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Abstract. Based on our previously proposed Quantum-behaved Particle Swarm 
Optimization (QPSO), this paper discusses the applicability of QPSO to integer 
programming. QPSO is a global convergent search method, while the original 
Particle Swarm (PSO) cannot be guaranteed to find out the optima solution of 
the problem at hand. The application of QPSO to integer programming is the 
first attempt of the new algorithm to discrete optimization problem. After 
introduction of PSO and detailed description of QPSO, we propose a method of 
using QPSO to solve integer programming. Some benchmark problems are 
employed to test QPSO as well as PSO for performance comparison. The 
experiment results show the superiority of QPSO to PSO on the problems. 

1   Introduction 

An Integer programming problem is an optimization problem in which some or all of 
variables are restricted to take on only integer values. Thus the general form of a 
mathematical Integer Programming model can be stated as: 
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This type of model is called a mixed-integer linear programming model, or simply a 

mixed-integer program (MIP). If [ ]nM ...1= , we have a pure integer linear 
programming model, or integer program (IP). Here we will consider only the simple 
and representative minimization IP case, though maximization IP problems are very 
common in the literature, since a maximization problem can be easily turned to a 
minimization problem. For simplicity, in this paper it will be assumed that all of the 
variables are restricted to be integer valued without any constraints. 

Evolutionary and Swarm Intelligence algorithms are stochastic optimization 
methods that involve algorithmic mechanisms similar to natural evolution and social 
behavior respectively. They can cope with problems that involve discontinuous 
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objective functions and disjoint search spaces [7][8]. Early approaches in the direction 
of Evolutionary Algorithms for Integer Programming are reported in [9][10]. The 
performance of PSO method on Integer Programming problems was investigated in 
[6] and the results show that the solution to truncate the real value to integers seems 
not to affect significantly the performance of the method. 

In this paper, the practicability of QPSO to integer programming is explored. For 
QPSO is global convergent, it can be expected to outperform PSO in this field. To test 
the algorithm, numerical experiment is implemented. The paper is organized as 
follows. In Section 2 we describe the concepts of QPSO. Section 3 presents the 
numerical results of both QPSO and PSO on several benchmark problems. The paper 
is concluded in Section 4. 

2   Quantum-Behaved Particle Swarm Optimization 

In this section, the concept of Quantum-behaved Particle Swarm Optimization is 
described following the introduction of the original Particle Swarm Optimization. 

2.1   Particle Swarm Optimization 

The PSO algorithm is population based stochastic optimization technique proposed by 
Kennedy and Eberhart in 1995[1]. The motivation for the development of this method 
was based on the simulation of simplified animal social behaviors such as fish 
schooling, bird flocking, etc. 

In the original PSO model, each individual is treated as volumeless and defined as 
a potential solution to a problem in D-dimensional space, with the position and 
velocity of particle i represented as ( )iDiii xxxX ,...,, 21=  and ( )iDiii vvvV ,...,, 21= , 
respectively. Each particle maintains a memeory of its previous best positon 

( )iDiii pppP ,...,, 21=  and gdp , designated g, represents the position with best fitness 
in the local neighborhood. The particle will move according to the following 
equation: 

( ) ( ) ( ) ( )
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where 1ϕ and 2ϕ determine the relative influence of the social gp  and cognition ip  
components, which are the embodiment of the spirit of cooperation and competition 
in this algorithm. 

Since the introduction of  PSO method in 1995, considerable work has been done in 
the aspect of improving its convergence, diversity and precision etc. Generally, in 
population-based search optimization methods, proper control of global exploration 
and local exploration is crucial in finding the optimum solution effectively. In[2] 
Eberhart and Shi show that PSO searches wide areas effectively, but tends to lack 
search precision. So they proposed the solution to introduce ω , a linearly varying 
inertia weight, that  dynamically adjusted the velocity over time, gradually focusing 
PSO into a local search: 
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The improved PSO is called Standard PSO algorithm( in this paper PSO-w denoted). 
Then Maurice Clerc introduced a constriction factor[3] , K ,that improved PSO’s 

ability to prevent the particles from exploding outside the desirable range of the 
search space and induce convergence. The coefficient K is calculated as: 

ϕϕϕ 42

2
2 −−−

=K , where 4,21 >+= ϕϕϕϕ  (4) 

and the PSO is then 

( ) ( ) ( ) ( ))****(* 21 idgdidididid xprandxprandvKv −+−+= ϕϕ  (5) 

2.2   Quantum-Behaved Particle Swarm Optimization 

Even though many improvements on PSO methods were emerged, some questions 
around traditional PSO still exist. In traditional PSO system, a linear system, a 
determined trajectory and the bound state is to guarantee collectiveness of the particle 
swarm to converge the optimal solution. However, in such ways, the intelligence of a 
complex social organism is to some extend decreased. Naturally, Quantum theory, 
following the Principle of State Superposition and Uncertainty, was introduced into 
PSO and the Quantum-behaved PSO algorithm was proposed by Jun Sun et al[4]. 

