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Abstract. This paper presents a novel framework of error-correcting output cod-
ing (ECOC) addressing the problem of multi-class classification. By weighting
the output space of each base classifier which is trained independently, the dis-
tance function of decoding is adapted so that the samples are more discriminative.
A criterion generated over the Extended Pair Samples (EPS) is proposed to train
the weights of output space. Some properties still hold in the new framework: any
classifier, as well as distance function, is still applicable. We first conduct empiri-
cal studies on UCI datasets to verify the presented framework with four frequently
used coding matrixes and then apply it in RoboCup domain to enhance the per-
formance of agent control. Experimental results show that our supervised learned
decoding scheme improves the accuracy of classification significantly and betters
the ball control of agents in a soccer game after learning from experience.

1 Introduction

Many supervised machine learning tasks can be cast as the problem of assigning pat-
terns to a finite set of classes, which is often referred to as multi-class classification.
Examples include optical character recognition (OCR) system addresses the problem
of determining the digit value of an image, text classification, speech recognition, med-
ical analysis, and situation determination in robot control etc.. Some of the well known
binary classification learning algorithms can be extended to handle multi-class prob-
lems [4, 16, 17]. Recently it becomes a general approach to combine a set of binary
classifiers to solve a multi-class problem.

Dietterich and Bakiri [7] presented a typical framework of this approach, which is
known as error-correcting output coding (ECOC), or output coding in short. The idea of
ECOC enjoys a significant improvement in many empirical experiments
[7, 8, 1, 18, 3, 2].

The methods of ECOC previously discussed, however, are based on a predefined out-
put code and a fixed distance function. In this case, a predefined code is used to encode
the base learners, and the predefined output code and a distance function is employed to
compute the discriminative function, according to which a testing instance is assigned
to some class. Crammer and Singer argued that the complexity of the induced binary
problems would be ignored due to the predefinition of the output code. Hence a learning
approach of designing an output code is presented [5].

This paper illustrates another way of adapting the decoding process of ECOC frame-
work by learning approach which yields a significant improvement of multi-class clas-
sification in several empirical experiments. The major idea is redefining the distance
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function by rescaling the output space of every base learner which is trained indepen-
dently. By employing the idea of Vapnik’s support vector machines (SVMs) we define a
criteria as the sum of empirical hinge loss and the regularization with a trade-off factor
between them. The criteria is generated over the Extended Pair Samples (EPS) which
contain a subset of pair-instances as ranking SVMs.

Two experiments are conducted for validation of the performance of our method.
The first is on UIC Repository and the second is on RoboCup domain. The experimental
results show that our method outperforms the existing approaches significantly.

2 ECOC Framework

In ECOC framework, all base classifiers are trained independently. This training scheme
ignores the dataset distribution and the performance of each base classifier. Though
some probability based decoding methods are introduced in [14], the following problem
remains unsolved: the criterion of a good is not well defined. Therefore, what is a better
or best decoding function is not clear. In this paper, we illustrate a clear scheme of
defining an optimal decoding function. The method proposed in this paper is different
from finding an optimal decoding matrix which is first used by Crammer & Singer [5],
and is probably much more efficient, because the optimization space is much simpler
than that used in Crammer & Singer’s method.

2.1 Scheme of Error-Correcting Output Coding

Let S = {(x1, y1), (x2, y2), ..., (xN , yN)} denotes a set of training data where each in-
stance xi belongs to a domainX and each label yi belongs to a set of labels representing
categories Y = {1, 2, ..., k}, and N is the number of instances. A multi-class classifier
H : X �→ Y is a function that maps an instance x in X into a label y in Y.

A typical ECOC method is conducted as follows,

(1) Encoding: A codeword M is defined. M is a matrix of k × n size over {−1, 0,+1}
where k is size of label Y set and n is number of binary classifiers. Each row of M
correspond to a category and each column corresponds to a binary classifier. The n
binary base classifiers are denoted as h1(x), h2(x), ..., hn(x).

