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Abstract. There are increasing demands for high-resolution (HR) images in 
various applications. Image superresolution (SR) reconstruction refers to meth-
ods that increase image spatial resolution by fusing information from either a 
sequence of temporal adjacent images or multi-source images from different 
sensors. In the paper we propose a hybrid Bayesian method for image recon-
struction, which firstly estimates the unknown point spread function(PSF) and 
an approximation for the original ideal image, and then sets up the HMRF im-
age prior model and assesses its tuning parameter using maximum likelihood 
estimator, finally computes the regularized solution automatically. Hybrid 
Bayesian estimates computed on actual satellite images and video sequence 
show dramatic visual and quantitative improvements in comparison with the bi-
linear interpolation result, the projection onto convex sets (POCS) estimate and 
Maximum A Posteriori (MAP) estimate.  

1   Introduction 

There are increasing demands for high-resolution (HR) images in various applica-
tions. Although the most direct way to increase spatial resolution is to use a HR image 
acquisition system, fabrication limitations and high cost for high precision optics and 
image sensors are always prohibitive concerns in many commercial applications. 
Therefore, the new image SR reconstruction approach, which is capable of generating 
a HR image from multiple low-resolution (LR) images, has been a hot research topic 
recently[1].Since Tsai and Huang’s work[2], many work has been reported in the 
literature, including the weighted least-squares algorithm[1], the nonuniform interpo-
lation approach[1], the POCS method[3-4] and MAP Bayesian approach[5-7]. Among 
these algorithms, the Bayesian approach is most notable for it robustness and flexibil-
ity in modeling noise characteristics and a priori knowledge about the solution. As-
suming that the noise process is white Gaussian, the Bayesian estimation with convex 
energy functions ensures the uniqueness of the solution. But existing Bayesian recon-
struction methods suffer from several impractical assumptions. Previous research 
often assumes that PSF is definitely known during reconstruction, which is impossible 
for actual images reconstruction as many uncertain blurring factors are involved dur-
ing imaging process. Further, the image prior model founded upon the upsampled LR 
image greatly affects the quality of the reconstruction result as the LR images are 
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already contaminated and the resulted prior model is not robust to noise. Finally, the 
edge threshold parameter of the image prior model needs to be adjusted by experi-
enced experts empirically, which limits the wide usage of the Bayesian estimator. 

Therefore, we propose a novel hybrid Bayesian estimator for SR image reconstruc-
tion. Under the Bayesian framework, it deconvolutes the upsampled LR image to 
access PSF and approximation value for the ideal HR image with APEX algorithm 
first, and then models the HMRF image prior model and assesses its edge threshold 
parameter through maximum likelihood (ML) estimation, finally regularizes the ill-
posed reconstruction process automatically. 

2   Statement on Hybrid Bayesian Reconstruction Algorithm 

Above all we formulate an observation model that relates the original HR image to 
the observed LR image. Consider the desired HR image x =[ x1 , x2 ,...., xN]T, N= 
L1N1×L2N2, which is sampled at or above the Nyquist rate from a hypothetically 
bandlimited continuous scene. L1 and L2 are the horizontal and vertical down-sampling 
factors, respectively. Let the kth LR image be denoted as y(k) =[ y(k)

1 , y
(k)

2 ,....,
 y(k)

M]T, 
M = N1×N2. During the imaging process, the observed LR image result from warping, 
blurring, and subsampling operators performed on x and is also corrupted by additive 
noise, we can then represent the observation model as 

kkkkk nxWnxDHTy +=+=   for 1≤k≤p. (1) 

where Tk is a warp matrix, H represents a blur matrix , D is a subsampling matrix and 
nk represents a noise vector, assumed to be Gaussian, white and stationary, p is the 
number of images.  

The SR image reconstruction problem is ill-posed. A well-posed problem can be 
formulated under the MAP stochastic framework by introducing a priori constraint, 

( ) ( ){ }xxyyyx PP log,,,logmaxarg p21 += . (2) 

Both the priori image model P(x) and the conditional density P(y1 ,y2 ,… ,yp |x) 
will be defined by a priori knowledge concerning x and the statistical information of 
noise. If the motion estimation error between images is assumed to be independent 
and noise is assumed to be an independent identically distributed zero mean Gaussian 
distribution, the conditional density can be expressed in the compact form 
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where σ2 is error variance, y =[ y1 , y2 ,...., yp]
T, W =[ W 1 , W 2 ,...., W p]

