
with each integrator in order to allow the calibration. The integrator can also
saturate due the high DC gain. This problem can be solved with a high resis-
tance put in parallel with the capacitor. The resistor makes the integrator DC
gain finite, far from the ideal response [12]. Based on [13], the Schmitt trigger,
comparator and restart blocks, of the optimizer in Figure 1, can also be easily
designed.

4.1 Examples

For circuit simulation and results verification, the system showed in Figure 5
was calibrated with the parameters showed in Table 1 and with the objective
function y = f(x) = x2. The simulations illustrated in Figure 6 and 7 show the
results obtained with initial condition equal to zero, and Figure 8, with initial
condition y(0) = 11V and yd(0) = 0V .
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Fig. 5. Circuit of the Analog Nonderivative Optimizer with the software PSPICE

Table 1. Optimizer Parameters for Figure 5

A 1 V
B 11 V
M 5 V
δ 0.25 V
Δ 0.50 V
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Fig. 6. Simulation of the circuit using the software SIMULINK with initial conditions
y(0) = 0V and yd(0) = 0V (theoretical result)
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Time
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Fig. 7. Simulation of the circuit with the software PSPICE with initial conditions
y(0) = 0V and yd(0) = 0V

Time
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6V

8V

10V

12V

y

yd

Fig. 8. Simulation of the circuit in the software PSPICE with initial conditions y(0) =
11V and yd(0) = 0V

Figure 9 shows the implementation result obtained in our Control Laboratory
at São Paulo State University, in Ilha Solteira - SP, Brazil (Figure 11). The
circuit was breadboard as showed in diagram of Figure 5 and the obtained results
are satisfactory. From Figure 7 and 9 can be observed that the signal obtained
has a low offset. This problem can be solved with integrator calibration in the
operation frequency.

Figure 10 shows the result when the minimum point of function is modified.
Initially it was considered that the function is f(x) = x2 and in the time t = 5s,
the function was modified to f(x) = x2 + 3. In both cases, the minimum value
of the function was found.

Better optimizer efficiency are expected when the values of δ and Δ are re-
duced because there is less output variation around the minimum point. However,
if this parameters are drastically reduced, more precise electronic components
must be used, that will make the circuit more expensive. In this way the values
of δ and Δ can be determined to meet the design requirements.
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Fig. 9. Circuit waveform obtained in the laboratory

Time

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

V(SUM6:OUT)

0V

1.0V

2.0V
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Fig. 10. Circuit Simulation using the software PSPICE with function change

Fig. 11. Picture of the system working at the laboratory
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5 Conclusions

We proposed and analyzed the hardware implementation of an analog neural
network [2], [3] for solving a class of convex unconstrained programming prob-
lems. The optimizer is robust in the sense that it can tolerate disturbance signals
with bounded derivatives. The neural nonderivative optimizer simulation in the
PSPICE software and the experimental results obtained in the laboratory were
very satisfactory. The proposed circuit is simple and uses a small number of
electronic components.

Acknowledgments. The authors acknowledge the financial support by FAPESP
and CNPq, from Brazil.
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13. Franco, S.: Design Operational Amplifiers and Analog Integrated Circuits.

McGraw-Hill, New York (1998)



Synchronization Via Multiplex Spike-Trains in
Digital Pulse Coupled Networks

Takahiro Kabe, Hiroyuki Torikai, and Toshimichi Saito

EECE Dept, Hosei University, Koganei-shi, Tokyo, 184–8584 Japan
kabe@nonlinear.k.hosei.ac.jp,

{torikai, saito}@k.hosei.ac.jp

Abstract. This paper studies pulse-coupled network of digital spiking
neurons and its basic dynamics. The neuron is constructed by coupling
two shift registers and has a variety of spike-trains which correspond to
digital codes through a inter-spike interval (ISI) modulation. The pulse-
coupled network has master-slave configuration. All the spike-trains of
neurons in the master side are multiplexed additionally and are trans-
mitted to the slave side via single line. Neurons in the slave side are con-
nected by dynamic winner-take-all function. As parameters are selected
suitably, the slave can realize demultiplexing and master-slave synchro-
nization is achieved. VHDL simulation is also discussed for FPGA imple-
mentation and this digital network is compared with an analog network.

1 Introduction

This paper studies a digital spiking neuron (DSN), pulse-coupled network of
DSNs (PCDSN) and its basic behavior [1]. The DSN has digital state variable
for discrete time and can be regarded as a digital version of bifurcating neuron
(BN) having rich phenomena [2]-[7]. Roughly speaking the DSN is two coupled
shift registers with shift-and-reset switching that corresponds to integrate-and-
fire switchings in BNs. Adjusting the coupling configuration, the DSN can exhibit
a variety of spike-trains. The spike-trains coexist for initial state and correspond
to digital codes through a spike-interval modulation. The PCDSN has master-
slave configuration. The master side consists of N pieces of DCNs each of which
outputs a spike-train corresponding to a binary code. All the spike-trains are
multiplexed additionally and are transmitted to the slave side via single line.
The slave side consists of N pieces of DSNs without shift-and-reset switching.
The DNSs are connected by dynamic winner-take-all (WTA) function [5] [6]. As
parameters are selected suitably the WTA connection can realize demultiplexing
of input signal from the master and master-slave synchronization is achieved. In-
vestigation of such synchronization phenomena provides basic information to de-
velop spike-based multiplex communication systems and digital neural networks
with efficient signal processing function as suggested in [5] [6]. VHDL simulation
is also discussed for FPGA implementation and the PCDSN is compared with
an analog pulse-coupled network of BNs (PCBN) having rich synchronization
phenomena [6]. Motivations for studying PCDSNs include the following.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1141–1149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(1) It is suitable for reconfigurable hardware implementation using FPGA and
so on. The hardware is useful not only for confirmation of rich dynamics but
also for practical applications with ”siliconization”.

(2) It has advantages of both digital and spike-based systems: robustness for
analog noise, suitable for computer sibilation, low power consumption, low
interception probability, fast transient and so on.

(3) It relates to applications of both digital and spike-based systems: CDMA
encoder [8], UWB communication [14], pseudo-random number generator [9],
image processing [10]-[12], associative memories [4] [13] and so on. It should
be noted that [1] presents PCDNS but does not discuss WTA function and
digital vs analog comparison sufficiently.
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Fig. 1. (a) Digital Spike Neuron (DSN). (b) Basic dynamics for M=7 and N=10.

2 Digital Spiking Neuron

Fig.1(a) shows digital spiking neuron (DSN). The DSN has p-cells and x-cells.
p-cells have digital state pi ∈ {0, 1} ≡ B. i ∈ {0, 1, · · · ,M} is an index for p-cells.
The p-cells are ring-coupled. Their operation is

pi(t+ 1) = pi(modM)(t), i = 1, 2, · · · ,M. (1)

The p-cells oscillate periodically with period M . The state pi is illustrated by
gray circles in Fig.1(b). We introduce a notation for a state vector of the p-cells:

(p1(t), · · · , pM (t))t ≡ P (t) ∈ BM . (2)

We consider the wirings from p-cells to x-cells. Let the number of x-cells be
denoted by N , where N ≥M . j ∈ {0, 1, · · · , N} is an index for x-cells. In dotted
box of Fig.1(a), the left M terminals accept the state vector P (t) ∈ BM . The
right N terminals output a signal vector (b1(t), b2(t), · · · , bN(t))t ≡ b(t) ∈ BN

which is referred to as a base signal. We define N ×M wiring matrix A. The
matrix A has binary element aji ∈ B. The base signal is given by

b(t) = AP (t). (3)
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In the case of Fig.1(a), the elements of the wiring matrix A are givin by aij=1
for i = j and aij=0 for i �= j. Then, b(t)=(p1(t), . . . , pM (t), 0, . . . , 0)t. Each x-
cells have digital state xj ∈ {0, 1} ≡ B. The x-cell has three digital inputs
bj ∈ B, xN ∈ B and xj−1 ∈ B, where x0 ≡ 0. If xN=0, xj(t + 1)=xj−1(t).
If xN (t)=1, the xj(t + 1)=xj−1(t) ∪ bj(t). We introduce a notation for a state
vector of the x-cells:

(x1(t), · · · , xN (t))t ≡ x(t) ∈ BN . (4)

We define an up-shift operator

S+(x(t)) = (0, x1, · · · , xN−1)t. (5)

The dynamics of the x-cells is described by

x(t+ 1) =
{
S+(x(t)) for Y (t) = 0,
b(t) ∪ S+(x(t)) for Y (t) = 1. (6)

Basic dynamics of the x-cells is illustrated by black boxes in Fig.1(b). The state
xj=1 is shifted upward. At t = 3, the N -th x-cell has state xN=1. The state
vector x reset to x(4)=b(3), where S+(x(3)=(0, · · · , 0)t. Repeating such shift-
and-reset dynamics, the x-cells oscillate as shown in Fig.1(b). The state xN of
the N -th x-cell is used as an output Y of the DSN. Then the DSN outputs a
discrete-time spike-train as shown in Fig.1(b):

Y (t+ 1) = xN (t) ∈ B, t = 0, 1, 2, · · · (7)

Note that shift-and-reset dynamics of the DSN can be regarded as digital version
of integrate-and-fire dynamics of an analog spiking neuron. The digital state
X(t) correspond to integration dynamics. The reset of X(t) and generation of a
spike Y (t)=1 correspond to firing dynamics of the analog spiking neuron. Hence,
we refer to the presented circuit in Fig.1(a) as digital spiking neuron.

The DSN in Fig.1(a) has 7 co-existing periodic spike-trains and generates one
of them depending on the initial state. Fig.2 shows one of such periodic spike-
train. Let tn denote the n-th spike position of Y (t), where n = 1, 2, 3, · · ·. In
Fig.2, (t1, t2, t3)=(3, 12, 16). Let us define an inter-spike interval (ISI):

Δn = tn+1 − tn. (8)

In Fig. 2, (Δ1, Δ2, Δ3)=(9, 4, 8). We consider the following ISI modulation.

ω(Δn) =
{

0 for Δn ≤ (M + 1)/2,
1 for Δn > (M + 1)/2. (9)

In the case of Fig. 2, the spike-train Y (t) can be encoded by ISI code (ω(Δ1),
ω(Δ2), ω(Δ3))=(1,0,1). Moreover, the DSN in Fig.1 can generate periodic spike-
trains that correspond to all the 3-bit binary codes except for all 1’s. In general,
let the number of p-cells is M = 2k − 1 and N = 3k−1

2 . In this case the DSN
can generate periodic spike-trains that correspond to all the k-bit binary codes
except for all 1’s.
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Fig. 3. Pulse-Coupled Network of DSNs(PCDSN)

3 Pulse-Coupled Network of DSNs

3.1 Master Dynamics

We propose a pulse-coupled network of DSNs (PCDSN). Fig.3 shows the
PCDSN. The PCDSN has DSNs as masters and slaves. The PCDSN has a
common base signal b(t). Let us consider the master in the left side. In Fig.3
the PCDSN has three DSNs (having the same parameters) as masters. Fig.4(a)
shows basic dynamics of the master. The n-th master has a digital state vector
(xn

1 (t), · · · , xn
N (t))t ≡ xn(t) ∈ BN , where n is an index for master. In the case of

Fig.3, n ∈ {1, 2, 3}. The n-th master outputs a spike train Un. The spike-trains
of the masters are multiplexed: U(t)=

∑l
l=1 U

k(t). The dynamics of the masters
is described by

xn(t+ 1) =
{
S+(xn(t)) for Un(t) = 0,
b(t) ∪ S+(xn(t)) for Un(t) = 1. (10)

Using the ISI modulation in Eq. (9), we can encode each spike-train Un by 3-bit
codes. In Fig.4(b), (1,0,1), (0,1,1) and (1,1,0) are encoded by U1, U2 and U3. So,
three digital codes, (1,0,1), (0,1,1) and (1,1,0) are encoded into spike-train U .
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Fig. 4. Dynamics 0f PCDSN’masters, M=7, N=10

3.2 Slave Dynamics

Let us consider the right side of PCDSN in Fig.3. The PCDSN has three DSNs
as slaves. Each m-th slave has a digital state vector (Xm

1 (t), · · · , Xm
N (t))t ≡

Xm(t) ∈ BN , wherem is index for slave. In the case of Fig.DPCN,m ∈ {1, 2, 3}.
The slave has input spike train U(t). The m-th master outputs a spike train
Y m(t). Let hm(t) denote position of j such that Xm

j (t) = 1. Then the slaves are
governed by the following winner-take-all (WTA) based dynamics:

Xm(t+ 1) =

⎧⎨
⎩

b(t) for U(t) = 1 and
hm(t) = maxz(hz),

S+(Xm(t)) otherwise.
(11)

We explain slave dynamics based on Fig.5. At t = 0, all Xm
j are shifted upward.

At t = 3, an input spike U(3) = 1 arrives and h1(=8) is highest. In this case,
the 1st slave becomes a winner and X1

j is reset to the base signal b (gray circle).
Then, the 1st slave outputs a spike Y 1(3) = 1. The 2nd and 3rd slaves are shifted
upward. At t = 5, an input spike U(5) = 1 arrives and h2(=8) is highest. In this
case, the 2nd slave becomes a winner and X2

j is reset to the b. Then, the 2nd
slave outputs a spike Y 2(5) = 1. The 1st and 3rd slaves are shifted upward.

Repeating such a WTA algorithm, each k-th slave in Fig.5 is synchronized
with the k-th master in Fig.4 (i.e., Y k(t) = Uk(t), k=1, 2, 3). Using the ISI
modulation in Eq. (9), the digital codes (0,1,0), (1,0,1), (0,0,1) can be retrieved
in the slave side. In general, the 3 masters of the PCDSN in Fig.3 can multipex
any combination of different 3 digital codes with 3-bits (except for (1,1,1)).
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Fig. 5. Dynamics of PCDSN’slaves, M=7, N=10

The 3 slaves can retrieve the 3 digital codes. That is, the PCDSN can realize a
spike-based multiplex communication. If the PCDSN has L masters and L slaves
(L ≤M), the PCDSN can realize a multiplex communication of L digital codes.
Also, the bit-length can be generalized: if each master and slave haveM = 2k−1
p-cells and N = (3M − 1)/2 x-cells, the bit-length is given by k. In this section
we considered the case of k = 3.

3.3 Hardware Implementation

We have implemented the DSN in a field programmable gate array (FPGA).
Fig.6 shows an HDL implementation of the PCDSN corresponding to Fig.4 and
Fig.5. We can confirm that k-th slave is synchronized by k-th master.

4 Conclusion

Here let us compare the PCDSN with a pulse-cpuled network (PCN) of analog
spiking neuron in [5] as summarized in 1. First, let us compare stability. The
analog spiking neuron is originally chaotic. The chaotic neuron can not realize an
encoding of digital code into an output spike-train and the PCN can not realize
a stable synchronization. Then we had to proposed a stabilization method for
the neuron based on modulation of a firing thereshold by a higher frequency
periodic signal. On the other hand the DNS has discrete state and time, and
then it can realize stable operation against analog perturbations. Second, let
us compare implementation. The analog PCN in [5] is implemented by discrete
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components. In order to realize a desired dynamics, analog parameters must
be adjusted carefully because the system operation is very seisitive against the
analog parameters. On the other hand the PCDSN can be easily implemented
by an FPGA. Also the digital parameters of the PCDSN can be adjusted easily
and dynamically. The dynamic parameter adjustment will be a key to realize an
on-chip learning of the PCDSN in the future.

Table 1. Analog vs digital

Analog PCN [IEEE WTA] PCDSN

Master neuron
Originally chotic. Must
be stabilized to realize
encoding.

Stable operation and
encoding against analog
perturbations.

Synchronization
of PCN

Each master neuron
must be stabilized to
realize stable synchro-
nization.

Stable synchronization
without stabilization.

Implementation

Implementation by dis-
crete components. The
analog parameters must
be adjusted carefully.

Implementation by an
FPGA. Easy and dy-
namic parameter ad-
justment is possible.

Future problems include: (a) detailed analysis of the ISI coding of the DSN
and synchronization phneomena of the PCDSN; (b) proposing learing algorithm
for the PCDSN; (c) FPGA implementation; and (d) comparison with existing
Pulse Coupled Neural Networks.

References

1. H. Torikai, H. Hamanaka and T. Saito, Novel digital spiking neuron and its
pulse-coupled network: spike position coding and multiplex communication, Proc.
IJCNN, pp. 3249 - 3254, 2005.

2. L. Glass and M. C. Mackey, A simple model for phase locking of biological oscilla-
tors, J. Math. Biology, 7, pp.339-352, 1979.

3. R. Perez and L .Glass, Bistability, period doubling bifurcations and chaos in a
periodically forced oscillator, Phys. Lett. 90A, 9, pp.441-443, 1982.