Several families of codes have been proposed and tested so far for encoding, such
as, comparing each category against the rest , comparing all pairs of categories (one-
against-one), employing the random code, and employing the Hadamard code [7, 9, 11].

(2) Base classifier construction: A dichotomy of samples is created for each base
classifier. The dichotomies vary according to classifiers. If My,s = −1, we take all the
instances labeled y as negative samples in training set of the base learner hs . If My,s = 1,
we take all the instances labeled y as positive samples in training set of the base learner
hs. If My,s = 0, the instances are ignored. SVMs can be used as the model of base
classifier.

(3) Decoding: Given an instance x, a vector of binary labels is generated from all the
base classifiers H(x) = (h1(x), h2(x), ..., hn(x)). We then compare the vector with each
row of the matrix M (each category). A final classification decision is made using the
discriminate function as follows,
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H(x) = arg min
y∈Y
F (x, y) (1)

F (x, y) = D(My,H(x)) (2)

where D(u, v) is distance function between vectors u and v, and My is the row y of the
code matrix M. Consequently, the label of x is predicted to be y if the output of base
classifiers is the ’closest’ to the row of My.

2.2 ECOC Framework with Decoding Learning

A lot of empirical experiments show that ECOC enjoys a significant improvement
[7, 8, 1, 18, 3, 2]. One, however, argues that ECOC suffers the following problem [15]:
Hamming decoding scheme ignores the confidence of each classifier in ECOC and this
confidence is merely a relative quantity which means using a linear loss base distance
function in decoding may introduce some bias in the final classification in the sense that
classifiers with a larger output range will receive a higher weight. Thus both Hamming
distance function and simple loss base distance function have disadvantage. In [15] a
probability based decoding distance function is proposed. The relation between an opti-
mal criterion and the parameters of the distance function is not well defined. Therefore
in fact, the introduction of probability based distance function is just an approximation
of an optimal decoding. This paper presents a learning approach to searching an opti-
mal distance function for ECOC decoding which will overcome the problem suffered
by previous work.

3 Distance Function Learning

In this paper we present a novel algorithm of multi-class classification (which is termed
OC.MM) by introducing the max margin distance function learning in ECOC.

We rewrite the distance function as the following form,

D(u, v) =
n∑

s=1

d(us, vs).

which implies that the distance or similarity is composed of each dimension indepen-
dently. This property holds in most of the existing distance function include hamming
distance and linear distance. In our distance learning approach, we assign each dimen-
sion of the output of base learner a weight, so that the output space ofH(x) is rescaled.
The larger the distance is, the less the similarity is. Thus we can equivalently consider
a weighted version of similarity function as,

K(u, v) =
n∑

s=1

wsk(us, vs).

Consequently the final classification hypothesis is

y = H(x) = arg max
y

⎛⎜⎜⎜⎜⎜⎝
n∑

s=1

wsk(My,s, hi(x))

⎞⎟⎟⎟⎟⎟⎠ (3)
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We denote

F(x, y; w) =
n∑

s=1

wsk(My,s, hi(x)) = 〈w, σy(x)〉, (4)

where w = [w1,w2, ...wn],σy = [k(My,1, h1(x)), k(My,2, h2(x)), ...k(My,n, hn(x))], and 〈u, v〉
denotes the inner product of u and v.

