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Abstract. In this article we extend the (recently published) unsuper-
vised information theoretic vector quantization approach based on the
Cauchy–Schwarz-divergence for matching data and prototype densities
to supervised learning and classification. In particular, first we gener-
alize the unsupervised method to more general metrics instead of the
Euclidean, as it was used in the original algorithm. Thereafter, we ex-
tend the model to a supervised learning method resulting in a fuzzy
classification algorithm. Thereby, we allow fuzzy labels for both, data
and prototypes. Finally, we transfer the idea of relevance learning for
metric adaptation known from learning vector quantization to the new
approach.

1 Introduction

Prototype based unsupervised vector quantization is an important task in pat-
tern recognition. One basic advantage is the easy mapping scheme and the intu-
itive understanding by the concept of representative prototypes. Several methods
have been established ranging from statistical approaches to neural vector quan-
tizers [1],[2],[3]. Thereby, close connections to information theoretic learning can
be drawn [4],[5],[6],[7],[8]. Based on the fundamental work of Zador, distance
based vector quantization can be related to magnification in prototype base
vector quantization which describes the relation between data and prototype
density as a power law [9]. It can be used to design control strategies such that
maximum mutual information between data and prototype density is obtained
[10],[11]. However, the goal is achieved by a side effect but not directly optimized
because of that distance based vector quantization methods try to minimize
variants of the description error [9]. Yet, vector quantization directly optimizing
information theoretic approaches become more and more important [5],[12],[8].
Two basic principles are widely used: maximization of the mutual information
and minimization of the divergence, which are for uniformly distributed data
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equivalent. Thereby, several entropies and divergence measures exist. Shannon-
entropy and Kullback-Leibler-divergence were the earliest and provided the way
for the other [13],[14]. One famous entropy class is the set of Rényi’s α-entropies
Hα, which are a generalization of the Shannon-entropy and show interesting
properties [15]. In particular, the quadratic H2-entropy is of special interest be-
cause of its convenient properties for numerical computation. J. Principe and
colleagues have been shown that, based on the Cauchy-Schwarz-inequality, a
divergence measure can be derived, which, together with a consistently chosen
Parzen-estimator for the densities, gives a numerically well behaved approach of
information optimization based prototype based vector quantization [16].

In this contribution, we extend first this approach to more general data met-
rices keeping the prototype based principle. In this way a broader range of ap-
plication becomes possible, for instance data equipped with only available pair-
wise similarity measure. Further, we allow that the similarity measure may be
parametrized to obtain greater flexibility. Doing so, we are able to optimize the
metric and, hence, the model with respect to these parameters, too. This strat-
egy is known in supervised learning vector quantization as relevance learning.
The main contribution is, that we extend the original approach to a supervised
learning scheme, e.g., we transfer the ideas from the unsupervised information
theoretic vector quantization to an information theoretic learning vector quan-
tization approach, which is a classification scheme. Thereby, we allow the labels
of both data and prototypes to be fuzzy resulting in a prototype based fuzzy
classifier, which is an improvement in comparison to standard learning vector
quantization approaches, which usually provide crisp decisions and are not able
to handle fuzzy labels for data.

The paper is organized as follows: First we review the approach of informa-
tion theoretic vector quantization introduced by J. Principe and colleagues,
but in the more general variant of arbitrary metric. Subsequently, we explain
the new model for supervised fuzzy classification scheme based on the unsuper-
vised method and show, how relevance learning can be integrated. Numerical
considerations demonstrate the abilities of the new classifying system.

2 Information Theoretic Based Vector Quantization
Using the Hölder-Inequality

In the following we shortly review the derivation of a numerically well behaved
divergence measure. It differs in some properties from the well-known Kullback-
Leibler-divergence. However, it vanishes for identical probability densities and,
therefore, it can be used in density matching optimization task like prototype
based vector quantization.

Shannon’s definition of entropy was extended by Rényi to a more general ap-
proach. For a given density P (v) with data points v ∈R

n, the class of differential
Rényi-entropies1 is defined as [15],[17]:

1 We will ommit the attribute ’differential’ in the following.
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Hα (ρ) =
1

1 − α
log
(∫

Pα (v) dv
)

(1)

=
1

1 − α
log Vα (P ) (2)

for α > 0 and α �= 1. The value Vα is denoted as information potential. The
existing limit for α → 1 is the Shannon entropy

H (ρ) = −
∫

P (v) log (P (v)) dv (3)

For comparison of probability density functions divergence measure are a com-
mon method. Based on Shannon entropy the Kullback-Leibler-divergence is de-
fined as

KL (ρ, P ) =
∫

ρ (v) log
(

ρ (v)
P (v)

)
dv (4)

for given densities ρ and P . It can be generalized according to the Hα-entropies
to

KLα (ρ, P ) =
1

α − 1
log

(∫
ρ (v) ·

(
ρ (v)
P (v)

)α−1

dv

)
. (5)

Again, in the limit α → 1, KLα (ρ, P ) → KL (ρ, P ) holds. Both divergences are
non-symmetric and vanish iff ρ ≡ P .