4. G. Lee and N. H. Farhat, The bifurcating neuron network 1, Neural networks, 14,
pp. 115-131, 2001.

5. H. Torikai, T. Saito and W. Schwarz, Synchronization via multiplex pulse-train,
IEEE Trans. Circuits Syst. I, 46, 9, pp.1072-1085, 1999.

6. H. Torikai and T. Saito, Synchronization phenomena in pulse-coupled networks
driven by spike-train inputs, IEEE Trans. Neural Networks, 15, 2, pp.337-347,
2004.

7. Y. Kon’no, T. Saito and H. Torikai, Rich dynamics of pulse-coupled spiking neurons
with a triangular base signal, Neural Networks, 18, pp. 523-531, 2005.



Synchronization Via Multiplex Spike-Trains 1149

8. S. C. Kim and B. G. Lee, A theory on sequence spaces and shift register generators,
IEEE Trans. Comm., 44, 5, pp. 609-618, 1996.

9. S. Guan and S. Zhang, An evolutionary approach to the design of controllable cellu-
lar automata structure for random number generation, IEEE Trans. Evolutionary
Computation, 7, 1, pp. 23-26, 2003.

10. J. J. Hopfield and A. V. M. Herz, Rapid local synchronization of ac-
tion potentials: Toward computation with coupled integrate-and-fire neurons,
Proc. Natl. Acad. Sci., 92, 15, pp. 6655-6662, 1995.

11. S. R. Campbell, D. Wang and C. Jayaprakash, Synchrony and desynchrony in
integrate-and-fire oscillators, Neural Comput., 11, pp. 1595-1619, 1999.

12. H. Nakano and T. Saito, Grouping synchronization in a pulse-coupled network of
chaotic spiking oscillators, IEEE Trans. Neural Networks, 15, 5, pp. 1018-1026,
2004

13. E. M. Izhikevich, Weakly pulse-coupled oscillators, FM interactions, synchroniza-
tion, and oscillatory associative memory, IEEE Trans. Neural Networks, 10, 3, pp.
508-526, 1999

14. G. M. Maggio, N. Rulkov and L. Reggiani, Pseudo-chaotic time hopping for UWB
impulse radio, IEEE Trans. Circuits Syst. I, 48, 12, pp. 1424-1435, 2001.

15. H. Torikai, H. Hamanaka and T. Saito, Reconfigurable Digital Spiking Neuron and
its Pulse-Coupled Network: Basic Characteristics and Potential Applications IEEE
Trans. Circuits Syst. II, 2006.



 

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1150 – 1159, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Bit-Stream Pulse-Based Digital Neuron Model for 
Neural Networks 

César Torres-Huitzil 

Computer Science Department, INAOE 
Apdo. Postal 51 & 216, Puebla, Mexico 

ctorres@inaoep.mx 

Abstract. An area-efficient pulse mode hardware neuron model with sigmoid-
like activation function for artificial neural networks implementations is 
presented. The neuron activation function is based on an enhanced version of 
the voting circuit previously reported in the literature.  The proposed model 
employs pulse stream computations and statistical saturation to deal with the 
nonlinearities inherent to neural computations. This approach provides an 
embedded hardware implementation feasibility favoring silicon area efficiency 
rather than speed.  Implementation results on Field Programmable Gate Array 
(FPGA) technology shows the proposed neuron model requires fewer hardware 
resources than previous implementations and it is especially attractive for 
neurons with wide receptive fields in large neural networks. Experimental 
results are presented to highlight the improvements of the proposed model.  

1   Introduction 

Although technological improvements and the inherent computational capabilities of 
neural networks have increased their utilization in a wide range of applications, their 
full utilization in practical systems is still limited [1]. In spite of most applications of 
neural networks are implemented using general purpose processors, currently, more 
research is done for developing Very Large Scale Integration (VLSI) implementations 
due to the potential for real-time performance and embedded processing. Hardware 
complexity issues of neural networks such as area greedy-operators and the high 
interconnectivity requirements related to their connection-centric structure, present 
difficulties to be implemented efficiently into hardware. The need to deal with strong 
implementation and application constraints is a major research domain to find ways to 
map neural connectivity and nonlinear functionality onto hardware [2]. The hardware 
plausibility is related to a very fine grain parallelism that fits parallel hardware 
devices, as well as to the emergence of very large digital reconfigurable devices, such 
as FPGAs, that become able to handle both adaptability and massive parallelism of 
neural networks on a single chip [3]. While these are benefits for digital 
implementations, the large amount of logic required is still a drawback to overcome, 
Motivated by the potential gains in the design cycle, the availability of high density 
reconfigurable devices, and the development of high level design tools, in this paper, 
the FPGA implementation of area saving pulse-based neural networks is addressed. 
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Recently, an increasing number of arithmetical and architectural choices are being 
proposed to alleviate the hardware implementation problems of neural networks 
searching for the potential massive parallelism driven by low area solutions [2]. An 
effective approach for the neural networks implementation is the use of pulse stream 
based computations [4]. Particularly, stochastic pulse modulation [5], where signal 
strengths are represented by probabilities and coded as random pulse streams, has 
gained popularity since neural computations are performed with simple computational 
elements, i.e. logic gates, and the ease to handle signals under noise and power 
constraints [6][7]. However, the flexibility and accuracy to deal with nonlinearities in 
the activation function under this approach are limited. Recent improvements have 
lead to the development of new kind of hardware-friendly neuron models with 
enhanced activation function. Above all, the use of a voting circuit instead of an OR 
gate has been beneficial to improve the characteristics of the activation function at the 
cost of increasing the circuit complexity [8]. 

In this paper, a pulse-coded approach for an area-efficient neuron hardware model 
is presented which can benefit from technology improvements to allow the 
implementation of a large number of neurons on a single chip. The neuron model is 
an adapted and enhanced version of the proposed by Hikawa and the recent 
architecture presented in [9]. An optimization for the voting circuit to reduce the 
silicon area is presented through the use of bit-oriented computations. The neuron 
activation function is analyzed through simulations and experiments and the enhanced 
neuron model is implemented on an FPGA device. The rest of the paper is organized 
as follows. Section 2 presents a brief description of the voting circuits reported 
previously in the literature. Section 3 provides the details and the proposed 
enhancements to the voting circuit in the neuron hardware model. Results on the 
VHDL modeling and the FPGA implementation of a single neuron is presented in 
section 4. A comparison and a discussion of the obtained results are presented in 
section 5. Finally conclusions and further work are presented. 

2   Pulse Neuron Models Based on the Voting Circuit 

In the original neuron architecture presented in [8], stochastic streams are used to 
represent the weights and the neuron inputs. Digital Frequency Synthesizers (DFSs) 
are used to perform multiplications and model the synapse functionality. A voting 
circuit is employed for modeling the sigmoid-like activation function through 
statistical saturation. A block diagram of the voting circuit is shown in figure 1. 

In general terms, on each clock cycle, if the excitatory inputs, NE, exceed the 
inhibitory ones, NI, then an output pulse, synchronized with the clock signal, is 
generated. The circuit uses statistical saturation to implement the activation function. 
The S-stage register is used to reach saturation faster since its effect is equivalent to 
have more pulses simultaneously, Thus, changing S, the steepness of the activation 
function can be changed. In spite of the advantages of the voting circuit to reproduce 
sigmoid-like activation function with reduced hardware resources, it still uses area-
consuming arithmetic modules such as adders and comparators. For a full description 
of the neuron hardware model see [8]. 
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Fig. 1. Block diagram of the pulse mode voting circuit with adjustable activation function 
adapted from [8] 

A recent work proposes a new voting circuit having as main goal to reduce further 
the silicon area [9]. For this purpose, a bit manipulation and time-multiplexing 
scheme was chosen as opposed to integer operations in [8] to generate a pulse 
whenever the excitatory inputs exceed the inhibitory ones.  

A block diagram of the bit oriented voting circuit is shown in figure 2. It is based 
on a shift register and a couple of multiplexers to scan the pulse inputs on each clock 
cycle. The register is built with NE+NI+1 cells. At the initial state the excitatory cells 
are reset to zero and the inhibitory one set to one. On each clock cycle data is moved 
downwards if an inhibitory input is present and upwards if an excitatory pulse is 
present. If excitatory and inhibitory pulses are both present the shift operation is 
disabled. At the end of the input scanning, a pulse output is generated if the inhibitory 
exceeds the excitatory inputs. 
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Fig. 2. Voting circuit oriented to bit-stream computation adapted from [9] 

The bit-oriented approach reduces the hardware resource utilization of the original 
voting circuit but clearly increases the latency of the neuron hardware model because 
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of the sequential input scanning, thus an area-performance tradeoff exist. In spite of 
the improvements under this approach, from an area efficiency point of view, a 
disadvantage of this voting circuit is that the number of cells in the shift register 
increases directly with the number of inputs to the voting circuit, which is a drawback 
in terms of area efficiency if full connected and high density neural networks are 
being utilized for solving a given application. In the following section an improved 
version of the voting circuit is implemented though a rather simple modification but 
with good results. 

3   Enhanced Voting Circuit 

In this section a description of the proposed enhanced voting circuit for the pulse-
based hardware neuron model is presented. As mentioned in the previous section the 
latency of the voting circuit with bit-oriented computations is increased by several 
clock cycles per output evaluation equal to the number of excitatory or inhibitory 
inputs. According to results reported in [9], the bit-oriented voting architecture shows 
promising figures when area is privileged with respect to performance. However, an 
improvement can be done to the proposed circuit that reduces further the number of 
registers significantly. The enhanced voting circuit proposed in this work is shown in 
the block diagram of figure 3. 

The voting circuit is essentially composed of two multiplexers for scanning the 
inhibitory and excitatory inputs with a common control word and a binary counter. 
The enhanced voting circuit mainly changes the shift register by an up/down counter 
that counts down if an excitatory input is present at a given time and counts up if an 
inhibitory input is present. If both excitatory and inhibitory inputs are present at the 
same time, the counter is disabled and its internal state is not modified, as well as if 
not pulses are present in the inputs. Taking the internal state of the counter as a 2-
complement number, at the end of the input scan, the most significant bit (MSB) 
determines if a pulse is generated or not. If the MSB is one then the number of 
excitatory inputs is greater than the inhibitory inputs.  

      

Fig. 3. Block diagram of the enhanced voting circuit 

The three-state finite state machine, illustrated in figure 4, shows, conceptually, the 
counter functionality according to excitatory and inhibitory inputs.  
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Fig. 4. Finite state machine showing the counter behavior in the voting circuit. E and I stand for 
excitatory and inhibitory inputs, respectively. 

The voting circuit optimization can be seen as a binary coding of the neuron 
internal state in contrast with the one-hot coding in the architecture proposed in [9]. 
With this rather simple modification, the enhanced voting circuit reduces the number 
of registers. The number of registers used in this approach is in the order of base-two 
logarithm of the number of inputs. This optimization is especially important when the 
number of inputs to the neuron is large and for high dense and full connected neural 
networks. As in the case of the [9] the latency of the circuit is increased by some 
clock cycles per output evaluation equal to the number of excitatory or inhibitory 
inputs. However, the hardware resource utilization is reduced and the advantages of 
the flexibility of the activation function characteristic are preserved. In the following 
section, the VHDL modeling and FPGA implementation results are presented. 

4   Implementation Results of a Single Neuron 

The proposed enhanced voting circuit and the new hardware neuron model have been 
modeled, simulated and validated in VHDL Hardware Description Language. A full 
parameterizable neuron model was developed in order to carry out several 
experiments for different number of inhibitory and excitatory inputs to evaluate the 
hardware requirements for FPGA implementation. 

The neuron model was simulated and validated following a similar procedure 
exposed in [8][9]. A neuron with five inputs was defined and the inputs were forced 
to be constant streams with probabilities equal to one. The weights were changed 
randomly between +1 y -1 using a 9-bit 2-complement fixed point representation, 
stored in a file and exported as a test vector from MATLAB to the digital logic 
simulator. In the experiments, the synapses were implemented with DFSs, for details 
of this module see [8]. The neuron was simulated in Modelsim and the activation 
function values were extracted with MATLAB to plot the shaped activation function. 
As expected, the resultant values closely resemble the logistic sigmoid activation 
function. The results of the activation function produced by the neuron model used in 
[9] and the proposed in this work are shown in figure 5(a) and 5(b), respectively. 
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Fig. 5. (a) Sigmoid-like activation function obtained with the shift-register based voting circuit 
and (b) activation function obtained with the up/down counter based voting circuit 

To obtain the activation function plot in this experiment, the neuron output pulses 
were analyzed in a time window of 256 operation cycles and then normalized using 
the maximum number of pulses. Each neuron operation cycle requires 5 main clock 
cycles to scan all the inputs and produce a single output result. Thus, the processing 
speed for this class of hardware implementation is not so fast due to the increased 
clock cycles required for the input scanning and pulse accumulating operations in a 
bit-stream pulse-based approach. 

According to experiments and results shown in figure 5, the activation function 
produced for both variants of the voting circuit are identical. The variance in the 
neuron output is much smaller than a pure stochastic implementation where the voting 
circuit is changed by a simple OR logic gate. Similar results in changing the steepness 
of the activation function through the reset of the voting circuit are obtained as those 
reported in [9] 

For hardware resource utilization and comparison purposes, a VHDL five-input 
neuron model was synthesized targeted to an FPGA Virtex device with Xilinx ISE 
7.1i tools. The FPGA synthesis results for the voting circuit used in the 5-input 
neuron model are summarized in table 1. 

Table 1. Virtex II synthesis results for the proposed voting circuit and the corresponding 
reported in [9] 

 Proposed design Reference design 

LUTs 14 17 

Flip-Flops  4 11 

Slices  8 9 

IO’s 

 

 

11 
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For comparison purposes the results obtained in [9] for the voting circuit, reference 
design, are also shown in table 1. As seen in table 1, a hardware resource reduction is 
obtained mainly in the number of registers used in the voting circuit without 
increasing the complexity of the associated hardware for the internal control logic and 
the interconnection logic with other neurons in a given network. The reported results 
do not include the hardware resources for the synapses hardware modules since the 
architectural optimization was focused on the voting circuit.  

In order to provide an estimation, in different implementation scenarios, of the 
hardware resource utilization of the complete hardware neuron model proposed in this 
work, the FPGA synthesis results of the neuron model for different number of inputs, 
5, 8 and 16 inputs, are summarized in table 2. 

Table 2. Virtex II synthesis results for the complete neuron model for different number of 
inputs. The neuron synapses are modeled by Digital Frequency Synthesizers (DFSs) as 
proposed in [8]. 

 5 inputs 8 inputs 16 inputs 

LUTs 75 109 207 

Flip-Flops  59 92 181 

Slices  46 
 

71 136 

5   Discussion 

As shown in the previous section the hardware resource utilization is lower in the 
proposed enhanced voting circuit than previous implementations. Particularly, the 
number of registers is significantly reduced. As exposed in [9], in the presence of NE 
excitatory inputs and NI inhibitory ones, the number of registers in the voting circuit, 
NR, is given by equation 1: 

 (1) 

In the enhanced voting circuit proposed in this work, the number of registers is 
proportional to the base-two logarithm of the maximum number of inputs. Formally, 
the number of used registers is given by equation 2: 

 (2) 

where [°] denotes the closest integer greater than the number in the argument. 
The comparison of equations1 and 2 shows the achievable hardware reduction for 

different input number when the enhanced voting circuit is used. According to the 
results in table 2, and targeting the neuron model to a XC2V2000-5 Virtex-II device, 
it would be possible to map over 150 8-input neurons with an estimated clock 
frequency of 150 MHz, a neuron density and performance good enough for neural 
embedded processing such as the implementation of neurocontrollers for mobile 
robots. Most of the hardware resource utilization is related to the DFS type synapse  
 

,1++= IER NNN

⎡ ⎤ ,1)),(max(log2 += IER NNN
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multipliers. For the current implementation, 9-bit wordlength for weights, the 
hardware resources required for each synapse are 11 slice flip-flops, and 12 4-input 
LUTs for a total occupation of 11 slices of the FPGA device. For hardware reduction 
it would be possible to use stochastic synapse multipliers, AND gates for instance, at 
the cost of a greater variance in the neuron output due to the inherent variance in 
estimating the value of a stochastic signal through simple logic gates. 

As stated in [10], due to the wide variety of network architectures and hardware 
implementations reported in the literature, it is difficult to establish faithful figures of 
merit to highlight the hardware capabilities of a given approach since aspects such as 
the implementation technology and accuracy are diverse for different implementation 
solutions. A common hardware performance metric is the connections-per-second 
(CPS), which is defined as the rate multiplication and accumulate operations are 
performed during the recall processing in the neural network. For the proposed 
implementation approach, the CPS for a specified neural network with NN neurons 
and N inputs per neuron, usually the same number of excitatory and inhibitory inputs 
is used, is given by equation 3. 