In order to illustrate our method of max margin decoding distance function, we first
define the Extended Pair Samples (EPS) as follows,

S EPS =

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎜⎝[σyk (xi), σy j(xi)], zi,yk,y j =

⎧⎪⎨⎪⎩
1,yk = yi, y j � yi

−1,y j = yi, yk � yi

⎞⎟⎟⎟⎟⎠ : (xi, yi) ∈ S

⎫⎪⎬⎪⎭ . (5)

3.1 Primal QP Problem and Dual Problem

We consider the multi-class classification problem as a ranking one. An instance is
correctly classified if a pattern σyi (xi) ranks first in a subset of S EPS given any instance
xi. That is

F(xi, yi; w) ≥ F(xi, y; w),∀y ∈ Y, y � yi. (6)

Then the criteria of OC.MM is as follows,

min
w

∑

ω∈S EPS

[
1 − 〈w, σy j (xi) − σyk (xi)〉

]
+
+ λ‖w‖2 (7)

where ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
, [z]+ = max(0, z) and λ is a wight between the

regularization and the hinge loss. Instead of solving the above optimization, we solve
the following equivalent one [10],

1
2

min
w
+C

∑

ω∈S EPS

ξω (8)

s.t.

zi,y j ,yk〈w, σy j (xi) − σyk (xi)〉 ≥ 1 − ξω, ξω ≥ 0.

Employing the Lagrangian multiplier method, the Lagrange function of (8) can be writ-
ten as,

L(w, α, ξ, ζ) =
1
2

min
w
+C

∑

ω∈S EPS

ξω −
∑

ω∈S EPS

ζωξω

−
∑

ω∈S EPS

αω
(
zi,y j ,yk〈w, σy j (xi) − σyk (xi)〉 + 1 − ξω

)
. (9)

According to KKT conditions,

∂LD

∂ws
= 0⇐⇒ ws =

∑

ω∈S EPS

αωzi,y j ,yk

(
σy j (xi) − σyk (xi)

)
(10)



Distance Function Learning in Error-Correcting Output Coding Framework 5

∂LD

∂ξω
= 0⇐⇒ C − αω − ζω = 0 (11)

Since ζω > 0, optimization problem (8) reduces to a box constraint 0 ≤ αω ≤ C. By
substituting (10) and (11) into (9), we obtain the Lagrangian dual objective (12),

LD(α) =
∑

ω∈S EPS

αω−

1
2

∑

ω∈S EPS

∑

ω′∈S EPS

αωαω′zi,y j,yk zi′ ,y′k ,y
′
j
〈σy j (xi) − σyk (xi), σy

′
j
(xi′ ) − σy

′
k
(xi′ )〉, (12)

where ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
and ω′ =

(
[σy

′
k
(xi′ ), σy

′
j
(xi′ )], zi′ ,y′k ,y

′
j

)
.

The solution of the dual QP is thus characterized by

max
α
LD(α)

s.t.

0 ≤ αω ≤ C,∀ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
∈ S EPS (13)

We notice that it is easy to generalize the linear learning algorithm to non-linear
cases using kernel functions. Substituting (10) into (4), the following is derived,

F(x, y,w) =
∑

ω∈S EPS

αωzi,y j,yk〈σy j (xi) − σyk (xi), σy(x)〉. (14)

Replacing the inner products 〈σy j (xi)−σyk (xi), σy(x)〉 and 〈σy j (xi)−σyk (xi), σy
′
j
(xi′ )−

σy
′
k
(xi′ )〉 with K

(
σy j (xi) − σyk (xi), σy(x)

)
and K

(
σy j (xi) − σyk (xi), σy

′
j
(xi′ ) − σy

′
k
(xi′ )

)
,

where K(u, v) is a kernel function, one can make the generalization. Then we obtain a
nonlinear weighted decoding distance optimization criterion of algorithm OC.MM as
follows,

LD(α) = cTα − αTΛα (15)

where Λ is the kernel matrix containing all the kernel values over S EPS and c =
[1, 1, ...1]. The final classification hypothesis as following,

y = arg max
y

F(x, y,w) =
∑

ω∈S EPS

αωzi,y j,yk K
(
σy j (xi) − σyk (xi), σy(x)

)
. (16)

3.2 Effective Training Scheme

To faster the convergence of the algorithm above we introduce an effective training
scheme which is shown in Algorithm 1.