For investigation in practical applications of entropy computation one has
to estimate and the probabilities and to replace the integral by sample mean.
Thereby the most common method for density estimation is Parzen’s windowing:

ρ̂ (v) =
1

M · σ2

M∑
k=1

K

(
ξ (v − wk)

σ2

)
(6)

whereby K is a kernel function. ξ (v − wk) is assumed to be an arbitrary dif-
ference based distance measure and wk∈R

n are the kernel locations. In the
following we will use Gauss-kernels G. Usually, both steps, Parzen estimation
and sample mean, cause numerical errors. However, the sample mean error can
be eliminated: Using Rényi’s quadratic entropy and the properties of kernels the
information potential V2 can be estimated by

V2 =
1

M2 · σ4

M∑
k=1

M∑
j=1

∫
G

(
ξ (v − wk)

σ2

)
· G
(

ξ (v − wj)
σ2

)
dv (7)

=
1

M2 · σ4

M∑
k=1

M∑
j=1

G

(
ξ (wk − wj)

2σ2

)
(8)

without carrying out the integration in practice.
Unfortunately this approach can not be easily transferred to the quadratic

divergence measure KL2 because it is not quadratic according to all involved
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densities. Therefore, Principe suggested to use a divergence measure derived
from the Cauchy-Schwarz-inequality. To do this, we first remark that the general
information potential Vα in (1) defines a norm ‖·‖α = (Vα (·)) 1

α for α-integrable
functions. In particular in Hilbert-spaces the Hölder-inequality holds

‖ρ‖α · ‖P‖1−α

‖ρ · P‖1

≥ 1 (9)

with the equality iff ρ ≡ P except a zero-measure set. For α = 2 this is the
Cauchy-Schwarz-inequality, which can be used for a divergence definition [8]:

DCS (ρ, P ) =
1
2

log
(∫

ρ2 (v) dv·
∫

P 2 (v) dv
)
− log

(∫
P (v) · ρ (v) dv

)
(10)

=
1
2

log (V2 (ρ) ·V2 (P )) − log Cr (P, ρ) (11)

whereby Cr is called the cross-information potential and DCS is denoted as
Cauchy-Schwarz-divergence. Yet, the divergence DCS does not fulfill all prop-
erties of the Kullback-Leibler-divergence KL but keeping the main issue that
DCS vanishes for ρ ≡ P (in prob.) [18]. Now we can use the entropy estimator
for V2 (ρ) and V2 (P ) according to (8) and apply the same kernel property to the
cross-information potential:

Cr (ρ, P ) =
∫

P (v) · ρ (v) dv (12)

=
1

N · M · σ4

M∑
k=1

N∑
j=1

G

(
ξ (vj − wk)

2σ2

)
(13)

whereby, again, the integration is not to be carried out in practice and, hence,
does not lead to numerical errors.

In (unsupervised) vector quantization the data density P is given (by sam-
ples), whereas the density ρ is the density of prototypes wk, which is subject of
change. In information optimum vector quantization the adaptation should lead
to minimization of DCS.

3 Prototype Based Classification Using Cauchy-Schwarz
Divergence

In the following we will extend the above outlined approach to the task of proto-
type based classification. Although many classification methods are known, pro-
totype based classification is a very intuitive method. Most widely used methods
are the learning vector quantization algorithms (LVQ) introduced by Kohonen
[2]. However, the adaptation dynamic does not follow a gradient of any cost
function. Heuristically, the misclassification error is reduced. However, for over-
lapping classes the heuristic causes instabilities. Several modifications are known
to overcome this problem [19],[20],[21].
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From information theoretic learning point of view, an algorithm maximizing
the mutual information using Re was introduced by Torkkola denoted as IT-
LVQ [22]. However, compared to other classification approaches, this algorithm
does not show convincing performance [23].

A remaining problem is that all these methods do not return fuzzy valued
classification decisions as well as are not able do handle fuzzy classified data.
Here we propose to use a Cauchy-Schwarz-divergence based cost function, which
also can be applied to fuzzy labeled data.

