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Abstract. Pairwise coupling is a popular multi-class classification ap-
proach that prepares binary classifiers separating each pair of classes, and
then combines the binary classifiers together. This paper proposes a pair-
wise coupling combination strategy using individual logistic regressions
(ILR-PWC). We show analytically and experimentally that the ILR-
PWC approach is more accurate than the individual logistic regressions.

1 Introduction

The object of this paper is to construct K-class classifiers. It is often easier
to construct a multi-class classifier by combining multiple binary classifiers than
directly construct a multi-class classifier. For example, AdaBoost [1] and support
vector machines (SVM) algorithm [2] [3] are basically binary classifiers, and it
is difficult to directly expand into multi-class classifiers. Typically, in such case,
multi-class classifiers are constructed by decomposing the multi-class problem
into multiple binary classification problems that can be handled by the AdaBoost
and SVM algorithm. In addition, neural networks [4] are also binary classifiers
since each output neuron separates a class from all other classes.

There are many ways to decompose a multi-class problem into multiple bi-
nary classification problems: one-per-class, individual logistic regressions [5] and
pairwise coupling [6] [7]. One-per-class is one of the simplest approaches for
decomposing the multi-class problem. The one-per-class approach prepares K
binary classifiers, each of which separates a class from all other classes, and then
constructs a multi-class classifier by combining the K binary classifiers. Next,
the individual logistic regressions prepare K − 1 binary classifiers, each of which
separates a class i from an arbitrary selected baseline class j. Finally, the pair-
wise coupling approach prepares K(K − 1)/2 binary classifiers, each of which
separates a class i from a class j. In this paper, we focus on the pairwise cou-
pling approach, and propose a pairwise coupling combination strategy using the
individual logistic regressions. In particularly, we investigate the accuracy of our
combination strategy in comparison with the individual logistic regressions.

Hastie and Tibshirani [7] show experimentally that the pairwise coupling ap-
proach is more accurate than the one-par-class approach. However the accuracy
of the pairwise coupling approach has not been almost investigated theoretically.
This is because that the combination strategy of the pairwise coupling approach
is nonlinear and iterative. On the other hand, individual logistic regressions had
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the same combination problem, but Begg and Gray [5] proposed a simple lin-
ear and non-iterative combination strategy with consistent property. For these
reasons, we propose a pairwise coupling combination strategy using individual
logistic regressions (ILR-PWC), and investigate the accuracy of our combina-
tion strategy. As a result, we show that our strategy constructs more accurate
multi-class classifiers in comparison with the individual logistic regressions.

This paper is organized as follows. Section 2 explains the pairwise coupling
approach proposed by Hastie and Tibshirani [7]. Section 3 explains individual
logistic regressions. In section 4, we propose an extension of the pairwise coupling
approach, called ILR-PWC, and compare the accuracy of the individual logistic
regressions and our approach. Section 5 describes the experimental results.

2 Pairwise Coupling

2.1 Pattern Classification

In K-class classification problems, the task is to assign an input x0 to one of
K classes. To solve the problems, we first estimate the posterior probability
p∗i = P (Y0 = i|x0) that a given input x0 belongs to a particular class i, with
a training set d = {(xn, yn) | 1 ≤ n ≤ N}. We then select the class with the
highest posterior probability:

y0 = arg max
1≤i≤K

p∗i . (1)

In the rest of this section, we consider to estimate the posterior probability p∗i
with the training set d.

2.2 Constructing Binary Classifiers

The structure of pairwise coupling is illustrated in Fig. 1. Pairwise coupling is
a multi-class classification approach that prepares K(K − 1)/2 binary classifiers
rij , 1 ≤ i ≤ K, 1 ≤ j < i, and then estimates the posterior probabilities p∗i by
combining the binary classifiers together. The binary classifiers rij are trained so
as to estimate pairwise class probabilities μ∗

ij = P (Y0 = i | Y0 = i or Y0 = j, x0).
The estimates rij of μ∗

ij are available by training with the ith and jth classes of
the training set:

dij = {(xn, yn) | yn = i or yn = j, 1 ≤ n ≤ N} . (2)

Then, using all rij , the goal is to estimate p∗i = P (Y0 = i|x0), i = 1, · · · , K.