The algorithm above is implemented by modifying Joachims’ S VMlight [12].
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Algorithm 1. Effective algorithm for solving OC.MM
Input:S EPS , C, ε, p
S i ← Φ, i = 1, 2, ...,N
Randomly choose instances from S EPS into S i with probability p.

1: repeat
2: for all i such that 0 ≤ i ≤ N do
3: Q(y) = 1 −∑

ω∈S EPS αωzi,y j ,yk K
(
σy j (xi) − σyk (xi), σy(x)

)

4: ŷi = arg maxy∈Y Q(y)
5: Q̂ = Q(ŷ)
6: ξi =

[
maxy∈S i Q(y)

]
+

7: if Q̂ > ξi + ε then
8: S i ← S i ∪

(
[σyi (xi), σŷ(xi)], zi,yi ,ŷ

)
∪

(
[σŷ(xi), σyi (xi)], zi,ŷ,yi

)

αS w ←optimize dual over S w = ∪iS i

9: end if
10: end for
11: until S w dose not change.

4 Evaluations

Two experiments are conducted to evaluate the performance of the approach of OC.MM
proposed in this paper. The first is conducted on 10 datasets selected from the UCI
Repository. The second test-bed from the study on the application of our method in the
domain of agent control.

4.1 Experimental Result on UCI Repository

We choose 11 datasets on UCI Repository to conduct this experiment. The datasets
statistics are given in Table 1.

Four frequently used coding matrixes are applied in the experiments: one vs one, one
vs rest, Hadamard, and random. In each we run S VMlight [12] as the baseline. We set
the random code to have 2k columns for the problem which has k classes. The entry in

Table 1. Statistics on UCI datasets

Problem #train #test #Attribute #class
Glass 214 0 9 6
Segment 2310 0 19 7
Pendigits 7494 3498 16 10
Yeast 1484 0 8 10
Vowel 528 0 10 11
Shuttle 43500 14500 9 7
Soybean 307 376 35 19
Wine 178 0 13 3
Dermatology 366 0 34 6
Vehicle 846 0 18 4



Distance Function Learning in Error-Correcting Output Coding Framework 7

matrix is set to be -1 or +1 uniformly at random. Hadamard code is generated by the
following scheme,

H1 =

(
1 1
1 −1

)
,Hn+1 =

(
Hn Hn

Hn −Hn

)
.

For the base line we chose SVMs with the RBF kernels K(xi, x j) = e−γ‖xi−x j‖2 as the
base classifiers. We tune the cost parameters C in set C = [2−6, 2−5, ..., 28] and γ from
set γ = [2−10, 2−9, ..., 24], and choose the best result for each algorithm.For the datasets
in which the number of training instances is less than 2000 or there are no testing data,
we use a 10-fold cross validation.

EPS of our algorithm is generated from the same output of SVMlight. Thus the ac-
curacy of SVMlight is that of OC.MM without learning and with equal weights. Exper-
imental results are shown in Table 2 from which we can see a significant improvement
after applying our algorithm. Out of the 11 × 4 = 44 results, OC.MM outperforms
SVMlight in 35; they draw in the rest.

Table 2. Prediction accuracy of SVMlight (SVM) and OC.MM on UCI datasets

One-vs-one One-vs-rest Random Hadamard
Problem SVM OC.MM SVM OC.MM SVM OC.MM SVM OC.MM

