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Preface

This book and its companion volumes constitute the Proceedings of the 13th In-
ternational Conference on Neural Information Processing (ICONIP 2006) held in
Hong Kong during October 3–6, 2006. ICONIP is the annual flagship conference
of the Asia Pacific Neural Network Assembly (APNNA) with the past events held
in Seoul (1994), Beijing (1995), Hong Kong (1996), Dunedin (1997), Kitakyushu
(1998), Perth (1999), Taejon (2000), Shanghai (2001), Singapore (2002), Istanbul
(2003), Calcutta (2004), and Taipei (2005). Over the years, ICONIP has matured
into a well-established series of international conference on neural information
processing and related fields in the Asia and Pacific regions. Following the tradi-
tion, ICONIP 2006 provided an academic forum for the participants to dissem-
inate their new research findings and discuss emerging areas of research. It also
created a stimulating environment for the participants to interact and exchange
information on future challenges and opportunities of neural network research.

ICONIP 2006 received 1,175 submissions from about 2,000 authors in 42
countries and regions (Argentina,Australia, Austria,Bangladesh,Belgium,Brazil,
Canada, China, Hong Kong, Macao, Taiwan, Colombia, Costa Rica, Croatia,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy,
Japan, South Korea, Malaysia, Mexico, New Zealand, Poland, Portugal, Qatar,
Romania, Russian Federation, Singapore, South Africa, Spain, Sweden, Thai-
land, Turkey, UK, and USA) across six continents (Asia, Europe, North Amer-
ica, South America, Africa, and Oceania). Based on rigorous reviews by the
Program Committee members and reviewers, 386 high-quality papers were se-
lected for publication in the proceedings with the acceptance rate being less than
33%. The papers are organized in 22 cohesive sections covering all major topics of
neural network research and development. In addition to the contributed papers,
the ICONIP 2006 technical program included two plenary speeches by Shun-ichi
Amari and Russell Eberhart. In addition, the ICONIP 2006 program included
invited talks by the leaders of technical co-sponsors such as Wlodzislaw Duch
(President of the European Neural Network Society), Vincenzo Piuri (President
of the IEEE Computational Intelligence Society), and Shiro Usui (President of
the Japanese Neural Network Society), DeLiang Wang (President of the Inter-
national Neural Network Society), and Shoujue Wang (President of the China
Neural Networks Council). In addition, ICONIP 2006 launched the APNNA
Presidential Lecture Series with invited talks by past APNNA Presidents and
the K.C. Wong Distinguished Lecture Series with invited talks by eminent Chi-
nese scholars. Furthermore, the program also included six excellent tutorials,
open to all conference delegates to attend, by Amir Atiya, Russell Eberhart,
Mahesan Niranjan, Alex Smola, Koji Tsuda, and Xuegong Zhang. Besides the
regular sessions, ICONIP 2006 also featured ten special sessions focusing on some
emerging topics.



VI Preface

ICONIP 2006 would not have achieved its success without the generous con-
tributions of many volunteers and organizations. ICONIP 2006 organizers would
like to express sincere thanks to APNNA for the sponsorship, to the China Neural
Networks Council, European Neural Network Society, IEEE Computational In-
telligence Society, IEEE Hong Kong Section, International Neural Network Soci-
ety, and Japanese Neural Network Society for their technical co-sponsorship, to
the Chinese University of Hong Kong for its financial and logistic supports, and
to the K.C. Wong Education Foundation of Hong Kong for its financial support.
The organizers would also like to thank the members of the Advisory Committee
for their guidance, the members of the International Program Committee and
additional reviewers for reviewing the papers, and members of the Publications
Committee for checking the accepted papers in a short period of time. Partic-
ularly, the organizers would like to thank the proceedings publisher, Springer,
for publishing the proceedings in the prestigious series of Lecture Notes in Com-
puter Science. Special mention must be made of a group of dedicated students
and associates, Haixuan Yang, Zhenjiang Lin, Zenglin Xu, Xiang Peng, Po Shan
Cheng, and Terence Wong, who worked tirelessly and relentlessly behind the
scene to make the mission possible. There are still many more colleagues, asso-
ciates, friends, and supporters who helped us in immeasurable ways; we express
our sincere thanks to them all. Last but not the least, the organizers would like
to thank all the speakers and authors for their active participation at ICONIP
2006, which made it a great success.

October 2006 Irwin King
Jun Wang

Laiwan Chan
DeLiang Wang



Organization

Organizer

The Chinese University of Hong Kong

Sponsor

Asia Pacific Neural Network Assembly

Financial Co-sponsor

K.C. Wong Education Foundation of Hong Kong

Technical Co-sponsors

IEEE Computational Intelligence Society
International Neural Network Society
European Neural Network Society
Japanese Neural Network Society
China Neural Networks Council
IEEE Hong Kong Section

Honorary Chair and Co-chair

Lei Xu, Hong Kong Shun-ichi Amari, Japan

Advisory Board

Walter J. Freeman, USA
Toshio Fukuda, Japan
Kunihiko Fukushima, Japan
Tom Gedeon, Australia
Zhen-ya He, China
Nik Kasabov, New Zealand
Okyay Kaynak, Turkey
Anthony Kuh, USA
Sun-Yuan Kung, USA
Soo-Young Lee, Korea
Chin-Teng Lin, Taiwan
Erkki Oja, Finland

Nikhil R. Pal, India
Marios M. Polycarpou, USA
Shiro Usui, Japan
Benjamin W. Wah, USA
Lipo Wang, Singapore
Shoujue Wang, China
Paul J. Werbos, USA
You-Shou Wu, China
Donald C. Wunsch II, USA
Xin Yao, UK
Yixin Zhong, China
Jacek M. Zurada, USA



VIII Organization

General Chair and Co-chair

Jun Wang, Hong Kong Laiwan Chan, Hong Kong

Organizing Chair

Man-Wai Mak, Hong Kong

Finance and Registration Chair

Kai-Pui Lam, Hong Kong

Workshops and Tutorials Chair

James Kwok, Hong Kong

Publications and Special Sessions Chair and Co-chair

Frank H. Leung, Hong Kong Jianwei Zhang, Germany

Publicity Chair and Co-chairs

Jeffrey Xu Yu, Hong Kong

Chris C. Yang, Hong Kong

Derong Liu, USA

Wlodzislaw Duch, Poland

Local Arrangements Chair and Co-chair

Andrew Chi-Sing Leung, Hong Kong Eric Yu, Hong Kong

Secretary

Haixuan Yang, Hong Kong

Program Chair and Co-chair

Irwin King, Hong Kong DeLiang Wang, USA



Organization IX

Program Committee

Shigeo Abe, Japan
Peter Andras, UK
Sabri Arik, Turkey
Abdesselam Bouzerdoum, Australia
Ke Chen, UK
Liang Chen, Canada
Luonan Chen, Japan
Zheru Chi, Hong Kong
Sung-Bae Cho, Korea
Sungzoon Cho, Korea
Seungjin Choi, Korea
Andrzej Cichocki, Japan
Chuangyin Dang, Hong Kong
Wai-Keung Fung, Canada
Takeshi Furuhashi, Japan
Artur dAvila Garcez, UK
Daniel W.C. Ho, Hong Kong
Edward Ho, Hong Kong
Sanqing Hu, USA
Guang-Bin Huang, Singapore
Kaizhu Huang, China
Malik Magdon Ismail, USA
Takashi Kanamaru, Japan
James Kwok, Hong Kong
James Lam, Hong Kong
Kai-Pui Lam, Hong Kong
Doheon Lee, Korea
Minho Lee, Korea
Andrew Leung, Hong Kong
Frank Leung, Hong Kong
Yangmin Li, Macau

Xun Liang, China
Yanchun Liang, China
Xiaofeng Liao, China
Chih-Jen Lin, Taiwan
Xiuwen Liu, USA
Bao-Liang Lu, China
Wenlian Lu, China
Jinwen Ma, China
Man-Wai Mak, Hong Kong
Sushmita Mitra, India
Paul Pang, New Zealand
Jagath C. Rajapakse, Singapore
Bertram Shi, Hong Kong
Daming Shi, Singapore
Michael Small, Hong Kong
Michael Stiber, USA
Ponnuthurai N. Suganthan, Singapore
Fuchun Sun, China
Ron Sun, USA
Johan A.K. Suykens, Belgium
Norikazu Takahashi, Japan
Michel Verleysen, Belgium
Si Wu, UK
Chris Yang, Hong Kong
Hujun Yin, UK
Eric Yu, Hong Kong
Jeffrey Yu, Hong Kong
Gerson Zaverucha, Brazil
Byoung-Tak Zhang, Korea
Liqing Zhang, China

Reviewers

Shotaro Akaho
Toshio Akimitsu
Damminda Alahakoon
Aimee Betker
Charles Brown
Gavin Brown
Jianting Cao
Jinde Cao
Hyi-Taek Ceong

Pat Chan
Samuel Chan
Aiyou Chen
Hongjun Chen
Lihui Chen
Shu-Heng Chen
Xue-Wen Chen
Chong-Ho Choi
Jin-Young Choi

M.H. Chu
Sven Crone
Bruce Curry
Rohit Dhawan
Deniz Erdogmus
Ken Ferens
Robert Fildes
Tetsuo Furukawa
John Q. Gan



X Organization

Kosuke Hamaguchi
Yangbo He
Steven Hoi
Pingkui Hou
Zeng-Guang Hou
Justin Huang
Ya-Chi Huang
Kunhuang Huarng
Arthur Hsu
Kazushi Ikeda
Masumi Ishikawa
Jaeseung Jeong
Liu Ju
Christian Jutten
Mahmoud Kaboudan
Sotaro Kawata
Dae-Won Kim
Dong-Hwa Kim
Cleve Ku
Shuichi Kurogi
Cherry Lam
Stanley Lam
Toby Lam
Hyoung-Joo Lee
Raymond Lee
Yuh-Jye Lee
Chi-Hong Leung
Bresley Lim
Heui-Seok Lim
Hsuan-Tien Lin
Wei Lin
Wilfred Lin
Rujie Liu
Xiuxin Liu
Xiwei Liu
Zhi-Yong Liu

Hongtao Lu
Xuerong Mao
Naoki Masuda
Yicong Meng
Zhiqing Meng
Yutaka Nakamura
Nicolas Navet
Raymond Ng
Rock Ng
Edith Ngai
Minh-Nhut Nguyen
Kyosuke Nishida
Yugang Niu
YewSoon Ong
Neyir Ozcan
Keeneth Pao
Ju H. Park
Mario Pavone
Renzo Perfetti
Dinh-Tuan Pham
Tu-Minh Phuong
Libin Rong
Akihiro Sato
Xizhong Shen
Jinhua Sheng
Qiang Sheng
Xizhi Shi
Noritaka Shigei
Hyunjung Shin
Vimal Singh
Vladimir Spinko
Robert Stahlbock
Hiromichi Suetant
Jun Sun
Yanfeng Sun
Takashi Takenouchi

Yin Tang
Thomas Trappenberg
Chueh-Yung Tsao
Satoki Uchiyama
Feng Wan
Dan Wang
Rubin Wang
Ruiqi Wang
Yong Wang
Hua Wen
Michael K.Y. Wong
Chunguo Wu
Guoding Wu
Qingxiang Wu
Wei Wu
Cheng Xiang
Botong Xu
Xu Xu
Lin Yan
Shaoze Yan
Simon X. Yang
Michael Yiu
Junichiro Yoshimoto
Enzhe Yu
Fenghua Yuan
Huaguang Zhang
Jianyu Zhang
Kun Zhang
Liqing Zhang
Peter G. Zhang
Ya Zhang
Ding-Xuan Zhou
Jian Zhou
Jin Zhou
Jianke Zhu



Table of Contents – Part II

Pattern Classification

Distance Function Learning in Error-Correcting Output Coding
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Dijun Luo, Rong Xiong

Combining Pairwise Coupling Classifiers Using Individual Logistic
Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Nobuhiko Yamaguchi

The Novelty Detection Approach for Different Degrees of Class
Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Hyoung-joo Lee, Sungzoon Cho

A Novel Multistage Classification Strategy for Handwriting Chinese
Character Recognition Using Local Linear Discriminant Analysis . . . . . . . 31

Lei Xu, Baihua Xiao, Chunheng Wang, Ruwei Dai

Prototype Based Classification Using Information Theoretic Learning . . . 40
Th. Villmann, B. Hammer, F.-M. Schleif, T. Geweniger, T. Fischer,
M. Cottrell

A Modal Symbolic Classifier for Interval Data . . . . . . . . . . . . . . . . . . . . . . . 50
Fabio C.D. Silva, Francisco de A.T. de Carvalho,
Renata M.C.R. de Souza, Joyce Q. Silva

Hough Transform Neural Network for Seismic Pattern Detection . . . . . . . 60
Kou-Yuan Huang, Jiun-De You, Kai-Ju Chen, Hung-Lin Lai,
An-Jin Don

Autonomous and Deterministic Clustering for Evidence-Theoretic
Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chen Li Poh, Loo Chu Kiong, M.V.C. Rao

Bark Classification Based on Gabor Filter Features Using RBPNN
Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Zhi-Kai Huang, De-Shuang Huang, Ji-Xiang Du, Zhong-Hua Quan,
Shen-Bo Guo



XII Table of Contents – Part II

A Hybrid Handwritten Chinese Address Recognition Approach . . . . . . . . 88
Kaizhu Huang, Jun Sun, Yoshinobu Hotta, Katsuhito Fujimoto,
Satoshi Naoi, Chong Long, Li Zhuang, Xiaoyan Zhu

A Morphological Neural Network Approach for Vehicle Detection from
High Resolution Satellite Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Hong Zheng, Li Pan, Li Li

Secure Personnel Authentication Based on Multi-modal Biometrics
Under Ubiquitous Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Dae-Jong Lee, Man-Jun Kwon, Myung-Geun Chun

Pattern Classification Using a Set of Compact Hyperspheres . . . . . . . . . . . 116
Amir Atiya, Sherif Hashem, Hatem Fayed

Direct Estimation of Fault Tolerance of Feedforward Neural Networks
in Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Huilan Jiang, Tangsheng Liu, Mengbin Wang

A Fully Automated Pattern Classification Method of Combining
Self-Organizing Map with Generalization Regression Neural Network . . . 132

Chao-feng Li, Jun-ben Zhang, Zheng-you Wang, Shi-tong Wang

Comparison of One-Class SVM and Two-Class SVM for Fold
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Alexander Senf, Xue-wen Chen, Anne Zhang

Efficient Domain Action Classification Using Neural Networks . . . . . . . . . 150
Hyunjung Lee, Harksoo Kim, Jungyun Seo

A New Hierarchical Decision Structure Using Wavelet Packet and SVM
for Brazilian Phonemes Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Adriano de A. Bresolin, Adrião Duarte D. Neto, Pablo Javier Alsina

Face Analysis and Processing

A Passport Recognition and Face Verification Using Enhanced Fuzzy
Neural Network and PCA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Kwang-Baek Kim, Sungshin Kim

A Weighted FMM Neural Network and Its Application to Face
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Ho-Joon Kim, Juho Lee, Hyun-Seung Yang

Fast Learning for Statistical Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . 187
Zhi-Gang Fan, Bao-Liang Lu



Table of Contents – Part II XIII

Extraction of Discriminative Manifold for Face Recognition . . . . . . . . . . . 197
Yanmin Niu, Xuchu Wang

Gender Classification Using a New Pyramidal Neural Network . . . . . . . . . 207
S.L. Phung, A. Bouzerdoum

A Novel Model for Gabor-Based Independent Radial Basis Function
Neural Networks and Its Application to Face Recognition . . . . . . . . . . . . . 217

GaoYun An, QiuQi Ruan

Generalized PCA Face Recognition by Image Correction and Bit
Feature Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Huiyuan Wang, Yan Leng, Zengfeng Wang, Xiaojuan Wu

E-2DLDA: A New Matrix-Based Image Representation Method
for Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Fei Long, Huailin Dong, Ling Fan, Haishan Chen

Adaptive Color Space Switching Based Approach for Face Tracking . . . . 244
Chuan-Yu Chang, Yung-Chin Tu, Hong-Hao Chang

A New Subspace Analysis Approach Based on Laplacianfaces . . . . . . . . . . 253
Yan Wu, Ren-Min Gu

Rotation Invariant Face Detection Using Convolutional Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Fok Hing Chi Tivive, Abdesselam Bouzerdoum

Face Tracking Algorithm Based on Mean Shift and Ellipse Fitting . . . . . . 270
Jianpo Gao, Zhenyang Wu, Yujian Wang

Improving the Generalization of Fisherface by Training Class Selection
Using SOM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Jiayan Jiang, Liming Zhang, Tetsuo Furukawa

Image Processing

Image Registration with Regularized Neural Network . . . . . . . . . . . . . . . . . 286
Anbang Xu, Ping Guo

A Statistical Approach for Learning Invariants: Application to Image
Color Correction and Learning Invariants to Illumination . . . . . . . . . . . . . 294

B. Bascle, O. Bernier, V. Lemaire



XIV Table of Contents – Part II

Limited Recurrent Neural Network for Superresolution Image
Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Yan Zhang, Qing Xu, Tao Wang, Lei Sun

Remote Sensing Image Fusion Based on Adaptive RBF Neural
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Yun Wen Chen, Bo Yu Li

Active Contour with Neural Networks-Based Information Fusion
Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Xiongcai Cai, Arcot Sowmya

A Novel Split-and-Merge Technique for Error-Bounded Polygonal
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Bin Wang, Chaojian Shi

Fast and Adaptive Low-Pass Whitening Filters for Natural Images . . . . . 343
Ling-Zhi Liao, Si-Wei Luo, Mei Tian, Lian-Wei Zhao

An Exhaustive Employment of Neural Networks to Search the Better
Configuration of Magnetic Signals in ITER Machine . . . . . . . . . . . . . . . . . . 353

Matteo Cacciola, Antonino Greco, Francesco Carlo Morabito,
Mario Versaci

Ultra-Fast fMRI Imaging with High-Fidelity Activation Map . . . . . . . . . . 361
Neelam Sinha, Manojkumar Saranathan, A.G. Ramakrishnan,
Juan Zhou, Jagath C. Rajapakse

A Fast Directed Tree Based Neighborhood Clustering Algorithm for
Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Jundi Ding, SongCan Chen, RuNing Ma, Bo Wang

An Efficient Unsupervised Mixture Model for Image Segmentation . . . . . 379
Pan Lin, XiaoJian Zheng, Gang Yu, ZuMao Weng, Sheng Zhen Cai

Speckle Reduction of Polarimetric SAR Images Based on Neural ICA . . . 387
Jian Ji, Zheng Tian

Robust ICA Neural Network and Application on Synthetic Aperture
Radar (SAR) Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Jian Ji, Zheng Tian

Kernel Uncorrelated Discriminant Analysis for Radar Target
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Ling Wang, Liefeng Bo, Licheng Jiao



Table of Contents – Part II XV

SuperResolution Image Reconstruction Using a Hybrid Bayesian
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Tao Wang, Yan Zhang, Yong Sheng Zhang

Retrieval-Aware Image Compression, Its Format and Viewer Based
Upon Learned Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Naoto Katsumata, Yasuo Matsuyama, Takeshi Chikagawa,
Fuminori Ohashi, Fumiaki Horiike, Shun’ichi Honma,
Tomohiro Nakamura

A Suitable Neural Network to Detect Textile Defects . . . . . . . . . . . . . . . . . 430
Md. Atiqul Islam, Shamim Akhter, Tamnun E. Mursalin,
M. Ashraful Amin

MPEG Video Traffic Modeling and Classification Using Fuzzy C-Means
Algorithm with Divergence-Based Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Chung Nguyen Tran, Dong-Chul Park

A Novel Sports Video Logo Detector Based on Motion Analysis . . . . . . . . 448
Hongliang Bai, Wei Hu, Tao Wang, Xiaofeng Tong, Changping Liu,
Yimin Zhang

A Fast Selection Algorithm for Multiple Reference Frames
in H.264/AVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Qing-lei Meng, Chun-lian Yao, Bo Li

An Automotive Detector Using Biologically Motivated Selective
Attention Model for a Blind Spot Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Jaekyoung Moon, Jiyoung Yeo, Sungmoon Jeong, PalJoo Yoon,
Minho Lee

Wavelet Energy Signature: Comparison and Analysis . . . . . . . . . . . . . . . . . 474
Xiaobin Li, Zheng Tian

Image Fusion Based on PCA and Undecimated Discrete Wavelet
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Wei Liu, Jie Huang, Yongjun Zhao

Signal Processing

Speech Recognition with Multi-modal Features Based on Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Myung Won Kim, Joung Woo Ryu, Eun Ju Kim



XVI Table of Contents – Part II

Speech Feature Extraction Based on Wavelet Modulation Scale for
Robust Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Xin Ma, Weidong Zhou, Fang Ju, Qi Jiang

Fuzzy Controllers Based QoS Routing Algorithm with a Multiclass
Scheme for Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Chao Gui, Baolin Sun

Direction of Arrival Estimation Based on Minor Component Analysis
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Donghai Li, Shihai Gao, Feng Wang, Fankun Meng

Two-Stage Temporally Correlated Source Extraction Algorithm
with Its Application in Extraction of Event-Related Potentials . . . . . . . . . 523

Zhi-Lin Zhang, Liqing Zhang, Xiu-Ling Wu, Jie Li, Qibin Zhao

Bispectrum Quantification Analysis of EEG and Artificial Neural
Network May Classify Ischemic States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Liyu Huang, Weirong Wang, Sekou Singare

An Adaptive Beamforming by a Generalized Unstructured Neural
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Askin Demirkol, Levent Acar, Robert S. Woodley

Application of Improved Kohonen SOFM Neural Network to Radar
Signal Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Chuang Zhao, Yongjun Zhao

Unscented Kalman Filter-Trained MRAN Equalizer for Nonlinear
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Ye Zhang, Jianhua Wu, Guojin Wan, Yiqiang Wu

A Jumping Genes Paradigm with Fuzzy Rules for Optimizing Digital
IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Sai-Ho Yeung, Kim-Fung Man

Practical Denoising of MEG Data Using Wavelet Transform . . . . . . . . . . . 578
Abhisek Ukil

Signal Restoration and Parameters’ Estimation of Ionic Single-Channel
Based on HMM-SR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

X.Y. Qiao, G. Li, L. Lin

Signal Sorting Based on SVC & K-Means Clustering in ESM Systems . . . 596
Qiang Guo, Wanhai Chen, Xingzhou Zhang, Zheng Li, Di Guan



Table of Contents – Part II XVII

Computer Vision

Camera Pose Estimation by an Artificial Neural Network . . . . . . . . . . . . . 604
Ryan G. Benton, Chee-hung Henry Chu

Depth Perception of the Surfaces in Occluded Scenic Images . . . . . . . . . . . 612
Baoquan Song, Zhengzhi Wang, Xin Zhang

Incremental Learning Method for Unified Camera Calibration . . . . . . . . . 622
Jianbo Su, Wendong Peng

Implicit Camera Calibration by Using Resilient Neural Networks . . . . . . . 632
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Distance Function Learning in Error-Correcting Output
Coding Framework

Dijun Luo and Rong Xiong

National Lab of Industrial Control Technology, Zhejiang University, China

Abstract. This paper presents a novel framework of error-correcting output cod-
ing (ECOC) addressing the problem of multi-class classification. By weighting
the output space of each base classifier which is trained independently, the dis-
tance function of decoding is adapted so that the samples are more discriminative.
A criterion generated over the Extended Pair Samples (EPS) is proposed to train
the weights of output space. Some properties still hold in the new framework: any
classifier, as well as distance function, is still applicable. We first conduct empiri-
cal studies on UCI datasets to verify the presented framework with four frequently
used coding matrixes and then apply it in RoboCup domain to enhance the per-
formance of agent control. Experimental results show that our supervised learned
decoding scheme improves the accuracy of classification significantly and betters
the ball control of agents in a soccer game after learning from experience.

1 Introduction

Many supervised machine learning tasks can be cast as the problem of assigning pat-
terns to a finite set of classes, which is often referred to as multi-class classification.
Examples include optical character recognition (OCR) system addresses the problem
of determining the digit value of an image, text classification, speech recognition, med-
ical analysis, and situation determination in robot control etc.. Some of the well known
binary classification learning algorithms can be extended to handle multi-class prob-
lems [4, 16, 17]. Recently it becomes a general approach to combine a set of binary
classifiers to solve a multi-class problem.

Dietterich and Bakiri [7] presented a typical framework of this approach, which is
known as error-correcting output coding (ECOC), or output coding in short. The idea of
ECOC enjoys a significant improvement in many empirical experiments
[7, 8, 1, 18, 3, 2].

The methods of ECOC previously discussed, however, are based on a predefined out-
put code and a fixed distance function. In this case, a predefined code is used to encode
the base learners, and the predefined output code and a distance function is employed to
compute the discriminative function, according to which a testing instance is assigned
to some class. Crammer and Singer argued that the complexity of the induced binary
problems would be ignored due to the predefinition of the output code. Hence a learning
approach of designing an output code is presented [5].

This paper illustrates another way of adapting the decoding process of ECOC frame-
work by learning approach which yields a significant improvement of multi-class clas-
sification in several empirical experiments. The major idea is redefining the distance

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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function by rescaling the output space of every base learner which is trained indepen-
dently. By employing the idea of Vapnik’s support vector machines (SVMs) we define a
criteria as the sum of empirical hinge loss and the regularization with a trade-off factor
between them. The criteria is generated over the Extended Pair Samples (EPS) which
contain a subset of pair-instances as ranking SVMs.

Two experiments are conducted for validation of the performance of our method.
The first is on UIC Repository and the second is on RoboCup domain. The experimental
results show that our method outperforms the existing approaches significantly.

2 ECOC Framework

In ECOC framework, all base classifiers are trained independently. This training scheme
ignores the dataset distribution and the performance of each base classifier. Though
some probability based decoding methods are introduced in [14], the following problem
remains unsolved: the criterion of a good is not well defined. Therefore, what is a better
or best decoding function is not clear. In this paper, we illustrate a clear scheme of
defining an optimal decoding function. The method proposed in this paper is different
from finding an optimal decoding matrix which is first used by Crammer & Singer [5],
and is probably much more efficient, because the optimization space is much simpler
than that used in Crammer & Singer’s method.

2.1 Scheme of Error-Correcting Output Coding

Let S = {(x1, y1), (x2, y2), ..., (xN , yN)} denotes a set of training data where each in-
stance xi belongs to a domainX and each label yi belongs to a set of labels representing
categories Y = {1, 2, ..., k}, and N is the number of instances. A multi-class classifier
H : X �→ Y is a function that maps an instance x in X into a label y in Y.

A typical ECOC method is conducted as follows,

(1) Encoding: A codeword M is defined. M is a matrix of k × n size over {−1, 0,+1}
where k is size of label Y set and n is number of binary classifiers. Each row of M
correspond to a category and each column corresponds to a binary classifier. The n
binary base classifiers are denoted as h1(x), h2(x), ..., hn(x).

Several families of codes have been proposed and tested so far for encoding, such
as, comparing each category against the rest , comparing all pairs of categories (one-
against-one), employing the random code, and employing the Hadamard code [7, 9, 11].

(2) Base classifier construction: A dichotomy of samples is created for each base
classifier. The dichotomies vary according to classifiers. If My,s = −1, we take all the
instances labeled y as negative samples in training set of the base learner hs . If My,s = 1,
we take all the instances labeled y as positive samples in training set of the base learner
hs. If My,s = 0, the instances are ignored. SVMs can be used as the model of base
classifier.

(3) Decoding: Given an instance x, a vector of binary labels is generated from all the
base classifiers H(x) = (h1(x), h2(x), ..., hn(x)). We then compare the vector with each
row of the matrix M (each category). A final classification decision is made using the
discriminate function as follows,
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H(x) = arg min
y∈Y
F (x, y) (1)

F (x, y) = D(My,H(x)) (2)

where D(u, v) is distance function between vectors u and v, and My is the row y of the
code matrix M. Consequently, the label of x is predicted to be y if the output of base
classifiers is the ’closest’ to the row of My.

2.2 ECOC Framework with Decoding Learning

A lot of empirical experiments show that ECOC enjoys a significant improvement
[7, 8, 1, 18, 3, 2]. One, however, argues that ECOC suffers the following problem [15]:
Hamming decoding scheme ignores the confidence of each classifier in ECOC and this
confidence is merely a relative quantity which means using a linear loss base distance
function in decoding may introduce some bias in the final classification in the sense that
classifiers with a larger output range will receive a higher weight. Thus both Hamming
distance function and simple loss base distance function have disadvantage. In [15] a
probability based decoding distance function is proposed. The relation between an opti-
mal criterion and the parameters of the distance function is not well defined. Therefore
in fact, the introduction of probability based distance function is just an approximation
of an optimal decoding. This paper presents a learning approach to searching an opti-
mal distance function for ECOC decoding which will overcome the problem suffered
by previous work.

3 Distance Function Learning

In this paper we present a novel algorithm of multi-class classification (which is termed
OC.MM) by introducing the max margin distance function learning in ECOC.

We rewrite the distance function as the following form,

D(u, v) =
n∑

s=1

d(us, vs).

which implies that the distance or similarity is composed of each dimension indepen-
dently. This property holds in most of the existing distance function include hamming
distance and linear distance. In our distance learning approach, we assign each dimen-
sion of the output of base learner a weight, so that the output space ofH(x) is rescaled.
The larger the distance is, the less the similarity is. Thus we can equivalently consider
a weighted version of similarity function as,

K(u, v) =
n∑

s=1

wsk(us, vs).

Consequently the final classification hypothesis is

y = H(x) = arg max
y

⎛⎜⎜⎜⎜⎜⎝
n∑

s=1

wsk(My,s, hi(x))

⎞⎟⎟⎟⎟⎟⎠ (3)
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We denote

F(x, y; w) =
n∑

s=1

wsk(My,s, hi(x)) = 〈w, σy(x)〉, (4)

where w = [w1,w2, ...wn],σy = [k(My,1, h1(x)), k(My,2, h2(x)), ...k(My,n, hn(x))], and 〈u, v〉
denotes the inner product of u and v.

In order to illustrate our method of max margin decoding distance function, we first
define the Extended Pair Samples (EPS) as follows,

S EPS =

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎜⎝[σyk (xi), σy j(xi)], zi,yk,y j =

⎧⎪⎨⎪⎩ 1,yk = yi, y j � yi

−1,y j = yi, yk � yi

⎞⎟⎟⎟⎟⎠ : (xi, yi) ∈ S

⎫⎪⎬⎪⎭ . (5)

3.1 Primal QP Problem and Dual Problem

We consider the multi-class classification problem as a ranking one. An instance is
correctly classified if a pattern σyi (xi) ranks first in a subset of S EPS given any instance
xi. That is

F(xi, yi; w) ≥ F(xi, y; w),∀y ∈ Y, y � yi. (6)

Then the criteria of OC.MM is as follows,

min
w

∑
ω∈S EPS

[
1 − 〈w, σy j (xi) − σyk (xi)〉

]
+
+ λ‖w‖2 (7)

where ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
, [z]+ = max(0, z) and λ is a wight between the

regularization and the hinge loss. Instead of solving the above optimization, we solve
the following equivalent one [10],

1
2

min
w
+C

∑
ω∈S EPS

ξω (8)

s.t.

zi,y j ,yk〈w, σy j (xi) − σyk (xi)〉 ≥ 1 − ξω, ξω ≥ 0.

Employing the Lagrangian multiplier method, the Lagrange function of (8) can be writ-
ten as,

L(w, α, ξ, ζ) =
1
2

min
w
+C

∑
ω∈S EPS

ξω −
∑
ω∈S EPS

ζωξω

−
∑
ω∈S EPS

αω
(
zi,y j ,yk〈w, σy j (xi) − σyk (xi)〉 + 1 − ξω

)
. (9)

According to KKT conditions,

∂LD

∂ws
= 0⇐⇒ ws =

∑
ω∈S EPS

αωzi,y j ,yk

(
σy j (xi) − σyk (xi)

)
(10)
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∂LD

∂ξω
= 0⇐⇒ C − αω − ζω = 0 (11)

Since ζω > 0, optimization problem (8) reduces to a box constraint 0 ≤ αω ≤ C. By
substituting (10) and (11) into (9), we obtain the Lagrangian dual objective (12),

LD(α) =
∑
ω∈S EPS

αω−

1
2

∑
ω∈S EPS

∑
ω′∈S EPS

αωαω′zi,y j,yk zi′ ,y′k ,y
′
j
〈σy j (xi) − σyk (xi), σy

′
j
(xi′ ) − σy

′
k
(xi′ )〉, (12)

where ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
and ω′ =

(
[σy

′
k
(xi′ ), σy

′
j
(xi′ )], zi′ ,y′k ,y

′
j

)
.

The solution of the dual QP is thus characterized by

max
α
LD(α)

s.t.

0 ≤ αω ≤ C,∀ω =
(
[σyk (xi), σy j(xi)], zi,yk,y j

)
∈ S EPS (13)

We notice that it is easy to generalize the linear learning algorithm to non-linear
cases using kernel functions. Substituting (10) into (4), the following is derived,

F(x, y,w) =
∑
ω∈S EPS

αωzi,y j,yk〈σy j (xi) − σyk (xi), σy(x)〉. (14)

Replacing the inner products 〈σy j (xi)−σyk (xi), σy(x)〉 and 〈σy j (xi)−σyk (xi), σy
′
j
(xi′ )−

σy
′
k
(xi′ )〉 with K

(
σy j (xi) − σyk (xi), σy(x)

)
and K

(
σy j (xi) − σyk (xi), σy

′
j
(xi′ ) − σy

′
k
(xi′ )
)
,

where K(u, v) is a kernel function, one can make the generalization. Then we obtain a
nonlinear weighted decoding distance optimization criterion of algorithm OC.MM as
follows,

LD(α) = cTα − αTΛα (15)

where Λ is the kernel matrix containing all the kernel values over S EPS and c =
[1, 1, ...1]. The final classification hypothesis as following,

y = arg max
y

F(x, y,w) =
∑
ω∈S EPS

αωzi,y j,yk K
(
σy j (xi) − σyk (xi), σy(x)

)
. (16)

3.2 Effective Training Scheme

To faster the convergence of the algorithm above we introduce an effective training
scheme which is shown in Algorithm 1.

The algorithm above is implemented by modifying Joachims’ S VMlight [12].
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Algorithm 1. Effective algorithm for solving OC.MM
Input:S EPS , C, ε, p
S i ← Φ, i = 1, 2, ...,N
Randomly choose instances from S EPS into S i with probability p.

1: repeat
2: for all i such that 0 ≤ i ≤ N do
3: Q(y) = 1 −∑ω∈S EPS αωzi,y j ,yk K

(
σy j (xi) − σyk (xi), σy(x)

)
4: ŷi = arg maxy∈Y Q(y)
5: Q̂ = Q(ŷ)
6: ξi =

[
maxy∈S i Q(y)

]
+

7: if Q̂ > ξi + ε then
8: S i ← S i ∪

(
[σyi (xi), σŷ(xi)], zi,yi ,ŷ

)
∪
(
[σŷ(xi), σyi (xi)], zi,ŷ,yi

)
αS w ←optimize dual over S w = ∪iS i

9: end if
10: end for
11: until S w dose not change.

4 Evaluations

Two experiments are conducted to evaluate the performance of the approach of OC.MM
proposed in this paper. The first is conducted on 10 datasets selected from the UCI
Repository. The second test-bed from the study on the application of our method in the
domain of agent control.

4.1 Experimental Result on UCI Repository

We choose 11 datasets on UCI Repository to conduct this experiment. The datasets
statistics are given in Table 1.

Four frequently used coding matrixes are applied in the experiments: one vs one, one
vs rest, Hadamard, and random. In each we run S VMlight [12] as the baseline. We set
the random code to have 2k columns for the problem which has k classes. The entry in

Table 1. Statistics on UCI datasets

Problem #train #test #Attribute #class
Glass 214 0 9 6
Segment 2310 0 19 7
Pendigits 7494 3498 16 10
Yeast 1484 0 8 10
Vowel 528 0 10 11
Shuttle 43500 14500 9 7
Soybean 307 376 35 19
Wine 178 0 13 3
Dermatology 366 0 34 6
Vehicle 846 0 18 4



Distance Function Learning in Error-Correcting Output Coding Framework 7

matrix is set to be -1 or +1 uniformly at random. Hadamard code is generated by the
following scheme,

H1 =

(
1 1
1 −1

)
,Hn+1 =

(
Hn Hn

Hn −Hn

)
.

For the base line we chose SVMs with the RBF kernels K(xi, x j) = e−γ‖xi−x j‖2 as the
base classifiers. We tune the cost parameters C in set C = [2−6, 2−5, ..., 28] and γ from
set γ = [2−10, 2−9, ..., 24], and choose the best result for each algorithm.For the datasets
in which the number of training instances is less than 2000 or there are no testing data,
we use a 10-fold cross validation.

EPS of our algorithm is generated from the same output of SVMlight. Thus the ac-
curacy of SVMlight is that of OC.MM without learning and with equal weights. Exper-
imental results are shown in Table 2 from which we can see a significant improvement
after applying our algorithm. Out of the 11 × 4 = 44 results, OC.MM outperforms
SVMlight in 35; they draw in the rest.

Table 2. Prediction accuracy of SVMlight (SVM) and OC.MM on UCI datasets

One-vs-one One-vs-rest Random Hadamard
Problem SVM OC.MM SVM OC.MM SVM OC.MM SVM OC.MM

Satimage 0.9204 0.9204 0.8933 0.8979 0.9176 0.9191 0.9159 0.9182
Glass 0.6728 0.6962 0.6822 0.6962 0.7009 0.7009 0.6822 0.7056
segmentation 0.9718 0.9735 0.9528 0.9640 0.9606 0.9671 0.9606 0.9645
Pendigits 0.9958 0.9958 0.9940 0.9958 0.9952 0.9952 0.9950 0.9952
Yeast 0.5923 0.5923 0.4791 0.4791 0.5404 0.5606 0.4696 0.4716
Vowel 0.9886 0.9886 0.9772 0.9791 0.9753 0.9829 0.9753 0.9772
Shuttle 0.9970 0.9970 0.9969 0.9971 0.9971 0.9972 0.9971 0.9972
Soybean 0.9414 0.9428 0.9136 0.9341 0.9443 0.9487 0.9428 0.9502
Wine 0.9490 0.9490 0.9157 0.9550 0.9157 0.9550 0.9325 0.9438
Dermatology 0.9726 0.9754 0.9480 0.9644 0.9672 0.9726 0.9453 0.9754
Vehicle 0.8475 0.8475 0.8392 0.8534 0.8498 0.8747 0.8333 0.8546

4.2 Empirical Study on Agent Control

We conduct the second experiment on the task of opponent action prediction to evaluate
the effectiveness of our algorithm. The test-bed is RoboCup robot soccer simulation
which offers a special type of benchmark requiring real-time sensor evaluation and de-
cision making, acting in highly dynamic and competitive environment etc. [13]. In this
paper we focus on the task of predicting the action of an opponent possessing the ball
in such an environment. This is an important subtask in RoboCup soccer game which
enables our agents to model the opponents’ action pattern. For example, when our
agents are defending in front of our goal, it is more like to disorganize the opponent’s
attack if the agents could accurately predict who will the opponent possessing the ball
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will pass to. The prediction is viewed as a multi-class classification problem on the
target space as follows,

A = {pass to teammate 1, ..., pass to teammate 11,Dribble}

The features of state includes

– The absulute position the ball in current cycle and immediately previous cycle.
– The relative position of all players with respect to the ball in current cycle and

immediately previous cycle.

The positions of ball are presented in Cartesian coordinates and all relative positions
are presented in Polar coordinates. Figure 1 illustrates an instance at the moment of an
opponent player possessing the ball in a soccer game.

We extract training and testing data from 99 games played between our agents and
the champion of RoboCup 2004. We conduct these experiments to enable our agents
to learn from the experience of playing with an opponent team. The statistics of these
experiments is shown in Table 3 and Figure 2.

In this experiment, we also use the parameters tuning scheme applied in the ex-
periment conducted on UCI datasets above. The experimental results are illustrated in
Figure 3. In all four coding matrixes, our method outperforms S VMlight.

Fig. 1. Task of Robot Pass. Player 11 of opponent team (shown in red color) is possessing the ball,
the task of RobotPass is to determine the next action of the player possessing ball. The potential
action of opponent player 11 is dribbling or pass the ball to it’s teammate 9 in the current situation.

Table 3. Statistics on RobotPass

#games #instance #pass #dribbling
Train 88 91109 16689 74420
Test 11 11440 2058 9382
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Fig. 2. The receive-passing frequency
of each opponent in both training and
testing data

Fig. 3. Classification accuracy of
SVMlight (SVM) and our method
(OC.MM)

5 Conclusions and Future Works

In this paper we present a novel version of ECOC framework which significantly boosts
the performance of multi-class classification. We give a criteria of ECOC decoding by
defining a global loss based on the empirical loss and regularization over the Extended
Pair Samples. Empirical results on both UCI datasets and the task of opponent action
prediction in RoboCup domain show the utility of our algorithm. We also notice that the
performance improvement is more significant on the datasets which have more classes.
This might be due to the limitation of conventional ECOC framework on complex data
while it is overcome in our approach.

In spite of the presented effective training scheme of OC.MM, a large scale quadratic
programming problem is still time-consuming. Although the training can be conducted
off-line, the efficiency of optimization remains to be further improved in order to make
our algorithm more practical in very large datasets. Another direction of future work
is to conduct further statistical analysis on the OC.MM algorithm. In this novel ECOC
framework, the problem of codewords selection remains open. But the introduction of
decoding margin provides a potential direction of further statistical analysis such as
upper bound of generalization using statistical learning theorems.
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Combining Pairwise Coupling Classifiers Using
Individual Logistic Regressions

Nobuhiko Yamaguchi

Faculty of Science and Engineering, Saga University, Saga-shi, 840–8502 Japan

Abstract. Pairwise coupling is a popular multi-class classification ap-
proach that prepares binary classifiers separating each pair of classes, and
then combines the binary classifiers together. This paper proposes a pair-
wise coupling combination strategy using individual logistic regressions
(ILR-PWC). We show analytically and experimentally that the ILR-
PWC approach is more accurate than the individual logistic regressions.

1 Introduction

The object of this paper is to construct K-class classifiers. It is often easier
to construct a multi-class classifier by combining multiple binary classifiers than
directly construct a multi-class classifier. For example, AdaBoost [1] and support
vector machines (SVM) algorithm [2] [3] are basically binary classifiers, and it
is difficult to directly expand into multi-class classifiers. Typically, in such case,
multi-class classifiers are constructed by decomposing the multi-class problem
into multiple binary classification problems that can be handled by the AdaBoost
and SVM algorithm. In addition, neural networks [4] are also binary classifiers
since each output neuron separates a class from all other classes.

There are many ways to decompose a multi-class problem into multiple bi-
nary classification problems: one-per-class, individual logistic regressions [5] and
pairwise coupling [6] [7]. One-per-class is one of the simplest approaches for
decomposing the multi-class problem. The one-per-class approach prepares K
binary classifiers, each of which separates a class from all other classes, and then
constructs a multi-class classifier by combining the K binary classifiers. Next,
the individual logistic regressions prepare K− 1 binary classifiers, each of which
separates a class i from an arbitrary selected baseline class j. Finally, the pair-
wise coupling approach prepares K(K − 1)/2 binary classifiers, each of which
separates a class i from a class j. In this paper, we focus on the pairwise cou-
pling approach, and propose a pairwise coupling combination strategy using the
individual logistic regressions. In particularly, we investigate the accuracy of our
combination strategy in comparison with the individual logistic regressions.

Hastie and Tibshirani [7] show experimentally that the pairwise coupling ap-
proach is more accurate than the one-par-class approach. However the accuracy
of the pairwise coupling approach has not been almost investigated theoretically.
This is because that the combination strategy of the pairwise coupling approach
is nonlinear and iterative. On the other hand, individual logistic regressions had

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the same combination problem, but Begg and Gray [5] proposed a simple lin-
ear and non-iterative combination strategy with consistent property. For these
reasons, we propose a pairwise coupling combination strategy using individual
logistic regressions (ILR-PWC), and investigate the accuracy of our combina-
tion strategy. As a result, we show that our strategy constructs more accurate
multi-class classifiers in comparison with the individual logistic regressions.

This paper is organized as follows. Section 2 explains the pairwise coupling
approach proposed by Hastie and Tibshirani [7]. Section 3 explains individual
logistic regressions. In section 4, we propose an extension of the pairwise coupling
approach, called ILR-PWC, and compare the accuracy of the individual logistic
regressions and our approach. Section 5 describes the experimental results.

2 Pairwise Coupling

2.1 Pattern Classification

In K-class classification problems, the task is to assign an input x0 to one of
K classes. To solve the problems, we first estimate the posterior probability
p∗i = P (Y0 = i|x0) that a given input x0 belongs to a particular class i, with
a training set d = {(xn, yn) | 1 ≤ n ≤ N}. We then select the class with the
highest posterior probability:

y0 = arg max
1≤i≤K

p∗i . (1)

In the rest of this section, we consider to estimate the posterior probability p∗i
with the training set d.

2.2 Constructing Binary Classifiers

The structure of pairwise coupling is illustrated in Fig. 1. Pairwise coupling is
a multi-class classification approach that prepares K(K − 1)/2 binary classifiers
rij , 1 ≤ i ≤ K, 1 ≤ j < i, and then estimates the posterior probabilities p∗i by
combining the binary classifiers together. The binary classifiers rij are trained so
as to estimate pairwise class probabilities μ∗

ij = P (Y0 = i | Y0 = i or Y0 = j, x0).
The estimates rij of μ∗

ij are available by training with the ith and jth classes of
the training set:

dij = {(xn, yn) | yn = i or yn = j, 1 ≤ n ≤ N} . (2)

Then, using all rij , the goal is to estimate p∗i = P (Y0 = i|x0), i = 1, · · · ,K.

2.3 Estimating Posterior Probabilities

Here, we describe a method for estimating the posterior probabilities p∗i , pro-
posed by Hastie and Tibshirani [7]. First note that the probabilities μ∗

ij can be
rewritten as

μ∗
ij = P (Y0 = i | Y0 = i or Y0 = j, x0) = p∗i /(p

∗
i + p∗j). (3)
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Fig. 1. Structure of pairwise coupling

Step 1. Initialize pi and compute coressponding μij .
Step 2. Repeat until conversence:
(a) For each i = 1, · · · , K

pi ← pi ·
∑K

j �=i nijrij∑K
j �=i nijμij

.

(b) Renormalize the pi.
(c) Recompute the μij .

Fig. 2. Algorithm for estimating posterior probabilities

From (3), they consider the model as follows:

μij = pi/(pi + pj), (4)

and propose to find the estimates pi of p∗i so that μij are close to the observed
rij . The closeness measure is the Kullback-Leibler (KL) divergence between rij
and μij :

l(p1, · · · , pK) =
K∑

i=1

K∑
j=i+1

nij

[
rij log

rij
μij

+ (1 − rij) log
1− rij
1− μij

]
(5)

where nij is the number of elements in the training set dij . Hastie and Tibshirani
[7] propose to find the estimates pi that minimize the function l, and also propose
to use an iterative algorithm to compute the pi’s as illustrated in Fig. 2.

3 Individual Logistic Regressions

The object of this paper is to propose a pairwise coupling combination strategy
using individual logistic regressions [5]. The individual logistic regressions are
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K-class classification approaches that combine K − 1 binary classifiers. In this
section, we describe the individual logistic regressions, and in the next section,
we propose a pairwise coupling combination strategy using the individual logistic
regressions (ILR-PWC).

3.1 Background

Multinomial logistic regressions [8] are popular approaches for solving multi-class
classification problems. However, at the time when the individual logistic regres-
sions were proposed, most statistical software packages included only simple bi-
nary logistic regressions, but did not include the multinomial logistic regressions.
For this reason, Begg and Gray [5] proposed the individual logistic regressions
which approximate the multinomial logistic regressions by combining multiple
binary logistic regressions. They show that the approximation algorithm is not
maximum likelihood but is consistent [5]D In addition, some experiments [5] [9]
show that the efficiency loss of the approximation is small. For these reasons,
the individual logistic regressions are still used to approximate the multinomial
logistic regressions.

The rest of this section is organized as follows. Section 3.2 and 3.3 describe the
logistic regressions and multinomial logistic regressions, respectively. In section
3.4, we describe a method for approximating the multinomial logistic regressions
by using the individual logistic regressions.

3.2 Logistic Regressions

Logistic regressions are one of the most widely used techniques for solving binary
classification problems. In the logistic regressions, the posterior probabilities p∗i ,
i ∈ {1, 2}, are represented as the following:

π1 =
exp(η)

1 + exp(η)
, π2 = 1− π1 (6)

where η is a function of an input x0. For example, η is a linear function of the
input x0, that is,

η = αT x0 + β, (7)

and the parameters α, β are estimated by the maximum likelihood method. In
this paper, η is an arbitrary function of x0. Note that if you choose an appropriate
η, the model in (6) can represent some kinds of binary classification systems, such
as neural networks, logitBoost [10], etc.

3.3 Multinomial Logistic Regressions

Multinomial logistic regressions are one of the techniques for solving multi-class
classification problems. In the multinomial logistic regressions, the posterior
probabilities p∗i , i ∈ {1, · · · ,K}, are represented as the following:
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πj
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(ηj
i )

1 +
∑K

k �=j exp(ηj
k)

if i �= j

1

1 +
∑K

k �=j exp(ηj
k)

otherwise

(8)

where j is a baseline class and ηj
i is a function of an input x0. For example, ηj

i

is a linear function of the input x0, that is,

ηj
i = αj

i

T
x0 + βj

i , (9)

and the parameters αj
i , β

j
i are estimated by the maximum likelihood method.

As in the case of the logistic regressions, ηj
i is an arbitrary function of x0, and

the baseline class j is an arbitrary class.

3.4 Individual Logistic Regressions

Individual logistic regressions are techniques for approximating K-class multi-
nomial logistic regressions by combining K − 1 binary logistic regressions. As in
the case of the multinomial logistic regressions, the individual logistic regressions
represent the posterior probabilities p∗i as (8), but the function ηj

i is approxi-
mated by using K − 1 binary logistic regressions. In the following sentence, we
describe the method for approximating the function ηj

i .
First, we select a class j and prepare K − 1 binary logistic regressions πij ,

i = 1, · · · , j − 1, j + 1, · · · ,K. The binary logistic regressions πij are trained so
as to estimate the probabilities μ∗

ij = P (Y0 = i | Y0 = i or Y0 = j, x0). Namely,
we prepare K − 1 logistic regressions

πij =
exp(ηij)

1 + exp(ηij)
(10)

and train the πij ’s with the training set dij in (2).
The function ηij in (10) can be considered as an estimate of log p∗i /p

∗
j by the

following expansion:

ηij = log
πij

1− πij
≈ log

μ∗
ij

1− μ∗
ij

= log
p∗i
p∗j
, (11)

and the function ηj
i in (8) can be also considerd as an estimate of log p∗i /p

∗
j by

the following expansion:

ηj
i = log

πj
i

πj
j

≈ log
p∗i
p∗j
. (12)

From this equality, replacing the function ηj
i in (8) with the function ηij in (10),

we can approximate the multinomial logistic regression of the baseline class j as
follows:
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πj
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(ηij)

1 +
∑K

k �=j exp(ηkj)
if i �= j

1

1 +
∑K

k �=j exp(ηkj)
otherwise.

(13)

4 ILR-PWC

4.1 Pattern Classification Problem of ILR-PWC

In this paper, we propose a pairwise coupling combination strategy using indi-
vidual logistic regressions (ILR-PWC). As in the case of the pairwise coupling
approach, the ILR-PWC approach prepares K(K − 1)/2 binary classifiers rij ,
and then combines the binary classifiers together. In the ILR-PWC approach,
however, logistic regression is used as the binary classifier rij , that is,

rij =
exp(gij)

1 + exp(gij)
(14)

where gij is an arbitrary function of an input x0. The logistic regression rij is
trained so as to estimate probability μ∗

ij with the training set dij . Then, the goal
is to estimate the posterior probabilities p∗i by using all rij .

To estimate the posterior probabilities, Hastie and Tibshirani [7] proposed a
nonlinear and iterative algorithm, but it is difficult to investigate the accuracy.
From this reason, we propose a two-stage estimation strategy. In the first stage,
we construct K multinomial logistic regressions using the K(K − 1)/2 logistic
regressions rij . In the second stage, we estimate the posterior probabilities p∗i
using the K multinomial logistic regressions. In this paper, we show that the
optimal estimates of p∗i can be derived as a linear combination of the K multi-
nomial logistic regressions, and we investigate the accuracy of our estimation
strategy in comparison with individual logistic regressions.

The rest of this section is organized as follows. In section 4.2, we propose a
method for constructing K multinomial logistic regressions by using individual
logistic regressions. In section 4.3, we estimate the posterior probabilities p∗i
using the K multinomial logistic regressions. In section 4.4, we investigate the
accuracy of the ILR-PWC approach.

4.2 Constructing Multinomial Logistic Regressions

In this section, we propose a method for constructing K multinomial logistic
regressions using the K(K − 1)/2 logistic regressions rij . First, note that rij
and πij in (10) are the same estimate because they are trained so as to estimate
the same probability μ∗

ij with the same training set dij . We can therefore ap-
proximate multinomial logistic regressions with individual logistic regressions in
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section 3.4. That is, we can approximate a multinomial logistic regression of a
baseline class j as the following:

pj
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(gij)

1 +
∑K

k �=j exp(gkj)
if i �= j

1

1 +
∑K

k �=j exp(gkj)
otherwise.

(15)

The ILR-PWC approach prepares K multinomial logistic regressions pj
i of the

baseline class j = 1, · · · ,K using (15).

4.3 Estimating Posterior Probabilities

In this section, we consider to estimate the posterior probabilities p∗i using the K
multinomial logistic regressions pj

i . In the ILR-PWC approach, we find the esti-
mate pi of p∗i so that pi is close to the estimates p1

i , · · · , pK
i of the K multinomial

logistic regressions. The closeness measure is the Kullback-Leibler (KL) diver-
gence between pi and p1

i , · · · , pK
i . Noting further that the sum of probabilities is

1, we can write the problem of estimating p∗i as follows:

minimize
K∑

i=1

K∑
j=1

pj
i log

pj
i

pi
subject to

K∑
i=1

pi = 1. (16)

In the rest of this subsection, we solve this constrained optimization problem.
We use the Lagrange multiplier method to derive the optimal estimate pi. We

first define an objective function L as follows:

L(p1, · · · , pK , λ) =
K∑

i=1

K∑
j=1

pj
i log

pj
i

pi
− λ

{
K∑

i=1

pi − 1

}
. (17)

Differentiating the function L with respect to the pi and Lagrange multiplier λ,
we can obtain

K∑
i=1

pi = 1, (18)

pi = − 1
λ

K∑
j=1

pj
i . (19)

Substituting (19) into (18), we obtain λ = −K. Further substituting λ = −K
into (19), we can derive the optimal estimate pi as follows:

pi =
1
K

K∑
j=1

pj
i . (20)

Thus, we construct a multi-class classifier by using (1), (14), (15) and (20), and
we call this strategy ILR-PWC (pairwise coupling combination strategy using
individual logistic regressions).
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4.4 Investigation of Accuracy of ILR-PWC

In this section, we compare the accuracy of the ILR-PWC approach with indi-
vidual logistic regressions. Here, we use the estimation error of posterior prob-
abilities to evaluate the accuracy of a multi-class classifier. First, we define the
accuracy of the ILR-PWC approach as (21). In the same way, we define the ac-
curacy of the individual logistic regressions as (22), but Rilr

i is defined using the
mean of all baseline classes since we can select an arbitrary class as the baseline
class.

Rilr−pwc
i = E

{
(p∗i − pi)2

}
(21)

Rilr
i =

1
K

K∑
j=1

E
{
(p∗i − pj

i )
2
}

(22)

We can obtain (23) by transforming (21) into (24), and we can therefore show
that the ILR-PWC approach is more accurate than the individual logistic re-
gressions.

Rilr−pwc
i ≤ Rilr

i (23)

E
{
(p∗i − pi)2

}
= E

⎧⎨⎩(p∗i −
1
K

K∑
j=1

pj
i )

2

⎫⎬⎭
= E

⎧⎨⎩ 1
K2 (

K∑
j=1

(p∗i − pj
i ))

2

⎫⎬⎭
≤ E

⎧⎨⎩ 1
K

K∑
j=1

(p∗i − pj
i )

2

⎫⎬⎭ (24)

where the last inequality is obtained by the Cauchy-Schwarz inequality.

5 Computer Simulation

We present an experimental evaluation on 7 data sets from the UCI machine
learning repository [11], including glass, hayes-roth, iris, led, letter, segment and
vehicle. A summary of data sets is given in Table 1. For comparison, we tested
three different approaches; one-per-class (OPC), pairwise coupling (PWC) and
individual logistic regressions (ILR). In our experiment, as individual binary
classifiers rij , we employ feedforward neural networks with one output unit and
10 hidden units.

To evaluate our approach, we used the evaluation technique 10-fold cross-
validation method, which consists of randomly dividing the data into 10 equal-
sized groups and performing ten different experiments. In each run, nine of the
ten groups are used to train the classifiers and the remaining group is held out for
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Table 1. Experimental data set

Data Set Entries Attributes Classes
glass 214 9 6

hayes-roth 132 5 3
iris 150 4 3
led 700 7 10

letter 20000 16 26
segment 2310 19 7
vehicle 846 18 4

Table 2. Average misclassification rates

dataset OPC PWC ILR ILR-PWC
glass 39.7 34.1 37.6 35.0

hayes-roth 38.0 30.4 35.6 30.4
iris 4.7 4.0 6.5 4.0
led 27.9 27.9 31.4 27.3

letter 39.8 18.6 33.3 17.5
segment 8.6 6.6 12.7 6.9
vehicle 23.2 21.2 25.3 21.3
average 26.0 20.4 26.1 20.3

the evaluation. Table 2 shows the average misclassification rates of 10 runs of 10-
fold cross-validations. From Table 2, we can see that the misclassification rate of
the ILR-PWC approach is better than that of the ILR approach. From Table 2,
we can see that the maximal difference of misclassification rates between the
PWC and ILR-PWC approach is 1.1% in letter data and the performance of the
PWC and ILR-PWC approach are almost the same.

6 Conclusion

In this paper, we have focused on combining binary classifiers of pairwise cou-
pling and have proposed a pairwise coupling combination strategy using indi-
vidual logistic regressions (ILR-PWC). In particular, we have investigated the
accuracy of the ILR-PWC approach, and as a result, we have shown that our
combination strategy is more accurate than individual logistic regressions.
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Abstract. We show that the novelty detection approach is a viable so-
lution to the class imbalance and examine which approach is suitable for
different degrees of imbalance. In experiments using SVM-based classi-
fiers, when the imbalance is extreme, novelty detectors are more accu-
rate than balanced and unbalanced binary classifiers. However, with a
relatively moderate imbalance, balanced binary classifiers should be em-
ployed. In addition, novelty detectors are more effective when the classes
have a non-symmetrical class relationship.

1 Introduction

The class imbalance refers to a situation where one class is heavily underrepre-
sented compared to the other class in a classification problem [1]. Dealing with
the class imbalance is of importance since it is not only very prevalent in various
domains of problems but also a major cause for performance deterioration [2].
When one constructs a binary classifier with an imbalanced training dataset,
the classifier produces lopsided outputs to the majority class. In other words, it
classifies far more patterns to belong to the majority class than it should. Real
world examples include fault detection in a machine, fraud detection, response
modeling, and so on.

A vast number of approaches have been proposed to deal with the class
imbalance [1,2,3,4,5,6]. The most popular methods try to balance the dataset
with under-/over-sampling, and cost modification. A balanced binary classifier
is constructed using one of the balancing methods, while a classifier is called
unbalanced when no balancing method is implemented. On the other hand, the
drastic solution of totally ignoring one class during training can work well for
some imbalanced problems [7,8,9,10]. This approach is called novelty detection
or one-class classification [11,12] where the majority class is designated as nor-
mal while the minority class as novel. A classifier learns the characteristics of the
normal patterns in training data and detects novel patterns that are different
from the normal ones. Geometrically speaking, a novelty detector generates a
closed boundary around the normal patterns [13]. Although a novelty detector
usually learns only one class, it can also learn two classes. It has been empiri-
cally shown that a novelty detector trained with a few novel patterns as well can
generate a more accurate and tighter boundary [9,12].
� Corresponding author.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 21–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we show that the novelty detection approach is a viable solu-
tion to the class imbalance. In particular, two types of novelty detectors, 1-SVM
trained only with one class [13] and 1-SVM trained with two classes (1-SVM2)
[14], are compared with balanced and unbalanced SVMs. In order to investigate
which approach is suitable for different degrees of class imbalance, experiments
are conducted on artificial and real-world problems with varying degrees of im-
balance. In the end, we examine the following conjectures:

(a) Novelty detectors are suitable for an extreme imbalance while balanced bi-
nary classifiers are suitable for a relatively moderate imbalance.

(b) A problem is called symmetrical when each class originally consists of ho-
mogeneous patterns and a classifier discriminates two classes, e.g. apples
and oranges, or males and females. A problem is called non-symmetrical,
when only one class is of interest and everything else belongs to another
class. A classifier distinguishes one class from all other classes, e.g. apples
from all other fruits. Novelty detectors are more suitable for datasets with
non-symmetrical class relationships than with symmetrical relationships.

(c) As the class imbalance diminishes, a novelty detector trained with two classes
improves more, compared to one trained with one class.

The following section briefly reviews the support vector-based classifiers used
in this paper and Section 3 presents the experimental results. Conclusion and
some remarks are given in Section 4.

2 Support Vector-Based Classifiers

Suppose a dataset X = {(xi, yi)}N
i=1 where xi is a d-dimensional input pattern

and yi is its class label. Let us define the majority and the minority classes as
X+ = {xi|yi = +1} and X− = {xi|yi = −1}, respectively. In an imbalanced
dataset, N+ � N− where N+ and N− are the numbers of patterns in X+ and
X−, respectively. We employ unbalanced SVM, balanced SVMs, 1-SVM, and
1-SVM2 as listed in Table 1.

Table 1. Classifiers used: SVM indicates the standard two-class SVM. SVM-U, SVM-
O, and SVM-C are balanced SVMs using under-sampling, over-sampling, and cost
modification, respectively. 1-SVM and 1-SVM2 indicate one-class SVMs trained with
one class and with two classes, respectively.

Unbalanced Balanced Novelty detector Novelty detector
binary classifier binary classifiers with one class with two classes

SVM-U
SVM SVM-O 1-SVM 1-SVM2

SVM-C
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2.1 Support Vector Machine (SVM)

SVM finds a hyperplane that separates two classes with a maximal margin in a
feature space [15]. An optimization problem can be considered:

min
1
2
‖w‖2 + C

N∑
i=1

ξi, (1)

s.t yi(wTΦ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , N,
where C ∈ (0,∞] is the cost coefficient which controls the trade-off between the
margin and the training error. The solution can be obtained by the quadratic
programming techniques. In the optimal solution, only a small number of αi’s
are positive where αi’s are the Lagrangian multipliers related to the training
patterns. Those patterns for which αi’s are positive are called support vectors
and the subset of support vectors is denoted as SV. The SVM decision function
for a test pattern x is computed as

f(x) = sign
[
wTΦ(x) + b

]
= sign

[ ∑
xi∈SV

αiyik(xi,x) + b

]
. (2)

2.2 Balancing with SVM

In an imbalanced problem, a typical binary classifier predict most or even all
patterns to belong to the majority class [1]. Although the classification accuracy
may be very high, this is not what we are interested in. We would like to con-
struct a classifier which identifies both classes. Therefore, a balanced classifier
is preferred although its accuracy may be lower than an unbalanced one. Vari-
ous balancing methods have been proposed [1,2,3,4,5,6]. We apply a few of the
simplest methods: under-sampling, over-sampling, and cost modification.

With under-sampling [1], N− patterns are randomly sampled from X+ to
equate the numbers of patterns in two classes. With over-sampling [5], patterns
from X− are randomly sampled N+ times with replacement. The two sampling
methods are the most simple and the most popular. However, under-sampling
may discard important information from the majority class. Over-sampling do
not make additional information while increasing the number of patterns sig-
nificantly. In this paper, SVM-U and SVM-O denote SVM classifiers using the
under- and over-sampling methods, respectively.

For SVM, the cost modification method [3,6] is readily applicable by assigning
a smaller cost to the majority class and a larger cost to the minority class to
assure that the minority class is not ignored. One way to accomplish it is to
modify the objective function in (1) as follows,

min
1
2
‖w‖2 + C+

∑
xi∈X+

ξi + C− ∑
xi∈X−

ξi, (3)

where C+ = N−
N C and C− = N+

N C. The classifier obtained by solving (3) is
denoted as SVM-C. SVM-C may lead to seriously biased results since the costs
assigned entirely based on the numbers of patterns can be incorrect.
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2.3 Support Vector Machine for Novelty Detection

1-SVM [13] finds a function that returns +1 for a small region containing training
data and −1 for all other regions. A hyperplane w is defined to separate a
fraction of patterns from the origin with a maximal margin in a feature space.
The conventional 1-SVM performs a kind of unsupervised learning, learning only
the majority class and not considering the class labels. Thus an optimization
problem can be considered as follows,

min
1
2
‖w‖2 − ρ+

1
νN+

∑
xi∈X+

ξi, (4)

s.t wT Φ(xi) ≥ ρ− ξi, ξi ≥ 0, ∀xi ∈ X+.

where ν ∈ (0, 1] is a cost coefficient.
One can construct 1-SVM2 [14] by incorporating patterns from the minority

class into (4) as follows,

min
1
2
‖w‖2 − ρ+

1
νN

∑
i

ξi, (5)

s.t yi(wT Φ(xi)− ρ) ≥ ξi, ξi ≥ 0, i = 1, 2, · · · , N.

Note that this is not for binary classification. The objective function is not to
separate two classes but to separate the majority patterns from the origin while
keeping the errors as small as possible. The solutions of (4-5) can be obtained
analogously to SVM.

3 Experimental Results

The classifiers were applied to ten artificial and 24 real-world problems. For
each training dataset, the degree of class imbalance varied with the fractions
of the minority class being 1, 3, 5, 7, 10, 20, 30, and 40%. Each classifier was
constructed based on a training dataset and evaluated on a test set which has
a relatively balanced class distribution. Ten different training and test sets were
randomly sampled for each problem to reduce a sampling bias.

To train the SV-based classifiers, two hyper-parameters have to be specified
in advance, the RBF kernel width, σ, and the cost coefficient, C or ν. For each
problem, we chose the best parameters on a hold-out dataset which has an equal
number of patterns from the two classes.

3.1 Artificial Datasets

We generated five types of majority classes which reflect features such as scal-
ing, clustering, convexity, and multi-modality. For each distribution, two types
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Fig. 1. The artificial datasets: The first and second rows correspond to symmetrical and
non-symmetrical cases, respectively. The columns correspond to “Gauss”, “Gauss3”,
“Ellipse”, “Ellipse2”, and “Horseshoe” from left to right. The circles and the crosses
represent patterns from the majority and the minority classes, respectively.

of minority classes were generated. One has a multivariate Gaussian distribution
while the other has the uniform distribution over the whole input space. The for-
mer corresponds to the symmetrical case while the latter to the non-symmetrical
case. Thus, ten (= 5 × 2) artificial datasets were generated as shown in Fig. 1.
For each dataset, 200 and 1,000 patterns were sampled from the majority class
for training and test, respectively, and 1,000 patterns were sampled from the
minority class for test.

Fig. 2(a) shows the average accuracies over the five symmetrical artificial
datasets. When the fraction of the minority class is 5% or lower, 1-SVM and
1-SVM2 are superior to the binary classifiers, balanced or not. Then, balanced
classifiers, especially SVM-U and SVM-O, improved and came ahead of them
as the fraction of the minority class increases. 1-SVM is generally slightly bet-
ter than 1-SVM2. The average accuracies over the non-symmetrical datasets are
shown in Fig. 2(b). Novelty detectors are even better than in Fig. 2(a). In par-
ticular, 1-SVM is the best classifier or tied for the best for all the fractions.
Unexpectedly, 1-SVM2 gets gradually worse as the fraction of the minority class
increases. Novelty detection is more effective for non-symmetrical datasets than
for symmetrical ones. Considering that 1-SVM is better than 1-SVM2, utilizing
two classes does not necessarily lead to better results. As expected, unbalanced
SVM did not work well and performed worst in both cases, although it caught
up with the others as the fraction increased.

Fig. 3 shows examples of decision boundaries with 10% of patterns from the
minority class. For the symmetrical dataset, every classifier generated a reason-
able boundary. The boundaries by the binary classifiers resembled the “optimal”
one. While the boundaries by the novelty detectors were different from the opti-
mal one, they could effectively discriminate the two classes. On the other hand,
for the non-symmetrical dataset, the binary classifiers failed to generate good
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Fig. 2. The average accuracies for the artificial datasets

decision boundaries. SVM generated boundaries that will classify too large a
region as the majority class. Remember that crosses can appear anywhere in the
2D space. SVM-U did its best given the dataset, but generated a boundary that
was much different from the optimal one because too many patterns from the
majority class were discarded. Another drawback of SVM-U is its instability. A
boundary in one trial was very different from a boundary in another. Note that
we present the best looking boundary in our experiments. SVM-O and SVM-
C performed poorly since the patterns from the minority class were too scarce
to balance the imbalance. The novelty detectors generated boundaries similar to
the optimal one, though the boundaries by 1-SVM and 1-SVM2 were not exactly
identical.

3.2 Real-World Datasets

A total of 21 real-world datasets were selected from UCI machine learning reposi-
tory1, Data Mining Institute (DMI)2, Rätsch’s benchmark repository3, and Tax4

as listed in Table 2. Digit and letter recognition problems are non-symmetrical
since they were formulated to distinguish one class from all others. For the digit
dataset, ‘1’ and ‘3’ were designated in turn as the majority classes and discrim-
inated from all other digits, respectively. For the letter dataset, ‘a’, ‘o’, and ‘s’
were designated in turn as the majority class. Also, the pump dataset is non-
symmetrical since a small non-faulty region is to be recognized in the whole
input space. Therefore, six non-symmetrical problems were formulated.

Fig. 4(a) shows the average accuracies over the 18 symmetrical real-world
problems. The novelty detectors are better than the binary classifiers when the
fraction is lower than 5%. Their accuracies remain still for all fractions while

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html.
2 http://www.cs.wisc.edu/dmi/.
3 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm .
4 Pump vibration datasets for fault detection used in [12]. Personal communication.
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(a) SVM (b) SVM-U (c) SVM-O

(d) SVM-C (e) 1-SVM (f) 1-SVM2

Fig. 3. Decision boundaries for the horseshoe dataset: Six classifiers were trained with
100 circles and ten crosses. The solid boundaries were generated by the classifiers while
the broken ones are the “optimal” ones.
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Table 2. Real-world datasets: 18 of 24 have symmetrical class distributions while three
have non-symmetrical distributions

Symmetrical classes

Dataset Source Dataset Source Dataset Source
banana Rätsch breast-cancer Rätsch bright DMI
bupa Rätsch check DMI diabetes Rätsch
dim DMI german Rätsch heart Rätsch

housing DMI image Rätsch ionosphere UCI
mush DMI thyroid Rätsch titanic Rätsch

twonorm Rätsch vehicle UCI waveform Rätsch

Non-symmetrical classes

Dataset Source Dataset Source Dataset Source
digit UCI letter UCI pump Tax
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Fig. 4. The average accuracies for the real-world datasets

the accuracies of the binary classifiers increase steeply. When the fraction ex-
ceeds 5%, SVM-O is the best classifier. 1-SVM and 1-SVM2 are equivalent to
each other. Fig. 4(b) shows the average accuracies over the six non-symmetrical
real-world problems. 1-SVM2 is the best or tied for the best when the fraction
is 20% or lower. 1-SVM2 improves steadily as the fraction increases while the
accuracy of 1-SVM changes little. 1-SVM is better than the binary classifiers
until the fraction increases to 7%. Among the binary classifiers, SVM-U is the
most accurate. The other classifiers show little difference in accuracy.

4 Conclusions and Discussion

In our experiments, the conjectures in Section 1 were investigated:

(a) With an extreme imbalance, e.g. with 5% or lower fraction of the minority
class, novelty detectors are generally more accurate than binary classifiers.
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On the other hand, with a moderate imbalance, e.g. with 20% or higher
fraction of the minority class, balanced binary classifiers are more accurate
than unbalanced binary classifier and novelty detectors. With a fraction of
5 to 20% of the minority class, the results are not conclusive.

(b) Novelty detectors perform better for the non-symmetrical problems than
for the symmetrical ones, in comparison to binary classifiers. That is not
surprising since solving a non-symmetrical problem is naturally fit for the
novelty detection approach.

(c) The results are conflicting regarding the third conjecture. For the artificial
datasets, 1-SVM2 is no better than 1-SVM and its accuracy even decreases
as the fraction of the minority class increases. For the real-world dataset, on
the other hand, 1-SVM2 is slightly better than 1-SVM. Its accuracy increases
gradually for the non-symmetrical datasets. We speculate that learning only
one class can be sufficient for a relatively noise-free dataset such as the
artificial ones while learning two classes helps a novelty detector refine its
boundary for a noisy dataset.

In summary, novelty detection approach should be considered as a candidate
for imbalanced problems, especially when the imbalance is extreme. Balanced
binary classifiers have comparable performances. So a balancing method should
be chosen empirically depending on the problem at hand.