Let x (v) be the fuzzy valued class label for data point v ∈ R
n and yi for

prototypes wi ∈ R
n. Assuming, Nc is the number of possible classes, the fuzzy

labels are realized as x (v) ,yi ∈ R
Nc with components xk (v) , yk

i ∈ [0, 1] with
the normalization conditions

∑Nc

k=1 xk (v) = 1 and
∑Nc

k=1 yk
i = 1. Let PX (c) and

ρY (c) be the label density of data labels X and prototype labels Y for a given
class c, respectively. We define as cost function to be minimized

C (Y,X) =
Nc∑
c=1

�c · 2 · DCS (ρY (v, c) , PX (v,c)) . (14)

with given weighting factors �c determining the importance of a class. Because of
all PX (c) are determined by given data, minimization of DCS (ρY (v, c) , PX (v,c))
is equivalent to minimization of

Ĉ (Y,X) =
Nc∑
c=1

�c · Ĉc (Y,X) (15)

with class dependent cost functions

Ĉc (Y,X) = (log (V2 (ρY (v, c))) − 2 log Cr (ρY (v, c) , PX (v,c))) . (16)

Information theoretic learning vector quantization now is taken as optimizing
the prototype locations wk together with their class responsibilities (labels) yk

according to minimization of Ĉ (Y,X).
To do so, we assume for simplicity that the variance in each data dimension

is equal σ2, the general case is straight forward. We introduce the class (label)
dependent Parzen estimates

P̂X (v,c) =
1
N

N∑
i=1

xc (vi) · G
(

ξ (v − vi)
σ2

)
(17)

and

ρ̂Y (v,c) =
1
M

M∑
i=1

yc
i · G

(
ξ (v − wi)

σ2

)
. (18)

We further assume for the moment that all �c are fixed and equal. Then the
class dependent cost functions Ĉc (Y,X) can be written as
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Ĉc (Y,X) ≈ 1
2M

M∑
i=1

yc
i log

⎛
⎝ 1

M

M∑
j=1

yc
jG

(
ξ (wi−wj)

2σ2

)⎞⎠ (19)

− 1
M

M∑
i=1

yc
i log

⎛
⎝ 1

N

N∑
j=1

xc (vj) · G
(

ξ (wi − vj)
2σ2

)⎞⎠ (20)

which yields the class dependent derivatives

∂Ĉc (Y,X)
∂wk

= − 1
4σ2

⎡
⎢⎢⎢⎢⎢⎣

∑M
i=1 yc

i yc
kG

(
ξ(wi,wk)

2σ2

)
∂ξ(wi,wk)

∂wk

∑M
i=1

∑M
j=1 yc

i yc
j G

(
ξ(wi,wj)

2σ2

)

−
∑N

j=1 yc
kxc(vj)G

(
ξ(vj ,wk)

2σ2

)
∂ξ(vj ,wk)

∂wk

∑M
i=1

∑N
j=1 yc

i xc(vj)G

(
ξ(vj ,wi)

2σ2

)

⎤
⎥⎥⎥⎥⎥⎦

(21)

and
∂Ĉ (Y,X)

∂yk
c

= �c · ∂Ĉc (Y,X)
∂yk

c

(22)

with

ˆ (Y X)
=

P
=1

³
(w w )
2 2

´
P

=1

P
=1

μ
(w w )
2 2

¶ 2
P

=1 (v )
³

(v w )
2 2

´
P

=1

P
=1 (v )

³
(v w )
2 2

´
( )(23)

Both gradients (21) and (23) determine the parallel stochastic gradient descent
for minimization of Ĉ (Y,X) depending on the used distance measure ξ. In case
of ξ (v − w) being the quadratic Euclidean distance, we simply have ∂ξ(v−w)

∂w =
2 (v − w).

We denote the resulting adaptation algorithm

	wk = −ε∂Ĉ(Y,X)
∂wk

	yk
c = −ε̃∂Ĉ(Y,X)

∂yk
c

(24)

as Learning Vector Quantization based on Cauchy-Schwarz-Divergence – LVQ-
CSD

4 Applications

In a first toy example we applied the LVQ-CSD using the quadratic Euclidean
distance for ξ to classify data obtained from two two-dimensional overlapping
Gaussian distribution, each of them defining a data class. The overall number
of data was N = 600 equally splitted into test and train data. We used 10
prototypes with randomly initialized positions and fuzzy labels.
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Fig. 1. Visualization of learned prototypes for LVQ-CSD in case of overlapping Gaus-
sians, defining two classes (green, blue). The positions of prototypes are indicated by
red ’+’ and black ’×’ according to their fuzzy label based majority vote for the blue
and green classes, respectively.

