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Abstract. Though wavelet transform based methods have recently raised in-
creasing interests in texture analysis due to their good space and frequency lo-
calization, many issues related to the choice of the wavelet basis and texture 
feature remain unresolved. In this paper, we evaluate the performance of seven 
wavelet energy signatures and eight wavelet basis for texture discrimination. 
Experimental results on 111 Brodatz textures show that the feature extracted 
from high and middle frequency channels is more suitable for texture analysis 
and the choice of wavelet basis has some influence on texture discrimination. 

1   Introduction 

Texture analysis has played an important role in many areas including robotic vision, 
industrial monitoring, remote sensing, assisted medical diagnosis and automated target 
recognition. There are three primary issues in texture analysis, such as texture classi-
fication, texture segmentation and synthesis. Extracting textural features is the main 
step for analyzing texture. 

Many features extraction techniques have been invented in the past for texture 
analysis, such as features based on gray level co-occurrence matrix [1], features based 
on run length matrix[2] and singular value decomposition spectrum[3], features based 
on Gaussian Markov random fields (GMRF) [4] and Gibbs random fields[5] and fea-
tures based on local linear transformations [6] etc. These methods above are usually 
restricted to the analysis of spatial interactions over relatively small neighborhoods on a 
single scale. However, psychovisual studies indicate that the human visual system 
processed images in a multiscale way and an important aspect of texture is scale [7]. So, 
as a result, more recently methods based on multi-resolusion or multi-channel analysis 
such as Gabor filters [8], [9] and wavelet transform [10~13] have received a lot of at-
tention. Though the Gabor filter is famous for its simulation with human vision, the 
output of Gabor filter banks are not mutually orthogonal, which may result in a sig-
nificant correlation between textures. Moreover, these transformations are usually not 
reversible, which limits their applicability for texture synthesis. As a preferred tool for 
multiresolution analysis, wavelet theory provides a more formal, solid and unified 
approach to multiresolution representation [14], [15]. 
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Many wavelet transform based features have been invented. Among them are 
wavelet energy signature (WES) which is the most popular feature used in wavelet 
texture analysis [12]. Despite the empirical success, the choices of wavelet basis (WB) 
and WES remain unsolved. The impact of the WB has been partially addressed in re-
cently published papers. For example, in [16], Chang and Kuo have suggested that the 
filter selection has little information on the texture classification. But, on the other 
hand, the experiments in [17], [18] imply that it is an important issue the choice of filter 
bank in the wavelet texture characterization. In this paper we analyze the performance 
of seven WESs, which are combinations of features extracted from different frequency 
bands, and eight WBs on 111 Brodatz textures [19]. The primary aim is to investigate 
which frequency bands play an important role in texture description and whether the 
choice of WB can influence the texture discrimination. This paper is organized as 
follows. Section 2 presents the basic concept of the wavelet transform. Section 3 gives 
the methodology and experiment results. Conclusions are given in section 4. 

2   Wavelet Transforms 

The wavelet transform performs the decomposition of a signal f  with a family of 

function m n xψ , ( )  obtained through translation and dilation of a kernel function called 

mother wavelet via 

22 2m m
m n x x nψ ψ− −= −/

, ( ) ( ) . (1) 

The mother wavelet can be constructed from two-scale difference equations 
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where xϕ( )  is called scaling function , and h k( )  and g k( )  can be viewed as filter 

coefficients of half band low-pass and high-pass filters, respectively. 
The filter coefficients h k( )  and g k( )  play a very crucial role in discrete wavelet 

transform (DWT) and they can be used for DWT computation instead of the explicit 
forms for xϕ( )  and xψ( ) . In fact, a J -level wavelet decomposition can be written as  
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where coefficients 0 kc , are given and 
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1 2j n j k
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The above two formulas provides a recursive algorithm for wavelet decomposition 
through filter coefficients h k( ) and g k( ) . The final output of DWT of a signal include 

a set of detail coefficients j kd , and approximation coefficients j kc , . 

A two-dimensional DWT can be treated as two one-dimensional transforms over 
image rows and columns separately. This will generate three orientation selective detail 

subimages k
jD( ) , k h v d= , , and an approximate subimage jA  where j denotes the 

decomposition level. The process then repeated on the approximate subimage to pro-
duce the next level of the resolution. Figure 1 shows a two-level hierarchical decom-
position. 