Keeping to the philosophy of PSO, a Delta potential well model of PSO in 
quantum world is presented, which can depict the probability of the particle’s 
appearing in position x  from probability density function ( ) 2

, txψ , not limited to 

determined trajectory, with the center on point p(pbest). The wave function of the 

particle is: 

( ) ( )Lxp
L

x /exp
1 −−=ψ  (6) 

And the probability density function is 

( ) ( ) ( )Lxp
L
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12 −−== ψ  (7) 

The parameter ( ) ( )txptL −=+ **21 α depending on energy intension of the 

potential well specifies the search scope of a particle. From the expression of L , we 
can see that it is so unwise to deploy the individual’s center pbest to the swarm that 
unstable and uneven convergence speed of an individual particle will result premature 
of the algorithm when population size is small. Then a conception of Mean Best 
Position (mbest) is introduced as the center-of-gravity position of all the particles [5]. 
That is 
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here M is the population size and ip is the pbest of particle i . Thus the value of L is 
given by ( ) ( )txmbesttL −=+ **21 β . We can see the only parameter in this 

algorithm is β , called Creativity Coefficient, working on individual particle’s 

convergence speed and performance of the algorithm. 
Through the Monte Carlo stochastic simulation method, derived from probability 

density function, the position of a particle that is vital to evaluate the fitness of a 
particle can be given by ( ) ( )u

L
ptx 1ln

2
±= .  Replacing parameter L , the iterative 

equation of Quantum-behaved PSO (denoted QPSO- β ) is: 

( ) ( ) ( )utxmbestptx 1ln**1 −±=+ β  (9) 

3   Experiments 

3.1   Experiment Setting and Benchmark Problems 

The method of Integer Programming by PSO and QPSO algorithm is to truncate each 
particle of the swarm to the closest integer, after evolution according to Eq(2) and 
Eq(9). In our experiments, each algorithm was tested with all of the numerical test 
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Table 2. Dimension,swarm size and maximum numberof iterations for Test Functions F1-F7 

Functi
on 

Dim Swarm Size Max Iteration 

5 20 1000 
10 50 1000 
15 100 1000 
20 200 1000 
25 250 1500 

 
 

F1 

30 300 2000 
F2 5 20 1000 
F3 5 150 1000 
F4 2 20 1000 
F5 2 20 1000 
F6 2 50 1000 
F7 4 40 1000 

problems shown in Table 1[6]. The solution of the equation F(x)=0 except the 
function F3.. In Table 2 exhibit the swarm’s size, the maximum number of iterations 
as well as dimension for all test functions. For all experiments the initial swarm was 

taken uniformly distributed inside [ ]D100,100−  ,where D is the dimension of the 
corresponding problem.  

In QPSO algorithm, the only parameter setting is Creativity Coefficient 
β [5],which was gradually decreased for each of the intervals 

[ ] [ ] [ ]0.4 ,8.0 ,0.4 ,0.1 ,4.0 ,2.1 with the number of iterations. And in PSO algorithm, the 
parameters used for all experiments were 221 == ϕϕ and ω  was gradually decreased 

for each of the intervals [ ] [ ] [ ]0.4 ,8.0 ,0.4 ,0.1 ,4.0 ,2.1 during the maximum allowed number 
of iterations. Each of the experiments was repeated 50 runs and the success rate to 
correct solution as well as the mean number of iterations for each test were recorded. 

3.2   Results 

The results of PSO and QPSO for the test problems 71 ff −  are shown in Table 3 and 
Table 4. Its mean iteration is generated from all tests included incorrect experiments. 
From the point view of success rate, as shown in Table3, to PSO algorithm, PSO-w is 
the best choice when ω  is gradually from 1.0 to 0.4. Also, to QPSO, β  from 1.2 to 
0.4 is better than the other two internals as shown in Table 4. 

But from the point view of mean iterations, based on the 100 percent success rate, 
QPSO mostly can reach the correct solution faster than PSO as shown in Table 5. 
Especially, to test function f1, when dimension is high, the results show that PSO is a 
better choice, which is because Quantum-behaved PSO algorithm is much fit for 
global search, especially for higher dimension, and more particles [5]. 