W

N

N

NF
CPS

⋅=  (3) 

where, F is the maximum clock frequency achievable by the targeted hardware 
technology, and Nw is the number of operation cycles in the time window used to 
evaluate the neuron output.  

Note that in equation 3, the number of inputs per neuron, N, does not appear as a 
significant factor in the performance metric. This is an effect of the neuron input 
scanning process that limits the achievable speed by a factor equal to N, the increased 
number clock of cycles required to accomplish a computation, but with a significant 
hardware utilization reduction due to the bit-oriented processing.  

According to the reported results, it is possible to place around 8-input 150 neurons 
into and XC2V2000-5 Virtex-II device. This means that a network with 1200 
synapses could be placed into a single chip. On the other hand, 256 operation cycles 
(256×8 clock cycles) are required for an update of the neuron. With a maximum clock 
frequency of 150 MHz, the overall time for an update to occur is about 13.6 
microseconds. The number of updates per second is around 75000. For a network 
with 1200 synapses, a maximum speed of 87 millions of CPS can be achieved 
according to equation 3. 

Although the accuracy and number of neurons which can fit onto a single chip is 
similar to the results presented in [10], the processing speed of the proposed approach 
is significantly less, one magnitude order, due to the underlying bit-oriented 
processing. However, as mentioned previously, a detailed and careful analysis is 
required for a more fair comparison. The reported timing is sufficient for good 
performance in embedded applications. However, much work stills remains to be 
done in order to show the usefulness of this approach in specific applications where 
such as hardware plausibility and possibilities could be fully exploited such as in the 
case of neurcontrollers for mobile robots where small and medium size neural 
networks are required. 
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According to the presented results and literature revision, it is possible to remark 
the following key aspects of pulse-mode hardware implementation of neural 
networks. 

1. The neural network hardware complexity, area-greedy operators and the highly 
dense interconnection scheme, is reduced by the nature of pulse coding and bit 
stream computations. 

2. The use of a voting circuit instead of simple logic gates, as usual in stochastic 
computations, is beneficial to improve the accuracy and flexibility of the activation 
function. 

3. The variance of the pulse-based neuron output depends on factors such as, nature 
of the voting circuit, the number of inputs to the neuron and the accumulation time 
for neuron operation. 

4. An area-performance tradeoff can be tailored for a given application by controlling 
neuron parameters such as the precision of the synapses and the accumulation time 
required to evaluate the neuron output. 

5. The spatial efficiency can be improved at the cost of temporal efficiency. A rough 
estimation indicates that ten times integration can be achieved and the processing 
speed is reduced by a similar factor when compared to conventional digital 
implementations. 

6. Synaptic plasticity or neural network training is feasible to be implemented on-chip 
since relatively simple logic circuits are used to produce learning. 

6   Conclusions 

In this paper an improved architecture for the voting circuit for a stochastic pulse 
coded neuron with a sigmoid-like activation function has been presented. Even with 
the rather simple optimization, the area saving for hardware implementation is 
considerable especially for full connected neural networks whit large receptive field 
neurons, i.e., neurons with a large number of inputs. 

As the architecture is functionally equivalent to the one proposed in [9], it posses 
the same latency drawback that tradeoffs performance. The presented results show 
promising alternative implementation options for different application constraints 
where area efficiency is a key aspect. The hardware neuron models can be used to 
build high density networks large enough, over 103 neurons in most up to date 
reconfigurable devices, to solve complex problems on a single chip favoring an 
embeddable neural processing. Most work is required in order to show the usefulness 
of the proposed approach in applications where the neuron density and performance 
could be exploited. For this purpose, an integrated design framework is being 
developed to allow the automatic synthesis of neural networks from high level 
specifications where a hardware/software codesign is beneficial for the hardware 
implementation of neural networks. Another key aspect to be addressed is the on-chip 
learning capabilities for embedded real-world applications and for different hardware 
implementation options of neuron models. 
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Abstract. Considering the first two generations of Artificial Neural Net-
works, Hopfield model is the only active system. Studying this type of
network, a relation between this artificial neural network and the third
generation, characterized by spiking neurons, was noticed. This paper
presents the relationship between the Hopfield Neural Networks and the
Pulsed Neural Networks. This relation is shown by the integration of the
Hopfield neuron model, ending in an integrate-and-fire model, with the
appropriate choice of the input kernels.

1 Introduction

Mathematical models for integrate-and-fire neurons can be traced back to 1907.
There exists a number of variations to this model, which are described and
compared in a recent survey [1]. These mathematical models for spiking neurons
do not provide a complete description of the biological neuron. The spiking
models [2], however, are of great importance because they represent more closely
the manner in which signals are transmitted in biological neural networks where
there are often voltage (action potential) spikes rather than analog signals. We
need to recognize, however, that there is no single mathematical model that can
capture all aspects of neuronal signaling.

The Pulsed Neural Networks models uses a spiking neuron as an computa-
tional unit. Biological neural systems use the timing of a single action potential
to encode information [3], [4]. This model proposes a better approximation to
the biological neural system than the first and second generations.

The first and second generations are based on threshold units and non-linear
activation functions. These two generations seem to be passive systems, and
thus unable to process continuous time signals, or even discrete time with vary-
ing attributes. Only the Hopfield model is an active system. A link between
the Hopfield Model and the pulsed neurons is found, when an integration of
a Hopfield model was done and it becomes the basis of the integrate-and-fire
model.

The paper is organized as follow: section 2 shows a review of the well known
Hopfield model, followed in section 3 by a review of the integrate-and-fire model
in continuous and discrete time. Section 4 shows the integration of the Hopfield
model and the relation with the integrate-and-fire model. Finally in section 5,
conclusions are giving.

I. King et al. (Eds.): ICONIP 2006, Part III, LNCS 4234, pp. 1160–1167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



From Hopfield Nets to Pulsed Neural Networks 1161

2 Hopfield Model

The architecture of recurrent (cyclic) neural networks is, in general, a cyclic
graph, and the computations of these devices may not terminate in a bounded
number of steps. Special attention has been paid to Hopfield networks.

The Hopfield network is a dynamic system which can be used as an associative
memory with no hidden neurons. An associative memory is a very important
resource for intelligent behavior.

The Hopfield model of a neuron is shown on figure 1. By applying Kirchoff’s
current law to the input node of the nonlinearity of Figure 1, we get:

Cj
dvj(t)
dt

+
vj(t)
Rj

=
N∑

i=1

wjixi(t) + Ij (1)

The capacitive term on the left side adds dynamics to the neuron model. The
output can be described as:

yj(t) = ϕ(vj(t)) (2)

The activation function relating the output is the logistic function:

ϕ(vj) =
1

1 + exp(−vj)
(3)

� ����

x (t)1

x (t)2

x (t)3

x (t)p

wj1

wj2

wj3

wjm

Ij

Cj Rj

vj
y (t)j

Fig. 1. The Hopfield model

The dynamics of the network is constrained by a Liapunov, or energy function,
E, which is a bounded function defined on the state space decreasing along any
productive computation. It follows from the existence of such a function that
the network state converges towards some stable state corresponding to a local
minimum of E. The energy equation can be given as:

E = −1
2

N∑
i=1

N∑
j=1

wjixiyj +
N∑

j=1

1
Rj

∫ xj

0
ϕ−1

j (x)dx (4)
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In the case of discrete time the energy function is reduced to the first term
and the second term becomes negligibly small as shown in [5]. This approach is
very similar to the spin-glass model in solid state physics. It is also similar to a
one-dimensional Ising model. An integration of the Hopfield model leads to the
integrate-and-fire model as shown in section 4.

3 Pulsed Neural Networks

The spiking neuron or pulsed neuron model has the characteristic of generating
a spike, or a pulse, when a certain threshold is reached. The threshold is a
determined value that biologically depends on the physiological characteristics
of the neurons. The synapses are modelled as leaky integrators representing the
behavior of the signals when they pass through neuron interconnections. Based
on this concept the integrate-and-fire model was developed. There are continuous
and discrete time versions of this model. Now we are going to describe the
continuous time type 2.

A neuron i is said to fire, if the state variable, mpi(t), reaches a threshold ν.
The moment of firing time is defined as t(f)

i . After the neuron fires, there is a
period called the refractory period in which the neuron cannot fire.

The mathematical description of the membrane potential can be summarized
as:

mpi(t) =
∑

t
(f)
i ∈Fi

ηi(t− t(f)
i ) +

∑
t
(f)
j ∈Γj

∑
t
(f)
j ∈Fj

ωijεij(t− t(f)
j ) (5)

where mpi(t) is the state variable of neuron i, t(f)
i , t

(f)
j are the firing times of

neuron i and neuron j, respectively, Fi is the set of all firing times of the neuron i,
Γi is the set of the neuron j presynaptic of i, ηi(.) is the refractioness kernel,
ωij is the adaptable weights, and εij(.) is the kernel to model the postsynap-
tic of neuron i.

The refractory kernel can be modelled as:

ηi(t− t(f)
i ) = −ηo exp

(
−(t− t(f)

i )
τi

)
h(t− t(f)

i ) (6)

where h(.) is the step function, τi is the decay time constant of the neuron i,
and ηo is the amplitude of the refractioness kernel.

The presynaptic impulses is the pulse response of an integrator that can be
described as:

εij(t− tfj ) = exp

(
−

(t− t(f)
j )

τij

)
h(t− t(f)

j ) (7)

where τij is the decay time constant related to the synaptic ij.
For a better understanding of how the integrate-and-fire neuron operates, a

Simulink model in MATLAB was built. The neuron model has two presynaptic
inputs (j = 2). The inputs are scaled by the weights, ω1 and ω2 and pass through
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Fig. 2. The continuous integrate-and-fire neuron model
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Fig. 3. The simulink model of the continuous integrate-and-fire neuron model

the integrators. A third integrator is responsible for the refractory period. All the
signals are summed, resulting in the membrane potential or soma. The membrane
potential is composed of switch and hit crossing modules, which simulate the
charging and threshold of the soma. The firing of the axon is shown on the scope
of the block diagram on Figure 3.

Two simulations were done. The first simulation uses a threshold value of 0.5
volts which is set in the switch and hit crossing blocks of figure 3. The neuron
emits a spike when the membrane potential reaches the threshold. The threshold
value is increased by 0.5 volts in the second simulation. Figure 4 (A) shows the
membrane potential curve (dotted line) as soon as the the threshold (black line)
is reached, a spike is generated. Figure 4 (B) shows the same simulation but with
the threshold value set at 1.0 volt. The spike of the second simulation occurs
later than the spike in the first one, because with the same conditions we only
increased the threshold value by taking more time for the soma value to reach
the threshold.

Because, Boolean value spikes are more analogous to the biological neuron
(for coding) it is sometimes more suitable to use the discrete time version of
the integrate-and-fire model. The continuous time model has a leaky integrator,
which accumulates incoming spikes from the preceding neurons and decreases
their effect depending on the time arrival of the spikes. An integrator circuit can
be designed with a resistor and a capacitor. The RC circuit component values
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Fig. 4. (A) Threshold of 0.5 volts, and 1.0 volts

are responsible for the decay constant of the circuit. The impulse response of the
RC circuit can be described as:

h(t) =
1
RC

exp
(
−t
RC

)
u(t) (8)

Considering t = nT :

h(nT ) =
1
τ

exp
(
−nT
τ

)
(9)

where τ = RC. Taking the Z-transform of the (9), we obtain:

Z (h(nT )) =
∞∑

n=0

(
1
τ

exp
(
−nT
τ

))
z−n =

1
1− exp (−T

τ )z−1
(10) (10)

The membrane potential can now be described using discrete kernels as:

mpi(n) = −{ηoy(n) + ηo exp
(
−T
τi

)
ufi(n− 1) + ν}

+
∑
j∈Γi

(ωijxij(n) + exp
(
−T
τij

)
ufij(n− 1)) (11)

where T is the time slice representing the duration of the action potential, ufi

and ufij are the infinite impulse response filter output of the feedback loop and
the input dendrite tree, respectively.

4 Integrating the Hopfield Neuron Model

Equation (1) is rewritten as

Cj
dvj(t)
dt

= −vj(t)
Rj

+
∑
i∈Γj

cijxi(t) + Ij (12)
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The neuron j will receive input from many different neurons i ∈ Γj . The current
Ij(t) can be seen as the outgoing current pulse of negligible width:

Ij(t) = −Cj(ν − vr)
∑
t
(f)
j

δ(t− t(f)
j ) (13)

where δ(.) is the Dirac δ-function, vr is the initial condition, and ν is the thresh-
old.

If we don’t insert a train of spikes and consider the initial value equal to
zero than (13) reduces to the same threshold function considered in the other
artificial neural networks.

The input, xi(t), can be considered as a Dirac δ-function or, more generally,
as a pulse of finite width with a time window α(t− t(f)

i ) for t > t(f)
i .

α(k) =
1
τk
e(− k

τk
)u(k) (14)

where τk is a time constant, u(k) is the Heaviside step function and k = t− t(f)
j .

Considering the input as a Dirac δ-function. We can rewrite (12) as

dvj(t)
dt

+
vj(t)
τm

=
Rj

τm
[
∑
i∈Γi

cji

∑
t
(f)
i ∈Fi

δ(t−t(f)
i )−Cj(ν−vr)

∑
t
(f)
j ∈Fj

δ(t−t(f)
j )] (15)

where τm is a time constant proportional to RjCj .

The integrating factor method is used to solve (15). The integrating factor is
described as

Ifactor = e
∫∞
0

1
τm

dt = e
1

τm
t (16)

Equation (15) then becomes

vj(t)e
1

τm
t=
∫ ∞

0

Rj

τm
[
∑
i∈Γi

cji

∑
t
(f)
i ∈Fi

δ(t− t(f)
i )− Cj(ν − vr)

∑
t
(f)
j ∈Fj

δ(t− t(f)
j )]e

1
τm

tdt

(17)
Solving the second part of the right side of (17) gives:

− Rj

τm

∫ ∞

0
Cj(ν − vr)

∑
t
(f)
j ∈Fj

δ(t− t(f)
j )e

1
τm

tdt=−(ν − vr)
∑

t
(f)
j ∈Fj

∫ ∞

0
δ(t− t(f)

j )e
1

τm
tdt

(18)
where τm = RjCj .

Applying the properties of the Dirac δ-function (19) in (20):∫ ∞

0
x(t)δ(t − t0) = x(t0), t0 > 0 (19)
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Solving the first part of the right side of the (17) we get

Rj

τm

∫ ∞

0

∑
i∈Γi

cji

∑
t
(f)
i ∈Fi

δ(t− t(f)
i )e

1
τm

tdt =
∑
i∈Γi

wji

∑
t
(f)
i ∈Fi

e
1

τm
t
(f)
i u(t− t(f)

j ) (20)

where wji = Rjcji

τm

Applying the results of (18) and (20) in (17) gives

vj(t)e
1

τm
t = −(ν− vr)

∑
t
(f)
j ∈Fj

e
1

τm
t
(f)
j u(t− t(f)

j )+
∑
i∈Γi

wji

∑
t
(f)
i ∈Fi

e
1

τm
t
(f)
i u(t− t(f)

i )

(21)
Simplification of (21):

vj(t)e
1

τm
t = −(ν− vr)

∑
t
(f)
j ∈Fj

e
1

τm
t
(f)
j u(t− t(f)

j )+
∑
i∈Γi

wji

∑
t
(f)
i ∈Fi

e
1

τm
t
(f)
i u(t− t(f)

i )

(22)

vj(t)=−(ν−vr)
∑

t
(f)
j ∈Fj

e−
1

τm
(t−t

(f)
j )u(t−t(f)

j )+
∑
i∈Γi

wji

∑
t
(f)
i ∈Fi

e−
1

τm
(t−t

(f)
i )u(t−t(f)

i )

(23)

Now, the input will be consider to be a pulse of finite width and with a time
window α(t− t(f)

i ) for t > t(f)
i , (17) can be written as

vj(t)e
1

τm
t=
∫ ∞

0

Rj

τm
[
∑
i∈Γi

cji

∑
t
(f)
i ∈Fi

α(t− t(f)
i )− Cj(ν − vr)

∑
t
(f)
j ∈Fj

δ(t− t(f)
j )]e

1
τm

tdt

(24)
The second part of the equation is the same as before, so the first part is solved
as

Rj

τm

∫ ∞

0

∑
i∈Γi

cji

∑
t
(f)
i ∈Fi

α(t− t(f)
i )e

1
τm

tdt (25)

If we consider k = t− t(f)
i in (14) and apply to (25):

Rj

τm

∑
i∈Γi

cji

∫ ∞

0

1
τk
e
− k−k′

τk e
k′
τk

u(k−k′)
dk (26)

∑
i∈Γi

Rjcji

τm

1
1− τk

τm

e−
k

τm − e−
k

τk u(k) (27)

∑
i∈Γi

wji
1

1− τk

τm

e−
k

τm − e−
k

τk u(k) (28)

where wji = Rjcji

τm
.
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The integrated model can be summarized as

vj(t) =
∑

t
(f)
j ∈Fj

η(t− t(f)
j ) +

∑
i∈Γi

wji

∑
t
(f)
i ∈Fi

ε(t− t(f)
i ) (29)

η(k) = −(ν − vr)e−
1

τm
ku(k) (30)

ε(k) = e−
1

τm
ku(k) if xj(k) = δ(k) (31)

ε(k) =
1

1− τk

τm

[e−
k

τm − e−
k

τk ]u(k) if xj(k) = α(k) (32)

The integrated model of Hopfield networks is going to be used in the pulsed
neural networks, with the appropriate choice of kernels. It formally shows that
the Hopfield model is related to an integrate-and-fire network with distinct ε
and η. Experiments of associative memory were done using Hopfield Nets and
the Pulsed Neural Networks for pattern recognition of alpha numeric incomplete
and corrupted data. Both systems had a similar performance as shown in [6].