T. 
In order to reconstruct the high-frequency information lost through imaging, we 

take the HMRF prior model, which represents piecewise smooth image data[5], 
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where Z is a normalizing constraint, β is the temperature parameter, c is a local group 
of pixels contained within the image cliques S, α  is the edge threshold parameter 

separating the quadratic and linear regions. The quantity xt
ld  measures the second-

order finite differences in four directions at each pixel in the HR image, small in 
smooth locations and large at edges[5].The likelihood of edges in the data is con-
trolled by the Huber penalty function 
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The regularized solution is then equivalent to minimizing the cost function 
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The HMRF prior model should be founded on the ideal HR image and parameter 
α  should also be decided upon it. But in the existing MAP research, the upsampling 
LR image is usually taken as substitute for the ideal HR image and α is set empiri-
cally. However, the ideal HR image can’t be approximated by its degraded version 
because the LR image is blurred and noisy. Parameter α  estimated on a blurred im-
age has too high a value and leads to over-smoothed solutions. Parameter α  esti-
mated on a noisy image is too low, and provides insufficient regularization, leading to 
noisy solutions. A bad initialization for the prior model often leads to degenerated 
solutions[7]. The Bayesian estimator is only significant and supplies good regularized 
estimate in the case of ideal HR image Therefore, an approximation of x has to be 
accurately determined before reconstruction.  

We choose APEX algorithm to compute the approximation of x as the deconvo-
luted result produced by APEX algorithm is sufficiently close to the original image to 
enable us to set up an accurate HRMF prior model. Moreover, the unknown PSF can 
also be determined. In the following, we detail how to get an approximation of x with 
APEX algorithm, how to estimate parameter α  from the approximation image, and 
how to generate a reconstruction estimate automatically. 

3   Hybrid Bayesian Reconstruction Solution  

3.1   APEX Prior Blind Deconvolution 

The APEX[8] method is a FFT-based direct blind deconvolution technique, which is 
applicable to a restricted two-dimensional radially symmetric shift-invariant G class 
blurs. The OTF (Optical Transfer Function) form of G class blur h(x, y) is defined as 

( ) ( ) ( )ba
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where (a>0, 0<b<1). When just blurring factor considered, the relationship between 
the HR image x(x,y) and the LR image y(x,y) in the frequency domain is as follows, 

( ) ( ) ( ) ( )ηεηεηεηε ,,,, NXHY += . (8) 
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where Y(ε, η), X(ε, η) and N(ε, η) are Fourier transforms of x(x, y), y(x, y) and n(x, y), 
respectively. We may surely assume that the noise n(x, y) satisfies 

( ) ( ) 0,,
2

>=≤∫ σdxdyyxfdxdyyxn
R

 (σ is a normalizing constant), so that we 

can ignore N(ε, η) and further normalize (8) into (9), assuming Y(ε, η), X(ε, η) and 
the OTF keep the following relation in a region Ω  in the frequency domain 

( ) ( ) ( )ηεηεηε ,log,log 22 XaY
b

++−≈ . (9) 

We replace log|X(ε,η)|  by negative constant -A and solve (a, b) in (9) with nonlin-
ear least squares algorithms. Putting  (a, b) into (10), we can get the optimal approxi-

mation value for ideal HR image after inverse Fourier transform. H is the conjugate 
of H , K and s are adjustable parameters 
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3.2   Maximum Likelihood Estimation on HMRF Parameter 

The ML estimation of the edge threshold parameter α  based on the approximation 
value provided by APEX deconvolution is calculated as 

( )αα xPmaxargˆ = . (11) 

Parameter α  can be assessed according to a predetermined cutoff ratio T 
( ( ) ( )xx t

l
t
l dfdfT α= ), which corresponds to the percentage of high-frequency com-

ponents in the image. ( )xt
ldf is the norm from( ) of the second order derivative, 

( )xt
ldfα  is the norm when α  is taken into consider (any value lower than α  is set to 

zero). Since the approximation of the original image is known, T can be chosen ac-
cording to the available information of energy distribution in the HR image. After 
ratio T is set, the estimation on α  consists of solving the system 
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where r is the component within the high frequency components set. Thus it gives 

( ) nd
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= xα̂ , n is the number of high-frequency components. 

3.3   Gradient Projection Solution 

We select the improved Newton gradient optimization technique to compute the 
unique minimum solution, which searches the global minimum of the objective func-
tion along the Newton direction. Any starting point x0 that satisfies (1) is valid. We 
use APEX restored image as the initial value x0. Suppose the gradient matrix of the 
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cost function U(xi) is gi =▽U(xi) and the Hessian matrix is Gi =▽
2U(xi) (i=0,…,K) , in 

each iteration the Newton direction pi is calculated as 

iii gGp 1−−= . (13) 

And x̂  moves in the Newton direction pi with step sizeτi to minimize U(xi). 