A few limitations have to be addressed. First, we only have considered degrees
of class imbalance. There are many other factors to influence the class imbalance
such as data fragmentation, complexity of data, data size to name a few [2,4].
The novelty detection approach needs to be analyzed with respect to them. Sec-
ond, parameter selection was based on a balanced hold-out dataset. How to per-
form parameter selection with an imbalanced dataset demands further research.
Third, we restricted our base classifiers to SVM in the experiments. Other fami-
lies of algorithms such as neural networks and codebook-based methods need to
be investigated as well.
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Abstract. In this paper we present a novel multistage classification strategy for
handwriting Chinese character recognition. In training phase, we search for the
most representative prototypes and divide the whole class set into several groups
using prototype-based clustering. These groups are extended by nearest-neighbor
rule and their centroids are used for coarse classification. In each group, we ex-
tract the most discriminative feature by local linear discriminant analysis and
design the local classifier. The above-mentioned prototypes and centroids are op-
timized by a hierarchical learning vector quantization. In recognition phase, we
first find the nearest group of the unknown sample, and then get the desired class
label through the local classifier. Experiments have been implemented on CA-
SIA database and the results show that the proposed method reaches a reasonable
tradeoff between efficiency and accuracy.

1 Introduction

Handwriting Chinese character recognition (HCCR) is one of the most challenging top-
ics in the fields of pattern recognition. There are three main factors that make HCCR
difficult:

– Handwriting styles vary widely among individuals so that the boundaries between
different classes are very complicated.

– The statistical features for HCCR are usually highly dimensional and the number
of classes is very large.

– The actual HCCR system should possess the ability to batch process large amounts
of documents efficiently.

To improve the classification accuracy, we should employ nonlinear classifiers with
complex structure and higher-dimensional feature. However, such classifiers often re-
sult in great requirement for both computation and storage. From an application point
of view, we hope to reach an acceptable tradeoff between accuracy and efficiency.

Linear discriminant analysis (LDA), as a dimension reduction technique, is usually
utilized to alleviate the computation burden and speed up the recognition process. Fur-
thermore, the criterion of LDA aims at maximizing the between-class variance while
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simultaneously minimizing the within-class variance, so that more accurate classifica-
tion can be achieved because the samples are rearranged in the reduced feature space.

Multistage classification [1,2,3,4], as shown in Fig. 1, is another effective strategy for
recognition problems on large class set. The coarse classification often utilizes cheap
feature and structure such that less computation is required. The candidate set is selected
according to the output of the coarse classifier, and consequently the most matching
classifier is constructed (or selected) for fine classification. The fine classifier will per-
form detailed comparison and provide the final class labels.

Fig. 1. Structure of multistage classification

It is natural to combine LDA and multistage classification for HCCR. In the coarse
classification stage, all classes are involved, so that we perform LDA to obtain a global
transformation matrix W by using all the training samples. In the fine classification
stages, since only a part of classes are involved, such W isn’t optimal any more and
we need a local transformation matrix for each candidate set to provide locally discrim-
inative information. However, theoretically speaking, for a system with n classes, the
number of possible candidate sets is 2n − 1.

As is evident from the above discussion that we need an efficient candidate selection
rule which can effectively exclude most of the redundant candidate sets, because we
can’t afford the burden of performing LDA online. Unfortunately, the existing rules,
such as rank-based rule [3] and cluster-based rule [1,4], can not solve this problem.

In this paper, we present a novel multistage classification scheme for HCCR. The
whole class set is divided into a set of subsets called groups, by clustering algorithms
and extension rules. The adjacent groups overlap each other, and as a straightforward
result, the nearest group to an unknown sample can be used as its candidate set. Since
the number of groups is finite, we perform LDA for each group, so that the local dis-
criminative features can be extracted and used for fine classification.

During the design process, we adopt a hierarchical learning vector quantization
(LVQ) to improve the overall performance of our HCCR system. Firstly, we use the
global LVQ to search for the most representative prototypes in the sense that the clas-
sification accuracy is highest. Such prototypes are used to initialize the desired groups.
Secondly, we use the group-based LVQ to optimize the groups centroids such that the
hit rate is highest. At last, after all groups have been decided, we use the local LVQ for
each group to train the fine classifiers.
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2 Group-Based Candidate Selection Rule

There are two key issues for the design of multistage classification. The first one is
to improve the hit rate, which denotes the probability that the candidate set of an un-
known sample’s nearest region contains the correct class label. The second one is to
improve the accuracy of each fine classifier. In our HCCR system, these problems
are circumvented by group-based candidate selection rule and local linear discriminant
analysis,respectively.

The goal of coarse classification is to decide the compact and accurate candidate
set, and then construct the appropriate fine classifier. There basically exist two types of
decision rules for candidate selection in the literature. Without loss of generality, we
utilize the two-dimensional feature space to depict the related decision rules.

The first one is rank-based decision rule [3,5,6]. Namely, we select the classes with
the highest scores based on the output of the coarse classifier and consequently construct
the candidate set. An overwhelming advantage of this rule is that the fine classifier can
always fix attention on the most confusable classes and exclude the irrelevant ones, as
is shown in Fig. 2.

Fig. 2. Comparison of different decision rules

The second one is cluster-based decision rule [1,4]. We divide the whole class set
into a number of unoverlapped clusters and utilize the cluster centroids to construct
a distance-based coarse classifier. Then for an unknown sample, we choose several
nearest clusters and use the related classes to build the candidate set. For example,
sample A in Fig. 2 is located around the boundary between two clusters, so that both
clusters should be selected to ensure high hit rate.

A common drawback of rank-based and cluster-based rule is that the number of the
possible candidate sets is nearly infinite. Hence, there is little flexibility for designing



34 L. Xu et al.

an appropriate fine classifier for each group. For example, in [2], both the coarse and
fine classification adopt nearest neighbor classifier. The only difference is that the fine
classifier employs more samples for each class than coarse classifier.

In order to overcome this drawback, we propose the group-based decision rule.
Groups are distinguished from clusters just because adjacent groups overlap each other.
Such overlap is achieved by nearest-neighbor-based extension rule which will be de-
scribed in the next section. For example, the boundary of the left group in Fig. 2 has
been extended to the solid line. Under this circumstance, the nearest one group of an un-
known sample may entirely contain its candidate set. Even though sample A is located
around the boundary of the two clusters, its candidate set is still entirely contained in
its nearest group (the left one).

Since the number of groups are definite, we can perform LDA for each of them,
so that the most discriminative features can be extracted and the recognition rates of
the fine classifiers can be greatly improved. More importantly, we can even employ
different types of features and classifiers for each group.

Notes and Comments. If we excessively extend the groups, the overall hit rate will
infinitely approach 100%. However, such high hit rare is meaningless because the cor-
responding group size will be very large. As a result, we should reach a tradeoff between
the hit rate and the average size of the groups.

3 Hierarchical LVQ for Classifier Design

Considering the large class set and high-dimensional features, we employ distance-
based nearest prototype classifiers (NPC(k,C)) in our HCCR system [7], where the pa-
rameter k represents the number of prototypes for each class and C is the number of
classes. It is pertinent to point that our multistage classification scheme doesn’t inher-
ently prohibit other types of classifiers.

The methodology for NPC design can be found in [7,8,9]. In this paper, we employ
the GLVQ algorithm due to its superior performance [7,10]. We will not describe this
algorithm in detail in this paper.

3.1 Step 1: Prototype Abstraction Via Global LVQ

We first calculate the global transformation matrix W using the LDA algorithm in [11],
and the rest work of step 1 and step 2 will be based on the lower-dimensional space.

The main task of step 1 is to initialize the group centroids. An intuitive choice is
sample-based clustering algorithm. However, through preliminary experiments we have
found that this approach suffers from slow convergence and is sensitive to the outliers
in the training set. In order to overcome these drawbacks, we employ prototype-based
approach. Namely, we design a NPC(K,C), and directly use the corresponding proto-
types for clustering. Considering the different handwriting styles, K > 1 is necessary.
The prototypes of each class are initialized using k-means clustering algorithm. Then
the whole prototype set is trained by global LVQ algorithm, where globe means that the
optimization process is based on the whole class set.



A Novel Multistage Classification Strategy for HCCR Using Local LDA 35

The NPC(K,C) designed in this step will play another role when a sample falls into
the risk zone. In this condition, we utilize the cluster-based rule instead to decide the
candidate set and extract the corresponding prototypes for fine classification.

3.2 Step 2: Group Extension and Group-Based LVQ

The task of step 2 is to extend the groups by nearest-neighbor (NN) rule and then op-
timize the centroids using supervised group-based LVQ. Group-based LVQ means that
the objects of this optimization process are the group centroids.

To make the GLVQ algorithm meaningful, we have to define the group label of a
sample before the training procedure. Since the adjacent groups overlap each other, a
training sample may simultaneously belong to several groups, so that its group label is
not unique.

Definition 1. The group label Zt of a sample (xt, yt) is the union of indices of the
groups that contain its class label. Namely, Zt = {i | yt ∈ Gi}.
The whole procedure for phase 2 is described as the pseudocode in Algorithm 1, where
the function NNeighbor(x, P,M) returns the indices of the M nearest neighbors of
x in P , and Gi is the union of the indices of the classes that belong to group i. The
elements in Gi are arranged in increasing order.

Algorithm 1. Pseudocode for step 2

Input: prototypes P // p(i−1)∗K+1, · · · , piK belong to class i
Output: groupGi and group centroids gi,1 ≤ i ≤ L, where L

is the number of groups
{g1, · · · , gL} = kmeans(P,L);
For i = 1 to L

Gi = Φ (empty set);
End
For i = 1 to CK

q = arg min
j

d(pi, gj);

{b1, · · · , bM} = NNeighbor(pi, P,M);
For j = 1 to M

Gq = Gq ∪ {ceil(bj/K)};
End

End
Repeat

For i = 1 to N
k = arg min

j∈Zi

d(xi, gj);

l = arg min
j �∈Zi

d(xi, gj);

Update(gk, gl); //using GLVQ algorithm [10]
End
CalculateHitRate();
flag = IsConvergent();

Until flag == True
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3.3 Step 3: Fine Classifier Design Via Local LVQ

After the groups have been decided, We should design the fine classifier for each group.
Since the average size of these groups are much smaller than that of the whole class set,
each group can be independently treated as a simple pattern system.

In our system, the fine classifier for each group is NPC(1). One prototype for each
class is enough and can guarantee satisfying classification accuracy. We initialize the
prototypes using the corresponding class means and adjust them by local LVQ, where
local means that the optimization process is based on a subset. For each group, we
repeat step 1 and obtain the local transformation matrix Wi and prototype set Qi.

4 Recognition with Risk-Zone Rule

For an unknown sample, we first find its nearest group and then decide its class label
within this group. However, as is mentioned above that we don’t excessively extend
each group to avoid too large group size. Therefore, if the sample is located just around
the boundary of two groups, there still exist the possibility that its nearest group doesn’t
contain the correct class label, which will then result in incorrect classification.

To avoid such errors, we introduce the risk-zone rule. Namely, if a sample (x, y) falls
into a window

min(
d(x, gk)
d(x, gl)

),
d(x, gk)
d(x, gl)

) > η

where gk and gl are two nearest group centroids and 0 < η < 1 is a threshold, we will
think that this sample is located in the risk zone. Under this circumstance, we utilize the
cluster-based rule rather than the group-based one to select its candidate set. The whole
algorithm for recognition is described as the pseudocode in Algorithm 2, where Pi is
the subset of P that belongs to class i.

Note that the reasonable interval for η is [0.93, 0.98]. Although the hit rate will
monotonously rise when η decreases, however, if η gets rather small, the group-based
rule will degrade to the cluster-based one.

5 Experimental Results and Analysis

We conduct the experiments on a large handwriting Chinese character database col-
lected by the Institute of Automation, Chinese Academy of Sciences. This database
contains 3755 Chinese characters classes of the level 1 set of the standard GB2312-80.
There are totally 300 samples for each class, and we randomly select 270 of them for
training and the rest for testing. The experimental results provided in this section are
all based on the test set. In preprocessing, each character image is linearly normalized
to 64×64 size and then the 896-dimensional hierarchical periphery run-length (HPRL)
feature is extracted.

We first perform an experiment to compare the performance of class-based rule and
cluster rule. We utilize a nearest mean classifier (NMC) for coarse classification and a
NPC(4,C

′
) for fine classification, where C

′
is the size of the corresponding candidate

set. In other words, after the candidate set is decided, we extract the prototypes that
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belong to the candidate set and construct the fine classifier. The experimental compar-
isons of these two rules can be seen from Fig. 3.

Compared with rank-based decision rule, cluster-based rule needs less computation
in coarse classification, but the resulted candidate sets contain many redundant classes.
On the contrary, the resulted candidate set of class-based rule is more compact and
precise, so that the ultimate recognition rate is higher.

We conduct another experiment to validate the group extension method by varying
the parameter M in algorithm 1. The resulted hit rate and the average group size are
plotted in Fig. 4

Algorithm 2. Pseudocode for Recognition

Input: unknown sample x
Output: class label y
x′ = Wx;
{a, b} = NNeighbor(x′, G, 2); // d(x′, ga) < d(x′, gb)
If d(x′,ga)

d(x′,gb)
< η

x′′ = Wax;
q = NNeighbor(x′′, Qa, 1);
y = Ga(q);

Else
P ′ = Φ; G′ = Φ;
{b1, · · · , bT } = NNeighbor(x′, G, T );
For i = 1 to T

G′ = G′ ∪Gbi ;
End
For i = 1 to |G′|

P ′ = P ′ ∪ PG′(i);
End
q = NNeighbor(x′, P ′, 1);
y = G′(ceil(q/4));

End

In application we choose M = 33 and then optimize the corresponding group cen-
troids by group-based LVQ. The resulted hit rate is 98.91%. Moreover, if the risk zone
rule is used with the threshold η = 0.95, the ultimate hit rate will exceed 99.47%.

The detailed results about the recognition rate and processing speed (millisecond per
character) on the whole test set are listed in table 1.

From table 1 we can conclude that the proposed method with risk zone rule yields
the best tradeoff between processing speed and classification accuracy. The superior
recognition rate should be mainly ascribed to the local LDA which can extract the most
discriminative features for the local subset. We also note that processing speed of the
proposed method is much lower than that of the cluster-based method. The main reason
is that the adjacent groups overlap each other so that their average size is larger. Fur-
thermore, the second transformation before fine classification will also cost additional
computation.
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Fig. 3. The recognition rate and processing speed (seconds per character) (the left for rank-based
one and the right for cluster-based one)
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Fig. 4. The hit rate and the average group size for different M of algorithm 1

Table 1. Comparison of different methods

Classifier Recognition rate Processing speed
NMC 93.85 1.5269
NPC(4,3755) (trained by global GLVQ) 95.92 4.1811
class-based rule (top 8 classes selected) 95.85 1.6423
cluster-based rule (top 5 clusters selected) 95.22 1.0297
proposed method (without risk-zone rule) 97.30 1.8642
proposed method (with risk-zone rule,η = 0.95, T = 3) 97.65 1.7665
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6 Conclusion

A novel multistage classification strategy for HCCR has been proposed in this paper.
The basic idea of the proposed method is to divide the whole class set into overlapped
groups such that the nearest group of a sample entirely contains its candidate set. Com-
pared with conventional methods, our proposed method only allow one group for each
unknown sample. Since the number of groups is finite, it is applicable to perform local
LDA for each group. As a result, the most discriminative feature can be extracted and
more accurate classification can be achieved within each group.

During the design phase, we utilize the hierarchical LVQ as a powerful tool to opti-
mize the global prototypes, centroids and local prototypes. Experimental results show
that this method can greatly improve the overall performance of our HCCR system.

Considering that the overall hit rate on test set is lower than 99%, we have introduced
the risk zone rule. If samples fall into the risk zone, we use the cluster-based rule to
construct the fine classifier. At the sacrifice of locally discriminative information, a
large proportion of such sample can be correctly classified.

However, we find that even if the risk zone rule is utilized, the overall hit rate is still
less than 99.5%. Hence, we should find more efficient group extension rules which will
yield more compact groups and higher hit rate.
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Abstract. In this article we extend the (recently published) unsuper-
vised information theoretic vector quantization approach based on the
Cauchy–Schwarz-divergence for matching data and prototype densities
to supervised learning and classification. In particular, first we gener-
alize the unsupervised method to more general metrics instead of the
Euclidean, as it was used in the original algorithm. Thereafter, we ex-
tend the model to a supervised learning method resulting in a fuzzy
classification algorithm. Thereby, we allow fuzzy labels for both, data
and prototypes. Finally, we transfer the idea of relevance learning for
metric adaptation known from learning vector quantization to the new
approach.

1 Introduction

Prototype based unsupervised vector quantization is an important task in pat-
tern recognition. One basic advantage is the easy mapping scheme and the intu-
itive understanding by the concept of representative prototypes. Several methods
have been established ranging from statistical approaches to neural vector quan-
tizers [1],[2],[3]. Thereby, close connections to information theoretic learning can
be drawn [4],[5],[6],[7],[8]. Based on the fundamental work of Zador, distance
based vector quantization can be related to magnification in prototype base
vector quantization which describes the relation between data and prototype
density as a power law [9]. It can be used to design control strategies such that
maximum mutual information between data and prototype density is obtained
[10],[11]. However, the goal is achieved by a side effect but not directly optimized
because of that distance based vector quantization methods try to minimize
variants of the description error [9]. Yet, vector quantization directly optimizing
information theoretic approaches become more and more important [5],[12],[8].
Two basic principles are widely used: maximization of the mutual information
and minimization of the divergence, which are for uniformly distributed data
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equivalent. Thereby, several entropies and divergence measures exist. Shannon-
entropy and Kullback-Leibler-divergence were the earliest and provided the way
for the other [13],[14]. One famous entropy class is the set of Rényi’s α-entropies
Hα, which are a generalization of the Shannon-entropy and show interesting
properties [15]. In particular, the quadratic H2-entropy is of special interest be-
cause of its convenient properties for numerical computation. J. Principe and
colleagues have been shown that, based on the Cauchy-Schwarz-inequality, a
divergence measure can be derived, which, together with a consistently chosen
Parzen-estimator for the densities, gives a numerically well behaved approach of
information optimization based prototype based vector quantization [16].

In this contribution, we extend first this approach to more general data met-
rices keeping the prototype based principle. In this way a broader range of ap-
plication becomes possible, for instance data equipped with only available pair-
wise similarity measure. Further, we allow that the similarity measure may be
parametrized to obtain greater flexibility. Doing so, we are able to optimize the
metric and, hence, the model with respect to these parameters, too. This strat-
egy is known in supervised learning vector quantization as relevance learning.
The main contribution is, that we extend the original approach to a supervised
learning scheme, e.g., we transfer the ideas from the unsupervised information
theoretic vector quantization to an information theoretic learning vector quan-
tization approach, which is a classification scheme. Thereby, we allow the labels
of both data and prototypes to be fuzzy resulting in a prototype based fuzzy
classifier, which is an improvement in comparison to standard learning vector
quantization approaches, which usually provide crisp decisions and are not able
to handle fuzzy labels for data.

The paper is organized as follows: First we review the approach of informa-
tion theoretic vector quantization introduced by J. Principe and colleagues,
but in the more general variant of arbitrary metric. Subsequently, we explain
the new model for supervised fuzzy classification scheme based on the unsuper-
vised method and show, how relevance learning can be integrated. Numerical
considerations demonstrate the abilities of the new classifying system.

2 Information Theoretic Based Vector Quantization
Using the Hölder-Inequality

In the following we shortly review the derivation of a numerically well behaved
divergence measure. It differs in some properties from the well-known Kullback-
Leibler-divergence. However, it vanishes for identical probability densities and,
therefore, it can be used in density matching optimization task like prototype
based vector quantization.

Shannon’s definition of entropy was extended by Rényi to a more general ap-
proach. For a given density P (v) with data points v ∈R

n, the class of differential
Rényi-entropies1 is defined as [15],[17]:

1 We will ommit the attribute ’differential’ in the following.
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Hα (ρ) =
1

1− α
log

(∫
Pα (v) dv

)
(1)

=
1

1− α
logVα (P ) (2)

for α > 0 and α �= 1. The value Vα is denoted as information potential. The
existing limit for α→ 1 is the Shannon entropy

H (ρ) = −
∫
P (v) log (P (v)) dv (3)

For comparison of probability density functions divergence measure are a com-
mon method. Based on Shannon entropy the Kullback-Leibler-divergence is de-
fined as

KL (ρ, P ) =
∫
ρ (v) log

(
ρ (v)
P (v)

)
dv (4)

for given densities ρ and P . It can be generalized according to the Hα-entropies
to

KLα (ρ, P ) =
1

α− 1
log

(∫
ρ (v) ·

(
ρ (v)
P (v)

)α−1

dv

)
. (5)

Again, in the limit α→ 1, KLα (ρ, P )→ KL (ρ, P ) holds. Both divergences are
non-symmetric and vanish iff ρ ≡ P .

For investigation in practical applications of entropy computation one has
to estimate and the probabilities and to replace the integral by sample mean.
Thereby the most common method for density estimation is Parzen’s windowing:

ρ̂ (v) =
1

M · σ2

M∑
k=1

K

(
ξ (v −wk)

σ2

)
(6)

whereby K is a kernel function. ξ (v −wk) is assumed to be an arbitrary dif-
ference based distance measure and wk∈R

n are the kernel locations. In the
following we will use Gauss-kernels G. Usually, both steps, Parzen estimation
and sample mean, cause numerical errors. However, the sample mean error can
be eliminated: Using Rényi’s quadratic entropy and the properties of kernels the
information potential V2 can be estimated by

V2 =
1

M2 · σ4

M∑
k=1

M∑
j=1

∫
G

(
ξ (v −wk)

σ2

)
·G

(
ξ (v −wj)

σ2

)
dv (7)

=
1

M2 · σ4

M∑
k=1

M∑
j=1

G

(
ξ (wk −wj)

2σ2

)
(8)

without carrying out the integration in practice.
Unfortunately this approach can not be easily transferred to the quadratic

divergence measure KL2 because it is not quadratic according to all involved
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densities. Therefore, Principe suggested to use a divergence measure derived
from the Cauchy-Schwarz-inequality. To do this, we first remark that the general
information potential Vα in (1) defines a norm ‖·‖α = (Vα (·)) 1

α for α-integrable
functions. In particular in Hilbert-spaces the Hölder-inequality holds

‖ρ‖α · ‖P‖1−α

‖ρ · P‖1
≥ 1 (9)

with the equality iff ρ ≡ P except a zero-measure set. For α = 2 this is the
Cauchy-Schwarz-inequality, which can be used for a divergence definition [8]:

DCS (ρ, P ) =
1
2

log
(∫

ρ2 (v) dv·
∫
P 2 (v) dv

)
− log

(∫
P (v) · ρ (v) dv

)
(10)

=
1
2

log (V2 (ρ) ·V2 (P ))− logCr (P, ρ) (11)

whereby Cr is called the cross-information potential and DCS is denoted as
Cauchy-Schwarz-divergence. Yet, the divergence DCS does not fulfill all prop-
erties of the Kullback-Leibler-divergence KL but keeping the main issue that
DCS vanishes for ρ ≡ P (in prob.) [18]. Now we can use the entropy estimator
for V2 (ρ) and V2 (P ) according to (8) and apply the same kernel property to the
cross-information potential:

Cr (ρ, P ) =
∫
P (v) · ρ (v) dv (12)

=
1

N ·M · σ4

M∑
k=1

N∑
j=1

G

(
ξ (vj −wk)

2σ2

)
(13)

whereby, again, the integration is not to be carried out in practice and, hence,
does not lead to numerical errors.

In (unsupervised) vector quantization the data density P is given (by sam-
ples), whereas the density ρ is the density of prototypes wk, which is subject of
change. In information optimum vector quantization the adaptation should lead
to minimization of DCS.

3 Prototype Based Classification Using Cauchy-Schwarz
Divergence

In the following we will extend the above outlined approach to the task of proto-
type based classification. Although many classification methods are known, pro-
totype based classification is a very intuitive method. Most widely used methods
are the learning vector quantization algorithms (LVQ) introduced by Kohonen
[2]. However, the adaptation dynamic does not follow a gradient of any cost
function. Heuristically, the misclassification error is reduced. However, for over-
lapping classes the heuristic causes instabilities. Several modifications are known
to overcome this problem [19],[20],[21].
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From information theoretic learning point of view, an algorithm maximizing
the mutual information using Re was introduced by Torkkola denoted as IT-
LVQ [22]. However, compared to other classification approaches, this algorithm
does not show convincing performance [23].

A remaining problem is that all these methods do not return fuzzy valued
classification decisions as well as are not able do handle fuzzy classified data.
Here we propose to use a Cauchy-Schwarz-divergence based cost function, which
also can be applied to fuzzy labeled data.

Let x (v) be the fuzzy valued class label for data point v ∈ R
n and yi for

prototypes wi ∈ R
n. Assuming, Nc is the number of possible classes, the fuzzy

labels are realized as x (v) ,yi ∈ R
Nc with components xk (v) , yk

i ∈ [0, 1] with
the normalization conditions

∑Nc

k=1 xk (v) = 1 and
∑Nc

k=1 y
k
i = 1. Let PX (c) and

ρY (c) be the label density of data labels X and prototype labels Y for a given
class c, respectively. We define as cost function to be minimized

C (Y,X) =
Nc∑
c=1

�c · 2 ·DCS (ρY (v, c) , PX (v,c)) . (14)

with given weighting factors�c determining the importance of a class. Because of
allPX (c) are determined by given data, minimization ofDCS (ρY (v, c) , PX (v,c))
is equivalent to minimization of

Ĉ (Y,X) =
Nc∑
c=1

�c · Ĉc (Y,X) (15)

with class dependent cost functions

Ĉc (Y,X) = (log (V2 (ρY (v, c)))− 2 logCr (ρY (v, c) , PX (v,c))) . (16)

Information theoretic learning vector quantization now is taken as optimizing
the prototype locations wk together with their class responsibilities (labels) yk

according to minimization of Ĉ (Y,X).
To do so, we assume for simplicity that the variance in each data dimension

is equal σ2, the general case is straight forward. We introduce the class (label)
dependent Parzen estimates

P̂X (v,c) =
1
N

N∑
i=1

xc (vi) ·G
(
ξ (v − vi)

σ2

)
(17)

and

ρ̂Y (v,c) =
1
M

M∑
i=1

yc
i ·G

(
ξ (v −wi)

σ2

)
. (18)

We further assume for the moment that all �c are fixed and equal. Then the
class dependent cost functions Ĉc (Y,X) can be written as
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Ĉc (Y,X) ≈ 1
2M

M∑
i=1

yc
i log

⎛⎝ 1
M

M∑
j=1

yc
jG

(
ξ (wi−wj)

2σ2

)⎞⎠ (19)

− 1
M

M∑
i=1

yc
i log

⎛⎝ 1
N

N∑
j=1

xc (vj) ·G
(
ξ (wi − vj)

2σ2

)⎞⎠ (20)

which yields the class dependent derivatives

∂Ĉc (Y,X)
∂wk

= − 1
4σ2

⎡⎢⎢⎢⎢⎢⎣
∑M

i=1 yc
i yc

kG

(
ξ(wi,wk)

2σ2

)
∂ξ(wi,wk)

∂wk∑M
i=1

∑M
j=1 yc

i yc
j G

(
ξ(wi,wj)

2σ2

)

−
∑N

j=1 yc
kxc(vj)G

(
ξ(vj ,wk)

2σ2

)
∂ξ(vj ,wk)

∂wk∑M
i=1

∑N
j=1 yc

i xc(vj)G
(

ξ(vj ,wi)
2σ2

)

⎤⎥⎥⎥⎥⎥⎦ (21)

and
∂Ĉ (Y,X)

∂yk
c

= �c · ∂Ĉc (Y,X)
∂yk

c

(22)

with

ˆ (Y X)
=

P
=1

³
(w w )
2 2

´
P

=1

P
=1

(w w )
2 2

¶ 2
P

=1 (v )
³

(v w )
2 2

´
P

=1

P
=1 (v )

³
(v w )
2 2

´
( )(23)

Both gradients (21) and (23) determine the parallel stochastic gradient descent
for minimization of Ĉ (Y,X) depending on the used distance measure ξ. In case
of ξ (v −w) being the quadratic Euclidean distance, we simply have ∂ξ(v−w)

∂w =
2 (v −w).

We denote the resulting adaptation algorithm

�wk = −ε∂Ĉ(Y,X)
∂wk

�yk
c = −ε̃∂Ĉ(Y,X)

∂yk
c

(24)

as Learning Vector Quantization based on Cauchy-Schwarz-Divergence – LVQ-
CSD

4 Applications

In a first toy example we applied the LVQ-CSD using the quadratic Euclidean
distance for ξ to classify data obtained from two two-dimensional overlapping
Gaussian distribution, each of them defining a data class. The overall number
of data was N = 600 equally splitted into test and train data. We used 10
prototypes with randomly initialized positions and fuzzy labels.
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Fig. 1. Visualization of learned prototypes for LVQ-CSD in case of overlapping Gaus-
sians, defining two classes (green, blue). The positions of prototypes are indicated by
red ’+’ and black ’×’ according to their fuzzy label based majority vote for the blue
and green classes, respectively.

One crucial point using Parzen estimators is the adequate choice of the kernel
size σ2. Silverman’s rule gives a rough estimation [24]. Otherwise, as pointed
out in [16], σ2 also determines the role of cooperativeness range of prototypes
in data space during adaptation, which should be larger in the beginning and
smaller in the convergence phase for fine tuning. Combining both features we
choose for a certain training step t

σ (t) =
3 · γ · σ (0)

1 + δ · σ (0) · t (25)

with γ = 1.06 · n− 1
5 the Silverman-factor ([24]) and δ = 5/T and T being the

total number of training steps. n is the data dimension and σ (0) = σ is the
original data variance.

The resulting classification accuracy (majority vote) for LVQ-CSD for the
simple toy example is 93.1%, see Fig. 1. This result is comparable good to the
lower accuracy obtained by standard LVQ2.1 [2], which yields 77.5%. Further,
for LVQ-CSD prototypes located at overlapping border region, have balanced
label vectors whereas prototypes in the center of the class regions show clear
label preferences.
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Table 1. Test rates for the different algorithms on the WBDC data set. For LVQ-CSD
the majority vote was applied for accuracy determination.

LVQ-CSD LVQ2.1 GLVQ SNG IT-LVQ
toy sample 93.1% 77.5% 91.3% 94.9% 63.3%

PIMA 75.3% 65.3% 74.2% 78.2% 65.8%
WINE 95.5% 93.1% 98.3% 98.3% 61.9%

IONOSPHERE 69.0% 64.1% 81.4% 82.6% 56.2%

In a second mor challenging application, we investigated the behavior of the
new algorithm in case of data sets from the UCI repository [25]. The data di-
mensions are 9, 13 and 34 for the PIMA-, the WINE- and the IONOSPHERE
data, respectively. The allover number of data are 768, 178 and 351, respectively.
The first and the third task are 2-class problems whereas the second one is a
three-class problem. We splitted the data set for training and test randomly such
that about 66% are for training.

We compare the LVQ-CSD with LVQ2.1 [2], GLVQ [20], and IT-LVQ [26] cov-
ering different principles of learning vector quantization: distance based heuristic,
distance based classifier function and mutual information optimization, respec-
tively. Because one can interpret the kernel size σ as a range of cooperativeness,
we also added a comparison with supervised neural gas (SNG), which is an ex-
tension of GLVQ incorporating neighborhood cooperativeness [27]. The number
of prototypes were chosen as 10% of train data for all algorithm, again in com-
parison to the earlier studies [23]. The results are depicted in Tab. 1. Except the
IT-LVQ and LVQ2.1, all algorithms show comparable results with small advan-
tages for GLVQ and, in particular SNG. LVQ-CSD shows good performance. It
clearly outperforms standard LVQ2.1 and the IT-LVQ, which is based on mutual
information maximization. The weak result for IONOSPHERE data set could be
adressed to the well known problem arising for all Parzen estimation approaches:
For high-dimensional space Parzen estimators may become insensitive because
of the properties of the Euclidean norm in high-dimensional spaces: this is that
according to the Euclidean distance measure most of the data lie in a thin sphere
of the data space [28]. The effect could be the reason for the bad performance.
Hoewever, here we have to make further investigations.

5 Conclusion and Future Work

Based on the information theoretic approach of unsupervised vector quantiza-
tion by density matching using Cauchy-Schwarz-divergence, we developed a new
supervised learning vector quantization algorithm, which is able to handle fuzzy
labels for data as well as for prototypes. In first simulations the algorithm shows
valuable results. We formulated the algorithm for general difference based dis-
tance measures ξ (v −w). However, up to now we only used the Euclidean dis-
tance. Yet, it is possible to use more complicate difference based distance mea-
sures. In particular, parametrized measures ξλ are of interest with parameter
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vector λ =(λ1, . . . , λNλ
), λi ≥ 0 and

∑
λi = 1. Then the parametrization can

be optimized for a given classification task, too. This method is known as rele-
vance learning in learning vector quantization [29],[27]. For this purpose, simply
the additional gradient descent ∂Ĉ(Y,X)

∂λj
has to be taken into account. Obvi-

ously, this idea can be transferred also to Cauchy-Schwarz-divergence as cost
function of the unsupervised information theoretic vector quantization, which
also would allow an adapted metric for improved performance. The analyze of
these extensions in practical applications is subject of current research.
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Abstract. A modal symbolic classifier for interval data is presented.
The proposed method needs a previous pre-processing step to transform
interval symbolic data into modal symbolic data. The presented classi-
fier has then as input a set of vectors of weights. In the learning step,
each group is also described by a vector of weight distributions obtained
through a generalization tool. The allocation step uses the squared Eu-
clidean distance to compare two modal descriptions. To show the use-
fulness of this method, examples with synthetic symbolic data sets are
considered.

1 Introduction

In many data analysis problems, the individuals are described by vectors of
continuous-value data that are points. However, sometimes, these points to treat
can not be quite localized and their positions are then imprecise. A solution is
to define uncertainty zones around the imprecise points provided the acquisition
system and their positions are then to estimate, for example the parameters
of a regression or classification model. The concept of uncertainty zones data
constitutes a generalization of interval-valued data which are quite natural in
many application where they represent uncertainty on measurements (confidence
interval for instance), variability (minimum and maximum temperatures during
a day).

Symbolic Data Analysis (SDA) [2] is a new domain in the area of knowledge
discovery and data management, related to multivariate analysis, pattern recog-
nition and artificial intelligence. It aims to provide suitable methods (clustering,
factorial techniques, decision tree, etc.) for managing aggregated data described
through multi-valued variables, where there are sets of categories, intervals, or
weight (probability) distributions in the cells of the data table (for more details
about SDA, see www.jsda.unina2.it). A symbolic variable is defined according
to its type of domain. For example, for an object, an interval variable takes an
interval of � (the set of real numbers). A symbolic modal takes, for a object, a
non-negative measure (a frequency or a probability distribution or a system of
weights). If this measure is specified in terms of a histogram, the modal variable
is called histogram variable.

Several supervised classification tools has been extended to handle interval
and modal data. Ichino et al. [6] introduced a symbolic classifier as a region

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 50–59, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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oriented approach for multi-valued data. In this approach, the classes of exam-
ples are described by a region (or set of regions) obtained through the use of an
approximation of a Mutual Neighbourhood Graph (MNG) and a symbolic join
operator. Souza et al. [11] proposed a MNG approximation to reduce the com-
plexity of the learning step without losing the classifier performance in terms of
prediction accuracy. D’Oliveira et al. [4] presented a region oriented approach in
which each region is defined by the convex hull of the objects belonging to a class.
Ciampi et al. [3] introduced a generalization of binary decision trees to predict
the class membership of symbolic data. Prudencio et al. [9] proposed a super-
vised classification method from symbolic data for the model selection problem.
Rossi and Conan-Guez [10] have generalized Multi-Perceptrons to work with in-
terval data. Mali and Mitra [8] extended the fuzzy radial basis function (FRBF)
network to work in the domain of symbolic data. Appice et al. [1] introduced
a lazy-learning approach (labeled Symbolic Objects Nearest Neighbor SO-SNN)
that extends a traditional distance weighted k-Nearest Neighbor classification
algorithm to interval and modal data.

In this paper, we present a modal symbolic classifier for interval data. This
method assumes a previous pre-processing step to transform interval data into
modal data. In the learning step, each class of items is represented by a weight
distribution obtained through a generalization tool. In the the allocation step,
the new items are classified using the squared Euclidean distance between modal
data. Section 2 describes modal and interval symbolic data. Section 3 introduces
the modal symbolic classifier based on weight distributions. Section 4 describes
the evaluation experimental considering synthetic symbolic data sets. A compar-
ative study involving the proposed classifier and the SO-SNN approach intro-
duced by Appice et al [1] is presented. The evaluation of the performance of these
classifiers is based on the accuracy prediction that is assessed in the framework
of a Monte Carlo experience with 100 replications of each set. In Section 5, the
concluding remarks are given.

2 Modal and Interval Symbolic Data

In classical data analysis, the items to be grouped are usually represented as a
vector of quantitative or qualitative measurements where each column represents
a variable. In particular, each individual takes just one single value for each
variable. In practice, however, this model is too restrictive to represent complex
data since to take into account variability and/or uncertainty inherent to the
data, variables must assume sets of categories or intervals, possibly even with
frequencies or weights.

Let Ck, k = 1, . . . , K, be a class of nk items indexed by ki (i = 1, . . . , nk) with
Ck ∩ Ck′ = ∅ if k �= k′ and ∪K

k=1Ck = Ω a training set of size n =
∑K

k=1 nk.
Each item ki (i = 1, . . . , nk) is described by p symbolic variables X1, . . . , Xp.
A symbolic variable Xj is an interval variable when, given an item i of Ck
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(k = 1, . . . , K) , Xj(ki) = xj
ki = [aj

ki, b
j
ki] ⊆ Aj where Aj = [a, b] is an interval.

A symbolic variable Xj is a histogram modal variable if, given an item i of Ck

(k = 1, . . . , K), Xj(ki) = (S(ki),q(ki)) where q(ki) is a vector of weights defined
in S(ki) such that a weight w(m) corresponds to each category m ∈ S(ki). S(ki)
is the support of the measure q(ki).

Example: An individual may have as description for a symbolic variable the
modal data vector d = (0.7[60, 65[, 0.3[65, 80[)where the symbolic variable, which
takes values in [60, 65[ and [65, 80[, is represented by a histogram (or modal)
variable, where 0.7 and 0.3 are relative frequencies of the two intervals of values.

3 A Symbolic Classifier

In this section, a modal symbolic classifier for interval data is presented. Two
main steps are involved in the construction of this classifier.

1. Learning step. Construction of a symbolic modal description for each class
of items:
– (a) Pre-processing: Transformation of interval symbolic data into modal

symbolic data (vector of weight distribution) for each item of the training
set.

– (b) Generalization: Using the pre-processed items to obtain a modal
description for each class.

2. Allocation step. Assignment of a new item to a class according to the prox-
imity between the modal description of this item and the modal description
of a class.
– (a) Pre-processing : Transforming new interval data into modal data.
– (b) Affectation: Computing the dissimilarity between each class and a

new item.

3.1 Learning Step

This step aims to construct a modal symbolic description for each class synthe-
sizing the information given by the items associated to this class.

Two step constitute the learning process: pre-processing and generalization.

Pre-processing. In this paper we consider a data transformation approach
which the aim is to obtain modal symbolic data from interval data. So, the
presented symbolic classifier has as input data vectors of weight distributions.

The variable Xj is transformed into a modal symbolic variable X̃j in the
following way [5]: X̃j(ki) = x̃j

ki = (Ãj ,qj(ki)), where Ãj = {Ij
1 , . . . , Ij

Hj
} is a set

of elementary intervals, qj(ki) = (qj
1(ki), . . . , qj

Hj
(ki)) and qj

h(ki) (h = 1, . . . , Hj)
is defined as:

qj
h(ki) =

l(Ij
h ∩ xj

ki)
l(xj

ki)
(1)
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l(I) being the length of a closed interval I.
The bounds of these elementary intervals Ij

h (h = 1, . . . , Hj) are obtained
from the ordered bounds of the n + 1 intervals {xj

11, . . . , x
j
1n1

, . . . , xj
k1, . . . , x

j
knk

, . . . , xj
K1, . . . , x

j
KnK

, [a, b]}. They have the following properties:

1.
⋃Hj

h=1 Ij
h = [a, b]

2. Ij
h

⋂
Ij
h′ = ∅ if h �= h′

3. ∀h ∃ki ∈ Ω such that Ij
h

⋂
xj

ki �= ∅
4. ∀ki ∃Sj(ki) ⊂ {1, . . . , Hj} :

⋃
h∈Sj(ki) Ij

h = xj
ki

Table 1 shows items of a training data set from two classes. Each item is
described by an interval variable.

Table 1. Items described by a symbolic interval variable

Item Interval Data (X1 ) Class
e1 [10,30] 1
e2 [25,35] 1
e3 [90,130] 2
e4 [125,140] 2

From the interval data describing the items, we create a set of elementary
intervals Ã1 = {I1

1 , . . . , I1
H1
} as follows: at first, we take the set of values formed

by every bound (lower and upper) of all the intervals associated to the items.
Then, such set of bounds is sorted in a growing way. This set of elementary
intervals is: Ã1 = {I1

1 , I1
2 , I1

3 , I1
4 , I1

5 , I1
6 , I1

7} where I1
1 = [10, 25[, I1

2 = [25, 30[, I1
3 =

[30, 35[, I1
4 = [35, 90[, I1

5 = [90, 125[, I1
6 = [125, 130[ and I1

7 = [130, 140].
Using the transformation approach into modal data, we got the following

modal data table:

Table 2. Items described by a modal symbolic variable

Item Modal Data (X̃1 ) Class
e1 ((0.75[10,25[),(0.25[25,30[), (0.0[30,35[), (0.0[35,90[), 1

(0.0[90,125[), (0.0[125,130[), (0.0[130,140[))
e2 ((0.0[10,25[),(0.50[25,30[), (0.50[30,35[), (0.0[35,90[), 1

(0.0[90,125[), (0.0[125,130[), (0.0[130,140[))
e3 ((0.0[10,25[),(0.0[25,30[), (0.0[30,35[), (0.0[35,90[), 2

(0.88[90,125[), (0.12[125,130[), (0.0[130,140[))
e4 ((0.0[10,25[),(0.0[25,30[), (0.0[30,35[), (0.0[35,90[), 2

(0.0[90,125[), (0.33[125,130[), (0.67[130,140[))
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Generalization. This step aims to represent each class as a modal symbolic
example. The symbolic description of each class is a generalization of the modal
symbolic description of its items.

Let Ck be a class of nk items. Each item of Ck is represented as a vector
of modal symbolic data. This class is also represented as a vector of modal
symbolic data g̃k = (g̃1

k, . . . , g̃p
k), g̃j

k = (Ãj ,vj(k)) (j = 1, . . . , p), where vj(k) =
(vj

1(k), . . . , vj
Hj

(k)) is a vector of weights. Notice that for each variable the modal

symbolic data presents the same support Ãj = {Ij
1 , . . . , Ij

Hj
} for all individuals

and prototypes.
The weight vj

h(k) is computed as follows:

vj
h(k) =

1
nk

∑
i∈Ck

qj
h(ki) (2)

Table 3 shows the modal symbolic description for each class of the Table 2.

Table 3. Classes described as a modal symbolic description

Class Modal Data (X̃1)
1 ((0.375[10,25[),(0.375[25,30[), (0.25[30,35[), (0.0[35,90[)

(0.0[90,125[), (0.0[125,130[), (0.0[130,140[))
2 ((0.0[10,25[),(0.0[25,30[), (0.0[30,35[), (0.0[35,90[)

(0.44[90,125[), (0.225[125,130[), (0.335[130,140[))

3.2 Allocation Step

The allocation of a new item to a group is based on a dissimilarity function, which
compares the modal description of the new item and the modal description of a
class. Two steps also constitute the allocation process.

Pre-processing. Let xω = (x1
ω = [a1

ω, b1
ω], . . . , xp

ω = [ap
ω, bp

ω]) be the interval
description of a item to be classified ω. The aim of this step is to transform the
interval description of this item into a modal symbolic description.

Here, this is achieved through the following steps:

1. Update the bounds of the set of elementary intervals Ãj = {Ij
1 , . . . , Ij

Hj
}

considering the bounds of the interval [aj
ω, bj

ω] to create the new elementary
intervals Ã∗

j = {I∗j
1 , . . . , I∗j

H∗
j
} .

2. Compute the vector of weights qj(ω) = (qj
1(ω), . . . , qj

H∗
j
(ω)) from the new

set of elementary intervals I∗j
t (t = 1, . . . , H∗

j ) as follow:

qj
t (ω) =

l(I∗j
t ∩ xj

ω)
l(xj

ω)
(3)
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3. Update the vector of weights vj(k) = (vj
1(k), . . . , vj

Hj
(k)) (k = 1, . . . , K) of

Ck from the new set of elementary intervals I∗j
t (t = 1, . . . , H∗

j ) as follow:

vj
t (k) = vj

h(k) ∗ l(Ij
h ∩ I∗j

t )

l(Ij
h)

) (4)

for h ∈ {1, . . . , Hj}/Ij
h ∩ I∗j

t �= ∅. Otherwise, vj
t (k) = 0.

Affectation step. Let ω be a new item, which is candidate to be assigned to a
class Ck (k = 1, . . . , K) , and its corresponding modal description for the variable
j (j = 1, . . . , p) is: x̃j

ω = (Ã∗
j ,q

j(ω)). Let g̃j
k = (Ã∗

j ,v
j(k)) be the corresponding

modal description of Ck for the variable j (j = 1, . . . , p).
Here, the comparison between two vectors of cumulative weights qj(ω) and

vj(k) for the variable j is accomplished by a suitable squared Euclidean distance:

d2(qj(ω),vj(k)) =
H∗

j∑
h=1

(qj
h(ω)− vj

h(k))2 (5)

The classification rule is defined as follow: ω is affected to the class Ck if

φ(ω, Ck) ≤ φ1(ω, Cm), ∀m ∈ {1, . . . , K} (6)

where

φ(ω, Ck) =
p∑

j=1

d2(qj(ω),vj(k)) (7)

Example: Let ω be a new item with the description [8, 28] for an interval variable.
Considering the modal description of the classes 1 and 2 of the Table 3, we have
φ(ω, C1) = 0.2145 and φ(ω, C2) = 1.3554. Therefore, this new item ω will be
affected to the class C1.

4 Experimental Evaluation

In order to show the usefulness of the proposed symbolic classifier, this section
presents an experimental evaluation based on prediction accuracy with two syn-
thetic interval data sets. Our aim is to compare the modal symbolic classifier
presented in this paper with the Symbolic Objects Nearest Neighbor (SO-NN)
method introduced by Appice et al. [1] based on an extension of the tradicional
weighted k-Nearest Neighbor classifier (k-NN) to modal and interval symbolic
data.

Like the traditional classifier (k-NN), the SO-NN classifier also requires only
a dissimilarity measure and a positive integer k to define the number of the
neighborhood used to classifier a new item of the test set. So, Appice et al. [1]
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investigated the performance of the SO-NN classifier using different dissimilarity
measures for symbolic data and selecting the optimal k from the interval [1,

√
n].

Moreover, for modal data, they used the KT-estimate [7] to estimate the prob-
ability (or weight) distribution of modal variables when the distribution has a
zero-valued probability for some categories.

In this evaluation, the accuracy of the SO-NN classifier will performed by using
the squared Euclidean distance of the equation (7) and the following values to
determine the neighborhood of a test item: k = 5, k = 10 and k = 15.

4.1 Synthetic Interval Data Sets

In each experiment, we considered two standard quantitative data sets in �2.
Each data set has 250 points scattered among three classes of unequal sizes:
two classes with ellipse shapes and sizes 70 and 80 and one class with spherical
shape of size 100. Each class in these quantitative data sets were drawn accord-
ing to a bi-variate normal distribution with vector μ and covariance matrix Σ
represented by:

μ =
[

μ1
μ2

]
and Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
We will consider two different configurations for the standard quantitative

data sets: 1) data drawn according to a bi-variate normal distribution with well
separated classes and 2) data drawn according to a bi-variate normal distribution
with overlapping classes.

Each data point (z1, z2) of each one of these synthetic quantitative data sets
is a seed of a vector of intervals (rectangle): ([z1−γ1/2, z1+γ1/2], [z2−γ2/2, z2+
γ2/2]). These parameters γ1, γ2 are randomly selected from the same predefined
interval. The intervals considered in this paper are: [1, 10], [1, 20], [1, 30], [1, 40]
and [1, 50].

Standard data set 1 was drawn according to the following parameters (con-
figuration 1):

a) Class 1: μ1 = 17, μ2 = 34, σ2
1 = 36, σ2

2 = 64 and ρ12 = 0.85;
b) Class 2: μ1 = 37, μ2 = 59, σ2

1 = 25, σ2
2 = 25 and ρ12 = 0.0;

c) Class 3: μ1 = 61, μ2 = 31, σ2
1 = 49, σ2

2 = 100 and ρ12 = −0.85;

Standard data set 2 was drawn according to the following parameters (con-
figuration 2):

a) Class 1: μ1 = 8, μ2 = 5, σ2
1 = 16, σ2

2 = 1 and ρ12 = 0.85;
b) Class 2: μ1 = 12, μ2 = 15, σ2

1 = 9, σ2
2 = 9 and ρ12 = 0.0;

c) Class 3: μ1 = 18, μ2 = 7, σ2
1 = 16, σ2

2 = 9 and ρ12 = −0.85;

From these configurations of standard data sets and the predefined intervals
for the parameters γ1 and γ2, interval data sets are obtained considering two
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different cases of classification with overlapping classes: 1) symbolic interval data
set 1 shows a moderate case of classification with class overlapping along one
interval variable and 2) symbolic interval data set 2 shows a difficult case of
classification with overlapping classes along two interval variables.

Figure 1 illustrates the interval data sets 1 and 2 with parameters γ1 and γ2
randomly selected from the interval [1, 10].

Fig. 1. Symbolic interval data sets 1 (at the top) and 2 (at the bottom)

4.2 Performance Analysis

The evaluation of these clustering methods was performed in the framework of
a Monte Carlo experience: 200 replications (100 for training set and 100 for
test set) are considered for each interval data set, as well as for each predefined
interval. The prediction accuracy of the classifier was measured through the
error rate of classification obtained from a test set. The estimated error rate of
classification corresponds to the average of the error rates found between the
100 replications of the test set.

Table 1 and 2 show the values of the average and standard deviation of the
error rate for the modal and SO-NN classifiers and interval data configurations
1 and 2, respectively.

For both types of interval data configurations, the average error rates for the
modal classifier are less than those for the SO-NN classifier in all situations.
As it is expected, the average error rates for both classifiers increase as long as
the widest intervals are considered. These results show clearly that the modal
classifier outperforms the SO-NN classifier.
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Table 4. The average (%) and the standard deviation (in parenthesis) of the error rate
for interval data set 1

Range of values Modal Classifier SO-NN Classifier
k = 5 k = 10 k = 15

[1, 10] 2.32 10.90 20.74 31.43
(0.0104) (0.0643) (0.0496) (0.0296)

[1, 20] 2.20 7.78 13.48 19.64
(0.0101) (0.0276) (0.0483) (0.0690)

[1, 30] 2.50 8.27 13.41 18.56
(0.0105) (0.0267) (0.0410) (0.0545)

[1, 40] 2.78 8.71 14.55 20.36
(0.0113) (0.0277) (0.0443) (0.0614)

[1, 50] 2.89 9.65 16.21 22.38
(0.0105) (0.0279) (0.0446) (0.0569)

Table 5. The average (%) and the standard deviation (in parenthesis) of the error rate
for interval data set 2

Range of values Modal Classifier SO-NN Classifier
k = 5 k = 10 k = 15

[1, 10] 9.78 20.40 29.48 38.25
(0.0184) (0.0294) (0.0456) (0.0537)

[1, 20] 10.52 25.35 36.65 45.76
(0.0187) (0.0373) (0.0484) (0.0514)

[1, 30] 12.68 30.80 44.07 53.95
(0.0223) (0.0396) (0.0467) (0.0462)

[1, 40] 15.34 33.74 48.06 58.32
(0.0269) (0.0407) (0.0418) (0.0365)

[1, 50] 18.22 37.76 52.52 61.46
(0.0322) (0.0262) (0.0331) (0.0324)

5 Concluding Remarks

In this paper, a modal symbolic classifier for interval data was introduced. The
proposed method needs a previous pre-processing step to transform interval sym-
bolic data into modal symbolic data. The presented classifier has then as input
a set of vectors of weights. In the learning step, each class of items is also de-
scribed by a vector of weight distributions obtained through a generalization
tool. The allocation step uses the squared Euclidean distance to compare the
modal description of a class with the modal description of a item.

Experiments with synthetic interval data sets illustrated the usefulness of this
classifier. The accuracy of the results is assessed by the error rate of classification
under situations ranging from moderate to difficult cases of classification in the
framework of a Monte Carlo experience. Moreover, the modal classifier is com-
pared with the lazy SO-NN classifier for symbolic data proposed by Appice et al.
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[1]. Results showed that the modal classifier proposed in this paper is superior
to the SO-NN classifier in terms of error rate of classification.

Acknowledgments. The authors would like to thank CNPq (Brazilian Agency)
for its financial support.
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Abstract. Hough transform neural network is adopted to detect line pattern of 
direct wave and hyperbola pattern of reflection wave in a seismogram. The 
distance calculation from point to hyperbola is calculated from the time 
difference. This calculation makes the parameter learning feasible. The neural 
network can calculate the total error for distance from point to patterns. The 
parameter learning rule is derived by gradient descent method to minimize the 
total error. Experimental results show that line and hyperbola can be detected in 
both simulated and real seismic data. The network can get a fast convergence. 
The detection results can improve the seismic interpretation. 

1   Introduction 

Hough transform (HT) was used to detect parameterized shapes by mapping original 
image data into the parameter space [1]-[3]. The purpose of Hough transform is to 
find the peak value (maximum) in the parameter space. The coordinates of the peak 
value in parameter space is corresponding to a shape in the image space.  

Seismic pattern recognition plays an important role in oil exploration. In a one-shot 
seismogram in Fig. 1, the travel-time curve of direct wave pattern is a straight line and 
the reflection wave pattern is a hyperbola. In 1985, Huang et al. had applied the 
Hough transform to detect direct wave (line pattern) and reflection wave (hyperbola 
pattern) in a one-shot seismogram [4]. However, it was not easy to determine the peak 
in the parameter space. Also, efficiency and memory consumption are serious 
drawbacks. 

Neural network had been developed to solve the HT problem [5]-[7]. The Hough 
transform neural network (HTNN) was designed for detecting lines, circles, and 
ellipses [5]-[7]. But there is no application to hyperbola detection. Here, the HTNN is 
adopted to detect the line pattern of direct wave, and hyperbola pattern of reflection 
wave in a one-shot seismogram. The determination of parameters is by neural 
network, not by the mapping to the parameter space. 

2   Proposed System and Preprocessing 

Fig. 1 shows the simulated one-shot seismogram with 64 traces and every trace has 
512 points. The sampling rate is 0.004 seconds. The size of the input data is 64x512. 
The proposed detection system is shown in Fig. 2. 
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The input seismogram in Fig. 1 passes through the thresholding. For seismic data, 

S( ix , it ),  641 ≤≤ ix , 5121 ≤≤ it , we set a threshold T. For   ) , ( TtxS ii ≥ , data 

become 
ix = T

ii tx ] [ , i=1, 2, …, n. Fig. 3 is the thresholding result, where n is 252. 

Data are preprocessed at first, then fed into the network.  

 

 

seismogram 

Preprocessin
Input 

Detected 

patterns 

Hough 

neural net
 

Fig. 1.  One-shot seismogram Fig. 2. Detection system for seismic 
patterns 

3   Hough Transform Neural Network 

The adopted HTNN consists of three layers: distance layer, activation function layer, 
and the total error layer. The network is shown in Fig. 4. It is an unsupervised 
network capable of detecting m parameterized objects: lines and hyperbolas, 
simultaneously. 

Input vector 
ix = T

ii tx ] [  is the ith point of the image, where i=1, 2, …, n. In the 

preprocessed seismic image, 
ix  is the trace index between shot point and receiving 

station, and 
it  is index in time coordinate. Input each point 

ix  into distance layer, we 

calculate the distance ),()( iikkik txDDd == ix  from 
ix  to the kth object (line or 

hyperbola), k=1, 2, …, m. Then, 
ikd  passes through the activation function layer and 

the output is )(1 ikik dfEr −= , where )(⋅f  is a Gaussian basis function, i.e., 

)exp()( 2

2

σ
ik

ik

d
df −=  and 

ikEr  is the error or the modified distance of the ith point 

related to the kth object. Thus, when 
ikd  is near zero, 

ikEr  is also near zero. Finally, 

we send 
ikEr  (k=1, 2, …, m) to the total error layer and 

∏
≤≤

===
mj

ijimikiii ErErErErCCEc
1

1 ) ..., , ..., ,()(Er is the total error of 
ix  in the 

network. When 
ix  is belonged to one object, then 

ikEr =0, and 
iEc =0. 
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We derive the distance calculations from to point to the line detection and the 
hyperbola as follows. 

  xi ti 

Eci

D1(xi, ti) Dk(xi, ti) Dm(xi, ti) 

di1 dik dim 

… … 

f (di1) f (dik) f (dim) 

C(Eri1, …, Erik, …, Erim) 

… … 

… … 

Eri1 Erik Erim … …

Distance 
Layer 

Activation 
Function 
Layer 

Total Error  
Layer 

 

              Fig. 3. Result of thresholding                       Fig. 4. Hough transform neural network 

3.1   Distance Layer 

Distance from Point to Line. Although Basak and Das proposed Hough transform 
neural network to detect lines, they used the second-order equation of conoidal shapes 
[6]. Here, we use the direct line equation in the analysis. 

For line equation 0)(L 2,1,
T
kk =++=+= kkkk btwxwbxwx  where 

T
kk ww ][ 2,1,k =w , and k is the kth line. We want to find the minimum distance from 

ix  to )(Lk x . That is, minimize 2

2

1
)Dist( ixxx −=  subject to 0)(Lk =x . 

From Lagrange method,  the Lagrange function is    =+= )(kL)Dist(),L( xxx λλ  

( )k
T
ki b++− xwxx λ2

2

1 , where  is the Lagrange multiplier. 

By the first order necessary condition, 0wxxxX =+−=∇ ki λλ )(),L(  

0),L( =+=∇ k
T
k bxwx λλ .  We obtain   

k

k

ki
T
k

i

b
w

w

xw
xx

2

+−= . Set 1
2 =kw , 

then
ki

T
ki b+=− xwxx . So, for kth line, the output of the distance layer is  

)(L)(D ikki
T
kikik bd xxwx =+==  . (1) 

Distance from Point to Hyperbola. In a one-shot seismogram, the reflection wave 

pattern is a hyperbola. The equation is 01
2

,0

2

,0 =−
−

+
−

−
k

k

k

k

b

tt

a

xx  and  
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0)(1)(H ,0

2

,0 =−−+
−

= k
k

k
kk tt

a

xx
bx  . (2) 

For reflection wave in the x-t space, the hyperbola is on the positive t and positive 
x space, so bk is positive on (2). 

The true distance from point to hyperbola is complicated. Here, we consider 
distance in time from the point ) ( , ii tx  to the hyperbola 0)(H =xk

 as 

)(H)(1 ,0

2

,0
ikki

k

ki
kik tt

a

xx
bd x=−−+

−
=  . (3) 

3.2   Activation Function Layer 

We use Gaussian basis function, and the activation function is defined as 

−−== 2

2

exp1)(
σ

ik
ikik

d
dfEr . The Gaussian basis function controls the effect range of 

the point. Initially, we choose a larger σ , and σ is decreased as )1(log/ 2 iteration+σ  

by iterations. This choice shows that the range of effect is decreased when the 
iteration number is increased. 

3.3   Total Error Layer 

For each point xi the error function is defined as 

∏
≤≤

===
mj

ijimikiii ErErErErCCEc
1

1 ),,,,()(Er . Total error is zero when the 

distance between input 
ix  and any object is zero, i.e., 

ikEr =0, and 
iEc =0. 

4   Parametric Learning Rules 

In order to minimize total error 
iEc , we use gradient descent method to adjust 

parameters.  
The parameters of line or hyperbola can be written as a parameter vector pk. 

pk(t+1) = pk(t) + Δpk(t)   (k = 1, 2, …, m) and  

k

i
k

Ec

p
p

∂
∂−=Δ β ,  (4) 

where β  is the learning rate. From (4) and by chain rule, pk can be written as 

( ) .  )(1
2

        
2 ∂

∂
−−=

∂
∂

∂
∂

∂
∂

−=
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ik
ik

ik

ik

i

k

ik

ik

ik

ik

i
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d
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d
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ββ
 

(5) 
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We derive 
k

ikd

p∂
∂  for line and hyperbola as follows. 

4.1   Learning Rule for Line 

For a line, the parameter vector is pk = [ wk,1  wk,2  bk ]T = [ wk
T  bk ]T  Thus, 

T

k

ik

k

ik

k

ik

T

k

ik

T

k

ik

k

ik

b

d

w

d

w

d

b

ddd

∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

=
∂
∂

2,1,wp
. From (1), we can get 

iik
k

ik dsign
d

x
w

 )(=
∂
∂  (6) 

)( ik
k

ik dsign
b

d =
∂
∂  (7) 

where  

<−
=
>

=
0,1

0,0

0,1

)(

ik

ik

ik

ik

d

d

d

dsign
. Hence, from (5), (6), and (7), 

( ) . 1] )[()(1
2

][
2

TT
iikik

ik

ik

iT
k

T
kk dsigndf

d

Er

Ec
b xwp −−=ΔΔ=Δ

σ
β   

(8) 

Note that, in (8), T
kwΔ  is proportional to T

ix , while 
kbΔ  is not. That is, T

kwΔ  is 

drastically affected by input scalar, but 
kbΔ  is not. In order to solve this problem, we 

normalize the input data Ttx ][  to satisfy 

1)var()var(    0][E][E ==== txtx and  . (9) 

After convergence, we obtain the parameter vector of normalized data, then we 
recover it to get parameter vector of original data. Without this normalization it is 
difficult to get the learning convergence. 

4.2   Learning Rule for Hyperbola 

For reflection wave, the parameter vector of hyperbola is pk = [ ak  bk  x0,k  t0,k ]
T . 

Thus, 
T

k
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Also note here, input data scalar affects 
kaΔ , 

kbΔ  and 
kx ,0Δ . So data normalization 

by (9) and renormalization are also necessary for the hyperbola. 
For seismic reflection wave pattern, in the geologic flat layer, we have 

kx ,0
= 0 in 

(2). So the parameter vector pk = [ ak  bk  t0,k ]
T and by (11) which implies parameter 

adjustment 
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Similar to [6], in the learning process, we use two stage learning and the 
convergence can be fast. In the first stage, we only change the bias bk of the line in 
(8), and (x0,k, t0,k) of the hyperbola in (11) or t0,k of the hyperbola in (12) until there is 
no significant change in the output error. In the second stage, we adjust all parameters 
of line in (8) and hyperbola in (11) or (12). 

The flowchart of the learning system is shown in Fig. 5. The object number m is 2, 
one is line and the other is hyperbola. Initially set up random parameter vectors. Then 
input data and adjust the parameter vector as (8) and (11) or (12). Finally, if the 
average error is less than a threshold, Eth, then the learning stops. 
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Fig. 5. Flowchart of the learning system 

5   Seismic Experiments 

The HTNN is applied to the simulated and real seismic data. In a simulated one-shot 
seismogram, the reflection layer is flat, that means 

0x = 0, so three parameters are 

detected for hyperbola. And in real seismic data, we have no prior geological 
knowledge, so four parameters are detected for hyperbola. In the experiments, the 
input data are in the image space and the results are shown in the x-t space. 

5.1   Experiment on a Simulated One-Shot Seismogram 

The image space of simulated one-shot seismogram in Fig. 1 is 64×512. After 
preprocessing, the input data in Fig. 6 have 252 points. Table 1 shows the detected 
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parameters of line and hyperbola in the image space. The experimental results are 
shown in Fig. 6-7. We choose that  equals to 0.05,  equals to 

)1(log/15 2 iteration+ , and error threshold (
thE ) equals to 510− . Fig. 6 shows the 

result of detection of direct wave and reflection wave in the x-t space. Fig. 7 shows 
the error versus iteration number, where the dotted line means it takes 12 iterations to 
change to stage two. Comparing the detection results with the original seismogram, 
the result of experiment is quite successful. 

  

Fig. 6. Detection result: direct wave and 
reflection wave 

Fig. 7. Error versus iteration 

5.2   Experiment on Real Seismic Data 

Fig. 8 is the seismic data at Offshore Trinadad with 48 traces and 2050 points in each 
trace. The sampling rate is 0.004 seconds. The data are from Seismic Unix System 
developed by Colorado School of Mine [8]. After preprocessing, the input data in Fig. 9 
have 755 points. Table 2 shows the detected parameters of line and hyperbola in the  
 

 
Fig. 8. Real seismic data at Offshore 
Trinadad 

Fig. 9. Detection result: direct wave and 
reflection wave 
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image space. The results are shown in Fig. 8-10. We choose that  equals to 0.1,  
equals to )1(log/12 2 iteration+ , and error threshold (

thE ) equals to 4105.2 −× . Fig. 9 

shows the result of detection of direct wave and reflection wave in the x-t space. Fig. 
10 shows the error versus iteration number, where the iteration number from stage 
one to stage two is 18. 

 

Fig. 10. Error versus iteration 

Table 1. Parameters of line and hyperbola in Fig. 6 in the image space, 64×512 

 
1w  

2w  b  

Line -0.040031 0.0079809 -0.082842 
 a  b  

0t  

Hyperbola -21.176 -10.383 4.5614 

Table 2. Parameters of line and hyperbola in Fig. 9 in the image space, 48×2050 

 
1w  

2w  b  

Line 0.04443 0.0068985 -2.7525 
 a  b  

0x  
0t  

Hyperbola -28.371 -16.823 40.361 -37.19 

6   Conclusions 

HTNN is adopted to detect line pattern of direct wave and hyperbola pattern of 
reflection wave in a seismogram. The parameter learning rule is derived by gradient 
descent method to minimize the error. We use the direct line equation in the distance 
calculation from point to line. Also we define the vertical time difference as the 
distance from point to hyperbola that makes the learning feasible. In experiments, we 
get fast convergence in simulated data because three parameters are considered in the 
hyperbola detection. In real data, four parameters are in the hyperbola detection. 
There is no prior geological information, the detection result in line is good, but not in 
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hyperbola. There may be 3 reasons: (1) input points are not many enough, (2) two 
objects are too close and affect each other, (3) there are reflections of deeper layers 
and affect the detection of the first layer reflection. Surely the detection results can 
provide a reference and improve seismic interpretation. 

The result of preprocessing is quite critical for the input-output relation. More 
wavelet, envelope, and deconvolution processing may be needed in the preprocessing 
to improve the detection result. 
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Abstract. This paper describes an evidence-theoretic classifier which employs 
global k-means algorithm as the clustering method. The classifier is based on 
the Dempster-Shafer rule of evidence in the form of Basic Belief Assignment 
(BBA). This theory combines the evidence obtained from the reference patterns 
to yield a new BBA. Global k-means is selected as the clustering algorithm as it 
can overcomes the limitation on k-means clustering algorithm whose perform-
ance depends heavily on initial starting conditions selected randomly and re-
quires the number of clusters to be specified before using the algorithm. By 
testing the classifier on the medical diagnosis benchmark data, iris data and 
Westland vibration data, one can conclude classifier that uses global k-means 
clustering algorithm has higher accuracy when compared to the classifier that 
uses k-means clustering algorithm. 

Keywords: Dempster-shafer theory, clustering, k-means algorithm. 

1   Introduction 

Since 1976, evidence theory has been gaining increasing acceptance in the field of ar-
tificial intelligence, particularly in the design of expert systems. Many researches 
have been carried out based on Dempster-Shafer theory. In [10], Dempster-Shafer 
theory has been applied on sensor fusion due to its ability of uncertainty management 
and interference mechanisms being analogous to human reasoning process. In [11], 
Dempster-Shafer algorithm also used to combine multi-scale data.  From Thierry De-
noueux work [7], a classification procedure based on the D-S theory using the k-
nearest neighbor rule is proposed. Later from [4], a neural network classifier based on 
Dempster-Shafer theory has been presented. The research concludes that this method 
has exhibited excellent performance in several classification tasks and shows ex-
tremely robust performance to strong changes in the distribution of input data.   

In this paper, this evidence-theoretic classifier [4] which based on Dempster-Shafer 
theory is tested using the medical diagnosis benchmark data, iris data and Westland 
Vibration data. This classifier consists of an input layer, two hidden layers and an 
output layer. A set of training data is fed into the classifier for learning purpose. The 
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clustering of the training data is required to reduce complexity due to large amount of 
data and this results in faster classification and lower storage requirement. Clustering 
algorithm can be considered as the most important unsupervised learning problem, 
which similar sets of data are partitioned into homogeneous group, or clusters. A clus-
ter is therefore a collection of objects which are similar between them and are dissimi-
lar to the objects belonging to other clusters. Cluster membership may be defined by 
computing the distance between data point and cluster centers. K-means clustering 
[12] is one of the widely used clustering methods due to its robustness. However, this 
clustering algorithm has some drawbacks, influenced by the random initialization of 
cluster centers, which result in the convergence to a local minimum. In addition, this 
classifier needs to have the number of clusters to be specified before running the algo-
rithm. In [8] and [9], research has been done on the initialization conditions to im-
prove this algorithm. In [3], a new clustering method known as the global clustering 
algorithm has been presented to overcome the drawbacks from k-means clustering al-
gorithm. This clustering method is a deterministic global clustering algorithm by us-
ing k-means algorithm as the local search procedure and proceeds in an incremental 
way attempting to optimally add one new cluster center at each stage instead of se-
lecting initial cluster centers randomly. Therefore, this method is not sensitive to any 
initial starting points. Due to this, the evidence theoretic classifier is modified by us-
ing global k-means clustering algorithm as the clustering method for training data. 
The performance of the classifier by using k-means algorithm and global k-means al-
gorithm is then evaluated. The Euclidean distance between the test vector (input pat-
tern) and the cluster center of each prototype is computed and acts as an evidence for 
classification purpose. This evidence which is presented in the form of basic belief as-
signment (BBA) is then combined using Dempster-Shafer theory.   

The paper is organized as follows: Section 2 describes the limitation for k-means 
algorithm and describes the general step for global k-means algorithm that is later 
used in evidence theoretic classifier as the clustering algorithm. Section 3 shows the 
evidence theoretic classifier based on Dempster-Shafer theory. The results by using 
the classifier on medical diagnosis benchmark data, iris data and Westland vibration 
data are discussed in section 4. Finally section 5 concludes the paper.  

2   Global K-Means Algorithm 

Data clustering is defined as the process of partitioning a given set of data into homo-
geneous group. K-means algorithm is one of the most popular clustering methods. It 
is an algorithm for clustering objects based on attributes   into K disjoint subsets.  The 
basic idea for clustering algorithm is to optimize the clustering criterion. The cluster-
ing criterion in k-means algorithm is related to the minimization of the clustering er-
ror, which is the sum of the Euclidean distances between each element and the cluster 
center. 

K-means algorithm starts by partitioning the input data into k initial partitions by 
selecting the initial cluster center randomly. The membership for the patterns is  
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decided by assigning the pattern to its nearest cluster center and a new partition can be 
constructed depending on this distance. New cluster center is obtained from this new 
partition. The clustering criterion is given by  
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ccccE
1 1
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where ic  is the cluster center for the ith cluster. The algorithm will be repeated until 

the convergence achieved, where there is no more changing on the cluster center. 
However, the convergence is not guaranteed to yield a global optimum as the per-

formance of k-means algorithm is heavily depending on the initial positions of the 
cluster center that is selected randomly. The sensitivity to initial positions of the clus-
ter centers requires several runs with different in initial positions to be scheduled in 
order to obtain a near optimal solution. Another main drawback from this method is it 
requires the number of clusters to be defined beforehand. If the data is not naturally 
clustered, strange results will be obtained. 

Due to the drawbacks from the k-means algorithm, a new approach which is 
known as the global k-means algorithm has been proposed. This is a deterministic 
global optimization method that independent on any initial points by using k-means 
algorithms as a local search procedure [3]. 

Consider a clustering problem with a maximum cluster size kmax, the global k-
means algorithm can proceed as below with a given data set X={x1, x2,….,xi}[3]: 

1. K-means algorithm is performed on the data set started by setting the cluster size 
to be 1 (k=1) and slowly increase the cluster size until the maximum cluster size 
kmax is reached. 

2. Starting from k=1, its optimal position is obtained which corresponds to the clus-
ter center of the data set.  

3.  The algorithm proceeds by slowly increasing the number of cluster size k, where 
k< kmax. To solve the clustering problem for k, the k-1 centers are always placed 
at the optimal position that we obtain from the (k-1) clustering problem, which 
are (m1*(k-1),…,mk-1*(k-1)). For the kth center, i executions of k-means algo-
rithm is performed with different initial positions stating from X={x1, x2,….,xi} 
to obtain the best solution. By doing the above, the k clustering problem is solved 
by considering (m1*(k),…,mk*(k)) as the final solution. 

4. The above steps will be repeated for other cluster size, starting from k=2 until 
kmax. 

By using the above method, we can finally obtain a solution with kmax cluster and 
also solve the intermediate clustering problem, k=1, 2, 3…... kmax-1. Besides that, 
global k-means algorithm provides a good approach to discover the correct number of 
clusters by choosing the cluster size that gives the minimum clustering error. This 
solves the problem in the k-means algorithm which requires specification on the 
number of clusters before performing the algorithm. 
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3   Application of Dempster-Shafer Theory on Pattern Classifier 

3.1   Dempster Shafer Theory 

Evidence theory is based on belief functions and plausible reasoning, where belief 
measure is a form associated with preconceived notions and plausibility measure is a 
form associated with information that is possible [2]. These two parameters can be 
expressed and measured by using another function, known as Basic Belief Assign-
ment (BBA).A basic belief assignment, denoted by m(A), represents the belief that a 
specific element x belongs to crisp set A, given a certain piece of evidence. Belief and 
plausibility measure can be expressed in terms of BBA by using: 

⊆
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where bel(A) measures degree of belief  that a given element x of universal set X be-
longs to the set A and to the various subsets of A and pl(A) represents not only the to-
tal belief that the element x  belongs to A or to any of the subsets of A, but also the 
additional belief on the set that intersects with set A.   