Depending on the input, if it is considered to be just a impulse function or
a pulse with a finite width, the kernels for the refractory kernel and for the pre
and pos-synaptic will be different following the equations, (30), (31) and (32).

5 Conclusions

This paper shows the relationship between the Hopfield Neural Networks and
the Pulsed Neural Networks. The description of both models were presented
here as a tutorial. A simulink model of the integrate-and-fire more is presented
and simulated varying the threshold values. Later the integration of the Hopfield
model is described step by step, considering two types of inputs, as a Dirac δ-
function and a finite width pulse. The resulting kernels were showed to be the
kernels for the integrate-and-fire model.
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Abstract. This paper describes a new algorithm of self-organizing rela-
tionship (SOR) network for an efficient digital hardware implementation
and also presents its digital hardware architecture. In SOR network,
the weighted average of fuzzy inference takes heavy calculation cost. To
cope with this problem, we propose a fast calculation algorithm for the
weighted average using only active units. We also propose a new gen-
erating technique of membership function by representing its width on
power-of-two, which suits well with the digital hardware bit-shift pro-
cess. The proposed algorithm is implemented on FPGA with massively
parallel architecture. The experimental result shows that the proposed
SOR network architecture has a good approximation ability of nonlinear
functions.

1 Introduction

Self-organizing relationship (SOR) network is a powerful tool which can extract
a desired I/O relationship of a target system in its learning mode and gener-
ate an output in its execution mode [1]. In the learning mode, with the applied
learning data along with its evaluation values, fuzzy if-then rules are obtained
which are eventually used in the intended systems. As for in the execution mode,
fuzzy rules obtained during the learning mode is used to generate outputs cor-
responding to the inputs. SOR network is currently being utilized in wide range
of technical applications [2]-[5]. SOR network, however, requires high computing
specs according to its scale which led to the development of an effective custom
hardware.

The learning mode of SOR network is similar to that of self-organizing map
(SOM) [6][7], and we have developed a digital hardware of the learning mode of
SOM [8]. In this paper, we describe a digital hardware design of execution mode
of SOR network.

The process in the execution mode of SOR network is almost same to a fuzzy
inference. At first similarity between input and each reference vector is calcu-
lated, then the output is obtained by a weighted average. The calculations of the
similarity and the output are considered as a calculations of membership value
and defuzzification, respectively. In the calculation of the output, summation of
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Fig. 1. Structure of the SOR network

membership values for all rules is needed. It takes a long computational time,
because it can not be realized in parallel architecture. To reduce the computa-
tional time, only rules which have large influence on the calculation of the output
is used. To realize it, rough comparison winner-take-all(WTA) algorithm [8] is
employed.

Furthermore, we propose a new membership function generation technique
which suits well with the digital hardware implementation. In conventional fuzzy
inference, membership functions are defined for each input variable and the
membership value for each rule is obtained by producing the membership values
for all input variables [9]-[11]. On the other hand, in the proposed method, the
membership value for each rule is calculated based on the distance between the
input and the center of membership function. The shape of membership function
is represented as power-of-two which make its digital hardware implementation
very easy and effective.

2 SOR Network

Fig.1 shows the structure of SOR network which is almost same to that of SOM.
In SOM, each competing unit has only one reference vector, on the other hand,
the unit has two reference vectors wi and ui in SOR network. We define the
reference vector of the i-th unit vi = [wi,ui]. In learning of SOR network, I/O
vector pairs I = [x,y] and their evaluations E of the target system are used as
the learning vectors. Although the learning procedure of SOR network is almost
same to that of the ordinary SOM, the method of updating the reference vector
is different. The reference vectors are updated in accordance with evaluation of
the learning vector by:

vnew
i = vold

i +
{
α(t)E(I − vold

i ) E ≥ 0
β(t)E exp(− ‖ I − vold

i ‖)sgn(I − vold
i ) E < 0, (1)

where, vnew
i and vold

i are reference vectors after and before update, respectively.
α(t) and β(t) are learning coefficients for attractive and repulsive learning, re-
spectively. As the result of the learning, the desired I/O relationship of the target
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system is obtained. The desired I/O relationship is represented by reference vec-
tors as set of if-then rules as follows.

Rule i : If x is wi, then y is ui (2)

After the learning, the desired output can be generated when the input vector is
applied to the network. This process is called execution mode. First the similarity
zi between input vector x and reference vector wi is calculated by:

zi = exp(−di

γ
) (3)

where, di is the distance between x and wi, and γ is the parameter. Then the
output vector is calculated by:

yk =

N∑
i=1

ziuki

N∑
i=1

zi

(4)

The output vector y is expected to be a desired output for the applied input.
The process of the execution mode is similar to fuzzy inference. The cal-

culation of the similarity represented in Eq.(3) corresponds to calculation of
membership value for rule i in fuzzy inference. And calculation of the output in
Eq.(4) corresponds to defuzzification employing center-of-gravity method.

3 A Bit-Shifting-Based Fuzzy Inference for SOR Network

We have developed SOM hardware, and the learning architecture of SOR net-
work is almost same to that of SOM’s. Thus, we focus on the hardware design
of the execution mode of SOR network in this article. In the execution mode of
SOR network, calculation of the similarities between inputs and reference vec-
tors can be implemented in parallel architecture. However, the calculation of the
output by weighted averaging can not be implemented in parallel architecture,
and calculation time increases as the number of units increase. Furthermore, it
is difficult to realize the Eq.(3) with digital hardware, because the very large
storage is needed to memorize the shape of the membership functions.

In this paper, we propose a new calculation method of a membership value
which is suitable for implementation in digital hardware. In this method, the
reference vector wi is considered as the center of membership function. The
similarity shown in Eq.(3), that is the membership value for the rule i, is rede-
fined by:

zi =
{

2−si , if f lagi = 1
0, otherwise

(5)

where,

si =
di

2r−log2 a
(6)
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Fig. 2. Shape of the membership function used in this study. This membership function
represents r = 3 with a = 8 bit accuracy.

Table 1. Simulation results

RMSE calculation cost
original SOR network 476.98 N = 100
proposed SOR network 474.98 C = 7.31 (average)

where, di is the distance between x and wi, and a is the calculation accuracy.
Parameter r is introduced to represent the width of membership functions. The
shape of a membership function is shown in Fig.2. By assigning various values to
the parameter r, a various shape of membership functions can be easily produced.
r is increased when a wide membership function is needed and decreased for a
narrow one. This membership value zi is suitable for hardware implementation,
because it is realized by only the bit shifters. flagi in Eq.(5) means whether the
distance di is smaller than the threshold or not. In other words, the unit i with
flagi = 1 has large membership value with a large influence on the calculation
of the output. We call it, “active unit”. In our previous work, the winner-take-
all (WTA) circuit which finds the minimum distance was proposed [8]. In this
circuit, comparison accuracy of the distance can be changed. In case of high
comparison accuracy, only one weight vector which has minimum distance to
the input vector is selected. On the contrary, if the accuracy is low (i.e. rough
comparison), plural number of candidates for the winner will be selected. In this
study, we propose an active unit selector employing the rough comparison WTA.
The rough comparison WTA can select active units which have small distance
its weight vector wi to the input x. As the result, the flagi of the active unit is
set to ‘1’.

The above calculation can be processed in parallel architecture, however, in
calculation of defuzzification represented by Eq.(4), serial architecture have to
be included, because the summation of N elements is needed. However, in usual
cases the number of units which have significant influence on the calculation
is not that large. Therefore, we propose a new fast calculation method for
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(a)

(b)

(c)

Fig. 3. Results of mappings generated by SOR network. (a) The ideal mappings. (b)
Mappings resulting from the conventional algorithm. (c) Mappings resulting from the
proposed algorithm. Proposed algorithm generates mappings very similar to that of
the conventional algorithm.

defuzzification which employs only the active units. Through the propose
method, Eq.(4) can be redefined as follow,

yk =

∑
i∈P

ziuki

∑
i∈P

zi
, (7)
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P is the set of flag = ‘1’ units. C is defined as the number of units which has
flag = ‘1’ and expected to be C � N . Therefore, Eq.(7) would lead to a huge
reduction of clock cycles comparing to Eq.(4). Furthermore, the multiplication
in Eq.(7) is realized by only bit shifter, because zi is represented as factorial of 2.

4 Simulation Results

To evaluate the performance of the proposed fuzzy inference for execution mode
of SOR network, approximation of the nonlinear I/O relationship of 2-input and
1-output shown in Eq.(8) is done.

y = (0.5 sin(πx1) + 0.5 cos(0.5πx2))× 104 + 104 (8)

Fig.3 (a) shows the desired I/O relationship. In the simulation, the number of
units in the competitive layer is 10×10. To evaluate only the execution mode
of SOR network, the weight vectors are arranged in the desired position. In
the original execution mode, the parameter γ in Eq.(3) was 500. In the pro-
posed execution mode, the parameter r and a in Eq.(6) are 12 and 16, respec-
tively. As testing input vectors, 100×100 vectors obtained in the input space
are used. Fig.3 (b) and (c) shows I/O relationship generated by the original
and the proposed execution modes, respectively. Simulation results are summa-
rized in Table 1. The root-mean-square-errors of the original and the proposed
methods are 476.98 and 474.98. In the proposed method, the average of the
number of active units which are selected to generate the output is 7.31. This
means that 93 % of reduction on calculation cost for Eq.(4) is realized by using
Eq.(7).

5 Hardware Architecture

In this section, we explain about the proposed hardware architecture of SOR
network. The main idea of the hardware design is based on a massively parallel
system, where each processing element corresponds to one competing unit in
SOR network. In this paper, we have divided the hardware structure for SOR
network into two modules, a global circuit and a local circuits that represent the
whole SOR network structure and competing units, respectively.

5.1 Global Circuit

Fig.4 shows the global circuit which represents the whole SOR network structure.
The global circuit consists a global controller, a certain number of local circuits,
an active unit selector and a defuzzification module. In the proposed hardware,
all local circuits run in parallel.
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5.2 Local Circuit

Fig.5 shows the architecture of a local circuit. The local circuit consists a calcula-
tion unit, a memory unit and a membership function generator. The calculation
unit calculates Manhattan distance, and the memory unit stores weight vector.

Fig.6 shows the architecture of the membership function generator. The mem-
bership function generator calculates the membership value corresponding to
input vector by using Eq.(5) and Eq.(6). In this study, rough comparison WTA
in the membership function generator is realized in a 9-input NOR gate. When
all high 9 bits of variable si are assigned to ‘0’, the weight vector wi is selected
as a winner candidate. Thus, wi can be determined whether it is an active unit
or not by inputting si into the 9-input NOR gate. The membership function
generator is realized by bit shifters, 9-input NOR gate and RAM for parameter
r, thus easing it to be realized with digital hardware.

5.3 Active Unit Selector

The active unit selector serially selects local circuit i which holds flagi = 1
and then outputs zi and ziwi of local circuit i to the defuzzification module on
every clock cycle. When the number of active units is C, then C clock cycles are
required for transfering zi and ziwi of all active units.
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5.4 Defuzzification Module

Fig.7 shows the architecture of the defuzzification module which consists two
adders and a divider. Each adder receives z and zw from active unit selector,
and then calculates the sum. After the summation of z and zw from all active
units, y is calculated by the divider.

5.5 Performance

In the proposed architecture, the execution mode of SOR network is divided
into three steps. The three steps are distance calculation, weighted summation
and division, and clock cycles required for each steps are Cdist, Cwsum and Cdiv,
respectively. The number of clock cycles Cexe that is necessary to generate an
output element from an input vector is given by:

Cexe = Cdist + Cwsum + Cdiv. (9)

In the case of the simulation, the number of clock cycles is 10.31 (average) per
an input vector. In the simulation described in section 4, the proposed hardware
took 2.062 ms when executed on 50 MHz. When the same simulation executed
on a PC (CPU: Intel Xeon 2.8GHz, Memory: 2Gbytes, MMX without extended
instructions), it resulted in an average time of 172 ms. Thus proving that the
proposed hardware architecture can be prospected to be 80 times faster.

To evaluate the proposed hardware performance of the architecture on state-
of-the-art technology, we designed the SOR network hardware by using the Xilinx
xc2v6000-6 FPGA which can hold 76,000 Logic Cells equivalent circuit. The
designed SOR Network hardware which consists of 25 local circuits described
in VHDL is synthesized using Leonardo Spectrum FPGA compiler and Xilinx
tools for place and route. In each local circuit, the weight vector with up to
16 dimensions and 8 bits accuracy is available. The circuit size and speed of
the designed hardware are estimated by Xilinx tools. Estimation results are
summarized in Table 2. The designed hardware can run in 50 MHz clock.
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Table 2. Circuit size and speed

6 Conclusion

In this paper, we proposed a new fuzzy inference for the execution mode of SOR
network and its digital hardware architecture. In the proposed fuzzy inference,
a bit-shifting-based membership function generator and a fast defuzzification
method employing only active units were proposed. The proposed membership
function generator can be realized without ROM for memorizing the shape of
membership functions. The proposed defuzzification method reduces 93% clock
cycles for the execution mode of SOR network. Simulation result shows that the
proposed SOR network is similar to the original SOR network on approximation
ability of nonlinear functions. The proposed SOR network was implemented on
FPGA. The performance of the proposed hardware architecture was superior to
CPU implementation of SOR network.

We estimate the proposed hardware which consists 25 local circuits. As a re-
sult, the hardware use about 7 % of 76,000 Logic Cells FPGA with 50 MHz
speed. The largest FPGA on the current state is the Xilinx xc5vlx330 which
equips 330,000 Logic Cells. In the real world application, large network is re-
quired (e.g. the trailer-truck back-up control system uses 625 competitive units
in [2]). The proposed hardware is based on the massively parallel architecture.
Thus, it can extend easily to large network by adding local circuits up to the
maximum size of FPGA.
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Abstract. This paper addresses the problem of accelerating large ar-
tificial neural networks (ANN), whose topology and weights can evolve
via the use of a genetic algorithm. The proposed digital hardware ar-
chitecture is capable of processing any evolved network topology, whilst
at the same time providing a good trade off between throughput, area
and power consumption. The latter is vital for a longer battery life on
mobile devices. The architecture uses multiple parallel arithmetic units
in each processing element (PE). Memory partitioning and data caching
are used to minimise the effects of PE pipeline stalling. A first order
minimax polynomial approximation scheme, tuned via a genetic algo-
rithm, is used for the activation function generator. Efficient arithmetic
circuitry, which leverages modified Booth recoding, column compressors
and carry save adders, is adopted throughout the design.

1 Introduction

Artificial neural networks (ANN) have found widespread deployment in a broad
spectrum of classification, perception, association and control applications [1].
However, finding an appropriate network topology and an optimal set of weights
represents a difficult multidimensional optimisation problem. Ideally, the topol-
ogy should be as small as possible, but large enough to accurately fit the train-
ing data. Failure to find a suitable configuration will cause poor generalisation
ability with unseen data and/or excessive execution time. One possible solu-
tion to this issue is to use a genetic algorithm to evolve an optimum topology
and/or weights. This approach is also sometimes known as Evolutionary Artifi-
cial Neural Networks (EANN) or Neuroevolution (NE) [2][3]. As well as reducing
the requirement for trial and error design exploration for the ANN, the approach
is more robust at avoiding local minima and has the scope for finding a minimal
topology [2]. A minimal topology is hugely beneficial since fewer neurons and
synaptic connections lead to reduced computation, which in turn means higher
throughput and lower power consumption.