Satimage 0.9204 0.9204 0.8933 0.8979 0.9176 0.9191 0.9159 0.9182
Glass 0.6728 0.6962 0.6822 0.6962 0.7009 0.7009 0.6822 0.7056
segmentation 0.9718 0.9735 0.9528 0.9640 0.9606 0.9671 0.9606 0.9645
Pendigits 0.9958 0.9958 0.9940 0.9958 0.9952 0.9952 0.9950 0.9952
Yeast 0.5923 0.5923 0.4791 0.4791 0.5404 0.5606 0.4696 0.4716
Vowel 0.9886 0.9886 0.9772 0.9791 0.9753 0.9829 0.9753 0.9772
Shuttle 0.9970 0.9970 0.9969 0.9971 0.9971 0.9972 0.9971 0.9972
Soybean 0.9414 0.9428 0.9136 0.9341 0.9443 0.9487 0.9428 0.9502
Wine 0.9490 0.9490 0.9157 0.9550 0.9157 0.9550 0.9325 0.9438
Dermatology 0.9726 0.9754 0.9480 0.9644 0.9672 0.9726 0.9453 0.9754
Vehicle 0.8475 0.8475 0.8392 0.8534 0.8498 0.8747 0.8333 0.8546

4.2 Empirical Study on Agent Control

We conduct the second experiment on the task of opponent action prediction to evaluate
the effectiveness of our algorithm. The test-bed is RoboCup robot soccer simulation
which offers a special type of benchmark requiring real-time sensor evaluation and de-
cision making, acting in highly dynamic and competitive environment etc. [13]. In this
paper we focus on the task of predicting the action of an opponent possessing the ball
in such an environment. This is an important subtask in RoboCup soccer game which
enables our agents to model the opponents’ action pattern. For example, when our
agents are defending in front of our goal, it is more like to disorganize the opponent’s
attack if the agents could accurately predict who will the opponent possessing the ball
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will pass to. The prediction is viewed as a multi-class classification problem on the
target space as follows,

A = {pass to teammate 1, ..., pass to teammate 11,Dribble}

The features of state includes

– The absulute position the ball in current cycle and immediately previous cycle.
– The relative position of all players with respect to the ball in current cycle and

immediately previous cycle.

The positions of ball are presented in Cartesian coordinates and all relative positions
are presented in Polar coordinates. Figure 1 illustrates an instance at the moment of an
opponent player possessing the ball in a soccer game.

We extract training and testing data from 99 games played between our agents and
the champion of RoboCup 2004. We conduct these experiments to enable our agents
to learn from the experience of playing with an opponent team. The statistics of these
experiments is shown in Table 3 and Figure 2.

In this experiment, we also use the parameters tuning scheme applied in the ex-
periment conducted on UCI datasets above. The experimental results are illustrated in
Figure 3. In all four coding matrixes, our method outperforms S VMlight.

Fig. 1. Task of Robot Pass. Player 11 of opponent team (shown in red color) is possessing the ball,
the task of RobotPass is to determine the next action of the player possessing ball. The potential
action of opponent player 11 is dribbling or pass the ball to it’s teammate 9 in the current situation.

Table 3. Statistics on RobotPass

#games #instance #pass #dribbling
Train 88 91109 16689 74420
Test 11 11440 2058 9382
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Fig. 2. The receive-passing frequency
of each opponent in both training and
testing data

Fig. 3. Classification accuracy of
SVMlight (SVM) and our method
(OC.MM)

5 Conclusions and Future Works

In this paper we present a novel version of ECOC framework which significantly boosts
the performance of multi-class classification. We give a criteria of ECOC decoding by
defining a global loss based on the empirical loss and regularization over the Extended
Pair Samples. Empirical results on both UCI datasets and the task of opponent action
prediction in RoboCup domain show the utility of our algorithm. We also notice that the
performance improvement is more significant on the datasets which have more classes.
This might be due to the limitation of conventional ECOC framework on complex data
while it is overcome in our approach.

In spite of the presented effective training scheme of OC.MM, a large scale quadratic
programming problem is still time-consuming. Although the training can be conducted
off-line, the efficiency of optimization remains to be further improved in order to make
our algorithm more practical in very large datasets. Another direction of future work
is to conduct further statistical analysis on the OC.MM algorithm. In this novel ECOC
framework, the problem of codewords selection remains open. But the introduction of
decoding margin provides a potential direction of further statistical analysis such as
upper bound of generalization using statistical learning theorems.
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