2.3 Estimating Posterior Probabilities

Here, we describe a method for estimating the posterior probabilities p∗i , pro-
posed by Hastie and Tibshirani [7]. First note that the probabilities μ∗

ij can be
rewritten as

μ∗
ij = P (Y0 = i | Y0 = i or Y0 = j, x0) = p∗i /(p∗i + p∗j). (3)
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Fig. 1. Structure of pairwise coupling

Step 1. Initialize pi and compute coressponding µij .
Step 2. Repeat until conversence:
(a) For each i = 1, · · · , K

pi ← pi ·
∑K

j �=i nijrij
∑K

j �=i nijµij

.

(b) Renormalize the pi.
(c) Recompute the µij .

Fig. 2. Algorithm for estimating posterior probabilities

From (3), they consider the model as follows:

μij = pi/(pi + pj), (4)

and propose to find the estimates pi of p∗i so that μij are close to the observed
rij . The closeness measure is the Kullback-Leibler (KL) divergence between rij

and μij :

l(p1, · · · , pK) =
K∑

i=1

K∑

j=i+1

nij

[

rij log
rij

μij
+ (1 − rij) log

1 − rij

1 − μij

]

(5)

where nij is the number of elements in the training set dij . Hastie and Tibshirani
[7] propose to find the estimates pi that minimize the function l, and also propose
to use an iterative algorithm to compute the pi’s as illustrated in Fig. 2.

3 Individual Logistic Regressions

The object of this paper is to propose a pairwise coupling combination strategy
using individual logistic regressions [5]. The individual logistic regressions are
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K-class classification approaches that combine K − 1 binary classifiers. In this
section, we describe the individual logistic regressions, and in the next section,
we propose a pairwise coupling combination strategy using the individual logistic
regressions (ILR-PWC).

3.1 Background

Multinomial logistic regressions [8] are popular approaches for solving multi-class
classification problems. However, at the time when the individual logistic regres-
sions were proposed, most statistical software packages included only simple bi-
nary logistic regressions, but did not include the multinomial logistic regressions.
For this reason, Begg and Gray [5] proposed the individual logistic regressions
which approximate the multinomial logistic regressions by combining multiple
binary logistic regressions. They show that the approximation algorithm is not
maximum likelihood but is consistent [5]D In addition, some experiments [5] [9]
show that the efficiency loss of the approximation is small. For these reasons,
the individual logistic regressions are still used to approximate the multinomial
logistic regressions.

The rest of this section is organized as follows. Section 3.2 and 3.3 describe the
logistic regressions and multinomial logistic regressions, respectively. In section
3.4, we describe a method for approximating the multinomial logistic regressions
by using the individual logistic regressions.

3.2 Logistic Regressions

Logistic regressions are one of the most widely used techniques for solving binary
classification problems. In the logistic regressions, the posterior probabilities p∗i ,
i ∈ {1, 2}, are represented as the following:

π1 =
exp(η)

1 + exp(η)
, π2 = 1 − π1 (6)

where η is a function of an input x0. For example, η is a linear function of the
input x0, that is,

η = αT x0 + β, (7)

and the parameters α, β are estimated by the maximum likelihood method. In
this paper, η is an arbitrary function of x0. Note that if you choose an appropriate
η, the model in (6) can represent some kinds of binary classification systems, such
as neural networks, logitBoost [10], etc.

3.3 Multinomial Logistic Regressions

Multinomial logistic regressions are one of the techniques for solving multi-class
classification problems. In the multinomial logistic regressions, the posterior
probabilities p∗i , i ∈ {1, · · · , K}, are represented as the following:
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πj
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp(ηj
i )

1 +
∑K

k �=j exp(ηj
k)

if i �= j

1

1 +
∑K

k �=j exp(ηj
k)

otherwise

(8)

where j is a baseline class and ηj
i is a function of an input x0. For example, ηj

i

is a linear function of the input x0, that is,

ηj
i = αj

i

T
x0 + βj

i , (9)

and the parameters αj
i , βj

i are estimated by the maximum likelihood method.
As in the case of the logistic regressions, ηj

i is an arbitrary function of x0, and
the baseline class j is an arbitrary class.