� The support of the Informatics Commercialisation intiative of Enterprise Ireland is
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However, even with minimal topologies, when processing high dimensional
datasets, for example multimedia data, the NE process may not meet system re-
quirements (throughput and/or power consumption). In the case of multimedia
data, poor performance is likely to be a consequence of the unavoidable combi-
nation of a requirement for extremely high throughput for real time processing
and large complex ANN topologies caused by a high number of inputs. The
associated computational complexity is highly undesirable from a real time op-
eration and low power consumption perspective. Clearly, this poses considerable
problems when incorporating NE on constrained computing platforms (e.g. on
mobile devices for gaming or multimedia processing applications) which suffer
from limitations such as low computational power, low memory capacity, short
battery life and strict miniaturisation requirements.

One possible solution to NE complexity issues, is to offload the computational
burden from the host processor to a dedicated hardware accelerator. Although
a general consensus emerging in recent times is that the viability of dedicated
hardware ANN processors are questionable [4]. However, due to the aforemen-
tioned throughput and power consumption issues, ANN hardware acceleration
still provides an attractive and viable solution particularly in the context of
constrained computing platforms. This has motivated us to design an efficient
and flexible hardware ANN accelerator, which is suitable for NE tasks. We have
chosen to investigate the widely used open source Neuro Evolving Augmented
Topologies (NEAT) software library [3]. Our profiling has revealed the compu-
tational burden of the ANN evaluation is suitable for hardware off load, whilst
the genetic algorithm routines, which use moderate computational resources can
reside in software. This scalable co-design methodology combines the reconfigura-
bility of software with the speed of hardware [5]. This also facilitates application
re-usability, where the core could be re-deployed for a number of applications.
It should be noted that hardware acceleration will not be applied to the genetic
algorithm itself.

The rest of this paper is organised as follows: Section 2 details related prior
research in the area. Section 3 discusses NE hardware architecture design chal-
lenges and choices. Section 4 outlines the hardware implementation of the pro-
posed architecture. Section 5 details hardware synthesis results and power con-
sumption estimates. Future work is outlined in Section 6, whilst Section 7 draws
conclusions about the work presented.

2 Related Research

There are many approaches to NE, differing principally in the choice of genome
encoding scheme and the operators chosen for mutation and crossover. NEAT is
an example of a direct encoded node-based NE approach. Each genome consists
of a number of link and neuron genes. Fig. 1 shows an example genome and the
principal constituent elements of each gene type. NEAT uses a genome histori-
cal marking scheme (shown as the innovation number in Fig. 1), which avoids
many of the problems associated with other NE approaches. This scheme allows
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Fig. 1. Example of an NEAT genome and resultant phenotype

meaningful topology crossover to occur, and furthermore, it avoids any computa-
tional overhead of topology analysis when producing the valid offspring. Taking
inspiration from biological evolution, NEAT introduces the concept of complex-
ification, whereby processing starts with a minimal topology with no hidden
nodes and each input is connected to an output node. Each successive genera-
tion systemically elaborates the complexity by adding neurons and/or synaptic
connections. This is attractive in the context of our interest in mobile devices
since minimal topologies are favoured, thus reducing computational complexity
for a given problem. During complexification, topology innovation occurs. How-
ever, adding structure will typically reduce the fitness function, since smaller
structures optimise faster. Consequently, there is little opportunity for the new
topology to survive [3]. Again taking inspiration from biological evolution, where
an innovation needs time to reach its potential, NEAT uses a process of specifi-
cation. This allows genomes to compete only against their own species and gives
the new offspring a better chance of survival. The combination of these features,
allows NEAT to outperform other NE approaches [3], and for this reason, we
have chosen it for further investigation.

2.1 ANN Hardware Implementations

There has been considerable research in analog and digital hardware ANN im-
plementations. Analog implementations typically have the benefit of high speed
operation and smaller area compared to a digital implementation. However an
analog design has a number of drawbacks including susceptibility to compo-
nent process variation, electrical noise and environmental conditions, along with
resolution issues for the weights and activation function. A digital hardware
implementation, on the other hand, does not suffer from these drawbacks, and
furthermore allows ease of design and computational accuracy. For these reasons
we have adopted a digital design approach.

A digital implementation typically stores the network topology and/or synap-
tic weights in memory. These values are then later retrieved and processed in
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discrete chunks by the parallel processing elements (PE). This is advantageous
because any network size and potentially any topology can be handled. A PE
usually consists of multiply accumulate circuitry [6] and sometimes depending
on the configuration, an activation function generator. The number of processing
elements implemented is a design space trade off between area, power and per-
formance. This design space extends from a single PE to a PE for each neuron or
even a PE for each synaptic calculation. A discussion of the PE implementation
challenges is given in Section 4.

One of the principal challenges for ANN acceleration using time shared PE’s
is how to get the ANN data from slow, bandwidth limited memories to the high
speed PEs in a fast, bandwidth efficient manner. Systolic array architectures
have been the pervasive choice for bridging this gap [6]. It is well established
that systolic arrays offer many benefits for ANN with regard to using mem-
ory bandwidth effectively by maximising data reuse, in addition to permitting
highly regular PE control logic. However, as will be demonstrated in Section 3,
topologies with sparse synaptic connections considerably reduce the efficiency of
systolic array approaches, in addition to increasing memory requirements. Fur-
thermore, as sparse topologies result in fewer synaptic calculations, it could be
exploited to reduce power consumption. Despite this, the literature contains very
few hardware implementations, which attempt to exploit topology sparseness.
Rather, it focuses on dense connectivity neural algorithms.

Our work provides a hardware ANN accelerator extension for NEAT, using
an architecture which is suitable for any evolved topology, as well as having
the ability to exploit sparse connectivity. The intended target of this work is as
an accelerator for mobile devices, consequently the focus is on power efficiency,
rather than ultra high performance acceleration.

3 Proposed Hardware Architecture

Unlike a conventional ANN, an evolved network can have any topology, poten-
tially with a mixture of forward synaptic connections, recurrent synaptic con-
nections and looped current synaptic connections. Furthermore, owing to the
complexification process, NEAT will naturally favour sparse topologies. These
factors have important consequences for the hardware architecture. The effi-
ciency of systolic array architectures is dramatically reduced when operating on
sparse neural topologies. This is because the data flow through the systolic ar-
ray is frequently interrupted and thus the throughput benefit of multiple PEs
is not being achieved. To overcome this, the PE can be either disabled for that
synaptic calculation or have a weight of zero. However both solutions are un-
desirable. Disabling the PE leads to additional control logic for each individual
PE. Whilst storing weights with a zero value leads to increased memory sizes,
which further exacerbates power consumption issues, particularly as memory
power consumption disproportionately increases with size. The systolic array ef-
ficiency is further reduced due to the presence of recurrent synaptic connections.
This causes unpredictable feedback synaptic connections from other neurons,
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causing further data flow interruptions. However more importantly, as systolic
array architectures favour layered ANN, where the inputs to each PE layer are
well defined, it is not a trivial matter to dynamically reconfigure the PE inputs
for the evaluation of alternative topologies, which contain recurrent links. This
situation would be necessary for an application where NEAT is evolving in real-
time, such as artificial intelligence for computer gaming [7]. Whilst it is possible
to modify the genetic algorithm so that only forward synaptic connections are
added, this compromises the quality of the evolved ANN solution.

These factors have motivated us to explore alternative architectures rather
than a traditional systolic array approach. Examining the NEAT genome data
structures, it is clear that the essential information in the link and neuron genes,
can be mapped easily to hardware memories. Essentially, we propose “pars-
ing” through the LINK memory to retrieve the relevant weights and using the
“LINK→FROM ” field as the index to retrieve the output from the appropriate
neuron in the NEURON memory. Once the values are retrieved the multiply
accumulate operation is performed. This operation is repeated for all synapses
associated with that neuron, before the activation function is calculated. The
process then repeats for all neurons.

To increase throughput, two PEs operating in parallel are used, as can be
seen from the proposed architecture in Fig. 2. The PE datapath is 64 bits and
each PE has access to the memory (via a memory controller), thus two PEs were
chosen so as to give a good trade off between throughput and bus addressing
complexity. Each PE is equipped with a local “LINK” SRAM. This is loaded
with the incoming synaptic connections for that neuron. To reduce stalling, the
synaptic connections for neuron N + 1 are prefetched, whilst in parallel the
PE processes neuron N . The PE datapath is 64 bits wide because 4 × 16 bit
entries from the local LINK SRAM are retrieved in a burst. Parallel processing
is possible since the “LINK→WEIGHT” values are processed sequentially and
they do not have interdependencies. The decision to use 4 parallel arithmetic
units per PE was chosen as a trade off between throughput, bus width size and
to minimise the complexity of the hierarchical memory system.

Unless a fully connected topology is being evaluated, the 4 “NEURON→ID”
addresses decoded from “LINK→FROM ” will not necessarily be contiguous.
Therefore if a single “NEURON ” SRAM is used, only one “NEURON ” address
could be processed per clock cycle. However to maximise the performance of the
multiple arithmetic units in the PE datapath, valid data needs to be available
on each clock cycle. To overcome this issue, we propose partitioning the neuron
memory into 8 smaller SRAMs, as can be seen in Fig. 2. To further increase
the probability that all data units can be retrieved within one clock cycle, we
propose using a data cache to maximise data reuse. The cache provides backup
should two or more data requests occur for the same “NEURON ” SRAM bank.
This could occur depending on the connectivity of the topology, in particular if
the sparse synapses were modulo 8 apart.

When the memory control logic receives a request for 8 new values from the
2 PEs, the cache is firstly examined to see if it can fulfil these requests. Should
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Fig. 2. Simplified block diagram of the proposed NE hardware accelerator datapath

cache misses occur, the “NEURON→ID” is decoded to indicate the relevant
SRAM bank. If 2 or more requests attempt to access the same SRAM bank, the
data must be retrieved over multiple clock cycles, otherwise all requests can be
handled in one clock cycle. In the worst case scenario, when none of the data is
present in the cache and all requested data is located in the same “NEURON ”
SRAM bank, one multiply accumulate operation occurs per clock cycle. On the
other hand, if all the requested data is either in the cache or different Neuron
SRAM banks, 8 multiply accumulates occur per clock cycle. For a fully connected
feed forward ANN, the performance of this proposed system will be similar
if not identical to a systolic array with the same number of arithmetic units,
and we believe, the system will also statistically outperform a systolic array
architecture when processing a mixed forward and recurrent sparse connection
topology. Performing this comparison is targeted as future work.

4 Hardware Implementation

A fundamental digital implementation design decision is what format to use for
the data representation. There are at least three popular approaches for digital
ANN – stochastic, fixed point and floating point. Stochastic digital ANN imple-
mentations encode the value of a signal using the probability of a given bit in a
stochastic pulse stream being a logic 1 [8]. This has the benefit that many com-
mon arithmetic operations require very simple logic [9]. Whilst beneficial from
an area perspective, there are issues concerning representation variance. Further-
more, due to the increased latency from the inherently serial operation, a higher
clock frequency is required to match the throughput from a more parallel fixed
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point implementation. The substantially increased clock frequency is of consid-
erable concern in the clock tree network from a power consumption perspective,
particularly in deep sub micron technologies. A floating point implementation on
the other hand offers a wide dynamic range suitable for the typical distribution of
ANN weight values, however it has a considerable area overhead for arithmetic op-
erators. Consequently we have chosen a fixed point representation, as we believe
it offers a reasonable trade off between area, power and performance.

The width of the datapath in a fixed point implementation is a vital design
decision. To minimise area and power consumption, the minimum number of
bits should be chosen, which will result in an acceptable error. Reduced fixed-
point precision hardware ANN issues were explored in [10]. It was found that
10 precision bits were sufficient for multi-layer perceptrons trained via back
propagation [10]. Using fewer precision bits than this will effect the convergence
speed, and in some cases may completely prevent convergence. Related to this,
input/output standardising (sometimes called scaling) is advised in most cases.
Standardising the inputs will result in a smaller integer range. This leads to fewer
bits switching and consequently power savings. For these reasons, we propose
using 16 bits in a 6.10 fixed point representation (6 integers bits and 10 fractional
bits) throughout the design, with the input data standardised to a range of -
1 to 1. The 6 integer bits allows net accumulation values to grow to levels,
which maximally exploit the resolution achievable from the proposed activation
function generator. The remainder of this section will discuss the architecture
implementation issues and decisions.

4.1 PE Implementation

The function of the PE is to generate the neuron weighted sum of inputs, this
clearly requires multiply accumulate circuitry. We have also chosen to add the
activation function generator to each PE (see Fig. 3). An alternative approach is
to time share a single activation function generator between multiple PEs. This
approach is typically adopted when using a systolic array architecture due to
the highly regular processing. For our proposed architecture, control logic would
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need to be designed to ensure that only a single PE has control of the activation
function generator at any clock cycle. However as we are currently using only two
PEs and that the area overhead for the activation generator is not considerable
(< 2, 000 gates), we chose to integrate the activation function logic into the PE.

In a system where the ANN weights are static, canonic signed digit represen-
tation and multiplier-less distributed arithmetic architectures can be employed
in the generation of the weighted sum. However, static weights are clearly not
suitable for NE. Fortunately, owing to the prevalence of the sum of products
operation in signal processing algorithms and matrix arithmetic, there has been
considerable research on efficient hardware implementations. Consequently, we
have chosen a fused multiply add approach as can be seen in Fig. 3 [11]. The
number of partial products has been halved by using modified Booth radix 4
coding and the accumulation step is merged with the addition of the partial
products using a Wallace tree [11]. Furthermore, the generation of the two’s
complement for the modified Booth algorithm uses a simple inversion for the
one’s complement and delays adding the additional one, until the Wallace tree
stage, thereby reducing the critical path. The final sum and carry are then added
using an efficient carry propagate adder.

Each PE has ≈ 3KB of local SRAM to store “LINK→FROM/WEIGHT”
data, providing enough storage for the details of over 1000 synaptic connec-
tions. Obviously the amount of memory can be adjusted based upon the timing
constraints of the main memory and connectivity characteristics of a particular
application. The PE control logic, which governs access to the local SRAM and
the control signals for the PE datapath is outlined in Algorithm 1.

Algorithm 1. Neuron PE datapath control flow
MEM SETUP setup;1

Load PE SRAM with “LINK→FROM/WEIGHT” data for first “LINK→TO” neuron;
Regular processing starts once loaded;
In parallel, prefetch “LINK→FROM/WEIGHT” data for the next neuron;

LINK DECODE Stage;2
PE requests 4 “LINK→FROM/WEIGHT” entries from local SRAM;

INPUT FETCH Stage;3
Using the 4 retrieved “FROM” addresses, the PE requests these values from the
“NEURON” SRAM memory banks;
The “WEIGHT” values are set up on the inputs to the partial product generation logic;

PP GEN Stage;4
With the input values returned from the “NEURON” SRAM banks, the partial product
generation logic is enabled;

ACCUM Stage;5
Partial products and the previous accumulation are added in the Wallace Tree compressor;

ACT FN Stage;6
If necessary the activation function generator is enabled;

WRITE BACK Stage;7
If the activation function is enabled, output is written to memory;

We have recently proposed an efficient hardware architecture for an activa-
tion function generator [12], which improves the approximation error over prior
research. Our approach uses a minimax polynomial spline approximation, with
a genetic algorithm (GA) leveraged to find the optimum location of the approx-
imating polynomials. The GA typically improved the approximating error by
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30% to 60% relative to an even distribution of the approximating polynomials.
Using a spline-based approach has the benefit that multiple activation functions
can be accommodated by merely changing the coefficients of the approximating
polynomial. This is beneficial from an evolutionary perspective and uses minimal
extra hardware to support the additional functions.

4.2 Cache Design

To minimise the area and control logic overhead a direct mapped cache imple-
mentation has been chosen [13]. The selection of the cache size represents an
important design trade off, a larger cache will have fewer cache misses, but will
have a larger area. In our initial design investigation we use 2 parallel PEs each
with 4 arithmetic units, as a result we believe a cache size of 64 blocks will be
appropriate. However, further optimisations should be possible with the cache
size by tailoring it to the statistics of the ANN topology for a particular appli-
cation, e.g. video analysis. Each block consists of 2 elements, the neuron address
and the neuron data. A benefit of using a direct mapped cache is that logic for
a cache block replacement strategy is not required. When a value from the acti-
vation function generator is written back to SRAM, a stall signal is issued and if
necessary the cache is updated. This avoids any potential data mismatches and
the need for additional storage to hold a “block dirty” value in the cache [13].