Separate pieces of evidence from two different sources (B and C) can be expressed 
by two different BBA, m1 and m2. These BBAs may be combined to obtain a new 
BBA by using Dempster-Shafer theory, which is defined as 
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From Dempster-Shafer theory, a representation of the uncertainty of an element x is 
given, not only on a singleton but also on the union of the crisp sets. 

3.2   Evidence Theoretic Classifier Based on Dempster-Shafer Theory 

By referring to Thierry Denoeux work [4], a pattern classifier based on Dempster-
Shafer theory has been presented. This classifier is composed of an input layer (L1), 
two hidden layers (L2 and L3) and an output layer (L4). Modification has been done on 
the classifier by using global k-means clustering algorithm as the clustering method. 
Consider a set of test patterns X={x1, x2,….,xn}  that need to be classified into one of 
the M classes, w1,…,wM where a set of known pattern training data is available for 
pattern classification task.   

The first hidden layer L2 contains of n prototype. Before classifier is tested using 
any benchmark data set, training data is needed for learning purpose. These classified 
training patterns are synthesized into a limited number of prototype p1….pn, by using 
global k-means algorithm. By applying this algorithm, the cluster center for each  
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prototype can be discovered. The Euclidean distance between the testing pattern and 
the cluster center for each prototype is obtained using 

ii pxd −=  (6) 

Thus, the activation function of this layer is described by 

))(exp( iiii ds γα −=  (7) 

This is a decreasing function corresponding to the distance between the test vector 
and each cluster (prototype) center. 

The second hidden layer corresponds to the computation of BBA from n prototype. 
The distance between test patterns and each cluster center for the prototype can be re-
garded as a piece of evidence that influences the classification of the test pattern into 

one of the M classes, as each prototype will provide a degree of membership i
qμ  to 

each class.  BBA can be treated as the belief for test vector to be categorized into one 
of the M classes. For a prototype pi, the BBA which acts as the vector activation can 
be obtained by using 
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and  represents the frame of discernment which includes all the possible classes for 

the test vector x, )( ii dφ can be considered as  a decreasing function of distance and 
i
qμ  is the degree of membership of the prototype toward certain class. 

The n BBAs from each prototype are then combined at the output layer by using 

Dempster-Shafer rule of combination. The activation function iμ  in this layer is de-

scribed by 
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The BBA which contains the similar class from each prototype is combined to 

form iμ .  

Therefore the output vector can be defined as:  

    m= nμ  (11) 

and the test pattern x can be assigned to the class which has the highest value of BBA: 

})({max})({ qi wmwm =  (12) 
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Fig. 1. Evidence theoretic classifier 
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As mentioned before, training set must be input into the classifier for learning pur-
pose. The learning algorithm that has been chosen is the gradient decent method. This 
algorithm enables the convergence of the error function to a local minimum. The error 
function is defined by the difference between the classifier output and the target out-
put value. 
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where  vP  is the classifier output and t is the target output vector. 

4   Results and Discussion 

Evidence theoretic classifier which used global k-means algorithm as the clustering 
approach is evaluated by using two data sets: 

1. benchmark data which includes medical diagnosis data and iris data 
2. Westland vibration data 
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Benchmark data 
Benchmark data includes medical diagnosis data and iris data. Medical diagnosis data 
is obtained from [1]. The descriptions of the medical diagnosis data and iris data are 
as below: 

Heart Disease data set 
This data set contains 270 samples with 13 input features and 2 target classes, with 0 
for absence of the disease and 1 for the presence of the disease. 

Pima Indian Diabetes (PIMA) data set 
This data set contain 2 target classes with class 1 indicated “tested positive for diabe-
tes” and vice-versa. 

Cancer data set 
This data set contains 2 target classes. 

Hepatobiliary Disorders(HEPATO) data set 
This data consists of 68 patterns each with 7 input features, and 2 target classes, with 
0 for absence of the disease and 1 for the presence of the disease. 

Dermatology data set 
The data set contains six target classes of Dermatology diseases (psoriasis, seboreic 
dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra pi-
laris). 

Iris Data 
The data set consists of three classes (iris virginica, iris versicolor, and iris setosa). 

The common performance metrics used in medical diagnosis tasks are accuracy, 
sensitivity and specificity. 

cases negative ofnumber  Total

diagnosedcorrectly  cases negative ofnumber  TotalySpecificit

cases positive ofnumber  Total

diagnosedcorrectly  cases positive ofnumber  Total
ySensitivit

cases ofnumber  Total

cases diagnosedcorrectly  ofnumber  Total
Accuracy

=

=

=
 

(14) 

The positive case refers to the presence of a disease and the negative case refers to 
the absence of the disease. Accuracy is the measure of the ability of the classifier to 
provide correct diagnosis. Sensitivity measures the ability of the classifier to correctly 
identify the occurrence of a target class while specificity measures the ability to sepa-
rate the target class. 

Westland Vibration Data 
The data set consists of vibration data collected using eight sensors mounted on dif-
ferent locations on the aft main power transmission of a US Navy CH-46E helicop-
ter[13]. Data collected on torque level 100% from sensor 1 to sensor 4 is used to test 
the classifier. 
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The table below shows the performance of the classifier by using global k-means 
algorithms when compared to the k-means algorithm.  The result of the k-means algo-
rithm is obtained from 10 runs with different initial starting cluster centers. 

Table 1. Data comparison between global k-means and k-means algorithm using benchmark 
data(medical diagnosis data and iris data) 

    Accuracy Sensitivity Specificity 

    Mean Max Min Mean Max Min Mean Max Min 

Heart 
Global 
k-means 84.4  78.97  89.54 

  k-means 84.16 84.4 84 78.36 78.90 78.13 89.62 90.31 89.54 

Cancer 
Global 
k-means 96.54  93.51  98.24 

  k-means 96.32 96.35 96.15 93.01 93.06 92.64 98.24 98.24 98.24 

Pima 
Global 
k-means 78  58.62  87.66 

  k-means 77.6 77.86 77 58.73 59.49 57.82 86.98 87.89 85.93 

Hepato 
Global 
k-means 48.98  

  k-means 46.67  48.16  45.51 

Dermatology 
Global 
k-means 61.3 

k-means 57.65 61.91 45.95    

Iris 
Global 
k-means 57.86 

k-means 55.36 57.14 47.14  

Table 2. Data comparison between global k-means and k-means algorithm using Westland 
Vibration data(sensor 1 to sensor 4)  

Westland Vibration data    

   Accuracy  

  Mean Max Min 

Sensor 1 Global k-means 98.59 −− −− 
 k-means 80.52 86.62 73.67 
Sensor 2 Global k-means 96.62 −− −− 
 k-means 81.70 89.58 75.21 
Sensor 3 Global k-means 97.61 −− −− 
 k-means 87.65 93.66 79.72 
Sensor 4 Global k-means 96.06 −− −− 
 k-means 74.66 78.59 70.56 

The result shows that the global k-means algorithm provides higher accuracy when 
compare with k-means algorithm. The reason for using global k-means algorithm is 
that it will overcome the shortcoming in k-means algorithm: 
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1. The initial starting point of k-means algorithm is selected randomly. Thus it does 
not guarantee unique clustering and where each run will give different result de-
pends on the initial position. Due to this, it does not yield a convergence to a 
global optimum. This problem can be solved by using global k-means algorithm 
which is not sensitive to any initial starting condition. 

2. The k-means algorithm needs the user to specify the number of clusters. While 
global k-means algorithm can be used to discover the optimized cluster size by 
choosing the cluster size that gives the minimum clustering error criterion. 

5   Conclusion 

An evidence theoretic classifier has been presented by using global k-means algo-
rithm as the clustering method. The results show that this classifier gives a compara-
ble and good performance when compared to k-means clustering algorithm. Global k-
means algorithm overcomes some problem that one could face when applying k-
means algorithm, especially the randomness of the initial cluster center. Due to the 
randomness in k-means algorithm, one is forced to run the algorithm for several times 
in order to obtain a near optimal result. Moreover, global k-means algorithm enables 
the user to discover the actual number of cluster sizes. Therefore this method is con-
sidered as another effective alternative for cluster initialization for evidence-based 
neural network.  
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Abstract. This paper proposed a new method of extracting texture features 
based on Gabor wavelet. In addition, the application of these features for bark 
classification applying radial basis probabilistic network (RBPNN) has been 
introduced. In this method, the bark texture feature is firstly extracted by 
filtering the image with different orientations and scales filters, then the mean 
and standard deviation of the image output are computed, the image which have 
been filtered in the frequency domain. Finally, the obtained Gabor feature 
vectors are fed up into RBPNN for classification. Experimental results show 
that, first, features extracted using the proposed approach can be used for bark 
texture classification. Second, compared with radial basis function neural 
network (RBFNN), the RBPNN achieves higher recognition rate and better 
classification efficiency when the feature vectors have low-dimensions. 

1   Introduction 

Plant species identification is a process resulting in the assignment of each individual 
plant to a descending series of groups of related plants, as judged by common 
characteristics. It is important and essential to correctly and quickly recognize and 
identify the plant species in collecting and preserving genetic resources, discovery of 
new species, plant resource surveys and plant species database management, etc. 
Plant identification has had a very long history, from the dawn of human existence. 
However, so far, this time-consuming and troublesome task was mainly carried out by 
botanists. Currently, automatic plant recognition from color images is one of the most 
difficult tasks in computer vision because of lacking of proper models or 
representations for plant. In addition, different plants take on numerous biological 
variations, which farther increased the difficult of recognition. 

Many plant barks show evident texture features, which can be used as one of useful 
features for plant recognition. From bark texture analysis, we can conclude that it is 
necessary to define a set meaningful feature for exploring the characteristics of the 
texture of bark. There have been several approaches for this problem such as spatial 
gray-level co-occurrence matrix [1], Gabor filter banks [2], combining grayscale and 
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binary texture [3]. Although these methods yield a promising result to bark texture 
analysis, but they fail to classify bark texture adequately. One of the most popular 
signal processing approaches for texture feature extraction is Gabor filters which can 
filtering both in the frequency and spatial domain. It has been proposed that Gabor 
filters can be used to model the responses of the human visual system. A bank of 
filters at different scales and orientations allows multichannel filtering of an image to 
extract frequency and orientation information. This can then be used to decompose 
the image into texture features.  

2   Gabor Wavelets and Feature Extraction 

2.1   Gabor Wavelets 

A 2-D Gabor function is a Gaussian modulated by a complex sinusoid [4]. It can be 
specified by the frequency of the sinusoid ω  and the standard deviation xσ  and yσ , 

of the Gaussian envelope as: 
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The frequency response of this filter is written as: 

]}
)(

[
2

1
exp{),(

2

2

2

2

vu

VU
VUG

σσ
ω +−−=

 

(2) 

Where 
x

u
x

u πσ
σ

πσ
σ

2

1
,

2

1 ==  

The self-similar Gabor wavelets are obtained through the generating functions: 

),(),( YXgaYXg m
mn ′′⋅= −

)cossin(),sincos( θθθθ YXaYYXaX mm +−=′+=′ −−  
(3) 

N

nπθ = , Intergersnma => ,,1  

Where m and n specify the scale and orientation of the wavelet, respectively, with 
1,...2,1,0,,...2,1,0 −== NnMm and NM ,  are the total number of scales and 

orientations. 
The Gabor kernels in Eq.1 are all mutually similar since they can be generated from 

the same filter, also known as mother wavelet. As described above, Gabor filter can 
localize direction spatial frequency at θ . When applied to an image, the output 
responds maximally at those particular edges whose orientation is θ . That means 
Gabor filter is oriental selective to image. We can use this specialty to detect the 
edges at all orientations of an image. 
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2.2   Image Feature Extraction 

The Gabor wavelet image representation is a convolution of that image within the 
same family of Gabor kernels in Eq.1. Let ),( yxI be the gray level distribution of an 

image, and the convolution of image I together with a Gabor kernel mng is defined as 

follows: 

1111 ),(),(),( dydxyyxxgyxIyxW mnmn −−= ∗

 
(4) 

Where * indicates the complex conjugate and mnW is the convolution result 

corresponding to the Gabor kernel at orientation m and n . It is assumed that the local 
texture regions are spatially homogeneous, and the mean mnμ and the standard 

deviation mnσ of the magnitude of the transform coefficients are used to represent the 

region for classification purposes: 
dxdyyxWmnmn = ),(μ

 and 

dxdyyxW mnmnmn −= 2)),(( μσ
 

A feature vector is now constructed using the mean mnμ and standard deviation 

mnσ  of the output in the frequency domain as feature components.  

...]...[ 3535010000 σμμσμ=f  (5) 

We use this feature vector as bark recognition feature vector. 

3   Radial Basis Probabilistic Network (RBPNN) Classifier 

After the Gabor features of bark image have been extracted which had described in 
section 2, the second task is that recognition of bark texture image using radial basis 
probabilistic network (RBPNN). 

The RBPNN model is essentially developed from the radial basis function neural 
networks (RBFNN) and the probabilistic neural networks (PNN) [5], [6], [7], [8]. 
Therefore, the RBPNN possesses the common characteristics of the two original 
networks, i.e., the signal is concurrently feed-forwarded from the input layer to the 
output layer without any feedback connections within the network models. Moreover, 
the RBPNN avoids the disadvantages of the two original models to some extent. The 
RBPNN, shown in Fig.1, consists of four layers: one input layer, two hidden layers 
and one output layer. The first hidden layer is a nonlinear processing layer, which 
generally consists of hidden centers selected from a set of training samples. The 
second hidden layer selectively sums the first hidden layer outputs according to the 
categories to which the hidden centers belong. Generally, the corresponding weight 
values of the second hidden layer are 1’s. For pattern recognition problems, the 
outputs in the second hidden layer need to be normalized. The last layer for RBPNN 
is simply the output layer, which completes the nonlinear mapping by carrying out  
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Fig. 1. The topology scheme of the RBPNN 

tasks such as classification, approximation and prediction. In fact, the first hidden 
layer of the RBPNN has the vital role of performing the problem-solving task. 

Training of the network for the RBPNN used orthogonal least square algorithms 
(OLSA). The advantages of recursive least square algorithms are that it can fast 
convergence and good convergent accuracy. The algorithms can be expressed as the 
following equation in mathematics: 
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Here, x is a given input vector, o
iy is the output value of the i -th output neuron of 

neural network, )(xhk  is the k -th output value of the second hidden layer of 

network; ikw is the weight matrix between the k -th neuron of the second hidden layer 

and the i -th neuron of the output layer, kic represents the i -th hidden center vector 

for the k -th pattern class of the first hidden layer; kn represents the number of hidden 

center vector for the k -th pattern class of the first hidden layer; 
2

• is Euclidean 

norm; and M denotes the number of the neurons of the output layer and the second 
hidden layer, or the pattern class number for the training samples set; )(

2kii cx −φ  is 

the kernel function, which is generally Gaussian kernel function can be written as.  
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For m training samples, Eq.6 can be expressed as: 
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that also can be writed as: 

HWY O =  (10) 

From [7], the weight matrix W  can be solved as follows: 

1 ˆW R Y−=  (11) 

where ,R Y  can be obtained as follows: 
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where Q  is an nn ×  orthogonal matrix with orthogonal columns 

satisfying T TQQ Q Q I= = , and R is an mm × upper triangle matrix with the same 

rank as H . In Eq. (11), Y is a MMN ×− )( matrix. Equation (11) expresses the 

orthogonal decomposition of the output matrix H  of the second hidden layer of 
RBPNN. 

4   Image Data and Experimental Results 

4.1   Image Data and Features Chosen 

We have collected more than 300 pictures of bark in our image database. These 
images were recorded at a resolution of 640 x 480 pixels, with a bit depth of 16 
bits/pixel. Thus, 256 levels were available for each R, G, and B color plane. The 
images were converted to JPEG format and grayscale intensity image before 
processing. Some bark images are shown in Fig.2.  

Chosen randomly about 50% of plant bark samples for each bark class form a 
testing set and the remaining samples form a training set. By this partition, there are 
248 samples in the training set and 17 character samples in the testing set. In addition, 
because the trunk of the tree is cylinder and the two sides of the pictures are possibly 
blurred, so the particularity of interests (ROI), we have select that is a relatively 
bigger ROI with the size of 350× 400 pixels.  
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Fig. 2. Three kinds of original bark images 

As we have discussed in section 2, the Gabor filter-based feature extraction method 
requires setting control parameters of Gabor filter. Hence a feature vector consists of 
different parameters will be obtained which contains the visual content of the image. 
To get the best result, the Gabor parameters were test for different values of the 
number of scales ( m ) and the number of orientations ( n ). The average recognition 
rates have been presented in Table 1.  

The experiment has been made on a PC (PentiumIV-2.4GHz CPU, 512M 
RAM).The image features were calculated using subroutines written in Matlab 7.0 
language. Software for Classifier of RBPNN, we use a conventional C++6.0 
programming environment. Totally seventeen bark classes are used for identification. 
These were: retinispora, maple, Sophora japonica, dogbane, trumpet creeper, osier, 
pine, phoenix tree, camphor, poplar and willow, honey locust, palm, gingkgo, elm, 
etc. Every type of bark has half images for training, others for testing. We used the” 
quantity average recognition rate” defined as below to compare the results. 

%
ImagesBark  Classified ofNumber Totat 

Truely Classified  ImageBark  ofNumber 
Raten Recognitio Average ⋅=

 
The obtained average recognition rates are presented in Table 1.  

Table 1. Average Recognition Rates for Different Gabor Filter and SVM classifier  

Gabor Filter Features Used RBPNN SVM 
Orientation( n )=6, Scales( m )=4 63.71% 60.48% 

Orientation( n )=6, Scales( m )=5 72.58% 78.22% 
Orientation( n )=6, Scales( m )=6 79.03% 81.45% 

Orientation( n )=6, Scales( m )=7 77.42% 83.06% 
Orientation( n )=5, Scales( m )=4 62.90% 62.10% 

Orientation( n )=5, Scales( m )=5 74.19% 77.42% 
Orientation( n )=5, Scales( m )=6 76.61% 79.84% 
Orientation( n )=5, Scales( m )=7 79.84% 81.45% 
Orientation( n )=4, Scales( m )=4 66.13% 64.52% 
Orientation( n )=4, Scales( m )=5 77.42% 76.61% 
Orientation( n )=4, Scales( m )=6 79.84% 80.64% 
Orientation( n )=4, Scales( m )=7 79.84% 82.26% 
Orientation( n )=4, Scales( m )=8 80.65% 81.45% 
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From the classification performances shown in Table 1, we found that: 1) for each 
fixed spatial sampling resolution, there exists an optimal wavelength which achieves 
the best performance. We observed that the orientation 4=n  achieves the better 
performance in bark recognition experiments. 2) While orientation 4=n and scales 
increasing, the average recognition rate of bark can be improved. 3) As for the spatial 
sampling resolutions, it seems that 84× sampling is enough for bark classification 
when used RBPNN classifier. Adopting the more Gabor image feature that can 
improve accuracy of bark classification, but it will lead to a time-consuming 
computation.4)In order to compare the effectiveness of the Gabor features with that of 
the other classifier such as SVM, Our results show that RBPNN classifier can achieve 
more better when the feature vectors has low-dimensions such as the dimensions is 
fewer than 24,at the same time the SVM classifier can give better classification 
accuracy while the dimension of feature vectors is above 24.  

5   Conclusion 

This paper proposes a bark texture recognition algorithm, in which Gabor feature 
representation and RBPNN classifier are employed. The neural network which was 
trained using orthogonal least square algorithms is employed to classify such feature 
vectors and tested on different scales and different orientation. We have also found in 
experiments that RBPNN offers an accuracy of higher classification when the feature 
vectors have low-dimensions such as the dimensions is fewer than 24. When the 
dimension of the feature vectors is high, the RBPNN can give similar results as SVM. 
In the future, more effective feature extracted methods will be investigated for bark 
classification. 
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Abstract. Handwritten Chinese Address Recognition describes a diffi-
cult yet important pattern recognition task. There are three difficulties
in this problem: (1) Handwritten address is often of free styles and of
high variations, resulting in inevitable segmentation errors. (2) The num-
ber of Chinese characters is large, leading low recognition rate for single
Chinese characters. (3) Chinese address is usually irregular, i.e., different
persons may write the same address in different formats. In this paper, we
propose a comprehensive and hybrid approach for solving all these three
difficulties. Aiming to solve (1) and (2), we adopt an enhanced holistic
scheme to recognize the whole image of words (defined as a place name)
instead of that of single characters. This facilitates the usage of address
knowledge and avoids the difficult single character segmentation prob-
lem as well. In order to attack (3), we propose a hybrid approach that
combines the word-based language model and the holistic word matching
scheme. Therefore, it can deal with various irregular address. We pro-
vide theoretical justifications, outline the detailed steps, and perform a
series of experiments. The experimental results on various real address
demonstrate the advantages of our novel approach.

1 Introduction

We consider the problem of Handwritten Chinese Address Recognition (HCAR).
HCAR describes a difficult yet important problem in pattern recognition. This
technology can be applied in many domains including postal address recognition
and bank cheque recognition. The basic task of this problem is to recognize the
actual address directly from an input address image, which can be obtained by
either a scanner or a digital camera.

Many methods have been proposed for dealing with this problem. Most of
them are based on the so-called plain recognition approach [2][4]. This method
first segments each character from the input image, and then recognizes the

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 88–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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isolated characters one by one. However, there are many difficulties for this ap-
proach. For example, free styles in handwriting will lead to inevitable segmenta-
tion errors; the large number of categories in Chinese characters1 will cause high
misclassification rate for isolated character recognition. Moreover, this bottom-
up recognition strategy (e.g., from single characters recognition to the address)
makes it difficult to utilize the address knowledge.

Aiming to solve the problems caused by plain recognition, some researchers
have applied the holistic word recognition approach [5][7]. This approach firstly
extracts the key characters, which are defined as the basic administration units,
such as � (province), � (city), � (district), and � (road). It then bases the
address knowledge to holistically recognize the words, which are defined as a
sequence of characters (place names) between two key characters. Figure 1 illus-
trates this approach. The key characters � (city), � (district), and � (road)
are firstly extracted from the image. Then the word images between each pair
of key characters or before the first key character (the image of the word ��)
are segmented. These images are then holistically matched with the synthesized
features of the place names (stored in the reference dictionary). After �� is
recognized, the word image of�� is extracted and matched with the synthesize
features of all the place names of � which are located in ��. The process is
repeated until all the words are recognized. Finally, the real string ��-�-�
�-�-��-� is output. One problem of this method is that, to reduce the

( city ) (district) (road)

Key
Characters

Image

Words

Real
string

Fig. 1. A typical example of key characters and words

time complexity, only the first candidate of the word recognition is adopted. This
candidate will serve as the upper address for recognizing the place name in the
next address level. If a word is mis-recognized in one level, the word recogni-
tion will be definitely incorrect in the next level. This is because the candidate
of word recognition is only searched within the place specified by the previous
level. For example, in Fig 1, the second level word image (i.e., the word image of

1 Typically, there are 6763 categories for the first and second level simplified Chinese
characters.
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“��”) will be matched with all the “� (district)” that are located in “��”
(as given by the first candidate in the first level). If the first candidate is not “�
�”, the recognition would fail immediately. Another even more critical problem
is that this approach cannot deal with irregular address, namely those address
with missing key characters. Some users often write address strings without key
characters. In this event, this holistic method would absolutely fail. Fig. 2 de-
scribes two strings that represent the same address. (a) is a regular address;
(b) is an irregular address with missing key characters � and �. Both address
strings are commonly seen in real cases.

(a) (b)

Fig. 2. An illustration of regular address and irregular address. Two strings describe
the same address.

As a brief summary in the above, there are mainly three difficulties in HCAR.
(1) Handwritten address is often of free styles and of high variations, resulting
in inevitable segmentation errors. (2) The number of Chinese characters is large,
leading low recognition rate for single Chinese characters. (3) Chinese address is
usually irregular, i.e., different persons may write the same address in different
formats.

Aiming to solve all the three above difficulties, we propose a novel hybrid
method. We first design an enhanced holistical word matching approach. This
approach not only overcomes the difficulties of (1) and (2), but more importantly,
based on exploiting a recursive scheme and a verification technique, it also solves
the problem caused by only using the first candidate in word matching [5][7],
therefore providing the potentials to increase the recognition rate significantly.
To solve the problem of (3), we also develop a Word Based Language Model
(WBLM) that is tailored to deal with irregular address. WBLM calculates the
probability that a word occurs after another word. The advantage is that it
searches the words based on the probability and does not need key characters
to set the word boundary. Finally, these two approaches are seamlessly inte-
grated such that the whole system can deal with all the three difficulties, thus
representing a comprehensive approach for HCAR.

This paper is organized as follows. In Section 2, we present the enhanced holis-
tic word matching approach. In Section 3, we explain the Word Based Language
Model in details. In Section 4, we present how to combine these two approaches
in order to overcome all the three difficulties. In Section 5, we then evaluate our
proposed method against other traditional methods on real address. Finally, we
set out the conclusion.
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2 Enhanced Holistic Word Matching Approach

In this section, we first make a simple review on the traditional holistic word
matching approach. We then in Section 2.2 present the new recursive approach.
Next, we discuss a speed-up strategy in Section 2.3. Following that, a verification
method is proposed to further lift the system performance.

2.1 Review of Traditional Holistic Word Matching

First, key characters will be extracted from the address image. In Chinese ad-
dress, there are only 22 key characters which are�,�,�,�,�,�,�, �,�,
�,�, �,�,�,�,�,�,�,�,�,�,�. Details about how to extract the
key characters can be seen in [7]; After the key character is extracted, the words
(place name) between each pair of key characters will be holistically recognized.
Different from the plain address recognition method, this traditional approach
recognizes the images between each pair of key characters as a whole. Beginning
from the first address level, the word image is segmented and recognized as a
place name. In the next address level, the word image is cut out and the features
are extracted from it. These features are then compared with the synthesized
features of those place names; these place names must be those of the adminis-
trative units specified by the key character in this level and must locate in the
place specified by the recognition result in the previous level. Similar process
is conducted until all the address levels are recognized. This scheme avoids the
difficult single character segmentation problem and therefore increases the accu-
racy of the system. Detailed information about the feature synthesis and holistic
matching can be seen in [5].

2.2 Recursive Holistic Word Matching

As seen in [6][5][7], the above holistic word recognition only adopts the first
candidate in each level. However, handwriting is of free styles. Moreover, some-
times, two words (place names) contain very similar shapes. Only choosing the
first candidate may generate many errors. Therefore, we propose an enhanced
holistic word recognition approach. Our approach utilizes multiple candidates
and recursively performs holistic word recognition in each address level. For
solving the speed problem, we propose a trimming-down strategy, which will be
introduced in Section 2.3.

Fig. 3 illustrates the detailed recursive procedure. In this figure, assuming
the key characters � , � , and � be extracted, the words are W1, W2, and
W3. Firstly, features are extracted from the image of W1 and then they are
matched with all the � as indicated by A (e.g., ��, ��) in the reference
dictionary. The candidate words are ������and ��, which are sorted
by matching distances. Each candidate will be recursively evaluated in matching
the image W2. For example, the image of W2 is compared with all the place
names which are � (as indicated by B) and are located in ���, ���, �
�� respectively. As a result, three candidate lists of W2 are generated for��
�, ���, and ��� respectively. Similar process will be conducted on these
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( city ) (district) (road) 

Image

(1)

A B F
W1 W2 W3

Fig. 3. Recursive and holistic word recognition

candidates to match the image of W3. The recognition result is the path which
has the smallest matching distance. In this example, it is ��-�-��-�-�
�-�.

Note that, the first recognition candidate of W2 is not the correct word recog-
nition result ��. By using the recursive matching, it is selected as the recog-
nition result. In such a way, the recognition accuracy will be lifted.

2.3 Trimming

In the above, we adopt the multiple-candidate strategy to increase the system’s
accuracy. However, the time complexity will be increased simultaneously. Assume
there are k levels in an input address and N candidates are used in recognizing
each word address. The total number of combinations is hence Nk. This will
be very time-consuming. To speed up the whole process, we design a trimming-
down strategy as follows:

Rule 1: The maximum number of candidates should be smaller than a given
number K.
Rule 2: Only the candidates that satisfy the condition Dist(Candi)−Dist(Cand1)

Dist(Cand1) <

Thtr will be evaluated.

In the above, Dist(Candi) represents the matching distance of the i-th can-
didate. Thtr is a predefined threshold, which is set to 0.125 in our system. Rule
1 will restrict the maximum number of the candidates. Rule 2 will not search
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those candidates whose matching distances are far from the first candidate. In
this way, not all the combinations will be evaluated. Hence, the processing time
can be reduced greatly.

2.4 Verification

When the words in the upper levels are mis-recognized, the word images in the
latter levels will be absolutely mis-recognized. Hence the matching distances in
the latter levels will be large. This means the recognition result of the latter levels
can verify the recognition of upper levels. However, for the last level word recog-
nition, there is no such verification. Moreover, as counted in practice, recognition
errors occurring in the last level address accounts for 25% of misclassification.
Therefore, for correcting the last level address, we propose to combine the plain
character recognition result with the holistic word recognition result. We first
provide a definition of the modified edit distance, which is different from its
traditional definition.

Definition 1. Modified Edit Distance. Assume that S = {S1,S2, . . . ,Su} is
a place name, and W is a C × K array, where Sk (1 ≤ k ≤ u) represents the
k-th character in the place name, Wij ( 1 ≤ i ≤ C, 1 ≤ j ≤ K) represents the
j-th candidate for the i-th segmentation part in a word image, Wi represents the
candidate list of the single character recognition result for the i-th segmentation
part. The modified edit distance between S and W is defined as the minimum
cost at which W is changed to S by the operations of insertion, substitution, and
deletion. The cost between Sk and Wi is defined as follows:

Cost(Sk, Wi) =
{

1 if ∀j Wij �= Sk
j

CK if ∃j Wij = Sk
. (1)

In the above, C can be considered as the total number of the segmentation parts
for the word images in the last level, and K can be regarded as the maximum
number of candidates for each segmentation part.

In this procedure, in order to utilize the candidates of the plain results for the
last level address image, we modify the concept of the edit distance which is
designed originally for comparing two strings to that for comparing a string (a
place name or address) and the string array (the plain recognition result and its
candidates).

The detailed verification steps are described in the following:

1. Base the Dynamic Programming to calculate the modified edit distance be-
tween each place name in the last level and the plain recognition result for
the last level image. All these place names are sorted according to their
modified edit distances.

2. Get the word recognition results from fine recognition and rank each place
name according to the matching distance.

3. Output the legal address Af as the final recognition result according to the
following decision rule as defined in Definition 2.
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Definition 2. Decision Rule. (1) If a place name contains the edit distance
smaller than or equal to 1, output the place name with the minimum modified
edit distance as the recognition result. (2) If all the place names contain the edit
distance greater than or equal to C, the number of the connected components,
output the word recognition result as the final result. (3) If (1) and (2) are not
satisfied, the weight is calculated as Eq. (2) and output the place name with the
smallest weight as the final result.

Weight(Ai) = (1− t1)RankED(Ai) + t1RankWR(Ai) (2)

where, Ai is i-th place name, RankED(Ai) means the rank of the modified edit
distance between Ai and the plain recognition result W , RankWR(Ai) means
the rank of Ai by the word recognition. t1 is defined as t1 = round(ed(Ai))/C;
ed(Ai) represents the modified edit distance between Ai and the plain recognition
result.

The decision rule is justified in the following. From the cost definition in
Eq. (1), with Rule (1) satisfied for a place name, each character in the legal
address should occur in the candidate list of plain recognition. This actually
implies a verification for this place name. Therefore we should output the place
name with the minimum modified edit distance as the recognition result. On the
other hand, with Rule (2) satisfied for all place names, none of the characters in
these place names occurs in the candidate list of the plain recognition result. This
actually implies that the plain recognition is highly unreliable. Therefore, the
holistic word recognition result should be output. Rule (3) actually combines the
plain recognition result with the holistical word recognition result. When the edit
distance of Ai is very small, the plain recognition result appears highly reliable.
Therefore we should give more weight to RankED(Ai); otherwise, RankWR(Ai)
should make more contributions. In particular, when the edit distance of Ai is
less than or equal to 1, we should trust the result of plain recognition; when the
edit distance of all the legal address is big enough, the plain recognition should
be very unreliable, leading that we should output the word recognition result as
the final result.

3 Word Based Language Model Approach

Statistical language models (SLM) receive much interest as the speed and ca-
pability of computers increases dramatically [3]. SLM can mine the inner rules
by statistically and automatically analyzing a large quantity of data, called cor-
pus. Traditional language models are usually based on analyzing the relationship
among the characters. However, this type of character based models may be less
effective in address recognition. In Chinese address, the basic meaningful units
are usually words instead of characters. For example, in an address string “�
�(�)������” (the key character province� is missing), the basic units
are “��”, “���”, and “���”, which respectively represent three place
names. Moreover, the major relationship that ��� is located in ��(�) is
described by words. If the relationship of single characters is considered, the
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probability that � appears after �, i.e., ��, (a famous mountain) is bigger
than ��. However, �� is not located in ���. This may hence result in
errors. In this paper, the word based language model is hence adopted.

3.1 Graph Search Algorithm Based on WBLM

When an address image is input, connected components (CC) will be firstly
extracted based on Connected Component Analysis [1]. Let the component se-
quence be {C1, C2, . . . , Ck}. For each sequence position i, the component Ci, the
segment by combining Ci with Ci+1 (if i+1 ≤ k), and the segment by combining
Ci, Ci+1, and Ci+2 (if i+2 ≤ k) will be input to the recognizer for classification.
Therefore, the connected component sequence will form a Markov graph with
each CC as the node. Moreover, each node will be decided only by its previous
two nodes. Then a word graph will be constructed from the Markov graph by
using the address knowledge tree as plotted in Fig. 4. In order to overcome the
difficulty of missing key characters, a place name with and without the associate
key characters are both embedded in the tree. Now the task changes into find-
ing the optimal path with the maximum probability in the word graph. In the
following, we describe how to calculate the probability of a certain path.

First, the probability that a q-length segment string {s1, s2, . . . , sq} is recog-
nized as a q-length word w = {v1, v2, . . . , vq} is defined as P (w|s1s2 . . . sq) =∏q

i=1 P (vi|si)CF (si).
P (vi|si) is the probability that si is recognized as vi. It can be defined by the

similarity that si is recognized as vi. CF (si) represents the confidence level of
si, which can be defined by a measurement on the average CC spatial distance
within si. Clearly, if the spatial distance among the CCs within si is big, si will
be less likely to be character. We next define the probability that a word string
w1,w2, . . . ,wp is recognized as an address a = {a1, a2, . . . , an}. ai represents the
i-th address level such as a1 =��, a2 =���.

P (a1, a2, . . . , ap|w1,w2, . . . ,wn) = L

√√√√ p∏
i=1

P (ai|wi)CF (wi) (3)

Root

Fig. 4. Address Knowledge Tree
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L =
p∑

i=1

length(ai) (4)

In the above, P (ai|wi) is the probability that a word wi is recognized as a word
ai; length(ai) represents the number of the characters contained in ai; CF (wi)
describes the probability that the associated segment string {si

1, s
i
2, . . . , s

i
o} is

recognized as wi, i.e., CF (wi) = P (wi|si
1s

i
2 . . . s

i
o).

The WBLM aims at finding an address string {a1, a2, . . . , ap} with the maxi-
mum value of P (a1a2 . . .ap|w1w2 . . . wn). In practice, to speed up the calculation,
the log form of this probability is usually adopted.

4 Combination

In this section, we discuss how to combine our Enhanced Holistic Word Match-
ing approach with the Word Based Language Model. When there are no missing
key characters, holistic word matching approach avoids segmenting each char-
acter one by one. This enables this approach an inherent advantage over other
character-based methods. However, irregular Chinese address is also commonly
seen in practice. In this case, the enhanced holistic word based approach will
definitely fail. On the other hand, the word based language model can flexi-
bly incorporate address knowledge; it does not depend on the extraction of key
characters. Therefore, the word based language model is more suitable when key
characters are missing. Taking account of the advantages of both models, we pro-
pose the following simple yet effective combination strategy. The address string
is first input to the Enhanced Holistic Word Based Approach for recognition.
If there are no missing key characters, the average word matching distance will
be small. Otherwise, if some key characters are missing, the Enhanced Holistic
Word Based Approach will force regarding some characters as key characters.
Therefore the word matching will inevitably output large matching distance,
since the word boundaries, i.e., the key characters, are not correctly obtained.
Hence we can simply judge whether the average matching distance is greater
than a threshold Th1 or not so that we can determine whether the input ad-
dress is regular or irregular. If it is regular, we output the answer given by the
Enhanced Word Holistic Approach; otherwise, the final recognition is output by
the Word Based Language Model.

5 Experiments

In this section, we evaluate our algorithm’s performance against the plain recog-
nition and the traditional holistic word matching approach. We first describe the
data sets used in this paper briefly.

Three data sets are used to evaluate the performance of the new system. These
data sets, which are of low, medium, and good quality respectively, consist of
nearly 1800 images (around 300 regular address and 300 irregular images per
data set). These images are written by different persons from different societies.
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Note that we follow [7] and do not consider the address part after the last key
character (this part might be the building name, room number etc). We use the
string recognition rate (SRR) as the performance metric. The SRR is defined

SRR = The number of correctly recognized address strings
The total number of address strings . An address string

is regarded to be correctly recognized if and only if all the characters in this
string accords with the ground truth.

In Table 1, we report the SRR performance of our proposed hybrid approach
in comparison with the plain recognition approach (PRA) and the traditional
holistic word approach (HWA). Our hybrid approach outperforms these two
approaches distinctively. The PRA approach cannot appropriately deal with the
difficulties of segmentation. Moreover, directly recognizing single handwritten
Chinese characters presents a large-category pattern recognition task, which has
been proved to be a very difficult problem. This leads to its low recognition
rate. On the other hand, The HWA approach lacks the scheme to deal with
irregular address, resulting in a definite failure in recognizing the address string
with missing key characters. Since irregular address accounts for half of the test
strings, the accuracy of HWA never surpasses 50%. In contrast, our proposed
approach can deal with all the three difficulties that exist in HCAR and therefore
naturally outperforms the other two in terms of the recognition accuracy.

Table 1. String Recognition Rate in three data sets

Dataset Low Quality Medium Quality Good Quality
PRA(%) 0.91 4.74 29.44
HWA(%) 27.90 33.12 42.88

Our Appr.(%) 80.97 86.32 90.52

6 Conclusion

We have proposed a novel hybrid approach for Handwritten Chinese Address
Recognition. This approach combines the enhanced holistic word matching ap-
proach with the word-based language model and has overcome all the three
difficulties that cannot be solved by other traditional methods. Experiments on
different quality and different types of address strings show that the proposed
approach outperforms other traditional methods significantly.
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Abstract. This paper introduces a morphological neural network approach to 
extract vehicle targets from high resolution panchromatic satellite imagery. In 
the approach, the morphological shared-weight neural network (MSNN) is used 
to classify image pixels on roads into vehicle targets and non-vehicle targets, 
and a morphological preprocessing algorithm is developed to identify candidate 
vehicle pixels. Experiments on 0.6 meter resolution QuickBird panchromatic 
data are reported in this paper. The experimental results show that the MSNN 
has a good detection performance.  

1   Introduction 

With the development of traffic there is high demand in traffic monitoring of urban 
areas. Currently the traffic monitoring is implemented by a lot of ground sensors like 
induction loops, bridge sensors and stationary cameras. However, these sensors 
partially acquire the traffic flow on main roads. The traffic on smaller roads – which 
represent the main part of urban road networks – is rarely collected. Furthermore, 
information about on-road parked vehicle is not collected. Hence, area-wide images 
of the entire road network are required to complement these selectively acquired data. 
Since the launch of new optical satellite systems like IKONOS and QuickBird, this 
kind of imagery is available with 0.6-1.0 meter resolution. Vehicles can be observed 
clearly on these high resolution satellite images. Thus new applications like vehicle 
detection and traffic monitoring are raising up. This paper intends to study the vehicle 
extraction issue from high resolution satellite images. 

Some vehicle detection methods have been studied using aerial imagery 
[1][2][3][4]. In the existing methods, two vehicle models are used. They are explicit 
model and appearance-based implicit model. The explicit model describes a vehicle 
as a box or wire-frame representation. Detection is carried out by matching the model 
"top-down" to the image or grouping extracted image features "bottom-up" to create 
structures similar to the model. 

Few research on vehicle detection from high-resolution satellite imagery with a 
spatial resolution of 0.6-1.0m has been reported [5][6]. At 0.6-1.0 meter resolution, 
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vehicle image detail is too poor to detect a vehicle by model approaches. Thus, it is 
necessary to develop specific approaches to detect vehicles from high resolution 
satellite imagery. 

Morphological shared-weight neural network (MSNN) combines the feature 
extraction capability of mathematical morphology with the function-mapping 
capability of neural networks in a single trainable architecture. It has been proven 
successful in a variety of automatic target recognition (ATR) applications [7][8][9]. 
Automatic vehicle detection belongs to ATR research, thus, in this paper the MSNN 
is employed to detect vehicle targets.  
In this paper, we concentrate the vehicle detection on roads and parking lots, which 
can be manually extracted in advance. In order to reduce searching cost and false 
alarm, a morphology based preprocessing algorithm is developed. The algorithm 
automatically identifies candidate vehicle pixels which include actual vehicle pixels 
and non-target pixels similar to vehicle pixels. Some of sub-images centered at those 
pixels are selected as the vehicle and non-vehicle training samples of the MSNN. The 
trained MSNN is tested on real road segments and parking lots. The performance 
results are also discussed in this paper. 

The paper is organized as follows. In Section 2, the details of our vehicle detection 
approach are described. In Section 3, experimental results are given and conclusions 
are provided in Section 4. 

2   Vehicle Detection Approach 

The vehicle detection is carried out by an MSNN classification method. Before 
describing the vehicle detection approach, we briefly introduce the MSNN 
architecture as follows. 

2.1   MSNN Architecture 

Before describing the MSNN architecture, we provide brief definitions of some gray 
scale morphological operations. A full discussion can be found in [10]. The basic 
morphological operations of erosion and dilation of an image f by a structuring 
element (SE) g are 

erosion : ( )( ) ( ) ( ) [ ]{ }min :x xf g x f z g z z D gΘ = − ∈                                     (1)  

dilation : ( )( ) ( ) ( ){ }max :
x x

f g x f z g z z D g∗ ∗⊕ = − ∈                                     (2) 

where g
ψ
(z) = g(z − x), g(z) = −g(−z) and D[g] is the domain of g. The gray-scale hit-

miss transform is defined as 

                        )()(),( *mfhfmhf ⊕−Θ=⊗                                              (3) 

It measures how a shape h fits under f using erosion and how a shape m fits above f 
using dilation. High values indicate good fits. 

MSNN is composed of two cascaded sub-networks: feature extraction (FE) sub-
network and feed-forward (FF) classification sub-network. The feature extraction sub-
network is composed of one or more feature extraction layers. Each layer is composed 
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of one or more feature maps. Associated with each feature map, is a pair of 
structuring elements – one for erosion and one for dilation. The values of a feature 
map are the result of performing a hit-miss operation with the pair of structuring 
elements on a map in the previous layer (see Fig. 1). The values of the feature maps 
on the last layer are fed to the feed-forward classification network of the MSNN 
[11][12]. 

 

Fig. 1. The architecture of the morphology shared-weight neural network 

2.2   Vehicle Detection Using MSNN 

2.2.1   Morphology Preprocessing  
In order to reduce searching cost and false alarm, a morphology based preprocessing 
algorithm is developed. In the algorithm, some morphological operations are used to 
enhance vehicle targets. These morphological operations are gray-scale top-hat and 
bottom-hat transforms, which are defined as 

      top-hat: ( ) ( )T HAT f f f g− = −                                                      (4) 

bottom-hat: ( ) ( )B HAT f f g f− = • −                                                              (5) 

where f  g  and f  g means opening operation and closing operation respectively, 
i.e.  

opening: ( )f g f g g= Θ ⊕                                                                          (6) 

closing: ( ) ( )( )f g f g• = − − −                                                                  (7) 
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From empirical observation, the width of most vehicles on QuickBird images 
generally is less than or equal to 4 meters, and the length is not more than 6 meters. 
Thus the SE used is a disc with radius r = 3. Bright vehicles are smoothed out by the 
morphological opening operation and dark vehicles are smoothed out by the 
morphological closing operation. As a result, vehicles generally have a high value 
either on the top-hat image or the bottom-hat image. By setting a threshold on the top-
hat image or the bottom-hat image, almost all vehicle pixels are detected and non-
target pixels most similar to the vehicle pixels are also extracted. The threshold is 
obtained automatically using Ostu method [13]. In the Ostu method, pixels of a given 
image are represented in L gray Levels [1,2,...,L]. The number of pixels at level i is 
donated by ni, and the total number of pixels by N=n1+n2+...+nL. Then the 
dichotomisation of pixels into two classes C0 and C1, which denote respectively 
pixels with [1...k] and [k+1...L]. The method determines the threshold by determining 
the grey level that maximizes the between-class variance of the gray level histogram. 

Fig.2(a) shows a road segment, and Fig.2(b)-(d) show its top-hat image, the 
bottom-hat image and their binary images after thresholding. From Fig.2(b)-(c), it can 
be seen that both bright vehicles and dark vehicles are enhanced after morphology 
preprocessing. As a result, these vehicles are labeled as white after thresholding. 
However, some noise like bright lane marks and tree shadow are also enhanced and 
mixed with vehicles. In order to further discriminate vehicle target pixels and non-
vehicle target pixels, MSNN is introduced to implement pixel classification. 

 
(a) An example of a road segment 

                                                
(b) Road segment after bottom-hat transform    (c) Road segment after top-hat transform 

                                           
(d) Thresholding result of road segment in (b)   (e) Thresholding result of road segment in (c) 

Fig. 2. An example of the morphology preprocessing algorithm 

2.2.2   Network Training and Classification Testing 
After the morphology preprocessing, the candidate vehicle pixels are obtained (see 
Fig.2(d)-(e)). Based on these candidate pixels, some sub-images centered at these 
pixels are selected as the vehicle and non-vehicle training samples of the MSNN. 
During training, test sub-images provide the input to the first feature extraction  layer 
and the final output is a classification of “vehicle” or “non-vehicle”. This method of 
training is called the “class-coded” mode of operation. While the network outputs 
values of 0 to 1 representing the confidence that an input represents a vehicle or non-
vehicle, the returned result is an actual classification. 
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(a) Examples of vehicle sub-images 

 

                                                  
(b) Examples of non-vehicle sub-images 

Fig. 3. Examples of training sub-images 

Training data consists of a set of sub-images, which contain bright vehicles, dark 
vehicles, varying views of the “vehicle” and different “background”. Fig.3 shows 
some examples of training sub-images.  

Several parameters specify and/or affect network training. The regularization 
parameter indicates the reliability of the training set, with a value of zero indicating 
that the set is completely reliable and a value approaching infinity indicating less 
reliability. The learning rate and momentum constant are used to adjust the speed of 
convergence and stability while reaching a desired error size.  

Weights for the feature extraction operation are user-initialized, while the initial 
feedforward weight matrices are populated by a random number generator. All FE 
and FF weights are learned by back propagation. A signal completes its forward pass 
and then the correction its backward pass at the end of each training epoch, before the 
next input begins processing. A weight correction is the function of the learning and 
momentum parameters, the local gradient of the activation function, and the input 
signal of the neuron. 

After learning, the trained weights are used to implement pixel classification, which 
includes the feature extraction and feedforward classifications. Feature extraction is 
performed over the entire image rather than on a sub-image. The resulting feature 
maps centered at the candidate vehicle pixels with subimage-sized windows are input 
into the feedforward network for classification, and output value represents the 
attribution of the candidate vehicle pixel, i.e., vehicle pixel or non-vehicle pixel. 

3   Experimental Results 

QuickBird panchromatic data set used in our study was collected from Space Imaging 
Inc. web site. The data set contains different city scenes. A total of 15 road segments 
and 5 parking lots segments containing over 1000 vehicles were collected.  Most 
vehicles in the images are around 5 to 10 pixels in length and around 3 to 5 pixels in 
width. Since the vehicles are represented by a few pixels, their detection is very 
sensitive to the surrounding context. Accordingly, the collected images consist of a 
variety of conditions, such as road intersections, curved and straight roads, roads with 
lane markings, road surface discontinuity, pavement material changes, shadows cast 
on the roads from trees, etc. These represent most of the typical and difficult 
situations for vehicle detection. 

For each selected road segment image or parking lot image, roads and parking lots 
were extracted manually in advance and vehicle detection was performed only on the 
extracted road surfaces. To build the vehicle example database, a human expert 
manually delineated the rectangular outer boundaries of vehicles in the imagery.  
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A total of 100 vehicles delineated in this manner from 10 road segments. An image 
region with size 6×6m can cover most vehicles in the imagery. Hence, sub-images of 
size 10×10 pixels centered at vehicle centroids were built into the vehicle example 
database. Taking vehicle orientations into account, each sub-image was rotated every 
45° and the resulting sub-images were also collected in the vehicle example database. 
As a result, the vehicle example database consisted of 100×4 = 400 sub-image 
samples. In addition,  400 non-vehicle sub-image samples covering different road 
surfaces were also collected to build the non-vehicle example database. 

After building sample databases, sub-image samples were used to train the MSNN 
and validate the vehicle detection approach. The MSNN used in our experiments had 
a 20×20 input and one feature extraction layer with two feature maps. The 
downsampling rate was 2 (i.e., 10×10 feature maps) and the structuring elements were 
5×5. The feed-forward network of the MSNN was composed of a two-node input 
layer, ten-node hidden layer and a two-node output layer (target and non-target). All 
weights were initialized with random numbers in [-0.1, 0.1]. The learning rate was 
0.002. A logistic function was used as the activation function. The expected outputs 
for vehicle targets and non-vehicle targets were set to [1, 0] and [0, 1] respectively. 
With these training parameters, the network was trained for 1600 epochs. 

After training, the MSNN was tested on 15 road segments and 5 parking lots. The 
detection statistical results are shown in Tables 1. Fig. 4 shows some images of 
vehicle detection results. 

Table 1. Vehicle detection results 

Site No. of  
vehicles 

No. of detected 
vehicles 

No. of missing 
vehicles 

No. of 
false alarm 

Detection 
rate % 

Road1 6 5 1 0 83.3 
Road2 8 7 1 0 87.5 
Road3 11 9 1 1 81.8 
Road4 15 13 2 0 86.6 
Road5 20 16 3 1 80 
Road6 18 15 3 0 83.3 
Road7 28 23 5 0 82.1 
Road8 63 52 8 3 82.5 
Road9 54 41 10 3 75.9 

Road10 82 66 12 4 80.4 
Road11 114 92 15 7 80.7 
Road12 154 125 23 6 81.1 
Road13 210 175 29 6 83.3 
Road14 268 227 31 10 84.7 
Road15 304 234 50 20 76.9 
Parking1 7 5 2 0 71.4 
Parking2 13 9 4 0 69.2 
Parking3 20 13 5 2 65 
Parking4 46 28 15 3 60.8 
Parking5 90 46 40 4 51.1 
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                                       (a)                                                                  (b)             

                                    
(c)                                                                  (d) 

 
(e) 

 
(f) 

Fig. 4. Vehicle detection results (a)(c)(e) The original images of road segments and parking 
lots. (b)(d)(f) The binary images of vehicle detection results for images shown in (a)(c)(e). 

From Table 1, it can bee seen that the detection rates (number of detected 
vehicles/number of vehicles) for road segments are from 75.9% to 87.5%, and 
average detection rate is 82%. The detection rates vary with the complexity of road 
surfaces, as well as the false alarm. The false alarms are due to vehicle-like “blobs” 
present in some of complex urban scenes, such as the presence of dust and lane 
markings (see Fig. 4). Some of these “blobs” are very hard to distinguish from actual 
vehicles, even to a trained eye.  Most missing detections occur when the vehicles have 
a low contrast with the road surface or vehicles are too close.  

For the vehicle detection on parking lots, the detection rates are not high. It is 
because the vehicles are too close to separate due to the resolution limit. How to 
detect vehicles on parking lots is still an open issue. 

4   Conclusions 

In this paper, we focus on the issue of vehicle detection from high resolution satellite 
imagery. We present a morphology neural network approach for vehicle detection 
from 0.6 meter resolution panchromatic QuickBird satellite imagery. A MSNN was 
introduced in our approach and was found to have good vehicle detection 
performance. Further work could include more training samples, better pre-processing 
method such as adaptive image enhancement and filtering, and introducing more 
information like edge shapes to improve the detection rate. 
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Abstract. In this paper, we propose a secure authentication method based on 
multimodal biometrics system under ubiquitous computing environments. For 
this, the face and signature images are acquired in PDA and then each image 
with user ID and name is transmitted via WLAN (Wireless LAN) to the server 
and finally the PDA receives authentication result from the server. In the 
proposed system, face recognition algorithm is designed by PCA and LDA. On 
the other hand, the signature verification is designed by a novel method based 
on grid partition, Kernel PCA and LDA. To calculate the similarity between test 
image and training image, we adopt the selective distance measure determined 
by various experiments. More specifically, Mahalanobis and Euclidian distance 
measures are used for face and signature, respectively. As the fusion step, 
decision rule by weighted sum fusion scheme effectively combines the two 
matching scores calculated in each biometric system. From the real-time 
experiments, we convinced that the proposed system makes it possible to 
improve the security as well as user's convenience under ubiquitous computing 
environments. 

1   Introduction 

With the advance in communication network, the electronic commerce has been 
popular according to the rapid spread of Internet. In particular, wireless devices make 
it possible to enrich our daily lives in ubiquitous environments. Network security, 
however, is likely to be attacked with intruders and it is faced with the serious 
problems related to the information security. It is even more difficult to protect the 
information security under the wireless environment comparing with the wired 
network. One of the most conventional methods for system security is using 
password, which is very simple and does not require any special device. However, it 
can be easily divulged to others. To tackle these problems, biometrics is emerging as 
a promising technique. In the biometrics, a number of researchers have studied iris, 
facial image, fingerprint, signature, and voiceprint. Among them, the face recognition 
is known as the most natural and straightforward method to identity each person.  

This face recognition has been studied in various areas such as computer vision, 
image processing, and pattern recognition. Popular approaches for face recognition 
                                                           
* Corresponing author. 
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are PCA (Principle Component Analysis) [1] and LDA (Linear Discriminant 
Analysis) [2] methods. However, the major problem with the use of above methods is 
that they can be easily affected by variations of illumination condition and facial 
expression. One the other hand, the signature has been a familiar means where it is 
used for a personal authentication such as making a contact. Online signature 
recognition methods roughly belong to one of global feature comparison, point-to-
point comparison and segment-to-segment comparison methods [3]. For a signature, 
however, comparing with other features of biometrics, its skilled forgery is more or 
less easy and system performance is often deteriorated by signature variation from 
various factors [4].  

Though advanced researches based on single biometric modality have been 
proposed for information security, there are some problems to apply in real life 
because of lack of confidential accuracy [5-7]. Multimodal biometrics has the 
advantage of improving security by combination of two biometric modalities such as 
face and signature [8]. In this paper, we describe an implementation of multimodal 
biometrics under ubiquitous computing environments. The proposed system is 
implemented with embedded program in PDA. More specifically, the face images and 
signatures images are obtained by PDA and then these images with user ID and name 
are transmitted via WLAN (Wireless LAN) to the server and finally the PDA receives 
verification result from the server. In our system, face verification system is 
implemented by conventional PCA and LDA method which calculates eigenvector 
and eigenvalue matrices using the face image from the PDA at enrollment steps. The 
signature verification is designed by a novel method based on grid partition, Kernel 
PCA and LDA. To calculate the similarity between test image and training image, we 
adopt the selective distance measure determined by various experiments. Here, 
Mahalanobis and Euclidian distance measures are used for face and signature, 
respectively. As the fusion step, decision rule by weighted sum fusion scheme is used 
to effectively combine the two matching scores calculated in each biometric system. 
The implemented system renders improvements of speed and recognition rate to 
increase security under ubiquitous computing environments.  

This paper is organized as follows. Section 2 describes the system architecture 
implemented in PDA. In Section 3, we describe the authentication methods for face 
and signature and fusion method. In Section 4, we presents experiment results 
obtained by real-time experiment. Finally, some concluding remarks are given in 
Section 5. 

2   System Architecture for PDA Based Personnel Authentication  

The proposed system consists of a client module for biometric data acquisition and a 
server module for authentication. The client module is to register the face and 
signature image. After then, the acquired user’s information is transmitted via WLAN 
to the server which performs analyzing the transmitted data and sending the 
authentication result to the client module such as acceptance or rejection. That is, the 
server deals with image processing and verification algorithm. 
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For the client module, face images and signatures images are acquired in the PDA 
program implemented by Microsoft embedded development tool. In the face 
acquisition process, user’s image is obtained from the camera attached to the PDA. 
Face detection is essential process since the recognition performance directly depends 
on the quality of acquired face image. Here, we capture a face image by considering 
the direction and position between two eyes. And then, the captured image is saved in 
240x320 pixels BMP format. On the other hand, user’s signature is acquired from 
PDA by stylus pen in acquisition process. Fig 2 shows the user interface environment 
to acquire the face and signature images. User may select the ID, name, and process 
step for identity or register from the setup menu. 

 

Fig. 1. System architecture for biometric authentication 

 
(a)  Face                                           (b) signature 

Fig. 2. User interface environment 

In the server module, matching score is calculated between input image and 
registered images in the database. In the registration step for face recognition, feature 
extraction is performed by PCA and LDA for images transmitted via WLAN from the 
camera attached to the PDA. And then the calculated features are registered in the 
database. Authentication is performed by comparing input face with registered face 
images. For the signature authentication, server receives user’s signature from PDA. 
And then feature extraction is performed by using the algorithm based on grid 
partition, Kernel PCA and LDA. Finally, decision making for acceptance is 
performed according to matching scores obtained face and signature module in server, 
respectively. 
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3   Multi-modal Biometric Authentication Algorithm  

The proposed multi-modal biometric system consists of a face recognition module, a 
signature recognition module, and a decision module as shown in Fig. 3. Here, the 
face recognition is designed by PCA and LDA method. The signature recognition is 
implemented by the grid partition, Kernel PCA, and LDA. As a final step, decision 
module is implemented with the weighted sum rule. The face recognition system is 
composed of feature extraction and classification process parts. First, face image is 
decomposed in each frequency band by wavelet transform to compress it [5]. Then, 
PCA is applied to reduce the dimensionality of image for low frequency band. Here, 
we briefly describe the feature extraction based on PCA and LDA used in the face 
recognition. 
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Fig. 3. Proposed multi-modal biometric system 

Let a face image be a two-dimensional nn ×  array of containing levels of intensity 
of the individual pixels. An image iz  may be conveniently considered as a vector of 
dimension 2n . Denote the training set of N  face images by ),,,(Z N21 zzz= . We 
define the covariance matrix as follows 

T
N
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T
ii ))((

N
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=
zzzz  (1) 

=
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1i
iN

1
zz  (2) 

Then, the eigenvalues and eigenvectors of the covariance matrix R  are calculated, 
respectively. Let ),,,(E r21 eee=  denote the r  eigenvectors corresponding to the r  

largest eigenvalues. For a set of original face images Z , their corresponding reduced 
feature vectors ),,,(X N21 xxx=  can be obtained as follows;  



 Secure Personnel Authentication Based on Multi-modal Biometrics 111 

)(E i
T

i zzx −=  (3) 

The second processing stage is based on the use of the LDA as follows. Consider 
c  classes in the problem with N  samples; let the between-class scatter matrix be 
defined as 

T
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c
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=
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where iN  is the number of samples in i’th class iC  and  m  is the mean of all 

samples, im  is the mean of class iC . The within-class scatter matrix is defined as 

follows 
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where, 
iWS  is the covariance matrix of class iC . The optimal projection matrix FLDW  

is chosen as the matrix with orthonormal columns that maximizes the ratio of the 
determinant of the between-class matrix of the projected samples to the determinant 
of the within-class fuzzy scatter matrix of the projected sampled, i.e., 
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where { }m,,2,1i|i =w  is a set of generalized eigenvectors (discriminant vectors) of 

BS  and WS  corresponding to the 1c −  largest generalized eigenvalues 

{ }m,,2,1i|i =λ , i.e., 

iWiiB SS ww λ= m,,2,1i =  (7) 

Thus, the feature vectors ),,,(V N21 vvv=  for any face images iz  can be calculated 

as follows  
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After obtaining the feature vectors, the classification is achieved by finding the 
minimum distance between the coefficients of test patterns and training patterns. 
Here, the distance is calculated by Mahalanobis distance measure. 

For the signature recognition system, features are calculated by Kernal PCA and 
LDA. Before projecting the original features by Kernel PCA, a signature image is 
projected to vertical and horizontal axes by grid partition method [8]. Kernel PCA can 
be derived using the known fact that PCA can be carried out on the dot product matrix 
instead of the covariance matrix [9]. Let N

i
M

i Rx 1}{ =∈ denote a set of data. Kernel 

PCAfirst maps the data into a feature space F by a function FRM →Φ : , and then 
performs standard PCA on the mapped data. Defining the data matrix 
X by )]()()([ 21 NxxxX ΦΦΦ= , the covariance matrix C in F becomes 
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We assume that the mapped data are centered as 0)(/1 1 =ΦΣ⋅ i
N xN . We can find 

the eigenvalues and eigenvectors of C via solving the eigenvalues problem 

Kuu =λ  (10) 

The NN × matrix K is the dot product matrix defined by XXNK T⋅= /1 where 
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Let
pλλ ≥≥ be the nonzero eigenvalues of K  ( MPNP ≤≤ , ) and Puu ,,1 the 

corresponding eigen-vectors. Then C has the same eigenvalues and there is a one-to-

one correspondence between the nonzero eigen-vectors }{ hu of K and the nonzero 

eigenvectors }{ hv of :C  hhh uXv α= , where hα is a constant for normalization. If both 

of the eigenvectors have unit length, Nh
h λα 1= . We assume Nv h

h λ1= so that 1=hα . 

For a test data x , its hth principal component hy can be computed using Kernel 

function as 
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Then the Φ image of x can be reconstructed from its projections onto the first 
H ( P≤ ) principal components in F by using a projection operator HP  
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The Kernel PCA allows us to obtain the features with high order correlation 
between the input data samples. In nature, the Kernel projection of data sample onto 
the Kernel principal component might undermine the nonlinear spatial structure of 
input data. Namely, the inherent nonlinear structure inside input data is reflected with 
most merit in the principal component subspace. To extract feature, we use LDA as 
well as a Kernel PCA so as to examine the discriminative ability of Kernel principal 
components. After obtaining the feature vectors, classification is achieved by finding 
the minimum distance between the coefficients of test patterns and training patterns. 
Here, the distance is calculated by Euclidean distance measure and finally fusion 
scheme is implemented by weighted sum rule for similarities obtained from face and 
signature [8]. 

4   Experiments and Analysis 

To evaluate the proposed method, face and signature are transmitted via WLAN from 
PDA. First, three faces and signatures for each user are registered with ID number. 
Recognition is performed by comparing face and signature images with registered 
ones. Fig. 4 shows some samples of face or signature images acquired from the PDA. 
The original size of face image is 240 320. However, it is resized as 128 128 pixel 
image whose gray level ranges between 0 and 255. Finally, the compressed face 



 Secure Personnel Authentication Based on Multi-modal Biometrics 113 

image is obtained by performing 4-level wavelet packet transform. On the other hand, 
the size of signature is 240 100. After applying the PPP matching, 2-dimensional 
signature is rearranged in vector form having horizontal and vertical information [8]. 
For the preprocessed face and signature images, feature extraction method is applied 
to obtain the features such as described in Section 3.  

 
(a) Faces                                  (b) Signatures 

Fig. 4. Some samples of faces and signatures acquired from PDA 

Figure 5 shows the recognition result executed in the server. As seen in Fig 5, four 
candidate images are displayed according to the matching score. In this Figure, the 
leftmost image is the testing one to be authenticated and the others are matched in the 
server. Among theses images, leftmost image has the highest matching score for the 
input image. So the server considers him as a genuine person when the matching 
score is higher than a predefined threshold value.  

 
  (a) Face recognition                               (b) Signature recognition 

Fig. 5. Recognition process in the server 

Figure 6 shows the similarity between genuine and imposter according to the 
threshold which determines the accept/reject for face and signature, respectively. 
Here, the number of data is 3 and 44 per person for genuine and imposter. Our 
experiment uses the 45 person. As seen in Fig. 6-(a) (b), performance shows the best 
performance when threshold is 38 and 780 for signature and face, respectively. Fig 6-
(c) shows the performance applying fusion technique based on weighted sum rule. 
Final matching degree is calculated by d1+0.1 d2, where d1 is the value obtained 
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Euclidian distance for signature and d2 is the Mahalanobis distance for face. As seen 
in Fig. 6-(c), the fusion scheme makes discrimination between genuine and imposter 
larger than single biometrics. 

(a) signature                            (b) face                         (c) fusion scheme 

Fig. 6. Discrimination between genuine and imposter 

Fig 7 shows the ROC curve representing FAR(false acceptance rate) and 
FRR(false reject rate). As seen in Fig 7, the performance shows best performance 
when threshold is 122. Table 1 shows recognition rate with respect to EER (error 
equal rate). The error rates are 5.5% and 3.7% by signature and face verification 
system, respectively. Finally, the multi-modality makes the error rate lower than 
single modal system by effectively combining two biometric features. More 
specifically, the error rate shows 1.1 % and one can find that the proposed method can 
be used to establish a higher security system.  

Fig. 7. The ROC curve obtained by applying fusion scheme 

Table 1. EER rate according to each applied method 

Rate Signature Face Multi-modal 

EER 5.5% 3.7% 1.1% 
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5   Concluding Remarks 

In this work, we suggested a multimodal biometrics system under ubiquitous 
computing environments. Our system consists of face and signature verification 
system implemented in PDA and server network. Specifically, the face and signature 
are transmitted to server and PDA receives the verification results via WLAN coming 
from decision in the server. Face verification system is implemented by conventional 
PCA and LDA method and signature verification is designed by a novel method based 
on grid partition, Kernel PCA and LDA. As the fusion step, decision rule by weighted 
sum fusion scheme is used to effectively combine the two matching scores calculated 
in each biometric system. From various real-time experiments, we found that the 
fusion scheme made the error rate lower than single modal system. Therefore, we 
confirm that the proposed method can be applied to the applications for personnel 
authentication where higher security is required. 
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Abstract. Prototype classifiers are one of the simplest and most intuitive 
approaches in pattern classification. However, they need careful positioning of 
prototypes to capture the distribution of each class region. Classical methods, 
such as learning vector quantization (LVQ), are sensitive to the initial choice of 
the number and the locations of the prototypes. To alleviate this problem, a new 
method is proposed that represents each class region by a set of compact 
hyperspheres. The number of hyperspheres and their locations are determined 
by setting up the problem as a set of quadratic optimization problems. 
Experimental results show that the proposed approach significantly beats LVQ 
and Restricted Coulomb Energy (RCE) in most performance aspects. 

1   Introduction 

The simplest and most intuitive approach in pattern classification is based on the 
concept of similarity [1]. Patterns that are similar (in some sense) are assigned to the 
same class. Prototype classifiers are one major group of classifiers that are based on 
similarity. A number of prototypes are designed so as they act as representatives of 
the typical patterns of a specific class. When presenting a new pattern, the nearest 
prototype determines the classification of the pattern. Two extreme ends of the scale 
for prototype classifiers are the nearest neighbor (NN) classifier, where each pattern 
serves as a prototype, and the minimum distance classifier, where there is only one 
prototype (the class center or mean) per class. Practically speaking, the most 
successful prototype classifiers are the ones that have a few prototypes per class, thus 
economically summarizing all data points into a number of key centers. 
Hyperspherical prototypes were first proposed in [2], in which, hyperspheres are used 
to represent each class region. This approach borrows ideas from what is called 
Restricted Coulomb Energy network classifiers. At each moment the system keeps 
some of the data points which were presented to it before, called prototypes together 
with a hypersphere centered around it. If a new point presented to the system is 
contained in some hyperspheres of inappropriate classes, the radii of the containing 
hyperspheres are reduced, so that none of them contains the new point. If the new 
point is contained in any of the hyperspheres of its own class, then no action is taken. 
If it is not contained in any hypersphere, then it becomes a new prototype, and is 
given its own hypersphere of some initial radius. Another improved version of RCE 
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network was proposed by [3], namely RCE-2. In this method, only the hypersphere of 
the closest stored pattern from a different class is modified. In [4], two modifications 
are proposed to the standard RCE: (1) Assigning two thresholds for the hidden units 
that produce two hyperspheres and determine regions of rejections, (2) Modifying the 
center of the hidden unit towards newly presented training examples. Another variant 
of RCE is proposed in [5], where each class region is covered by a set of ellipsoids 
whose orientation coincides with the local orientation of the class region. The general 
learning scheme is similar to RCE's scheme that was suggested in [2]. Our proposed 
method, even though based on the concept of hyperspheres, is very different from the 
RCE approaches and their variants. For example, the RCE method are sequential in 
nature, while in our methods we consider all data points as a whole, allowing us to 
pose the problem as an optimization problem. The sequential nature of RCE, while 
giving it an adaptive nature, presents a problem for batch design in that the order of 
pattern presentation can have a big influence on the resulting final solution. As we 
will see in the simulation results, our method results in significantly less number of 
hyperspheres (hence more compact representation) and considerably better 
performance than that of RCE method. A preliminary version of the algorithm was 
introduced in [6]. 

2   Smallest Covering Hyperspheres 

Consider a K-class pattern classification problem with N data points in a d-
dimensional feature space. In the first proposed method the data points of each class 
are considered separately, and a number of hyperspheres as compact as possible are 
designed to cover the data points of the considered class (say class k). To achieve that, 
we first obtain the smallest hypersphere that encompasses all points of class k. This is 
derived by posing the problem as a quadratic optimization problem, as follows: 
Given N data points in a d-dimensional feature space. Denote the data points as 

[ ]T

i i1 i2 ida ,a ,..., a=a , where i indexes the data point number. The problem is to 

find the center [ ]T

1 2 dx , x ,..., x=x  and radius r such that: 

Min R       s.t.    
2

i 2
R− ≤x a  , i=1,2,…N (1) 

where R=r2. The standard Lagrangian dual is: 
T TMin Τ −A cλ λ λ  

s.t.    T 1=e λ         ,       λ 0 

(2) 

where [ ]1 2 NA = a a a ,
TT T T

1 1 2 2 N Nc = a a a a a a , e∈RN is the vector of 

all ones. This is a convex optimization problem and can be easily solved by any 
interior-point algorithm [7] or by the iterative barycentric coordinate descent method 
used in [8]. 

Next, we shrink the radius of the hypersphere to expel out all data points from 
different classes that happen to fall in the hypersphere. We now have a hypersphere 
that contains a number of points only from class k. We have now accounted for these 
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points, so we remove them and tackle the remaining points of class k. We repeat the 
same procedure for these points and keep adding hyperspheres until we have covered 
all points from class k. We repeat the whole procedure for all other classes. The 
algorithm may be briefly described as follows: 

 
Algorithm (SCHS) 
Input:   

• Training patterns pairs {aj,C(aj)}, j=1,2,…N where C(aj) ∈{1,2,…K}is the class 
index for pattern aj and K is the number of classes. 

• Minimum number of patterns to be encompasses by a hypersphere (Nmin). 
• Threshold μ ∈[0,1]. 
• Threshold γ ∈[0,1]. 
Output: H hyperspheres with their corresponding classes. 
Method:  

1. Set H = 0, k = 1. 
2. Set PointSet = all set of points of class k, Set H=H+1, TempSet=PointSet. 
3. Find the smallest hypersphere (H) that encompasses the points in TempSet. 
4. If number of samples of other classes encompassed by the hypersphere/ number 

of samples of class k encompassed by the hypersphere < μ then, go to step 9. 
5. Find the farthest point from the center (y), whose class is different from k and is 

encompassed by the hypersphere. Compute its distance (dy) from the center.  
6. Drop points from TempSet, whose distances from the center are greater than or 

equal to dy. 
7. Repeat steps 3-6 until there are no points that need to be dropped in step 6. 
8. If number of samples encompassed by the hypersphere < Nmin then remove these 

samples, remove hypersphere H, set H=H-1, go to step 11. 
9. If number of samples encompassed by the hypersphere/number of samples of the 

TempSet, then split the TempSet points into two groups (this will be illustrated 
later), remove hypersphere H, set H=H-1, tackle the points of both groups using 
the same procedure recursively by setting TempSet to be the points of the group 
under consideration and running from step 3. 

10. Remove points encompassed by hyperspheres assigned from TempSet. 
11. If PointSet is not empty, set TempSet=PointSet and go to step 3. 
12. Else: If k < K, Set k = k + 1, go to step 2. 

Another modification may be made to Step 6, is to drop the points from TempSet, 
whose distances from the center are greater than or equal to ηdy rather than dy, where 
0<η≤1. This modification gives the points close to the surface of the sphere the 
chance to be assigned to a perhaps better hypersphere and also speeds up the 
determination of the hypersphere (steps 3-6). 

During the estimation of a hypersphere, sometimes the resultant hypersphere may 
encompass too few points of the PointSet. This case often occurs when samples of the 
class under consideration are clustered into groups separated by samples of other 
classes, or when the hypersphere center falls in a region of class overlap. In the next 
time step (of obtaining the next hypersphere) we will not be much better off, because 
not much have changed since only a few points have been chipped off from TempSet. 
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The outcome of this is that we end up with more hyperspheres than necessary. To 
overcome this standoff, the samples of the TempSet are divided into two groups (step 
9) as follows: 
Consider the direction of maximum variation of the points of PointSet, that is the first 

principal component, say α. Let a be the mean vector of the points in PointSet. Then 

break these points into the two groups: 0≥T
iz α and 0T

iz α < where i i= −z a a . 