Since textures, either micro or macro, have non-uniform gray level variations, they 
are statistically characterized by the features derived from transformed coefficients in 
approximation and detail subimages. In other words, we can use these features to 
analyze the texture.  

 

Fig. 1. Wavelet representation of image by detail subimages and approximate subimage 

3   Comparison and Analysis 

Wavelet texture analysis is considered to be the current state of the art among other 
texture analysis methods and has shown better performance than other methods in 
many cases. In this section, we evaluate the performance of seven WESs and eight WBs 
by using 111 Brodatz textures, each with a size of 75 75× pixels and 256 gray levels. 
Fig. 2 illustrates some textures from our experimental set. The eight WBs are Haar 
wavelet, Db2 wavelet, Db4 wavelet, Db7 wavelet, Coif2 wavelet, Bior 2.6 wavelet and 
Dmey wavelet.  
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Fig. 2. Some textures from the experimental set 

Table 1. Seven wavelet energy signatures 
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3.1   Texture Features Selection 

The two-level DWT is firstly applied to the texture image. This generates six detail 
subimages and one approximation subimage. Then the normalized energy of each 
subimage is calculated and some of them are employed as elements of the texture 
feature vector. In our test, we choose seven WESs which are given in table I, where 

i
F

denotes the Frobenius norm and ( )iarea denotes the product of row number and 

column number of a matrix. 

3.2   Performance Evaluation 

For every WB, firstly, we select randomly 20 texture images from 111 Brodatz texture 
images. Then we extract feature vector 1 2 6( , , , )= "iF i from each texture image. 

For iF , this results in 20 vectors. The cosine of angle of every two of 20 vectors is 

computed and 190 values are got. Finally, the mean and variance of these 190 values, 
denoted by ( )imean F and var ( )iF , are calculated to show the performance of feature 

iF . At the same time the best feature for every WB is given. In our experiments, since 

the variation of seven var ( )iF s  is small, we choose the feature corresponding to the 

minimal ( )imean F  as the best choice for every WB. To derive some significant sta-

tistics, this experiment was repeated 100 times. Table II shows the experimental results, 

Where 
1 6

1

100
ar ccos( mi n{ ( ) })

≤ ≤
= ∑ ii

Angle mean F . In 100 experiments, a surprising 

thing is for every WB the best feature is same at each time, so Table II also shows the 
best feature for every wavelet.  

From the experiment results, one thing is obvious that for eight WBs the best features 

are all 4F which extracted from the detail subimages 1
jD j h v d=( )( , , )  and 2

dD( ) . This 

shows that the texture characteristic are mainly in high and middle frequency regions. 

The other thing is Angle s for eight WBs all lie in the interval 34 40[ , ]o o , this shows 

the ability of WB for texture discrimination. If set  

max{ }MaxA Angle= , min{ }MinA Angle= , (8) 

then 

0.1072
1

8

MaxA MinA

Angle

− =
∑

. 
(9) 

This shows that in wavelet texture characterization the choice of WB could affect the 
texture discrimination. Especially, in eight WBs, Haar wavelet is the most unsuitable 
for texture discrimination and in contrast Db7 wavelet is the best. 
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Table 2. The experimental results 

WB Haar Db2 Db4 Db7 

( degr ee)
Angle  35.0888 36.8757 38.4868 39.1391 

Feature F4 F4 F4 F4 

WB Sym8 Coif2 Bior2.6 Dmey 

( degr ee)
Angle  38.3809 38.8173 36.6914 38.8966 

Feature F4 F4 F4 F4 

4   Conclusions 

In this paper we evaluate the performance of seven WESs and eight WBs for texture 
discrimination. Our experiment results show that in the wavelet texture characterization 
the choice of WB could influence the texture discrimination. Our findings, that feature 

4F  is more suitable for texture analysis than other six features which are used in many 

other studies, show that the texture characteristic are mainly in high and middle fre-
quency regions. This result can be used for feature selection in the design of system for 
texture description and synthesis and other areas, such as image coding. 
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