5 Results

Prior to hardware implementation, we carried out profiling on two classical
ANN/GA problems, the XOR problem and the double pole balancing problem,
using the NEAT software library. Despite the fact that both evolved topologies
resulted in a small number of neurons, the evaluation of the ANN was the clear
computational hot spot. Additionally, it is fair to assume that as the number of
neurons in the genome increases (for example in multimedia tasks), this compu-
tational hot spot will only worsen.

The hardware design was captured in Verilog HDL and synthesised using Syn-
opsys Design Compiler using a 90nm TSMC ASIC library. Power consumption
was estimated from a gate level netlist with a 1.2 volt voltage source. A sum-
mary of the preliminary synthesis and power results can be seen in table 1. It
should be noted that the area figures do not take into account the NEURON and
LINK memory storage elements. The design was synthesised using a 200MHz
and a 300MHz clock frequency, these are typical speeds of mobile microproces-
sors. As would be expected, the higher clock frequency design has a marginally
larger area. Power estimates were generated using the data derived from the
“Winning” topology for the XOR and double pole balancing tests generated in
software. Owing to the fact that the topologies were small, little discernible dif-
ference was noted in the average power between the two data sets. We believe
these power consumption figures are appropriate for deployment on a mobile
device. Under optimum conditions, our proposed hardware calculates 8 multiply
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accumulate operations per clock cycle and requires 1 clock cycle for the calcu-
lation of the activation function. This compares favourably with modern mobile
processors, which typically achieve a sustained 1 multiply accumulate operation
per clock cycle. Comparison of results with other ANN implementations is dif-
ficult, as no other approach from the outset attempts to accelerate the ANN
evaluation within neuroevolution and exploit the associated sparse topologies.
Normalisation of results will be necessary to give a fair comparison and this is
targeted as a future work item.

Table 1. Preliminary synthesis results

Frequency [MHz] Area [Gates] Average Power [mW]
Proposed architecture 200 52,186 42.27
Proposed architecture 300 55,726 69.55

6 Future Work

The current bottleneck in the design is retrieving the topology from memory
for the multiple PEs. Alternative micro-architectures are currently being inves-
tigated, which could give throughput benefits and improve the scalability of the
architecture. The cache module warrants further investigation, in particular the
effects of different caches sizes, architectures and different input datasets from
NEAT. Before integration with the NEAT software library begins, a compara-
tive power consumption study between fixed point, reduced word length floating
point and stochastic implementations is planned. Benchmarking will be neces-
sary to compare the performance (throughput and power consumption) of the
dedicated hardware core to a software implementation running a general multi-
media processing task such as face detection in video sequences.

7 Conclusions

The computational complexity associated with Neuroevolution for multimedia
applications on mobile devices is highly undesirable from a throughput and power
consumption perspective. This paper has proposed a viable hardware architec-
ture for accelerating the neural network genome calculation. The architecture is
flexible enough to process any ANN topology, whilst still providing a good trade
off between area, power and throughput.
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Abstract. The RTOS (Real-Time Operating System) is a critical component in 
the SoC (System-on-a-Chip), which consumes the dominant part of total system 
energy. A RTOS system-level power optimization approach based on hardware-
software partitioning (RTOS-Power partitioning) can significantly minimize the 
energy consumption of a SoC. This paper presents a new model for RTOS-
Power partitioning, which helps in understanding the essence of the RTOS-
Power partitioning techniques. A discrete Hopfield neural network approach for 
implementing the RTOS-Power partitioning is proposed, where a novel energy 
function, operating equation and coefficients of the neural network are rede-
fined. Simulations are carried out with comparison to other optimization tech-
niques. Experimental results demonstrate that the proposed method can achieve 
higher energy savings up to 60% at relatively low costs. 

Keywords: Hopfield neural network, Power optimization, RTOS, Hardware-
software partitioning, SoC. 

1   Introduction 

Along with the development of global energy crisis, power issues in the vast number 
of embedded systems have been increasingly concerned. As a new type of embedded 
systems, a SoC (System-on-a-Chip) almost implements the functionality of an overall 
computer system in a single IC (Integrated Chip). In general, embedded software in 
the SoC contains RTOS (Real-Time Operating System) and user applications. The 
RTOS in the SoC is shortly called SoC-RTOS. Embedded software execution drives 
the circuit activities of the underlying hardware, including MPU, memory and I/O 
peripherals, while the manner in which software uses hardware can have a substantial 
impact on the power dissipation of a SoC [1, 2]. The SoC-RTOS forms a critical 
component of embedded software, and provides benefits ranging from hardware ab-
straction and resource management to user applications. The SoC-RTOS not only 
                                                           
* Corresponding author. 
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occupies a significant portion of machine cycles but also can consume the domain 
part of total system energy. Therefore, it is becoming crucial to optimize the energy 
consumption of the SoC-RTOS [3, 4]. 

Hardware-software partitioning is a well-established design methodology with the 
goal to increase the performance of a system at some costs. Gupta and De Micheli 
developed an iterative improvement algorithm to partition real-time embedded sys-
tems between a co-processor and a general-purpose processor [5]. Eles et al. proposed 
a simulated annealing and taboo search hardware-software partitioning algorithm [6]. 
Saha et al. applied a genetic algorithm for hardware-software partitioning [7]. Filho et 
al. designed a Petri Nets based approach for hardware-software partitioning of em-
bedded systems [8]. Xiong et al. suggested a dynamic combination of genetic algo-
rithm and ant algorithm for hardware-software partitioning of embedded systems [9]. 
Arató et al. discussed an algorithm based on integer linear programming to solve the 
partitioning problem optimally even for quite big systems [10]. Stitt et al. considered 
a solution for dynamic hardware-software partitioning [11]. In [12], we presented a 
hardware-software partitioning approach of the SoC-RTOS based on Hopfield neural 
networks, which optimize the running time of the SoC-RTOS under the constraint of 
hardware area, remarkably improve the performance of the multi-task SoC-RTOS. 
However, most of these solutions’ objective is to meet performance constraints while 
keeping the system cost (e.g. total chip area) as low as possible. None of them provide 
power-aware optimization and estimation strategies.  

In [13], Henkel suggested a comprehensive system-level power optimization ap-
proach for core-based embedded systems that deploys hardware-software partitioning 
based on fine-grained (instruction/operation-level) power estimation analysis. Con-
trast with some local power optimization techniques as described in [1] and [2], this 
system-level power optimization approach based on hardware-software partitioning 
can yield high energy savings between 35% and 94% compared to the initial design. 
Still, there is no guarantee that a hardware-software partition actually meets imposed 
power constraints because accurate estimations are very difficult at the instruction or 
operation-level. Meanwhile, it is hard to assure that the partitioning solution of an 
embedded system solved by a simple list schedule method is optimal or near optimal. 

However, hardware-software power-aware automated partitioning of the SoC-
RTOS (RTOS-Power partitioning) is significant to the SoC design, i.e. determining 
which components of the SoC-RTOS should be realized in the hardware and which 
ones should be in the software, and minimizing energy consumption for the same 
function but also perform it more quickly. Due to the characteristics of the SoC-
RTOS, the RTOS-Power partitioning is quite different from the partitioning of em-
bedded systems and SoCs. Usual hardware-software partitioning methods are inade-
quate for such RTOS-Power partitioning tasks in many aspects. The composition of 
hardware and software elements in the SoC-RTOS creates some new problems, such 
as power modeling and estimation of the SoC-RTOS, refining power constraints and 
multi-object conditions, designing an appropriate power optimization algorithm, 
evaluating the partitioning results, and system architecture issues. In this paper, we 
focus on the optimization algorithm development and design of RTOS-Power  
partitioning [1]. 
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2   Description of the RTOS-Power Partitioning Problem 

The main objective of the RTOS-Power partitioning is to optimally allocate the func-
tional behavior of the RTOS to the hardware-software system of the SoC so that the 
system energy consumption is minimized. The functional behavior of the SoC-RTOS 
can be modeled by a task graph, in which each task has it own energy attribute, and 
task-based energy modeling and estimation strategies are adopted. For software, a 
task is a set of coarse-grained operations with definite interface, which can be an 
algorithm procedure, an object or a component; for hardware, a task is a specific IP 
(Intellectual Property) module with clear functions, interface and constraints [11, 12]. 

To formulate our problem, the following notations are used in this paper: 

G : A directed acyclic graph (DAG) and also refers to the task graph of a SoC-

RTOS, ( )EVG ,=  

V : The task node set that has to be partitioned, { }nvvvV ,,, 21 …=  

E : The directed edge set that represents the control or data dependency and com-

munication relationship between two nodes, { }jiVvveE jiij ≠∈=  , ,  

N : Total number of task nodes belonging to G , VN =  

M : Total number of directed edges belonging to G , EM =  

P : A power-aware hardware-software partitioning of G  

HV : The subset of nodes partitioned into the hardware, VVH ⊆  

SV : The subset of nodes partitioned into the software, VVS ⊆  

( )ivs  (or is ) : The software costs of iv  

)( ivh  (or ih ): The hardware costs of iv  

( )ji vvc ,  (or ijc ): The communication costs between iv  and jv  if they are in dif-

ferent contexts (hardware or software) whereas the communication costs between the 
nodes in the same context are neglected 

ic : The sum of jic , ∑
≠=

=
N

ijj
jii cc

,1

 

PH : The hardware costs of P , ∑ ∈
=

Hi Vv iP hH  

PS : The software costs of P , ∑ ∈
=

Si Vv iP sS  

PC : The communication costs of P , ∑ ∈∈∈∈
=

SjHiHjSi VvVvVvVv ijP cC
,or  ,

 

( )SHp VVg , : The total costs of P    

( )SHP VVf , : The total energy consumption of P  
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Definition (k-way partitioning). Given ( )EVG ,= , it is called k-way partitioning 

if there exists a cluster set { }kpppP ,,, 21 …=  such that Vp
k

i
i =

=
∪

1

 and 

jipp ji ≠=   ，φ∩ . 

When 2=k , P  is called bi-partitioning, which means that only one software 
context (e.g. one general-purpose processor) and one hardware context (e.g. one ASIC 
or FPGA) are considered in the target system; when 2>k , P   is called multi-way 
partitioning, which means that multiple software contexts and multiple hardware 
contexts are considered in the target system. According to the architecture of the tar-
get system, the RTOS-Power partitioning can be categorized into bi-partitioning and 
multi-way partitioning. Bi-partitioning is the foundation of the multi-way partitioning, 
and is widely applied in domain applications. In this paper, the partitioning only refers 
to the bi-partitioning without any additional declaration. 

Problem (RTOS-Power partitioning). Given ( )SH VVP ,= , VVV SH =∪  and 

φ=SH VV ∩ , the RTOS-Power partitioning is formulated as the following con-

strained optimization problem: 

( )SHP VVf ,min ，                                                                        (1) 

( ) maxmin ,  .. CCSHVVgCts PPPSHp ≤++=≤ ,                    (2) 

                       jinjiEeVv iji ≠≤≤∈∈  ,,1 ,, , 

where 0min >C  and 0max >C are the two given cost values of the SoC-RTOS. 

3   A Novel Discrete Hopfield Neural Network Approach 

The discrete Hopfield neural network approaches (DHNNA) have been successfully 
applied to signal and image processing, pattern recognition and optimization. In this 
paper, we employ this type of neural network to solve the RTOS-Power partitioning 
optimization problem.  

3.1   Neuron Expression 

A neural network with N  neurons is used to give a response for each of the N  

nodes in the graph G . The i-th neuron belongs to the subset with node i and has an 

input iU  and output iV . The activation functions of the neuron are given by: 

( )
⎩
⎨
⎧

≤
>

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

≠= 0      , 1 

0      , 0

,1 i

i
i

N

ijj
ijjii Uif

Uif
UfVWfV θ ,                            (3) 
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where ( ) ( )( )jjjijjjjjji VVcVsVhVW +−++−= 11 , ( ) ( )( )jjijjijii VVVV +−++−= 11 ϕβαθ , 

the weights jiW  is a sum of the costs of jv  (i.e., js  or jh ) and the communication 

costs jic , iθ  is the threshold value of i-th neuron ( iα , iβ  and ijϕ  are explained in 

subsection 3.2). Meanwhile, the neuron output 0=iV  indicates Hi Vv ∈  and 

1=iV  indicates Si Vv ∈ . 

To avoid the local optimum caused by initial conditions, the neuron input value 

should be restricted within a certain range. The upper limit maxU  and the lower limit 

minU  of the neuron input are set as follows, where the average value avgU  of ijc  is 

calculated from all connected task nodes [14]: 

 
2

    , 
2

    , 
2

maxmin
avgavg

Pavg

U
U

U
UC

N
U =−==  ,                         (4) 

⎩
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>
<

=
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      , 

      , 

UUifU

UUifU
U

i

i
i  .                                                       (5) 

3.2   Energy Function 

In response to the constraint and objective condition of the RTOS-Power partitioning, 
an energy function consisting of the following two terms is defined by: 

21 22
E

B
E

A
E +=  ,                                                                                       (6) 

( ) ( ) ( ) ( )( )( )∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+−+−+−=

N

i

N

j
jijiijjijjiji CVVVVcVVsVVhE

1 1
min

2
1 1111σ ,  (7) 

      ( )SHp VVfE ,2 =   

( ) ( ) ( ) ( )( )( )∑ ∑
= ≠=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+−+−=

N

i

N

ijj
jijiijjiijii VVVVVVVV

1 ,1

1111 ϕβα ,           (8) 

where A  and B  are two positive coefficients which are specified in Subsection 3.4 

below, iα  is the energy consumption of one task realized in the hardware and has the 

different values for different tasks, iβ  is the energy consumption of one task realized 

in the software and has the different values for different tasks, ijϕ  is the energy con-

sumption of one corresponding communication and has the different values for differ-
ent communications [12, 13, 15].  
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The function ( )xiσ  used in Eq. (7) is given by: 

( )
( ) ( )

( ) ( )⎪
⎩

⎪
⎨

⎧

++−>+++−
−≤≤

+++−<++−+
=

.     , 

, 0                                        , 0

,      , 

maxmax

minmax

minmin

iiiiii

iiiiii

i

cshCxifcshCx

CCxif

cshCxifcshCx

xσ         (9) 

The 1E  represents one term of the energy function, which is associated to the con-
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while 2E  is associated to the objective function ( )SHP VVf , , which indicates the 

energy consumption of the SoC-RTOS [4, 12]. 

3.3   Operating Equation 

The operating equation for the i-th neuron is governed by: 
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In order to avoid the local optimum and obtain a high quality solution within a lim-
ited computation time, a noise term given by Eq. (11) is added to the operating Eq. 
(10); that is, 
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If the noise term D  is kept adding in the updating rule, the state changes exces-
sively and even a local optimum solution may not be reachable. Hence, the term D  

will be discarded in the operating equation as [ ] λ≥0Tt , where [ ]•  is a round-off 

operator, i.e., it gives an integer most close to the entity, 

( ) 1max00 −×−= TTtTλ , 0T  is a positive coefficient and maxT  is a maximal 

step of iterations. 
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3.4   Setting of Coefficients for the Operating Equation 

The coefficient A  depends on the average value ω  of the task node costs; that is, 

N

SH PP +=ω .                                                      (12) 

The coefficient B  depends on the avgU . In this study, we set avgKBUA =ω , 

where K  is a regularizing constant. In our simulations, we take 31=K , 1=B , 

200 =T , 300max =T  and ( )ρη ×+= 103avgU . Here, ρ  is the edge genera-

tion ratio of the graph G  ( 10 ≤< ρ ), which is expressed by ( )( )21−NNM  

[14].  

The values of iα , iβ  and ijϕ can be collected by a low-level energy simulator 

EMSIM, which simulates a SoC platform featuring the Intel StrongARM processor 
and RTOS μC/OS . Additionally, the execution time of each task in different con-

texts and conditions can be collected by this simulator [4]. 

Note that ∑
=

=
N

i
isC

1
min is a minimal cost if the SoC-RTOS is totally realized by 

the software, and ∑
=

=
N

i
ihC

1
max  is a maximal cost if the SoC-RTOS is totally real-

ized by the hardware. To achieve a more practical and favorable solution, we amend 

the maximal cost to be ∑
=

=
N

i
ihC

1
max 2

1
 in this study [15, 16]. 

4   Experimental Results 

To verify the feasibility and effectiveness of the proposed optimization techniques in 
this paper, we employed the similar simulation methods used in [4], [9] and [12]. 
Also, a comparative study was carried out with the Genetic Algorithm (GA) and Ant 
Algorithm (AA), where parameters are set with the same in [9]. 

4.1   Simulation Conditions 

To date, no standard benchmark for this topic is available. The methods commonly 
adopted in the literature are to generate the random DAG and to assign some attrib-
utes to the nodes and edges.  