3   Classification Stage 

Assume that the design of the hyperspheres is complete, and that it is required to 
classify a given data point (q). Several possibilities exist, for example the data point 
could fall inside several hyperspheres, or it could fall outside all hyperspheres. We 
have chosen to use the distance to the outside surface of the hypersphere (with that 
distance counted as negative if the point is inside the hypersphere) as the selection 
criterion. Specifically, we perform the following steps: 

1. Compute the distance (di) between the data point and the center of each 
hypersphere Hi. 

2. The index for nearest neighbor hypersphere Iq is chosen as: 

{ }
q i i

i = 1,2,3,...H
I arg min (d r )

∈
= −  (3) 

where H is the total number of hyperspheres, ri is the radius of hypersphere Hi. 

4   Experimental Results 

To validate our methods, we used two synthetic data sets and three real world data 
sets. In our implementation we used MATLAB 6.5 on Windows XP operating system 
running on Intel PC 2.4GHZ 256MB RAM. We compared our results with the 
learning vector quantization LVQ [9], RCE [2] and RCE-2 [3]. Best parameters for 
each method are selected using 5-fold cross validation [10]. In LVQ, the initial value 
of the learning rate (ε0) is one of the following {0.01,0.05,0.1} and is decreased as a 
proportional to the reciprocal of the iteration number; i.e. εi= ε0 /i where i is the 
iteration number. The number of prototypes (Pk) for class k is selected as: δ×Nk where 
δ∈{0.01,0.1,0.2}, Nk is the number of training patterns whose class is k. Since all the 
training data used in our experiments are already randomized, we select the first Pk 
patterns for each class as the initial positions of the prototypes. For RCE networks, 
suggested values for the minimum radius allowed, rmin are: 
ε× ij ij

j ii
min ( max (a )-min (a )) where i=1,2,…N and j=1,2,…d and ε ∈ {0.001,0.01,0.1} 

while  those for the initial radius, rmax are: δ× ij ij
j ii

min ( max (a )-min (a )) where 

i=1,2,…N and j=1,2,…d and δ ∈ {0.5,0.75,1}. For SCHS, suggested values for μ are: 
0.01,0.05,0.1, suggested values for γ are: 0.5,0.75, suggested values for Nmin are: δ×Nk 
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where δ∈{0.01,0.05,0.1} and suggested values for η are:0.9,0.95.  We now describe 
the data sets used. 

4.1   I-I Data Set (I-I) 

This is a two-class, 6-dimensional problem generated from normal distributions 
N(μi,Σi) , i =1,2 [11]. The parameters are: μ1=[0 0 … 0]T, μ 2 =[ 2.56 0 … 0]T, Σ1 = Σ2 
= I. The value of μ controls the degree of overlap between the two distributions. 1,000 
examples were used for training and 10,000 for testing. 

4.2   Parabolic Boundary Data Set (Parabola) 

This data set is generated as follows: 11,000 uniformly randomly distributed points 
were generated in two dimensions and two classes are assigned according to the 
following predetermined parabolic boundary: 

 ( ) ( )2 2x y 2 x y 1 N(0,0.05 )− − + + >  class 1 

 Otherwise class 2 

(4) 

where both x and y ∈ [0,1] and N(0,0.052) denotes a number generated from a normal 
distribution with zero mean and standard deviation of 0.05. This allows some class 
overlap at the boundary, which is typically expected in the majority of pattern 
classification problems. 1,000 points were used for training and 10,000 for testing. 

4.3   Thyroid Data Set 

This data set is about the diagnosis of thyroid hypofunction. Based on patient query 
data and patient examination data, the task is to decide whether the patient's thyroid 
has overfunction, normal function, or underfunction. The data set consists of 21 
inputs, 1 discrete output, 7200 examples. The class probabilities are 5.1%, 92.6% and 
2.3% respectively. 5400 examples were used for training and the remaining 1800 
examples were used for testing. This data set was obtained from thyroid1.dt file from 
Proben1 database [12] (which was created based on the "ann" version of the "thyroid 
disease" problem data set from the UCI repository of machine learning databases). 

4.4   Satimage Data Set 

The original Landsat data for this database was generated from data purchased from 
NASA by the Australian Centre for Remote Sensing, and used for research at the 
University of New South Wales. The sample database was generated taking a small 
section (82 rows and 100 columns) from the original data. The database is a (tiny) 
sub-area of a scene, consisting of 82×100 pixels, each pixel covering an area on the 
ground of approximately 80×80 meters2. The information given for each pixel 
consists of the class value and the intensities in four spectral bands. Two of these are 
in the visible region (corresponding approximately to green and red regions of the 
visible spectrum) and two are in the (near) infra-red. Information from the 
neighborhood of a pixel might contribute to the classification of that pixel, the spectra 
of the eight neighbors of a pixel were included as attributes together with the four 
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spectra of that pixel. Each line of data corresponds to a 3×3 square neighborhood of 
pixels completely contained within the 82×100 sub-area. Thus each line contains the 
four spectral bands of each of the 9 pixels in the 3× 3 neighborhood and the class of 
the central pixel which was one of the six classes: red soil, cotton crop, grey soil, 
damp grey soil, soil with vegetation stubble, very damp grey soil. The examples were 
randomized. The data were divided into a training set and a test set with 4,435 
examples in the training set and 2,000 in the test set. This data set was obtained from 
STATLOG project [13].  

4.5   Letter Data Set 

This dataset is a well-known benchmark, constructed by David J. Slate of Odesta 
Corporation, Evanston, IL 6020. The objective here is to classify each of a large 
number of black and white rectangular pixel displays as one of the 26 capital letters of 
the English alphabet. The character images produced were based on 20 different fonts 
and each letter within these fonts was randomly distorted to produce a file of 20,000 
unique images. For each image, 16 numerical attributes were calculated using edge 
counts and measures of statistical moments. The attributes were scaled and discretized 
into a range of integer values from 0 to 15. The size of the training set is the first 15000 
items and the resulting model is used to predict the letter category for the remaining 
5000. This data set is one of the data sets used in the STATLOG project [13]. 

Table 1 and Table 2 show the CPU elapsed time in training and testing 
respectively. Table 3 and Table 4 show the number of prototypes/hyperspheres and 
the test classification error (%) respectively. As can be seen from the results, although 
SCHS requires considerably large training time compared to the other methods, it 
generates the smallest number of prototypes and thus has the fastest classification 
time. Moreover, it has the minimum test classification error for most data sets. 

Table 1.  Comparison of CPU elapsed time in training 

Data Set LVQ RCE RCE-2 SCHS 

I-I 0.39 4.59 3.34 16.13 

Parabola 0.31 1.67 1.67 4.7 

Thyroid 25.76 193.94 75.02 134.44 

Satimage 31.58 1430.01 98.94 113.84 

Letter 268.29 1071.00 641.36 525.75 

Table 2. Comparison of CPU elapsed time in testing 

Data Set LVQ RCE RCE-2 SCHS 

I-I 0.86 2.95 3.28 0.09 

Parabola 0.80 1.11 1.72 0.11 

Thyroid 1.34 1.69 1.48 0.06 

Satimage 1.43 1.69 1.66 1.05 

Letter 9.53 9.73 9.00 5.13 
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Table 3. Comparison of number of prototypes / hyperspheres 

Data Set LVQ RCE RCE-2 SCHS 

I-I 161 274 307 11 

Parabola 161 28 78 12 

Thyroid 2161 1133 1028 42 

Satimage 1777 924 938 618 

Letter 6006 3009 2914 2010 

Table 4. Comparison of test classification error (%) 

Data Set LVQ RCE RCE-2 SCHS 

I-I 13.90 25.44 17.09 11.54 

Parabola 4.03 15.49 3.90 3.23 

Thyroid 7.44 17.78 9.72 7.28 

Satimage 11.85 21.10 12.55 9.05 

Letter 6.78 18.66 8.18 7.24 

5   Conclusions 

In this article, we presented a novel method (SCHS) for clustering class regions using 
hyperspheres. This method has some distinct that do not exist in RCE methods. 1) 
Positions of hyperspheres’ centers and their radii do not depend on the order of 
presentation of training examples to the network. 2) Storage requirements and number 
of training epochs are also not affected by the order of presentation of training 
examples to the network. 3) Hyperspheres’ centers are not restricted to be a subset of 
the training set. Conversely, they are learned via an optimization procedure.  4) 
Hyperspheres can be permitted to enclose patterns of other classes and hence it has 
better generalization capability (especially for noisy problems). Our experiments 
show that the proposed method needs small storage compared to LVQ, RCE and 
RCE-2 methods and hence achieves a significant acceleration in the classification 
computation. Moreover, in most data sets, it has better performance than the other 
methods. 
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Abstract. This paper studies fault-tolerance problem of feedforward neural 
networks implemented in pattern recognition. Based on dynamical system 
theory, two concepts of pseudo-attractor and its region of attraction are 
introduced. A method estimating fault tolerance of feedforward neural networks 
has been developed. This paper also presents definitions of terminologies and 
detailed derivations of the methodology. Some preliminary results of case studies 
using the proposed method are shown, the proposed method has provided a 
framework and an efficient way for direct evaluation of fault-tolerance in 
feedforward neural networks. 

1   Introduction 

The feedforward neural network (FFNN) is the most popular NN in both academic 
research and practical applications. The FFNN has been applied in many engineering 
areas due to its outstanding capabilities of non-linear function approximation, 
classification, and parallel processing[1]. Especially, it has been implemented in 
real-time information systems dealing with the pattern recognition (PR) problems.  

To understand NNs, one should study relevant topics of network structure, learning 
algorithm, memory capacity, generalization ability as well as fault tolerance. Current 
researches in FFNN have been focusing on network structure, learning algorithm and 
convergence speed. In view of engineering applications, the generalization ability of 
FFNN is, however, of the highest importance. When implemented in the real-time 
information processing systems, the input to FFNN is directly acquired on-site where 
data is possibly polluted with noises or transmission errors, this will result in 
uncertainties of the system output, consequently the feasibility of such system can not 
be evaluated precisely. It is therefore impractical to evaluate the NN-based real-time 
information systems without studying the fault-tolerance of NNs.  

So far, there are quite a few research works that have been carried out regarding 
generalization and fault-tolerance of FFNNs. However, most of these research works 
have concentrated on the influences from the network structure and training data 
distribution. In [2] Hao et al adjust the FFNN’s performance by varying its network 
structure. Dynamic pruning technique has been employed to simplify the NN. In [3] 
and [4], Initial conditions and distribution of training samples have been studied to 
improve the network performance. Based on statistics and independent component 
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analysis, [5] and [6] select the training samples with dominant features. The influence 
from training samples quantity and quality on network performance is also studied. [7] 
utilizes Genetic Algorithms (GAs) to obtain the optimal structure for NNs. 
Nevertheless, it fails to provide an explicit analytical approach for fault tolerance 
measurement in FFNNs. [8] has made some important progresses. It has proposed to 
measure fault-tolerance using the attraction regions of stable attractors, based on 
dynamical system theory. However, unlike the recurrent networks the FFNN is not a 
dynamical system as the inputs simply propagates forward on a layer-to-layer basis. As 
such, the attractor and its region of attraction do not exist in FFNNs.  

This paper introduce a concept of pseudo-attractor in FFNNs. A direct method using 
the attraction region of pseudo-attractor for fault-tolerance evaluation is also developed 
and detailed mathematical derivations have been presented. It has provided a practical 
way and a framework for measuring fault-tolerance of FFNNs in PR. 

2   Architecture of FFNN 

FFNN is a distributed processing system with capability of nonlinear approximation. 
The overall structure of a 3-layer FFNN is shown in Fig. 1. The neurons of adjacent 
layers are fully connected by synaptic weights. The input propagates forward through 
the network, and the final output is obtained at the output layer. 
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Fig. 1. Architecture graph of feedforward neural network 

The FFNN is trained in a supervised learning manner, which employs the error 
back-propagation algorithm. There are several steps involved in the algorithm:  

1) Initialization. Set all the synaptic weights and thresholds with random numbers; 
2) Presentation of training samples. Input training data into the network.  
3) Forward computation. Based on the input, weights and thresholds, calculate every 

neuron’s output. Training is considered to be terminated when the sum of the squared 
error (between desired and calculated output) per epoch is sufficiently small. 
Otherwise, the training will go to step 4). 
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4) Backward computation. Adjust the weights layer by layer in a backward direction, 
then switch to step 2). 

3   State of Art of Fault Tolerance in Neural Networks 

The fault tolerance is one of most important research topics in NNs, especially for the 
networks using to practical project. The existing methods usually describe the 
fault-tolerance in terms of several indexes, e.g. the volume of attraction region [8]. A NN 
can be viewed as a dynamical system. Therefore, the stability of the network can be 
described in terms of the attractor and corresponding region of attraction. 

Definition: Attractor 
For a given network, if a vector X satisfies X = sgn(WX- ) (where W and  are the 
weight and threshold vectors of the network respectively), then X is called the attractor 
of the system. 

Definition: Region of attraction (Attractor) 
If Y is an attractor, and if there exists a trajectory from X to Y, then X is said to be 

attracted to Y, noted as YX ⎯→⎯W . If all )(YX N∈  stratify YX ⎯→⎯W , then  N (Y) 
is  the region of attraction of Y.  

For stable attractors, the volume of attraction region can be used to estimate the 
fault-tolerance of NNs. The volume is defined as the total number of input states within 
the region of attraction, denoted as αB , M,,2,1=α . Apparently, larger αB  

indicates better attraction capability of attractor α . However, this index may give 
illusive information about fault-tolerance. For example, if we add n redundant input 
nodes in the input layer of a NN and their weights connected to neurons are set all zeros, 
the samples’ region of attraction will increase 2 P

n
P times accordingly. By doing so, the 

regions of attraction of those samples are not really increased. Therefore, the ratio 
of )//( 0 MBR Ω= αα , which can be termed as normalized attraction region, is more 

accurate for fault-tolerance estimation; where N20 =Ω B B is the total volume of the input 

space given the network is N dimensional and the input (output) is binary data.  
Subsequently, the ratio of (1), which is the average of normalized attraction regions, 
reflects overall fault tolerance of the entire network and the fault tolerance of the NN.  

=α

α

=α
α Ω==

MM

s
BMRR

1
0

1

/  (1) 

4   Direct Estimation of Fault Tolerance in FFNN 

Although indexes like αB and sR  have been defined and can be used to evaluate fault 

tolerance, methods for direct calculation of these indexes are not available. Current 
methods examine convergence of every testing sample by global searching method. For 
any networks of higher dimensionalities, it is impractical to use global searching 
approach. It is therefore necessary to develop a new method to calculate the 
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fault-tolerance directly. Based on the dynamical system theory, this paper proposes a 
direct method for evaluating fault tolerance in FFNN. The new method is based on 
pseudo-attractor and its region of attraction, which will be introduced in the following 
sections. 

A   Pseudo-attractor and Its Region of Attraction 

Mathematically speaking, the feedforward network is actually a mapping from the 
input space to the output space. Subsequently, pseudo-attractor and its region of 
attraction are defined as below. 
Definition: Pseudo-attractor 
For a FFNN network, the inputs and outputs (targets) of samples memorized after 
training form a pair of training samples, i.e. ),( kk YX , k = 1, 2, … M. The stable state 

(or output vector) kY  is defined as the pseudo-attractor of FFNN. 

Definition: Region of attraction (Pseudo-attractor) 
Given a FFNN network: BAF →: , the counterparts corresponding to 

pseudo-attractor kY  in the input set A, })(:{)(1
kk YXFXYF ==−  form the region 

of attraction of kY . 

Fig.2 gives a graphical illustration of the pseudo attractor and its region of attraction. 

⋅⋅ kx kYM apping

Input space O utput space

R egion of a ttraction Pseudo-attractor
 

Fig. 2. Illustration of pseudo-attractor and its region of attraction 

B   Direct Calculation of Region of Attraction of a FFNN 

With the new concepts defined above, a direct method for fault tolerance estimation in 
feedforward networks is proposed. To apply the new method, we should first determine 
the pseudo-attractors among the output set of the network. Next, the attraction region of 
the pseudo-attractor can be obtained. Subsequently, the indices of sR  will be 

calculated to estimate fault tolerance of NNs. Since a FFNN network usually consists of 
several distinct layers, the calculation of the attraction region should begin with the 
network of single layer.  

1) Attraction region of single layer networks 
Each layer of the network in Fig 1 represents a single layer network. To decide if output 

vector 1
21 ),,,( −= MyyyY  is the pseudo-attractor and to calculate its region of 

attraction, the linear equations in (2) should be resolved,                                 
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(2) 

or )(1 YWX −= f , where 1−f  is the inverse function of the activation function f,  

where wj0= j, j=1,2,…,M, and 10 −=x . 

Should linear equation group (2) be solvable, Y is the pseudo-attractor of the NN, and 
the set of solutions is the attraction region of Y ( 0x  is not included). 

2) Attraction region of a three layer network with any activation function f  

Consider a three layers FFNN with N-dimensional input X=(x1,x2,…,xN)-1 RN. 
Suppose there are K and M neurons in the hidden and output layer, then the output of 
each layer will be H=(h1,h2,…,hk)

-1 RK  and Y=(y1,y2,…,yM)-1 RM respectively. The 

weights between different layers are )1(
)2,1(

,
)2,1( )( +×= NKikwW  and 

)1(,
)3,2( )( +×= KMkmwW , where i=0,1,2,…,N, k=1,2,…,K, m=1,2,…,M; )1(

0 kkw θ= , 

and )2(
0 mmw θ= . Consequently the relationship between X and Y can be expressed as:   

)( )3,2( HWY f=  

)(f ),( XWH 21=  
(3) 

For a given vector Y, should the following equations in (4) be solvable, Y is the 
pseudo-attractor and the solution set of X is the region of attraction.                                               

HWY ),()(f 321 =−  

XWH ),()(f 211 =−  
(4) 

3) The way of solving equation 
In brief, a NN must be trained using relevant algorithm before to estimate its fault 
tolerance using the method of pseudo-attractor. The trained weight and threshold 
vectors W are then utilized to solve the equations in (4) to calculate the volume of the 
region of attraction.  

Equation (4) is a non-homogeneous linearly equation group. Detail method of solving 
non-homogeneous linearly equation may refer to foundation tutorial of engineering 
mathematics [9]. Here only gives basic solving steps.  

Step1: For equation HWY )3,2(1 )( =−f , solving its specific solution '
*  and basic 

solution series ''
2

'
1 ,,, n ; 

Step2: Utilizing the result of step1 to solve specific solution *  and basic solution 

series n,,, 21  of equation XWH )2,1(1 )( =−f and obtain final solution 

nnkkkX ++++= 2211*  of corresponding to attractor Y ; 
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Step3:  For all detecting samples Xi (i=1,2,…,S) organized from training sample in 
input state space, to test in turn if they fall in region of attraction of Y or not.  

If nn
i kkkX ++++= 2211* has unique solution of  nkkk ,,, 21 , iX  is in 

the region of attraction of Y; 
Step4: After testing all detecting samples, RS that indicates the index of region of 
attraction is obtained. 

5   Simulation Result 

There is no limit for memory volume in the FFNNs. The training samples will be 
eventually memorized as stable pseudo-attractors provided training has appropriately 
converged as desired. However, the corresponding attraction regions are different for 
different kinds of structure of NNs. In our experimentation, two FFNNs have been 
implemented for the binary PR to investigate fault tolerance capability in FFNN. 

Two FFNN networks that this paper selected to do analysis are respectively: the one 
is typical BPNN with sigmond activation function expressed as formula (5), and  its 
model is the structure of 8-16-10; the other one is RBFNN with gauss kernel function 
expressed as formula (6), and  its model is the structure of 8-10-10. 
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where  yj is the output of j th node; X=(x1, x 2,…, x n)
T denotes input vector;  

zj denotes the central value of gauss function; σ  is standard constant. 
In each case, the NN has been trained using a ten binary sample data set, then each 

network is tested to recognize 80 detecting samples based on their training samples. To 
simulate real-world environment where data is often polluted, the testing samples differ 
slightly from the training samples. The deviation is kept in only one bit, while more 
serious errors could be considered without fundamental difference for our study.  

The simulation results are given in Table 1. The RS respectively in two cases indicate 
that the FFNN in case one has better capability of fault-tolerance than in case two. The 
influence factor is the sample variances which measure the sample distribution 
diversity. As observed, the same variance of 2  is obtained in case one while various 
variances are obtained in case two. This indicates that the training samples of case one 
are distributed more evenly comparing to that of case two, which results in a higher RS 
of the FFNN in case one. Thus it can be concluded that the distribution of training 
samples (input) influences the fault-tolerance of FFNN and better distribution implies 
higher fault-tolerance – see Appendix for more details. On the other hand, from 
comparing results of two NN structures, it can be shown that fault-tolerance ability of 
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RBFNN is higher than that of BPNN. This is because RBFNN has special local 
response characteristic and is able to attract strongly input of detecting sample to 
corresponding pseudo-attractors. 

Table 1. Simulation results of two FFNNs in two cases 

Training samples of Case one BPNN RBFNN 

Index Input Output αB  sR  αB  sR  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

00000000 
00001111 
11110000 
11001100 
00110011 
10101010 
01010101 
11000011 
00111100 
11111111 

1000000000 
0100000000 
0010000000 
0001000000 
0000100000 
0000010000 
0000001000 
0000000100 
0000000010 
0000000001 

1 
2 
4 
4 
2 
1 
3 
1 
2 
5 

31.3% 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

100% 

Sample variance 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2  
Training samples of Case two BPNN RBFNN 

Index Input Output αB  sR  αB  sR  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

00100000 
00001101 
11110100 
11010100 
00110011 
10100011 
01010101 
11000011 
00110100 
10111111 

1000000000 
0100000000 
0010000000 
0001000000 
0000100000 
0000010000 
0000001000 
0000000100 
0000000010 
0000000001 

0 
1 
1 
2 
0 
1 
1 
0 
0 
3 

11.3% 

8 
8 
7 
7 
7 
7 
7 
8 
7 
8 

92.5% 

Sample variance 1.36, 1.50, 1.28, 1.36, 1.28, 1.36, 1.28, 1.50 ,1.20 ,1.43 

6   Future Scope and Conclusion 

Fault-tolerance capability is essential for NNs in various engineering applications such 
as the PR. It is therefore imperative to carry out theoretical research of fault-tolerance 
in FFNNs, which have been most widely used. In this paper, we have proposed a new 
method to evaluate the fault-tolerance based on pseudo-attractor. The proposed method 
is able to estimate directly the fault-tolerance without excessive efforts by traditional 
global searching or experimental methods. Simulation with pattern recognition tasks 
has been carried out with the proposed method in the paper. Future work is underway 
towards enhancing fault-tolerance in feedforward network through different methods 
of training. 
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Appendix 

The paper uses distance among sample data points to represent the degree of the 
distribution diversity. This is only one of the approaches to measure sample distribution 
diversity. Based on this approach, the distance among sample points can be expressed 
as, 

22
22

2
11 )()()()( nn yxyxyxd −++−+−=yx,  

where ),,,( 21 nxxx=x and ),,,( 21 nyyy=y . 

For the simulation presented in the paper, the distribution diversity can be measured 
by the distance defined above. Specifically for each simulation case, the set of input 
sample data is {x(i)}, i = 1,2,…,m , i.e. a total of m samples have been used. The i-th 

sample is ),,( )()(
2

)(
1

)( i
n

iii xxx=x . The centre of this set is identified as 

),,,( 21 nzzzz =
=

=
m

i

i
jj x

m
1

)(1
z , where j = 1, 2, …, n 

The distribution diversity of input samples in the input space can be expressed by the 
relative distance to this centre point. If the all sample points have the same distance to 
the centre then the sample data are said to be evenly distributed in the space. Otherwise, 
they are not evenly distributed. 
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Abstract. The paper presents a new automated pattern classification method. At 
first original data points are partitioned by unsupervised self-organizing map 
network (SOM). Then from the above clustering results, some labelled points 
nearer to each clustering center are chosen to train supervised generalization 
regression neural network model (GRNN). Then utilizing the decided GRNN 
model, we reclassify these original data points and gain new clustering results. 
At last from new clustering results, we choose some labelled points nearer to 
new clustering center to train and classify again, and so repeat until clustering 
center no longer changes. Experimental results for Iris data, Wine data and 
remote sensing data verify the validity of our method. 

1   Introduction 

Artificial neural networks have been employed for many years in pattern recognition 
[1,2]. In general, these models are composed of many nonlinear computational 
elements (neural nodes) operating in parallel and arranged in patterns reminiscent of 
biological neural nets. Similar to pattern recognition, there exist two types of modes 
for neural networks – unsupervised and supervised. The unsupervised type of these 
networks, which possesses the self-organizing property, is called competitive learning 
networks [2], for example SOM. It doesn’t require human to have the foreknowledge 
of the classes, and mainly uses some clustering algorithm to classify original data [3], 
but it usually gains baddish classification results. The supervised method has usually 
better classification effects and is most commonly adopted in factual application, but 
it needs many appropriate labeling training samples that are sometimes difficultly 
gained. That is to say, the unsupervised and supervised methods have each advantages 
and limitation. 

In order to integrate their advantages of unsupervised and supervised methods and 
realize automated classification with high quality, the paper presents a hybrid 
classification method of combing unsupervised SOM network with supervised 
GRNN. It firstly uses SOM to partition original data points, and then from the 
clustering results chooses some labelled training samples for GRNN to train and 
reclassify, and so repeat to gain best classification results. 
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This paper is organized as follows. Section 2 briefly introduces the basic theory of 
SOM. In Section 3, the principle and structure of GRNN is described. Section 4 gives 
a hybrid classification algorithm of combing SOM and GRNN. Several experimental 
results comparison and analysis are done in Section 5. Finally, we draw some simple 
conclusions in Section 6. 

2   Brief Introduction to Self-Organizing Map 

SOM network is a two layers network proposed by T. Kohonen in 1981 [4]. The first 
layer is input layer, which consists of a sample of n-dimensional data vectors, namely  

[ ])(,),(),()( 21 txtxtxtx n=  (1) 

where t is regarded as the index of the data vectors in the sample and also the index of 
the iterations (t=1, 2, …, T), and n is the number of dimensions or features. 

The second layer is output layer, and its output nodes usually be arranged in the 
form of two-dimension array. Every input node is entirely connected with output node 
by dynamic weights vector, and the connection weight vector is: 

[ ])(,),(),()( 21 twtwtwtw iniii =  (2) 

where i denotes the index of the neuron in the SOM (i=1,2,…, I). I, the number of 
nodes, is determined empirically. 

In network, every output node has a topology neighbor, and the size of neighbor is 
changing with the training process. For each intermediate iteration t, the training 
process performs the following steps: 

The best matching neuron )(twc  most closely resembling the current data vector 

c(t) is selected, for which the following is true: 

{ })()(min)()( twtxtwtx i
i

c −=−  (3) 

The nodes iw  are updated, using the formula: 

)]()()[()()1( twtxttwtw ijiijij −+=+ η  (4) 

where the adjustment is monotonically decreasing with the number of iterations. This 
is controlled by the learning rate factor )(tη (0< )(tη <1), which is usually defined as 

a linearly decreasing function over the iterations.  

3   Introduction to Generalized Regression Neural Network  

Generalized Regression Neural Network is a new type of Neural Network proposed 
by Donald F. Specht in 1991. Compared to the BPNN, GRNN has a lot of advantages 
[5,6], namely  



134 C.-f. Li et al. 

(1) The weights of each layer and the number of hidden layer nodes can be decided 
only by the training samples.  

(2) It needn’t iteration during training process. 
(3) When network-operating mode changes, only that needed to modify the 

corresponding training samples and reconstruct network. 

The GRNN is used for estimation of continuous variables, as in standard regression 
techniques. It is related to the radial basis function network and is based on 
established statistical principles and converges with an increasing number of samples 
asymptotically to the optimal regression surface. 

Suppose the vector x and scalar y are random variants, X and Y are observation 
values, and f (x, y) is defined a joint continuous probability density function. If the 
f(x, y) is known, then the regression of y on x is given [7] by  
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When the density f(x, y) is not known, it must usually be estimated from a sample of 

observations of x and y. The probability estimator ),( yxf
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 is based upon sample 
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where m is the dimension of the vector variable x, and n is the number of sample 
observations, and σ  is the spread parameter. 

Defining the scalar function 2
iD   

)()(2
iii xxxxD −−= Τ  (7) 

And performing the indicated integrations yields the following: 
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Schematic diagram of GRNN architecture is presented in Fig.1. Differing from the 
LMBPN, the GRNN consists of four layers: input layer, pattern layer, summation 
layer and output layer. The input layer has m units and receives the input vector. The 
pattern layer has n units, which calculates and outputs the value of kernel function 
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Fig. 1. Schematic diagram of GRNN architecture 
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4   A Hybrid Classification Algorithm of Combining SOM and 
GRNN 

The paper presents a fully automated classification method of combing unsupervised 
SOM and supervised GRNN, and the whole algorithm is as follows. 

Step 1: Suppose Τ= ],...,,[ 21 nxxxX  is input samples, and then X is normalized by 

equation 
X

X
X = X  is its norm. 

Step 2: Use SOM network to cluster original data points and gain each class center 
and labelled samples. 

Step 3: Calculate distance ijd  between each data point and class center, and then 

choose some labelled samples that are nearer to class center. 
Step 4: Make advantage of gained labelled samples to train GRNN model, and then 

reclassify original data points to gain new-labelled samples. 
Step 5: Update class center. According to classification results by GRNN, we gain 

new class center, and if the distance between new clustering center and former class 
center is less than a given tiny threshold value, the classification procedure is stopped, 
else going to (3) to continue. 
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5   Experimental Results Comparison and Analysis 

5.1   Experimental Results and Comparison for Iris Data Classification 

Iris data set is with 150 random samples of flowers from the iris species Setosa, 
Versicolor, and Virginica collected by Anderson (1935), and contains 3 classes of 50 
instances each. One class is linearly separable from the other two classes, and the 
latter are not linearly separable from each other.  

We use SOM to partition and gain classification results shown in table 1, and then 
use the hybrid classification algorithm to gain classification results shown in table 2. 
For further comparison we randomly choose 20 samples for training from each class, 
the other 30 for testing, and use single supervised GRNN to classify and gain 
classification results shown in table 3. (The value of parameter σ  in above two 
GRNN is 0.05). 

Table 1. Iris data classification results of SOM

Class Setosa Versicolor Virginica Accuracy Average Accuracy 
Setosa 50 0 0 100% 

Versicolor 0 36 14 72% 

Virginica 0 0 50 100% 

90.7% 

Table 2. Iris data classification results of the hybrid classification algorithm

Class Setosa Versicolor Virginica Accuracy 
(%) 

Average 
Accuracy (%) 

Setosa 50 0 0 100 

Versicolor 0 48 2 96 

Virginica 0 2 48 96 

97.3 

Table 3. Iris data classification results of single GRNN

Class Setosa Versicolor Virginica Accuracy 
(%) 

Average 
Accuracy (%) 

Setosa 30 0 0 100 

Versicolor 0 0.75 29.25 97.5 

Virginica 0 1.5 28.5 95 

97.5 

From above table 1, table 2 and table 3, we can find the hybrid classification 
algorithm is far superior to single unsupervised SOM classifier and improves about 
6.6% in accuracy, and it is a little inferior to single supervised GRNN classifier, but it 
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needn’t choose training sample by manual and is a fully automated classification 
method.  

5.2   Experimental Results and Comparison for Wine Data Classification 

Wine data set is the results of a chemical analysis of wines grown in the same region 
in Italy but derived from three different cultivars, and usually used for comparing 
various classifiers. It has three types, and here we respectively marked as class A, 
class B, class C, and class A has 59 samples, class B 71 samples, class C 48 samples. 

We use SOM to partition and gain classification results shown in table 4, and then 
use the hybrid classification algorithm to gain classification results shown in table 5 
(where the value of parameter σ  in GRNN is 0.05). For further comparison we 
randomly choose half samples for training from each class, and the other half for 
testing, and use single supervised GRNN to classify and gain classification results 
shown in table 6 (where the value of parameter σ  in GRNN is also 0.05). 

Table 4. Wine data classification results of SOM

Class A B C Accuracy 
(%) 

Average 
Accuracy (%) 

A 58 1 0 98.30 

B 16 40 15 56.34 

C 0 0 48 100 

82.0 

Table 5. Wine data classification results of the hybrid classification algorithm

Class A B C Accuracy 
(%) 

Average 
Accuracy (%) 

A 59 0 0 100 

B 4 62 5 87.3 

C 0 0 48 100 

94.9 

Table 6. Wine data classification results of single GRNN

Class A B C Accuracy (%) 
Average 

Accuracy (%) 

A 28 1 0 96.6 

B 4 31 1 86.1 

C 0 0 24 100 

93.3 

From above table 4, table 5 and table 6, we can find the hybrid classification 
algorithm is far superior to single unsupervised SOM classifier and improves about 
12.9% in accuracy. Moreover the hybrid classifier is a little superior to single 
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supervised GRNN classifier and improves about 1.6%, which is possibly as a result of 
gaining better training samples by SOM clustering algorithm. 

5.3   Experimental Results and Comparison for Remote Sensing Image 

An experimental remote sensing data sampled from satellite TM image. According to 
the terrain map, analyzing the image visually, we divide it into 6 categories, namely 
road, city area, field, green-land, hill, water, and manually choose samples data set for 
six categories and gain 1200 samples for experiment (200 for each category).  

We use SOM model to gain clustering results shown in table 7, and then use the 
hybrid classification algorithm to gain classification results shown in table 8 (here the 
value of parameter σ  in GRNN is 0.05). For further comparison we randomly 
choose 50 samples for training from each class, the other 150 for testing, and use 
single supervised GRNN to classify and gain classification results shown in table 9 
(here the value of parameter σ  in GRNN is also 0.05). 

Table 7. Remote Sensing data classification results of SOM

Class Road City Field Green Hill Water 
Accuracy 

(%) 
Average 
Accuracy 

Road 193 7 0 0 0 0 96.5 

City 111 0 0 0 89 0 0 

Field 0 0 48 152 0 0 24.0 

Green 1 0 2 197 0 0 98.5 

Hill 0 0 1 0 182 17 91.0 

Water 0 0 0 0 12 188 94.0 

67.3 

Table 8. Remote Sensing data classification results of the hybrid classification algorithm 

Class Road City Field Green Hill Water 
Accuracy 

(%) 
Average 
Accuracy 

Road 191 9 0 0 0 0 95.5 

City 21 176 0 1 2 0 88.0 

Field 0 0 192 8 0 0 96.0 

Green 0 1 2 197 0 0 98.5 

Hill 0 1 0 0 199 0 99.5 

Water 0 1 0 0 5 194 97.0 

95.8 
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Table 9. Remote Sensing data classification results of GRNN 

Class Road City Field Green Hill Water 
Accuracy 

(%) 
Average 
Accuracy 

Road 149 1 0 0 0 0 99.3 

City 24 125 1 0 0 0 83.3 

Field 0 0 140 10 0 0 93.3 

Green 0 0 0 150 0 0 100 

Hill 0 1 1 1 139 8 92.7 

Water 0 2 0 0 5 143 95.3 

94.0 

From above table 7, table 8 and table 9, we can find the hybrid classification 
algorithm is far superior to single unsupervised SOM classifier and improves about 
28.5% in accuracy. Moreover the hybrid classifier is a little superior to single 
supervised GRNN classifier and improves about 1.8%.  

All above three kinds of data experimental results show the validity of our 
proposed hybrid classification algorithm. 

6   Conclusions 

Aiming at each limitation of supervised and unsupervised classification method, the 
paper presents a fully automated classification method of combing unsupervised SOM 
and supervised GRNN. The hybrid classifier firstly uses SOM to partition original 
data points, and then from clustering results chooses labelled training samples for 
GRNN to train and reclassify. Experimental results for Iris data, Wine data and 
remote sensing data show our method is absolutely effective. 
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Abstract. The best protein structure prediction results today are achieved by 
incorporating initial structural prediction using alignments to known protein 
structures. The performance of these algorithms directly depends on the quality 
and significance of the alignment results. Support Vector Machines (SVMs) 
have shown great potential in providing good alignment results in cases where 
very low similarities to known proteins exist. In this paper we propose the use 
of a one-class SVM to reduce the computational resources required to perform 
SVM learning and classification. Experimental results show its efficiency 
compared to two-class SVM algorithms while producing results of similar 
accuracy. 

1   Introduction 

Functional protein annotation is generally dependent on knowledge of the three-
dimensional structure of a protein. However, our knowledge about protein structures 
grows at a much slower rate than the discovery of new protein sequences. Protein 
sequences can be recovered with relative ease from DNA sequences, but to determine 
the accurate structure of a protein with a given sequence still requires time-consuming 
experiments, such as X-Ray Crystallography or NMR. Determining the structure of a 
protein from its sequence computationally is among the most important problems in 
bioinformatics today. 

Many methods have been developed over the past 25 years to generate structural 
information for unknown proteins by comparing their sequences to the sequences of 
proteins with known structures. A high degree of sequence similarity has been shown 
to entail a high degree of structural similarity, which also entails functional 
similarities. Databases such as the Structural Classification of Proteins (SCOP) 
database [11] have been devised to organize proteins according to various levels of 
structural and functional similarities. 

One of the methods used to detect protein structures from sequences is called fold 
recognition. With fold recognition the unknown protein sequence is aligned to known 
proteins, and the statistical significances of the alignments are estimated. The 
sequence and location of secondary structural elements can then be determined using 
the information from the most significant matches in the database. This method is 
often combined with comparative modeling approaches to build a complete three-
dimensional protein structure from the fragments predicted using fold recognition. 
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While fold recognition works well for proteins with high degrees of sequence 
similarity to known proteins, this method fails to produce satisfactory results if the 
closest known proteins exhibit less than 20% similarity. In these cases the best results 
are currently produced using molecular dynamics approaches, which physically 
simulate the folding process of the unknown protein. These methods, however, are 
computationally very intensive and are not yet able to produce sufficiently accurate 
results that could be used for functional annotation. 

A better solution is to find known proteins that may be structurally and 
functionally related to the unknown sequence, even in the absence of any significant 
sequence similarities. The existence of such distant relationships has become apparent 
as the number of proteins with known structure increased in recent years, and an 
increasing number of proteins with similar structure and function were observed to 
have very low primary sequence similarities. 

Among the methods developed to detect more distant similarity relationships are 
the use of sequence profiles as in PSI_BLAST [1], or profile Hidden Markov Models 
(HMM) [7]. Profiles extend the sequence similarity search from individual sequences 
to sequences families by incorporating statistical information from multiple sequence 
alignments of highly related proteins. Some methods have been developed to include 
structural information along with sequential information to increase the probability of 
finding remote structural relationships. Among these approaches are GenTHREADER 
[6] and 3D-PSSM [8].  

A more recent promising attempt has been to combine the alignment of sequence 
profiles with support vector machine (SVM) classifiers [5,9,14]. Approaches such as 
in [14], which focus on the kernel function used with the SVM, or in [9], which 
combine pairwise sequence alignments with SVM classification indicate a significant 
improvement over conventional methods in the ability to detect remotely related 
proteins. The work of Han et al in [5] extends this approach by combining profile 
alignments with SVM classifiers. 

In this paper we introduce a one-class SVM for the fold recognition problem. One-
class SVMs offer significant savings in terms of space and speed over two-class 
SVMs, because only positive examples are needed to train the SVM. Previous 
applications of one-class SVMs in the area of Bioinformatics include [16] and [20]. 
One-class SVMs find their primary use in the field of novelty detection [17] or in 
document and image retrieval systems [4], [12], and have been shown to be capable 
of producing similar results as two-class SVMs [18]. 

The next section of this paper presents an overview of the theory behind two-class 
SVMs, and the adaptations for one-class SVMs. Section 3 describes the experimental 
setup and data used. Section 4 reports the results obtained performing the algorithm 
presented. The last section summarizes what can be learned from this experiment and 
gives a brief outlook on future research directions. 

2   Support Vector Machines 

2.1   Theory 

An SVM is a machine learning technique based on Vapnik’s Statistical Learning 
Theory [21]. Two-class support vector machines learn to distinguish between two 
classes in a given data set by fitting a hyperplane that maximally divides both classes.  
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This works well for data sets that are linearly separable. In cases where the data is 
not linearly separable, a linear SVM may still be used when it allows for a certain 
amount of errors. This is achieved by introducing a slack variable  and an upper 
bound C for the number of errors. The formula to be minimized then takes on the 
commonly used form: 
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If the data points are not easily separable even with the provision for a certain 
amount of errors, the data can be projected into a higher-dimensional feature space 
using kernels. A kernel is a function that takes the original data points and several 
parameters, and increases their dimensionality. A good choice of kernel function and 
corresponding parameters will allow the data to then be separable by a hyperplane, 
using the same function described in (1). Examples of popular kernel functions are: 
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and Sigmoid 

( ) ( )( )Θ+⋅= yxyx κκ tanh,  (4) 

with gain  and offset . 

2.2   One-Class SVM 

One-class SVMs were first proposed by Schölkopf in [15]. One-class SVMs are an 
extension of the original two-class SVM learning algorithm to enable the training of a 
classifier in the absence of any negative example data. Training can be achieved by 
treating a certain number of data points of the positive class as if they belong to the 
negative class.  The idea is to define a boundary between the majority of the positive 
data points and outliers (or atypical data points). One-class SVMs use the parameter  
(Nu) to define the trade-off between the percentage of data points treated as the 
positive class and the negative class. Two approaches to generate this separating 
boundary are typically available: 

The first approach to train a one-class SVM is to describe a classification function 
that conforms to a hypersphere boundary between the positive class and the outliers, 
based on a density distribution function. The parameter  determines the shape of the 
boundary. 
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The second approach fits a hyperplane between the origin (of the coordinate 
system) and the data points, separating a certain percentage of outliers from the rest of 
the data points. This approach has been shown to be equivalent to the decision 
hypersphere and is used by many one-class SVM implementations due to its simpler 
implementation. The LIBSVM package uses this approach. 

These requirements for the separation boundary can be formulated mathematically 
by providing a measure f(z) of the distance d(z) to the positive class, or of the 
probability p(z) of belonging to the positive class, and a threshold  to distinguish 
between the positive class and the outliers [18]: 

( ) ( )( )dzdIzf Θ<=  (5) 

or 

( ) ( )( )dzpIzf Θ>=  (6) 

where I is the function indicating positive or negative class membership. One-class 
classifiers learn by optimizing the function d(z) or p(z). Some implementations go on 
to optimize the parameter  while some use an a-priori defined threshold, usually 
provided by the parameter . 

The error rate of a one-class SVM is estimated as the fraction of the positive 
(target) class fT+ versus the fraction of outliers that is rejected fO-. The density 
distribution of fO- needs to be estimated to calculate this error measure. Error EI then is 
the group of positive examples rejected by the classifier, and EII is the group of 
negative examples accepted by the classifier. 

Various methods are available to estimate a distribution for Z: density methods, 
boundary methods, and reconstruction methods. The most simple of these is a 
Gaussian density model with a probability distribution as: 

( )
( )

( ) ( ){ }μμμ
π

−Σ−−=Σ −

Σ
zzzp T

N d

1
2
1

2

1 exp,;
2

1
2

 (7) 

where  is the mean,  the covariance matrix, and d the dimension of an object. More 
complicated probability and density functions have been studied as well. A notable 
difference with boundary methods is that these methods allow for multiple boundaries 
to cover a given positive class, but the parameters for the number of distinct 
boundaries need to be supplied. 

Kernel functions can be applied to one-class SVM data points in the same way as 
for two-class SVMs, allowing more complicated data sets to be used with one-class 
SVMs. 

2.2   Discussion: SVM and One-class SVM 

The primary difference between a two-class SVM and a one-class SVM is the use of 
negative data points in the training of a classification functions. The one-class SVM 
approach has the advantage of being able to use a very small training set to learn a 
classification function. 
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This feature has been used successfully in [20] to study small-size genomes. When 
dealing with genes or proteins there already exists a very large amount of known data. 
It is not always desirable to use the entire dataset available to train classification 
functions for certain features or sequences. Additionally, it is also not easy to decide 
which of the data is relevant and which data can be left out when designing a 
classifier. The one-class SVM approach allows for a solution, as it only requires the 
data of the class to be discovered to learn a decision function. This allows for 
substantial savings in computation time and memory space, while maintaining a 
comparable level of accuracy. 

3   Data Set and Feature Extraction 

The algorithm presented in this paper attempts to determine structurally and 
functionally related protein domains at three different levels in the SCOP hierarchy: 
family, superfamily, and fold. The data for the experiments is taken from SCOP 
version 1.65. Using the subset of domains with <40% pairwise similarity from the 
ASTRAL compendium [2], all folds with at least 40 members are initially selected. 
This results in a data set with 1870 domains, comprised of 5 classes and 21 different 
folds. Each selected fold contains, on average, more than 10 superfamilies. This set is 
randomly divided into two-thirds training data and one-third testing data, resulting in 
1247 training sequences and 623 testing sequences, representing members of all folds 
in each set. 

3.1   SVM Training 

This algorithm initially creates sequence profiles running six iterations of PSI-
BLAST, generating the Position Specific Scoring Matrices (PSSM) and Position 
Frequency Matrices (PFM) for each training and testing sequence. Each profile is 
generated using PSI-BLAST default settings, except for the number of iterations, 
which is specified to be six (j=6). The PSSM and PFM output is stored to disk using 
parameter Q. Next, an all-against-all alignment of profiles in the training data is 
created. The alignment matrix mij of a profile q and a profile t is given by 
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where f, S are the PFM scores and PSSM scores of amino acid k at position i of 
profile q or at position j of profile t, respectively [5]. 

These 1246 mij alignment matrices for profile i (i=1, 2, …, 1247) of length ni are 
used to extract (n+1) dimensional feature vectors s=(sa1, sa2, …, san, total_score), 
where total_score is the total score of the alignment. The alignment feature vectors 
are then smoothed using 

2112 232 ++−− ++++= iiiiii mmmmmsa  (9) 

where mi is the profile alignment score at position i [19]. To produce comparable 
feature vectors, the individual scores are scaled down to values between 0 and 1. 
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Feature vectors of alignments between profile i and profiles of the same fold as i are 
assigned the class label 1 (positive class), all other feature vectors are assigned class 
label 0 (negative class). 

While the one-class SVM used in this approach only requires feature vectors 
belonging to the positive class, the full data set is computed to enable a performance 
comparison with the two-class SVM. Two feature vector files are produced: one 
containing only the positive class for each profile, and one containing positive and 
negative examples to be used with the two-class SVM. 

The SVMs are then trained using the radial basis function (RBF) kernel. The 
training algorithm performs some basic parameter optimization for each of the 1247 
two-class SVMs to be trained, and produces a trained model for each profile. For the 
one-class SVM, the parameter  is set to the default value of  =0.5, which indicates 
that 50% of the positive class feature vectors are treated as outliers. An optimization 
algorithm is used to determine the RBF kernel parameter gamma. 

The freely available software LIBSVM [3] is used for all SVM training and testing. 
LIBSVM is available for download at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. All 
programs written for this algorithm are implemented in Java, incorporating some of 
the LIBSVM Java source code. A task distribution system written in Fortran is used to 
distribute individual tasks over multiple CPUs. The algorithm was executed on a 
parallel machine comprised of dual and quad Intel Xeon 3200 EMT64 nodes 
communicating with MPICH2 under Linux. 

3.2   SVM Testing 

PSSM and PFM matrices are generated for the testing data in the same way as for the 
training data. Aligning each test profile with all training profiles generates a set of 
1247 feature vectors for every test profile. These feature vectors are then evaluated 
with the corresponding trained SVM models. A score is produced for each result by 
summation of all positive evaluations. The training sequences with the highest-
scoring results are taken as candidate targets for the test sequence. 

3.3   Algorithm Flowchart 

Start with ASTRAL subset of domains with <40% similarity. 

1. Select folds with at least 40 members. 
2. Use PSI-BLAST to generate profiles matrices (PSSMs and PFMs). 
3. Divide data set: 2/3 training data, 1/3 testing data. 
4. Training Data: Perform all-to-all profile-profile alignments. For the one-class 

SVM, only align within each fold group. For the two-class SVM, align all training 
profiles. 

5. Training Data: Extract feature vectors from alignments, and scale and smooth 
feature vectors. 

6. Training Data: Train one-class SVM and two-class SVM for each set of feature 
vectors. 

7. Testing Data: Perform one-to-one profile-profile alignment between each test 
profile and all training profiles, producing 1247 feature vectors for each testing 
sequence (same for one-class SVM and two-class SVM). 
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8. Testing Data: Extract feature vectors from alignments, and scale and smooth 
feature vectors. 

9. Testing Data: Evaluate feature vectors of each testing profile with all appropriate 
SVM models. 

10.Testing Data: Sum results of each evaluation. Rank groups of results for each 
testing profile to get highest-scoring results. 

 
This flowchart outlines the essential flow of data through our algorithm. Steps 4, 5, 

6, 7 and 8 can be performed in parallel. Step 9 requires step 6 to be completed, as it 
needs the output of step 6 as input. 

3.4   Performance Assessment 

The results obtained in this paper compare the performance of a two-class SVM with 
the performance of a one-class SVM approach. The algorithm presented builds upon 
the work of Han et al in [5]. Han et al. used the same data set from the ASTRAL 
compendium version 1.65, selecting all folds with at least 20 domains, resulting in 62 
folds and 2,854 domains. This data was pre-processed using the same algorithm as 
this paper. Two-class SVMs were trained using an RBF kernel, and the results were 
post-processed to produce statistically comparable results between all SVM 
classifications. 

4   Experimental Results 

Parameter selection is very important with SVM learning algorithms. This algorithm 
performs a simple grid-searching parameter optimization routine with 8-fold cross 
validation to select (LIBSVM-) SVM parameters c (upper bound in the number of 
errors allowed to occur) and RBF kernel parameter gamma for the two-class SVM 
learning process. The one-class SVM learning routine uses a basic algorithm to 
optimize the RBF kernel parameter gamma. The SVM parameter g, which determines 
the fraction of training data points to include in the positive class, is left at the 
LIBSVM default value of 0.5. 

Running this algorithm with the two-class SVM, and counting only the top-three 
scoring results as candidate solution produces an accuracy rate of 58.9%, which 
means that 58.9% of tested sequences contain the correct fold among the top-three 
scoring results. Running the same algorithm using the one-class SVM instead 
produced an accuracy rate of 54.9%. It is notable that very little parameter 
optimization has yet been attempted for the one-class SVM. 

One-class SVMs require less time and storage space to run compared to two-class 
SVMs. For this algorithm, computational savings for the one-class SVM occur when 
 

Table 1. Classification performance 
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generating the feature vectors, during parameter optimization, and SVM training. 
Significant space and time savings of the one-class SVM algorithm over two-class 
SVMs can be expected in steps 4, 5, and 6 of the algorithm described above. 
Comparing the space required of the algorithm, the two-class SVM requires 
368.29MB to store the training feature vector files, compared to 25.17MB for the one-
class SVM algorithm. This is a savings of 1 order of magnitude, and is due to the fact 
that the one-class SVM does not require any negative examples to be generated and 
stored. The evaluation of the test sequences is identical between the one-class SVM 
and two-class SVM approaches. 

Table 2. Space requirements for training feature vector files 

 

 
The advantages regarding time are due partly to the sufficiency of positive 

examples, which speeds up the feature vector generation phase, and partly because the 
training step (step 6) for the one-class SVM is completed faster than for the two-class 
SVM. This second component of savings varies with the kernel function used, and is 
much more pronounced using a linear kernel as compared with the RBF kernel. 
Utilizing 20 CPUs, the one-class SVM training step was completed in 3 hours. By 
comparison, the two-class SVM training step, utilizing 40 CPUs, took 70 hours. 

Table 3. CPU time requirements for SVM learning 

 
 

These improvements regarding space and time requirements enable the one-class 
SVM based algorithm to scale much easier to larger data sets. Adding more sequences 
to the training data only affects the subset of SVMs for the same fold as the new 
sequences. The two-class algorithm requires feature vector generation, and re-
training, for all training SVMs. 

5   Conclusions and Future Work 

In this paper we introduced a one-class SVM approach to detect remote relationships 
between protein sequences with very low sequence similarities. The algorithm begins 
by generating sequence profiles for all training sequences using PSI-BLAST. In the 
next step profile-profile alignments between each training sequence and all other 
training sequences are generated. For the one-class SVM algorithm, only alignments 
between sequences belonging to the same fold are required. The two-class SVM 
algorithm assigns all sequences belonging to the same fold to the positive class, and 
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all remaining sequences to the negative class. This results in a set of feature vectors 
for each training sequence. Individual SVMs are then trained for each training 
sequence, using either a two-class SVM or a one-class SVM and using the Radial 
Basis Function kernel. 

The advantages of the one-class SVM approach become apparent when comparing 
the reduced time and space requirements, which show a significant improvement over 
the two-class SVM approach. 

The algorithm presented in this paper produces initial protein sequence profiles by 
running six iterations of PSI-BLAST, and using the resulting PSSM and PFM 
matrices to perform profile-profile alignments. A different approach to profile-profile 
alignments has been given in the recent literature by Söding in [16], where alignments 
are produced using profile HMMs instead of PSSMs and PFMs. This approach may 
well be capable of improving the performance of this algorithm. 

A second focus of improvement lies in the kernel function used for SVM learning 
and classification. Several papers in the recent literature have presented novel kernel 
functions aimed at improving the ability to detect remote sequence relationships, as 
for example in [13]. This offers a second promising direction of future research to 
improve the performance of this algorithm. 
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Abstract. Speaker’s intentions can be represented into domain actions (domain-
independent speech acts and domain-dependent concept sequences). Therefore, 
domain action classification is very useful to a dialogue system that should 
catch user’s intention in order to generate correct reaction. In this paper, we 
propose a neural network model to determine speech acts and concept se-
quences at the same time. To avoid biased learning problems, the proposed 
model uses low-level linguistic features and filters out uninformative features 
using 2χ  statistic. In the experiment, the proposed model showed better per-
formances than the previous work in speech act classification. Moreover, the 
proposed model showed meaningful results when the size of training corpus 
was small. Based on the experimental results, we believe that the proposed 
model will be more helpful to dialogue systems because it manages speech act 
classification and concept sequence classification at the same time. We also be-
lieve that the proposed model can alleviate sparse data problems in speech act 
classification. 

1   Introduction 

A goal-oriented dialogue consists of a sequence of goal-oriented utterances. Speakers’ 
intentions indicated by goal-oriented utterances can be represented by shallow seman-
tic forms called domain actions [1], [7]. As shown in Table 1, a domain action con-
sists of a pair of a speech act and a concept sequence. The speech act represents the 
general intention expressed in an utterance, and the concept sequence captures the 
semantic focus of the utterance. 

If we plan to implement an intelligent dialogue system, we should first prepare a 
domain action identification module because users’ intentions can be captured by 
domain actions. However, it is difficult to directly infer domain actions from surface 
utterances because the domain actions depend on the contexts of the utterances. For 
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Table 1. An example of utterances along with their corresponding domain actions; S means a 
system, and U means a user 

Utterance Domain action 
(1) User: Hello. Greeting & NULL 
(2) S: May I help you? Opening & NULL 
(3) U: Tell me the tomorrow schedule. Request & Timetable-search 
(4) S: You have an appointment with Kildong 

Hong at 11 a.m. 
Response & Timetable-search 

(5) U: We changed the appointment. Inform & Timetable-modify 
(6) S: What is changed? Ask-ref & Timetable-modify 
(7) U: The appointment date was changed. Response & Timetable-modify-date 
(8) S: When is the changed date? Ask-ref & Timetable-modify-date 
(9) U: It’s December 5. Response & Timetable-modify-date 

example, the domain action of utterance (9) in Table 1 can be ‘inform & timetable-
search-date’ and ‘response & timetable-modify-date’ in surface analysis. To resolve 
this ambiguity, the dialogue system should analyze the context of utterance (9). In this 
case, checking the previous utterance, i.e., utterance (8), is necessary for choosing 
‘response & timetable-modify-date’ as the domain action of utterance (9).  

Previous approaches for identification of users’ intentions have been based on 
knowledge such as recipes for plan inference and domain specific knowledge [2], [4], 
[8]. These models depend on costly handcrafted knowledge so that it is difficult to 
scale up and expand them to other domains. To overcome this problem in recent 
years, there has been an increased interest in using machine learning models for the 
processing of users’ utterances [5], [6], [10]. The machine learning models offer a 
means of associating features of utterances with particular categories indicating users’ 
intentions, since the computer can efficiently analyze a large quantity of data and 
consider many different feature interactions. However, the machine learning models 
are critically affected by the performances of underlying feature selection systems. If 
the input features are slightly biased by analysis errors of underlying feature selection 
systems, they do not take a full advantage of particular features of utterances which 
may provide valuable clues for identifying users’ intentions on account of biased 
learning. 

In principle, neural networks can compute any computable function, i.e., they can 
do everything a normal digital computer can do. Especially anything that can be rep-
resented as a mapping between vector spaces can be approximated to arbitrary preci-
sion by feed-forward neural networks (which are the most frequently used type). In 
practice, neural networks are especially useful for solving mapping problems to which 
hard and fast rules cannot be easily applied. In spite of the advantage, we could not 
easily find nice application systems using neural networks on natural language proc-
essing. We think that the reason is the absence of effective feature selection methods. 
Effective feature selection is significant since it increases tagging performance and 
decreases training time. Therefore, automatic and effective feature selection methods 
are requested. 

In this paper, we propose a domain action classification model using neural net-
works in a schedule management domain. To reduce biased learning errors, the model 
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does not use syntactic and semantic features as input features, but the model uses only 
low-level linguistic features [12] such as lexicals and POS’s (parts-of-speech) because 
morphological analyzers generally make much less errors than syntactic parsers and 
semantic analyzers. In addition, to automatically select informative linguistic features, 
the model adopts 2χ  statistic because the feature selection method showed better 

results than mutual information and information gain in text categorization [14]. The 
current version of the proposed model operates in Korean, but we believe that lan-
guage conversion will not be a difficult task because the model uses shallow natural 
language processing techniques. 

This paper is organized as follows. In Section 2, we propose a domain action clas-
sification model in which a speech act classification model and a concept sequence 
classification model are integrated. In Section 3, we explain experimental setup and 
report some experimental results. Finally, we draw some conclusions in Section 4. 

2   Domain Action Classification Using Neural Networks 

We design two neural network models for domain action classification. One is a con-
cept sequence classification model, and the other is a speech act classification model. 
We call the concept sequence classification model CSCM and the speech act classifi-
cation model SACM. We call CSCM and SACM together the domain action classifi-
cation model (DACM). Fig. 1 shows the architectures of DACM. 

As shown in Fig. 1, the inputs of the proposed models are divided into two parts; 
sentential feature part and contextual feature part. The sentential feature part repre-
sents the relationships between the speech acts (or concept sequences) and the surface 
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Fig. 1. The architecture of DACM 
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sentences. However, it is impossible to use surface sentences as input features of 
neural networks because a speaker expresses identical contents with various surface 
forms of sentences according to a personal linguistic sense in a real dialogue. To 
overcome this problem, we assume that an utterance can be generalized by a set of 
sentential features. The sentential feature part of CSCM consists of two components; 
lexical features (content words annotated with POS’s) and POS features (POS bi-
grams of all words in an utterance). On the other hand, the sentential feature part of 
SACM consists of three components; lexical features, POS features, and concept 
sequence features. Generally, content words include nouns, verbs, adjectives and 
adverbs, while functional words involve prepositions, conjunctions and interjections. 
For example, in SACM, the sentential feature set of utterance (9) in Table 1 consists 
of two lexical features, four POS features, and a concept sequence feature, as shown 
in Fig. 2. 

Input: It’s December 5.

The result of morphological analysis:
It/pronoun   is/verb   December/proper_noun 5/number   ./perioid

Lexical features:
December/proper_noun 5/number

POS features:
pronoun-verb               verb-proper_noun
proper_noun-number   number-period

A concept sequence feature:
Timetable_modify_date

 

Fig. 2. An example of a sentential feature set in SACM 

The reason why we use an additional feature, the concept sequence feature, for 
speech act classification is as follows. Although the lexical features and the POS 
features may offer informative clues (e.g. the interrogatives like what and who can be 
very important clue words for speech act classification) to SACM, we think that these 
features cannot fully contain the contents1  of utterances. We found that we should 
sometimes consider the concept sequences of utterances in order to determine correct 
speech acts, as shown in Table 2. 

Table 2. An example why we should consider concept sequences for speech act classification; 
S means a system, and U means a user 

Utterance Concept sequence 
(1) S: What was changed? Timetable-modify 
(2) U: The appointment date was changed. Timetable-modify-date 
(3) U: It’s December 5. Timetable-modify-date 

 
In Table 1, utterance (3) has several surface speech acts such as inform and re-

sponse. Such an ambiguity can be solved by considering the concept sequence of 

                                                           
1 In this paper, we approximate the contents of utterances to their concept sequences. 
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utterance (3). If we consider only the speech act of utterance (2) to determine the 
speech act of utterance (3), the speech act of utterance (3) may be inform. However, if 
we consider the concept sequence of utterance (3), we can find that utterance (3) is 
closely associated with utterance (2) and its meaning is the changed date. Based on 
these facts, we can find that the speech act of utterance (3) is response for the user to 
give the system additional information (cf. “The appointment date was changed to 
December 5”). To obtain the concept sequence of current utterance, SACM uses the 
output of CSCM. 

To obtain the lexical features and POS features, we use a conventional morpho-
logical analyzer. Then, we remove non-informative features by using a well-known 

2χ  statistic because the previous works in document classification have shown that 

effective feature selection can increase precisions [9], [11], [13], [14]. The 2χ  statis-

tic measures the lack of independence between a feature f  and a category c  (in this 

paper, a speech act or a concept sequence), as shown in Equation (1). 
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In Equation (1), A  is the number of times f  and c  co-occur, B  is the number of 

times f  occurs without c , C  is the number of times c  occurs without f , and D  is 

the number of times neither c  nor f  occurs. To remove non-informative features, we 

calculate the feature scores as the maximum 2χ  statistic of a feature-category pair, as 

shown in Equation (2), and choose top-n features according to the feature scores. 
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The contextual feature part represents the relationships between a current speech 
act (or a current concept sequence) and previous speech acts (or previous concept 
sequences). Since it is impossible to consider all previous speech acts (or all previous 
concept sequences) as contextual information, we use the bi-gram model, as shown in 
Fig. 1. By the same reason with the sentential feature part of SACM, the contextual 
feature part of SACM consists of a previous speech act and a previous concept se-
quence. On the other hand, the contextual feature part of CSCM consists of only a 
previous concept sequence. 

3   Evaluation 

3.1   Data Sets and Experimental Settings 

We collected a Korean dialogue corpus simulated in a schedule management domain 
such as appointment scheduling and alarm setting. The dialogue corpus were obtained 
by eliminating interjections and erroneous expressions from the original transcriptions 
of simulated dialogues between two speakers to whom a task of the dialogue had been 
given in advance: one participant freely asks something about his/her daily schedules, 
and the other participant responds to the questions or asks back some questions by 
using knowledge bases given in advance. This corpus consists of 956 dialogues, 
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Table 3. A part of the annotated dialogue corpus 

Tag Values Tag Values 
/ID/ 4-5 /ID/ 4-7 
/SP/ User /SP/ User 
/KS/ ? /KS/ ? 
/EN/ When is the appointment time? /EN/ Where is the place? 
/SA/ Ask-ref /SA/ Ask-ref 
/CS/ Timetable-search-time /CS/ Timetable-search-place 

/ID/ 4-6 /ID/ 4-8 
/SP/ System /SP/ System 
/KS/ 11  30 . /KS/ . 
/EN/ It’s eleven thirty. /EN/ It’s COEX Hall. 
/SA/ Response /SA/ Response 
/CS/ Timetable-search-time /CS/ Timetable-search-place 

21,336 utterances (22.3 utterances per dialogue). Each utterance in dialogues was 
manually annotated with speech acts and concept sequences. Table 3 shows a part of 
the annotated dialogue corpus. 

In Table 3, KS represents a Korean sentence and EN represents the translated Eng-
lish sentence that is not unseen in the original dialogue corpus. SP has a value of ei-
ther User or System depending on the speaker. The manual tagging of speech acts and 
concept sequences was done by five graduate students with the knowledge of a dia-
logue analysis and post-processed by a student in a doctoral course for consistency. 

In order to experiment the proposed model, we divided the annotated dialogue cor-
pus into the test corpus with 100 dialogues and the training corpus with 856 dia-
logues. We again divided the training corpus into 8 parts (100, 200, …, 700, 856 
dialogues) to compare the precisions as the size grows up. The types of speech acts 
are very subjective without an agreed criterion, and the types of concept sequences 
depend on application domains. In this paper, we defined 11 types of speech acts and 
53 types of concept sequences. Table 4 shows the speech acts that we defined. 

Table 4. Speech acts and their meanings 

Speech act Description Example 
Greeting The opening greeting of a dialogue Hello. 
Expressive The closing greeting of a dialogue Good-bye. 
Opening Sentences for opening a goal-oriented dialogue May I help you? 
Ask-ref WH-questions Where is the place? 
Ask-if YN-questions Can I change the time? 
Response Responses of questions or requesting actions Yes, you can. 
Request Declarative sentences for requesting actions Set the alarm. 
Ask-confirm Questions for confirming the previous actions Saturday, right? 
Confirm Reponses of ask-confirm Right. 
Inform Declarative sentences for giving some information It was canceled. 
Accept agreement I know. 
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In the experiments, we set the number of sentential features except concept se-
quence features to 100 in total. In other words, we selected top-100 features using 2χ  

statistic. The learning rate of the proposed model was 0.2, and trainings spent 200 
epochs. 

3.2   Experimental Results 

To evaluate the performances of the proposed model according to the various sizes of 
training corpus, we calculated the precisions of the proposed model at various cutoff 
points, as shown in Table 5 and Fig. 3. 

Table 5. The precisions of domain action classification 

Speech act classification The size of 
training corpus SACM Kim-2004 

CSCM 

100 81.09 79.97 66.25 
200 78.36 77.96 68.84 
300 83.10 79.88 72.33 
400 82.34 80.06 71.75 
500 84.04 81.85 72.82 
600 82.83 81.22 71.93 
700 84.00 81.67 73.58 
856 86.05 82.79 73.76 
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Fig. 3. The precisions of domain action classification in graph 

In Table 5, Kim-2004 [3] is similar to SACM except that Kim-2004 does not use 
the concept sequence features as input features. As shown in Table 5, SACM showed 
better results than Kim-2004 at all cutoff points. Moreover, SACM using 100 dia-
logues as training corpus had similar precisions to Kim-2004 using 500~700  
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dialogues as training corpus.  This fact shows that the concept sequence features are 
effective in determining speech acts. It also shows that SACM can alleviate sparse 
data problems in speech act classification. The precisions of CSCM were lower than 
those of SACM. We think that it was caused by the difference between the numbers 
of target categories: the target categories of SACM are 11 types of speech acts, but 
the target categories of CSCM are 53 types of concept sequences.  Although CSCM 
does not perform well, DACM can be used as an essential module for a dialogue 
system because it outputs concept sequences as well as speech acts at the same time. 

We analyzed the cases that DACM failed to return correct results. The failure rea-
sons are as follows. First, DACM used a linearly adjacent speech act (or a linearly 
adjacent concept sequence) as contextual information. However, dialogues have hier-
archical discourse structures, as shown in Fig. 4. 

(1) User: I’d like to change the appointment time.

(2) System: To what time do you want to change it?

(3) User: 4 p.m.

(4) System: I changed it.

 

Fig. 4. An example of a hierarchical discourse structure 

For example, if we want to know the domain action of utterance (4) in Fig. 4, we 
should consider not utterance (3) but utterance (1) as contextual information because 
utterance (4) is adjacent to utterance (1) in the tree structure of the discourse. To over-
come this problem, we should study on methods to apply discourse structures to 
DACM. Second, the precisions of CSCM were much lower than those of SACM. The 
low precisions of CSCM affected the performances of SACM. When we used correct 
concept sequences as input features of SACM, the highest precision of SACM was 
92%. Therefore, if we can improve the precisions of CSCM, SACM will perform 
much better. 

4   Conclusion 

We proposed a neural network model which can perform both speech act classifica-
tion and concept sequence classification in Korean. To reduce biased learning errors, 
the proposed model uses low-level linguistic features such as lexicals and POS’s as 
input features, and filters out uninformative input features using 2χ  statistic. After 

selecting features, the proposed model determined both speech acts and concept se-
quences at the same time using the same framework. In the experiment, the proposed 
model outperformed the previous work in speech act classification. Moreover, the 
proposed model showed meaningful results when we used small sizes of training 
corpus. Based on these experiments, we believe that the proposed model will be more 
helpful to dialogue systems than previous works (speech act classification models) 
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because it manages speech act classification and concept sequence classification at the 
same time. We also believe that the proposed model can alleviate sparse data prob-
lems by using concept sequences as input features in speech act classification. In 
addition, we found that that neural networks can perform well on natural language 
processing insofar as effective methods is available for reducing the number of input 
features. 
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Abstract. In this work, a new phonemes recognition system is proposed. The 
base of decision of the proposed system is the tongue position and roundedness 
of the lips. The features of the speech are the coefficients of Wavelet Packet 
Transform with sub-bands selected through the Mel scale. The SVM (Support 
Vector Machine) is used as classifier in the structure of a Hierarchical 
Committee Machine. The database used for the recognition was a set of oral 
vocalic phonemes of the Portuguese language. The experimental results show 
success rates of 97.50% for the user-dependent case and 91.01% for the user-
independent case. This new proposal increased 3.5% the success rate in relation 
to the “one vs. all” decision strategy.  

Keywords: Speech Recognition, Support Vector Machine, Wavelet Packet. 

1   Introduction 

A first decision in the development of a speech recognition system is the definition of 
the unit to be recognized: words, syllables, triphones, diphones or phonemes. 

A natural language, such as the Portuguese, possesses about 400.000 words, what 
demands great amount of processing and storage, a hard problem for continuous 
recognition. In the last years, research efforts have focused the unit smaller than the 
word. Santos and Alcaim [10], used syllables as units of recognition. However, the 
syllables can have 2000 patterns and they are not very useful in languages like 
English, which does not possess a trivial syllabic division. In this case, triphones are 
more used, but their training is difficult (Young [14]).  

This work proposes the use of phonemes as base for the Brazilian Portuguese 
speech recognition. The oral vowels (a, é, i, ó, u, ê, ô), were used in the recognition.  

The energy coefficients of Wavelet Packet Transform with sub-bands, selected 
through the Mel scale, were chosen as features of the speech.  

A new hierarchical Committee Machine decision system is presented. The 
classification of vowel signals is based on Support Vector Machines (SVM), where 
the base of decision is the tongue position and the rounding of the lips. 
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Section 2, presents the signal pre-processing phase. Section 3, shows the speech 
features extraction. Section 4, describes the training procedure of SVM neural 
network. Section 5, proposes a new technique for vowel recognition. Section 6 
presents some experiments of vowels recognition. 

2   Preprocessing 

The preprocessing stage is composed of four steps: acquisition, filtering, pre- 
emphasis and normalization. In the acquisition step, the voice signal is sampled at a 
rate of 22050 Hz, with a bandwidth of 11050 Hz. 

Signal frequencies above 10 kHz and electric power noise are eliminated through a 
band pass filter with cutoff frequencies of 80 Hz and 10 kHz. After that, the speech 
signal is pre-emphasized. In the normalization step, the maximum signal amplitude is 
normalized to one. Each frame is multiplied by a window function, named Hamming 
Window, in order to minimize any signal discontinuities in the time domain. 

3   Features Extraction Using Wavelet Packets and Mel Scale 

The Wavelet Packet (WP) decomposes the approximation spaces as well as details 
spaces, originating a binary tree structure. A WP decomposition facilitates the 
partitioning of the higher frequency side, of the frequency axis into smaller bands 
what cannot be achieved by using discrete wavelet transform [1].  

The Mel scale is a signal representation scheme, used in the analysis of speech 
signals. Stevens and Volkmann in [12] defined the Mel scale as a frequency function 
of the magnitude of an auditory sensation. The Mel scale is linear in the frequency 
below 1000 Hz and logarithmic above this frequency.  

Farroq and Datta in [4] had used Wavelet Packet with the Mel scale, which was 
found to be superior to Mel Frequency Cepstral Coefficients (MFCC) in unvoiced 
phoneme classification problem.  

Gowdy and Tufekci in [5] evaluated the performance of the Wavelet Packet with 
Mel scale and compared its performance with MFCC coefficients. The results 
obtained through Wavelet Packet with Mel scale showed better recognition rates than 
MFCC for a phoneme recognition task. 

In this work, seven levels of decomposition of the WP are utilized and the Mel 
scale is used to select 29 sub-bands.  

First, a full seven level WP decomposition is carried out. Twelve subbands 86 Hz 
of the level 7, four subbands of 172 Hz of the level 6, five subbands of 345 Hz of the 
level 5, five subbands of 689 Hz of the level 4 and three subbands of 1378 Hz of the 
level 3 are utilized. The bandwidth obtained from each filter using WP decomposition 
is given in Table 1.  

Therefore, the speech signal feature is represented by a vector whose 29 elements 
represent the energy of each sub-band extracted from the WP through the Mel scale. 
The used Wavelet mother was db5 (Daubechies [2]). 
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Table 1. Frequency bands achieved by Wavelet Packet decomposition and Mel scale 

 

4   Training  

In order to provide a better choice of the frames that represent the speech signal, 
instead of using all the frames, the signal was segmented using the Kmeans algorithm 
(Duda and Hart [3]) with two classes. Each signal frame possesses a vector 
characterized by 29-band energies selected by WP.  

The Kmeans algorithm uses these vectors for signal separation. This procedure 
results in a significant reduction of the training time and an improvement of the 
performance of the system.  

Figure 1, shows this procedure, where the frames were selected through Kmeans 
from a vowel "a" signal, using an energy vector. 