One crucial point using Parzen estimators is the adequate choice of the kernel
size σ2. Silverman’s rule gives a rough estimation [24]. Otherwise, as pointed
out in [16], σ2 also determines the role of cooperativeness range of prototypes
in data space during adaptation, which should be larger in the beginning and
smaller in the convergence phase for fine tuning. Combining both features we
choose for a certain training step t

σ (t) =
3 · γ · σ (0)

1 + δ · σ (0) · t (25)

with γ = 1.06 · n− 1
5 the Silverman-factor ([24]) and δ = 5/T and T being the

total number of training steps. n is the data dimension and σ (0) = σ is the
original data variance.

The resulting classification accuracy (majority vote) for LVQ-CSD for the
simple toy example is 93.1%, see Fig. 1. This result is comparable good to the
lower accuracy obtained by standard LVQ2.1 [2], which yields 77.5%. Further,
for LVQ-CSD prototypes located at overlapping border region, have balanced
label vectors whereas prototypes in the center of the class regions show clear
label preferences.
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Table 1. Test rates for the different algorithms on the WBDC data set. For LVQ-CSD
the majority vote was applied for accuracy determination.

LVQ-CSD LVQ2.1 GLVQ SNG IT-LVQ
toy sample 93.1% 77.5% 91.3% 94.9% 63.3%

PIMA 75.3% 65.3% 74.2% 78.2% 65.8%

WINE 95.5% 93.1% 98.3% 98.3% 61.9%

IONOSPHERE 69.0% 64.1% 81.4% 82.6% 56.2%

In a second mor challenging application, we investigated the behavior of the
new algorithm in case of data sets from the UCI repository [25]. The data di-
mensions are 9, 13 and 34 for the PIMA-, the WINE- and the IONOSPHERE
data, respectively. The allover number of data are 768, 178 and 351, respectively.
The first and the third task are 2-class problems whereas the second one is a
three-class problem. We splitted the data set for training and test randomly such
that about 66% are for training.

We compare the LVQ-CSD with LVQ2.1 [2], GLVQ [20], and IT-LVQ [26] cov-
ering different principles of learning vector quantization: distance based heuristic,
distance based classifier function and mutual information optimization, respec-
tively. Because one can interpret the kernel size σ as a range of cooperativeness,
we also added a comparison with supervised neural gas (SNG), which is an ex-
tension of GLVQ incorporating neighborhood cooperativeness [27]. The number
of prototypes were chosen as 10% of train data for all algorithm, again in com-
parison to the earlier studies [23]. The results are depicted in Tab. 1. Except the
IT-LVQ and LVQ2.1, all algorithms show comparable results with small advan-
tages for GLVQ and, in particular SNG. LVQ-CSD shows good performance. It
clearly outperforms standard LVQ2.1 and the IT-LVQ, which is based on mutual
information maximization. The weak result for IONOSPHERE data set could be
adressed to the well known problem arising for all Parzen estimation approaches:
For high-dimensional space Parzen estimators may become insensitive because
of the properties of the Euclidean norm in high-dimensional spaces: this is that
according to the Euclidean distance measure most of the data lie in a thin sphere
of the data space [28]. The effect could be the reason for the bad performance.
Hoewever, here we have to make further investigations.

5 Conclusion and Future Work

Based on the information theoretic approach of unsupervised vector quantiza-
tion by density matching using Cauchy-Schwarz-divergence, we developed a new
supervised learning vector quantization algorithm, which is able to handle fuzzy
labels for data as well as for prototypes. In first simulations the algorithm shows
valuable results. We formulated the algorithm for general difference based dis-
tance measures ξ (v − w). However, up to now we only used the Euclidean dis-
tance. Yet, it is possible to use more complicate difference based distance mea-
sures. In particular, parametrized measures ξλ are of interest with parameter
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vector λ =(λ1, . . . , λNλ
), λi ≥ 0 and

∑
λi = 1. Then the parametrization can

be optimized for a given classification task, too. This method is known as rele-
vance learning in learning vector quantization [29],[27]. For this purpose, simply
the additional gradient descent ∂Ĉ(Y,X)

∂λj
has to be taken into account. Obvi-

ously, this idea can be transferred also to Cauchy-Schwarz-divergence as cost
function of the unsupervised information theoretic vector quantization, which
also would allow an adapted metric for improved performance. The analyze of
these extensions in practical applications is subject of current research.
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