In this simulation, we constrain the settings as follows: 

(1) Use the GVF (Graph Visualization Framework) software package to generate 
5 groups of random DAG as our task graphs. The number of task nodes ( N ) 
in each group is 50, 200, 500, 1000 and 1500, respectively. Each group has 20 
sample graphs, in which each graph has the different edge generation ratios 
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( ρ ). The average value of 20 samples in each group is taken as the final en-

ergy consumption result of this group. 
(2) The costs of task nodes and communication costs of edges, each task node is 

related with two functions for one is a hardware function and another is a 
software function, while each edge is associated with one function. The output 
of function is taken as the cost of task node and edge. The appropriate function 
for each task node and edge are chosen from the MediaBench benchmark pro-
gram package [9]. 

(3) As the initial partitioning, 2N  task nodes are assigned to each subset. 

(4) Target system architecture contained one Intel StrongARM core and one Xil-
inx Spartan-3 S1000 FPGA model. 

(5) The simulation environment used the Intel Celeron 2.6GHz processor, 512MB 
SDRAM, Linux 9.0 operating system and KDevelop 3.2 IDE. 

4.2   Simulation Results and Analysis 

Table 1 shows the experimental results of energy saving percentage with the purely 

software realized SoC-RTOS and ( )SHP VVf ,  (unit: mJ ) produced by the 

DHNNA, GA and AA on the different node number. Fig. 1 shows the relationship 

between ( )SHP VVf ,  and count of task nodes in these three algorithms. 

Table 1. Results of ( )SHP VVf ,  and energy saving percentage produced by the DHNNA, GA 

and AA 

DHNNA GA AA Total 
DAG 
Nodes ( )SHP VVf ,

 
Sav (%) ( )SHP VVf ,  Sav (%) ( )SHP VVf ,

 
Sav (%) 

50 221.73 -42.41 281.29 -26.94 234.26 -39.22 
200 538.86 -48.87 686.21 -34.89 564.55 -46.45 
500 985.04 -51.24 1276.87 -36.79 1033.67 -48.84 
1000 4308.65 -57.80 6236.32 -38.92 4879.74 -52.21 
1500 6412.37 -60.08 9605.82 -40.20 7216.95 -55.07 

The aim of this experiment is to optimize the energy consumption of the SoC-
RTOS under the constraint of total chip area. The additional hardware overhead of 
FPGA occupied by the SoC-RTOS is less than 30k cells. It is observed that the energy 
consumption from the DHNNA is significantly less than that obtained by GA, and 
slightly less than that obtained by the AA. In fact, combined with our research results 
in [12], since some parts of the SoC-RTOS are realized in the hardware, they not only 
consume less energy but also perform more quickly. This is of paramount importance: 
we achieved high energy savings but not at the cost of performance. Meanwhile, the 
DHNNA can be also applied to the hardware-software partitioning of embedded sys-
tems and SoCs, while taking into account other constraints and optimization perform-
ances, such as hard real-time and multi-processor. 
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Fig. 1. Energy consumption/Nodes curve 

Along with an increase of the node number, the value of ( )SHP VVf ,  is increasing 

continuously. This is a main disadvantage of the DHNNA. Practically it is expected to 

give an exact and more stable solution for the ( )SHP VVf , . The one reason resulting 

in such a case may be of the initial condition and network parameters. Another reason 
may be of that the power modeling and estimation of the SoC-RTOS is not exact 
enough. Therefore, the energy macromodeling of the SoC-RTOS need to be further 
investigated, which is a more exact power modeling method based on service routine 
level, and can effectively improve the RTOS-Power partitioning results. 

5   Conclusions 

A discrete Hopfield neural network approach for solving a problem of RTOS-Power 
partitioning is proposed in this paper. According to the characteristics of the SoC-
RTOS partitioning, a new energy function for a Hopfield neural network is defined, 
and some practical considerations on the state updating rule are given. Simulation 
results demonstrate that our method outperforms other power optimization ap-
proaches. Our technique can achieve tremendous energy savings of up to 60% at 
relatively small costs. Further work will concentrate on the RTOS-Power partitioning 
based on energy macromodeling of the SoC-RTOS with comparative studies.  
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Abstract. A novel CMOS four-quadrant analog-digital multiplier for 
implementing a programmable Cellular Neural Network (CNN) is presented. 
The circuit, which can be fabricated in a standard CMOS process, performs the 
four-quadrant weighting of interconnect signals. Using this multiplier a 
programmable CNN neuron can be implemented with little expense. Both 
simulation and test results are given for the circuit fabricated in a standard, 
mixed signal, 0.18μm, CMOS process. According to this design, one input is 
analog voltage and the other input is digital signal. The linearity deviation is 
less than 1% in the dynamic range (1.0V,2.2V) centered on Vref=1.6V. The 
power supply voltage is 3.3V. 

1   Instruction 

Cellular Neural Network[1] consists of arrays of elementary processing units (cell), 
each one connected only to a set of adjacent cells (neighbors), and exhibits potential 
application in various processing tasks[2]-[4], such as pattern recognition, motion 
detection, etc. The local connectivity property makes CNN’s routing easy, allowing 
increased cell density per silicon area and making these computation paradigms very 
suitable for VLSI implementation.  

Up to now, several proposals of practical CNN implementations have been covered 
in different papers[5]-[7]. These papers mostly focus on VLSI implementation and use 
analog techniques. In this paper, a novel multiplier is presented to implement CNN 
neuron cell, where one input variable is of the form of analog voltage signal, the other is 
weight in the form of digital signal, and the output is a current representing the product. 
The precision of digital weight is 4-bits and can be extended. The design presented here 
is in simple structure and can be implemented in standard CMOS process. 

2   Cellular Neural Network 

The operation of the conventional CNN’s basic cell is defined by the following 
equation: 
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Where 1≤i,k≤M, 1≤j,l≤N, Cx, Rx and I are the integrating capacitor, the lossy element 
and the offset current, respectively. Cells which is adjacent to the neuron C(i,j) 
constitute the neighborhood Nr(i,j). A(i,j;k,l) is the element (k,l) of the feedback 
template A associated with the state of cell C(i,j), which represents the impact of the 
output of the neighboring neuron C(k,l) on the C(i,j). B(i,j;k,l) is the element (k,l) of 
the control template B associated with the input of the cell C(i,j) , which represents 
the control of the input of the neighboring neuron C(k,l) on the C(i,j). vxkl, vykl and vukl 
are the state, output and input of the C(k,l), respectively. Fig. 1 shows the simplified 
block diagram of a neuron cell, in which the B template is omitted. The output and the 
state of the cell are related by a non-linear equation, typically given by 

( )1)(1)(
2

1
)( −−+= tvtvtv xijxijyij  (2) 

These neuron cells can be directly connected in parallel using a simple structure 
with each cell forming one node of the network. 

 

Fig. 1. Block diagram for a cell 

The core of neuron cell is multiplier. Various applications of CNN require suitable 
implementation of multiplier. For example, implementation of CNN with fixed 
cloning template must be different to that one with programmable cloning template. 
The multiplier should perform a multiplication between a variable signal (the input or 
the output of the cell) and a fixed value (the weight of the cloning template), which 
value should be modified in accordance with different algorithms for different 
applications. 

Most of these programmable implementations and designs refer to one common 
analog multiplier used in neuron cell. It is Gilbert multiplier, which consists of three 
differential pairs operating in saturation region. There are some drawbacks to above 
Gilbert multiplier. The dynamic range of Gilbert multiplier is limited due to more 
transistors in one shunt. Additionally, it can only perform multiplication of two 
analog voltage signals. Thus, the incoming cloning template should be in the form of 
analog signal, so it needs to design additional circuit block in order to communicate 
with external digital device.  
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3   Design of the Multiplier 

Fig. 2 shows the schematic of the present multiplier. The basic idea behind this circuit 
is very simple in concept: that is, the input voltage variable is converted to a 
differential current output by a transconductance differential amplifier (OTA in the 
following), then the current is modified proportionally by a set of current mirrors in 
accordance with the product of an input signal and a dynamically-refreshed digital 
weight. The basic building block of multiplier is a transconductance differential 
amplifier (MB1~MB6, M01~M08), a middle stage (M09~M18) and a set of current mirrors 
(MD01~MD24).  

 

Fig. 2. Schematic circuit diagram of the designed CMOS multiplier 

Transistors MB1~MB6 constitute the bias circuit and supply a steady tail current to 
the OTA. The bias current is 10μA. M01~M08 constitute the OTA, wherein M01 and 
M02 are operated in linear region, the difference of output current I01 and I02 is given 
by 

0201diff III −=  

( )[ ] ( )[ ]2
DS02DS02TN7ref

022
DS01DS01TN7in

01 VVVVV2
2

VVVVV2
2

−−−−−−−= ββ
 

  DSrefin )VVV( −= β  

(3) 

where β=μ0CoxW/L, Vref is bias voltage, and VTN is the threshold voltage of the n-type 
MOSFET. 

The equation (3) gives the relation of a two-quadrant multiplier where Vin-Vref may 
have both positive and negative values and VDS is positive. In order to be compatible 
with the digital weight signal, the bias voltage Vref connected to the gate of M02 is set 
to 1.6V.  

The middle stage (M09~M18) is controlled by the MSB bit of the digital weight 
signal, and can provide a countercurrent of the output of the OTA. In order to keep 
linearity, the maximum of the current is limited to10μA. For the current mirror we 
have used improved Wilson Current mirror to reduce mismatch. 
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The programmable weighting circuit (MD01~MD24) shown at the right of the 
schematic is a binary-weighted current source array with the capability of four-
quadrant multiplication. The magnitude of multiplication is done by n-1 LSB bits, the 
polarity of the output IW is controlled by swapping the differential current through the 
MSB bit as described above. In this design, n=4 and the sizes of transistors for 
weights are chosen such that |IW|≤3.5|Idiff| in a step of 0.5Idiff. So the ratios of the 
current mirrors are 2:1, 1:1, and 1:2, respectively. Because the current mirrors are 
used many times, it is important to match them as closely as possible through a 
careful layout design. Then, the output of the multiplier is shown to 

Iw=D3×2Idiff+D2×Idiff+ D1×1/2Idiff (4) 

Because during the operation of the CNN the template A and B keep steady, the 
proposed multiplier is very applicable to implement feedback and control operator. It 
is apparent that the LSB bits can be easily extended and the ratios of current mirrors 
can also be changed according to the practical application. 

4   Simulation and Test Results 

The multiplier chip was fabricated using SMIC 0.18μm Mixed Signal CMOS process.  
Fig.3 depicts the layout of the multiplier.  

 

Fig. 3. Layout of the multiplier 

The power supply voltage is 3.3V, and the reference voltage is 1.6V. Both the 
resulting SPICE simulations and test results of the four-quadrant multiplier are shown 
in Fig. 4. Moreover, Fig.4(a)-(e) illustrate the plots obtained when apply “X100”, 
“X010”,  “X001”, “X110”and“X111” to digital signal lines D0, D1, D2, and D3, 
respectively. The solid lines illustrate the simulation result, and the dot lines illustrate 
the test result. 

Results indicate that the linearity deviation less than 1% can be achieved within the 
dynamic range (1V~2.2V), the zero drift is little, and the precision increases as the 
digital factor increases. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Simulation and test result 
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(d) 

 
(e) 

Fig. 4. (continued) 

5   Conclusion 

A novel multiplier based on analog design techniques using for implementing 
programmable CNN has been proposed. The input and output of the neuron cell are in 
the form of analog voltage signal and the fixed template A and B templates are in the 
form of digital signal. The simulation results have been given and indicate the 
multiplier has the characteristics of simple structure, large dynamic range and high 
precision. The proposed multiplier can also be used in other applications like 
Kohonen and Hamming artificial neural architectures. 
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Abstract. In this paper, we propose a neural network-based scalable fast intra 
prediction algorithm in H.264 in order to reduce redundant calculation time by 
selecting the best mode of 4 × 4 and 16× 16 intra prediction. In this reason, it is 
possible to encode compulsively by 4 × 4 intra prediction mode for current 
MB(macro block)’s best prediction mode without redundant mode decision 
calculation in accordance with neural network’s output resulted from co-
relation of adjacent encoded four left, up-left, up and up-right blocks. If there is 
any one of MBs encoded by 16× 16 intra prediction among four MBs adjacent 
to current MB, the probability of re-prediction into 16× 16 intra prediction will 
become high. We can apply neural networks in order to decide whether to force 
into 4× 4 intra prediction mode or not. We can also control both the bit rates 
and calculation time by modulating refresh factors and weights of neural 
network’s output depend on error back-propagation, which is called refreshing. 
In case of encoding several video sequences by the proposed algorithm, the 
total encoding time of 30 input I frames are reduced by 20% ~ 65% depending 
upon the test vector compared with JM 8.4 by using neural networks and by 
modulating scalable refreshing factor. On the other hand, total encoding bits are 
increased by 0.8% ~ 2.0% at the cost of reduced SNR of 0.01 dB. 

1   Introduction 

In intra mode a prediction block P is formed based on previously encoded and 
reconstructed blocks and is subtracted from the current block prior to encoding. For 
the luma samples, P is formed for each 4× 4 block or for a 16× 16 MB (macro block). 
In H.264 reference software (JM 8.4), the encoder typically selects the prediction 
mode for each block that minimizes the difference between a prediction block P and 
the block to be encoded after the total 144 mode operations for nine prediction modes 
of each sixteen 4 × 4 luma block and for four prediction modes of each 16× 16 macro 
block. For many video sequences encoded in H.264, most of MBs are encoded by 
4 × 4 intra prediction mode instead of 16 × 16 intra prediction. There are a total of nine 
optional prediction modes for each 4 × 4 luma block, four modes for a 16× 16 luma 
block and four modes for chroma components. The encoder typically selects the 
prediction mode for each block that minimizes the difference between P and the block 
to be encoded. 
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1.1   4×4 Luma Prediction Mode 

The samples above and to the left (labeled A-M in Fig. 1) have previously been 
encoded and reconstructed and are therefore available in the encoder and decoder to 
form a prediction reference. In Fig. 1, the samples a, b, c, … , p of the prediction 
block P are calculated based on the samples A–M as follows. Mode 2 (DC prediction) 
is modified depending on which samples A–M have previously been coded; each of 
the other modes may only be used if all of the required prediction samples are 
available. If samples E, F, G, H have not yet been decoded, the value of sample D is 
copied to these positions and they are marked as ‘available’ [2]. 

 

 

 

Fig. 1. Labelling of prediction samples (4× 4) and nine 4× 4 luma prediction modes 

1.2   16×16 Luma Prediction Mode 

As an alternative to the 4× 4 luma modes described in the previous section, the entire 
16× 16 luma component of a macroblock may be predicted in one operation. Four 
modes are available, shown in Fig. 2. 

1.3   8×8 Chroma Prediction Mode 

Each 8 × 8 chroma component of an intra coded a macroblock is predicted from 
previously encoded chroma samples above and/or to the left and both chroma 
components always use the same prediction mode. The four prediction modes are 
very similar to the 16 × 16 luma prediction modes described in above section and 
illustrated in Fig. 2, except that the numbering of the modes is different. The modes 
are DC (mode 0), horizontal (mode 1), vertical (mode 2) and plane (mode 3). 
 

1



1208 J.-H. Suk, J.-S. Youn, and J.R. Choi 

  

0 ( Vertical ) 1 (Horizontal ) 2 ( DC ) 3 ( Plane )

    

0 (DC) 1 (Horizontal) 2 (Vertical) 3 (Plane)

 
(a) 16× 16 luma intra prediction                           (b) 8× 8 chroma intra prediction 

Fig. 2. 16× 16 luma prediction modes and 8× 8 chroma prediction modes 

2   Intra Prediction Algorithm of Original JM 8.4 

In JM 8.4 reference software, 4× 4 intra prediction and 16 × 16 intra prediction are 
used together such as Fig. 3. In R-D optimization mode, 16× 16 intra prediction mode 
decision is calculated before 4× 4 intra prediction. Intra prediction modes having the 
minimum cost (SAE) among 4 × 4 intra prediction and 16 × 16 intra prediction are 
selected. If R-D optimization mode is not selected, 4 × 4 intra prediction mode 
decision is calculated before 16× 16 intra prediction [1]. If one of the intra modes is 
selected, another computational cost of mode prediction such as DCT, quantization, 
inverse DCT and inverse quantization is meaningless. Because most of MBs are 
encoded in 4 × 4 intra prediction mode, the cost of 16× 16 mode decision is dummy 
calculation. Therefore, we can reduce the dummy calculation by using the 
characteristics that 4 × 4 intra prediction mode is mostly selected in H.264 encoder 
and another MBs to be encoded in 16 × 16 intra mode mostly appear at adjacent 
blocks previously encoded in 16× 16 intra mode. 