It is perfectly clear that the frames were selected in the nearness of the center of the 
signal. This selection process avoids the use of frames that can represent variations of 
pronounce or noise, which generally occurs in the beginning and in the end of the 
location. 
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Fig. 1. Segmentation vowel ‘a’ through Kmeans, using an energy vector 

4.1   Support Vector Machine – SVM 

Support Vector Machines (SVMs) represent a new approach for pattern classification, 
what has recently attracted a great interest in the machine learning community. Their 
appeal lies in their strong connection with the underlying statistical learning theory, in 
particular, the theory of Structural Risk Minimization. 

The SVM theory was first introduced by Vapnik in [13]. The SVM learn the 
boundary regions between samples belonging to two classes, by mapping the input 
samples into a high dimensional space, and seeking a separating hyperplane in this 
space. The separating hyperplane is chosen in such a way that it maximizes its 
distance to the closest training samples. 

Juneja [8], demonstrated the utility of the SVM in the classification of phonemes, 
resulting on a better performance than HMM (Hidden Markov Model).  

Russell and Bilmes [9], affirm that in the last years it was verified a growing 
interest on classifiers that can go beyond the performance of the HMM. 

To validate the use of SVM in the training stage, two experiments were carried out.  
In the first test, the traditional strategy “one vs. all” was used in association with a 

decision scheme based on a Machine of Committee formed by a mixture of specialists 
(Haykin [6], pp. 402). 

 In second test, a new strategy, called Hierarchic Committee Machine-HCM, was 
used. This new strategy based on the articulatory phonetic is presented in Section 5. 

5   Hierarchic Committee Machine – HCM 

The proposed HCM is based on the characteristic vowel articulation of the Portuguese 
language. In phonetics, a vowel is a sound in spoken language, characterized by an open 
configuration of the vocal tract, without obstruction of air pressure above the glottis [11].  
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5.1   Articulatory Phonetic: Vowels Classification  

The articulatory features that distinguish different vowels in a language are said to 
determine the vowel's quality. The vowels are described in terms of the common 
features: height (vertical tongue position), backness (horizontal tongue position) and 
roundedness (lip position), as shown in figure 2. 

Height refers to the vertical position of the tongue relative to either the roof of the 
mouth or the aperture of the jaw. In high vowels, such as [i] and [u], the tongue is 
positioned high in the mouth, whereas in low vowels, such as [a], the tongue is 
positioned low in the mouth. 

Backness refers to the horizontal tongue position during the articulation of a vowel 
relative to the back of the mouth. In front vowels, such as [i], the tongue is positioned 
forward in the mouth, whereas in back vowels, such as [u], the tongue is positioned 
towards the back of the mouth.  

 

Fig. 2. Articulatory features: Height, Backness and Roundedness. Portuguese vowels. 

Roundedness, refers to whether the lips are rounded or not. In most languages, 
roundedness is a reinforcing feature of mid to high back vowels, and not distinctive.  

5.2   Hierarchical decision 

Hosom in [7], used three neural networks specialists to detect the manner of 
articulation, place of articulation and height of the tongue in the production of 
phonemes. The outputs of the three neural networks were evaluated by a classifier 
using the Bayes rule. The obtained experimental results were better than those 
obtained through HMM. 

Figure 3, shows the proposed new classification structure, in which characteristics 
like the tongue height and roundedness of the lips are the base for decision process. 

The system is composed by seven SVM specialists, in which machine 01 selects 
phoneme /a/ through the strategy “one vs. all”. 
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Fig. 3. New Classification system based on tongue position and roundedness of the lips  

The phoneme /a/ is classified as Central and Low. Since vowel /a/ differs from the 
other vowels, its classification is made in first place. 

In the next decision step, the system verifies if the pattern is High, Mid-high or 
Mid-low (Vertical Tongue Position). Having the biggest number of positive 
classifications, the specialist machine is declared winner. According to the winner, the 
system will classify the phoneme based on to the horizontal tongue position (Front vs. 
Back) in a strategy “one vs. one”. 

The classification based on the roundedness of the lips is equivalent to that one 
based on the horizontal tongue position. 

6   Experimental Results 

In order to validate the proposed classification scheme, two experiments were 
performed: the first one, with the traditional strategy (one vs. all); the second, with the 
proposed hierarchical strategy.  

For the user-dependent case, the training set was composed of 90 patterns. A set of 
560 patterns was utilized for testing. The traditional strategy results showed success 
rates of 93.93%. The hierarchical strategy results showed success rates of 97.5%. 
Table 2, shows the confusion matrix for the hierarchical strategy in the user-
dependent case.  
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Table 2. Confusion Matrix - Hierarchical strategy for user-dependent case 

- a é i ó u ê ô % Success rate  
a 80 0 0 0 0 0 0 100 
é 0 80 0 0 0 0 0 100 
i 0 0 80 0 0 0 0 100 
ó 0 2 0 78 0 0 0 97.50 
u 0 0 1 0 79 0 0 98.75 
ê 0 0 1 0 4 75 0 93.75 
ô 0 3 0 0 0 3 74 92.50 

In the user-independent case, the training set was composed of 108 patterns. A set 
of 812 patterns was utilized for testing. The traditional strategy results show success 
rates of 87.44%. The hierarchical strategy results show success rates of 91.01%. 

7   Conclusion 

In this work, a new phoneme recognition system is proposed, where the tongue 
position and roundedness of the lips are adopted as base of decision. The coefficients 
of Wavelet Packet Transform with subbands selected through the Mel scale were 
selected as speech features. The Support Vector Machine was used as classifier in the 
structure of a Hierarchical Committee Machine. The database used for the recognition 
was a set of oral vowel phonemes of the Portuguese language.  

The experimental results showed success rates of 97.50% for the user-dependent 
case and 91.01% for the user-independent case. This new proposal increased 3.5% the 
success rate in relation to the “one vs. all” decision strategy. 

Therefore, we conclude that the new proposal presented better recognition taxes 
than the traditional strategy (one vs. all). Moreover, for the phonemes /a/, /é/ and /i/, 
the recognition rate was 100% for the user-dependent case.  

The new hierarchical strategy decision proved to be more efficient, faster and 
robust, achieving a significant reduction in the complexity of the decision process. 
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Abstract. In this paper, passport recognition and face verification
methods which can automatically recognize passport codes and discrim-
inate forgery passports to improve efficiency and systematic control of
immigration management are proposed. Adjusting the slant is very im-
portant for recognition of characters and face verification since slanted
passport images can bring various unwanted effects to the recognition
of individual codes and faces. The angle adjustment can be conducted
by using the slant of the straight and horizontal line that connects the
center of thickness between left and right parts of the string. Extract-
ing passport codes is done by Sobel operator, horizontal smearing, and
8-neighbornood contour tracking algorithm. The proposed RBF network
is applied to the middle layer of RBF network by using the fuzzy logic
connection operator and proposing the enhanced fuzzy ART algorithm
that dynamically controls the vigilance parameter. After several tests
using a forged passport and the passport with slanted images, the pro-
posed method was proven to be effective in recognizing passport codes
and verifying facial images.

1 Introduction

Because of globalization and the improvement of transportation, the number of
people that arrive from and depart to different countries from airports has in-
creased. The clerk of immigration control currently uses his/her bare eye to verify
the passport. The purpose of immigration control is to find forgery, criminal, il-
legal immigrants, or someone prohibited from departing the country. A passport
has information about the owner’s identification photograph, nationality, name,
social security number, gender, passport number, and so on.

It is difficult to use only bare eyes to distinguish and control the immigration
process [1]. Time will be delayed, and due to obscure and unsure methods, accu-
rate search of people who shouldn’t be allowed in the country will not be possible.
Therefore, this paper shows how to extract a string area of codes by applying
Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algo-
rithm. The extracted string area becomes binary by applying a repeating binary

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 167–176, 2006.
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method, which is applied with a CDM (Conditional Dilation Morphology) mask
in order to recover the characters of an individual code [2],[3].

In order to extract individual codes from the string area to which CDM mask
is applied, the individual code is extracted by 8-neighborhood contour tracking
algorithm [4]. The remainder of this study is organized as follows. Section 2
presents the code extraction and slant compensation in detail. Passport recog-
nition and forgery detection algorithms are introduced in Section 3 and 4, re-
spectively. The experimental results are discussed in Section 5. Conclusions are
drawn in Section 6.

2 Passport Code Extraction and Slant Compensation

The user information is represented in one code that is placed in the bottom
of the passport. The passport code must be extracted in order to recognize the
user information. In this paper, real passports that are currently in use are used
to extract code areas that consist of 44 characters stands in two rows.

2.1 Code Extraction

The edge is detected by applying the Sobel mask to an original image of the
passport, and horizontal smearing is applied to the image in which the Sobel
mask has been applied. The method for extracting the string area of codes
by applying the 8-neighborhood contour tracking algorithm to the horizontally
smeared images is as following.
P r

i and P c
i are the vertical and horizontal pixels of the string areas of the

extracted code, P r+1
i and P c+1

i are the next progressing vertical and horizontal
pixels, respectively. P r

s and P c
s are vertical and horizontal pixels of the first

contour tracking mask, respectively.

Step 1. Initialize with Eq. (1) in order to apply 8-neighbornood contour track-
ing algorithm to the string code area, and find the pixel by applying progressing
mask as shown in Fig. 1.

P r−1
i = P r

i , P c−1
i = P c

i (1)

Step 2. When a black pixel is found after applying the progressing mask in
the current pixel, calculate the value of P r

i and P c
i as shown in Eq. (2).

P r
i =

7∑
i=0

P r+1
i , P c

i =
7∑

i=0

P c+1
i (2)

Step 3. For the 8 progressing masks, apply Eq. (3) to decide the next pro-
gressing mask.

If P r
i = P r+1

i and P c
i = P c+1

i then rotates counter-clockwise (3)

Step 4. Stop if P r
i and P c

i return back to P r
s and P c

s or go back to the Step 1
and repeat. If |P r

i − P r
s | ≤ 1 and |P c

i − P c
s | ≤ 1 then Break, else go back to the

Step 1.
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Fig. 1. 8-neighborhood contour tracking process mask

2.2 Slant Compensation of Image

Since passport images can be tilted during the scan, “image slant compensation”
is very important for face verification. If there is no slant during the extracting
of strings of passport codes, extracting strings by selecting two areas that form
maximum section by horizontal projection is possible. However, if slanting exists,
this method is not useful. Skew compensation is applied by selecting the longer
of two extracted strings, and then using the straight line that connects the center
of the string’s thickness of the left and right sides and the slant of the horizontal
line of that string. The extraction of code area and the image tilt compensation
of the proposed method are shown in Fig. 2.
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Fig. 2. Code character detection and skew compensation
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2.3 Image Enhancement and Extraction of Individual Codes

CDM mask shown in Fig. 3 is used in order to transform the extracted string
area to binary information, and to restore the characters of the individual code
of the binarized string area.
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Fig. 3. CDM mask

The first step, Fig. 3(a), reconstructs bounding box’s top horizontal outermost
portion if the mask reach to character information into interior for horizontal di-
rection by top-down method. The second step reconstructs left vertical elements
by using a left-right method. The third step reconstructs horizontal elements of
character from the bottom by using a bottom-up method. The fourth step recon-
structs vertical elements of character from the right by using a right-left method.

Because the number of pixels that CDM mask is applied to vertical elements
among the outermost pixels in a pixel per 3×3 mask, the image scanned in
low restoration, 150 dpi, is available effectively. Fig. 4 shows the process that
converges for up, down, right, and left directions in application form of CDM
mask. After applying CDM Mask, 88 individual codes are extracted by using 8-
neighborhood contour tracking algorithm. Fig. 5 shows the result of extracting
individual codes with 8-neighborhood contour tracking algorithm.
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Fig. 4. Application of CDM mask

3 Passport Recognition by the Enhanced Fuzzy ART
Based RBF Network

The RBF (Radial Basis Function) network based on enhanced fuzzy ART (Adap-
tive Resonance Theory) is applied for passport recognition. The proposed fuzzy
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Fig. 5. Extraction result for individual character

RBF network is divided into two stages: a fuzzy logic connection operator to
control vigilance parameters and Delta-bar-Delta to control the learning rate.
Fuzzy ART is a self-learning algorithm that combines fuzzy logic and the ART
learning model [5]. The vigilance parameter determines the allowable degree of
mismatch between any input pattern and stored pattern [6]. Yager’s intersection
operator is defined as the following [7].

μ(xi) = 1−Min
[
1, {(1−X1)

p + · · · + (1−Xn)p}1/p
]

(4)

Let T p and T p∗
be the target values of the learning pattern and the win-

ner node, respectively. The equation to apply Yager’s intersection operator and
dynamically control vigilance parameters is as Eq. (5).

If T p = T p∗
then

ρj∗(t+ 1) = 1− ∧
[
1,
{

(1− ρj∗(t))2+
(
1− ρj∗(t− 1)

)2}1/2
]

(5)

The equation for controlling weight W from the conventional fuzzy ART algo-
rithm is as following.

W (t+ 1) = β (X ∧W (t)) + (1− β) W (t− 1) (6)

The recognition rate decreases if the value of β is too large in the conventional
fuzzy ART [8]. Therefore, the learning parameter β is controlled dynamically as
shown in Eq. (7) by considering actual distortion between stored patterns and
learning patterns.

β =
1

1− ρ ×
(‖wj∗i ∧ xi‖

‖xi‖ − ρ
)

(7)

Delta learning method is applied to update parameters between the middle and
output layers. The output vector in the output layer can be calculated by Eq.
(8), and normalized by the sigmoid function in Eq. (9).

Ok =

⎛⎝ M∑
j=1

wkj ×Oj

⎞⎠ (8)

f(x) =
1

1 + e−x
(9)

The equations to get the error value and error signal by comparing the normal-
ized output vector and target vector is as following.

E =
1
2
(T p

k −Ok)2 (10)
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Fig. 6. Schematic diagram of the RBF network based on enhanced fuzzy ART

δk = (T p
k −Ok)Ok(1 −Ok) (11)

After getting Delta-bar-Delta using Eq. (12) for the dynamic adjustment of
the learning rate, the learning rate is dynamically adjusted by Eq. (13).

Δkj = −δkOj

Δkj = (1− β)Δkj(t) + βΔkj(t− 1) (12)

αkj(t+ 1) =

⎧⎨⎩αkj(t) + κ,
(1− γ)αkj(t),
αkj(t),

if Δkj(t− 1) ·Δkj(t) > 0
if Δkj(t− 1) ·Δkj(t) < 0
if Δkj(t− 1) ·Δkj(t) = 0

(13)

The equations for weight and bias are updated as in Eq. (14) and Eq. (15). The
schematic diagram of the proposed RBF network based on enhanced fuzzy ART
is shown in Fig. 6.

wkj(t+ 1) = wkj(t) + αkjδkOj (14)

θk(t+ 1) = θk(t) + αkjδk (15)
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4 Forgery Detection by Face Verification

The recognized passport code information is used to obtain the feature vectors
of facial image that is acquired by PCA algorithm from the database.

4.1 PCA

PCA finds the collection of certain normalized orthogonal axis that indicates
to each direction of maximum covariance for input data. The learning method
using PCA is as following [9]. The two-dimensional image can be presented
by a vector, and the k number of learned image vectors can be presented by
X =

[
x1|x2|x3| · · · |xk

]
’s rows. An image’s average vector can be acquired by Eq.

(16) and the difference between the one-dimensional image vector and average
image vector can be acquired by Eq. (17).

m =
1
k

k∑
j=1

xi (16)

xi = xi −m (17)

By using the k number of xi vectors which is the result of Eq. (17), the
X =

[
x1|x2|x3| · · · |xk

]
row can be acquired. X row can be used to obtain the

covariance matrix by using Eq. (18).

Ω = X X
T

(18)

The method for representing the studied images in PCA data is as following.
After obtaining the V =

[
v1|v2|v3| · · · |vk

]
by using eigenvectors that are ac-

quired through the covariance matrix, obtain the property vectors of the studied
images using Eq. (19).

x̃i = V T x̄i (19)

For face recognition using PCA, first the target image is subtracted from the
average image to get the yi image. Eq. (20) shows how the yi image is acquired.
Then, using the transposed matrix of the eigenvector, the feature vector of the
target image is obtained as in Eq. (21).

yi = yi −m (20)

ỹi = V T yi (21)

4.2 Extraction of Facial Area of Passport Picture

The position of the picture in the passport is in between 1/5 and 4/5 of the
vertical length and 1/3 of the horizontal width of the passport image based on
the top left of the extracted code string. From the center of 2/3 of the width in
the candidate area, we extract 50 pixels of the width, 130 pixels of the length,
from the left and right. The final extracted region is used the face area. The
method for extracting a passport picture is shown in Fig. 7.
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Fig. 7. Face area detection of passport picture

Fig. 8. Database construction for face information

4.3 Database Construction for Face Information

First, acquire images of facial area by the process of extracting facial areas from
several passports. Study the acquired facial images using the PCA algorithm,
and add the unique vector and feature vector of the learned facial images to the
database. By using the information of the unique vector and feature vector, the
verification of facial similarity is possible. The process of database construction
of facial information is shown in Fig. 8.

4.4 Face Authentication

After acquiring the unique vector and feature vector from both the database and
actual passport, face authentication of a passport can be done by calculating the
feature vector of facial images by using Eq. (17) and (18).

The similarity of feature vectors between the calculated facial image and the
database can be calculated using Eq. (19). If the similarity rate exceeds a certain
critical value, the passport is valid; if not, it is possible to assume that the
passport is forged.
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Table 1. Nodes of created middle layer

Learning Algorithm Pattern Nodes of created middle layer
RBF network based Numeric 85
enhanced fuzzy ART Character 162

Table 2. Recognition rate of passport

Character Numeric Recognition rate
Normal 1045/1116 2034/2052 97%

Slant compensation 1116/1116 2052/2052 100%

5 Analysis of Experiment and Result

The experiment was conducted by VC++ 6.0 on an Intel Pentium-IV 2GHz
CPU. Twelve 600×437 sized images from the passport which are scanned by HP
ScanJet 4200C, twelve images with facial forgery, and twelve images with fake
picture were used for this experiment.

The result of extracting individual characters from a passport image is shown
in Fig. 5. The 72 string areas from 36 passport images are all extracted, and both
2052 individual code characters and 1116 individual numbers are all extracted.
100 number codes and 260 character codes among the extracted 3168 passport
codes are trained by applying the enhanced fuzzy ART based RBF Network
algorithm. The parameter setting of the enhanced fuzzy ART based RBF net-
work is as follows: α(0.7) is learning rate, μ(0.9) is momentum, and κ(0.00005),
γ(0.001), β(0.9) are delta-bar-delta constants. The number of nodes in the mid-
dle layer to which the enhanced fuzzy ART based RBF Network algorithm is
applied is shown in Table 1.

The recognition rate of the 36 passport images made for the efficiency test
is shown in Table 2. The passport images are recognized 97% of the time by
mere scanning, but they are recognized 100% of the time by scanning using
image-slant compensation.

12 original passports, 12 passports with fake pictures, and 12 passports with
forged facial areas were used. The facial verification similarity was set at 0.8
for the experiment. The result is shown in Table 3. The passports with fake
pictures and forged facial areas are distinguished as counterfeit. On the other
hand, the original passports passed safely. Therefore, PCA algorithm is proven
to be effective for face verification.

Table 3. Image verification of passport face

Original passport Face forgery Picture forgery
Detection of forgery 0/12 12/12 12/12

Pass 12/12 0/12 0/12
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6 Conclusion

The string codes are restored by applying CDM mask to the binary string area,
and individual codes are extracted by 8-neighborhood contour tracking algo-
rithm. The enhanced fuzzy ART based RBF network is applied to prevent dif-
ferent patterns from being classified as the same cluster or same patterns from
being classified as different clusters. All twenty-four forged passports are de-
tected during the face verification experiment by PCA algorithm that measures
the similarity of facial feature vector. The experimental results show that the
proposed facial recognition algorithm is effective.
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Abstract. In this paper, we introduce a modified fuzzy min-max(FMM) neural 
network model for pattern classification, and present a real-time face detection 
method using the proposed model. The learning process of the FMM model 
consists of three sub-processes: hyperbox creation, expansion and contraction 
processes. During the learning process, the feature distribution and frequency 
data are utilized to compensate the hyperbox distortion which may be caused by 
eliminating the overlapping area of hyperboxes in the contraction process. We 
present a multi-stage face detection method which is composed of two stages: 
feature extraction stage and classification stage. The feature extraction module 
employs a convolutional neural network (CNN) with a Gabor transform layer to 
extract successively larger features in a hierarchical set of layers. The proposed 
FMM model is used for the pattern classification stage. Moreover, the model is 
utilized to select effective feature sets for the skin-color filter of the system. 

1   Introduction 

Fuzzy min-max (FMM) neural networks were introduced by Simpson [1] using the 
concept of hyperbox fuzzy sets. A hyperbox defines a region of the n-dimensional 
pattern space that has patterns with full class membership using its minimum point 
and its maximum point. The fuzzy min-max neural networks are built by making one 
pass through the input patterns and forming hyperboxes into fuzzy sets to represent 
pattern classes. Gabrys and Bargiela have proposed a General Fuzzy Min-Max 
(GFMM) neural network which is a generalization and extension of the FMM cluster-
ing and classification algorithm [2]. In GFMM method, input patterns can be fuzzy 
hyperboxes or crisp points in the pattern space. We present a modified FMM, called 
the weighted FMM (WFMM) neural network that takes the weights into account. The 
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rationale for this idea is that a feature of a particular hyperbox can cover many more 
training patterns than other features of the same hyperbox and features of other hy-
perboxes. A weight value is assigned to each of the dimensions of each hyperbox so 
that membership can be assigned considering not only the occurrence of patterns but 
also the frequency of the occurrences within that dimension. 

Growing interest in computer vision has motivated a recent surge in research on 
problems such as face recognition, pose estimation, face tracking and gesture recogni-
tion. However, most methods assume human faces in their input images have been 
detected and localized [3-5]. Color usually presents a strong intuitive cue in complex 
scene images. Recently, skin detection has emerged as an active research topic in 
several practical applications including face detection and tracking. Various generic 
skin models in a number of color spaces have been presented [6-7]. However, we can 
expect variations when images are taken in various settings, with different kinds of 
camera hardware, and under a wide range of lighting conditions [8]. Therefore the 
generic skin model may be inadequate to accurately capture the wide distribution of 
skin colors in an individual image.  In this paper we present a FMM-based feature 
analysis technique for the face detection system. Two kinds of relevance factors are 
defined to analyze the relationships between features and pattern classes. Through the 
feature analysis, we can select the most relevant features for the skin-color filter as 
well as the pattern classifier. Moreover, the training process can make it possible to 
adaptively adjust the feature ranges of the skin-color filter. 

2   A Weighted FMM Neural Network 

In our previous work, a weighted fuzzy min-max (WFMM) neural network has been 
introduced [9]. The model employs a new activation function which has the weight 
value for each feature in a hyperbox. In this paper, we introduce an improved struc-
ture of the WFMM neural network and its application to a face detection problem.  

2.1   Structure and Behavior  

The weighted fuzzy min-max(WFMM) neural network is a modified version of Simp-
son’s FMM model[1]. The model consists of three layers: input layer, hyperbox layer 
and class layer.  In the model, the membership function of a hyperbox is defined as 
Equation (1).  

{ , , , , , ( , , , , )}  n
j j j j j j j j jB X U V C F f X U V C F X I= ∀ ∈  (1)  

In the equation, jU and jV  mean the vectors of the minimum and maximum values 

of hyperbox j, respectively.  jC  is a set of the mean points for the feature values and 

jF  means the a set of frequency of  feature occurrences within a hyperbox. As shown 

in Equation (2) and (3), the model employs a new activation function which has the 
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factors of feature value distribution and the weight value for each feature in a  
hyperbox.  

1

1

1
( ) [max(0,1 max(0, min(1, )))
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                  max( , )
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jiU U ji ji

U

old new
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V

R s u u
R

R s v v
R

γγ

γγ

= = −

= = −
 (3)  

The hyperbox membership function has weight factor to consider the relevance of 

each feature as different values. In the equation, the ijw  is the connection weight 

between i-th feature and j-th hyperbox. The weighted FMM neural network is capable 
of utilizing the feature distribution and the weight factor in learning process as well as 
in classification process. Since the weight factor effectively reflects the relationship 
between feature range and its distribution, the system can prevent undesirable per-
formance degradation which may be caused by noisy patterns.  Consequently the 
proposed model can provide more robust performance of pattern classification when 
the training data set in a given problem includes some noise patterns or unusual  
patterns. 

2.2   Learning Algorithm  

The learning process of the model consists of three subprocesses: hyperbox creation, 
expansion, and contraction processes. 

If the expansion criterion shown in Equation (4) has been met for hyperbox jB , 

, ,ji ji jif u v  and ijc are adjusted using Equation (5) and (6).  

1

(max( , ) min( , ))
n

ji hi ji hi
i

n v x u xθ
=

≥ −  (4)  

1

min( , )

min( , )

new old
ji ji
new old
ji ji ki
new old
ji ji ki

f f

u u x

v v x

= +
=
=

 (5)  

( * ) /n e w o ld n e w
j i j i j i h i j ic c f x f= +

 (6)  

As shown in the equations, the frequency value is increased by 1 at every expan-
sion and the feature range expansion operation is similar to the fuzzy intersection and 
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fuzzy union operations [6]. The mean point value, jic , is updated by Equation (6). 

During the learning process the weight values are determined by Equation (7) and (8).  

j i
j i

f
w

R

α
=

 
(7)  

( )m ax , ji jiR s v u= −
 

(8)  

As shown in the equations, the weight value is increased in proportion to the fre-
quency of the feature. In the equations, s is a positive constant to prevent the weight 

from having too high value when the feature range is too small. The value of jif  is 

adjusted through the learning process. The contraction process is considered as an 
optional part of our model. The contraction process is to eliminate the possible over-
lappings between hyperboxes that represent different classes. We can expect that the 
weights concept of the model replace the role of overlapping handling because the 
weights reflect the relevance of feature values and hyperbox as different values. We 
define a new contraction method including the weight updating scheme. To determine 
whether or not the expansion has created any overlapping, a dimension by dimension 
comparison between hyperboxes is performed. If one of the following four cases is 
satisfied, then overlapping exists between the two hyperboxes.  

1 :
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< < <

= −

< < <

= −
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       m in (m in ( , ) , )ne w old
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For each of these cases, contraction process is performed. If 0old newδ δ− > , then 

,   old newi δ δΔ = = , signifying that there was an overlap for Δ th dimension.  Other-
wise, the testing is terminated and the minimum overlap index variable is set to indi-
cate that the next contraction step is not necessary, i.e. 1Δ = − . If 0Δ > , then the 
Δ th dimension of the two hyperboxes are adjusted. Only one of the n dimensions is 
adjusted in each of the hyperboxes to keep the hyperbox size as large as possible and 
minimally impact the shape of the hyperboxes being formed. 

As illustrated in Equation (9), we have defined new adjustment schemes from the 
new definition of hyperbox for the four cases. The frequency values, the mean points 
and the feature ranges are updated for the four cases. Consequently the frequency 
factor is increased in proportion to the relative size of the feature range, and the mean 
point value is adjusted by considering the expanded feature range. 
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3   A Face Detection Method Using the WFMM Model 

As shown in Fig.1, our face detection system consists of three modules: preprocessor, 
feature extractor and pattern classifier. Through the skin color analysis and training 
process, the system can generate an adaptive skin model and a relevant feature set for 
the given illumination condition. The feature extractor generates numerous features 
from the input image. The number of features and the relevance factors of the features 
affect the computation time and the performance of the system. Therefore we propose 
a feature analysis technique to reduce the amount of features for the pattern classifier.  

3.1   WFMM-Based Feature Analysis Technique 

This section describes a feature analysis technique for the skin-color filter and the 
classifier. We define two kinds of relevance factors using the proposed FMM model 
as follows: 

1( , ) :

2( , ) :
j k j k

i k i k

RF x C the relevance factor between a feature value x and a class C

RF X C the relevance factor between a feature type X and a class C
 

The first measure RF1 is defined as Equation (9). In the equation, constant BN  

and kN  are the total number of hyperboxes and the number of hyperboxes that be-

long to class k, respectively. Therefore if the 1( , )iRF x k  has a positive value, it 

means an excitatory relationship between the feature ix and the class k. But a  
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negative value of 1( , )iRF x k  means an inhibitory relationship between them. A list 

of interesting features for a given class can be extracted using the RF1 for each  
feature. 
 

1
1( , ) ( ( , ( , ))

j k

i k i ji ji ij
B Ck

RF x C S x u v w
N ∈

= ⋅  

1
( , ( , )) ) /

( )
j k j k

i ji ji ij ij
B C B CB k

S x u v w w
N N ∉ ∈

− ⋅
−

 

(9)  

In Equation (9), the feature value ix can be defined as a fuzzy interval which consists 

of min and max values on the i-th dimension out of the n-dimension feature space. 
The function S a similarity measure between two fuzzy intervals.  

The second measure RF2 can be defined in terms of RF1 as shown in Equation 
(10). In the equation, Li is the number of feature values which belong to i-th feature.  

1
2( , ) 1( , )

l i

i k l k
x Xi

RF X C RF x C
L ∈

=  (10)  

The RF2 shown in Equation (10) represents the degree of importance of a feature 
in classifying a given class. Therefore it can be utilized to select a more relevance 
feature set for skin color filter. 

 

Fig. 1. The face detection system using hybrid neural networks 

3.2   Feature Extraction and Face Classification 

The most advantageous feature of convolutional neural network is invariant detection 
capability for distorted patterns in images [2-3]. The underlying system employs a 
convolutional neural network in which a Gabor transform layer is added at the first 
layer. As shown in Fig. 2, the first layer of the network extracts local feature maps 
from the input image by using Gabor transform filters.  
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Fig. 2. Face detector using hybrid neural networks 

The other layers of the feature extractor include two types of sub-layers called convo-
lution layer and sub-sampling layer. Each layer of the network extracts successively 
larger features in a hierarchical set of layers. Finally a feature set is generated for the 
input of the pattern classifier. The number of the features can be reduced by the fea-
ture analysis technique using the FMM model described in the previous section. For 
the feature extractor, a set of (38 42) candidate areas are selected as input images. 
The first layer of the feature extractor, Gabor filter layer, extracts eight feature maps 
in which the size of feature map is (28 32). Each unit in each feature map is con-
nected to a 11 11 neighborhood into the input retina. In the subsampling layer, the 
feature map has half the number of rows and columns of the input data. Therefore the 
layer has eight feature maps of size 14 16. The convolutional layer generates 44 
feature maps. Each unit is connected to 3 3 neighborhood at identical locations in a 
subset of the feature maps of the Gabor transform layer. 1,848 feature values are gen-
erated and inputted into the input layer of the WFMM-based classifier. The aforemen-
tioned feature analysis technique can be used to reduce the number of these features. 

4   Experimental Results 

Two types of experiments have been conducted for a set of real images. For the train-
ing of skin-color filter, the system considers eleven color features, Red,  Green, Blue, 
Intensity, Cb, Cr, Magenta, Cyan, Yelleow, Hue and Saturation. Fig. 3 shows two 
input images captured under different illumination conditions. Table 1 shows the 
skin-color analysis result and the feature range data derived from the training process. 
As shown in the table, different kinds of features can be adaptively selected for a 
given condition, and the feature ranges of skin-color filter can be also adjusted by the 
training process. 

Table 1 shows four features which have the highest value of the relevance factor 
RF1. As shown in the table, a number of hyperboxes for face and non-face patterns 
have been generated and the relevance factors are also adjusted through the training 
process. Therefore the system can select more effective feature set adaptively for the 
given environment. 
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Fig. 3. Two training data captured under different illumination conditions 

Table 1. Feature analysis results for the two images 

image - 1 image - 2 

feature feature range RF1 feature feature range RF1 

Hue 0.833 ~ 0.992 9.1103 Cb 0.589 ~ 0.772 0.8888 

Saturation 0.019 ~ 0.135 9.0104 Yellow 0.433 ~ 0.632 0.7832 

Cb 0.761 ~ 0.964 8.8212 Saturation 0.056 ~ 0.243 0.7204 

Cr 0.053 ~ 0.234 6.7320 Blue 0.437 ~ 0.627 0.6929 

We have selected face patterns from the real images and non-face patterns from the 
background images. 100 face patterns and 100 non-face patterns have used for train-
ing process. Fig. 4 shows the change of detection rate and false alarm rate by varying 
the number of training patterns, respectively. The result shows that the detection rate 
increases as more training patterns are used, and the false alarm rate decreases as 
more non-face counter examples are used for training. 
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Fig. 4. Detection rate and false alarm rate as varying the number of training patterns 

5   Conclusion 

The proposed WFMM can provide at least two advantages over the original FMM: (a) 
it would work better for pattern classification than the original scheme, especially for 
data sets with highly uneven distribution of features or noisy features since the hyper-
boxes in the WFMM model is not too sensitive to a few occurrence of unusual/noisy 
features in input patterns, (b) the learned weights for each feature during training 
process can be used to identify the relevance of the feature to the given class, which 
can be easily used for possible rule generation. The feature relevance measures com-
puted through the feature analysis can be also utilized in designing an optimal struc-
ture of the classifier. We have applied the proposed model to a real-time face detec-
tion system in which the illumination conditions are frequently changed.  
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Abstract. In this paper, we propose a novel learning method for face de-
tection using discriminative feature selection. The main deficiency of the
boosting algorithm for face detection is its long training time. Through
statistical learning theory, our discriminative feature selection method
can make the training process for face detection much faster than the
boosting algorithm without degrading the generalization performance.
Being different from the boosting algorithm which works in an itera-
tive learning way, our method can directly solve the learning problem
of face detection. Our method is a novel ensemble learning method for
combining multiple weak classifiers. The most discriminative component
classifiers are selected for the ensemble. Our experiments show that the
proposed discriminative feature selection method is more efficient than
the boosting algorithm for face detection.

1 Introduction

Face recognition techniques have been developed over the past few decades. A
first step of any face recognition system is detecting the locations in images where
faces are present. Face detection has long been an important and active area in
vision research. However, face detection from a single image is a challenging
task because of variability in scale, location, orientation (up-right, rotated), and
pose (frontal, profile). Facial expression, occlusion, and lighting conditions also
change the overall appearance of faces. Furthermore, most of the applications of
face detection now demand not only accuracy but also real-time response. Viola
and Jones proposed an effective coarse-to-fine scheme using boosting algorithm
and cascade structure for face detection [17]. Their framework has prompted
considerable interest in further investigating the use of boosting algorithm and
cascade structure for face detection, e.g., [4], [14], [18], [6], [19], [5], [7].

Sung and Poggio [15] established a face detection approach based on a mixture
of Gaussian model. Rowley and Kanade [12] designed a neural network based
face detection approach that uses a small set of simple image features. In [9],
Osuna et al. described an SVM-based method for face detection. Romdhani
et al. [11] presented another SVM-based face detection system by introducing
the concept of reduced set vectors and the sequential evaluation strategy. The
SNoW (sparse network of winnows) face detection system by Yang et al. [20]
is a sparse network of linear functions that utilizes winnows update rules. In

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 187–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[10], Papageorgiou and Poggio established a trainable system for face detection
using SVMs and overcomplete Haar wavelet transform. Using an energy-based
loss function, Osadchy et al. [8] designed convolutional networks for real-time
simultaneous face detection and pose estimation. Schneiderman and Kanade
[13] established an object detection system using boosting algorithm and wavelet
transform.

The excellent work of Viola and Jones [17] has redefined what can be achieved
by an efficient implementation of a face detection system. They formulated the
detection task as a series of non-face rejection problems. Since then, a number
of systems have been proposed to extend the idea of detecting faces through
the boosting algorithm. For example, Li et al. [4] developed a face detection
method through FloatBoost learning. The work by Lienhart and Maydt [5] fo-
cused on extending the set of Haar-like features. In [7], Liu and Shum introduced
a Kullback-Leibler boosting to derive weak learners by maximizing projected KL
distances.

The boosting algorithm is a milestone of the research on face detection. How-
ever, the main deficiency of the boosting algorithm for face detection is that a
very long training time is required. Using statistical learning theory, we propose
a discriminative feature selection method, which can make the training process
for face detection much faster than the boosting algorithm without degrading
the generalization performance. The boosting algorithm is an iterative learning
method, and our discriminative feature selection method can directly solve the
learning problem of face detection.

2 Related Work

Viola and Jones [17] have made three key contributions to face detection: Haar-
like feature, boosting algorithm and cascade structure. All the three contribu-
tions are very important. Haar-like feature is good foundation for image rep-
resentation in face detection. There are many motivations for using Haar-like
features rather than the pixels directly. The most common reason is that Haar-
like features can act to encode ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. Unlike the Haar basis, a set of Haar-like
features is overcomplete. So the Haar-like feature can more efficiently represent
image in detail than the raw pixel data. Another advantage of using Haar-like
feature is that the feature can be rapid calculated using so-called ‘integral im-
age’. The integral image is an intermediate representation for the image which
is very similar to the summed area table used in computer graphics for texture
mapping. The integral image can be computed from an image using a few op-
erations per pixel. Once computed, any one of these Haar-like features can be
computed at any scale or location in constant time.

AdaBoost algorithm was used to select a small number of important features
from a huge library of potential Haar-like features [17]. Within any image sub-
window the total number of Haar-like features is very large, far larger than
the number of pixels. In order to ensure fast classification, the learning process
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must exclude a large majority of the available features, and focus on a small
set of critical features. The goal of feature selection is achieved using AdaBoost
learning algorithm by constraining each weak classifier to depend on only a
single feature. As a result each stage of the boosting process, which selects a
new weak classifier, can be viewed as a feature selection process. The weak
learning algorithm is designed to select the single Haar-like feature which best
separates the positive and negative examples. For each feature, the weak learner
determines the optimal threshold classification function, such that the minimum
number of examples are misclassified. A weak classifier h(x, f, p, θ) thus consists
of a feature (f), a threshold (θ) and a polarity (p) indicating the direction of the
inequality [17]:

h(x, f, p, θ) =
{

1 if pf(x) < pθ
0 otherwise (1)

Here x is a fixed size pixel sub-window of an image.

3 Discriminative Feature Selection

The discriminative feature selection approach proposed in this paper consists of
two main steps. The first step is to extract Haar-like features and train single
feature weak classifiers, and the second step is to search out a small set of critical
features (namely critical weak classifiers) and build classifiers for face detection.

3.1 Feature Extraction

Our feature extraction process uses the Haar-like features as used by Viola and
Jones [17]. Being similar to [17], the Haar-like features to be extracted have
five prototypes. We also use the weak classifier h(x, f, p, θ) as shown in equation
(1) in our feature extraction process. Unfortunately, as showed in Figure.1, the
boosting algorithm for face detection requires all weak classifiers be retrained
in each iteration step because the training data have been re-weighted. This is
a computationally demanding task which is in the inner loop of the boosting
algorithm. Therefore, the boosting algorithm for face detection has very long
training time.

As showed in Figure.2, we train all weak classifiers once in advance without
retraining the weak classifiers in the afterward discriminative feature selection
process. In [19], the same strategy was used and a forward feature selection
(FFS) method was proposed for face detection. All weak classifiers h(x, f, p, θ)
are trained on single Haar-like feature after Haar-like feature extraction and the
thresholds for every single feature are obtained. By thresholding every single
Haar-like feature with these weak classifiers, we set each feature to binary value,
zero or one. As a result, the data space becomes a binary value space after feature
extraction. Feature selection and classifier construction will be finished within
this binary value data space.



190 Z.-G. Fan and B.-L. Lu

Train all weak classifiers

Boosting iteration step

Fig. 1. Weak classifiers training and
boosting algorithm

Train all weak classifiers

    Discriminative feature selection

Fig. 2. Weak classifiers training and
discriminative feature selection

3.2 Learning and Feature Selection

After feature extraction and thresholding on every single feature by weak clas-
sifiers, learning is carried out using statistical learning theory [16] for feature
selection and classifier construction in the binary value feature space. So our
method is a novel ensemble learning method for combining multiple weak clas-
sifiers. Every single feature is a weak classifier in this specific environment. The
most discriminative weak classifiers (namely discriminative features) are selected
for the ensemble. We use the optimal separating hyperplane in the output space
of all the weak classifiers as the combining mechanism for classifier ensemble
learning using the statistical learning theory. Statistical learning theory is not
only a tool for the theoretical analysis but also a tool for creating practical al-
gorithms for pattern recognition. This abstract theoretical analysis allows us to
discover a general model of generalization. On the basis of the VC dimension con-
cept, constructive distribution-independent bounds on the rate of convergence of
learning processes can be obtained and the structural risk minimization princi-
ple has been found. Optimal separating hyperplane and support vector machines
(SVMs) [16] are machine learning techniques which are well-founded in statis-
tical learning theory. As an application of the theoretical breakthrough, SVMs
have high generalization ability and are capable of learning in high-dimensional
spaces with a small number of training examples. It accomplishes this by min-
imizing a bound on the empirical error and the complexity of the classifier, at
the same time. This controlling of both the training set error and the classifier’s
complexity has allowed SVMs to be successfully applied to very high dimensional
learning tasks.

We are interesting in the optimal separating hyperplane which can also be
called linear SVMs because of the nature of the data sets under investigation.
Linear SVMs use the optimal hyperplane

(w · x) + b = 0 (2)

which can separate the training vectors without error and has maximum distance
to the closest vectors. In our method, the input vector x is in the output space of
all the weak classifiers. We use this optimal separating hyperplane in the output
space of all the weak classifiers to combine multiple weak classifiers. To find
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the optimal hyperplane one has to solve the following quadratic programming
problem: minimize the functional

Φ(w) =
1
2
(w · w) (3)

under the inequality constraints

yi[(xi · w) + b] ≥ 1, i = 1, 2, . . . , l. (4)

where yi ∈ {−1, 1} is class label [16].
According to the hyperplane as shown in equation (2), the linear discriminant

function can be constructed for SVMs classifier as follows:

f(x) = sign{(w · x) + b} (5)

The inner product of weight vector w = (w1,w2, . . . ,wn) and input vector
x = (x1, x2, . . . , xn) determines the value of f(x). Intuitively, the input fea-
tures in a subset of (x1, x2, . . . , xn) that are weighted by the largest absolute
value subset of (w1,w2, . . . ,wn) influence most the classification decision. If the
classifier performs well, the input feature subset with the largest weights should
correspond to the most informative features . Therefore, the weights |wk| of the
linear discriminant function can be used as feature ranking coefficients [2], [3],
[1]. However, this way for feature ranking is a greedy method and we should look
for more evidences for feature selection. In [3] and [1], support vectors have been
used as evidence.

Assume the distance between the optimal hyperplane and the support vectors
is Δ, the optimal hyperplane can be viewed as a kind of Δ-margin separating
hyperplane which is located in the center of margin (−Δ,Δ). According to [16],
the set of Δ-margin separating hyperplanes has the VC dimension h bounded
by the inequality

h ≤ min
([

R2

Δ2

]
, n

)
+ 1 (6)

where R is the radius of a sphere which can bound the training vectors x ∈ X
and n is the dimension of the space.

Inequality (6) points out the relationship between margin Δ and VC dimen-
sion: a larger Δ means a smaller VC dimension. Therefore, in order to obtain
high generalization ability, we should still maintain margin large after feature
selection. However, because the dimensionality of original input space has been
reduced after feature selection, the margin is usually to shrink and what we can
do is trying our best to make the shrink small to some extent. Therefore, in
feature selection process, we should preferentially select the features which make
more contribution to maintaining the margin large. This is another evidence for
feature ranking. To realize this idea, a coefficient is given by

ck =

∣∣∣∣∣∣ 1
l+

∑
i∈SV+

xi,k − 1
l−

∑
j∈SV−

xj,k

∣∣∣∣∣∣ (7)
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where SV+ denotes the support vectors belong to positive samples, SV− denotes
the support vectors belong to negative samples, l+ denotes the number of SV+,
l− denotes the number of SV−, and xi,k denotes the kth feature of support vector
i in input space Rn.

The larger ck indicates that the kth feature of feature space can make more
contribution to maintaining the margin large. Therefore, ck can assist |wk| for
feature ranking. The solution is that, combining the two evidences, we can order
the features by ranking ck|wk| and select the features which have larger value of
ck|wk|. We present below an outline of the discriminative feature selection and
classifier training algorithm.

• Input:
Training examples (using binary Haar-like features)

X0 = {x1, x2, . . . xl}T

• Initialize:
Indices for selected features: s = [1, 2, . . . n]
Train the SVM classifier using samples X0

• For t = 1, . . . , T :
1. Compute the ranking criteria ck|wk| according to the trained SVMs
2. Order the features by decreasing ck|wk|, select the top Mt features, and

eliminate the other features
3. Update s by eliminating the indices which not belong to the selected

features
4. Restrict training examples to selected feature indices

X = X0(:, s)

5. Train the SVM classifier using samples X
• Outputs:

The small set of critical features and the final SVM classifier

Usually, the iterative loop in the algorithm can be terminated before the train-
ing samples can not be separated by a hyperplane. Clearly, this algorithm can
integrate the two tasks, feature selection and classifier training, into a single con-
sistent framework and make the feature selection process more effective. Using
this discriminative feature selection method, we can search out the small set of
critical features and build classifiers for face detection.

4 Experiments

We have made several sets of experiments to illustrate the effectiveness of the
proposed discriminative feature selection algorithm for face detection. In all ex-
periments reported here, we use the MIT-CBCL face database [3] , a database
of faces and non-faces that have been used extensively at the Center for Biologi-
cal and Computational Learning at MIT. All input gray-scale images are of size
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Fig. 3. Some face and non-face sample images in the MIT-CBCL database
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19×19 and the dimensionality of the resulting input vectors is N = 361. Figure 3
depicts some face and non-face sample images in the MIT-CBCL database. The
overall database is partitioned into two subsets: the training set and test set.
The training set is composed of 2429 face images and 4548 non-face images. The
test set is composed of 472 face images and 23573 non-face images. All the image
data have been histogram equalized . All of the experiments were performed on
a 3.0GHz Pentium 4 PC with 2.0GB RAM.

After Haar-like feature extraction, the dimensionality of the feature vectors
without feature selection is N = 27348. In the binary value feature space of the
dimensionality N = 27348, we train linear SVMs and obtain the coefficients ck
and |wk|. The diversities of ck, |wk| and ck|wk| have been showed in Figures.4
through 6, respectively. Figures 7 through 9 show, respectively, ck, |wk| and
ck|wk| being ordered increasingly. From these figures, we can see that ck|wk| has
the steepest variability curve which is useful for feature selection. To evaluate
the different impacts of the three coefficients on feature selection, we use the
three coefficients respectively to select features. We use four iterative steps (T=
4) and the parameter Mt is set as: M1 = 5000,M2 = 1000,M3 = 500,M4 = 200.
After feature selection, the classification accuracy is examined on the test data
set. The test results are showed in Table 1, where ‘FS-W’, ‘FS-C’, and ‘FS-CW’
denote the feature selection using coefficient |wk|, the feature selection using
coefficient ck, and the feature selection using coefficient ck|wk|, respectively. The
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Table 1. Test results using three coefficients respectively

Methods No. features True positive rate (%) True negative rate (%)

5000 42.3729 98.8080

1000 41.3136 98.7231

500 41.1017 98.7274

FS-W 200 41.1017 98.4643

5000 42.1610 98.5110

1000 41.1017 94.8119

500 40.4661 93.3271

FS-C 200 39.6186 95.3167

5000 42.5847 98.9098

1000 41.9492 98.7443

500 41.5254 98.8589

FS-CW 200 41.5254 98.5025

linear SVMs are used as classifier in the three cases. Through Table 1 we can
see that the FS-CW approach is the best one among the three methods.

Figure 10 shows the ROC (receiver operating characteristic) curves for the face
detection test. In this set of experiments, we have used four different methods
for comparison study. In Figure 10, ‘FFS’, ‘Viola-Boosting’, and ‘Pixel Method’
denote the forward feature selection method [19], the AdaBoost algorithm [17],
and the linear SVMs using raw pixel data, respectively. The experimental setting
of our method is the same as mentioned above. We used linear SVMs as the
weight setting algorithm of the FFS method. In the pixel method, we used the
raw image pixel data as input features and didn’t use the Haar-like features.
But the Haar-like features have been used for the FFS and Viola-Boosting. The
dimensionality of the raw pixel feature vectors is N = 361 and the parameter
C of the linear SVMs was set to 0.001 for the pixel method. For the other
three methods, our discriminative feature selection method, FFS and the Viola-
Boosting, the dimensionality of the feature vectors is N = 200 after feature
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Fig. 10. ROC (receiver operating characteristic) curves for the face detection test

selection. Through Figure 10, we can see that the accuracy of our method is the
highest among the four methods. And our method has much shorter training
time than the Viola-Boosting algorithm. In our experiments, the training time
of our discriminative feature selection method is 15 minutes and the training
time of Viola-Boosting is 7 hours. The accuracy of the pixel method is very low
because it doesn’t use Haar-like features.

5 Conclusions

We have presented a discriminative feature selection method for face detection.
This discriminative feature selection method can make the training process for
face detection much faster than the boosting algorithm without degrading the
generalization performance. The boosting algorithm works in an iterative way,
while our discriminative feature selection method can directly solve the learning
problem of face detection. Our method is a novel ensemble learning method for
combining multiple weak classifiers. We use the optimal separating hyperplane
in the output space of all the weak classifiers as the combining mechanism for
classifier ensemble learning. The most discriminative component classifiers are
selected for the ensemble. Through the experimental results, we can see that
our method is more efficient than the boosting algorithm for face detection. We
also can see that the Haar-like features are more powerful than the raw pixel
features. We can learn more detail of the nature of the learning methods for face
detection in this study.
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Abstract. It is very meaningful for dimension reduction by extraction
and analysis of the underlying manifold embedded in face observation
space, since the low dimensional manifold can represent the varying in-
trinsic features. However, this kind of manifold is perhaps not useful for
face image recognition problem. This paper proposes a new discrimina-
tive manifold learning method which can efficiently discover the discrim-
inative manifold. Besides the characteristic of preserving the local struc-
ture similarity in the face submanifold, the proposed method emphasizes
the discriminative property of embedding much more throughout build-
ing and solving an object function. Experimental results on some open
face datasets indicate the proposed method can achieve lower error rates.

1 Introduction

It is a challengeable task to reduce the influence of pose, illumination and ex-
pression in the field of face representation and recognition. Although Principal
Components Analysis (PCA)-based [1] and Linear Discriminant Analysis (LDA)
-based [2] methods have been effectively applied to extract facial features, they
fail to represent this kind of nonlinear structure and are hard to get a higher
performance. There are two methods to solve this problem, one is kernel-based
method, the basic idea of this method is to map the points in observation space
into a higher dimensional feature space by a kernel function, where the points are
assumed linearly separable [3]. Due to the success of kernel function in Support
Vector Machine (SVM), the nonlinear feature extracted by this method is helpful
for face recognition, and there appears many nonlinear face recognition methods
such as Kernel PCA (KPCA) [4], Kernel LDA (KDA) [5] and improved ver-
sions. However, most of these methods are not only computationally expensive,
too implicit for choosing parameters, but also only extract the global nonlinear
structure.

The other is based on manifold learning. The fields of face recognition and
computer vision have witnessed recently growing interests in manifold learning.
From this viewpoint, faces are thought of data points possibly residing close
to a nonlinear submanifold embedded in a high-dimensional observation space.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 197–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Some nonlinear techniques i.e. Isomap [6], LLE [7] and Laplacian Eigenmaps
[8], have been proposed to discover the nonlinear structure of the manifold.
These nonlinear methods do yield impressive results on some benchmark artificial
datasets. However, they are developed based on reconstruction and perhaps are
not optimal for classification purpose [9][10][11]. Moreover, they are difficult
for new-come data which is essential for face or digital number recognition. In
order to cope with this problem, Yang proposed an extended Isomap method[9]
that utilized LDA to replace Multidimensional Scaling (MDS) during the low-
dimensional embedding process. He and Niyogi proposed a Local Preserving
Projections (LPP) method [10][11], which is an optimal linear approximation to
Laplacian Beltrami operator on the face manifold, and very flexible in connection
with both PCA/LDA versus clustering/classification. However, LPP shares local
preserving character to LLE, which still goes against in face recognition in some
sense. Chen and Chang proposed Local Discriminant Embedding (LDE) [12] and
extension versions which seek to dissociate the submanifold of each class from
one another, and outperform than many classical methods.

The proposed method in this paper focuses on the relationships of some sub-
space analysis and manifold learning from the viewpoint of supervised classifi-
cation, moreover, it owns more discriminative ability essentially to different face
classes. In order to discover the discriminative manifold, an natural extension
of Fisher LDA criterion in manifold sense, called Fisher Manifold Discriminant
Embedding (MDE), is introduced to build an object function. The experimen-
tal results on three open datasets show the effectiveness and superiority of our
method designed by this criterion.

The remainder of the paper is structured as follows. Section 2 reviews the some
subspace-based methods and manifold learning methods for face recognition.
Section 3 comments the new algorithm through Fisher Manifold Discriminative
Embedding criterion analysis. Section 4 describes the experimental results based
on some open datasets and discussions. Section 5 summarizes the paper and
indicate the main interests for future work.

2 Simple Review of Subspace-Based Face Recognition

Since last decade, subspace-based methods, originated from Turk’s Eigenfaces [1]
based on the PCA and improved by Belhumeur’s Fisherfaces [2] based on Fisher
LDA, have dominated the approaches in face recognition for good performance
and computational feasibility. They both try to transform a given set of face
images into a smaller set of basis images using matrix decomposition techniques.
While the unsupervised Eigenface intends to maximize the covariance and the
supervised Fisherface intends to maximize the discriminability.

Suppose {ωi}c
i=1 are c known pattern classes, {xi}N

i=1 are N h-dimensional
samples, ni is the number of samples in the subset ωi. Let m be the mean
sample of all samples and be the mean for the i-th class, then we can calculate the
between-class scatter matrix Sb, the within-class scatter matrix Sw and the total
scatter matrix St. PCA finds orthogonal transform with the basis Φ = {φi}K

i=1
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that for any K � N minimizes the reconstruction error, in other words, The
objective function is

arg maxJK(Φ) = |ΦT StΦ| (1)

Whereas as a linear statistic classification method, Fisher LDA tries to find
a linear transform W so that after its application the scatter of sample vec-
tors is minimized within each class and the scatter of mean vectors around the
total mean vector is maximized simultaneously. It can be formulated as an op-
timization problem of Sb and Sw, and the objective function is highlighted as
follows:

argmax JF (W ) =
|WT SbW |
|WT SwW | (2)

Although Martinez explained that LDA doesn’t always outperform than PCA
[13], LDA is still widely accepted in face recognition and more effective than
PCA. In many practical applications, there are not enough samples to make the
within-class scatter matrix nonsingular (i.e. small sample size problem, SSSP)
and Sw is ill-posed. In order to cope with this problem, Belhumeur [2] use PCA
to reduce dimensionality. Yang [14] proposed a direct LDA method to diagonalize
the Sb and Sw. Chen [15] regarded the null space of Sw was particularly useful in
discriminability and proposed a way to makes use of it. Huang [16] followed this
basic idea by firstly removing the common null space of both Sb and Sw, which
means the null space of total-scatter matrix St is also removed since St = Sb+Sw.

We can find from the above analysis, the similarity and dissimilarity property
versus same class and different class should be equally considered, and their
characteristic of singularity is useful for classification purpose. This idea is also
can be introduced to manifold learning-based face recognition.

3 Discriminative Manifold for Face Recogntion

From viewpoint of manifold learning,M is supposed as a manifold embedded in
R

h and {xi ∈ R
h}N

i=1, any subset of data points that belong to the same class
is assumed to lie in a submanifold of M. Local Preserving Projection defines an
objective function

arg minJS(w) =
∑

i,j
(wT (xi − xj))2sij (3)

to discover the preserving submanifold. By changing the similarity matrix S, it
can correspond to the method of PCA and LDA. However, it cannot share their
properties simultaneously. Here we want to discover the most of a discriminative
submanifold for classification, dimensionality reduction and etc, so the object
becomes the discovery of a most preserving or discriminative submanifold and
the following fact should be respected: if two data points are close, we hope them
still keep close in submanifold and vice versa. Of course, when class information
is labeled, there are some points are close in different class and are far away
in same class because of the noisy point and the outliers. According to the
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basic manifold assumptions, similarities can be locally measured, and in order
to emphasis the similarity and dissimilarity among the neighborhoods of a point,
we use two neighborhood graphs to measure this locality under the constraint
of class information. They are defined as similar in [12]:

Let Nb = {xj}b
j=1 is a subset of b nearest neighbors of a data point xi , G

and G denote two undirected graphs both over all points. We consider each pair
of points xi, xc and xc ∈ Nb, when they are from same class an edge is added to
between xi, xc (The ε -ball implementation way also can be considered). When
they are from different classes, an edge is added to G between xi, xc.

According to neighborhood graphs G and G , the affinity matrix S and S can
be specified, where each element sij refers to the weight of the edge between xi,
xj in S ,and refers sij to S. The weight can be given by the way of “heat kernel”,
“cosine kernel” or “simple-minded”. For example, a cosine kernel is a similarity
distance measure as follows:

sij =

{
<xi,xj>2

<xi,xi><xj,xj> if xi, xj are connected in G
0 else

(4)

where < ·, · > means a kind of inner product operation. An advantage of cosine
kernel is it doesn’t need to adjust parameter. Just like the Fisher LDA in Eq.2,
we propose a Fisher Manifold Discriminant Embedding (MDE) criterion JM (W )
for classification purpose:

arg maxJM (W ) =

∑
i,j ‖yi − yj‖2sij∑
i,j ‖yi − yj‖2sij

(5)

where yi is the shape of xi after manifold embedding, yi = WTxi, and ‖yi−yj‖2
is the difference measure of yi and yj in a difference matrix. It wants to find
a transform which can minimize the within-class difference and maximize the
between-class difference of the face submanifolds simultaneously. The optimiza-
tion problem can be solved as follows. Let JM (W ) =

∑
i,j ‖WTxi−WTxj‖2sij ,

so

JM (W ) =
∑

i,j
(WTxi −WTxj)T (WTxi −WTxj)sij

= 2
∑

i,j
WT (xisijx

T
i − xisijx

T
j )W

= 2(WTXDXTW −WTXSXTW )
= 2WTX(D − S)XTW (6)

Let Laplacian matrix L = D−S, L = D−S and the fact that L is symmetric
and positive semidefinite causes XLXT is symmetric and positive semidefinite.
So JW (W ) ≥ 0, and the Fisher MDE criterion can be analyzed from the following
two aspects:

(1) JW (M) > 0. This case happens when L is non-singular. The solution is
similar as Local Discriminant Embedding (LDE) and we omit this procedure, the
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embedding matrix W = [w1,w2, ...,wk] can be obtained by solving the following
generalized eigenvector problem:

XLXT w = λXLXT w (7)

where JM (W ) is a max finite real number in R.
(2) JW (M) = 0. In this case, consider the property of symmetric and positive

semidefinite matrix:

JM (W ) = 2WTX(D − S)XTW = 0
⇔ X(D − S)XTW = 0
⇔ X(D − S)XT = 0
⇔ (D − S)XT = 0 (8)

It means that mapping the data points to the null space of L can make JM (W ) =
0. L ∈ R

n×n, the rank of L is n−c [11]. so the dimensionality of the null space of
L is c−1. Let Wnull = {vi}c−1

i=1 is the basis set which spans the null space of L, so
firstly after consideration of using PCA as preprocessing for noise reduction(note
that the reconstruction is without any loss. For simplicity, we still use X to
represent the original data points after PCA dimensionality reduction). We then
project the data X → X̃,X̃ = WT

nullX , and change the Fisher MDE criterion as
follows:

arg max J̃M (W ) =
∑

i,j
‖ỹi − ỹj‖2sij (9)

where ỹi = WT x̃i, and apparently, J̃M (W ) = WTWT
nullXLX

TWnullW . Since
WT

nullXLX
TWnull is a full rank matrix, we can solve the optimization problem

by finding the generalized eigenvectors {wi}k
i=1 corresponding to the k largest

eigenvalues of WT
nullXLX

TWnull and W = {wi}k
i=1. So the embedding matrix is

WnullW after PCA process. Theoretically speaking, it is notable that JM (W ) →
+∞ and the discriminability is the best one.

4 Experimental Results and Discussion

Here we compared our proposed method with the several other face recognition
methods (Eigenface, Fisherface, Null-space LDA, LPP and LDE) using the pub-
licly available Yale, AT&T and CMU PIE database. Our intension is to discover
different characteristics among these methods.

The AT&T database [17] contains 400 images of 40 persons where the vari-
ations are mainly due to the facial contours, scale and pose of a person in the
image. The Yale database [18] contains 165 images of 15 individuals where
the images demonstrate variations in lighting condition, face expression, and
with/without glasses. The CMU PIE database [19] contains 41368 face images
of 68 subjects under varying pose, illumination and expression. Some processes
during the experiment are marked as follows:

(I)For each image in Yale database, we manually crop the face to size of
92 × 112 (same as the resolution in AT&T). For computational efficiency, each
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image in both two databases is down-sampled to 1/4 of the original size. For
PIE database, we use the dataset collected by He [11]. Which means each face
image is cropped to 32×32 sizes and one individual holds 170 images. We lastly
normalize them to be zero-mean and unit-variance vectors.

(II)The parameters, such as the number of principle components for dimen-
sionality reduction in Eigenface, LPP and LDE methods, are empirically deter-
mined to achieve the lowest error rate by each method. So at last, the dimen-
sionality of projection is different among these methods. The neighbor number
for each test is same as the training number of per subject. For Fisherface and
our proposed NLDE method, the projection dimensionality are both c− 1. The
recognition is performed using nearest-neighbor (1-NN) classifier for its simplic-
ity. And the number for training/test is changeable for different purpose.

The experimental details are discussed as follows:
(1) Experiment on the AT&T Database: We firstly use a case to compare

the performance of different methods where first 5 images of each individual for
training and the rest for testing. For those methods need PCA to reduce dimen-
sionality firstly, the number of principal components is decided by remaining
95% energy. The heat kernel with same parameter is designed to measure the
affinity matrix. The recognition results are shown in Fig.1.

Fig. 1. A case of recognition accuracy versus dimensionality on AT&T database (first
5 images of each individual for training and the other for testing).The right is best
recognition rate corresponding to dimension reduction.

From Fig.1 we can find that the performance of Null-space LDA is better than
Eigenfaces and Fisherfaces because it considers the most discriminative vector
in the null space of the within-class scatter matrix Sw. Among the manifold-
based methods, Null-space LDE method outperforms the others. We also find
that the recognition curve of Eigenfaces and Laplacianfaces is similar;and that
of Null-space LDA and Null-space LDE is similar, too.

We further repeat 10 times to get the average values of the best recognition
rate of each method under different training samples. The result is reported in
Table 1. Here we preserve the number of principal components for 98% energy.
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Table 1. Performance comparison on AT&T database, each method is gotten from the
average best recognition rate of 10 times under different training samples by random
selection

�����������Approach
Train. num.

2 3 5 7 9

Eigenfaces(PCA) 72.19(60) 78.75(75) 84.89(108) 82.62(80) 82.57(33)
Fisherfaces(PCA+LDA) 76.25(25) 83.21(39) 93.44(33) 95.83(32) 90.00(17)
Null-space LDA (LDA) 82.18(39) 88.93(39) 96.00(37) 97.46(38) 97.50(36)
Laplacianfaces (PCA+LPP) 81.16(48) 87.50(36) 96.02(31) 95.83(37) 99.78(12)
LDE (PCA+LDE) 75.94(63) 84.29(43) 93.52(51) 95.92(24) 99.78(13)
Null-space LDE 83.13(35) 90.97(39) 97.01(33) 97.68(37) 99.84(13)

(2) Experiment on the Yale database: The subjects in this database is much
less than AT&T dataset, while the illumination condition is more complex. For
those methods use PCA to reduce dimensionality, we preserve 95% energy, Fig.2
shows a case of recognition curves of different methods, where we still can find
the the distinctive characters mentioned above. Table 2 reports the average best
performance of different methods by 10 times experiments.

Fig. 2. A case of recognition accuracy versus dimensionality on Yale database (first
5 images of each individual for training and the other for testing). The right is best
recognition rate corresponding to dimension reduction.

(3) Experiment on the CMU PIE database: This selected dataset only con-
tains five near frontal poses (C05, C07, C09, C27, C29) and all the images under
different illuminations and expressions. So, there are 170 images for each indi-
vidual. In the stage of case study, we use five images of each subject for training
and the other five images of each subject for testing. Fig.3 depicts twenty images
of two individuals, for each subject, the upper row is for training and the down
row is for testing.

For those methods need PCA to dimensionality reduction firstly, we decide the
number of principal components by remaining the 95% energy. The affine matrix
is based on heat kernel. Fig.4 shows the recognition curves of various methods
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Table 2. Performance comparison on Yale database, each method is gotten from the
average best recognition rate of 10 times under different training samples by random
selection

�����������Approach
Train. num.

2 3 5 7 9

Eigenfaces(PCA) 54.07(22) 55.56(29) 59.17(59) 76.67(27) 93.33(44)
Fisherfaces(PCA+LDA) 48.89(11) 76.67(13) 78.89(10) 86.67(14) 90.00(14))
Null-space LDA (LDA) 57.04(14) 78.33(14) 81.10(9) 88.33(11) 93.33(9)
Laplacianfaces (PCA+LPP) 61.00(12) 79.17(15) 77.78(10) 88.33 (14) 98.88(14)
LDE (PCA+LDE) 758.52(26) 74.17(18) 78.89(10) 88.33(13) 98.93(13)
Null-space LDE 61.96(14) 78.50(14) 82.22(13) 90.00 (9) 98.96(10)

Fig. 3. The cropped face image samples of two subjects on PIE database

and Table 3 reports the average best performance of different methods by 10
times experiments. For those methods need PCA to dimensionality reduction
firstly, we decide the number of principal components by preserving the 95%
energy. Considering the computational cost, we choose the cosine kernel-based
affine matrix because it doesn’t need adjust parameters. Although the training
number of each individual can be improved to 169, we only select three kinds (5,
10 and 15 ) for experiment, and which is equal to the testing number per class.

(4) Discussion: Three experiments on three datasets have been carried out.
On each dataset, we firstly use a case to compare different methods and prepare
for parameter selection. Although it is not sure that we have chosen the best
parameter for each evaluation and the results perhaps are not the best, we still
try to keep the impartiality of each method, and some discussions are drawn as
follows: (I)Eigenfaces and Laplacianfaces both use PCA to reduce dimensional-
ity and preserve the very vectors for reconstruction in a matrix which describes
the assimilability in each class. PCA uses St, while Laplacianfaces uses St and
L. The optimization objects of Null-space LDA and Null-space LDE are similar;
they get a set of most discriminative vectors in nulls space of the matrices Sw and
L which describes the dissimilarity each class, furthermore, Null-space LDA add
the dissimilarity to the L. So it can get the promising performance among all the
methods. (II)The performance of methods considering face submanifold is better
than those not considering this local structure. However, when the training num-
ber of each individual is not very large, null-space methods, even not considering
face submanifold, give more effective results and vice versa. So combining the
advantage of null-space and discriminative manifold can yield impressive results.
(III)From the viewpoint of dimensionality reduction, all the methods based on
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Fig. 4. A Case of recognition accuracy versus dimensionality on PIE database (the 5
images of each individual for training are 1,4,7,10,13 and the images for testing are 2,
5, 8, 11, 14). The right is best recognition rates corresponding to dimension reduction.

Table 3. Performance comparison on PIE database, each method is gotten from the
average best recognition rate of 10 times under different training samples by random
selection

�����������Approach
Train. num.

5 10 15

Eigenfaces(PCA) 39.17(90) 56.33(118) 61.14(123)
Fisherfaces(PCA+LDA) 67.89(61) 77.28(62) 83.46(65)
Null-space LDA (LDA) 75.21(64) 78.68(65) 84.20(58)
Laplacianfaces (PCA+LPP) 78.30(75) 79.31(89) 86.92(115)
LDE (PCA+LDE) 78.83(26) 80.26(32) 87.27(60)
Null-space LDE 81.07(28) 82.35(33) 87.43(61)

manifold learning can achieve the presetting object more quickly. While some
methods such as PCA are not so effective. Moreover, PCA-based method is al-
ways regarded without consideration of discriminability, however, in some case,
it actually outperforms than LDA-based methods as discussed by Martinez.

5 Conclusion and Future Work

In this paper, a discriminative manifold learning method for face recognition is
introduced. The basic idea of this method can be modeled by a Fisher Manifold
Discriminant Embedding (MDE) criterion. Its implementation is similar with
LPP, LDE, but simpler, faster and more powerful in face recognition. From the
combined viewpoint of discriminant analysis and manifold learning, the proposed
method can discover the most discriminative nonlinear structure of the face
images and is an optimal solution for face recognition. Of course, it can be
extended by kernel methods, 2D representation and etc. Which is our next main
research interests.
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Abstract. We propose a novel neural network for classification of visual pat-
terns. The new network, called pyramidal neural network or PyraNet, has a hier-
archical structure with two types of processing layers, namely pyramidal layers
and 1-D layers. The PyraNet is motivated by two concepts: the image pyramids
and local receptive fields. In the new network, nonlinear 2-D are trained to per-
form both 2-D analysis and data reduction. In this paper, we present a fast training
method for the PyraNet that is based on resilient back-propagation and weight de-
cay, and apply the new network to classify gender from facial images.

1 Introduction

Artificial neural networks (ANNs) have found applications in many tasks: pattern clas-
sification, function approximation, data clustering, and data compression, to name a
few. Apart from parallel processing and noise tolerance capabilities, ANNs are able to
learn from examples in a similar way as their biological counterparts. Hence, they are
suitable for problems in which the solutions are either impossible or difficult to express
analytically. In machine vision, neural networks have been used for numerous visual
recognition tasks, eg. hand-written digit recognition [1] and facial image analysis [2].

Among the neural networks proposed for visual recognition, two significant models
are the neocognitron and convolutional neural networks. The neocognitron, introduced
by Fukushima [3], is a hierarchical neural network motivated by a model of the vi-
sual cortex in mammals, which was proposed by Hubel and Wiesel. It consists of two
main types of cells: the S-cells model the feature extraction in the simple cortical cells
whereas the C-cells model the information processing performed by complex cortical
cells. Convolutional neural networks, developed by LeCun and his colleagues [1], are
built upon three key ideas, namely receptive fields, weight sharing and subsampling
in spatial/temporal domain. Both the neocognitron and convolutional neural networks
retain the 2-D representation of images in analysis stages.

In this paper we propose a new neural network model for visual recognition, called
pyramidal neural network or PyraNet for short. The new neural network is motivated by
the image pyramids that have been used successfully for image processing tasks such
as image decomposition, image segmentation, and image compression [4]. However,
compared to the traditional image pyramids, the pyramidal neural network is new in
that nonlinear processing at pyramidal stages can be tuned, through learning, for specific
recognition tasks. The pyramidal neural network also possesses several strengths of 2-D
neural networks, including the integration of feature extraction and classification into

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 207–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a single structure, and the use of receptive fields to retain the 2-D spatial topology of
image patterns. Furthermore, the PyraNet has a systematic connection scheme, which
simplifies greatly the task of network design and enables generic training methods to be
devised.

The paper is organized as follows. In the next section, we address the architectural
aspects of the new PyraNet, and compare it to some related neural network models.
In section 3, we derive a training method for the PyraNet that is based on the resilient
back-propagation (RPROP) algorithm and the weight decay scheme. In section 4, we
design a PyraNet to differentiate male and female facial patterns. Finally in section 5,
we present some concluding remarks.

2 PyraNet Network Model

In this section, we first present the schematic structure and the mathematical model of
the PyraNet. We then discuss the differences between the PyraNet and some related
network models.

2.1 Network Structure

The PyraNet has a hierarchical multilayered structure as illustrated in Fig. 1a. A PyraNet
contains two types of layers: 2-D pyramidal layers and 1-D feed-forward layers. The
2-D layers perform both 2-D feature extraction and data reduction, whereas the 1-D
layers handle classification. The first pyramidal layer is connected to the input image,
and followed by one or more pyramidal layers. The last pyramidal layer is connected to
1-D layers. With this cascading structure, the output of one layer becomes the input to
the next layer.

A pyramidal layer is a grid of 2-D neurons, each of which is connected to a specific
square region of the previous layer’s output. A 2-D neuron, shown in Fig. 1b, first
computes a weighted sum of the inputs in its receptive field; it then applies a nonlinear
activation function to produce an output. The role of the 1-D feed-forward layers is
to process the features produced by the 2-D pyramidal layers. Several 1-D layers may
be needed in applications that involve complex decision boundaries. Nevertheless, it
is expected that the use of pyramidal layers for 2-D feature extraction will simplify
the task of feature classification by the 1-D layers. In theory, the 1-D layers can be
constructed from any type of neurons, eg. radial basis function neurons or sigmoidal
neurons. In this paper, we are interested in 1-D layers that consist of sigmoidal neurons
(i.e. perceptrons). The outputs of the last 1-D layer are taken as the network outputs,
which in visual recognition usually represent the categories of input patterns.

2.2 Mathematical Model

The notations for describing architectural aspects of the PyraNet are summarized in
Table 1. The symbol l indicates the index of a network layer. For pyramidal layer l =
1, 2, ..., Lp, let rl be the size of a receptive field, ol be the horizontal or vertical overlap
in pixels between two adjacent receptive fields. The difference gl, i.e. gl = rl − ol, is
the gap between adjacent receptive fields. Let fl(.) be the activation function of layer l.
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Fig. 1. The pyramidal neural network architecture

Suppose we need to analyze an image pattern X of size H0 ×W0 pixels. The input
image is partitioned into overlapping regions; each region consists of r1× r1 pixels and
is considered as a receptive field to a neuron in layer 1. Each pixel in the input image
is associated with an adjustable weight: let w1

i,j denote the weight for image pixel at
position (i, j). Let b1i∗,j∗ be the bias of neuron (i∗, j∗) of layer 1. The output of the
pyramidal neuron (i∗, j∗) in layer 1 is given by

y1
i∗,j∗ = f1(

ihigh∑
i=ilow

jhigh∑
j=jlow

w1
i,j xi,j m

1
i−ilow+1,j−jlow+1 + b1i∗,j∗), (1)

where

– summation is defined over all positions (i, j) in the neuron’s receptive field. That
is, ilow = (i∗ − 1)g1 + 1, ihigh = (i∗ − 1)g1 + r1, jlow = (j∗ − 1)g1 + 1, and
jhigh = (j∗ − 1)g1 + r1.