The convergence graphs for selected test problems are shown in Figure 1, which 
plot test function value with the number of iteration. As we can see the convergence 
speed in QPSO is much faster than PSO algorithm. 
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Table 3. Dimension, Success Rate, Mean Iterations for PSO-w for test F1-F7 

PSO-w 
w: [1.2,0.4] w: [1.0,0.4] w:[0.8,0.4] 

 
 

F 

 
 
D 
 

Succ 
Rate 

Mean 
Iter 

Succ 
Rate 

Mean 
Iter 

Succ 
Rate 

Mean Iter 

5 100% 422.27 100% 72.8 100% 20.27 
10 100% 434.53 100% 90.26 100% 24.77 
15 100% 439.1 100% 94.36 100% 25.8 
20 100% 441.67 100% 96.3 100% 28.97 
25 100% 653.33 100% 99.44 100% 31.23 

 
 
 

F1 

30 100% 863.93 100% 103.14 100% 34.2 
F2 5 100% 423.5 100% 77.82 100% 20.22 
F3 5 43.3% 718.63 100% 125.03 78% 246.56 
F4 2 88% 459.44 100% 81.24 83.3% 193.36 
F5 2 100% 209.64 100% 32.9 100% 9.07 
F6 2 80% 520.33 100% 41.4 56.7% 442.77 
F7 4 100% 444.3 100% 79.6 100% 34.8 

Table 4. Dimension, Success Rate, Mean Iterations for QPSO- β   for test F1-F7 

QPSO- β  
β : [1.2,0.4] β : [1.0,0.4] β : [0.8,0.4] 

 
 
F 

 
 
D 
 Succ Rate Mean Iter Succ Rate Mean Iter Succ Rate Mean Iter 

5 100% 27.2 100% 21.62 100% 15.14 
10 100% 48.26 100% 50.52 100% 27.44 
15 100% 64.46 100% 82.26 100% 38.08 
20 100% 72.24 100% 120.02 100% 47.74 
25 100% 83.86 100% 161.56 100% 58.58 

 
 
 

F1 

30 100% 92.56 100% 202.44 100% 67.86 
F2 5 100% 21.2 100% 21.56 100% 15.9 
F3 5 100% 166.9 84% 284.64 48% 543.9 
F4 2 100% 19.35 100% 25.8 100% 16.82 
F5 2 100% 8.95 98% 28.66 98% 28 
F6 2 100% 14.9 94% 88.14 90% 120.8 
F7 4 100% 65.7 100% 43.9 100% 33.6 

Table 5. Success Rate, Mean Iteration for PSO and QPSO 

PSO-w QPSO- β  
w: [1.0,0.4] β :[1.2,0.4] 

 
F 

 
D 

Succ Rate Mean Iter Succ Rate Mean Iter 
5 100% 72.8 100% 27.2 
10 100% 90.26 100% 48.26 
15 100% 94.36 100% 64.46 
20 100% 96.3 100% 72.24 
25 100% 99.44 100% 83.86 

 
 
 

F1 

30 100% 103.14 100% 92.56 
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Table 6.   (Continued) 

F2 5 100% 77.82 100% 21.2 
F3 5 100% 125.03 100% 166.9 
F4 2 100% 81.24 100% 19.35 
F5 2 100% 32.9 100% 8.95 
F6 2 100% 41.4 100% 14.9 
F7 4 100% 79.6 100% 65.7 
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(e) (f) 

Fig. 1. Test function value with generations. (a) F1 (b) F2 (c) F3 (d) F4 (e) F5 f) F6 (g) F7. 
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Fig. 1. (continued) 

4   Conclusions 

In this paper, we have applied QPSO to integer programming problem. The 
experiment results on benchmark functions show that QPSO with proper intervals of 
parameter β  can search out the global optima more frequently than PSO, for QPSO 
can be guaranteed to converge global optima with probability 1 when iteration 
number ∞→t . Not only QPSO is superior to PSO in this type of problems, but in 
other optimization problem such as constrained nonlinear program also [11]. 

Integer programming (IP) is a very important discrete optimization problem. Many 
of combinatory optimization (CO) can be reduce to IP. Therefore, an efficient 
technique to solving IP problem can be employed to many CO problems. Based on 
the work in this paper, which is our first attempt to use QPSO to solve discrete 
optimization problem, the future work will focus on practicability of QPSO on some 
NP-complete combinatory problems. 
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