99 MB / 1 Frame
Input Block

16 * 16 Intra Prediction
1 - 4 Mode

Min. Cost
(SAE)

Minimum Cost & Mode
Decision

Y N

99 MB / 1 Frame
Input Block

4 * 4 Intra Prediction
1 - 9 Mode

Min. Cost
(SAE)

Minimum Cost & Mode
Decision

Y N

1 MB ?
YN

16 Block / 1 MB
input Block

Best Mode & Prediction Block
Decision

16*16
start

4*4
start

 

Fig. 3. Luma intra prediction algorithm of original H.264 reference software (JM 8.4) 
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3   Proposed Scalable Fast Intra Prediction Algorithm 

The main concept of the proposed algorithm is that JM 8.4 reference software has 
many dummy calculations so that we can reduce redundant calculations based upon 
the three characteristics. The first characteristic is 4 × 4 intra prediction mode is 
mostly selected for current MB’s prediction mode in H.264 encoder. The second 
characteristic is the ratio of MBs between 4 × 4 intra mode and 16 × 16 intra mode is 
almost 10:1. The third characteristic is the 16 × 16 intra predicted MBs are adjacent to 
each other such as Fig. 4. If there is any one of MBs previously encoded in 16× 16 
intra prediction mode among four MBs adjacent to current MB such as Fig. 4 and Fig. 
5(a), the probability of re-prediction into 16× 16 intra prediction for current MB will 
become high. Fig. 5(a) shows that if one of the MB (A, B, C, D)’s prediction mode is 
16 × 16 intra prediction mode, the current MB’s mode is easy to be 16 × 16 intra 
prediction mode. In this case we should apply original intra prediction method of JM 
8.4 using both 4 × 4 and 16 × 16 intra prediction. On the other hand, if there is none of 
MBs previously encoded in 16 × 16 intra prediction mode among four MBs adjacent 
to the current MB, we can force the intra prediction mode of the current MB into 4 × 4 
intra mode, which will save the encoding time whereas the total encoded bits will 
increase only a little. 

 

Fig. 4. Example pattern of luma intra prediction mode encoded by JM 8.4 

   
c u r re n t

C DB

A c u r re n t

C DB

A

              
(a) MBs adjacent to current MB (b) Refresh factor = 2  Refresh factor = 4  Refresh factor = 8 

Fig. 5. MBs adjacent to current MB and refresh pattern (gray color) in which current MB is 
encoded by original JM 8.4’s prediction method using both 4× 4 and 16× 16 intra prediction 

First of all, boundary MBs in one frame are the most important MB to predict the 
next MB’s intra mode, because this is the staring point of the intra prediction 
algorithm in H.264. The errors of intra prediction at boundary MB of a frame can 
cause continuous intra prediction errors throughout the whole one frame, so these 
MBs are encoded by the original method using both 4 × 4 intra prediction and 16× 16 
intra prediction. The more predicting with proposed correlation on the current block 
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and adjacent blocks, the more prediction errors will be occurred. In order to protect 
this propagation error we should apply another method that current MB is forcibly 
encoded by the original intra prediction method although there is none of MBs 
previously encoded in 16 × 16 intra prediction mode among four MBs adjacent to the 
current MB every interval such as in Fig. 5(b). This method is called refreshing and   
Fig. 5(b) shows several refresh patterns. A refreshing factor means an interval of a 
block encoded by the original JM 8.4’s full cost prediction. The refresh factor is 
simply obtained by modulo (%) operation with img→current_mb_nr (MB’s number) 
in JM 8.4. The larger the refresh factor, the more encoding times will be reduced, 
however total encoded bits increase only a little. This result is shown in section 4. 

We can use these characteristics to design neural networks for fast mode decision and 
apply neural networks in order to decide whether the current MB should be encoded in 
only 4 × 4 intra mode or in original JM 8.4’s method using both 4 × 4 and 16× 16 intra 
prediction. Neural networks control how strongly current MB should be refreshed and 
test how much prediction errors were produced to modulate neural network operations. 
An early use of a recurrent network can be found in the work of Anderson et al. [3], [4]. 
They used a fully connected neural network called brain state in a box (BSB) to model 
psychological effects observed in probability learning. In this network each unit, which 
has no self-connection, is fully connected to every other units in the networks [5]. 

A

B

C

D

16

4

R

WA16

WA4

WB16

WB4

WC16

WC4

WD16

WD4

W16R

W4R

WE16R

WE4R

Input layer Hidden layer Output layer  

Fig. 6. Proposed neural networks to optimize intra prediction mode decision 

In Fig. 6, A, B, C, D are the input units that have ‘-1’ or ‘1’ value and this four 
nodes are appointed in Fig. 5(a). If A is encoded by 16× 16 intra prediction mode, A 
will be set to ‘1’ or if A is encoded by 4 × 4 intra prediction mode, A will be reset to ‘-
1’. In case of each B, C and D, the condition applies. If there is any one of an MB 
encoded by 16 × 16 intra prediction mode among four MBs, the probability of re-
prediction into 16× 16 intra prediction for the current MB will become high. We can 
apply neural networks in order to decide whether to force into 4 × 4 intra prediction 
mode or to use original JM 8.4’s method. Net16 and Net4 is hidden layer’s node 
controlling the strength of prediction and correcting error propagation. Equation (1) 
and (2) shows the operation of the proposed neural network. Each weight factor is 
variable in proportion to the probability of re-prediction into 16× 16 intra prediction. 
The weights of the prior left and up block are the largest because of the probability of 
re-prediction into 16 × 16 intra prediction. 
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F(total net) = W16R×Net16 + W4R×Net4 + WE16R + WE4R 
= WA16 ×A + WB16×B + WC16×C + WD16×D + WA4 ×A + WB4×B 

+ WC4×C + WD4×D + WE16R + WE4R                                                                       (1) 

WA16= WC16=1, WB16= WD16=0.5, WA4= WC4=0.5, WB4= WD4=0.25, W16R= W4R=1  

If an error is occurred, WE16R = −1, WE4R = −0.5,  else WE16R = 1, WE4R = 0.5   

If  F(total net) > −4  output R=1  else  output R=0                                                     (2) 

In equation (2) the output R has ‘1’ or ‘0’ value. When R is ‘1’, it means that the 
probability of re-prediction into 16× 16 intra prediction for current MB becomes high, 
we should calculate exact mode decision using both 4× 4 and 16× 16 intra prediction 
even if it takes more operation time and cost. When R is ‘0’, it means that the 
probability of 4× 4 intra prediction for current MB becomes high, we only force into 
4 × 4 intra prediction mode for the current MB’s best prediction mode without 16 × 16 
intra prediction and without the cost of comparison between 4 × 4 intra prediction and 
16× 16 intra prediction. Thus we can reduce redundant calculation time to select the 
best mode. When output R is ‘1’, if the prediction result is 4× 4 intra prediction, an 
error is occurred, so we use these errors for the back-propagation factor. We can 
optimize accuracy of neural networks with this factor such as Table 1. Table 1 is a 
LUT that describes the mechanism of proposed neural networks according to input 
unit pattern, its output and back-propagation adapted by network’s error. We can 
notice that the more errors (output R=1 but real prediction result is 4 × 4 intra mode), 
the more back-propagations (output R=0, gray color) will be occurred, which means 
that the number of MB forcibly encoded in 4 × 4 intra mode becomes large. 

Table 1. Look-up table that describes the mechanism of proposed neural networks 

Input Units For 1st Input For 2nd Input For 3rd Input 

No error 
at 1st 

Error  
at 1st 

No error 
at both  

1st & 2nd 

No Error  
at 1st & 

Error at 2nd 

No Error  
at 2nd & 

Error at 1st 

Error at 
both  

1st & 2nd 
A B C D Output R 

Output R Output R 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 -1 1 1 1 1 1 1 1 
1 1 -1 1 1 1 1 1 1 1 1 
1 1 -1 -1 1 1 1 1 1 1 1 
1 -1 1 1 1 1 1 1 1 1 1 
1 -1 1 -1 1 1 1 1 1 1 1 
1 -1 -1 1 1 1 1 1 1 1 1 
1 -1 -1 -1 1 1 1 1 1 1 0 
-1 1 1 1 1 1 1 1 1 1 1 
-1 1 1 -1 1 1 1 1 1 1 1 
-1 1 -1 1 1 1 1 1 1 1 0 
-1 1 -1 -1 1 1 0 1 0 0 0 
-1 -1 1 1 1 1 1 1 1 1 1 
-1 -1 1 -1 1 1 1 1 1 1 0 
-1 -1 -1 1 1 1 0 1 0 0 0 
-1 -1 -1 -1 0 0 0 0 0 0 0 
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Intra Prediction  Start

Start first MB

Is Current MB belong to 
boundary ?

Is there any MB of 16 X16 
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A,B,C ,D position ?
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NO

NO
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Prediction and 16 X16 
Intra Predicition )

NEXT MB

NO

YES <Neural Network>
Is neural network output ‘1’ ?

YES

Optimization of fast intra prediction 
mode decision

YES

 

Fig. 7. Proposed Scalable fast intra prediction algorithm using neural network 

The proposed scalable intra prediction algorithm using neural network is described 
in Fig. 7. If the current MB belongs to boundary, this MB is encoded by R-D 
optimized intra prediction using both 4 × 4 and 16 × 16 intra prediction in JM 8.4. 
Then, if current MB is in the refreshing position, this MB is encoded as above 
method. In this refreshing process we can control bit rate and encoding time by 
controlling refresh factor. This result is shown in section 4. Then, if there is any one 
of MBs encoded by 16 × 16 intra prediction mode among A, B, C, D position in Fig. 
5(a). This current MB should be tested what is the most probable intra prediction 
mode by neural network. When neural network output R is ‘1’, it means that the 
probability of re-prediction into 16× 16 intra prediction for current MB becomes high 
that we should calculate the exact mode decision using 4 × 4 and 16 × 16 intra. When 
neural network output R is ‘0’, it means that probability of 4 × 4 intra prediction for 
current MB becomes high, we only force into 4 × 4 intra prediction mode for the 
current MB’s best prediction mode without 16 × 16 intra prediction and comparison 
between 4 × 4 and 16× 16 intra prediction. Fig. 8 shows the mechanism of refreshing 
method and neural network in order to select best intra mode. Fig. 8(a) has prediction 
error marked with 8 circles because it does not have a refreshing position. But Fig. 
8(b) has no prediction error because it has some refreshing positions and it uses neural 
network algorithm to optimize the mode decision. Fig. 8(c) and 8(d) show the 
comparison of refreshing factor 3 and 4. In this case, we will notice that the simple 
decrease of a refreshing is not good to correct prediction. 
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Fig. 8. Mechanism of refreshing method and neural networks in order to select best intra mode 

4   Experiment and Verification 

Experiment is based on H.264's reference encoder/decoder software JM 8.4. We 
experiment 30 I pictures for each test video sequence. Quantization parameter of 28 
rate-distortion optimization is applied for each test video sequence to satisfy H.264 
baseline profile. We tested trevor, foreman, salesman and suzie pictures having QCIF 
(176 × 144) size with color format. Table 2 shows the experimental result for each 
color video sequence. Input picture’s frame rate is 30Hz and entropy coding method 
is CAVLC. Each source is tested into 8 cases and the performance parameter is total 
encoding time, total encoded bit and SNR ratio of Y, U, V components. In the first 
case (JM 8.4, 4 × 4 and 16 × 16 intra prediction), it is tested by original JM 8.4 
encoder without any changes. Its total encoded bit is smallest, but its total encoding 
time is the largest among 8 cases. The second case is tested by only 4 × 4 intra 
prediction. The third case is tested by only 16× 16 intra prediction. The total encoding 
time of 16 × 16 intra prediction is the smallest but incrementation of the total encoded 
bit is the largest in this case. 
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Table 2. Performance of proposed algorithm 

Original (JM 8.4) Proposed 
Refresh Factor 

Tested Video 
( color, cif, 

30frames@1Hz )
Performance 4× 4 & 

16× 16 
only 
4× 4

only 
16× 16 2 4 8 16 none 

Total Encoding 
Time (sec) 

20.630 18.68 5.48 15.500 12.945 10.563 9.353 8.501 

Total Encoded 
Bit 

842088 8601901026000 848456 852576 856840 858024 858704 

Y 37.31 37.32 37.26 37.31 37.31 37.31 37.32 37.31 
U 39.81 39.81 39.76 39.83 39.82 39.79 39.79 39.79 

Trevor 
 

SNR 
(dB) 

V 39.34 39.35 39.31 39.34 39.31 39.33 39.33 39.31 
Total Encoding 

Time 
20.24 18.94 6.12 14.327 10.954 9.110 8.436 7.456 

Total Encoded 
Bit 

789936 801256 101242 791864 796304 796512 796752 797776 

Y 36.77 36.78 36.65 36.77 36.77 36.77 36.77 36.77 
U 39.50 39.51 39.46 39.48 39.49 39.49 39.49 39.48 

Foreman 

SNR 
V 41.46 41.47 41.22 41.44 41.41 41.38 41.39 41.41 

Total Encoding 
Time 

21.537 19.53 7.24 15.254 11.486 9.406 8.435 7.767 

Total Encoded 
Bit 

861080 961240 110542 865368 868408 870136 870816 871168 

Y 36.34 36.34 36.23 36.34 36.34 36.34 36.34 36.34 
U 39.76 39.76 39.69 39.77 39.76 39.80 39.77 39.76 

Salesman 

SNR 
V 40.39 40.39 40.36 40.39 40.38 40.37 40.35 40.36 

Total Encoding 
Time 

17.734 15.652 4.38 14.412 11.735 11.173 9.791 8.983 

Total Encoded 
Bit 

512808 602142 724012 515824 519528 520728 521352 521712 

Y 37.80 37.81 37.62 37.81 37.80 37.80 37.80 37.80 
U 43.46 43.47 43.24 43.45 43.45 43.42 43.40 43.36 

Suzie 

SNR 
V 43.24 43.24 42.98 43.20 43.16 43.15 43.16 43.14 

Table 3. Performance improvement of proposed algorithm 

SNR(dB) 
Tested Video

Refresh 
Factor 

Total Decreased 
Encoding Time (%) 

Total Increased 
Encoded Bit (%) Y U V 

2 24.87 0.76 0 0.05 0 
4 37.25 1.25 0 0.03 -0.08 
8 48.80 1.75 0 -0.05 -0.03 

16 54.66 1.89 0.03 -0.05 -0.03 
Trevor 

none 58.79 1.97 0 -0.05 -0.08 
2 29.21 0.24 0 -0.06 -0.05 
4 45.88 0.08 0 -0.03 0.01 
8 54.99 0.83 0 -0.03 -0.2 

16 58.32 0.86 0 -0.03 -0.17 
Foreman 

none 63.16 0.99 0 -0.05 -0.12 
2 29.17 0.498 0 0.025 0 
4 46.67 0.85 0 0 -0.03 
8 56.33 1.05 0 0.1 -0.05 

16 60.83 1.13 0 0.03 -0.1 
Salesman 

none 63.94 1.17 0 0 -0.07 
2 18.73 0.588 0.03 -0.02 -0.1 
4 33.83 1.31 0 -0.02 -0.19 
8 37.00 1.54 0 -0.01 -0.2 

16 44.79 1.67 0 -0.14 -0.19 
Suzie 

none 49.35 1.74 0 -0.23 -0.23 
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Last 5 cases are tested by the proposed method and each case is different for the 
refresh factor to control the bit rate and the total encoding time. Refresh factor 2 has 
the smallest refreshing interval for delicate intra prediction to reduce the total encoded 
bits, but its encoding time is not better than for the larger refresh factor. The latest 
case (none refresh factor) dose not use refreshing method. Table 3 shows that the total 
encoding time is reduced by 63% than the original JM 8.4 method. Nevertheless, its 
total encoding bit increments is only 0.99 % than JM 8.4. By proposed algorithm, 
total average encoding time of 30 frames are reduced by 20% ~ 65% compared with 
the H.264 reference software (JM 8.4) by using neural networks and modulating 
scalable refreshing factor. On the other hand total encoding bits are increased by 0.8% 
~ 2% at the cost of reduced SNR of 0.01 dB. 

5   Conclusion 

In this paper, we discussed a scalable intra prediction algorithm in H.264 by using 
neural networks to reduce redundant calculation time by selecting the best mode of 
intra prediction. Our proposed method reduce the total encoding time of I frame by 
20% ~ 65% compared with H.264 reference software (JM 8.4) and it is possible to 
control bit rate and reduce encoding time by modulation the of refresh factor. 
Whereas total encoded bits are only increased by 0.8% ~ 2% compared with H.264 
reference software by using neural networks and by modulating scalable refreshing 
factor. As a result we expect to contribute to fast real time implementation of H.264 
encoder. 
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