– m1
α,β , where α, β = 1, 2, ..., r1, denotes an entry in a fixed multiplier matrix of size

r1 × r1.

For other pyramidal layers, let wl
i,j be the synaptic weight associated with the input

position (i, j) to layer l, and bli∗,j∗ be the bias of neuron (i∗, j∗) in layer l. The output
of the pyramidal neuron is computed in a similar way as (1):

yl
i∗,j∗ = fl(

ihigh∑
i=ilow

jhigh∑
j=jlow

wl
i,j y

l−1
i,j ml

i−ilow+1,j−jlow+1 + bli∗,j∗) (2)

where ilow = (i∗ − 1)gl + 1, ihigh = (i∗ − 1)gl + rl, jlow = (j∗ − 1)gl + 1, and
jhigh = (j∗ − 1)gl + rl.
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Table 1. Architectural notations for the PyraNet

Description Symbol Note

Input image size N0 N0 = H0 × W0 pixels
Numbers of layers Lp, Lf , L pyramidal, 1-D feed-forward, total
Layer index l l = 1, ..., Lp, Lp + 1, ..., Lp + Lf

Activation function of layer l fl(.) l = 1, 2, ..., L

Size of a receptive field in pyramidal layer l rl l ≤ Lp

Receptive field overlap in layer l ol l ≤ Lp

Gap factor for pyramidal layer l gl gl = rl − ol

Multiplier matrix for pyramidal layer l {ml
α,β} α, β = 1, 2, ..., rl

Number of neurons in pyramidal layer l Nl Nl = Hl × Wl,
Hl = �Hl−1−ol

gl
�, Wl = �Wl−1−ol

gl
�

Weight associated with input position (i, j) wl
i,j i = 1, ..., Hl−1

to pyramidal layer l j = 1, ..., Wl−1

Bias of neuron (i∗, j∗) in pyramidal layer l bl
i∗,j∗ i∗ = 1, ..., Hl, j∗ = 1, ..., Wl

Number of neurons in 1-D layer l Nl l > Lp

Weight from neuron q in 1-D layer l − 1, wl
q,r l > Lp, q = 1, ..., Nl−1

to neuron r in layer l and r = 1, ..., Nl

Bias of neuron r in 1-D layer l bl
r l > Lp and r = 1, ..., Nl

For layer l, the fixed multiplier ml
α,β , where α, β = 1, 2, ..., rl, is defined as:

ml
α,β =

r2l
(rl + ol)2

[max(1, α− ol)−min(rl − ol, α) + 1]

× [max(1, β − ol)−min(rl − ol, β) + 1] (3)

For example, the multiplier matrix for rl = 4 and ol = 2 is given as

ml =
42

(4 + 2)2

⎛⎜⎜⎝
1 2 2 1
2 4 4 2
2 4 4 2
1 2 2 1

⎞⎟⎟⎠ (4)

The multiplier matrix resembles a lowpass filter. Combined with overlapping receptive
fields, it improves the stability of 2-D neurons with respect to input shift. Note that the
sizes of adjacent pyramidal layers are related asHl = �Hl−1−ol

gl
� andWl = �Wl−1−ol

gl
�.

For this reason, gl is also called the pyramidal step of layer l.
The output {yLp

i,j } of the last pyramidal layer is rearranged into a column vector, and
used as input to the following 1-D feed-forward layer:

{yLp

i,j , i = 1, ..., HLp ; j = 1, ...,WLp} → {yLp
q , q = 1, ..., NLp} (5)

In this paper, the 2-D and 1-D formats for the last pyramidal layer are used interchange-
ably. For 1-D feed-forward layers, let wl

q,r be the synaptic weight from neuron q in
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layer l− 1, to neuron r in layer l. Let blr be the bias of neuron r in layer l; the output of
the 1-D neuron is given by:

yl
r = fl(

Nl−1∑
q=1

wl
q,r y

l−1
q + blr) (6)

The outputs of the neurons in the last layer, {yL
r , r = 1, ..., NL}, form the final network

outputs.

2.3 Discussion of PyraNet Architecture

The PyraNet shares three properties with two-dimensional network models such as the
convolutional neural networks [1]: (i) the network can process input image pixels di-
rectly; (ii) 2-D neurons are connected only to local regions; (iii) each pyramidal layer
forms a compressed form of the outputs by the preceding layer. Note that 2-D layers
in the PyraNet are not limited to dyadic image pyramids; depending on the application,
each 2-D layer can have a different pyramidal step gl.

The PyraNet differs from the convolutional neural networks in a number of aspects.
Most importantly, the convolutional neural network are both based on weight-sharing,
i.e. all neurons in a given convolution plane share the same set of weights or convo-
lution mask. While weight sharing reduces the number of trainable network weights,
it requires several planes or feature maps to be included in each convolution layer so
that enough features can be extracted to support complex decision tasks. Furthermore,
a feature map in convolutional network detects a feature at any input location. In con-
trast, each synaptic weight in the PyraNet is associated with a specific input position.
Hence, a pyramidal neuron in the PyraNet reveals the presence of a feature (not limited
to low-level features such as edges or lines) at a specific input location (i.e. the region
the neuron is assigned to).

3 PyraNet Training

To complete the design of the proposed network, we present in this section a train-
ing algorithm for the PyraNet. Let {x1,x2, ...,xK} be K training input samples, and
{d1,d2, ...,dK} be the desired output samples. The superscript k is used to indicate
a sample in the training set. Our objective is to reduce iteratively the following mean-
square-error between the actual and desired outputs:

E(w) =
1

K ×NL

K∑
k=1

NL∑
r=1

|ek
r |2 (7)

where ek
r is the error in the qth output for the kth input sample, ek

r = yL,k
r − dk

r , and
w is a vector representing all weights and biases. Most algorithms for minimizing E
require its gradient ∇E. Hence, our first step is to compute the error gradient for the
PyraNet.



212 S.L. Phung and A. Bouzerdoum

3.1 PyraNet Error Gradient Computation

For an input sample k, let sl,k
i∗,j∗ be the weighted sum input to neuron (i∗, j∗) in pyra-

midal layer l. Let sl,k
r be the weighted sum input to neuron r in 1-D layer l. The error

gradient is computed through error sensitivities, which are defined as the partial deriva-
tives of the error E with respect to weighted sum input to individual neurons,

for 2D neurons : δl,k
i∗,j∗ =

∂E

∂sl,k
i∗,j∗

, l ≤ Lp (8)

for 1D neurons : δl,k
r =

∂E

∂sl,k
r

, l > Lp (9)

Using the chain rule of differentiation, we can express the error sensitivities as follows.

* For the last 1-D layer, where r = 1, ..., NL:

δL,k
r =

2
K ×NL

ek
r f

′
L(sL,k

r ) (10)

* For other 1-D layers, where Lp < l < L and r = 1, ..., Nl:

δl,k
r = f

′
l (s

l,k
r )

Nl+1∑
q=1

δl+1,k
q wl+1

r,q (11)

* For the last pyramidal layer, the error sensitivities {δLp,k
r } can be calculated using

(11) for l = Lp, but they must be rearranged into a 2-D grid:

{δLp,k
r , r = 1, ..., NLp} → {δLp,k

i∗,j∗ , i
∗ = 1, ..., HLp ; j∗ = 1, ...,WLp} (12)

* For other pyramidal layers, where l < Lp, i∗ = 1, ..., Hl and j∗ = 1, ...,Wl:

δl,k
i∗,j∗ = f

′
l (s

l,k
i∗,j∗) wl+1

i∗,j∗ ×
ihigh∑

i=ilow

jhigh∑
j=jlow

δl+1,k
i,j ml+1

i∗−(i−1)gl+1,j∗−(j−1)gl+1
(13)

where ilow = � i∗−rl+1
gl+1

� + 1, ihigh = � i∗−1
gl+1

� + 1, jlow = � j∗−rl+1
gl+1

�+ 1, and jhigh =

� j∗−1
gl+1

�+ 1.

Finally, we can calculate the error gradient.
* For 1-D layers, where Lp < l ≤ L
�Weights wl

q,r where q = 1, ..., Nl−1 and r = 1, ..., Nl:

∂E

∂wl
q,r

=
K∑

k=1

δl,k
r yl−1,k

q (14)

� Biases blr where r = 1, ..., Nl:

∂E

∂blr
=

K∑
k=1

δl,k
r (15)
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* For pyramidal layers where l ≤ Lp

�Weights wl
i,j where i = 1, ..., Hl−1 and j = 1, ...,Wl−1:

∂E

∂wl
i,j

=
K∑

k=1

{yl−1,k
i,j ×

ihigh∑
i∗=ilow

jhigh∑
j∗=jlow

δl,k
i∗,j∗ m

l
i−(i∗−1)gl,j−(j∗−1)gl

} (16)

In (16), y0,k
i,j refers to the input sample, and ilow = � i−rl

gl
� + 1, ihigh = � i−1

gl
� + 1,

jlow = � j−rl

gl
�+ 1, and jhigh = � j−1

gl
�+ 1.

� Biases bli∗,j∗ where i∗ = 1, ..., Hl and j∗ = 1, ...,Wl:

∂E

∂bli∗,j∗
=

K∑
k=1

δl,k
i∗,j∗ (17)

This completes the derivation of the error gradient for the PyraNet.

3.2 Resilient Back-Propagation and Weight Decay

We train the PyraNet using the resilient back-propagation (RPROP) algorithm, pro-
posed by Riedmiller and Braun [5]. This algorithm, which is one of the fastest among
first-order algorithms, discards information about the gradient magnitude and uses only
the sign of the gradient. In the RPROP algorithm, an adaptive learning rate is assigned
to each network weight. The learning rate is increased if the partial derivative of the
error keeps the same sign, compared to the previous epoch; otherwise the learning rate
is reduced. The weight update, Δwi(t) = wi(t + 1)− wi(t), of the RPROP algorithm
is given by

Δwi(t) = −sign{ ∂E
∂wi

(t)}Δi(t) (18)

where Δi(t) is the adaptive learning rate at iteration t for network parameter wi,

Δi(t) =

⎧⎪⎨⎪⎩
ηinc Δi(t− 1), if ∂E

∂wi
(t) ∂E

∂wi
(t− 1) > 0

ηdec Δi(t− 1), if ∂E
∂wi

(t) ∂E
∂wi

(t− 1) < 0
Δi(t− 1), otherwise

(19)

and ηinc > 1 and 0 < ηdec < 1 are two scalar parameters.
To improve generalization and noise tolerance of the trained network, we also adopt

the weight decay approach. An extra term is added to the MSE to form the overall
objective function:

Eo = E +
λ

P

P∑
i=1

w2
i (20)

where P is the total number of weights and biases, and λ is a small positive scalar.
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4 Gender Classification Using PyraNet

Gender classification of facial images is an interesting problem in vision. It has several
applications such as counting male and female customers entering a shop and present-
ing gender-relevant information to computer users. Humans use many visual heuristics
to differentiate men and women’s faces. For example, women usually have a lighter
facial skin, a smaller and thinner nose, thinner and higher eyebrows, a plumper cheek,
and a harder facial outline compared to men. In this paper, we are interested in machine
learning approaches to gender classification. Examples of existing gender classification
approaches include perceptron [6], support vector machines (SVM) [7], and linear dis-
criminant analysis (LDA) [8]. In this section, we apply a PyraNet to classify a facial
image into two classes: male or female.

Fig. 2. Examples of male (rows 1-2) and female (rows 3-4) face patterns

For gender classification study, we use a standard and publicly available database -
the FERET database [9]. This database consists of 14051 grayscale images of human
faces, with views ranging from frontal to left and right profiles. Since gender classifi-
cation mainly deals with frontal facial images, the entire FERET frontal dataset, also
known as set fa, was used. This dataset has a total of 1762 images of 1010 subjects.
The ground-truth (gender and face position) for about 90% of these images is provided
as part of the 2003 Color FERET DVD1; the missing ground-truths were manually
added by us. In this dataset, the face patterns include different ethnicities (Caucasian/
South Asian/East Asian/African), facial expressions (neutral/smiling), facial make-up
(with/without glasses or beard), and lighting conditions (dark/normal). Examples of
male and female face patterns are shown in Fig. 2. The ratio of male to female face
patterns in this dataset is approximately 1.8 to 1. In our experiments, the extracted face
patterns were histogram-equalized (similar lighting normalization was used in [7]), and
then scaled to the range [−1, 1].

We experimented with a number of networks and input image sizes. PyraNet1 has
an input image size of 32 × 32 pixels and two 2-D layers with receptive field sizes
r1 = 5, r2 = 4 and overlap sizes o1 = 2 and o2 = 2. PyraNet2 has an input image
size of 30 × 30 pixels and two 2-D layers with r1 = 4, r2 = 4 and o1 = 2 and
o2 = 2. Both PyraNet1 and PyraNet 2 have an output layer with one neuron and the
hyperbolic tangent as the activation function: f(ξ) = (eξ− e−ξ)/(eξ + e−ξ). PyraNet1

1 Web site: http://www.itl.nist.gov/iad/humanid/colorferet/
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Table 2. Performance comparison of gender classifiers

PyraNet1 PyraNet2 CNN1 CNN2 k-NN1 k-NN2 SVM [7]

Maximum classification
rate CRmax(%) 96.3 96.2 89.8 89.3 92.5 87.1 96.6

95% confidence interval [95.4, [95.3, [88.4, [87.9, [91.3, [85.5, [95.8,
of CRmax 97.2] 97.1] 91.2] 90.7] 93.7] 88.7] 97.4]

has 1257 trainable parameters, whereas PyraNet2 has 1365 parameters. The PyraNets
were trained to generate output of 1 and −1 for male and female patterns, respectively.

A five-fold cross validation was conducted: the dataset was divided into five subsets
of equal sizes. For each fold, four subsets were used for designing the PyraNet and the
remaining subset was used for testing. Of the data for designing the PyraNet, 9 tenths
were used for training networks, and a tenth was used, as a verification set, for selecting
the best network to be run on the test set. The classification rates on the test sets were
averaged over the five folds.

For comparison purposes, we also implemented and tested two types of gender clas-
sifiers: the k-nearest neighbor (k-NN) classifier and the convolutional neural network
(CNN) classifier, using the same dataset as for the PyraNet classifier. A k-NN classifier
stores selected samples in its training set as prototypes. During testing, the class label
of a new sample is determined (through majority-voting) based on the class labels of its
k nearest prototypes. Since training the k-NN classifier is fast and requires little tuning
from the designer, it is usually in pattern recognition as a comparison baseline. Two k-
NN classifiers were tested: k-NN1 stores 100% of its training set and uses k = 1 nearest
neighbor; k-NN2 stores 50% of its training set and uses k = 5 nearest neighbors.

We also compared with gender classifiers based on the convolutional neural network
because this network architecture is closely related to the new PyraNet. Two convolu-
tional network classifiers [2,1] were tested: CNN1 uses an input image size of 36× 32
pixels and has 951 trainable parameters; CNN2 uses an input image size of 32 × 32
pixels and has 1853 trainable parameters. Both CNN1 and CNN2 have six layers: three
convolutional layers, two sub-sampling layers, and one output layer. Note that a mi-
nor difference in the input image sizes of PyraNets and CNN1 is necessary to prevent
clipping at border pixels.

The classification performance of different gender classifiers are shown in Table 2.
The results were obtained on the receiver operating characteristics (ROC) curves of the
classifiers where the classification rates are maximum. Evaluated on FERET dataset,
PyraNet1 and PyraNet2 have CRs of 96.3% and 96.2% respectively whereas CNN1 and
and CNN2 have CRs of 89.8% and 89.3% respectively. Both PyraNet1 and PyraNet2
have higher classification rates (CRs) compared with the k-NN and CNN classifiers. It
is interesting to see that k-NN1 storing 100% of its training set has quite good perfor-
mance (CR of 92.5%).

Using the standard FERET dataset, we can compare directly our technique and
the SVM technique proposed by Moghaddam and Yang [7]. Moghaddam and Yang’s
SVM technique is one of the state-of-the-art techniques for gender classification, and
it achieves a classification rate of 96.6% on the FERET frontal dataset. Our PyraNet
gender classifiers have very similar classification rates as the SVM gender classifier. A
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key advantage of our approach is that the PyraNet gender classifiers have fewer than
1400 trainable parameters whereas the SVM gender classifier has over 75600 trainable
parameters (about 20% of the training samples are used as support vectors).

In terms of computational complexity, to compute a pyramidal layer in the PyraNet
when the input layer has a size of h×w, the number of operations (additions, multipli-
cations, and activation function evaluations) required is approximately 3(r/g)2×h×w,
where r is the receptive field’s width, g is the gap factor, and (r/g)2 is typically less
than 10. In comparison, for the SVM with the RBF kernel, if there are k support vectors
and each vector has a size of h×w, the number of operations required is approximately
3k × h× w; k is in the order of hundreds.

5 Conclusion

This paper presents a new pyramidal network with a hierarchical structure that can
process image pixels directly. The new network is based on 2-D neurons that are con-
nected to local regions of the image; these neurons are trained to extract 2-D features
that have strong spatial dependency. We have derived a generic training algorithm for
the PyraNet and applied the PyraNet in gender classification of facial images. Evalu-
ated on the FERET dataset of 1762 images, the PyraNet gender classifier achieves a
classification rate of 96.3%.
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Abstract. In this paper, a novel model for Gabor-based independent radial basis 
function (IRBF) neural network is proposed and applied to face recognition. In 
the new model, a bank of Gabor filters is first built to extract Gabor face repre-
sentations characterized by selected frequency, locality and orientation to cope 
with various illuminations, facial expression and poses in face recognition. Then 
principal component analysis (PCA) is adopted to reduce the dimension of the 
extracted Gabor face representations for every face sample. At last, a new IRBF 
neural network is built to extract high-order statistical features of extracted Ga-
bor face representations with lower dimension and to classify these extracted 
high-order statistical features. According to the experiments on the famous 
CAS-PEAL face database, our proposed approach could outperform ICA with 
architecture II (ICA2) and kernel PCA (KPCA) with standing testing sets pro-
posed in the current release disk of the CAS-PEAL face database. 

1   Introduction 

Up to now, there have been many successful algorithms for face recognition. But 
there are still some outliers which will impact the performance of face recognition 
algorithms. These outliers are facial expression, illumination, pose, masking, oc-
clusion etc. So how to make current algorithms robust to these outliers or how to 
develop some powerful classifiers is the main task for face recognition. Principal 
Component Analysis (PCA) [6], Fisher’s Linear Discriminant (FLD) [7] and Inde-
pendent Component Analysis (ICA) [4] are three basic algorithms for subspace 
analysis in face recognition. According to the three basic algorithms, some improved 
algorithms have also been proposed, like the work of Sch lkopf etc. [3], Liu [1] and 
Yang etc. [5].  

With the help of a possibly nonlinear map, Sch lkopf etc. [3] extended PCA to a 
kernel PCA which could take advantage of arbitrary high-order statistical relationship 
among various input variables. Liu [1] combined the Gabor Wavelet and kernel PCA 
together to propose a new face recognition algorithm. Yang etc. [5] combined kernel 
PCA and ICA to propose an alternative KICA algorithm for face recognition. 
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From another point of view, algorithms proposed in [1] and [3]-[7] are just for the 
feature extraction stage in an identification system. Some powerful classifiers are  
expected to classify these extracted features. Radial basis function (RBF) neural net-
work is an ideal choice due to its nonlinear classifying property. Meng etc. [2] has 
successfully tried to use RBF neural network to classify features extracted by FLD.  

According to the above analysis, a novel model for Gabor-based independent radial 
basis function (IRBF) neural network is proposed and applied to face recognition. In 
the new model, a bank of Gabor filters is first built to extract Gabor face representations 
characterized by selected frequency, locality and orientation to cope with various il-
luminations, facial expression and poses in face recognition. Then PCA is adopted to 
reduce the dimension of the extracted Gabor face representations for every face sample. 
At last, a new IRBF neural network is built to extract high-order statistical features of 
extracted Gabor face representations with lower dimension and to classify these ex-
tracted high-order statistical features. The detail about the new algorithm will be dis-
cussed in the next section. 

In the technical report (2004) [10], Delac et al. have confirmed that ICA with ar-
chitecture II (ICA2) proposed by Bartlett et al.[4] could outperform PCA and FLD on a 
large scale face database. So in our experiments, we just compare our proposed ap-
proach with kernel PCA (KPCA) employing polynomial kernels and ICA2. A newly built 
and famous CAS-PEAL [9] face database is chosen to confirm the validity of the new 
algorithm. The current release of CAS-PEAL face database contains 30864 face sam-
ples of 1040 subjects. According to the experiments on the CAS-PEAL face database, 
our proposed approach could outperform ICA2 and KPCA with standing testing sets 
proposed in [9]. 

2   Gabor-Based IRBF Neural Networks 

Given the training set 1 2{ , }, , NX = x xx , where N is the number of samples and 
n n

i
×∈x  is the gray level distribution of the thi face image, where 1, ,i N= . The 

whole algorithm of face recognition by Gabor-based IRBF neural network could be 
discussed as follows. 

2.1   Multiresolution Gabor Face Representations 

In order to extract multiresolution Gabor face representations, a bank of Gabor filters is 
defined as: 

2 2
,

22 ,2

2

, 2
, 2

( ) [ ]
k

ikk
G e e e

μ υ
μ υσ

α
μ υ α σ

μ υ α
σ

−

−= −  (1) 

where μ defines the orientation of Gabor filters, υ defines the scale of Gabor filters to 

determine the center in the frequency domain, ( , )x yα = , is the norm operator, and 

,kμ υ  is defined as: 
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,
ik k e μφ

μ υ υ=  (2) 

where maxk k f υ
υ = and 8μφ πμ= . maxk is the maximum frequency, and f is the 

spacing factor between filters in the frequency domain. 
Here the scale factorυ is chosen as {0, , 4}υ ∈ , the orientation factor μ is chosen 

as {0, ,7}μ ∈ , 2σ π= , max 2k π= and 2f = . So a bank containing 40 Gabor 

filters is built as ,{ ( ) : {0, ,7}, {0, , 4}}Gμ υ α μ υ∈ ∈ . 

Now the bank of Gabor filters is adopted to extract multiresolution Gabor face rep-
resentations for every sample image in training set X  as: 

( )
, , ( )i

i Gμ υ μ υ α= ∗y x , 1, ,i N=  (3) 

where ∗ is the convolution operator and ( )
,

i
μ υy is the Gabor face representation of the 

thi sample images corresponding to the Gabor filter with orientation μ and scaleυ . 

In order to facilitate the computation of the following PCA algorithm, a Gabor fea-
ture vector corresponding to the thi sample image is defined as: 

( ) ( ) ( ) ( )
0,0 0,1 4,7[ ( ( )) ( ( )) ( ( ))]i i i i TV D V D V Dρ ρ ρ=u y y y  (4) 

where ( )Dρ y stands for downsampling the Gabor face representation y with a factor 

ρ  on the two directions of the image respectively and ( )V stands for formatting a 

matrix to a row vector by concatenating its rows or columns. 

Then a training matrix U is defined as 
( )(1) (2)[ ]
N

U = u u u to train the fol-

lowing PCA algorithm for dimension reduction. 

2.2   Principal Component Analysis 

Before transferring every sample in training matrix U  into the new IRBF neural net-
works for classification, we should reduce the dimension of every sample with PCA. In 

this step, the projection matrix
pca

W is calculated as: 

1 2

arg max

[ ]

T
pca

m

= ℵ

=
W

W W W

w w w
 (5) 

where m is the dimension of the PCA feature space. Matrixℵ is the total scatter matrix, 
and is calculated as: 

1
( )( )

N T
i ii=

ℵ = u - u -  (6) 

where
2 240n ρ∈ is the mean vector of all samples in training matrix U . 
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All the samples in training matrix U are projected into the PCA feature space as:  

( )T

i pca i
=z W u -  (7) 

where iz is the representation of sample
i

u in the PCA feature space. And all the iz , 

1, ,=i N , will been transferred into the IRBF neural network as input samples. 

2.3   Independent Radial Basis Function Neural Networks 

A classical RBF neural network is formed by three layers: input layer, hidden layer 
and output layer. It directly projects the input samples into a high dimension feature 
space through some radial basis functions ( )iϕ , and does not take account of the 
high-order statistical relationship among variables of input samples. As known, the 
high-order statistical relationship does play an important part in pattern recognition 
(classification) area. So in order to take advantage of the high-order statistical rela-
tionship among variables, we proposed the independent radial basis function (IRBF) 
neural network. 

As shown in Fig.1, the IRBF neural network contains four layers: input layer, un-
mixing layer, hidden layer and output layer. The input layer just transfers the input 
samples 1 2[ , , , ]T

mz z z=z  to the unmixing layer. 

 

 

 

 

 

 

 

 

Fig. 1. The main structure of IRBF neural networks 

The unmixing layer extracts the high-order statistical relationship among variables 
of the input samples transferred from input layer as follows: 

( )1

m

i i pi pp
s f zξ

=
= , 1, ,i m=  (8) 

where , 1, ,is i m= is statistical independent, and piξ is one component of unmixing 

matrix m m×Ξ . Function ( )if ϑ is an invertible squashing function, mapping real num-

bers into the [0, 1] interval. Here, we chose ( ) 1 (1 )if e ϑϑ −= + . 
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In order to achieve the independence among , 1, ,is i m= , an information 

maximization approach [11] to blind separation and blind deconvolution is used as 

follows. The relationship between joint entropy ( )H s and mutual information ( )I s is 

defined as: 

1 1 1( , , ) ( ) , , ( ) ( , , )m m mH s s H s H s I s s= + + −  (9) 

where 1[ , , ]T
ms s=s . 

Since independent components have zero mutual information, as proposed by [11] 
the objective of independence among , 1, ,is i m= could be achieved by maximizing 

the joint entropy ( )H s : 

1 1
1 1

1 1
1 1

arg max ( ( )) , , ( ( ))

( ( ), , ( ))

m m

opt p p m pm p
p p

m m

p p m pm p
p p

H f z H f z

I f z f z

ξ ξ

ξ ξ

Ξ = =

= =

Ξ = + +

−
 (10) 

The optimization of unmixing matrix optΞ could be calculated through the following 

gradient update rule [4]: 

1( ) ( ) ( )T TH E−
Ξ ′ΔΞ ∝ ∇ = Ξ +s s z  (11) 

where 1[ , , ]T
ms s′ ′ ′=s and 1 1 1

( ) / ( )
m m

i pi p i pi pp p
s f z f zξ ξ

= =
′′ ′′ = . ( )E stands for cal-

culating the expected value. 

After getting the optimal unmixing matrix optΞ , for all the input samples ( )iz  the new 

feature vector ( )
1[ , , ]i T

ms s=s which reflects the high-order statistical relationship 

could be calculated by Eq. (8). 
Then these new feature vectors ( )is  are mapped into a high dimension feature space 

through the radial basis function ( )ϕ of the hidden layer. In our proposed IRBF neural 

network, the number of nodes of hidden layer is equal to the number of input training 
samples, and the radial basis function is defined as: 

( ) ( )i iϕ ψ=s s - t , 1, 2, ,i N=  (12) 

where it is the center and is chosen as i i=t s in this paper. Function ( )ψ chooses 

multiquadrics function. 
Now the output of the thj output node of IRBF neural network is defined as: 

1 1
( ) ( , ) ( )Γ ψ ψ

= =
= = −N N

j ij i ij ii i
w ws s s s s  (13) 
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At last, the weighted matrix W between hidden layer and output layer is calculated 
through the following optimization problem: 

2

1 1 1

arg max ( )

arg max ( ( ))

opt

k N

ij pj i pi j p

E

c w
Ν

Γ

ψ
= = =

=

= −
W

W

W

s - t
 (14) 

The solution to Eq. (14) could be calculated by Eq. (15), and the detail about the 

calculating procedure could be referred to [8]. 

1( )T T
opt

−= Ψ Ψ ΨW C  (15) 

where C is a N k× matrix of target output and k is the number of classes. Matrix Ψ is : 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N

N

N N N N

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ

Ψ =

s ,s s ,s s ,s

s ,s s ,s s ,s

s ,s s ,s s ,s

 (16) 

2.4   Summary 

The training procedure of the new IRBF neural network contains two steps: first, the 
unmixing matrix optΞ should be adjusted by an information maximization approach; 

second, the weighted matrix optW between hidden layer and output layer should be 

tuned with Eq. (15). 
At last, the whole algorithm of face recognition by Gabor-based IRBF neural net-

work could be summarized as: 

• First, a bank of Gabor filters should be built for multiresolution analysis. The Gabor 
face representations are then extracted with the bank of Gabor filters. 

• Second, PCA is adopted to reduce the dimension of every Gabor face representation 
of every sample. 

• Third, IRBF neural network is built to extract high-order statistical features of ex-
tracted Gabor face representations with lower dimension and to classify these ex-
tracted high-order statistical features. 
The new algorithm of face recognition by Gabor-based IRBF neural network has the 

following advantages: 
• Due to a bank of Gabor filters are used, the new algorithm is robust to illumination, 

facial expression and pose in face recognition. 
• Due to a non-linear IRBF neural network is used, the new algorithm could take 

advantage of the high-order statistical features of every sample and classify various 
faces more efficiently. 
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3   Experimental Results 

In our experiments, the famous CAS-PEAL face database built in 2004 is chosen to 
confirm the validity of various algorithms. The current release of CAS-PEAL face 
database contains 30864 images of 1040 subjects. They are with varying pose, ex-
pression, accessory and lighting. For each subject, 9 cameras spaced equally in a 
horizontal semicircular shelf are used to simultaneously capture images across different 
poses in one shot. Each subject is also asked to look up and down to capture 18 images 
in another two shots. 5 kinds of expressions, 6 kinds of accessories (3 pairs of glasses, 
and 3 caps), and 15 lighting directions are also considered. Detail about the CAS-PEAL 
face database may refer to [9] and the contents of current release of this face database 
are shown in Table 1(copied from [9]). 

In the following experiments, all the face images are rotated, resized and cropped to 
64x64 with 256 gray levels according to the coordinates of two eyes given in the cur-
rent release of CAS-PEAL face database. The training set contains all the samples in 
the gallery set proposed in [9] and other 991 samples randomly selected from the face 
database, so total 2031samples are contained in the training set. Six probe sets corre-
sponding to the six subsets in the frontal subsets: expression, lighting, accessory, 
background, distance and aging as described in Table 1 are chosen to test different 
algorithms. All the six probe sets will be referred as Accessory, Aging, Background, 
Distance, Expression, and Lighting in the following discussions, table and figures. 

Table 1. The contents of current release of CAS-PEAL face database[9] 

  Variations Subjects Images 
Normal 1 1040 1040 
Expression 5 377 1884 
Lighting >=9 233 2450 
Accessory 6 438 2616 
Background 2-4 297 651 
Distance 1-2 296 324 

Frontal 

Aging 1 66 66 
Pose  21(3*7) 1040 21832 

In the technical report (2004) [10], Delac etc. have confirmed that ICA2 could out-
perform PCA and FLD on a large scale face database. So in our experiment, we just 
compare our proposed approach with KPCA employing polynomial kernels and ICA2 
with four famous distances (L1, L2, Cos and Md) as similarity measurement for nearest 
neighbor classifier in face recognition. The dimension of the reduced feature space for 
our approach, KPCA and ICA2 is 300. And the four distances are: 

1
1 : ( ) = −L i ii

L D x yx, y  (17) 

2
2 : ( ) ( ) ( )= T

LL D x, y x - y x - y  
(18) 
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cos: ( ) = − TCos D x y x yx, y  (19) 

1: ( ) ( ) ( )−= T

Md
Md D x, y x - y x - y  (20) 

Table 2 illustrates the accuracy recognition rate at rank 1 of KPCA, ICA2 and our 
proposed approach respectively. If the max accuracy recognition rates of various al-
gorithms are considered, the accuracy recognition rate of our proposed approach is 
13.5% (353/2616) and 6.8% (178/2616) higher than that of KPCA and ICA2 for the 
Accessory testing set; the accuracy recognition rate of our proposed approach is 19.7% 
(13/66) and 19.7% (13/66) higher than that of KPCA and ICA2 for the Aging testing 
set; the accuracy recognition rate of our proposed approach is 2.1% (14/651) and 2.9% 
(19/651) higher than that of KPCA and ICA2 for the Background testing set; the ac-
curacy recognition rate of our proposed approach is 6.9% (22/324) and 7.3% (24/324) 
higher than that of KPCA and ICA2 for the Distance testing set; the accuracy recog-
nition rate of our proposed approach is 5.8% (109/1884) and 9.6% (181/1884) higher 
than that of KPCA and ICA2 for the Expression testing set; and the accuracy recogni-
tion rate of our proposed approach is 6.2% (152/2450) and 2.5% (61/2450) higher than 
that of KPCA and ICA2 for the Lighting testing set. So it is clear that our proposed 
approach outperforms KPCA and ICA2 for all the six standing testing conditions. That 
is also confirmed that our proposed approach is more robust to accessory, aging, 
background, distance, facial expression and illumination than KPCA and ICA2. Fig. 2 
also illustrates the accuracy recognition rate at rank 1 – 50 for the six testing conditions 
with the similarity measurement which has achieved the max accuracy recognition rate 
in Table 2. If the accuracy recognition rate at rank 10 is adopted, that of our proposed 
 

Table 2. The accuracy recognition rate (%) at rank 1 of KPCA, ICA2 and our proposed approach 

 L1 L2 Cos Md RBF L1 L2 Cos Md RBF 

Accessory Aging 

ICA2 44.8 49.1 57.6 50 30.3 34.9 65.2 36.4

KPCA 48.8 37.7 35.5 50.9 65.2 50 22.7 31.8 

Our Approach 64.4 84.9

Background Distance 

ICA2 86.1 88.1 95.3 88.6 76.4 78.9 91.6 80.7

KPCA 96.1 92.6 84.6 87.7 92 90.6 72 78.2 

Our Approach 98.2 98.9

Expression Lighting 

ICA2 56.6 63.3 71.9 63.6 6.2 8.3 15.7 8.8

KPCA 75.7 70.8 63.3 62 12 6.4 5.9 8.8 

Our Approach 81.5 18.2
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approach may reach 82.7% (2163/2616) for the Accessory testing set, 95.5% (63/66) 
for the Aging testing set, 99.1% (645/651) for the Background testing set, 99.3% 
(322/324) for the Distance testing set, 92.9% (1750/1884) for the Expression testing set 
and 33.7% (826/2450) for the Lighting testing set. 
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Fig. 2. The accuracy recognition rates at rank 1 - 50 of KPCA, ICA2 and our proposed approach 
with the similarity measurement which has achieved the max accuracy recognition rate in Table 
2. In the figure, (a) is for Accessory set, (b) is for Aging set, (c) is for Background set, (d) is for 
Distance set, (e) is for Expression set and (f) is for Lighting set. 
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4   Conclusions 

In this paper, a novel model for Gabor-based independent radial basis function (IRBF) 
neural network is proposed and applied to face recognition. According to the experi-
ments on the famous CAS-PEAL face database, our proposed approach could outper-
form ICA2 and KPCA with standing testing sets proposed in [9]. That is also confirmed 
that our proposed approach is more robust to accessory, aging, background, distance, 
facial expression and illumination than KPCA and ICA2 in face recognition. 
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Abstract. In this paper, two approaches to improve the illumination robustness 
of the face recognition algorithms are presented, that is, Symmetrical Image 
Correction (SIC) and Bit-Plan Feature Fusion (BPFF). SIC can reduce bright 
speckles and shadows caused by over lighting. BPFF constructs a new virtual 
face with Bit-Plan information of face images. Generalized PCA is then applied 
to the virtual faces to achieve face recognition. Experiments show that, the 
proposed combined method can reduce the sensitivity of face recognition to 
illuminations using fewer projection vectors than the compared approaches.  

Keywords: Face recognition; Image correction; Bit-plane; Feature fusion; 
Generalized PCA. 

1   Introduction 

In face recognition, lighting can pollute a face image with big areas of bright speckles 
and shadows. It can cause great differences between face image matrices of the same 
person. These differences are inner differences, but usually, they can exceed faces’ 
between-class differences [1]. So the recognition rate of many recognition algorithms 
decreases significantly with the introduction of lighting.  

The preprocessing of face images is a necessary initial procedure of face 
recognition. The effect of preprocessing can greatly influence the succeeding 
recognition stages. Currently, face normalization is frequently used in face 
recognition [2]. But only normalization is far from enough because it doesn’t do any 
essential correction to bright speckles and shadows. Takeshi Shakunaga presented a 
natural image correction algorithm that can weaken shadows caused by lighting [3]. 
But that algorithm is relatively complicated and has strong dependence on the number 
of training samples. 

In this paper, we propose a novel image preprocessing algorithm—Symmetrical 
Image Correction (SIC) that is easy to be implemented. With SIC, we can reduce 
bright speckles and shadows in face images. Eigenface methods based on PCA have 
widely attracted researchers’ attention due to its easy computation and realization. 
Generalized PCA based on bit-plan feature fusion proposed in this paper is an 
extended PCA algorithm. Hereinafter we call it BGPCA (Bit Generalized PCA) for 
short.  
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Classical face recognition algorithms such as eigenfaces and fisherface, extract 
features by projecting face images onto a given feature space. These algorithms do 
not usually take into account enhancing the discriminability of the original face 
images. While the Bit-Plan Feature Fusion algorithm proposed in this paper is to 
extract and fuse the bit-planes of the original face images, it keeps discriminant 
information to the greatest extent, and at the same time, reduce the influence of 
illumination and expression. 

Specifically, the algorithm sets different weights to different bit-planes according 
to their contributions to recognition to increase the discriminability of the face 
samples. 

In the experiments, SIC and BGPCA are combined to perform face recognition 
tasks. Experimental results show that, the integrated method can decrease the 
sensitivity of face recognition to illuminations. Furthermore, when the number of 
projection vectors is comparatively small, the proposed method can still achieve a 
good recognition rate.  

2   Symmetrical Image Correction (SIC) 

With one side light on, half of the face would be over-lighted and the other half of it 
would be over-darked. SIC tends to balance the difference. Given N gray images of a 
person with a gray value range of [0,255], a size of T×T, we perform histogram 

equalization on the images and denote the output by{ }Njx j ,,2,1| = . The 

correction result by SIC is: 

( ) ( )( )( ) ( )nmxxnmxnmx jjj ,*255/,1,* −−=  (1) 

where ( )nmx j ,  denotes the pixel of image jx  in row m and column n. And  

( ) ( )( )nTmxnmxx jj −++= 1,,
2

1
 (2) 

In order to unify the gray value range, let us normalize the image as 

( ) ( ) ( )
( ) ( ) 255

minmax

min,
,

**

**
* ×

−
−

=
jj

jji
j

xx

xnmx
nmX  (3) 

For areas in a face image that are too bright, their values of ( )( ) 255/, xnmx j −  

are relatively large and positive; while for areas that are too dark, the absolute values 

of their ( )( ) 255/, xnmx j − are relatively large but negative. Thus, for areas that are 

too bright, their values of ( )( ) 255/,1 xnmx j −−  are smaller than 1, while for 

areas that are too dark, ( )( ) 255/,1 xnmx j −−  are bigger than 1. After correction, 

too bright areas would become relatively darker, and too dark areas would become 
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relatively brighter. As a whole, the gray value distribution of the whole image tends to 
be even.  

Above theoretical analysis indicates that SIC can reduce bright speckles and 
shadows introduced in an image by lighting. Fig.1 gives two triplets of image-
correction examples. In each triplet, the left one represents an original face image, the 
center one is the histogram-equalization result of the left one, and the right one is the 
correction result by SIC on the center one. It is clear that, after SIC, the gray value 
distribution of the whole image tends to be even. Thereby, SIC decreases faces’ 
within-class difference and makes samples of the same class close to the class center, 
thus makes samples of different classes to be more discriminant.  

Fig. 1. Two triplets of image-correction example  

3   Bit Generalized PCA (BGPCA) 

3.1   Bit-Plane Information and Feature Fusion 

Suppose that each pixel in a face image is represented by 8 bits, then a face image can 
be decomposed into 8 bit-planes. 

Fig.2 shows a face image and its 8 bit-planes. In Fig.2, the image on the top is an 
original face image, the 8 images on the second row, from left to right, correspond to 
the bit planes 0 to 7 of the original image. Fig.2 shows the conventional bit-plane 
structure, i.e., the higher-order bits (especially the top four) contain the majority of the 
visually significant data, namely outline features, while the other bit planes contribute 
to more subtle details in the image. 

Fig. 2. An original face image and its 8 bit-planes 

In our experiments, the images are preprocessed by histogram equalization. We 
found that after histogram equalization, the bit-plane structure is changed, as is shown 
in Fig.3. In order to confirm the universal applicability of this change, we have 
conducted observations on a wide variety of face images and non-face images. We 
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extracted bit-planes from images before histogram equalization and after histogram 
equalization respectively, and then observed their bit-plane structures. Observation 
results indicate that before histogram equalization, the bit-plane structure obeys the 
same rule as in Fig.2, while for images after histogram equalization, their bit-plane 
structure follows a rule as is shown in Fig.3: bit–planes 0,1,5,6,7 include most of the 
outline features, and bit-planes 2,3,4 offer more subtle texture features in the image. 
The theoretical analysis to above observation is out of the range of this paper’s 
discussion. It is to be discussed in a later paper.  

Fig. 3. A face image after histogram equalization and its 8 bit-planes 

We know that although PCA takes into account all differences between images, it 
doesn’t care whether the differences are caused by lighting, background, or the inner 
differences of faces. For several images of the same person, due to lighting, 
expression etc., the within-class differences can considerably exceed the between-
class differences [1]. Researches indicate that the recognition rate of PCA decreases 
quickly with the introduction of variant illuminations and expressions. So it is 
important to reduce the within-class differences. To do so, let us set a common class-
mark for each face image that belongs to the same class, which acts as an outline 
feature, and then this feature is fused with the weighted texture-feature of each face 
itself. Thus, since face images of the same class have the common class-mark, each 
sample of the class would cluster around the class-center, and their differences rest 
with the texture details. If the texture features are weighted according to their 
contributions to recognition, then, generally, for samples constructed by feature 
fusion, their within-class differences will decrease, and their between-class 
differences will increase.  

We think that, the gray value of original face images reflects within-class 
differences overmuch due to the influence of illumination and express, thus it goes 
against classification. When we extract the bit-planes of face images, it is found that 
each bit-plane disperses the influence of illumination and expression. Furthermore, 
since each bit-plane is weighted differently, it can decrease the influence of  
illumination and expression to a certain extent. After feature fusion, the outline 
feature and the texture feature would be complementary, thus guarantee the 
reservation of discriminant information. In this way, the fusion algorithm can 
hopefully improve the precision of recognition. 

The feature fusion procedure is stated as follows: 
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For training stage, let l
nx  denote the n th image (after histogram equalization) of 

the l th person n N,,1 Ll ,,1= , perform bit-plane extraction on l
nx  to 

get its 8 bit-planes, and mark them as l
nmB )7,,1,0( =m
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And 
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nF lS j l
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Let x denotes the mean image of l th person, get the 8 bit-planes of x , and mark 

them as mB )7,,1,0( =m .

Let 

S
= 7,6,5,1,0m

mm Bα m
m

m BT
=

=
4,3,2

β  (7) 

then 

jTSF +=  (8) 

l
nS is the outline feature of the n th image of the l th person, S is the outline feature 

of the mean image. They are got by adding up the weighted bit-plane 0,1,5,6, and 7. 
l

nT  is the texture feature of the n th image of the l th person, while T is the texture 

feature of the mean image. They are got by adding up the weighted bit-plane2,3, and 

4. lS is the class-mark of the l th person, it is got by computing the average of l
nS . 

For the n th image of the l th person, we fuse its class-mark lS with its texture 

feature l
nT  (see Eq. (6)), then get a new virtual face l

nF , l
nF  is the new virtual face 

image. F is the new virtual mean face obtained by fusing S  with T . j denotes the 

imaginary unit, that is 12 −=j . mα , mβ  

0≥mα 0≥mβ are determined by trial and error. For different training 

samples, their values could be different.  
For recognition stage, feature fusion is similar to training stage, the only difference 

is that since we don’t know to which class a test sample belongs, we can’t get its 
class-mark, thus we fuse its outline feature with its texture feature to form a virtual 
test face. Fig.4 gives an example of feature-fusion face. 
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Fig. 4. A face image and its class-mark, outline feature and texture feature 

In fig.4, from left to right, these 4 images are: the original face image l
nx , class-

mark lS , the outline feature l
nS  and the texture feature l

nT . Through Fig.4, it is seen 

that, class-mark eliminates the variations in facial expressions. 

3.2   Generalized PCA 

We define the feature-fusion space as =D { βα i+ ∈βα , R }. α and β are n -

dimensional vectors in real space. Apparently, D -space is an n -dimensional 

complex-vector space. Now we define the inner product as ( ) yxyx T=, , where 

Dyx ∈, . The complex space in which the above inner product has been defined is 

called unitary space. In unitary space, it is easy to verify that the total scatter tS  is an 

Hermite matrix, and it is nonnegative definite [4]. Thus, we can implement PCA in 

unitary space, and we call that Generalized PCA. In this paper, tS  can be rewritten as: 
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= =1 1

1
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Fig.5 shows the comparison between eigenfaces derived from feature-fusion faces 
(the first row) and eigenfaces derived from original faces(the second row). Since 
eigenfaces derived from the feature-fusion faces exist in complex space, we here 
show their modulus images. It is seen that, eigenfaces on the first row emphasize 
different local parts of a face, while eigenfaces on the second row reflect the holistic 
outline information of a face. Mainly because of that, our generalized PCA analysis 
on feature-fusion faces outperforms the conventional PCA, which is verified by the 
experiment in section 4. 
 

Fig. 5. Eigenfaces derived from feature-fusion faces and Eigenfaces derived from original faces 
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4   Experimental results 

We combine SIC and BGPCA to form a joined face recognition algorithm and 
compare it with PCA [5] and Fisherface [6].

AR and Yale databases are used in the experiments. The AR database contains 
over 4,000 color face images of 126 people, including frontal views of faces with 
different facial expressions, lighting conditions and occlusions. We convert the color 
images into gray ones and only consider the full facial images. Yale database has 15 
people, each has 11 images including different expressions, lighting conditions. 
Images in two databases are all normalized to 64×64 pixels.  

4.1   Experiments on AR Database 

In AR database, 10 images were chosen for each subject, for each individual, we 
chose his first 6 images to train and his last 4 images with left or right light on to test 
(see fig.6). To make it easy, every time we randomly chose 50 subjects to do the 
experiment, and repeated it for 3 times, then chose their average as the result. 

The corresponding weights are: 00 =α , 01 =α , 5.85 =α , 8.56 =α , 6.07 =α , 

02 =β , 03 =β , 5.04 =β ; 00 =α , 01 =α , 8.75 =α , 8.36 =α , 3.17 =α , 

02 =β , 03 =β , 4.14 =β ; 00 =α , 01 =α , 2.75 =α , 3.66 =α , 6.17 =α , 02 =β , 

03 =β and 2.04 =β . Generally, each weight is not confined to a certain value, but an 

optimal range. The results are listed in Table1. 

Fig. 6. Sample images of one subject in AR database 

Table 1. Recognition rate on AR database 

Method 
Recognition 
rate (%) 

Number of 
projection vectors 

PCA 59.0 217 
Fisher 68.5 76 
Ours 81.5 41 
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In table 1, it is clear that PCA, Fisher face are sensitive to lighting.  Our method 
can reduce the sensitivity with fewer projection vectors, but it has not reached an 
excellent result, in the future research, we need to do more work to improve it. 

Number of training samples per class

R
ec

og
ni

tio
n 

ra
te

Fig. 7. Recognition rate on Yale database  

 4.2   Experiments on Yale Database 

In Yale database, each individual has two images with one side lighting on, most of 
the images for one subject have center lighting. Considering the lighting condition of 
the left and right face can’t be completely symmetry though with center lighting, so 
here we also use SIC on faces with center lighting. In this experiment, the number of 
training samples per class was set to 4,5,6 and 7 respectively, and the remaining 

images were used to test. The weights are respectively: 46.10 =α , 78.31 =α , 

05.05 =α , 54.06 =α , 45.07 =α , 02 =β , 03 =β , 23.04 =β ; 41.00 =α , 

78.11 =α , 13.05 =α , 33.56 =α , 62.17 =α , 02 =β , 03 =β , 19.04 =β ; 

25.10 =α , 21.01 =α , 1.05 =α , 82.36 =α , 11.17 =α , 02 =β , 03 =β , 

22.04 =β ; 16.30 =α , 31.01 =α , 11.05 =α , 42.16 =α , 14.27 =α , 02 =β , 

03 =β and 78.04 =β ; The corresponding recognition result is illustrated in Fig.7.  

5   Conclusions 

In this paper, we proposed two algorithms. One is an image-preprocessing algorithm 
that is easy to be implemented, i.e. Symmetrical Image Correction (SIC); the other is 
an extended PCA algorithm, i.e. Generalized PCA based on bit-plane feature fusion. 
We combine these two algorithms to perform face recognition. The proposed 
recognition method is effective for realizing robust face recognition under one side 
lighting conditions.
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Abstract. Two-dimensional linear discriminant analysis (2DLDA) was recently 
developed for face image representation and recognition by adopting the idea of 
image projection in 2DPCA. 2DLDA outperforms traditional LDA mainly in 
terms of feature extraction speed. Unfortunately, 2DLDA needs to use large 
numbers of features to represent an image sample, causing storage requirements 
are heavy and also feature matching process is time-consuming. Against this 
problem, we discuss in this paper a new image representation scheme called 
Enhanced 2DLDA (E-2DLDA) for face recognition. The main strategy adopted 
in our method is that two image projections are applied to an image sample 
jointly, so the dimensions of extracted feature matrix along both horizontal 
direction and vertical direction get compressed, and finally the total number of 
features can be reduced to a great extent. The experimental results on ORL 
database show that this method remarkably outperforms existing 2DLDA in 
terms of speed of feature matching and storage requirements of features. 

1   Introduction 

Automatic face recognition (AFR) [1] has been a very hot research area of computer 
vision, pattern recognition and machine learning, especially for past about 10 years. 
The current state-of-the-art face recognition can be characterized by a family of 
subspace approaches, such as PCA, LDA and ICA [2][3] etc. in which, eigenfaces 
(PCA) [4] and fisherfaces (PCA+LDA) [5] have been used as two famous baselines for 
evaluating other algorithms. Traditional subspace methods are all vector-based, which 
means that when we apply it to image recognition problem, an image must be firstly 
transformed into a high-dimensional vector by concatenating all rows or columns of the 
image. The resulting image vectors usually lead to a high dimensional image vector 
space, in such a case, feature extraction will be a very difficult task due to so called 
curse-of-dimensionality and small sample size (SSS) problem encountered. 

Recently, an image projection technique termed two-dimensional principal 
component analysis (2DPCA) [6] was proposed, which treats images as 2D matrices 

                                                           
* This work was partially supported by the Program of 985 Innovation Engineering on 

Information in Xiamen University (2004-2007). 
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rather than 1D vectors (matrix-based), as a result, the speed of image feature extraction 
is improved significantly compared with conventional PCA. Motivated by the image 
projection idea in 2DPCA, 2DLDA [7] method was naturally developed later, which 
replaces total scatter criterion used in 2DPCA with Fisher linear projection criterion to 
find out more discriminating projections, so 2DLDA can usually produce a better 
recognition accuracy than 2DPCA. However, both 2DPCA and 2DLDA need to use 
large numbers of features to represent an image, causing storage requirements are 
heavy and also feature matching process is time-consuming. 

In this paper, we discuss a new image representation scheme called Enhanced 
2DLDA (E-2DLDA) for face recognition. The main strategy adopted in our method is 
that seeking two sets of optimal projection vectors through respectively regarding rows 
and columns of image as objects for analysis, and forming two linear transforms (image 
projections), which are applied to an image sample jointly, as a result, the dimensions 
of extracted feature matrix along both horizontal direction and vertical direction get 
compressed, and finally the total number of features can be reduced to a great extent. In 
addition, because not only row-objects but also column-objects in images get analyzed 
during two projections, more discriminating information can be exploited in feature 
extraction, which leads to an enhanced recognition accuracy eventually. The 
effectiveness of our method is demonstrated on the ORL database of faces. The rest of 
this paper is organized as follows, in Section 2 we briefly review the existing method of 
2DLDA, in Section 3 we present the motivation of our E-2DLDA method, and also the 
E-2DLDA based face recognition algorithm, in Section 4, we give experimental results 
of face recognition on ORL database, and a conclusion is given in Section 5. 

2   Review on 2DLDA 

Let I denotes an m×n image, and u denotes an n-dimensional column vector, called 
projection vector or projection axis. The idea of image projection [6] can be simply 
described as: projecting I onto u by the following linear transformation, 

Iuy =  (1) 

the m-dimensional projected vector y in Eq.1 is called the projected feature vector of 
image I. 

Only one projection vector is not enough for the goal of feature extraction, usually, 
we need to select a set of projection vectors u1, u2,…, ud. 2DLDA seeks such vectors 
with the classic Fisher linear projection criterion, that is to say, the optimization 
objective is that the ratio of between-class scatter to within-class scatter of projected 
samples is maximized. Consider the training set {I1, I2, … , IL}, where nm

i R ×∈I  

denotes an image matrix, belonging to one of C classes D1, D2, … , DC. 2DLDA defines 
within-class scatter matrix GW and between-class scatter matrix GB based directly on 
image matrices as bellow, 
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where, 
iI  is the mean of class i, I  is the mean of all training samples, C is the class 

number. Thus, the objective function of 2DLDA can be written as, 

uGu
uGu

u
W

T
B

T

J =)(  (4) 

So, the optimal projection vectors should chosen as the first d eigenvectors u1, u2, … , 
ud in the following generalized eigenvalue problem, 

uGuG WB λ=  (5) 

Project I onto these vectors respectively, dkk
k ,,2,1,)( == Iuy , the projected 

feature vectors can compose a matrix dmd R ×∈= ][ )()1( yyY , which is called the 

extracted feature matrix from I. According its definition, we know that GW is a 
nonsingular matrix, so 2DLDA method has successfully overcome the problem of 
singularity of within-class scatter matrix encountered in fisherfaces [5] method. In 
addition, the size of two scatter matrices in Eq.5 is not large in general, so the training 
time for feature extraction will also be much less than traditional vector-based methods. 

3   E-2DLDA 

3.1   Motivation of E-2DLDA Method 

According to the image projection idea adopted by 2DLDA, projecting an m×n image 
matrix I onto d n-dimensional column vectors u1, u2, … , ud will produce an m×d 
feature matrix Y. Where, m is the row number of an image matrix, so even if d is small, 
the total feature number md is quite large. For example, to an 112×92 image, if we 
choose first 5 optimal vectors to perform image projection, the number of extracted 
features will also achieve 560(=112×5). 

Comparing the size of the extracted feature matrix Y to that of the original image 
sample I, we find that the current image projection technique like 2DLDA can only 
compress the dimensionality of image along horizontal direction, thus causing an 
incomplete dimensionality reduction from the viewpoint of feature extraction. The 
reason behind this drawback can be further explained. From the definitions of 
within-class scatter matrix GW in Eq.2 and between-class scatter matrix GB in Eq.3, we 
know that the size of GW and GB is both n×n (n is the dimensionality of rows in an 
image), which means that the second order statistics contained in these two scatter 
matrices are actually exploited from the “row samples” of images. Therefore, 2DLDA 
method implicitly regards only rows of image as objects for analysis, as illustrated in 
Fig.1(a). In other words, this method just partially exploits useful statistical information 
contained in image data. 
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                           (a)                                                                (b) 

Fig. 1. Two implicit analysis manners in 2DLDA(a) and E-2DLDA(b) 

Based on above considerations, here, we discuss a new scheme called Enhanced 
2DLDA (E-2DLDA). As illustrated in Fig.1(b), firstly, all rows of image samples are 
regarded as samples, and based on which a set of projection vectors 

dn
d R ×∈= ][ 21 pppP  are learned, this step is just the same to that of 2DLDA. 

Secondly, columns are further regarded as objects to analyze, then another set of 
projection vectors km

k R ×∈= ][ 21 qqqQ  are learned. Lastly, the feature extraction 

is done by a manner of joint image projection as below, 

IPQY T=  (6) 

the transformed result is dkR ×∈Y , so the number of features is kd. Because k and d are 
much smaller than row number and column number of images, this joint projection can 
produce an effective dimensionality reduction. In addition, the set of projection vectors 
q1, q2, … , qk provide more discriminatory information for feature extraction compared 
with existing 2DLDA, so the effectiveness of extracted features is also enhanced. The 
detailed face recognition algorithm based on the proposed E-2DLDA method will be 
presented in below. 

3.2   E-2DLDA Based Face Recognition Algorithm 

In E-2DLDA algorithm, a two-step strategy is used to compute the first transform 
matrix P and the second transform matrix Q, but it doesn’t matter to change the 
computation order of them. Based on these two transform matrices, face image 
representation (or image feature extraction) will be carried out with a manner of joint 
image projection, and then followed by feature matching and classification. So, the 
E-2DLDA based face recognition algorithm can be decomposed into 4 steps in all, 
which is described as bellow. 

Step 1. Computation of P  --- For a given training face samples },,,{ 21 LIII , 

compute within-class scatter matrix and between-class scatter matrix according to Eq.2 
and Eq.3 respectively, here denoted as PGW

 and PG B
, solve the generalized eigenvalue 

…
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problem uGuG PP
WB λ= , and choose the first d eigenvectors to compose the transform 

matrix P = [p1, p2, … , pd]. 
Step 2. Computation of Q  --- Compute within-class scatter matrix QGW  and 

between-class scatter matrix QG B
 as below, 
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Note that the computation methods of within-class scatter matrix and between-class 
scatter matrix in Eq.7 and Eq.8 are subtly different from those in Eq.2 and Eq.3. 
Actually, we just replace the original training image samples with their transpose 
matrix versions, and just this simple change let columns of images be analyzed, so 
dimensions of image along vertical direction can be reduced further, and also additional 
statistical information can be exploited. Solve the generalized eigenvalue problem 

uGuG QQ
WB λ= , and choose the first k eigenvectors to compose another transform 

matrix Q = [q1, q2, … , qk]. 
Step 3. Feature extraction --- The transform matrices P and Q (more exactly, two sets of 
optimal vectors) computed above are used for performing feature extraction. For a 
given image sample I, through following joint image projection 

][][ 2121 d
T

k
T pppIqqqIPQY ==  (9) 

we get a k×d small scale matrix Y, which is called the feature matrix of image I. 
Step 4. Feature matching and classification--- After joint image projection based on 
E-2DLDA, a feature matrix is extracted from each image. In recognition stage, nearest 
neighbor based matching is used to classify unknown samples to one of C given classes 
D1, D2, … , DC. The similarity between two images is measured by Euclidean distance, 
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Assume there is a gallery set including M feature matrices A1, A2,…, AM, each of 
them is assigned a given class Di. Suppose an unknown sample with feature matrix A, if 

),(min),( j
j

l dd AAAA = , and 
kl D∈A , then the resulting decision is 

kD∈A . 

4   Experimental Results 

We use the ORL database of faces (http://www.cam-orl.co.uk) to comparatively 
evaluate the performance of the proposed E-2DLDA method and the existing 2DLDA 
method [7]. The ORL database contains 40 persons with 10 images (112×92) per 
person. The images are taken at different times, with varying lighting conditions, facial 
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expressions and facial details (glasses/no glasses). All persons are in the upright, frontal 
position, with tolerance for some side movement. 

The face recognition test is designed as follows. The whole ORL database is 
partitioned into two complementary parts, i.e., training set and testing set, and the 
training set is also used as a gallery set in nearest neighbor based matching. For this 
purpose, we randomly select N samples from each person for training, and the rest for 
testing. In the test, recognition performance by using different amount of training 
samples is taken into account. More specifically, we use N = 3, N = 4 and N = 5 samples 
from each person to train a set of optimal projection vectors (axes) for feature 
extraction. In the three partitions, the numbers of training samples are respectively 120, 
160 and 200, and the numbers of testing samples are therefore 280, 240 and 200 
respectively. The performance yielded by existing 2DLDA method and our E-2DLDA 
method is illustrated in Fig.2 and Fig.3 respectively. Fig.2 plots the recognition 
accuracy with increasing projection axes used in image projection, where d = 2,3,…,10. 
Fig.3 plots the recognition accuracy with different pairs of (d, k) used in joint image 
projection, and d = 2,3,…,10, k = 2,3,…,10, where d is the number of projection axes in 
transform P, and k is the number of projection axes in transform Q. 
 
 
 
 
 
 
 
 
 
 
                                  (a)                                                             (b) 
 
 
 
 
 
 
 
 

                                                           (c) 

Fig. 2. Recognition performance of 2DLDA method on ORL database. (a), (b) and (c) are the test 
results for N=3 N=4 and N=5 respectively. 

Table 1 presents the top correct recognition rates of 2DLDA and E-2DLDA, as well 
as the number of projection axes, the number of extracted features, CPU time for 
training (optimal projection vectors) and CPU time for feature matching when the top 
recognition accuracy appears. As observed in Table.1, for each partition our E-2DLDA 
outperforms existing 2DLDA, especially, the advantage is significant in terms of CPU 
time for feature matching and the amount of features used in recognition. In addition,  
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Fig. 3. Recognition performance of E-2DLDA method on ORL database. (a), (b) and (c) are the 
test results for N=3 N=4 and N=5 respectively. 

Table 1. Comparative top recognition accuracy, number of projection axes, number of features, 
CPU time for training (optimal projection vectors) and feature matching of 2DLDA and 
E-2DLDA(CPU: Pentium III 1.2GHz, RAM: 256MB) 

Methods 

Training 
set/testing 

set 
partitions 

Number of 
projection 

axes 

Number 
of 

features 

Recognition 
accuracy 

CPU time 
for 

training 

CPU time 
for feature 
matching 

2DLDA d = 2 112×2 93.6% 0.7 1.1 

E-2DLDA 
N = 3 d = 2 

k = 10 
2×10 94.3% 1.8 0.1 

2DLDA d = 4 112×4 95.8% 0.8 2.5 

E-2DLDA 
N = 4 d = 2 

k = 9 
2×9 97.5% 2.2 0.1 

2DLDA d = 4 112×4 97.0% 1.0 2.7 

E-2DLDA 
N = 5 d = 2 

k = 8 
2×8 99.0% 2.6 0.1 

because row-objects and column-objects in images are analyzed respectively, more 
discriminating information is exploited in feature extraction procedure, therefore 
yielding a better recognition accuracy also. Meanwhile, we also observe that E-2DLDA 
is not as efficient as 2DLDA in terms of CPU time for training, the reason is that two 

d k 
d k 

d k 
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sets of optimal projection vectors need to be trained for feature extraction in E-2DLDA, 
but there is only one set to be trained in 2DLDA. Fortunately, the training speed 
actually has nothing to do with the recognition speed when the system work in real 
application situations, because once the training is finished, feature extraction later is 
simply a linear transform during the period of recognizing a probe face image. 

5   Conclusion 

An E-2DLDA matrix-based image representation method for face recognition is 
proposed in this paper. The key strategy adopted in E-2DLDA method is seeking two 
sets of optimal projection vectors by respectively regarding rows and columns of image 
as objects for analysis, and then jointly applying these two linear transforms to an 
image sample to get a compact as well as discriminatory representation. Experimental 
results on ORL database show that the proposed method has significant advantage over 
existing 2DLDA in terms of the speed of feature matching and also the storage 
requirements of features. 
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Abstract. In this paper, a support vector machine (SVM) based adaptive color 
switching for human face tracking is proposed. The color space is switching to 
the most appropriate color space model (CSM) according to circumstance con-
ditions adaptively. Recently, many face tracking algorithms used empirical skin 
color model to discriminate skin/non-skin regions. These skin color models not 
consider illumination variation and result in less capacity to model skin color 
distribution. In this work, four color spaces and Laws texture extracted from 
face image database are used to train each SVM independently. In the pre-
processing, the discrete wavelet transform (DWT) refines the face features 
would concentrate important features and reduce the computational complexity. 
Then, the features are transformed into four CSMs for SVMs which provide 
good generalization through optimal hyperplane. In testing, we perform quality 
measurement method to evaluate the face tracking performance and aggregating 
each SVM classification results to color space switching. Experimental results 
show that the proposed method would switch to the most appropriate color 
space according to quality measurement, automatically. 

Keywords: Adaptive Color Space Switching, Face Tracking, Support Vector 
Machine. 

1   Introduction 

Recently, many researchers have been investigated efficient and powerful algorithms 
for moving object tracking. Many literatures discussed CSM based on computer vi-
sion and neural network for face detection [7, 13] and recognition [5, 10, 15]. For face 
detection, there are various methods included facial features and skin color based 
algorithms [14]. Intuitively, color is an important feature of human face. Using skin 
color features to track faces reveal several advantages [16]. Especially, skin color is 
size and orientation invariant for human face under stable illumination conditions. 
Unfortunately, skin color is sensitive to illumination form human visual perception. 
On the other hand, human face tracking using skin color feature encounters several 
problems such that representation of a face obtained from a camera is influenced by 
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many factors and each human face has different properties of skin color distribution. 
Stern [9] is first attempt to adaptively select CSMs throughout a tracking sequence. 
He used the back projection and flesh probability image to track the skin color. The 
method needs specific skin region manually before tracking. Further, the skin distri-
bution of pre-selection region not presents the human skin color distribution at all 
even leads to tracking loss. 

The SVM is an optimal classification and regression technique proposed by Vap-
nik and his group at AT&T Bell Laboratories [2]. The SVM learns a separating hy-
perplane to maximize the margin between training set and to provide good generaliza-
tion performance. Nowadays, it has been successfully applied to many fields such as 
the object recognition [10, 17], pattern classification [4], regress in estimation [1], and 
environment illumination learning [16]. 

The idea of the SVM ensemble has been proposed in Ref. [18]. They used the 
boosting technique to train each individual SVM and took trained SVMs to build 
SVM committee. The SVM committee based on the bagging and boosting techniques 
to improve performance has discussed in [8]. The mixture of expert models and 
methods of constructing committee machine are reviewed in [19]. The SVM ensem-
ble partition the whole training observation into several subsets and to make each 
individual trained SVM on their respective training subsets [6]. We propose SVM 
committee to color switching for tracking. Each SVM trained by specific observation 
is transformed to different color spaces. The method makes trained examples view as 
many aspects and to improve results by quality measurement. We expect that the 
method can improve the classification performance and reduce the computational 
complexity. 

This paper is organized as follows. Section 2 presents the color space switching al-
gorithm and related theorems includes system architecture, discrete wavelet trans-
form, color space selection and feature extraction, basic idea of SVM and quality 
measurement. Then, section 3 provides experimental results and section 4 makes 
some conclusions. 

2   Color Space Switching Algorithm 

Many researchers used CSMs for object tracking and recognition based on color dis-
tribution of interesting object. The main objective of this paper is to improve the face 
tracking performance through quality measurement. In multiple color spaces, it is 
necessary to reduce dimension of color spaces to concentrate important features. For 
instance, principal component analysis (PCA) and vector quantization (VQ) are popu-
lar for dimensional reduction. However, these dimensional reduction methods were 
time consuming caused the tracking algorithm inefficiency. Therefore, in this paper, 
we attempt to develop an automatic CSM switching system and propose an efficient 
quality measurement algorithm for face tracking. 

2.1   System Architecture  

SVM committee is a collection of several classifiers whose decisions are combined 
into some ways to classify the examples. Sometime, the support vectors obtained 
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from the training data is less sufficient to classify unknown samples correctly. Thus, it 
is not guarantee that single SVM provides the global optimal classification and good 
generalization over all test examples. It is possible to lead faulty tracking perform-
ance. In order to overcome these drawbacks, we propose a SVM committee which 
integrated each decision to select the most appropriate CSM. Figure 1 shows the ar-
chitecture of SVM committee which consists of DWT, SVM classifiers and quality 
measurement. In this work, we use Haar basis function which provides symmetric and 
orthogonal attributes to analyze image multi-resolution. The LL sub-band achieves 
dimensional reduction and noise decompression, while these high-frequency sub-
bands are noisy and messy. Therefore, the LL sub-band is selected for further process-
ing. During the training phase, each SVM is trained independently in different color 
spaces and texture features. All SVM results would aggregate results to select the 
most appropriate color space. 
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Fig. 1. The architecture of SVM committee for color switching 

2.2   Color Space Selection and Feature Extraction 

In our system, training sample )(nX is obtained from face images in RGB space. 
Through the color transform function )(xT , the RGB coordinate is converted into 

some color coordinates such as YCbCr, normalized RGB, XYZ and YIQ. Such color 
spaces are highly correlation each other with coordinate rotation and linear transfor-
mation from RGB space. Among them, YCbCr and YIQ isolate the illumination apart 
from chrominance. In order to reveal interested properties of object, we convert face 
image into different coordinates for face tracking under different environments. 

The texture energy measures developed by Kenneth Ivan Laws have been used for 
diverse applications [11]. These measures are computed by applying small convolu-
tion kernels to a digital image, and then performing a nonlinear windowing operation. 
In this paper, L5E5, R5E5 and W5W5 are selected as features through observation 
and analysis. 

2.3   Support Vector Machine Classification 

Consider the training set{ } N
iidi 1),( =x

and testing set{ } MN
Niidi
+

+= 1),(x
, where N is the size of 

training data, M is size of testing data, 
ix  is the input space for thi example 

and { }1,1 −+∈id  is the corresponding desired responses. The basic idea of SVM classi-

fication is to find an optimal separating hyperplane that maximizes the margin be-
tween two classes. The margin is defined as the distance of the closet point to the 
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separating hyperplane and input space x is mapped into a high dimensional feature 
space through kernel function )(wΦ . In the case of separable binary classification prob-

lem, the discriminant function of optimal hyperplane represents a multi-dimensional 
decision plane in the input space. The discriminant function is defined by following 

     )( o
T
o bg += xwx  (1) 

where
ow and

ob denotes the optimal values of the weight vector and bias, respectively. 

In SVM, the optimal separating hyperplane is determined by support vectors )(sx that 
lie closest to the decision surface. The optimal hyperplane is required to satisfy the 
following constraints 
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In order to solve Eq. (2), we need to construct a set of functions and implement the 
classical risk minimization on the set of function. Here, a Lagrangian method is used 
to solve such optimization problem with constraints. The Lagrangian function is de-
fined as follows: 
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where the auxiliary variable iα is called Lagrange multiplier and its value is positive. 

The solution of the constrained optimization problem is determined by the saddle 
point of the Lagrangian function. Then, we may reformulate the objective function 

),,( αbJ w  of the optimal problem to dual form defined in Eq. (4): 
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The kernel function plays an important role to the approximation of nonlinear map-
ping and externs SVM to handle nonlinear separating hyperplane. In this work, the 
Gaussian kernel function )( , xxΚ  is adopted to map the data space into high dimen-

sion feature space. The LIBSVM software is available in [3]. The Gaussian kernel 
function is defined as 

)2/
)(

exp(),( 2
2

)( σss xxxx −−=Κ  (5) 

3   Color Space Quality Measurement 

Since the quality of the segmented human face is varying under different CSM. To 
select the most appropriate CSM, a quality measure is proposed. In this work, the 
interesting regions have two parts: (i)

inW , the area of internal rectangular window 
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containing the face, and (ii)
outW , the area of external rectangular window which  

exclude
inW region illustrated in Fig. 2. Let the coordinates of the common cen-

ter )( , yCxC  is the location of central pixel in 
inW  and

outW . The rapid face detection 

scheme which using a set of rotated haar-like features was proposed by [12]. The 
method can be calculated very efficiently and lower average false alarm rate. A novel 
post optimization procedure for a given boosted cascade also used to improving accu-
racy and performance. The quality measurement of face tracking result

kQ is defined in 

Eq. (6).  

- Win

- Wout

True Face

False Face

 

Fig. 2.  Internal and external window for quality measurement 
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Let k represent the
thk color space. The 

inW and
outW denote the area of internal and exter-

nal rectangular windows, respectively. The in
kc  and out

kc is the detected face pixel num-

ber of the internal and external rectangle window, respectively. So, the in
kp  represents 

the probability of face pixel of 
thk color space located in the internal window and out

kp  

is the probability of external window of face. The higher 
kQ value is the higher accu-

racy of the segmented face. 

4   Experimental Results 

In our experiments, all of face images are obtained from the Psychological Image 
Collection at Stirling (PICS) image database. The training face images were seg-
mented apart from background manually. The real world scenes contain one or more 
human with frontal face in tracking sequences are used for testing. First, we perform 
face detection algorithm to locate face region. The internal rectangle is the detected 
face region and external region are augmented the 30% of width and height of internal 
rectangle. We assure the classification accuracy of each SVM provide upper 99.9% in 
training data to offer high accuracy. 

4.1   Feature Extraction 

The Laws texture energy measurement determined by the property of specific kernels 
which assess average gray-level, edges, spots, ripples, and waves. These selected  
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kernels were convoluted with face image to find the better kernels which can extract 
apparent face from background. After statistics, we analyze the fluctuation of face  
features by the first derivative of energy, Lf ∂∂ / , Ef ∂∂ / , Sf ∂∂ / , Rf ∂∂ /  and Wf ∂∂ /  
where f is the Laws texture energy. The selected five texture kernels are sifted from 
twenty-five texture kernels which have average, edge, spot, ripple and wave properties. 

4.2   Tracking Sequence Results and Quality measure 

We perform face tracking algorithm to locate face regions and calculating the quality 
measurement in each CSMs. Our experimental environment is indoors with clutter 
objects. There are two light sources in this experiment, a moveable and tunable table-
lamp is used to simulate light variation, and a fixed fluorescent lamp located on the 
ceiling is used to provide stationary illumination. The proposed method would select 
the most appropriate results and switch to corresponding color space automatically 
according to quality measure method. 