( ) ii
T
i

i
T

i
i pGp

pp
−=τ . (14) 

iiii pxx τ+=+1 . (15) 

A sequence of iterates { }K

ii 0=x , more closely to x̂ , are generated. The convergence 

is achieved until the relative state change for a single iteration has fallen below a 
predetermined threshold ε , such that ε≤−+ iii xxx 1

. 

The whole procedure of the hybrid Bayesian estimator is summarized as follows. 

1) Upsample the LR images according to the enhancement factor q using bi-
linear interpolation, construct matrix D according to q, construct the geo-
metric distortion matrix T using the hierarchical block matching[5]. 

2) Deconvolute the reference upsampling image with APEX algorithm to ob-
tain the optimal approximation value for HR image and PSF. 

3) Calculate the Newton direction pi. 
4) Compute the step size τi and update the state according to (14) and (15). 
5) If convergence criterion is satisfied, the estimate is given as 1ˆ += ixx . Oth-

erwise, increment xi+1= xi+τipi and return step 3.  

4   Results 

In order to demonstrate the performance of the proposed algorithm, two groups of 
experiment results are presented here, which involve actual satellite remote sensing 
images and actual video sequence grabbed from a digital video film during play back. 
The enhancement factor is set to be 2. The bilinear interpolation scheme, the POCS 
algorithm[3], the Huber-MAP algorithm[5] and our proposed hybrid Bayesian estima-
tor (HBE)  are applied in each group of test.  

In the first group of test, we try to generate a HR satellite image from a sequence 
of five 5.0m resolution SPOT 5 satellite images. Fig.1 (a) is the reference 5.0m 
resolution LR image. The bilinear interpolation of the reference image, the POCS, 
Huber-MAP and HBE estimates are shown in shown in Fig. 1(b), 1(c), 1(d) and 1(e) 
respectively. Fig. 1(f) is the 2.5m resolution SPOT 5 image. The PSNR (Peak Sig-
nal-to-Noise Ratio) of the bilinear interpolation is 20.1, those of POCS, Huber-
MAP and HBE estimates are 24.3, 25.2 and 26.7 respectively. Obviously, the HBE 
method achieves a significant improvement in PSNR, with considerably much 
higher resolution than the bilinear interpolation, POCS and Huber-MAP estimates. 
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(a) (b)          

                 
(c)                                                                     (d) 

                 
(e)                                                              (f) 

Fig. 1. Actual Satellite Image Sequence. (a) the reference 5.0m image. (b) Bilinear interpolation 
result. (c) POCS estimate. (d) Huber-MAP estimate. (e) HBE result. (f) the 2.5m HR image. 

In the second group of test, nine frames are grabbed from the video sequence dur-
ing playback. The frame shown in Fig. 2(b) is the bilinear interpolation of the refer-
ence frame in Fig. 2(a). The POCS result after 20 iterations is shown Fig. 2(c). The 
Huber-MAP result after 20 iterations is shown Fig. 2(d) and the HBE result after 16 
iterations is shown Fig. 2(e). Fig. 2(f) is the original HR image.  
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(a)                                                                         (b) 

     
                                 (c)                                                                       (d) 

    
(e)   (f) 

Fig. 2. Actual Video Sequence. (a) the reference LR image. (b) Bilinear interpolation result. (c) 
POCS estimate. (d) Huber-MAP estimate. (e) HBE result. (f) the HR image.  

The PSNR values of the bilinear interpolation, POCS, Huber-MAP and HBE esti-
mates are 22.3, 25.2, 25.7 and 27.1 respectively. Experimental result shows that the 
image generated by the HBE approach outperforms those produced by bilinear inter-
polation, POCS and Huber-MAP estimators, especially in the areas of man’s face and 
the bars far behind the man. 
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5   Conclusion 

In the paper a novel hybrid Bayesian algorithm is proposed for HR image reconstruc-
tion from actual LR images or video sequence. The proposed approach firstly gets a 
good approximation of the ideal HR image, then estimate the edge threshold parame-
ter from approximation data by ML estimation, and finally obtains a regularized re-
construction estimate automatically. Its main contributions are setting up an accurate 
HMRF image prior model, which enables the reconstruction processing to be carried 
out automatically and ensures the robustness of the estimate. Experimental results 
demonstrate this new technique is robust and gives very excellent reconstruction re-
sult in actual satellite data and video data. The resulted images exhibit much sharper 
and clearer details than images reconstructed by the bilinear interpolation, the POCS 
estimator and the Huber-MAP estimator. 
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