3.4 Individual Logistic Regressions

Individual logistic regressions are techniques for approximating K-class multi-
nomial logistic regressions by combining K − 1 binary logistic regressions. As in
the case of the multinomial logistic regressions, the individual logistic regressions
represent the posterior probabilities p∗i as (8), but the function ηj

i is approxi-
mated by using K − 1 binary logistic regressions. In the following sentence, we
describe the method for approximating the function ηj

i .
First, we select a class j and prepare K − 1 binary logistic regressions πij ,

i = 1, · · · , j − 1, j + 1, · · · , K. The binary logistic regressions πij are trained so
as to estimate the probabilities μ∗

ij = P (Y0 = i | Y0 = i or Y0 = j, x0). Namely,
we prepare K − 1 logistic regressions

πij =
exp(ηij)

1 + exp(ηij)
(10)

and train the πij ’s with the training set dij in (2).
The function ηij in (10) can be considered as an estimate of log p∗i /p∗j by the

following expansion:

ηij = log
πij

1 − πij
≈ log

μ∗
ij

1 − μ∗
ij

= log
p∗i
p∗j

, (11)

and the function ηj
i in (8) can be also considerd as an estimate of log p∗i /p∗j by

the following expansion:

ηj
i = log

πj
i

πj
j

≈ log
p∗i
p∗j

. (12)

From this equality, replacing the function ηj
i in (8) with the function ηij in (10),

we can approximate the multinomial logistic regression of the baseline class j as
follows:
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πj
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp(ηij)

1 +
∑K

k �=j exp(ηkj)
if i �= j

1

1 +
∑K

k �=j exp(ηkj)
otherwise.

(13)

4 ILR-PWC

4.1 Pattern Classification Problem of ILR-PWC

In this paper, we propose a pairwise coupling combination strategy using indi-
vidual logistic regressions (ILR-PWC). As in the case of the pairwise coupling
approach, the ILR-PWC approach prepares K(K − 1)/2 binary classifiers rij ,
and then combines the binary classifiers together. In the ILR-PWC approach,
however, logistic regression is used as the binary classifier rij , that is,

rij =
exp(gij)

1 + exp(gij)
(14)

where gij is an arbitrary function of an input x0. The logistic regression rij is
trained so as to estimate probability μ∗

ij with the training set dij . Then, the goal
is to estimate the posterior probabilities p∗i by using all rij .

To estimate the posterior probabilities, Hastie and Tibshirani [7] proposed a
nonlinear and iterative algorithm, but it is difficult to investigate the accuracy.
From this reason, we propose a two-stage estimation strategy. In the first stage,
we construct K multinomial logistic regressions using the K(K − 1)/2 logistic
regressions rij . In the second stage, we estimate the posterior probabilities p∗i
using the K multinomial logistic regressions. In this paper, we show that the
optimal estimates of p∗i can be derived as a linear combination of the K multi-
nomial logistic regressions, and we investigate the accuracy of our estimation
strategy in comparison with individual logistic regressions.

The rest of this section is organized as follows. In section 4.2, we propose a
method for constructing K multinomial logistic regressions by using individual
logistic regressions. In section 4.3, we estimate the posterior probabilities p∗i
using the K multinomial logistic regressions. In section 4.4, we investigate the
accuracy of the ILR-PWC approach.

4.2 Constructing Multinomial Logistic Regressions

In this section, we propose a method for constructing K multinomial logistic
regressions using the K(K − 1)/2 logistic regressions rij . First, note that rij

and πij in (10) are the same estimate because they are trained so as to estimate
the same probability μ∗

ij with the same training set dij . We can therefore ap-
proximate multinomial logistic regressions with individual logistic regressions in
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section 3.4. That is, we can approximate a multinomial logistic regression of a
baseline class j as the following:

pj
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp(gij)

1 +
∑K

k �=j exp(gkj)
if i �= j

1

1 +
∑K

k �=j exp(gkj)
otherwise.

(15)

The ILR-PWC approach prepares K multinomial logistic regressions pj
i of the

baseline class j = 1, · · · , K using (15).

4.3 Estimating Posterior Probabilities

In this section, we consider to estimate the posterior probabilities p∗i using the K

multinomial logistic regressions pj
i . In the ILR-PWC approach, we find the esti-

mate pi of p∗i so that pi is close to the estimates p1
i , · · · , pK

i of the K multinomial
logistic regressions. The closeness measure is the Kullback-Leibler (KL) diver-
gence between pi and p1

i , · · · , pK
i . Noting further that the sum of probabilities is

1, we can write the problem of estimating p∗i as follows:

minimize
K∑

i=1

K∑

j=1

pj
i log

pj
i

pi
subject to

K∑

i=1

pi = 1. (16)

In the rest of this subsection, we solve this constrained optimization problem.
We use the Lagrange multiplier method to derive the optimal estimate pi. We

first define an objective function L as follows:

L(p1, · · · , pK , λ) =
K∑

i=1

K∑

j=1

pj
i log

pj
i

pi
− λ

{
K∑

i=1

pi − 1

}

. (17)

Differentiating the function L with respect to the pi and Lagrange multiplier λ,
we can obtain

K∑

i=1

pi = 1, (18)

pi = − 1
λ

K∑

j=1

pj
i . (19)

Substituting (19) into (18), we obtain λ = −K. Further substituting λ = −K
into (19), we can derive the optimal estimate pi as follows:

pi =
1
K

K∑

j=1

pj
i . (20)

Thus, we construct a multi-class classifier by using (1), (14), (15) and (20), and
we call this strategy ILR-PWC (pairwise coupling combination strategy using
individual logistic regressions).
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4.4 Investigation of Accuracy of ILR-PWC

In this section, we compare the accuracy of the ILR-PWC approach with indi-
vidual logistic regressions. Here, we use the estimation error of posterior prob-
abilities to evaluate the accuracy of a multi-class classifier. First, we define the
accuracy of the ILR-PWC approach as (21). In the same way, we define the ac-
curacy of the individual logistic regressions as (22), but Rilr

i is defined using the
mean of all baseline classes since we can select an arbitrary class as the baseline
class.

Rilr−pwc
i = E

{
(p∗i − pi)2

}
(21)

Rilr
i =

1
K

K∑

j=1

E
{
(p∗i − pj

i )
2
}

(22)

We can obtain (23) by transforming (21) into (24), and we can therefore show
that the ILR-PWC approach is more accurate than the individual logistic re-
gressions.

Rilr−pwc
i ≤ Rilr

i (23)

E
{
(p∗i − pi)2

}
= E

⎧
⎨

⎩
(p∗i − 1

K

K∑

j=1

pj
i )

2

⎫
⎬

⎭

= E

⎧
⎨

⎩

1
K2

(
K∑

j=1

(p∗i − pj
i ))

2

⎫
⎬

⎭

≤ E

⎧
⎨

⎩

1
K

K∑

j=1

(p∗i − pj
i )

2

⎫
⎬

⎭
(24)

where the last inequality is obtained by the Cauchy-Schwarz inequality.

5 Computer Simulation

We present an experimental evaluation on 7 data sets from the UCI machine
learning repository [11], including glass, hayes-roth, iris, led, letter, segment and
vehicle. A summary of data sets is given in Table 1. For comparison, we tested
three different approaches; one-per-class (OPC), pairwise coupling (PWC) and
individual logistic regressions (ILR). In our experiment, as individual binary
classifiers rij , we employ feedforward neural networks with one output unit and
10 hidden units.

To evaluate our approach, we used the evaluation technique 10-fold cross-
validation method, which consists of randomly dividing the data into 10 equal-
sized groups and performing ten different experiments. In each run, nine of the
ten groups are used to train the classifiers and the remaining group is held out for
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Table 1. Experimental data set

Data Set Entries Attributes Classes

glass 214 9 6
hayes-roth 132 5 3

iris 150 4 3
led 700 7 10

letter 20000 16 26
segment 2310 19 7
vehicle 846 18 4

Table 2. Average misclassification rates

dataset OPC PWC ILR ILR-PWC

glass 39.7 34.1 37.6 35.0
hayes-roth 38.0 30.4 35.6 30.4

iris 4.7 4.0 6.5 4.0
led 27.9 27.9 31.4 27.3

letter 39.8 18.6 33.3 17.5
segment 8.6 6.6 12.7 6.9
vehicle 23.2 21.2 25.3 21.3

average 26.0 20.4 26.1 20.3

the evaluation. Table 2 shows the average misclassification rates of 10 runs of 10-
fold cross-validations. From Table 2, we can see that the misclassification rate of
the ILR-PWC approach is better than that of the ILR approach. From Table 2,
we can see that the maximal difference of misclassification rates between the
PWC and ILR-PWC approach is 1.1% in letter data and the performance of the
PWC and ILR-PWC approach are almost the same.

6 Conclusion

In this paper, we have focused on combining binary classifiers of pairwise cou-
pling and have proposed a pairwise coupling combination strategy using indi-
vidual logistic regressions (ILR-PWC). In particular, we have investigated the
accuracy of the ILR-PWC approach, and as a result, we have shown that our
combination strategy is more accurate than individual logistic regressions.
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