In the case , the light of desk-lamp spots on the face partially. Figure 3(a) is the 
original image; Figure 3(b-c) are the segmentation results of YCbCr, YIQ, RG and 
XY color space, respectively. Observing the tracking result of RG space in Fig. 3(d), 
the RG color space is affected by both light sources greatly and others color spaces 
resulted in better solutions with slight difference. These results illustrate the face 
tracking under the RG color space with weak ability to against light variation. The 
average, maximum and minimum sensitivity

kQ̂  in different color spaces is shown in 
Table 1. 

 

Fig. 3. Case 1:the tracking result with hard brightness 

Table 1. The sensitivity of tracking sequence from different color spaces 

 CbCr IQ RG XYZ 

Average
kQ̂  0.7211 0.6995 0.4487 0.6643 

Max
kQ̂  0.7666 0.7459 0.5548 0.7482 

Min 
kQ̂  0.6420 0.6019 0.3047 0.6167 

Table 2. The performance of face tracking from different color spaces 

 CbCr IQ RG XYZ 
True Positive 0.4451 0.4367 0.0468 0.4781 
False Positive 0.0671 0.0648 0.0803 0.0777 
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Figure 4 shows the tracking sequence under CbCr space. The illumination is varied 
to change the brightness of face region. Figures 4(a-f) are the image sequence which 
obtained from web camera, Figs. 4(g-l) are the corresponding segmentation results. 
Table 2 shows the average true positive and false positive rate for each color spaces. 
The performance of CbCr, IQ and XYZ space are similar to each others but the RG 
space is still not a good solution. Figure 4 shows the quality measurement of four 
color spaces in a real world tracking sequence. The CbCr space reveals better per-
formance at the first 35 frames and the last 15 frames, while XYZ space reveals better 
performance from 36th to 45th frames. In this case, a man moves his position at the 
35th frame causes the environmental illumination varied. In addition, the light of desk-
lamp turns to soft brightness at the 40th frame. In order to achieve real-time tracking, 
the color space switching mechanism is triggered for every ten frames. According to 
the quality measurement, the proposed algorithm selects and switch to the most ap-
propriate color space automatically. Thus, the CbCr space is switched to XYZ color 
space at the 40th frame and switched back to CbCr space at the 50th frame. The com-
parison of with/without adaptive color space switching is shown in Table 3. The ex-
periment result shows the performance of adaptive color space switching is better 
than popular CbCr color space shown in Table 3. 

 

Fig. 4. The tracking sequence using CbCr space 

Table 3. Quality evaluation with/without adaptive colors space switching 

 
Average Quality Average Sensitivity Average Specificity 

with-ACSS 0.871000 0.827602 0.893607 

CbCr without-ACSS 0.764214 0.756352 0.793305 

 

Fig. 5. The quality of tracking sequence under four color spaces 
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5   Conclusions 

In this work, we proposed a SVM-committee-based color space switching algorithm 
for face tracking. In this learning machine, CSMs of skin and Laws texture energy of 
faces are selected for training SVMs. The SVM-committee integrates multi-classifier 
with high accuracy and generalization. In addition, we define a quality measurement 
to select the most appropriate CSM for face tracking. The experimental results shown 
the proposed method was validated under different object behaviors and environ-
mental variation such as camera motion, background change, object motion and 
brightness variation. The experimental results also concluded that RG color space is 
highly depend on illumination. 
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Abstract. A new subspace analysis approach named ANLBM is pro-
posed based on Laplacianfaces. It uses the discriminant information of
training samples by supervised mechanism, enhances within-class local
information by an objective function. The objective function is used
to construct adjacency graph’s weight matrix. In order to avoid the
drawback of Laplacianfaces’ PCA step, ANLBM uses kernel mapping.
ANLBM changes the problem from minimum eigenvalue solution to max-
imum eigenvalue solution, reduces the redundancy of the computing and
increases the precision of the result. The experiments are performed on
ORL and Yale databases. Experimental results show that ANLBM has
a better performance.

1 Introduction

The facial feature extraction is an important step of face recognition. The ca-
pability of facial feature extraction directly influences the performance of face
recognition. Sub-space analysis is a good method for facial feature extraction.
The widely used methods such as Eigenfaces [1] and Fisherfaces [2] are linear
dimension reduction methods. However, affected by many complex factors such
as expression illumination and pose, the face images should reside on a nonlinear
face manifold [3,4,5].

Recently manifold study obtains the people’s attention. Manifold is an ex-
tension of linear subspace. Manifold study such as LLE [3], ISOMAP [4] and
Laplacian Eigen-map [5], are nonlinear dimension reduction methods. However,
these methods only are defined on the training set. They can not be used for
online dimension reduction of the testing set. So they can not be used for face
recognition directly.

He et al [6] proposed a method named LPP (Locality Preserving Projections),
which was a linear approximation to Laplacian Eigenmap. He et al [7] used the
LPP to do face recognition which was named Laplacianfaces. But it lost a lot of
information in PCA step. He et al [8] proposed a method named NPE (Neighbor-
hood Preserving Embedding), which was a linear approximation to LLE. This
method also lost a lot of information in PCA step. Cheng et al [9] modified the
LPP by kernel mapping, which was named SNLE (Supervised Nonlinear Local
Embedding). This method lacked a constructing method for adjacency graph’s
weight matrix. It can not fully enhance the within-class local information.
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Motivated by [6,7,8,9], a new method named ANLBM is proposed based
on Laplacianfaces. It uses the discriminant information of training samples by
supervised mechanism, enhances within-class local information by an objec-
tive function. The objective function is used to construct adjacency graph’s
weight matrix. In order to avoid the drawback of the Laplacianfaces’ PCA step,
ANLBM uses kernel mapping. Many experiments are performed on ORL and
Yale database. The experimental results show that, compared with Eigenfaces,
Fisherfaces, Laplacianfaces, SNLE, and NPE, ANLBM has a higher recognition
rate. In different parameter conditions, ANLBM shows more stable performance.

2 Laplacianfaces

Laplacianfaces is a face subspace analysis method based on LPP. It treats the
face image as a point in high-dimensional space. The relationships between face
images are treated as the weights between points. Then an adjacency graph
can be constructed by these weights. Based on this adjacency graph, a mapping
from high-dimensional space to low-dimensional space is defined. This mapping
should obtain local structure information of the adjacency graph. Find out this
mapping and we can use it for face recognition.

Firstly, a face image, which has r rows and c columns, is represented as a
r × c dimensional vector xi. The target is to find out a transformation matrix
W . It can linearly map vector xi to a vector yj in a d-dimensional subspace,
here yi = WTxi.

2.1 Construct the Adjacency Graph and Find Out the Weight
Matrix S

y =

{
e−

‖xi−xj‖2

t ,xi ∼ xj

0 ,otherwise
(1)

In (1), xi ∼ xj means xi and xj are adjacent. There are two definitions on
adjacency. The first one is that if ‖xi−xj‖2 < ε, than xi ∼ xj . But this definition
can not ascertain the ε easily. The second one [4] is that xj belongs to the K
nearest points of xi, also named K-Neighborhood. However, K-Neighborhood is
not symmetric. At this time, we can use the following modification: Si,j = Sj,i =
min(Si,j ,Sj,i) or Si,j = Sj,i = max(Si,j ,Sj,i). But it distorts the original local
structural information. This is one of the Laplacianfaces’ drawbacks.

2.2 Find Out the Transformation Matrix W of the Adjacency
Graph

In order to obtain the local structural information of the adjacency graph, Lapla-
cianfaces defines an objective function performed by (2). It should be minimized.

1
2

∑
ij

(yi − yj)2Sij (2)
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Put yi = WTxi to (2) and transform (2) into (3).

WTX(D − S)XTW (3)

In (3), X = [x1, x2, . . . , xn]. D is a diagonal matrix, Dii =
∑

j Sji, L = D−S.
By Spectral Graph Theory, Dii is the degree of the vertex xi and L is the
Laplacian matrix of the adjacency graph. In order to obtain the local structural
information of the adjacency graph and normalize the solution, Laplacianfaces
imposes a constraint: Y TDY = E. At last, the problem becomes minimum
eigenvalue solution to the generalized eigenvalue problem:

X(D − S)XT w = rXDXT w (4)

Find out the minimum eigenvectors solution w1,w2, . . . ,wd, and then W =
[w1,w2, . . . ,wd].

2.3 Using W to Do Dimension Reduction

No matter xi is the training sample or the testing sample, we just use W to
do dimension reduction: yi = WTxi. However, the number of training samples
is always lower than r × c, then XDXT is a singular matrix. At that time,
Laplacianfaces should project the X to a PCA subspace first, and then find out
W to do dimension reduction. When the number of training samples is small,
the PCA step loses a lot of information. This is just like do Laplacianfaces
analysis in Eigenfaces subspace. So when the number of training samples is
smaller than r × c, Laplacianfaces can not perform well. This is the second
drawback of Laplacianfaces.

3 ANLBM

ANLBM uses a supervised objective function to construct adjacency graph’s
weight matrix. ANLBM also uses kernel mapping. Thus ANLBM resolves the
two drawbacks of Laplacianfaces.

3.1 Construct the Adjacency Graph and Find Out the Weight
Matrix S

The weight matrix constructing method of ANLBM is coming from LLE [3].
ANLBM modifies it by adding the supervised mechanism. Formula (5) defines
an objective function. It should be minimized.

ε(S) =
∑

i

‖xi −
∑

j

Si,jxj‖2 (5)

Formula (6) defines a constraint of the objective function.∑
j

Si,j = 1 (6)
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The supervised mechanism is that if xi and xj belongs to different class, then
set Si,j = 0. The details about how to solve the above minimum problem can be
found in [3]. In ANLBM, the minimized objective function means every point
can be reconstructed by other points in the same class and should minimize the
reconstruction error. If xi and xj belongs to different class, then set Si,j = 0 . If
xi and xj belongs to the same class, Si,j reflects the similarity between xi and
xj . Treating Si,j as the weight of edge which connects xi and xj , then we can
get the adjacency graph of ANLBM.

3.2 Find Out the Transformation Matrix W of the Adjacency
Graph

Firstly, a nonlinear function φ is used to map xi into a higher dimensional
vector φ(xi). Thus an image set X = [x1, x2, . . . , xn] is mapped to φ(X) =
[φ(x1),φ(x2), . . . ,φ(xn)]. Then dimension reduction can be processed in the
higher dimensional space. It is performed as yi = W̃T φ(xi). The higher di-
mensional space can be treated as the span of φ(x1),φ(x2), . . . ,φ(xn). So there
exists a coefficient vector w = [a1, a2, . . . , an]T , and w̃ =

∑n
i=1 aiφ(xi) = φ(X)w.

Thus
1
2

∑
ij

(yi − yj)2Si,j

=
1
2

∑
ij

(W̃T φ(xi)− W̃T φ(xj))2Si,j

= W̃T φ(X)(D − S)φ(X)T W̃T

= wTK(D − S)Kw

(7)

Here Ki,j =< φ(xi),φ(xj) >. It is unnecessary to know the nonlinear mapping φ
explicitly. But in higher dimensional space, the dot product, which is also named
kernel function, should be defined clearly. ANLBM uses the Gaussian kernel.

So Ki,j = k(xi, xj) = e−
‖xi−xj‖2

t . It can also use other kernels. A constraint
Y TDY = E, namely, wTKDKw = E , is added to (10). Under the constraint
to minimize the objective function equals to find minimum eigenvalue solution
to the generalized eigenvalue problem:

K(D − S)Kw = rKDKw (8)

According to (6), the degree of every vertex is 1, so D is identity matrix. Thus

K(D − S)Kw = rKDKw

KDKw −KSKw = rKDKw

KSKw = (1− r)KDKw

KSKw = (1− r)KKw

(9)

K is symmetrical; KSK also is symmetrical; KK is symmetric and positive
semidefinite. So the target becomes finding the maximum eigenvalue solution to
the generalized eigenvalue problem.
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KSKw = bKKw (10)

Then we can get W = [w1,w2, . . . ,wd]. ANLBM changes the problem from
minimum eigenvalue solution to maximum eigenvalue solution. It reduces the
redundancy of computing and increases the precision of result.

3.3 Using W to Do Dimension Reduction

For training set X , the dimension reduction result is Y = WTK. While for
testing sample x̃, the dimension reduction result is represented by (11).

ỹ = WT φ(X)T φ(x̃)

= WT [φ(x1)T φ(x̃),φ(x2)T φ(x̃), . . . ,φ(xn)T φ(x̃)]T

= WT [k(x1, x̃), k(x2, x̃), . . . , k(xn, x̃)]

(11)

Compared with SNLE, ANLBM uses an objective function to construct ad-
jacency graph’s weight matrix, set the degree of every vertex at 1, and enhance
the edge information between vertexes. Compared with Laplacianfaces and NPE,
supervised mechanism fully uses the discriminant information of training sam-
ples; kernel method avoids the drawback of PCA step in Laplacianfaces and
NPE.

4 Experimental Results

In order to evaluate the performance of ANLBM, ORL and Yale databases are
used. These two databases contain complex expression illumination and pose.
The ORL database contains 40 persons and each person has 10 face images.
The Yale database contains 15 persons and each person has 11 face images.
The two eyes are aligned at the same position and the facial areas are cropped
into 32× 32 pixels. No further preprocessing is done. Figure 1 shows the image
samples used for experiment. Suppose the face database has c persons and each
person has n images, for each person, randomly choose the k images for training,
the remaining n − k images for testing. So it can be

(
Ck

n

)c ways to choose the
samples. The experiment uses 50 of the

(
Ck

n

)c ways to do performance test. The
finally result is the mean of the 50 results. Parameter of the kernel function is
1. In this paper, all methods apply nearest-neighbor classifier for its simplicity.

Fig. 1. Preprocessed Face Database
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Table 1. The Result (%) on ORL Database

Method k

2 3 4 5

Eigenfaces 70.4(79) 78.8 (119) 84.5 (158) 88.1 (189)

Fisherfaces 72.5(39) 86.2 (39) 91.2 (39) 93.9 (39)

Laplacian-faces 77.8 (40) 86.0 (40) 90.2 (39) 92.7 (40)

NPE 76.9 (40) 83.1 (40) 87.8 (40) 91.6 (46)

SNLE 78.5 (40) 87.5 (40) 91.9 (40) 94.5 (40)

ANLBM 78.9 (53) 87.6 (41) 92.1 (40) 94.7 (42)

Table 2. The Result (%) on Yale Database

Method k

2 3 4 5

Eigenfaces 45.9 (29) 51.8 (44) 54.8 (59) 58.1 (74)

Fisherfaces 41.1 (14) 60.7 (14) 68.5 (14) 74.1 (14)

Laplacian-faces 53.0 (16) 64.2 (15) 69.7 (15) 75.1 (15)

NPE 53.6 (15) 63.7 (16) 70.5 (20) 75.3 (22)

SNLE 51.5 (15) 63.6 (15) 70.6 (20) 74.8 (19)

ANLBM 54.3 (15) 66.1 (16) 72.9 (17) 77.0 (18)

Table 1 and table 2 show the recognition rates on ORL and Yale database
respectively. The values in the parentheses are the corresponding dimensional-
ity of the best result. The results in table 1 and table 2 show that ANLBM
can get higher recognition rate in different face database and different training
numbers. However, using Eigenfaces as baseline, Fisherfaces Laplacianfaces NPE
and SNLE don’t have absolute advantage in different face databases and different
training numbers. When the number of training samples is small, ANLBM has
more advantage. Compared with Eigenfaces Fisherfaces Laplacianfaces SNLE
and NPE, ANLBM has higher recognition rate. In different parameter condi-
tion, ANLBM shows more stable performance.
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5 Conclusions

Based on Laplacianfaces, this paper proposes a new face subspace analysis
method named ANLBM. It uses the discriminant information of training sam-
ples. ANLBM uses an objective function to enhance local structural information.
In order to avoid the drawback of the Laplacianfaces’ PCA step, ANLBM uses
kernel mapping. ANLBM changes the problem from minimum eigenvalue solu-
tion to maximum eigenvalue solution. It reduces the redundancy of computing
and increases the precision of result. The experiments, which are performed on
ORL and Yale databases, show that ANLBM has an impressive performance.
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Abstract. This article addresses the problem of rotation invariant face
detection using convolutional neural networks. Recently, we developed
a new class of convolutional neural networks for visual pattern recogni-
tion. These networks have a simple network architecture and use shunt-
ing inhibitory neurons as the basic computing elements for feature ex-
traction. Three networks with different connection schemes have been
developed for in-plane rotation invariant face detection: fully-connected,
toeplitz-connected, and binary-connected networks. The three networks
are trained using a variant of Levenberg-Marquardt algorithm and tested
on a set of 40,000 rotated face patterns. As a face/non-face classifier,
these networks achieve 97.3% classification accuracy for a rotation angle
in the range ±900 and 95.9% for full in-plane rotation. The proposed
networks have fewer free parameters and better generalization ability
than the feedforward neural networks, and outperform the conventional
convolutional neural networks.

1 Introduction

The problem of invariant recognition has been a challenging task for computer
vision community, as in practice, perfect invariance is very difficult to achieve, be-
cause of the computation inaccuracies and the continuous nature of some trans-
formations [20]. Many algorithms have been proposed, which can be grouped into
three categories, namely integral invariance, algebraic invariance and neural net-
works [20]. In integral and algebraic approaches, the input space is transformed
into another space such that the features extracted from the latter are invari-
ant to some geometric transformations. Neural approaches, on the other hand,
attempt to build invariance through learning, by often combining the feature
extraction stage with the classification stage to achieve invariant recognition.

A simple integral approach is the Fourier transform, which is used to transform
a pattern from the spatial domain into the frequency domain; the magnitude of
the frequency spectrum is invariant to translation. More advance integral and al-
gebraic methods such as Fourier-Mellin integral [6] and moment functions [11,17]
have been developed to define a set of descriptors that are invariant to rotation,
� Senior Member, IEEE.
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translation, and scaling transformations. However, these invariant functions have
their own drawbacks. For instance, the Fourier-Mellin integral does not converge
in the general case, but only under certain strong conditions, and the compu-
tation of the Fourier-Mellin descriptors is costly [16]. The geometric moments
suffer from a high degree of information redundancy [7], and are sensitive to
noise — these problems have been investigated by many researchers [18, 12, 10].

On the other hand, artificial neural networks have some desirable character-
istics: (i) they are fault tolerance learning machines; and (ii) they can acquire
knowledge from the input data through learning. Barnard and Casasent [3] men-
tioned three strategies to incorporate invariance into a neural network model,
i.e., invariant feature space, invariance by training and invariance by structure.
The first strategy consists of two stages. First, the input pattern is mapped
into an invariant feature space, and second, the extracted features are used as
inputs to a neural network classifier. This approach, however, requires prior
knowledge of the problem in order to design the invariant feature detector. The
second strategy is to train a neural network with different exemplars of the same
object. These exemplars are generated by applying the transformation on the
object itself, i.e., different aspect views. Provided that there are sufficient train-
ing exemplars and the network learns them properly, the trained network can be
expected to generalize correctly to the different orientations of the object. The
last strategy is by structuring the network architecture appropriately, e.g., wiring
the first few layers of the network in such a way that the network can learn to
extract invariant features. This type of networks is known as convolutional neu-
ral networks (CoNNs) which is derived from the understandings of mammalian’s
visual cortex. Fukushima et al. [8] were the first developed a CoNN called the
Neocognitron, which has shown to possess a certain degree of invariance. LeCun
et al. [14], on the other hand, proposed a series of convolutional neural network
architectures, dubbed LeNet (1-5), for optical character recognition, in which the
input characters are often subject to geometric distortions. The problem of these
two-dimensional (2-D) networks is that the network architecture is complex with
a large number of trainable parameters.

Recently, we have developed a new class of convolutional neural networks
known as SICoNNets that has a simple network architecture and consists of a
special computing element, the shunting inhibitory neuron, for feature extrac-
tion [19]. The motivation of using this type of neurons rather than sigmoid type
is that the neuron is based on the shunting inhibitory mechanism, which has been
used to model a number of visual and cognitive functions [9]. Contrary to a sig-
moid neuron, a single shunting inhibitory neuron can solve linearly nonseparable
classification problems by forming nonlinear decision boundaries [4,5]. Moreover,
when the shunting inhibitory neuron is applied in other neural network models
for supervised pattern classification and regression, it has been shown to be more
powerful than the sigmoid neuron or perceptron [2].

In this paper, we employ SICoNNets for rotation invariant face detection.
Here, rotation invariance is achieved by training the networks on rotated face
patterns and non-face patterns. To determine how well the SICoNNets perform
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compared to other neural models, the multilayer perceptrons (MLPs) and the
early model of CoNNs, LeNet [13], have been trained and tested on the same
classification task. The next section describes the architecture of the SICoN-
Net and its basic computing element, the shunting inhibitory neuron. Section 3
presents the rotation invariant face classifier and describes the network training
and testing procedure. Experimental results and performance analysis are given
in Section 4. Finally, Section 5 presents concluding remarks.

2 SICoNNet Architecture

The SICoNNet architecture is a multilayer network based on the three structural
concepts of LeNet-5 [14]: local receptive fields, weight sharing and sub-sampling.
The input layer is a 2-D plane of arbitrary size, acting as the network retina
to receive inputs from the environment. After the input layer, there are several
hidden layers in which the neurons are arranged into several planes called feature
maps. Each neuron in a feature map is connected locally to a small neighbor-
hood (receptive field) in the input image, and each hidden layer has its own
receptive field size. In other words, a receptive field is a small N × N (N is an
odd integer) region of the input image whence the neuron receives its inputs. In
a feature map, all the neurons share the same set of weights (weight sharing) to
connect to their receptive fields to cover the entire input plane. The mechanisms
of local connection and weight sharing constrain each neuron in a feature map to
perform the same computation operation on different parts of the input image;
that is, the same elementary visual feature is extracted from different positions
in the input plane. Other feature maps in that layer perform the same oper-
ation with different sets of weights to extract different types of local features.
Instead of having a sub-sampling layer after the convolutional layer as in LeNet-
5 (i.e., a convolutional layer followed by a sub-sampling layer), the sub-sampling
operation is incorporated into each hidden layer. This is done by shifting the
centers of receptive fields of adjacent neurons by two positions in the vertical
and horizontal directions. Hence, the network structure has fewer hidden layers
and connections, and the size of the feature maps are reduced by one quarter
in successive layers. To reduce the number of trainable weights between the last
hidden layer and the output layer, a local averaging operation is performed on all
the feature maps; that is, small 2× 2 non-overlapping regions are averaged, and
the resulting signals are fed into the output layer. However, if the feature maps
of the last hidden layer consist of single neurons, the outputs of these neurons
serve as inputs directly to the output layer.

To avoid hand-coding the connections between layers, three systematic con-
nection schemes are developed for our CoNNs: full-connection, toeplitz-
connection and binary-connection. In a full-connection scheme, each feature map
is fully connected to all feature maps of the succeeding layer, and each hidden
layer can have an arbitrary number of feature maps. For the binary-connection
scheme, Fig. 1(a), each feature map branches out to two feature maps in the suc-
ceeding layer similar to a binary tree, whereas in the toeplitz-connection scheme,
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(a) Binary-Connection
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(b) Toeplitz-Connection

Fig. 1. The partial-connection schemes: (a) binary-connection and (b) toeplitz-
connection

L3 Feature Map Connections from L2 to L3
1 A
2 B A
3 C B A
4 D C B A
5 D C B A
6 D C B
7 D C
8 D

Fig. 2. Connections between feature maps in L2 and L3 of the toeplitz architecture

Fig. 1(b), each feature map may have one-to-one or one-to-many links with fea-
ture maps of the preceding layer, forming a toeplitz connection matrix. As an
example of the toeplitz-connection scheme, Table 2 illustrates the connections
between Layer 2 (L2) and Layer 3 (L3). Suppose L3 contains eight feature maps,
labelled 1 to 8 (first column), and L2 has four feature maps, labelled A to D.
Feature maps 1 and 8 have one-to-one connections with feature maps A and D,
respectively. Feature map 2 has connections with feature maps A and B, whereas
feature map 3 has connections with feature maps A, B and C. The rest of the
connections form a Toeplitz matrix, hence the name.

The feature maps of the SICoNNet are made up of shunting inhibitory neu-
rons, and the neural activity at location (i, j) in the feature map {L, k} is ex-
pressed as

ZL,k(i, j) =
fL

(SL−1∑
m=1

[CL,k ∗ ZL−1,m](2i)(2j) + bL,k(i, j)
)

aL,k(i, j) + gL

(SL−1∑
m=1

[DL,k ∗ ZL−1,m](2i)(2j) + dL,k(i, j)
) , (1)

∀ i, j = 1, ...,ML
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where ∗ denotes 2-D convolution, the parameters CL,k and DL,k are the set of
trainable weights, bL,k and dL,k are the biases, aL,k is the passive decay term,
fL and gL are the activation functions, and ML is the size of the feature map
at the Lth layer. All the shunting neurons in a feature map share the same set
of weights CL,k and DL,k, the bias parameters, and the passive decay rate term.
In order to avoid dividing by zero in (1), the decay parameter is constrained as
follows:[

aL,k(i, j) + gL

(SL−1∑
m=1

[DL,k ∗ ZL−1,m](2i)(2j) + dL,k(i, j)
)]
≥ ε > 0, (2)

and this condition is imposed during both initialization and training processes.
The outputs of the network are generated with sigmoid type or linear neurons.
The response of a sigmoid neuron is the weighted sum of its input signals, plus
a bias term, passed through an activation function; mathematically, it is given
by

y = h
( SN∑

i=1

wizi + b
)
, (3)

where y is the response of the neuron, h is the activation function, wi’s are the
connection weights, zi’s are the inputs to the sigmoid neuron, SN is the number
of input signals, and b is the bias term. Figure 3 shows a schematic diagram of a
toeplitz-connected SICoNNet with four feature maps in the hidden layers. After
the local averaging operation, all the outputs signals from the feature maps of
layer 2 are fully connected to the perceptron.

32 x 32

 16 x 16

 8 x 8

Receptive Field

Input Array

Feature Map
(Shunting Inhibitory Neurons)

Perceptron

Layer 1 Layer 2

A local averaging
operation applied on all
feature maps of layer 2

Fig. 3. A schematic diagram of a toeplitz-connected SICoNNet

3 Rotation Invariant Face Classifier

To develop a face/non-face classifier that can be used for rotation invariant
face detection, the proposed CoNN is designed into a three layer network (two
hidden layers and one output layer) that accepts input image of size 32×32 and
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(a)

(b)

(c)

Fig. 4. Face patterns: (a) face rotated in the range [00,−900], (b) quasi-frontal faces,
and (c) face rotated in the range [900, 00]

produces a single output signal. The first hidden layer, L1, has two feature maps
and the second hidden layer, L2, has four feature maps. After some preliminary
experimentations, the activation functions fL and gL in L1 were chosen as the
hyperbolic tangent and exponential functions, respectively, whereas in L2, gL is
the logarithmic sigmoid function. For the output layer, h is the linear activation
function. To allow more overlapping input information processed by the shunting
inhibitory neurons which may increase the degree of invariance in the network,
different size of receptive field, ranging from 5×5 to 9×9, is used. Moreover, three
networks are developed according to the systematic connection schemes and
trained with a variant of Levenberg-Marquardt algorithm proposed by Ampazis
and Perantonis [1]. As for MLPs, two network structures are implemented, i.e.,
a two layer and a three layer MLPs with different number of neurons in each
hidden layer, varying from 5 to 50 neurons. All the MLPs have one perceptron at
the output layer, and they are trained with the scale conjugate gradient training
algorithm.

A large database of rotated and quasi-frontal face patterns has been gener-
ated for training and testing the CoNNs as a rotation invariant face classifier.
The quasi-frontal face patterns were taken from the face database created by
Phung et al. [15], which contains face images with people of different ages, eth-
nic backgrounds, and different lighting conditions. The rotated face patterns
were generated by in-plane rotating and cropping face images at different an-
gles, in the range ±900 with steps of 150. These face images were collected from
different sources on the Web varying in terms of the background, the people, and
the illumination condition. To obtain face patterns beyond that range, every face
pattern is folded along the X-axis direction. Some examples of rotated face pat-
terns are shown in Fig. 4. The proposed CoNN is trained and tested for partial
and full rotation invariance; that is, after training, the network can classify ro-
tated face patterns in the range [900,−900] and [0, 3600], respectively. To train a
face classifier that can discriminate rotated face patterns, the training set consists
of 2000 quasi-frontal face patterns, 4000 rotated face patterns and 6000 non-face
patterns. Another training set with 12,000 face patterns is generated to cover
a 3600 rotation range. It includes frontal face patterns, rotated face patterns
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and their folded counterparts. For evaluation, two test sets are prepared. The
first test set has 20,000 rotated faces, and the second test set has 40,000 faces
patterns where every rotated face pattern is folded along the X-axis. In every
test set, the nonface patterns are obtained from a bootstrap procedure. The pat-
terns in the training and test sets are normalized by scaling linearly every image
pixel to the range [−1, 1]. Finally, the desired outputs corresponding to face and
non-face patterns are labelled as 1 and −1, respectively. The same training and
test sets are used for the MLP and LeNet networks.

4 Experimental Results and Performance Analysis

The first test is to determine the network generalization ability of discriminat-
ing rotated faces in the range ±900 from segmented non-face patterns. If the
trained network yields a high classification rate on the test sets, the network is
considered not only to have the ability to discriminate between face and non-
face patterns, but also invariant to in-plane rotation. Therefore, each network
has been trained and tested three times, and the best classification result has
been recorded among the three trials. Tables 1 presents the classification per-
formances of the CoNNs. The high classification accuracies obtained in Table 1
show that the proposed networks can be trained to be partially rotation invari-
ant. Based on the four different combinations of receptive fields sizes, all the
networks achieve classification accuracies over 93% with the best performance
obtained from a toeplitz-connected network with a classification rate of 97.2%
for face and 97.3% for non-face patterns. Across all four sets of receptive fields
sizes, the toeplitz-connected network has the highest average performances with
accuracies of 95.8%. On average the partially-connected CoNNs outperform the
fully-connected network. One possible reason is that the latter has too many
connections, and each feature map is compelled to extract an average feature
from all feature maps of the preceding layer.

All the MLPs have been evaluated on the same test set, and Table 2 presents
the classification performances of the two best trained MLPs for each network
structure. The experimental results show that MLPs perform poorly when the
input data are subject to variations in rotation. With a two layer MLP, the
highest classification accuracy is 88%, and for a three layer network, the highest
performance is 88.9%. In terms of number of trainable weights, the two layer

Table 1. Classification rates of the binary-, toeplitz-, and full-connected SICoNNets
tested on rotated face patterns in the range ±900 based on different sizes of receptive
fields

Receptive Field Binary-Net (%) Toeplitz-Net (%) Full-Net (%)
L-1 L-2 Face NFace Acc. Face NFace Acc. Face NFace Acc.

5 × 5 5 × 5 95.5 94.7 95.1 97.2 97.3 97.3 96.3 96.0 96.2
7 × 7 5 × 5 96.6 96.0 96.3 96.2 93.6 94.9 95.2 92.4 93.8
9 × 9 5 × 5 94.6 94.6 94.6 95.1 95.1 95.1 94.8 94.1 94.5
9 × 9 7 × 7 96.2 95.7 96.0 96.0 95.9 96.0 95.8 96.8 96.3



Rotation Invariant Face Detection Using Convolutional Neural Networks 267

Table 2. Classification performances of the two best trained MLPs tested on the
rotated face patterns in the range ±900

Net Number of neurons Face Non-Face (NFace) Accuracy (Acc.)
Index Layer 1 Layer 2 (%) (%) (%)

Net-01 40 0 86.2 89.9 88.0
Net-02 45 0 87.5 87.8 87.7
Net-03 40 30 89.4 88.5 88.9
Net-04 35 50 87.5 89.8 88.7
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Fig. 5. ROC curves of three different networks - SICoNNet, LeNet and MLPs, tested
on rotated face patterns in the range ±900

MLP (Net-01) has 41,041 trainable parameters, whereas the three layer MLP
(Net-03) has 42,261 weights. Most of the trainable parameters are the weights
between the input and the first hidden layer since every neuron in the first
hidden layer has 1024 weights. In comparison to MLPs, the CoNNs have better
classification performance and fewer number of trainable network parameters;
for instance, using receptive fields size of 5×5 in the hidden layers, the three layer
toeplitz-connected network has 383 weights with a correct face classification rate
of 97.2%.

Figure 5 shows the Receiver Operating Characteristic (ROC) curves of the
MLP, LeNet and SICoNNet when trained and tested on rotated face patterns
in the range ±900. In this experiment, the LeNet and SICoNNet have similar
network structure with receptive fields sizes of 9 × 9 and 7 × 7, using a full-
connection scheme and a local averaging operation at the last hidden layer.
However, the main difference is that the feature maps of the LeNet consist of
sigmoid neurons, whereas those of the SICoNNet contain shunting inhibitory
neurons. Among the three networks, the SICoNNet has the best correct detection
rate, followed by LeNet and then MLPs. The experimental result indicates that
not only does the network structure affect the classification performance, but
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Table 3. Classification rates of the binary-, toeplitz-, and full-connected SICoNNets
tested on face patterns rotated in the range of 3600 based on different sizes of receptive
fields

Receptive Field Binary-Net (%) Toeplitz-Net (%) Full-Net (%)
L-1 L-2 Face NFace Acc. Face NFace Acc. Face NFace Acc.

5 × 5 5 × 5 94.6 92.8 93.7 94.4 94.4 94.4 94.4 93.0 93.7
7 × 7 5 × 5 93.1 90.3 91.7 93.4 90.5 92.0 91.9 90.9 91.4
9 × 9 5 × 5 93.2 94.0 93.6 94.8 93.4 94.1 92.0 92.0 92.0
9 × 9 7 × 7 96.1 95.6 95.9 95.8 95.4 95.6 96.1 94.5 95.3

also the type of neuron (sigmoid or shunting inhibitory neuron) used to extract
the features from the input patterns.

The last experiment is to evaluate the SICoNNets for full rotation invariance.
Therefore, all three network architectures are trained on the second training set
and evaluated on the test set containing 40,000 rotated face patterns; their clas-
sification rates are listed in Table 3. Among the four combinations of receptive
fields, the last combination (i.e., 9 × 9 and 7 × 7) yields the highest classifi-
cation accuracy with 95.9% using a binary-connected network, followed by the
toeplitz-connected network (95.6%) and fully-connected network (95.3%).

5 Conclusion

This paper investigates the problem of rotation invariant face detection using a
class of shunting inhibitory convolutional neural networks (SICoNNets). Train-
ing algorithms have been developed for three different architectures: binary-
connected network, toeplitz-connected network and fully-connected network. All
three CoNNs can learn rotation invariance very efficiently. As a face/non-face
classifier, the proposed network achieves a classification accuracy of 97.3% for
in-plane rotation in the range ±900, and using receptive fields of sizes 9× 9 and
7 × 7, a classification accuracy of 95.9% is achieved for full in-plane rotation.
This demonstrates that SICoNNets can be applied in rotation invariant face de-
tection system. Experimental results show that traditional convolutional neural
networks, which use sigmoid neurons for feature extraction do not perform as
well as SICoNNets. For comparison purposes, multilayer perceptrons have also
been trained for rotation invariant face detection. It was found that MLPs do
not perform as well as CoNNs, in general. Furthermore, the MLP networks pos-
sess a large number of weights, which makes them more prone to over-fitting the
training data.
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Abstract. The mean shift algorithm is an efficient technique for object tracking. 
However, it has a shortcoming that it can’t adjust scale with object during 
tracking process. There are presently no effective ways to solve this problem. 
The kernel bandwidth of mean shift tracker in one frame is generally steered by 
the object scale obtained in the previous frame, so it is very important for mean 
shift tracker to correctly describe the scale of the target in very frame. In 
accordance with the kernel-bandwidth effect on the mean shift tracker and the 
property of face, this paper introduces a new idea that uses direct least square 
ellipse fitting to adjust the facial scale. The experimental results demonstrate 
the efficiency of this algorithm. Its performance has been proven superior to the 
original mean shift tracking algorithm. 

1   Introduction 

Face detection and tracking, as the first process of facial information management, 
attaches more and more attention in the computer vision field. Nowadays, face 
detection and tracking in video sequence can find its place in many application, such 
as video conferencing, automatic surveillance, digital video management, etc..  

Face tracking in video sequence is based on dynamic image processing, its 
fundamental task is to capture the location and scale of face in video sequence. For 
video image, there is so much information can be used as cues of face tracking, such 
as color, movement, shape and texture. Each of these cues has its respective character 
and applying condition. As far as the color image is considered, different objects 
always cluster into different color regions, so we can use color information to detect 
distinct object. Skin color is an important feature for face and used widely by many 
face tracking system [1,2,4]. Color histogram, as a key tool to describe color feature, 
has advantage that it is insensitive to rotation, transform and scale change of object. 
Dorin Comaniciu and others proposed an object tracking algorithm based on mean 
shift which use the color histogram as cue [4]. This method has been proved simple 
and efficient. However, it has a shortcoming that it can’t adapt scale with object 
during tracking process. There are presently no effective ways to solve this problem.  

In accordance with the fact that mean shift tracker always can give the right target 
location when a larger kernel bandwidth is chosen and the facial shape can be 
appropriate to an ellipse, this paper introduces a new idea that uses direct least square 
ellipse fitting to adjust the facial scale based on the mean shift tracking framework. 
Fig.1 gives the schematic illumination of our algorithm. The experimental results 
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demonstrate the efficiency of this algorithm. Its performance has been proven 
superior to the original mean shift tracking algorithm.  

The rest of this paper is organized as follows. Section 2 analyses the face-tracking 
algorithm based on mean shift. Section 3 presents our face shape describing method 
using direct least squares ellipse fitting. Section 4 gives experimental results to 
demonstrate the efficiency of our algorithm. Conclusion is given in the last section. 

 

Fig. 1. The schematic illumination of our algorithm 

2   Face Tracking Based on Mean Shift 

The mean shift algorithm [4,5,6] is an effective method for mode seeking in 
probability space, which is based on the theory of nonparametric kernel probability 
density estimation. Dorin Comaniciu , etc proposed a simple and efficient object 
tracking algorithm [4] based on the mean shift theory. Because the mean shift  trakcer 
uses the color histogram as tracking feature, it is robust to the transform, rotation and 
scale variability of target. What more, this tracking algorithm is simple and efficient. 
Just the above advantages make this algorithm attract more and more attention in 
computer vision field. Fig.2 (b) shows the face seeking process from the initial 
location in one frame. Fig.2 (c) shows all values of the bhattacharyya coefficient 
corresponding to the rectangle marked in Fig.2 (a), the locations during the mean shift 
iterations are also shown. From Fig.2 we can see clearly the realization mechanism of 
face tracking using mean shift method. 

From the mean shift theory, it is clear that the mean shift algorithm fulfills the only 
task seeking model of probability density, so in fact mean shift tracker can only locate 
target and it can’t give us the accurate scale of target. In general, we always choose an 
empirical kernel bandwidth according to the prior scale knowledge of target firstly, 
then we finish a mean shift tracking process using this fixed kernel bandwidth. 
However, it is difficult to estimate the true scale of target before tracking, so the 
kernel bandwidth chosen by means of the above method can’t avoid different from the 
true target scale. The difference between the kernel bandwidth and the true target 
scale can results in the degeneracy of tracking effect. In general, when the background 
is not too complex, we can always get an accurate location of target if a larger scale 
(bandwidth) is selected during tracking process, but the target scale in not accurate 
(larger than true scale) on this condition. This can be seen clearly from Fig.3 (a). On 
the contrary, from Fig.3 (b) we can see, if we select a smaller scale (bandwidth), then 
we can get neither the accurate target location because of the local extremums nor the 
accurate target scale.  
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(a)                                      (b)                                                  (c) 

Fig. 2. The realization mechanism of face tracking using mean shift. (a) A face picture. (b) The 
face seeking process from the initial location in one frame. (c) All values of the bhattacharyya 
coefficient corresponding to the rectangle marked in Fig.2 (a). 

 
(a)                                                            (b) 

Fig. 3. The demonstration of bandwidth effect for face tracking based on mean shift. (a) The 
tracking result with a larger scale (bandwidth). (b) The tracking result with a smaller scale 
(bandwidth). 

During the mean shift tracking process, the kernel bandwidth of the t  frame is 
always chosen according to the target scale attained from the tracking result in 1t −  
frame, so attaining the precise target scale in every frame is important, because the 
wrong estimation of target in one frame can cause tracking failure in the next frames. 
However, There are presently no effective ways to adjust the target scale or kernel 
bandwidth during the mean shift tracking. In the literature [4], the target scale 
adjusting method is to track the target with the kernel bandwidth that is 1, 1.1 and 0.9 
times as the last kernel bandwidth respectively, then choose the one tracking result 
that product the largest Bhattacharyya coefficient. But this method can’t solve the 
above target scale problem perfectly. 

From the above analysis, we know that it can always attain the right location of the 
face target during the mean shift tracking process if a little larger kernel bandwidth is 
chosen, but the attained target scale is little larger than the true one. In general, facial 
shape can be approximate to an ellipse, so if we can describe the elliptical shape of 
face accurately on the base of approximate location given by mean shift tracker with a 
little larger kernel bandwidth, and using the attained elliptical shape directs the choice 
of kernel bandwidth in the next frame. Then the scale problem of mean shift tracker 
can be solved. Now the key problem is how to describe the elliptical shape of face 
efficiently and accurately. The above consideration just is the source of the new idea 
that uses direct least square ellipse fitting to adjust the facial scale based on the mean 
shift tracker proposed in this paper. 
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3   Describe the Face Shape Using Ellipse Fitting 

In computer vision, there are two common methods used to ellipse fitting. One is 
hough transform based on vote mechanism, the other is least squares technique. 
Andrew Fitzgibbon, etc. proposed an ellipse fitting algorithm by means of direct least 
squares method [3]. This algorithm is robust and efficient. In this paper, we use it to 
describe the elliptical shape of face during the mean shift tracking process. 

A general conic by an implicit second order polynomial can be represented as 

T 2 2= 0ax bxy cy dx ey f= + + + + + =a x a x  (1) 

where T[ ]a b c d e f=a 2 2 T[ 1]x xy y x y=x . 

Assuming F( , )ia x denotes the algebraic distance of point ( , )i ix y to the conic 

0=a x . The fitting of general conic can be solved by means of seeking 
coefficient vector a  that minimizes the equation (2). 
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the number of data that used ellipse fitting. 
It is clear that equation (1) denotes ellipse when 2 4 0b ac− < , since 

T[ ]a b c d e f=a is a free parameter, so we can use equality constraint 
24 1ac b− =  instead of 2 4 0b ac− < . 
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Then the equality constraint 24 1ac b− =  can be denoted as following equation in the 
form of matrix. 

1=Ta Ca  (4) 

Now the above least squares ellipse-fitting problem can be written as 

2arg min=
a

Daa  (5a) 

1=Ta Ca  (5b) 

Introducing the Largrange multiplier λ  and differentiating , we can get 
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equation (6) can be rewritten as 

λSa = Ca  (7a) 

1=Ta Ca  (7b) 

where TS = D D solving the above equation by means of generalized eigenvectors 
method, we can get  

1 i
i iT T
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= =a u u

u Cu u Su
 (8) 

where iλ  and iu  are the eigenvalue and eigenvector of equation (7a) , respectively. It 

can be proved that the solution of a is unique [3]. 

   
(a)                         (b)                   (c)                      (d) 

Fig. 4. The demonstration of direct least squares ellipse fitting for face. (a) The points denoted 
by hand.  (b) The results of direct least squares ellipse fitting corresponding to Fig.(a).  (c) The 
points with outliers denoted by hand. (d) The results of direct least squares ellipse fitting 
corresponding to Fig. (c). 

 
(a)                       (b)                       (c)                     (d)                        (e) 

Fig. 5. The realization process of direct least squares ellipse fitting for face. (a) A target region. 
(b) The skin region. (c) The result of morphological image processing. (d) The face profile. (e) 
The result of direct least squares ellipse fitting for face. 

The above ellipse fitting algorithm is simple and efficient, furthermore, it is 
insensitive to the outliers (noise). So we choose this algorithm to describe the 
elliptical face shape. Firstly, we test the validity of this algorithm by means of 
denoting the face profile by hand. Fig.4(a) and (c) show the points of face profile 
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denoted by hand. Fig. 4(b) and (d) give the results of direct least squares ellipse fitting 
corresponding to Fig. 4 (a) and (c), respectively. From the given results we can see 
this algorithm can work well even in the case that data samples comprise of outliers 
just as Fig.4(c). 

In this paper, the purpose that we use the direct least squares ellipse fitting 
algorithm is to adjust the face scale automatically during the mean shift tracking 
process. The realization method is as follows. Firstly, we get the approximate face 
location using mean shift tracker. Then we attain the skin region via skin detection in 
the region determined by mean shift tracking process and fill the holes in skin region 
by means of morphological image processing. Finally, we extract the profile of skin 
region and use theses profile points as samples to attain the ellipse facial shape by 
direct least square ellipse fitting. Fig.5 demonstrates the realization method that uses 
direct least squares ellipse-fitting algorithm to describe the elliptical face shape. 

4   Experimental Results 

Our algorithm has been proved to be effective by means of lots of experiments. The 
experimental condition is as follows. 

We choose HSV color space to describe the face target, the reason is HSV color 
space is based on human perceive, it distinguishes the illumination and chrominance 
explicitly. In order to reduction the effect of illumination, we use fewer bins for V 
component when we establish the kernel color histogram, specifically, HSV color 
space is quantized as 16 16 8× ×  bins. 

 

Fig. 6. The Epanechnikov kernel 

We choose Epanechnikov kernel for mean shift, the Epanechnikov kernel can be 
expressed as 

211 ( 2)(1 x ) x 1
(x) 2

0

d
E

c d
K

 

(9) 

where dc  is the volume of unit sphere in d  dimensional Euclidean space. Fig.6 

shows the Epanechnikov kernel, from Fig.6 we can see that Epanechnikov kernel 
assigns smaller weights to pixels farther from the center when we use it to establish 
the kernel histogram, the above property of Epanechnikov kernel has the advantage 
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that it can increase the robustness of tracking system because the peripheral pixels are 
ready to be affected by occlusion or interference from background. 

We test our algorithm using lots of video sequences based on the above 
experimental conditions. At the same time, we give the tracking results using the 
original mean shift traking algorithm [4] on the same experimental condition. Fig.7 
shows the tracking result comparison. 

From the tracking result of original mean shift tracker given by Fig. 7 (a) we can 
see, as for Seq_mb sequence, the part tracking results are not precise because of the 
local extremums when the face target become smaller and smaller. On the other hand, 
when the face target become larger and larger, the original mean shift tracker can 
always give the correct location of the target, but the scale attained is little larger than 
the true target scale, this can be seen clearly from the tracking results of Seq_sb 
sequence in Fig. 7 (a). 

 

Fig. 7. The tracking results comparison. (a) Results of the original mean shift tracker. (b) 
Results of the tracking algorithm in this paper. 

As to our algorithm, it comprises two steps in fact, one is to locate face target using 
mean shift tracker with larger kernel bandwidth, and the other is to adjust the face 
scale automatically using the direct least squares ellipse fitting. Because the two steps 
can always give the correct face target location and scale respectively, so the two 
steps complement each other and can track the face effectively. It can be seen clearly 
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from Fig. 7 (b) that our tracking algorithm can deal with the change of target scale 
well. It can get perfect tracking result whether the targets become larger or smaller 
gradually. It’s clear that the performance of our algorithm is superior to the original 
mean shift tracking algorithm. 

5   Conclusion 

The mean shift tracking algorithm is an efficient and simple technique for object 
tracking. However, it has a shortcoming that it can’t adapt scale with object during 
tracking process. There are presently no effective ways to solve this problem. In 
accordance with the fact that mean shift tracker always can give the right target 
location when a larger kernel bandwidth is chosen and the facial shape can be 
appropriate to an ellipse, this paper introduces a new idea that uses direct least square 
ellipse fitting to adjust the facial scale based on the mean shift tracking framework. In 
fact, our algorithm comprises two steps, one is to locate face target using mean shift 
tracker with a larger kernel bandwidth, and the other is to adjust the face scale 
automatically using the direct least squares ellipse fitting. Because the two steps can 
always give the correct face target location and scale respectively, so the two steps 
complement each other and can track the face effectively. The experimental results 
demonstrate the efficiency of this algorithm. Its performance has been proven 
superior to the original mean shift tracking algorithm. 
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Abstract. Fisherface is a popular subspace algorithm used in face recognition, 
and is commonly believed superior to another technique, Eigenface, due to its 
attempt to maximize the separability of training classes. However, the obtained 
discriminating subspace of the training set may not easily extend to unseen 
classes (thus poor generalization), as in the case of enrollment of new subjects. 
In this paper, we reduce the performance variance and improve the generaliza-
tion of Fisherface by automatically selecting some representative classes for 
training, using a recently proposed neural network architecture SOM2. The ex-
periments on ORL face database validate the proposed method. 

1   Introduction 

Face recognition has become an active research topic for decades of years due to its 
value in both theory and application. To solve this problem, a great number of tech-
niques have been developed, among which Eigenface, a PCA-based algorithm [1], 
and Fisherface, an LDA-based algorithm [2], are very popular ones. 

Although it is argued that LDA may not always outperform PCA, especially when 
the training samples per class are insufficient or ill-sampled [3], it is a common belief 
that LDA is superior to PCA, since it tends to maximize the separability of the train-
ing classes [2]. However, in most previous work related to LDA, the classes are fixed 
during the training and testing phases, i.e. the subjects (not the images) being tested 
are always those involved in training phase. 

On the other hand, training is a standalone process prior to the enrollment of sub-
jects in some large-scale face recognition test-beds. The face sample database is usu-
ally divided into a development set for training, a gallery which contains the images 
to be enrolled, and a probe set which comprises of unknown faces to be identified [4, 
5]. It should be noted that the training set does not contain all the subjects in the gal-
lery, just as in a real problem. Once training is accomplished, re-training is impracti-
cal because it requires updating millions of existed records [4]. 

It remains unclear whether Fisherface, an LDA-based algorithm especially tuned 
for  training classes, can also perform well on unseen classes in the gallery. This is in 
fact a generalization problem. This paper aims at improving the generalization of 
Fisherface by selecting some representative training classes using a recently proposed 
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neural network architecture SOM2 which has been applied in data class visualization 
and interpolation [6, 7]. 

The remaining of this paper is arranged as follows: a brief review of Eigenface and 
FisherFace is given in Section 2; The algorithm of SOM2 and its application in train-
ing class selection of Fisherface are described in Section 3; Section 4 gives experi-
mental results on a publicly available face database, the ORL face database; Finally 
conclusion is drawn in Section 5. 

2   Background 

Eigenface is a classical subspace face recognition algorithm proposed in [1]. It is 
based on the observation that all face samples, which are one-dimension representa-
tions of face images, reside in a relatively small subspace, called “face space”,  
compared with the original image space. Thus a classical dimensionality reduction 
technique PCA is employed to derive such a subspace, which is spanned by the ei-
genvectors corresponding to the m  largest eigenvalues of the sample covariance 
matrix. These eigenvectors are referred to as Eigenfaces because their appearances are 
like faces when displayed as images. Although the features derived from Eigenfaces 
capture most variances of the samples, they are not optimal for classification pur-
poses, for the variances are caused by not only the intrinsic differences of faces (the 
identities) but also the unwanted extrinsic factors such as lighting conditions. 

To overcome the drawback of Eigenface and make use of the label information of 
the training samples, several LDA-based algorithms are proposed [2], among which 
Fisherface is the most famous one. Assume that N  training samples { }1 2, , , Nx x x  

belong to I  classes { }1 2, , , IX X X , the aim of LDA is to select the projection ma-

trix W  in order that the ratio of the between-class scatter and the within-class scatter 
is maximized,  i.e. 

[ ]1 2

arg max

, , ,

T
B

LDA T
W

W

m

W S W
W

W S W

w w w

=

=

 (1) 

The between-class scatter matrix is defined as ( )( )
1

I
T

B i i i
i

S N u u u u
=

= − −  and the 

within-class scatter matrix is defined as ( )( )
1 j i

I T

w j i j i
i x X

S x u x u
= ∈

= − − , where iN  is 

the number of samples in iX , and iu , u  are the mean vector of the samples in iX  

and the grand mean vector of all samples respectively. If wS  is nonsingular, the solu-

tion is given by the eigenvectors corresponding to the ( )1I −  non-zero eigenvalues of 
1

w BS S− ; Otherwise PCA is employed first to make wS  full-ranked. Similarly, if these 

eigenvectors are treated as images, they are referred to as Fisherfaces. 
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It can be seen that Eigenface aims at deriving a general face subspace. If the train-
ing samples are sufficient, a test face image can also be projected into this subspace 
effectively, and the classification is performed within it. On the other hand, the atten-
tion of Fisherface is mainly focused on deriving a subspace in which the separability 
is maximized between training classes, which generally results in better classification 
performance than Eiganface with regard to these classes. 

However, it is not evident that the separability can be easily extended to unseen 
classes, as in the case of enrollment of new subjects. Although a conjecture is pro-
posed in [2] that “Fisherface methods, which tend to reduce within-class scatter for all 
classes, should produce projection directions that are also good for recognizing other 
faces besides the ones in the training set.”, it is not validated by experiments. 

We notice that in practice the training classes of Fisherface are usually randomly 
selected from a large dataset [5]. In the worst case Fisherface may be trained on some 
“noise” (non-representative) classes, thus the discriminating performance will be poor 
when confronted with new classes. From a statistical viewpoint, since each time a 
random training set is used, the variance of performance can be large across different 
trials. Our idea is that if some representative training classes can be selected from the 
whole dataset, the performance variance may be reduced and the generalization of 
Fisherface may be improved. 

3   Training Class Selection Using SOM2 

Suppose that a face database includes N  samples { }1 2, , , Nx x x  belonging to I  

classes { }1 2, , , IX X X , it is more often than not that only a subset of the database 

can be used in Fisherface training. Our goal is to automatically select some represen-
tative (prototype) classes from the whole dataset to form the training set so that the 
generalization is improved compared with an arbitrary manual selection. Unfortu-
nately, classical techniques of VQ family, such as K-Means, Neural Gas [8], or SOM 
[9], do not provide us any solutions to this problem, since they only induce some 
reference (codebook) vectors without any class formation. In our case we need a 
method which enables density approximation in terms of classes rather than samples. 
In this paper, we use SOM2, a newly proposed neural network architecture, to achieve 
this end. 

SOM2 is short for “SOM of SOMs” [6, 7] which is a hierarchical structure of self-
organizing maps, see Fig.1. Several nodal units (squares with grid) are arranged in 
array within a parent SOM. Each nodal unit is also a SOM itself called child SOM, 
which is trained to represent a data manifold. In the mean time, these child SOMs are 
interacting via the grand parent SOM, which finally generates a self-organizing map 
representing the distribution of data manifolds. The algorithm of SOM2 consists of 
three processes: the competitive process, the cooperative process, and the adaptive 
process. These processes are iterated until the result is converged or a maximum num-
ber of iterations is reached. 
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Fig. 1. The scheme and architecture of SOM2 as “SOM of SOMs” 

Suppose that SOM2 comprises of K  child SOMs, each of which has L  codebook 

vectors { } ( ),1 ,, , 1, 2, ,k k k LW w w k K= = . The competitive process includes the 

competition inside each child SOM and the competition between child SOMs (i.e. in 
parent SOM). For sample j ix X∈ , the competition inside the k th child SOM is to 

determine the “best matching unit (BMU)” *
,

k
i jl , which is defined as follows: 

( )2* ,
, arg mink k l

i j j j i
l

l w x x X= − ∈  (2) 

The average error of the k th child SOM for all samples in class i  is calculated as: 

( )*
,

2
,

1

1 i k
i j

N
k lk

i j j i
ji

e x w x X
N =

= − ∈  (3) 

where iN  is the number of samples in class i . The competition between child SOMs 

is to determine the “best matching map (BMM)” for class i , based on the average 

error k
ie : 

* arg min k
i i

k
k e=  (4) 

It is obvious that each class can find its corresponding BMM, i.e. the child SOM 
which minimizes the average error. 

In the cooperative process, the learning rates for parent SOM and child SOMs are 
calculated. The normalized learning rate of the k th child SOM for class i  is: 

( )
( )

*

*
'

' 1

, ,

, ,

ik
i I

i
i

d k k T

d k k T
φ

=

=
g

g
 (5) 

And the normalized learning rate of the l th codebook vector for j ix X∈  is: 
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(6) 

Here ( ),d ⋅ ⋅  refers to the distance between two nodes in the map space, [ ],⋅ ⋅g  and 

[ ],⋅ ⋅h  are the neighborhood functions of parent and child SOMs respectively, whose 

amplitudes decrease monotonically with increasing d . The neighborhoods also 

shrink with iteration T . **
,i jl  denotes the BMU in the BMM for j ix X∈ , i.e. 

*** *
, ,

ik
i j i jl l . 

In the adaptive process, all codebook vectors of all child SOMs are updated as fol-
lows: 

,
,

1

1, , ; 1, ,
j i

I
k l k l

i i j j
i x X

w x l L k Kφ ϕ
= ∈

= = =  (7) 

In our setting, SOM2 is working in the “class density approximation” mode, i.e. the 
number of child SOMs is smaller than that of the data classes, or K I< . It can be 
regarded as an analogy of conventional SOM in the “point density approximation” 
mode: as the codebook vectors of a conventional SOM are “representative samples” 
(prototypes) of the training samples, the child SOMs of a SOM2 form “representative 
classes” of the training classes. Inside each child SOM, it leaves flexible whether to 
approximate or to interpolate the data distribution, depending on the number of code-
book vectors per child SOM and the number of samples per class. Like conventional 
SOM, topology is preserved, not only in child SOMs but also in parent SOM. What’s 
more, the child SOMs are aligned in the sense that all codebook vectors with the same 
index share some similar attributes. 

All of the K L×  codebook vectors of SOM2 are used in Fisherface training. Since 
these training classes are more representative than those randomly selected ones, they 
can be helpful to reduce the performance variance and improve the generalization of 
Fisherface, which will be validated in the next section. 

4   Experiments 

The ORL face database contains different images of 40 subjects, with 10 images per 
subject. These images includes variations of lighting conditions, facial expressions 
(open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All 
the subjects are in the upright, fontal position, with tolerance for some side move-
ment. The images are grayscale with a resolution of 92×112. Ten images of one sub-
ject of the ORL database are shown in Fig. 2. No preprocess is involved in the  
experiment. 
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Fig. 2. Ten images of one subject from ORL face database 

Please note that we are interested in the case of insufficient training classes and in-
vestigating the generalization of Fisherface. Thus we first divide the whole database 
into two partitions: a candidate training set which includes the first 5 images of all 
subjects, and a test set including the rest 5 images of all subjects. The candidate train-
ing set is used to train SOM2, thus 40I =  and ( )5 1, , 40iN i= = . We assign 

( )K I<  child SOMs, each one comprised of 5 codebook vectors, i.e. 5L = . In this 

experiment, both the parent SOM and the child SOMs are one-dimensional maps, and 
the neighborhood functions are Gaussian, whose standard deviations shrink exponen-
tially with iterations. After 1000 iterations, these child SOMs are regarded as some 
representative classes for Fisherface training, and the codebook vectors within them 
are samples belonging to different training classes. 

For comparison, K  classes are randomly selected from the candidate training set 
for Fisherface and Eigenface training. Then the whole candidate training set serves as 
a gallery so that all the images in it are enrolled into the trained recognition system. 
At last, a Nearest Neighbor classifier is applied to determine the identity of each im-
age in the test set based on the cos-similarity between a test image and the enrolled 
class centers. For each choice of K , 20 trials are conducted to determine the mean 
and standard deviation of recognition error rates. Fig. 3 plots the mean error rates and 
standard deviations with respect to feature dimensions when 20K = . The results of 
different K s are listed in Table 1 and visualized in Fig. 4, where the feature dimen-
sions are fixed at ( )1K −  and ( )1K L× −  for Fisherface and Eigenface respectively. 

     
(a)                                                                            (b) 

Fig. 3. Mean error rates and standard deviations w.r.t. feature dimensions over 20 trials when 
20K = . (a) Mean error rates; (b) Standard deviations. 
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Table 1. Mean error rates and standard deviations for different K s over 20 trials 

K  
Proposed Method 

(Fisherface) 
Random Selection 

(Fisherface) 
Random Selection 

(Eigenface) 
10 24.10%±2.52% 27.30%±3.38% 25.00%±1.43% 
15 18.43%±1.09% 19.03%±2.74% 20.40%±1.40% 
20 13.10%±0.87% 15.43%±2.01% 18.25%±1.45% 
25 10.20%±1.34% 12.53%±2.85% 17.13%±0.86% 
30 11.35%±0.69% 11.73%±1.67% 16.82%±0.94% 
35 8.97%±1.04% 11.43%±1.82% 16.00%±0.71% 

 
It can be seen clearly that the proposed method improves the performance of Fish-

erface trained from random selection, either in the sense of mean error rates or stan-
dard variations. To summarize, the following discoveries can be obtained: 1) When 
the training classes are extremely insufficient ( 10K = ), Fisherface is inferior to Ei-
genface, and then it outperforms Eigenface when more classes are involved in train-
ing. This phenomenon is quite similar to that in [3], but the cause in [3] is insufficient 
data per class for training, rather than insufficient classes in our case; 2) The perform-
ance variances of Eigenface are always smaller than those of Fisherface, although the 
mean error rates are higher. This can be explained from a generalization perspective: 
since Eigenface is more successful in deriving a general face representation with the 
training samples, it is more statistically stable than Fisherface; 3) The proposed 
method effectively improves the generalization of Fisherface, which results in lower 
error rates, and reduces the performance variances, which are comparable to those of 
Eigenface. 

 

Fig. 4. Error rates w.r.t. number of training classes ( K ). The bars denote the mean error rates, 
and the lines denote the standard deviations over 20 trials. 
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5   Conclusion 

Although there have been a great number of papers published in the face recognition 
area, few of them investigate the impact of training set. A good start point is in [10], 
where some statistical properties of PCA (Eigenface) are studied. Along this line, we 
focus on the generalization problem of Fisherface in this paper. We first remind that 
the optimal discriminating subspace of the training set may not easily extend to un-
seen classes, as in the case of enrollment of new subjects; then we propose a method 
to reduce the performance variance and improve the generalization of Fisherface by 
selecting some representative training classes using a recently proposed neural net-
work architecture SOM2. The experiments on ORL face database validate this 
method. In the future, some larger-scale face databases, such as FERET or CAS-
PEAL-R1, will be used to investigate the statistical behavior of Fisherface. 
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Abstract. In this paper, we propose a new method to improve the im-
age registration accuracy in feedforward neural networks (FNN) based
scheme. In the proposed method, Bayesian regularization is applied to
improve the generalization capability of the FNN. The features extracted
from the image sets by kernel independent component analysis (KICA)
technique are input vectors of regularized FNN. The outputs of the neu-
ral network are those translation, rotation and scaling parameters with
respect to reference and observed image sets. Comparative experiments
are performed between FNN with regularization and without regular-
ization under various conditions. The results show that the proposed
method is much improved not only at accuracy but also remarkably at
robust to noise.

1 Introduction

Image registration is the process of aligning two or more images of the same
scene. Image registration techniques are embedded in a lot of visual intelligent
systems, such as robotics, target recognition, remote medical treatment and
autonomous navigation. The common image registration methods are divided
into two types: intensity-based methods and feature-based methods. The analysis
and evaluation for various techniques and methods of image registration are
carried out on the basis of these two sorts, while the feature-based methods are
emphasized.

Recently, Itamar Ethanany [1] proposed to use feedforward neural network
(FNN) to register a distorted image through 144 Discrete Cosine Transform
(DCT)-base band coefficients as the feature vector. But this method has too large
lumber of input feature vectors for the un-orthogonality of DCT based space,
thus suffered low computational efficiency and high requirements on computer
performance. Later, Wu and Xie [2] used low order Zernike moments instead
of DCT coefficients to register affine transform parameters but the estimation
accuracy is still not satisfied. We proposed to use the complete isometric mapping
(Isomap)[3] and kernel independent component analysis (KICA) [4] for feature
extraction. Although the performance of investigated feature extraction methods
is better, the generalization of FNN needs to be improved further.
� Corresponding author.
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Main challenge in FNN applications is that over fitting problem happens when
a neural network over learnt during the training period. As the result, such a
over-trained FNN may not perform well on unseen data set due to lack of gener-
alization ability. A good generalized FNN can be obtained with model selection
or regularization techniques [5]. Because that the computational efficiency of
some model selection methods such as cross validation and bootstrap is very
low, in this paper we intend to adopt regularization technique for generaliza-
tion. We use KICA for feature extraction and then these features are fed into a
FNN which is trained by using Bayesian regularization to obtain register affine
transform parameters. Experimental results show that the scheme we proposed
is better than other methods in terms of accuracy and robustness.

This paper is organized as follows: In section 2, the KICA and regularized
FNN based image registration scheme and its algorithm are presented. Section 3
focuses on experimental results comparison with the other methods under dif-
ferent neural network structures and various noisy conditions. Finally, the con-
clusions are presented in section 4.

2 KICA and Regularized FNN Based Image Registration
Scheme

The image registration scheme consists of two stages: the pre-registration phase
and the registration phase. In the pre-registration phase, first, a training set is
synthesized by the reference image. The feature coefficients are extracted from
the training set with the method of KICA, and then these feature coefficients as
inputs are fed to a FNN. Second, a neural network is trained with regularization
and its target outputs are affine parameters. In the registration phase, since the
neural network is trained, the remainder work is simple: We just use the same
method to extract features from the registered image and feed these features to
the trained network to get the estimated affine parameters.

The background and algorithms are briefly introduced as following sections.

2.1 Affine Transformation

Geometrical transformation can be represented in many different ways, affine
transformation is one of the most common used transformations. An affine trans-
formation is the transformation that preserves collinearity. Geometric contrac-
tion, expansion, dilation, reflection, rotation, shear, similarity transformations,
spiral similarities, translation as well as these combinations are all belonging to
affine transformations,. In this paper, we adopt the affine transformation which
is the composition of rotations, translations, dilations. Images can be represented
with two dimensional matrices and the affine transformation can be described
by the following matrix equation [1]:(

x2
y2

)
=
(
tx
ty

)
+ s

(
cosθ −sinθ
sinθ cosθ

)(
x1
y1

)
.

(1)
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In the equation, there are four basic parameters for the transformation, where
(x1,y1) denotes the original image coordinate, (x2,y2) denotes the transformed
image coordinate in another image, tx, ty are the translation parameters, s is
a scaling factor and θ is a rotation angle. In this paper, we will adopt this
transformation model.

2.2 Kernel Independent Component Analysis

KICA is a nonlinear method that has been used widely to perform data redun-
dancy reduction and feature extraction. Recently, Liu and Cheng et al proposed
a new algorithm that incorporates ICA and the kernel trick to improve face
recognition [6] and texture classification [7].

The main idea of KICA is to map the input data into an implicit feature space
F firstly: Φ : x ∈ RN → Φ(x) ∈ F .Then ICA is performed in F to produce a set
of nonlinear features of input data.The input data X is whitened in feature space
F . The whitening matrix is:W̃Φ = (ΛΦ)

−1
2 (VΦ)T , here ΛΦ,VΦ are the eigen-

values matrix and eigenvectors matrix of covariance matrix Ĉ = 1
n

∑n
i=1 Φ(xi)Φ

(xi)T , respectively. Then we can obtain the whitened data XW
Φ as

XW
Φ = (W̃Φ)T Φ(x) = (ΛΦ)−1αT K, (2)

where K is defined by Kij := (Φ(xi)Φ(xi)) and α is the eigenvectors matrix
of K. After the whitening transformation, Then WΦ can be calculated by the
following iterative algorithm:

ỸΦ = WΦXΦ, (3)

ΔWΦ = [I + (I− 2
1 + e−ỸΦ

)]WΦ, (4)

W̃Φ = WΦ + ρΔWΦ →WΦ, (5)

until WΦ converged, and ρ is a learning constant. According to the above algo-
rithm, the feature of a test data s can be obtained by:

y = WΦ(ΛΦ)−1αTK(X, s), (6)

where K(X, s) = [k(x1, s), k(x2, s), ...k(xn, s)]T , k is a kernel function.
In the above iteration algorithm, the function Φ is an implicit form. The kernel

function k can be computed to instead of Φ. This trick is named as Kernel Trick.
Many functions can be chosen for the kernel such as polynomial kernel:

k(x, s) = (x · s)d (7)

Gaussian kernel k(x, s) = exp(− ‖ x − s ‖2 /2σ2) and sigmoid kernel k(x, s) =
tanh(k(x·s)+Θ). Liu and Cheng et al use a cosine kernel function [6], [7] derived
from the polynomial kernel function as shown in Eq.(7), which can give a better
performance than the polynomial kernel function for feature extraction:

k̃(x, s) =
k(x, s)√

k(x, x)k(s, s)
, (8)
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where k is a polynomial kernel. In previous work, we proved that the performance
of the KICA is better than DCT, Zernike, Isomap ans KPCA [4]. In this paper,
we still adopt cosine kernel ICA in our experiments.

2.3 Image Registration with Regularized FNN

The image registration scheme includes training the FNN to provide the required
affine parameters. Each image in the training set is generated by applying an
affine transformation. The affine parameters are randomly changed in a prede-
fined range so as to reduce correlations among images. In order to improve the
generalization and immunity of the FNN from over-sensitivity to distorted in-
puts, we introduce noise in the image synthesis. Then we employ KICA as a
feature extraction mechanism presented to the FNN.

(a) (b)

Fig. 1. (a).An original image and (b).a registered image in the training set with 13
degree rotation, 120% scaling, translation of -2 pixel and 3 pixel on X-axis and Y-axis
respectively at a signal-to-noise ratio (SNR) of 15 dB

A good generalized FNN can be obtained with Bayesian regularization. This
involves modifying the objective function, which is normally chosen to be the
sum of squares of the network errors on the training set. The typical performance
function that is used for training FNN is the mean sum of squares of the network
errors (MSE).

J = MSE =
1
Ns

Ns∑
i=1

‖zi − gi‖2, (9)

where Nw is the number of samples in the training set, zi and gi is the target
and output vector respectively. In this regularization technique, the mean of the
sum of squares of the network weights (MSW) is also considered:

MSW =
1
Nw

Nw∑
i=1

w2
i , (10)

where Nw represents the number of network weight parameters and wi an ele-
ment of the matrix in a vector expression W. The modified objective function
is

J = βMSE + αMSW, (11)
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where α and β are the regularization parameters which are to be optimized in
Bayesian framework of MacKay [8], [9]. In minimizing this objective function to
find the network weight parameter, the effective value of the regularization pa-
rameter depends only on the dimension of weight parameter vector. The weights
and biases of the network are assumed to be random variables and follow Gaus-
sian distributions. It is a known fact that the optimal regularization technique
requires quite costly computation of the Hessian matrix. To overcome this draw-
back, Gauss-Newton approximation to the Hessian matrix is used. The approxi-
mation with Levenberg-Marquardt algorithm for network training is adopted in
this paper [10], [11], [12], [13]. Here the structure of the FNN is that contains 60
inputs, 4 outputs. Sigmoid transfer functions are employed in the hidden layers
while linear functions characterize the output-level neurons.

3 KICA and Regularized FNN Based Image Registration
Scheme

3.1 Different Number of Hidden Neurons

In the experiment, we compare the performance of FNN with regularization and
without regularization under different number of hidden neurons and various
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Fig. 2. Absolute registration error comparison under different number of hidden neu-
rons and noisy conditions. (a) error with respect to translation on X-axis, (b) transla-
tion on Y-axis, (c) scale and (d) rotation errors.
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noisy conditions. A pair of 256×256 resolution images was used. Fig. 1 shows
one of the original images and a transformed image by the translation, rotation
and scaling.

The training set consists of 300 images, each image is transformed from the
reference image by translating, rotating and scaling randomly within a predefined
range. Besides, additive Gaussian noise and Salt & Pepper type noise are applied
on each image in various intensities. We also generate some test samples to
demonstrate the registration accuracy of the proposed method. We apply KICA
to the training samples and reduce the dimension of the sequence of vectors from
65536 to 60. These feature coefficients of images are inputs of FNN, the FNN
is trained with Bayesian regularization and its outputs are affine parameters.
Finally, the feature coefficients are extracted from the registered image with
the same method and fed as inputs into the trained neural network to get the
estimated affine parameters.

In order to evaluate registration performance with Gaussian noise, we take 40
images for each the evaluated SNR value. The test image is rotated 13 degree,
120%scaled, translated -2 pixels and 3 pixels on X-axis and Y-axis respectively,
as shown in Fig. 1(a). Fig. 2 depicts the results of estimating the affine transform
parameters under different SNR values by using the method with regularization
and without regularization. The number of hidden neurons in Regularization1
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Fig. 3. Absolute registration error comparison under different number of training sam-
ples and noisy conditions. (a) error with respect to translation on X-axis, (b) translation
on Y-axis, (c) scale and (d) rotation errors.
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and No Regularization1 is 20. The number of hidden neurons in Regularization2
and No Regularization2 is 30. As can be seen from the results, the performance
of regularized FNN is more accurate than the method without regularization
especially when the structure of the FNN is complex.

3.2 Different Number of Training Samples

In this experiment, comparisons are made between FNN with regularization and
without regularization under different number of training samples and various
noisy conditions. Similarly, we use test image ”Cameraman” which is rotated 15
degree, scaled 77%, translated -5 pixels and 4 pixels on X-axis and Y-axis respec-
tively. Fig. 3 described the results of estimating the affine transform parameters
under different SNR values. The number of training samples in Regularization1
is 100. The number of training samples in Regularization2 and No Regulariza-
tion is 200. As can be seen from the results, our proposed scheme is better than
the method with regularization. Even if the number of training samples is re-
duced from 200 to 100, the performance of the proposed method still shows more
accurate than the method without regularization.

4 Conclusions

In this paper, a new method is proposed to improve the accuracy of image
registration, which adopts the regularized FNN and KICA to register affine
transform parameters. The regularized FNN performs well in estimating affine
parameters, especially as the structure of the neural network is complicated
and the number of training samples is small. Experiment results show that the
proposed method has more accurate registration performance and robust to noise
than some other methods. In the future work, other regularization parameter
estimation method also can be exploited to improve generalization abilities of
the FNN [14].

Acknowledegment

The research work described in this paper was fully supported by a grant from
the National Natural Science Foundation of China (Project No. 60275002).

References

1. Elhanany, I., Sheinfeld, M., Beckl, A., et al : Robust Image Registration Based on
Feedforward Neural Networks. IEEE International Conference on System, Man and
Cybernetics, Vol.2 (2000) 1507–1511

2. Wu, J., Xie, J.: Zernike Moment-based Image Registration Scheme Utilizing Feed-
forward Neural Networks. The 5th World Congress on Intelligent Control and Au-
tomation, Vol.5 (2004) 4046–4048



Image Registration with Regularized Neural Network 293

3. Xu, A.B., Guo, P.: Isomap and Neural Networks based Image Registration Scheme.
Lecture Notes in Computer Science, Vol. 3972. Springer- Verlag, Berlin Heidelberg
(2006) 486–491

4. Xu, A.B., Jin, X., Guo, P., Bie, R.F.: KICA Feature Extraction in Application to
FNN based Image Registration. The 2006 International Joint Conference on Neural
Networks, (to appear)

5. Guo, P.: Studies of Model Selection and Regularization for Generalization in Neural
Networks with Applications. PhD Thesis, the Chinese University of Hong Kong
(2001)

6. Liu, Q.S., Cheng, J., Lu, H., Ma, S.: Modeling Face Appearance with Nonlinear
Independent Component Analysis. In: Sixth IEEE International Conference on
Automatic Face and Gesture Recognition (FGR2004), Vol.2 (2004) 761–766

7. Cheng, J., Liu, Q.S., Lu, H.: Texture Classification Using Kernel Independent Com-
ponent Analysis. In: Proceedings of the 17th Int. Conf. on Pattern Recognition,
Vol.1 (2004) 620–623

8. MacKay, D. J. C.: Bayesian interpolation. Neural Computation 4 (3) (1992)
415–447

9. MacKay, D. J. C.: A practical Bayesian framework for backpropagation networks.
Neural Computation 4 (3) (1992) 448–472

10. Marquardt, D.: An Algorithm for Least-squares Estimation of Nonlinear Parame-
ters. In: SIAM Journal Applied Mathematics, Vol.2 (1963) 431–441

11. Hagan, M.T., Menhaj, M.: Training Feedforward Networks with Marquardt Algo-
rithm. IEEE Trans. Neural Networks 1 (1) (1994) 113–118

12. Foresee, F. D., Hagan, M. T.: Gauss-Newton approximation to Bayesian regu-
larization. In: Proceedings of the 1997 International Joint Conference on Neural
Networks, (1997) 1930–1935

13. Doan, C.D., Liong, S.Y.: Generalization for Multilayer Neural Network: Bayesian
Regularization or Early Stopping. In: Proceedings of Asia Pacific Association of
Hydrology and Water Resources 2nd Conference (2004)

14. Guo, P., Lyu, M. R., Chen, C. L. P.: Regularization Parameter Estimation for
Feedforward Neural Networks. IEEE Trans. Neural Networks 33 (1) (2003) 35–44



A Statistical Approach for Learning Invariants:
Application to Image Color Correction

and Learning Invariants to Illumination
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Abstract. This paper presents a new approach for automatic image color correc-
tion, based on statistical learning. The method both parameterizes color indepen-
dently of illumination and corrects color for changes of illumination. The moti-
vation for using a learning approach is to deal with changes of lighting typical
of indoor environments such as home and office. The method is based on learn-
ing color invariants using a modified multi-layer perceptron (MLP). The MLP
is odd-layered. The middle layer includes two neurons which estimate two color
invariants and one input neuron which takes in the luminance desired in output of
the MLP. The advantage of the modified MLP over a classical MLP is better per-
formance and the estimation of invariants to illumination. The trained modified
MLP can be applied using look-up tables (LUTs), yielding very fast processing.
Results illustrate the approach.

1 Introduction

The apparent color of objects in images depends on the color of the light source(s) il-
luminating the scene. Because of this color constancy problem, image processing algo-
rithms using color, such as color image segmentation or object recognition algorithms,
tend to lack robustness to illumination changes. Such changes occur frequently in im-
ages (shadows, lights on/off, varying sunlight). To deal with this, a color correction
scheme that can compensate for illumination changes is needed.

2 Illumination Correction – State of the Art

Color in images is usually represented by a triband signal, for instance Red-Green-Blue
(RGB). As discussed in the introduction, this signal is sensitive to changes in illumina-
tion. However, image processing techniques need to be robust to such changes. There-
fore color needs to be parameterized independently of illumination. This can be done
by parameterizing color with one or two parameters or by correcting the triband signal.
A number of color parametrization and color correction schemes have been described
in the literature [9]. This section describes a number of approaches that work on a single
image. Table 1 summarizes their pros and cons.

Examples of directly correcting the triband signal are diagonal color correction (such
as gray world and white patch) and non-diagonal color correction [6]. They are both
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Table 1. Comparison of color correction approaches that work on a single image

approach principle local / cons pros
of the approach global

estimation of neural network global same illuminant illuminant
illuminant estimates illuminant for whole image, explicitly
color [1] chromaticity from further processing identified

image uv histogram for image correction
ratio-based analytic local / original image fast

color color invariants pixel-wise can’t be reconstructed
invariants [2] from invariant images

luminance simple analytic local / completely local, very fast
correction in color correction pixel-wise relatively sensitive to using LUTs

HSV space [3] illumination changes
color transfer normalization by mean global limited to global fast

[4] and variance in lαβ changes in
color space illumination

intrinsic image finds an axis invariant global need for few colors works for any
by entropy to illuminant color by and many illuminants

minimization entropy minimization, illuminations in image
[5] then projects image to find invariant axis,

perpendicularly to axis not fast
diagonal linear global restricting very fast

color correction assumptions,
no non-linearities

non-diagonal PCA-based pixel illuminants must fast
color linear correction be known (using LUTs)

correction [6]
enhancement of multi-scale local color correction fairly fast

dark images using convolution areas for visual effect, (3 fps for
modified (linear) performance for 640x480 images),

multi-scale background any lighting
retinex [7] subtraction unknown (blueish, etc ...)

color statistical learning pixel trained for given rear could be very fast
correction of non-linear with learnt projection setup & (using LUTs)

using a color correction global lighting conditions,
”classic” MLP transform by MLP a priori does not estimate

[8] for lighting color invariants
color statistical learning pixel trained for range very fast (LUTs,

correction of non-linear with learnt of lightings 3.75 ms per frame
using a color correction global (e.g. customary or 266 fps for
trained transform by MLP a priori in home and office 320x240 images),

modified MLP + statistical learning about type e.g. whitish trained for range of
(this paper) of 2 color invariants of lighting or yellowish) illuminations

linear, and cannot model non-linearities. They also rely on limiting assumptions (known
image mean for gray world, known maximum value for each channel for white patch,
illuminants known for [6]). They are very fast and can be implemented using LUTs for
even greater speed.
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In [8] a neural network is used to learn the color correction needed in a specific
rear projection environment. It does not estimate color invariants. It also is trained for
specific lighting conditions.

An example of mono-band parametrization of color is hue (from hue-saturation-
value, a.k.a. HSV) [3]. An example of bi-band color parameterization are chrominances
uv (from the YUV color space) [3] and the ab values from the CIE Lab color space [3].
These three color representations (H, uv or ab) are analytical and thus do not require
learning. They are fast pixel-wise methods. They have a certain robustness to illumina-
tion changes, but this robustness is limited. Color transfer [4] is a method with a similar
philosophy, normalizing color by its mean and variance in lαβ space. It is global and
fast, but limited to global changes in illumination.

An approach for estimating color invariants from images consists in calculating ra-
tios of RGB components at a given pixel (R/B) or between neighboring pixels (such as
(Rx1Gx2)/(Gx1Rx2)) [2]. This method is also pixel-wise and thus fast. These invari-
ants are also very robust to illumination changes. However, a lot of information about
the original signal is lost and reconstructing it from the invariants is difficult.

A more sophisticated method has been proposed by [5]. It estimates a mono-band
invariant and is based on a physical model of image formation. It works globally from
the whole image. In (log(R/B), log(G/B)) color space, an axis invariant to illuminant
color is determined by entropy minimisation. Projecting the image perpendicularly to
the axis gives corrected colors. The approach does not require learning and applies to
any type of illuminant, but is relatively slow. It also requires that the image contains
relatively few different colors and many changes of illumination for each color.

Yet another approach consists in explicitly estimating the color of the illuminant [1].
A neural network estimates the chromaticity of the illuminant from the histogram of
chromaticity of the whole image. The method works globally from the whole image
and supposes there is only one illuminant for the entire image.

Another method is [7]. It is a bit out of the scope of this paper, since it aims at
the enhancement of dark images for visual effect, and does not give information about
performance for color correction. However, it gives a benchmark about speed, since the
authors aimed at fast processing. This will be discussed in section 4.5.

3 A Statistical Approach to Measure Color Invariants

3.1 A Modified Multi-layer Perceptron: Motivation

The motivation of this work is twofold: (1) to parameterize color compactly and inde-
pendently of illumination by two invariants (2) to do it in real-time. Firstly, two param-
eters are needed to parameterize color with enough degrees of freedom to reconstruct a
triband signal, given a luminance (or a gray level signal). Secondly, real-time processing
(25/30 images per second for video) is also necessary for some applications. For this,
slow methods such as [1] and [5] are unsuitable. Pixel-wise approaches are more suited.
Among those, hue-Saturation, uv (from YUV) and ab (from the CIE Lab color space)
lack robustness to illuminations changes. [2] is robust to these, but reconstructing an
image from the invariant(s) is difficult. A new fast approach is needed.
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Fig. 1. A classical MLP with 4 inputs can be used to perform color correction. (Ri, Gi, Bi)
is the input color. (Rd, Gd, Bd) is the desired output color, corresponding to the same color seen
under a different illumination. Ld = Rd+Gd+Bd

3
is the luminance of the desired output and is a

direct function of the illumination.

Fig. 2. A modified MLP for color correction and color invariant learning. λ and μ are the
color parameters invariant to illumination that the MLP is trained to estimate. (R̂d, Ĝd, B̂d) are
the actual outputs of the network. Bias neurons are omitted from this figure.

In practice, a limited range of illuminants are available in indoor environments. It is
therefore interesting to use learning methods to find a color parameterization invariant
to the ”usual” illumination changes. This also provides a priori information about the
illuminants, making the color correction global, which is, as Land showed [10]), nec-
essary to perform correct illuminant correction. In practice, the lighting usually found
in home and offices comes from fluorescent lights, incandescent light bulbs and natural
sunlight from windows. They tend towards the whitish and yellowish areas of the spec-
trum (very few bluish or reddish lights). These are the illuminants that our approach
deals with.

Our learning method of choice is neural networks and more specifically multi-layer
perceptrons (MLPs) for their ease of use and adaptability. A classic MLP with 4 input
neurons and 3 output neurons can be used for color correction under varying illumina-
tions (see fig. 1). The fourth input, a context input, is the luminance L of the expected
output and is a direct function of the illumination. This fourth input neuron prevents
the mapping to be learnt by the MLP from including one-to-many correspondences
(the different corrected colors corresponding to the same input color with different il-
luminations) and thus makes it solvable. If the MLP contains a bottleneck layer with
3 neurons, then these perform a re-parameterization of RGB space. However the three
color parameters estimated by the 3 neurons (called here p1p2p3) have no reason to be
invariant to illumination.

To force the MLP to code color independently of illumination, the architecture of
the traditional MLP is modified (see fig. 2). The entry point L of the MLP (fourth input
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neuron) is moved to the bottleneck layer of the network so that it becomes the third
and last neuron of this layer. This displaced entry makes our MLP different from a triv-
ial compression network. The two other neurons of the bottleneck layer have outputs
(λ, μ). During training, the network learns to reconstruct the corrected color (Rd, Gd,Bd)
from (λ, μ) and the desired output luminanceLd = Rd+Gd+Bd

3 . Thus it learns to ignore
the luminance of the input (Ri, Gi,Bi) and learns to estimate two color characteristics
(λ, μ) that are invariant to illumination.

The approach does not require any camera calibration or knowledge about the image.
However, it supposes that the illuminants are of the type commonly found in indoor
environments.

3.2 Training the Modified Multi-layer Perceptron

As shown in fig. 2, the modified MLP includes 5 layers (this could be generalized
to an odd number of layers). The input and output layers have 3 neurons each (plus
an additional bias), for RGB inputs and outputs. The middle layer includes 3 neurons
(excluding bias): their outputs are called λ, μ and L. The second and fourth layers have
arbitrary numbers of neurons (typically between 3 and 10 in our experiments). The links
between neurons are associated to weights. Neurons have sigmoid activation functions.
The network includes biases and moments [11].

A database of images showing the same scenes under different illuminations is used
to train the modified MLP. The illuminations are typical of indoor environments such
as home and office.

A classic MLP training scheme based on backpropagation is applied. A pixel is ran-
domly sampled at each iteration from the training set. Its RGB values before and after
an illumination change (from real images) are used as input (Ri, Gi,Bi) and desired
output (Rd, Gd,Bd) to the network. Propagation and back-propagation are then per-
formed, with one modification: as mentioned above, the output L of the third neuron
of the third layer is forced to the value of the luminance corresponding to the desired
output color.

3.3 Use of the Modified Multi-layer Perceptron

The trained modified MLP can be used to correct color images. Each image pixel is
propagated through the first half of the trained network to find the invariants λ and μ.
An arbitrary luminance L is imposed on the pixel by forcing the output of the third
neuron of the third layer to L. The output of the trained network then gives the cor-
rected color. If a constant luminance L is used for all pixels in the image, an image
corrected for shadows and for variations of illumination across the image and between
images is obtained. The color correction can be tabulated for fast implementation. The
approach could be easily extended to a greater number of inputs and outputs or different
inputs/outputs than RGB. For instance, YUV or HSV, or redundant characteristics such
as RGBYUVLab could be used as inputs and outputs.
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4 Image Correction Results

4.1 Experimental Conditions and Database

The network was trained using 546000 pixels, randomly sampled from 91 training im-
ages (6000 pixels per image), taken by 2 webcams (Philips ToUCam Pro Camera and
Logitech QuickCam Zoom). The training images are of indoor scenes viewed under
different illuminations typical of home and office environments. Testing was performed
on other images taken by the 2 webcams used for training and by a third webcam, not
used for training, a Logitech QuickCam for Notebooks Pro.

In practice, using 8 neurons in the second and fourth layers of the MLP gives good
performance. A gain of 1.0 was used, with a momentum factor of 0.01 and a learning
rate of 0.001. Pixels that were too dark (luminance ≤ 20) or too bright / saturated
(luminance≥ 250) were not used for training.

Fig. 3. Example of color correction learnt by the modified MLP. (1) original image (unknown
illumination). (2) and (3) invariants λ and μ estimated by the MLP. (4) locus of the invariants in
the uv space. (5) corrected image with pixel luminance inputs set to values proportional to pixel
luminances in the original image (plus a constant). (6) corrected image with the pixel luminance
inputs set to a constant value for all pixels. (7) 7 color peaks found by mean shift [12] in the
corrected image (6). (8) resulting image segmentation.

4.2 Comparison with a ”classical” Multi-layer Perceptron

Table 2 shows that the modified MLP (fig. 2) performs better in reconstructing target
images than a classic MLP (fig. 1). The reconstruction is done given the expected lumi-
nances Ld of the pixels of the desired target image.

4.3 Invariant Estimation by the Modified MLP

Figure 3 shows the two invariants (λ, μ) learnt by the modified MLP and calculated on
an image (see part (1) of fig 3) of unknown illumination. The two invariants are seen in
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Table 2. Mean error between reconstructed and target images for a ”classical” MLP and the
modified MLP presented in this article. The mean error was calculated using 748 320x240 test
images (not in the training set). The error is averaged over the three color components (R,G,B).

for a classical MLP for the modified MLP
mean error (in pixel values ∈ [0, 255]) 10.47 5.54

relative mean error 4.11% 2.17 %

parts (2) and (3) of the figure. Objects of similar color to the human eye have similar
values of λ and μ. Part (4) of fig. 3 shows the locus of the invariant values (λ, μ) in
the image as a fonction of the chrominance values (u, v) (from YUV color space) of
the image pixels. The locii of the two invariants are not identical, and thus we have two
invariants and not only one. Part (6) of figure 3 shows the corrected image estimated
for a constant luminance input over the image. Much of the influence of shading and
variations of illumination across the image is removed, apart from specularities (white
saturated areas) which are mapped to gray by the network. Areas of similar color in
the original image (despite shading and illumination) have much more homogeneous
color in the corrected image. This is further shown by performing mean-shift based
color segmentation [12] on the corrected image. Seven areas of uniform color are read-
ily identified and segmented (see part (7) and (8) of fig. 3) in the corrected image. They
correspond roughly to what is expected by a human observer. This example illustrates
that our modified MLP successfully learns a parameterization of color by two parame-
ters that are invariant to illumination.

Fig. 4. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and the whole-image color correction method of Finlayson et al [5]. Application to shadow
detection. Example I. (a) and (d) show the original image. (b) is the invariant image obtained using
the method of [5] and (c) shows the shadow edges estimated from (b). (e) shows the corrected
image estimated using the modified MLP, (f) and (g) the results of mean shift color segmentation
[12] from (e) and (h) the shadow edges estimated from (g).

4.4 Comparison with Other Color Correction Methods from the Literature

Figures 6, 4 and 5 compare our color correction approach with other color correction
approaches.
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Fig. 5. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and the whole-image color correction method of Finlayson et al [5]. Application to shadow
detection. Example II. (a), (b), (c), (d), (e), (f), (g) and (h) illustrate the same steps as in fig. 4.

Figure 6 compares our approach to HSV-based color correction and applies it to
color-based background subtraction. The two first images of the first and second
columns of the figure show that our color correction scheme is indeed robust to changes
in illumination, since there is much less difference between the images after correction
than before. Figure 6 also shows that the correction performed in this paper compares
favorably with an HSV-based color correction (which consists in taking an RGB color
to hue-saturation-value space, setting its value/luminance to a constant, then going back
to RGB space to get the corrected color).

Figures 4 and 5 illustrate that our correction is of similar quality to that of Finlayson
et al [5] (briefly described in the introduction of this paper). The application of color
correction is the detection of shadow contours (which can be used for shadow removal,
as shown in [5]). Even though it might be less robust to large light changes or unusual
light changes (such as turning on a blue or red light), our method is faster, being pixel-
wise.

4.5 Performance of a LUT Implementation of the Trained Modified MLP

Color correction by the modified MLP can be tabulated, making it one the fastest pos-
sible color correction approaches. Execution time using LUTs is 3.75 ms for an entire
320x240 image, on a Pentium4 3GHz. This way, color correction can be used as a
first step in video-rate image processing, without using a large part of the frame pro-
cessing time (40ms). This LUT implementation is possible because the approach is
pixel-wise.

An HSV correction scheme could be as fast (using LUTs), but it would be less per-
formant, as illustrated by fig. 6. A color correction scheme based on [5] would be of
equal performance, as illustrated on examples by fig. 4 and 5. It could deal with more
changes of illumination, since our approach is limited to the type of frequently found
indoor lighting the modified MLP was trained for. However, working globally on the
image, it could not be implemented as a LUT, and would thus be slower. The approach
of [7] (briefly described in section 2), which performs good-quality color enhancement
at good speed, is slower than our approach (3 frames per second on a Pentium4 2.26GHz
for a 640x480 image).
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Fig. 6. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and pixel-wise HSV-based color correction, HSV being the well known hue-saturation-
value color space

5 Conclusion

This paper presents a new neural network-based approach to estimating image color
independently of illumination. A modified multi-layer perceptron is trained to estimate
two color invariants and an illumination- corrected color for each input color. The net-
work is trained for typical indoor home and office lighting (fluorescents and light bulbs)
and outdoor natural light, using two webcams. Such statistical training gives the ap-
proach a good compromise between generality (being able to handle different types
of illuminants) and discrimination power (being able to discriminate between different
colors). Experiments with lighting changes and another webcam show that the training
seems to have good generalization properties. Once learning has been achieved, color
correction is very fast using look-up tables, so that color correction can be performed
as a part of image pre-processing before applying other image processing algorithms
(such as background subtraction or color-based image segmentation).
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Abstract. The paper proposes a new method for image resolution enhancement 
from multiple images using the limited recurrent neural network (LRNN) ap-
proach, which is a set of collectively operating feed-forward neural networks. In 
the limited recurrent networks, information about past outputs is fed back 
through recurrent connections of output units and mixed with the input nodes 
flowing into the network input as external input nodes. Thus, experience about 
past search is utilized, which enables LRNN to be capable of both learning and 
searching the optimal solution for optimization problems in the solution space. 
Estimates computed from a low-resolution (LR) simulation image sequence and 
an actual video film sequence show dramatic visual and quantitative improve-
ments over bilinear interpolation, and equivalent performance to that of the fre-
quency domain approach.  

1   Introduction 

There are increasing demands for high-resolution (HR) images in various applica-
tions, including health diagnosis and monitoring, military surveillance, and terrain 
mapping by remote sensing. Although the most direct way to increase spatial resolu-
tion is to use a HR image acquisition system, the high cost for high precision optics 
and image sensors is always a prohibitive factor in many commercial applications. 
Therefore, a new approach toward increasing spatial resolution is required to over-
come these limitations of the sensors and optics manufacturing technologies. Cur-
rently one most promising approach is to use image superresolution (SR) reconstruc-
tion technique to obtain a HR image (or sequence) from the multiple observed LR 
images[1]. 

Since Tsai and Huang’s work[2], many work has been reported in the literature, in-
cluding the weighted least-squares algorithm[1], the nonuniform interpolation ap-
proach[1], the projection onto convex sets(POCS) method[3] and MAP Bayesian 
approach[4]. All of these approaches are based on certain assumptions about a degra-
dation imaging model and the statistics of the additive noise. When the degradation 
factors in the imaging process are ambiguous, the performances of these approaches 
are limited.  To overcome these limitations and reduce computational complexity in SR 
image reconstruction problem, we try the neural network approach in the paper. 
Abiss[5] proposed a modified Hopfield neural network for SR image reconstruction,  
Zhang[6] presented a scheme combining intra-frame interpolation and linear restoration 
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by neural network together for image restoration. Wang[7] employed the standard 
radial basis function(RBF) to realize the functional mapping from the degraded image 
space to the original image space. Salari[8] proposed the integrated recurrent neural 
network for image resolution enhancement, combining the Hopfield neural network 
and the feedforward network together. Hopfield type network is superior in solving 
optimization problems, but the search for an optimal solution is slow for the experi-
ence gained from the prior relaxation is not utilized in the next iteration and the net-
work is reinitialized to the initial state in each relaxation. The multilayered feedfor-
ward type networks, as the RBF network, have dominant learning capability, but they 
lack the capability of searching an optimal solution in the solution space through a 
relaxation process. 

Therefore, in this paper we propose a novel limited recurrent neural net-
work(LRNN) approach for SR image reconstruction from multiple LR images. The 
proposed LRNN method has the ability of searching an optimal solution in the solu-
tion space by relaxation and learning by adjusting the connection weights. The pro-
posed approach is trained by a Gauss-Newton Real Time Recurrent Learning (RTRL) 
algorithm[9]. Experimental results on a simulation image sequence and an actual 
satellite image sequence demonstrate that the proposed method is competitive in solv-
ing image resolution enhancement problem, for its excellent learning adaptability. 

2   Preliminaries on LRNN and SR Image Reconstruction  

Let z(k)=(z1(k), …,zN(k)) be the network state vector (vector of output nodes) at time 
k,  let W be the weight matrix. f denote the node function, such as sigmoid, tanh and 
etc. The recurrent network dynamic system is defined as, 

( ) ( )[ ]kWzfkz =+1 . (1) 

where k denotes the time index. In the above definition, all external input nodes and 
network input nodes are lumped into one vector z(k) for simplicity. The network input 
nodes are clamped together at the particular input values: xi(k) = ui(k) Ii ∈ , where 
u(k) represents the network input vector at time k, and I represents the set of network 
input nodes. 

Recurrent networks are used in situations when we have current information to 
give the network, but the sequence of inputs is also important. We need the neural 
network to store a record of the prior inputs and combine them with the current data 
to produce an answer. Fully recurrent networks provide two-way connections between 
all processors in the neural network. Due to their complex and dynamical property, 
they exhibit instability and chaotic behavior associated with their power, and take an 
in-determinate amount of time in reaching a stable state. However, LRNN is a good 
compromise between the simplicity of a feed-forward network and the complexity of 
a fully recurrent neural network, allowing feedback from the hidden units or the out-
put units to flow back into the network as a set of external inputs, while prohibiting 
two-way connections between all nodes.   

In training LRNN, the following error function is defined  
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where eki is the residual error of output unit i at time at time k,  di(k) is the desired 
output for unit i at time k , and O is the set of output nodes. In the SR image recon-
struction, di (k) represents unit i in the original HR image and zi (k) is unit i in the 
reconstructed image at time k. 

In SR image reconstruction, the ill-posed reconstruction problem can be regularized 
through adding a priori information constraints and its general solution can be ex-
pressed as,  
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∈=
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2

zzHy
Sc
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Pi
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where P is the number of LR image frames, yi is the LR image, Hi represents the 
contribution of pixels in the HR image to the corresponding pixels in the LR image,  z 

is the reconstructed HR image, α  is the regularization parameter, ( )zcϕ is a poten-

tial function that depends only on the pixel values located within clique c, and S de-
notes the set of cliques. The first part calculates the difference between the pixel value 
of the LR images and the downsampled versions of the HR image z. The second part 
is the regularization component resulting a smooth solution.  

3   Proposed Limited Recurrent Neural Network Structure 

The LRNN iteratively feeds its output back to the input until it converges from an 
initial state to a stable state. It carries the advantages of both the recurrent network as 
well as the multilayered feedforward network in solving optimization problems. The 
designed LRNN structure includes of three layers, the input layer, the hidden layer 
and the output layer. Fig. 1 shows the overall diagram of the proposed network. The 
hidden layer is functionally divided into two parts: the comparison part and the con-
straint part. The comparison network computes the difference value corresponding to 
the first part of equation 3. The constraint network functions as an estimator of the 
second part of equation 3, representing the regularizing constraint information. Fi-
nally, the output network combines the outputs from these two networks to obtain  

 

 

Fig. 1. Diagram of the proposed LRNN for SR image reconstruction 
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the expected HR image. The details of these networks are described in the following 
subsections, respectively. 

3.1   Comparison Network 

Considering the pth LR image frame yp, p=(1, . . .,P), let Ipk (p=1,2,. . ., P; k =1, 2, . . ., 
9) denote the kth pixel value of a 3×3 window yp, p, hp =(hpx , hpy)  be the rotation and 
translation parameters of yp relative to the reference LR image.  The input nodes vector 
of the three-layered comparison network is I = (I11, I12, . . ., I19, I21, I22, . . ., I29, . . . , IP1, 
IP2, . . ., IP9, 1, h1x, h1y, 2, h2x, h2y, . . ., P, hPx, hPy). The external input vector to  
the network is the feedback from the output units ( )n

M
nn OOOO ,,, 21= , n

kO denotes the  

output unit k in the nth relaxation, M is the number of neurons in the  output nodes set. 

 

Fig. 2. Comparison network 

In the hidden layer, the first P neurons take the pixel values in 3×3 window in the 
LR image frames as inputs and compute the mean value of the 9 pixels. Each of the 
last P neurons calculates the downsampled LR image pixel value based on the infor-

mation provided by the HR image pixels ( )n
M

nn OOOO ,,, 21=  in the previous relaxa-

tion and the related rotational and translational parameters p, hp.  Each neuron in the 
output layer calculates the difference between the jth and (P+j) th output neurons in 
the hidden layer. The implementation of the network is defined as, 
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where a
kx  and a

ky  are respectively the output neuron k in the hidden layer and the 

output unit k in the output layer. 

3.2   Constraint Network 

The constraint network is designed to be a two-layered feedforward network shown in 
Fig. 3. The outputs of the network are formulated as follows, 

=

=
M

i

n
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where kiα is the connection weight among the neurons (Fig. 4) and kiα   is set as, 
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The constraint network calculates the Laplacian value of each point in the external 
input, which is fed back from the output of the whole LRNN network. The output of 
the constraint network is used to control the smoothness of the reconstructed HR 
image. 

 
Fig. 3. Constraint network 

 
 
 
 
 
 
 

Fig. 4. The cardinal neighbors of a HR pixel Oi. In this case, kiα would be nonzero only Ok  is 

an immediate spatial neighbor of Oi (shaded pixels). 

Oi 
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3.3   Output Network 

The output network is also a two-layered feedforward network as shown in Fig. 5. It 
combines the outputs of the two networks in the hidden layer as input vector to gener-
ate a set of new outputs. The output can be calculated by the following equation, 

+= +
=

+ b
mmP

a
k

P

k
km

n
m ywywfO )1(

1

1 .  (9) 

where wkm  (k =1, 2, . . .,P+1) is the connecting weight between the kth neuron in the 
input vector and the mth neuron in the output vector. 

The activation function is chosen to be the sigmoid function  

   ( ) ( )xexf −+= 11 .  (10) 

 

Fig. 5. Structure of Output network 

3.4   Training the LRNN Network 

We adopt the Gauss-Newton Real Time Recurrent Learning (RTRL) method to train 
the proposed network due to its simplicity and fast convergence. It allows the network 
to iteratively search along the negative Gauss-Newton gradient direction. The network 

is trained by updating weights along the direction vector GNp , 

( ) ( ) GN
kmkm ww pη−= old new . (11) 
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where  is the learning rate, r(t) is the residual errors of outputs across K consecutive 
time sequence. ui  is the left SVD decomposition of the Jacobian matrix of  the error 
function E  in equation 2, vi is the right decomposition, i is singular values. 
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4   Results 

The experiment results on the proposed neural network are presented here. The train-
ing images set comprises the original HR image and the degraded LR images gener-
ated from the HR image. Nine sets of motion parameters ( p, hp) are generated by IDL 
random function, with subpixel magnitudes for hp; and small values in the range of 
[0°, 3°] for p. Using these parameters, a sequence of  9 translated images is generated 
from the 512×512 sized HR image. These 9 images are further blurred by 5×5 Gaus-
sian smoothing filter and decimated by a factor of L1= L2=4 to produce 9 LR images 
of size 64×64. Following the above procedure, two training sets of LR images to-
gether the corresponding original HR images are obtained using the ‘Lena’  

 

     
                             (a)                                                                        (b) 

     
                          (c)                                                                          (d) 

Fig. 6. LRNN on board sequence. (a) Original HR image. (b) Bilinear interpolation of the 
reference image. (c)SR reconstruction result by the frequency domain approach. (d) SR 
reconstruction result by LRNN approach.  
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and‘Board’ images, respectively. One typical LR image is bilinear interpolated to 
generate an initial HR image. During the training process, the mean squared error 
(MSE) corresponding to the original HR image and the current generated HR image is 
calculated for each iteration. The training process does not terminate until the changes 
of MSEs between two consecutive iterations reach certain small values.  

After the training process, FRNN is used to reconstruct the HR image using the 9 
LR ‘Board’ images. The original HR ‘Board’ image is shown in Fig.6 (a). The bilin-
ear interpolated HR image is shown in Fig. 6(b), the HR reconstruction image pro-
vided by the frequency domain method[11] is  shown in Fig.6(c), and the LRNN 
reconstructed HR image is shown in Fig. 6(d). The PSNR (Peak Signal-to-Noise Ra-
tio) of the bilinear interpolation is 20.1, that of the frequency domain reconstruction 
result is 23.1, and that of LRNN result is 23.2. Cleary, the LRNN approach has effi-
ciently improved the spatial resolution of the LR images and its SR reconstruction 
performance is as excellent as that of the frequency domain approach. The digital 
numbers, the characters and the circuit nodes in the LRNN result are much clearer 
than what is seen in the bilinear interpolation result. 

To further investigate the performance of the proposed network, we applied LRNN 
to another set of LR images without retraining. The motion parameters are estimated 
using a gradient-based motion estimation algorithm [10]. Fig. 7(a), 7(b) and 7(c) show  

 

  
(a) (b)     

 
(c) 

Fig. 7. LRNN on bridge sequence. SR reconstruction result by (a) bilinear interpolation, (b) the 
frequency domain approach, (c) LRNN reconstruction.  
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the generated HR images from bilinear interpolation, the frequency domain recon-
struction and LRNN reconstruction, respectively. The visual resolution of the calen-
dar is effectively enhanced in the LRNN reconstruction result. 

From the results, it can be seen that the proposed LRNN has the wonderful learn-
ing capability to extract the internal mapping relationship between a set of LR image 
sequence and the HR image. Compared with other SR reconstruction methods in the 
spatial domain and the frequency domain[1], the proposed LRNN also has the advan-
tage of simplicity and parallel computational capability. 

5   Conclusion 

We have proposed a novel neural network based method for superresolution image 
reconstruction from multiple low-resolution image frames. The proposed network is a 
kind of limited recurrent network which feeds back its outputs to the inputs without 
any time delay. It has both of the capabilities of learning and searching optimal solu-
tions in the solution space for optimization problems. Simulation results demonstrate 
that the proposed limited recurrent neural network to SR image reconstruction prob-
lems is, therefore, competitive with the traditional methods for solving the problem. 
We have shown that LRNN can successfully solve the ill-posed high-resolution image 
reconstruction problem and achieve significant visual improvement. Further, in com-
parison with other methods, the proposed neural network SR reconstruction is also 
simple and efficient. 
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Abstract. With the availability of multi-sensor and multi-frequency im-
age data from operational observation satellites, the fusion of image data
has become an important tool in remote sensing image evaluation and
segmentation. This paper presents a novel Radius Basis Function (RBF)
neural network with some distinctive training strategies, which can in-
tegrate multiple information sources efficiently and exploit the potential
advantages of each feature. Multi-scale features extracted from remote
sensing images are evaluated adaptively and used for segmentation. Ex-
perimental results obtained on artificial and real data are both presented
which demonstrate the effectiveness of our proposal.

1 Introduction

Digital image fusion is a relatively new research field at the leading edge of
available technology. With the availability of multi-sensor and multi-frequency
images from Synthetic Aperture Radar (SAR), it forms a rapidly developing
area of research in remote sensing [1] [2]. Many image fusion approaches have
been developed in literature, including the intensity-hue-saturation transform
(IHS) [3], principal component analysis (PCA) [4], discrete wavelet transform
(DWT) [5] and so on. However, to properly evaluate various features used in
the segmentation process is the main problem remain unsolved. Many fusion
algorithms perform on multi-spectral and panchromatic imaging sensors having
different ground resolutions of pixels. While many methods use pyramid-based
schemes which are complexity and inefficient [1].

Radius Basis Function (RBF) Neural Network is one kind of feed-forward
neural network. It has many good advantages, such as simple structure and a
good approaching performance. RBF network has been used in various fields
including pattern classification, function approaching etc. [9] [15] [14]. However,
it is a rather difficult task to train the numerous parameters with the former
training strategies and sometimes the RBF approaches give poor performance
[16]. When it is applied to remote sensing images the problem will become even
severe and desire for a favorable solution.
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Based on these considerations, this paper presents a novel Radius Basis Func-
tion (RBF) neural network which adopts the network with feature weights to
fuse multi-scale features. We then apply the adaptive RBF neural network to
the remote sensing image fusion. A novel multi-phase training strategy is pro-
posed to integrate multiple information sources efficiently. We first train the
kernel centers without considering network weight and kernel width, thus we
can simplify the training process and locate the centers of hidden unit more
accurately because the centers usually play the most important role for classifi-
cation [17]. Then the rest parameters (the network weights, the feature weights
and the kernel variances) are trained simultaneously with fixed center position.
During the process some distort effects between parameters are eliminated. As a
consequence, improved performance can be obtained. Experimental results ob-
tained on artificial and real data are both given to demonstrate the feasibility of
the proposed method. In the final section some discussions and conclusions are
presented.

2 Adaptive RBF Neural Network

In order to fuse different features extracted from the SAR image, we use the
RBF model with feature weight. Concretely, the kernel function of hidden units
is formulated as follows:

φj(x) = exp(
||wL1x− μj ||

2σ2
j

) (1)

where x represents any pattern vector in the training set and μ, σ are called the
center of the kernel function of the j− th hidden unit and its width respectively,
wL1 = {w1, ...,wm} is the feature weights which is desired to fuse multi-scale
features, m reflects the max component of the pattern vector.

As presented in the above section, to tain the RBF neural network is a difficult
task because the conventional training scheme is found to be time-consuming and
tend to suffer from the local minima problems [9] [6]. Although many complex
training technique have been suggested [14] [15] [13] [11], most of all are based
on RBF neural network without feature weights. So in this paper, we propose
the multi-phase training algorithm based on the error back-propagation process.
This method is very novel and effect. Comparing to the clustering method as
well as the BP algorithm, we can obtain better generalization performance. The
key technique of our method is to locate the centers of hidden units.

In order to locate the center of hidden units accurately, the multi-phase train-
ing method divide the hidden units, denoted by NH , into nc subset, N i

H(i =
1, ..., nc), according to the proportions of samples of each class in the training
set. Then we chose randomly some samples from the λi class as the initial center
of all neurons of the N i

H , That is to say, we let the neurons in N i
H only serve

for the i− th class. Therefore, it becomes possible for us to training the centers
respectively using the individual class error, which is the most difference of our
method from the others, as a result, we can simplify the training process and
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eliminate the canceled effect between parameters [16]. In implementing, we ini-
tiate the neural network by randomly chose some samples from the each class as
the initial center of every neuron in N k

H . In this paper the vector wL2 denotes
the network weights that connect the hidden layer and the output layer, and
they are initialized within [−1, 1]. Meanwhile the width δj (j ∈ [1, |NH |]) are all
initialized properly.

2.1 The Multi-phase Training Strategy

Training kernel center and feature weights. Given an input feature vector
xi with m dimensions, the corresponding value of the k− th output neural is fk.
We mark dk = 1 if xi ∈ λk (The k−th class) or dk = 0 otherwise. Then the error
function can be partitioned into nc parts denoted as Ek (k ∈ {1, 2, · · · , nc}).

Ek(wL1 ,wL2 , μ) =
∑

∀xi∈λk

‖fk(xi)− dk(xi)‖2 (2)

The above Ek represents the sum of error corresponding to each class. Con-
sequently, in order to adjust the kernel center of our RBF network, we have

μj = μj − η∇Ek, if j ∈ N k
H , k ∈ [1, nc] (3)

where η is a parameter that controls the learning rate. ∇Ek is the gradient of
error sum and j ∈ N i

H means the j-th hidden unit is allocated to serve for
the k-th class. The above equation indicates that the kernel centers of the RBF
network should be adjusted along the gradient-descend direction of the inner-
class error. This adjusting method will prevent the center of a hidden unit from
escaping far away from its class, which means that it is a local fast adjusting
scheme. Furthermore, the feature weight adjusting rules are follows:

wL1
ji = wL1

ji − η∇2Ek (4)

where wL1
ji is the fusion weight connection the i-th image feature and j-th neural

of the hidden layer. ∇2Ek is the second order partial derivative of the k-th class
error used here to feedback the adjustment.

Training other parameters of hidden units. Let E =
∑nc

k=1 Ek be the total
error of the training output and Êk = E − Ek denotes the inverse of Ek. After
optimizing the kernels’ center positions, we keep these centers unchanged while
adjust the width δj of hidden units.

δj = δj − η∇Êk; if j ∈ N k
H , k ∈ [1, nc] (5)

The purpose of this adjusting process is to prevent the kernel functions of
hidden units belonging to different classes from overlapping each other. As far
as the weights are concerned, the final results can be refined through the following
adjustment:

wL2 = wL2 − η∇E; wL1 = wL1 − η∇2E (6)
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where wL2
kj is the RBF weight connecting the j-th hidden unit and the k-th

output unit of the third layer and wL1
ji is the fusion weight connection the i-th

image feature and j-th neural of the hidden layer. E is the total error calculated
through all training patterns.

3 Multi-scale Features for Region Description

Given a candidate nx × ny image, where each pixel at (x, y) ∈ {1, 2, · · · , nx} ×
{1, 2, · · · , ny} has a Γ dimension vector (l(1), l(2), · · · , l(Γ )) corresponding to the
Γ frequencies bands. On each channel τ ∈ {1, 2, · · · , Γ} the digital image can
be represented by a function l(τ) = f (τ)(x, y), l(τ) ∈ {0, 1, · · · , n(τ)

l − 1}. In
the moving window size of w1 × w1 from each of the Γ channels separately
we have H

(τ)
α = |N(τ)

α |
w2

1
, α ∈ {0, 1, · · · , n(τ)

l − 1} where N
(τ)
α is the set of

indices to all pixels in region D1 with f (τ)(x, y) equals α, and | • | denotes
the cardinality of the set. The following first order statistics features are ob-

tained from it ξ1 =
n

(τ)
l −1∑
α=0

αH
(τ)
α , ξ2 =

n
(τ)
l −1∑
α=0

(α − ξ1)H
(τ)
α , ξ3 =

n
(τ)
l −1∑
α=0

[H(τ)
α ]2,

ξ4 =
n

(τ)
l −1∑
α=0

H
(τ)
α ln{H(τ)

α }.
Texture is another fundamental feature in defining region and providing infor-

mation. The Statistical Geometrical Features (SGF) [10] have been reported to
perform better than Statistical Grey Level Dependence Matrix (SGLDM) and
several other features in texture discrimination [12]. In this paper we extend
the SGF to multi-spectral images as a texture descriptor. Firstly we represents
the original image f (τ)(x, y), (x, y) ∈ D2 by a set of potentially different binary
images as follows.

f (τ)(x, y) =
n

(τ)
l −1∑
φ=0

f
(τ)
b (x, y; φ), (7)

f
(τ)
b (x, y; φ) =

{
1 if f(x, y) > φ
0 otherwise.

(8)

This transform is bijective and guarantees no loss of information. The next
step is to obtain the number of connected regions of 1-valued pixels in the binary

(a) (b) (c) (d)

Fig. 1. A pattern example of LEP descriptor with θe = 5
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image denoted by Noc
(τ)
1 (φ), and that of 0-valued pixels in the same binary

image by Noc(τ)
0 (φ). Each of the connected regions C(τ) has a following measure

of irregularity.

IRGL(C(τ)) =
1 +

√
πmaxi∈C(τ)

√
(xi − x)2 + (yi − y)2√
|C(τ)| − 1 (9)

where x =
∑

i∈C(τ) xi

|C(τ)| , y =
∑

i∈C(τ) yi

|C(τ)| . Then the average irregularity of the con-

nected region IRGL0
(τ)

(φ), IRGL1
(τ)

(φ) weighted by set size are obtained and
sixteen features are extracted.

In this paper the spatial structure of local region boundary is described using
the Local Edge Pattern (LEP) descriptor [8]. A pixel (x0, y0) is an edge point if
there exist at least one pixel (i, j) belonging to its four neighbors that satisfied
|f (τ)(x0, y0)− f (τ)(i, j)| > θe. Fig 1(a) and (b) give a simple pattern that illus-
trate the pixel labels and the corresponding edge image. Then the binary edge
matrix is multiplied by the corresponding binomial weights, as shown in (c) and
(d). We sum the resulting values to obtain the LEP value for the center pixel
(x0, y0). In each window D3 the normalized LEP histogram can be computed
from

H(τ)
e (γ) =

|N (τ)(γ)|
w2

3
, γ ∈ {0, 1, · · · , 511} (10)

where N (τ)(γ) represents the set of pixels with LEP equal γ.

4 Experimental Results and Discussion

Firstly, we test our training method by the Landsat Multi-Spectral Scanner
image data coming from UCI. The Landsat satellite data is one of the many
sources of information available for a scene.

Table 1. The dataset used in experiment

Dataset # Classes # Instances # Features
Satellite 7 6500 36

The interpretation of a scene by integrating spatial data of diverse types and
resolutions including multi-spectral and radar data, maps indicating topogra-
phy, land use etc. The data set consists of the multi-spectral values of pixels in
3× 3 neighborhoods in a satellite image, which contains 36 features (4 spectral
bands x 9 pixels in neighborhood) and 6500 records, as shown in table 1. The aim
is to predict the class of the central pixel, given the multi-spectral values. We test
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Original SAR images with different eye altitudes for the experiments (a)ρ1 =
356.06mi. (c)ρ2 = 17370ft. (e)ρ3 = 2860ft. The segmentation results of the corre-
sponding images are (b),(d),(f).
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out training method using 5-fold cross-validation. The following table 2 lists the
averaged performance on this database obtained by three kinds of training meth-
ods. It demonstrates that the proposed approach possesses remarkably stronger
classification ability on both the conventional RBF and weighted RBF network.

Table 2. The averaged classification rate on the Landsat Multi-Spectral Scanner image
data, where method A is the conventional BP training strategy, method B choice the
hidden center based on clustering and method C is the proposed multi-phase training
algorithm.

A B C

Classification Rate
using RBF network 87.3 % 90.2 % 91.3 %
Classification Rate
using weighted RBF network 87.1 % 91.3 % 93.5 %

Next we utilize the proposed method to segment real SAR images. Synthetic
Aperture Radar is an active imaging system capable of high-resolution spa-
tial measurement at radar frequencies [7]. Analyzing images generated by SAR
systems becomes increasingly important for a variety of applications, such as
land-cover mapping, object recognition, forestry and oil-spill detection. In this
experiment three 480pi x 480pi JERS-1/SAR images are used in the experiments.

The original images and the corresponding results are presented in Fig. 2.
Images in Fig. 2(a),(c),(e) are taken from various altitudes (ρ1 > ρ2 > ρ3) with
frequency bands Γ = 3. Sixteen-three binary images (evenly spaced thresholds
φ = 4, 8, · · · , 252 as suggested in [10]) were used in SGF. w1 = 5, w2 = 11,
w3 = 17. LEP threshold θc = 12. Learning rate η = 0.002. The kernel width
δj ∈ [5, 10], feature fusion weights and network weights wL1

ji ∈ [0, 1], wL2
kj ∈ [0, 1]

are initialized randomly.
After the training process, the weighted RBF network is used to segment

the real SAR images. Fig. 2(b),(d),(f) illustrate the obtained segmentation re-
sults using pseudo-color. Fig. 2(b) is segmented to water area and land area.
The (d) is segmented to residential regions, sea and mountain. In image (f) the
contours of planes have been well segmented. The figure 3 shows the final fea-
ture weights after the multi-phase training process. The figures show that the
proposed network is able to yield proper feature weights according to different
situation. The categorical features, including local statistics, texture and edge
features, are well evaluated and weighted. The fusion of the multi-scale edge,
texture features makes the proposed approach fit for the different situations.

The proposed training strategy contains the characteristics: firstly, the centers
can be located as fast as possible because cancelation effect among various pa-
rameters is eliminated, which is the major shortcoming of conventional training
methods. Secondly, since the moving path of centers are short, it can overcome
the probably local minima, hence improves the performance of segmentation.
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Fig. 3. After the training process, the distribution of feature weights according to
different eye altitudes.(a) feature weights on image ρ1. (b)feature weights on image
ρ2.(c)feature weights on image ρ3.
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5 Conclusions

This paper proposed a new approach for feature fusion using adaptive RBF
neural network, and we applied it to remote sensing images. Multiple features,
including radar frequencies distribution, textures, and region boundaries are
extracted for the process. A novel multi-phase training strategy is proposed to
integrate multiple information sources efficiently. The multi-phase approach with
gradient descending is to train the RBF network while distort effects between
parameters are eliminated. The neural network yields improved performance
which demonstrate the effectiveness when used for different scale SAR images.
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Abstract. This paper proposes a novel active contour model for im-
age object recognition using neural networks as a dynamic information
fusion kernel. It first learns feature fusion strategies from training data
by searching for an optimal fusion model at each marching step of the
active contour model. A recurrent neural network is then employed to
learn the fusion strategy knowledge. The learned knowledge is then ap-
plied to guide another linear neural network to fuse the features, which
determine the marching procedures of an active contour model for ob-
ject recognition. We test our model on both artificial and real image data
sets and compare the results to those of a standard active model, with
promising outcomes.

1 Introduction and Related Work

Automatic object extraction and recognition from images is a fundamental prob-
lems in computer vision. The general approaches adopted include threshold-
ing techniques, edge-based methods, region-based techniques, and connectivity-
preserving relaxation methods. Traditional image segmentation approaches are
driven by the intrinsic contrast between objects and their background, captured
by individual low level features such as intensity, color, gradient or textures.
However, these approaches fail when there is no distinction in individual fea-
tures between objects and their background. Even when multiple features are
fused, a static fusion model can still significantly degrade the effect of the fused
features. Learning of dynamic information fusion knowledge has become an im-
portant topic in the area of object extraction and recognition within the field of
computer vision.

Active contours are used to detect objects in a given image u0 using techniques
of curve evolution. The basic idea is to deform the curve to the boundary of the
object starting with an initial curve C, under some constraints from the image
u0. To address curve evolution, deformable contour models or snakes were first
presented [1] for detection and localisation of boundaries. Cohen [2] uses the
balloon model to reduce the requirement of initialisation of the snake model. This
has been improved [3] using a geodesic formulation in a Riemannian space for

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 324–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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active contours derived from the image content. Cohen and Kimmel [4] describe a
shape modeling method by interpretation of the snake as a path of minimal cost
which is solved using numerical methods. Level set method has been utilised
for shape modelling [5] because it allows for detection of automatic topology
changes, cusps and corners. Geman and Jedynak [6] present an active testing
model to reduce uncertainty in tracking roads in satellite images using entropy
and statistical inference. The approaches only work for low level segmentation
and are not suitable for higher level object extraction or recognition due to their
inability to learn and utilise prior object knowledge.

We have recently developed a method to introduce control parameters into
the speed function of level set methods and utilised a genetic algorithm to tune
those parameters to adjust the effect of intensity and gradient features and force
the marching of the active contours to stop at the of object boundaries [7][8].

Chan et al. extend the scalar Chan-Vese algorithm for active contours [9] to
the vector value case. The model minimises a Mumford-Shah functional over
the length of the contour, as well as the sum of the fitting error over each
component of the vector-valued image. Multiple features were simply combined
with manually selected and fixed weights and there was no usage of prior object
knowledge, therefore not suitable for recognition. Trainable fusion strategies are
essential for the success of a robust object recognition system.

In this paper, we propose a novel active contour model for image object ex-
traction using a neural network fusion kernel, which has the ability to choose
and weight features to self-adapt its marching procedures by using feature fusion
strategy knowledge learned from training data. It first searches for an optimal
fusion model or weight value vector for each marching step. It then utilises the
search result to learn feature fusion strategies from training data. Then the
learned knowledge is used to guide the marching procedures for object extrac-
tion. Our major contribution is the embedding of information fusion learning
using neural networks in the active contour model for object extraction and
recognition.

The paper is organized as follows. In section 2, we introduce the active con-
tour model. An information fusion kernel using neural networks is described in
section 3. Experiments are described and analysed in section 4. Conclusions are
presented in section 5.

2 Active Contour Model

Let Ω be a bounded open subset of �2, with ∂Ω the boundary. Let u0 be a
given image such that u0 : Ω → �. Let C(s) : [0, 1] → �2 be a parameterised
C1 curve. In [5], the classical level set boundary is defined as the zero level set
of an implicit function z = φ(x, y, t) defined on the entire image domain. The
contour at time t must satisfy the function φ(x, y, t) = 0.

There are different level set formulations [5][3][10]. We follow the vector-valued
version of the C-V model [10]. Let u0,1 be the ith channel of an image on Ω,
with i = 1, · · ·, N channels, and C the evolving curve. Each channel would
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present different characteristics of the same image. Let c+ = (c+1 , · · · , c+N ) and
c− = (c−1 , · · · , c−N ) be two unknown constant vectors. The energy function of the
active contour model is defined as follows:

F (c̄+, c̄−,φ) = μ.Length(C) +
∫

inside(C)

1
N

N∑
i−1

λ+
i |μ0,i(x, y)− c+i |2dxdy

+
∫

outside(C)

1
N

N∑
i−1

λ−i |μ0,i(x, y)− c−i |2dxdy (1)

Fitting the above energy function into a level set framework to minimise F with
respect to φ, we get the following Euler-Lagrange equation for φ:

∂φ

∂t
= δε[μ.div(

!φ

| ! φ| )−
1
N

N∑
i−1

λ+
i |μ0,i − c+i |2 +

1
N

N∑
i−1

λ−i |μ0,i − c−i |2] (2)

In the approach using the above equation [10], manually tuned and fixed weight-
parameters λi are employed to combine channels of the same image.

3 Information Fusion Kernel

3.1 The Proposed Model

Let m+
i be the mean of ith feature values of objects and m−

i be those of the
background learned from training data. We utilise the mean of feature values
inside and outside the object boundary and embed those statistics a priori into
the level set equation. Then based on equation 2, φn+1 can be defined as follows:

φn+1 = φn +�t.δε[μ.div( !φ

| ! φ| )−
N −∑N

i=1 e
−|c+

i −m+
i |

N

N∑
i=1

λ+
i |μ0,i − c+i |2

+
N −∑N

i=1 e
−|c−i −m−

i |

N

N∑
i=1

λ−i |μ0,i − c−i |2] (3)

The model searches for the best vector-valued approximation taking only two
values, the constant vectors ĉ+ and ĉ−. The active contour is the boundary
between these two regions. The energy balances the lengths of the contours in
the images, shown as the first terms in the square bracket in Equation 3. It fits
u0 to ĉ+ and ĉ− in the data driven terms shown as the last two terms in the
square bracket in Equation 3. It also fits ĉ+ and ĉ− to m+

i and m−
i , averaged

over all features.The prior fitting terms:

N −
N∑

i=1

e−|c+
i −m+

i |, N −
N∑

i=1

e−|c−i −m−
i | (4)
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are responsible for reducing the energy when the marching contour proceeds
to the true object boundary, in order to fit the extracted object into the prior
statistics learned from the training data. The weight parameters λi are essential
to the success of the model. They adjust the individual features using information
fusion, which is obtained by a learner. In this case, it is a recurrent neural
network, trained on training data. Once the parameter model is learned, it is
employed to dynamically construct the linear information model.

3.2 The Fusion Kernel

To learn the linear information fusion model, our algorithm consists of two phases
following the automatic parameter tuning method in [7]. It first searches the
parameter space for an optimal parameter value vector with respect to the per-
formance of the level set model with the help of references in the training data.
Secondly, the optimal parameter value vector obtained as well as the feature
vectors are used to discover the relationship between them. An overview of the
information fusion algorithm is depicted in Fig. 1.

 

Training Images 

Feature Fusion 

Fusion Model Construction 

Test Images 

Training 

Weight Parameter Searching 

Fused Features 

Testing 

Training 

References 

Fig. 1. Automatic Information Fusion Overview

Parameter Search. The goal of parameter search is to find a parameter value
vector, with which each marching step of the level set method can achieve optimal
performance. Let λ be the parameter to search and φn+1 the level set after
marching using λ; we seek a λ̂ such that the Euclidean distance between φn+1

and φref is minimum. Thus, λi,n is obtained by an optimisation procedure with
respect to the following conditions:

λi,n = argmin
λ

N,M∑
x=1,y=1

|φn+1
x,y − φref

x,y | (5)

where φref
x,y is the level set value of the signed distance surface for the reference

image at location (x,y).

Parameter Learning. The learning problem can be formulated as follows: let
x be the mean feature value vector for the inside and outside of the object and y
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the weight-parameter value vector. Our goal is to learn the relationship between
x and y for each marching step during the level set evolution.

Neural networks based learning methods provide a robust approach to ap-
proximating vector-valued target functions. For certain types of problems, such
as learning to interpret complex sensor data, neural networks are among the
most effective learning methods currently known [11]. Moreover, since the pa-
rameters are dynamically selected for each marching step, the marching steps
are dependent on the previous steps and the temporal patterns across marching
steps must be modeled. We assume that the current marching step is dependent
on only the immediately previous step and only first order temporal constraints
are considered. The Elman recurrent neural network [12] provides such a solu-
tion for parameter learning. The network architecture is as described in Fig. 2.

Fig. 2. Recurrent Neural Network. In layer 1, a R1 length input vector P is connected
to a neuron input through the weight matrix IW. The neuron has a summer that
gathers its weighted inputs, bias b1 and the output of previous time step a1(k − 1) to
form its own scalar output n1. Then the first layer outputs form a column vector a1(k)
by a transfer function S1, which is then input to layer 2 to be weighted by LW and
added bias b2, and then to form the outputs of the network a2(k) by another transfer
function S2. ”tansig” and ”purelin” are the transfer function for S1 and S2 respectively,
shown in the bottom of the figure.

This Elman recurrent connection allows both to detect and to generate time-
varying patterns. The network used is a two-layer network with feedback from
the first-layer output to the first layer input. It has tangent sigmoid neurons
in its hidden layer, and linear neurons in its output layer. This combination is
special in that two-layer networks with these transfer functions can approximate
any function (with a finite number of discontinuities) with arbitrary accuracy.
The only requirement is that the hidden layer must have a sufficient number
of neurons. The Elman network differs from conventional two-layer networks
in that the first layer has a recurrent connection. The delay in this connection
stores values from the previous time step, which can be used in the current time
step. Thus, even if two Elman networks, with the same weights and biases, are
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given identical inputs at a given time step, their outputs can be different due to
different feedback states. Because the network can store information for future
reference, it is able to learn temporal patterns as well as spatial patterns.

3.3 Linear Information Fusion

Given weight-parameter values, fusion is modeled as a single layer linear neural
network, where weight values are obtained from the recurrent neural network
described in section 3.2. The linear neural network for information fusion is
shown in Fig.3. The inputs to this neural network are the mean feature values
inside and outside of the object. The output is the data driven energy term fused
over all features.

Fig. 3. Linear Neural Network. P is an R length input vector, W is an SxR matrix, a
and b are S length vectors. The neuron layer includes the weight matrix, the multipli-
cation operations, the bias vector b, the summer, and the transfer function boxes.

4 Experiments

4.1 Experimental Setup

Optimization techniques are used to find a set of design parameters, that can
in some way be defined as optimal. In our case, it is the maximisation of the
level set model that is dependent on the parameters λ. To assure stability of the
algorithm, the optimisation is subject to constraints in the form of inequality
constraints: 0 ≤ λi ≤ 1. We use Sequential Quadratic Programming optimisation
method implemented in the Optimization Toolkit of Matlab in our experiments.
The output of the optimization is a tuple of image feature values and optimised
parameter values, which are also the input to the recurrent neural network. We
use the neural networks implementation from the Neural Network Toolkit of
Matlab. In our experiments, we set the parameters for learning neural networks
as shown in Table 1. For the level set model, we choose a time step �t = 0.1.

The experiments were performed on both synthetic and real images with dif-
ferent types of contours, shapes and textures. The active contours evolving in
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Table 1. Parameter Setting

Parameter Value(s)
Transfer function TF1 = Hyperbolic tangent sigmoid

TF2 =Linear
Backpropagation network training function BTF = Levenberg-Marquardt
Backpropagation weight learning function BLF = Gradient descent with momentum
Performance function PF = Mean squared error
Learning rate Learning rate:lr = 0.05

Learning rate increment = 1.05

the original image are the associated piecewise-constant approximation. While
three types of features, namely local standard deviation, local entropy and gradi-
ent, were fused in our experiments, the proposed approach can be used for more
features. We ran the level set method with 200 iteration steps for each image.
Notice that the optimisation ouput is based on marching steps and they are used
as training instances and test instances. This means that there are 200 training
instances or test instances from each image, which reduces the number of neces-
sary training and test images significantly. This is important because gathering
enough references for training data can be very expensive in most application
areas, such as medical image and remotely sensed image processing.

For further evaluation of the proposed algorithm, two standard active contour
algorithms, Active Contour without Edges [9] and Geodesic Active Contours [3],
were carried out on the test data. The result of theproposed algorithm was then
compared to those of the standard active contour algorithms to demonstrate the
improvements of the proposed method.

4.2 Experimental Results

In Fig. 4, we show how our model works on synthetic images, where the objects
are automatically detected according to the training objects. There are two ob-
jects in the images. One of the objects has relative high intensity value but very
low feature values, while the other has almost the same intensity value as the
background but high feature values. Notice that when extracting both objects,
the objects in this image cannot be represented by any single type of feature and
thus cannot be detected without information fusion as described below in Fig. 5.
Furthermore, since the shapes in image data are different from each other, they
cannot be extracted properly by using a single prior shape model either.

In Fig. 5, we present results of standard active contours performed on Image
1 of Fig. 4. Geodesic Active Contours was executed on the original test image.
It could merely extract the object on the left upper of the test image due to its
higher boundary gradient value, but missed the other object. For the algorithm of
Active Contour without Edges, we ran it on the intensity image and three feature
images of the test image. For the intensity image and entropy feature image, we
got similar result as that of Geodesic Active Contours. For the standard deviation
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(1) (2) (3) (4) (5) 

 (6) (7) (8) (9) (10) 

(11) (12) (13) (14) (15) 

(16) (17) (18) (19) (20) 

Fig. 4. Images 8-10 show the training images, Images 13-15 their reference for extract-
ing 2 objects and Images 18-20 their reference for extracting one object. Image 1 is a
test image, Image 2 its reference (for comparision) and Image 3-5 show feature images
for Image 1. Images 6, 11, 16 show the initial, middle and final steps of extracting 2
objects in Image 1, after learning on Images 13-15. Images 7, 12, 17 show the initial,
middle and final steps of extracting 1 object in Image 1, after training on Images 18-20.

(1) (2) (3) (4) (5) 

 (6) (7) (8) (9) (10) 

(11) (12) (13) (14) (15) 

Fig. 5. Experimental results of standard active contours on Image 1 of Fig. 4. Images 1,
6, 11 show the initial, edge and final result image of Geodesic Active Contours. Images
2-5, 7-10 and 12-15 present the results of Active Contour without Edges. Images 2-5
show the intensity, standard deviation, entropy and gradient images. Images 7-10 show
the middle step images and Image 12-15 the final result images, respectively.
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2 3 41 5

7 96 10

12 1311

8

Fig. 6. Experimental results on real medical image data from LMIK dataset [13]. Im-
ages 1-5 are the original training images whose references are shown as Images 6-10
respectively. Image 11 and 13 show a test and result image, with the reference image
shown in Image 12 for comparision.

feature image, it only extracted the object in the right lower contour and missed
the other. The worst case happened on the gradient feature image, where Active
Contour without Edges hardly extracted any object.

These experimental results show that neither of the standard active contours
has the ability to extraction both objects in the test image at the same time.
However, as shown in the Figure 4, the proposed algorithm is able to extract
and recognise either both objects or a single object by using dynamic feature
fusion, according to the training data used.

In Fig. 6, we show our model trained to recognise lung boundares in real
medical images. The training data consists of 5 CT images containing lung slices.
The proposed model is trained with the parameters shown in Table 1. The test
images are different from the training data.

5 Conclusion

This paper proposes an approach to learn a feature fusion model for the ac-
tive contour algorithm based on level set method and neural networks. The
model is not based on heuristically applying naive features to achieve extrac-
tion, but rather a learnable information fusion kernel to combine features. Fur-
thermore, including automatic initialisation, the model is fully automatic with-
out the use of heuristic parameters for feature combination and other manual
interaction. The numerical results have demonstrated the feasibility of the pro-
posed method.
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Abstract. How to use a polygon with the fewest possible sides to ap-
proximate a shape boundary is an important issue in pattern recognition
and image processing. A novel split-and-merge technique(SMT) is pro-
posed. SMT starts with an initial shape boundary segmentation, split
and merge are then alternately done against the shape boundary. The
procedure is halted when the pre-specified iteration number is achieved.
For increasing stability of SMT and improving its robustness to the initial
segmentation, a ranking-selection scheme is utilized to choose the split-
ting and merging points. The experimental results show its superiority.

1 Introduction

Error-bounded polygonal approximation can be stated as follows: given a shape
boundary, approximate it by a polygon with the minimal number of line segments
such that the approximation error is no more than a pre-specified tolerance. The
goal of error-bounded polygonal approximation is to capture the essence of the
shape boundary with the fewest possible polygonal segments [1]. Error-bounded
polygonal approximation not only provide a compact shape representation, but
also facilitate feature extraction for further image analysis. Therefore it plays an
important role in pattern recognition and shape data compression.

In recent decades, many methods have been proposed for error-bounded polyg-
onal approximation. They can be classified into two categories: local-search-
based methods and global-search-based methods. Sequential tracing, split and
merge techniques are widely used local-search-based methods. For sequential
methods, Sklansky and Gonzales [2] proposed a scan-along scheme to start from
a point for finding the longest line segments sequentially. Ray and Ray [3] pro-
posed a method of determining the longest possible line segments with the mini-
mum possible error. Sequential methods are simple and fast, however the quality
of their final solutions depends on the choice of the starting point. Ramer [4]
proposed a split-based method. It is a recursive procedure which starts from
an initial boundary segmentation. The iterative procedure repeatedly splits the
shape boundary at the point with the farthest distance from the corresponding
segment until the approximation error is smaller than the error tolerance. The
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disadvantage of split method is that the approximation result is sensitive to the
initial boundary segmentation.

The common idea in sequential tracing and split method is to choose bound-
ary point to be vertices of the polygonal approximation. While, different from
them, Pikaz and Dinstein [5] proposed a merge method which did polygonal ap-
proximation in opposite direction. Its main idea is that: initially consider all the
boundary points as vertexes and a procedure is repeated to remove the bound-
ary point which will cause minimal increase in the approximation error until the
desired approximation error is reached. Like the sequential tracing method, it
also exists the problem of depending on the starting point.

Some global-search-based methods such as genetic algorithms (GA) have
also been proposed for error-bounded polygonal approximation. GA is based
on stochastic search which simulates the biological model of evolution [7]. Yin
[6] proposed a GA-based method for polygonal approximation. In the proposed
method, a chromosome is used to represent a polygon by a binary string. Each
bit, called a gene, denotes a point on the shape boundary. Three genetic opera-
tors, including selection, crossover and mutation, are designed to obtain promis-
ing polygonal approximations. Although the initial population is randomly gen-
erated, the final solution does not depend on the initial solutions because of the
population-search and evolution scheme. Therefore, compared with the former
mentioned methods, GA-based method is statable. However, the population-
search scheme will require higher cost of space and time. Therefore, they are not
fit for practice application.

In this paper, a split-and-merge technique (SMT) is proposed for error-bounded
polygonal approximation. SMT starts from an initial shape boundary segmenta-
tion, split and merge are then alternately done against the shape boundary. The
procedure is halted when the pre-specified iteration number is achieved. For over-
come the problem of the traditional methods’ dependence on the initial segmenta-
tion, during the split and merge process, a ranking-selection scheme is utilized for
the choice of the boundary points. Three benchmark shape boundaries are used to
test the effectiveness of SMT and experimental results show that it outperforms
the traditional split method and GA-based method.

2 Problem Definition

A 2D shape boundary is represented as an ordered sequence of points C =
{p1, p2, . . . , pN} = {(x1, y1), . . . , (xN , yN)}, where pi+N = pi and N is the num-
ber of the points on the shape boundary. Let p̂ipj = {pi, pi+1, . . . , pj} denotes the
arc which starting from the point pi and continuing to point pj in the clockwise
direction along the shape boundary. Let pipj denote the line segment connecting
points pi and pj . The approximation error between p̂ipj and pipj is defined as
follows:

e(p̂ipj, pipj) =
∑

pk∈p̂ipj

(yk − aijxk − bij)2/(1 + a2
ij) (1)
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where aij = (yj−yi)/(xj−xi) and bij = yi−aijxi. The polygon V approximating
the shape boundary C = {p1, p2, . . . , pN} is an ordered set of line segments
V = {pt1pt2 , pt2pt3 , . . . , ptM−1ptM , ptMptM+1}, such that t1 < t2 < . . . < tM
where ti ∈ {1, 2, . . . , N}. The approximation error between shape boundary C
and polygon V is defined as

E(V,C) =
M∑
i=1

e( ̂ptipti+1 , ptipti+1). (2)

Then the error-bounded polygonal approximation is defined as follows: given a
shape boundary C = {p1, p2, . . . , pN} and a pre-specified tolerance error ε. Let
S be the set of all the polygons which approximate the shape boundary C. Let
SP = {V | V ∈ S ∧ E(V,C) ≤ ε}, Find a polygon P ∈ SP such that

| P |= min
V ∈SP

| V |, (3)

where | · | denotes the cardinality of the set.

3 Brief Review of Split and Merge Techniques

Split technique is a recursive procedure which starts from an initial curve seg-
mentation which divided the shape boundary into two sections. At each iteration,
a split operator is conducted to divide the segment into two sections at the se-
lected boundary point. The iteration process is repeated until the approximation
error is smaller than the tolerance error. Assume that the shape boundary C has
been segmented intoM arcs ̂pt1pt2 , . . . , ̂ptM−1ptM , ̂ptM pt1 through k−1 iterations,
where pti is the division point. Then at k-th iteration, the split operation is as
follows: for each point pi ∈ ̂ptjptj+1 , j = 1, 2, . . . ,M , calculate the distance be-
tween it to the corresponding chord D(pi) = d(pi, ptjptj+1), where d(pi, ptjptj+1)
is the perpendicular distance from point pi to the line segment ptjptj+1 . Find
a point pu on the shape boundary which satisfies D(pu) = max

pi∈C
D(pi). Suppose

that pu ∈ ̂ptk
ptk+1 . Then the arc ̂ptk

ptk+1 is segmented at the point pu into
two arcs ̂ptk

pu and ̂puptk+1 . Through split operation, the boundary point pu is
selected as the polygon’s new vertex. Fig. 1 gives an example to show a split
operation.

Different from split method, merge technique produces polygonal approxima-
tion in opposite direction. It starts from an initial polygon which considers all
the boundary points as vertexes. At each iteration, a merge operation is done
to combine the selected two adjacent arcs into a single one. While the approx-
imation error does not exceed the tolerance error, the procedure is repeated.
The detail of merge operation is as follows: suppose that the boundary C has
been segmented into M arcs ̂pt1pt2 , . . . , ̂ptM−1ptM , ̂ptM pt1 , where pti is a divi-
sion point. Then a merge operation against the boundary is defined as: for each
division point pti , calculate the distance to the line segment which connect its
two adjacent points Q(pti) = d(pti , pti−1pti+1). Select a segment point ptj which
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Fig. 1. Split operation

Fig. 2. Merge operation

satisfies Q(ptj ) = min
pti

∈V
Q(pti), where V is the set of the current division points.

Then two arcs ̂ptj−1ptj and ̂ptjptj+1 are merged into a single arc ̂ptj−1ptj+1 . The
division point ptj is removed from the set of the current division points. Fig. 2
gives an example to show a merge operation.

4 Ranking-Selection Scheme

Ranking-selection scheme is initially proposed by Baker [8]. Its purpose is to solve
the problem of GA’s premature convergence. Selection is an important operator
of GA. The traditional GA adopts fitness-proportion-selection scheme. Its main
idea is as follows: for a population of M individuals, assume that f1, f2, . . . , fM

are their fitness values, the i-th individual will be assigned a selection probability

ρi = fi/
M∑
i=1

fi. The disadvantage of this selection scheme is that it may lead to

premature convergence. For overcome this problem, rank-selection scheme does
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not determined the selection probability on the fitness values directly. It firstly
sorts all the individuals to form an ordered sequence by their finess values, the
best individual is in the position one and the worst one is in the position M . The
selection probability of the individuals is the function of the position. Let P =
{x1, x2, . . . , xM} represent a sorted population, i.e. we have f(x1) ≥ f(x2) ≥
. . . ≥ f(xM ), where f(xi) is the fitness function of the individual xi. Then the
selection probability ρ(xi) = g(i), while g(i) is the function of position i and
it must satisfies the following constraint conditions: (1) g(1) ≥ g(2) . . . ≥ g(M)

and (2)
M∑
i=1

g(i) = 1. The function can be linear or non linear.

5 Proposed Method

5.1 Split Operation with Ranking-Selection

In section 3, traditional split operation is introduced, it always select the bound-
ary point with the farthest distance for splitting. This selection scheme will lead
to only obtaining local optimal solution. Here we propose a novel split operation
which use the ranking-selection scheme. Assume that the shape boundary C =
{p1, p2, . . . , pN} has been segmented into M arcs ̂pt1pt2 , . . . , ̂ptM−1ptM , ̂ptM pt1 .
LetW = C−{pt1, pt2 , . . . , ptM } = {pv1 , pv2 , . . . , pvN−M}. For each point pvi ∈ W ,
calculate the distance between it to its corresponding chord d(pvi). The set W
is then sorted into an ordered set {pu1 , pu2 , . . . , puN−M} such that d(pu1) ≥
d(pu2) ≥ . . . ≥ d(puN−M ). The selection probability ρ(pui) for point pui is de-
fined as

ρ(pui) =
i−r

N−M∑
j=1

j−r

, (4)

where r is the parameter used to adjust the probability distribution. According
to the selection probability, choose a point pui from the set W and divide the
corresponding arc into two sections.

5.2 Merge Operation with Ranking-Selection

The traditional merge technique always select the vertex with the minimum dis-
tance, this scheme will affect the quality of final solution. Here we propose a
novel merge operation which use the ranking-selection scheme. Assume that
the shape boundary C = {p1, p2, . . . , pN} has been segmented into M arcŝpt1pt2 , . . . , ̂ptM−1ptM , ̂ptM pt1 . Let Z = {pt1, pt2 , . . . , ptM }. For each point pti ∈ Z,
calculate the distance q(pti) = d(pti , pti−1pti+1). The set W is then sorted into
an ordered set {pk1 , pk2 , . . . , pkM } such that q(pk1) ≤ q(pk2) ≤ . . . ≤ q(pkM ).
The selection probability ρ(pki) for point pki is defined as

ρ(pki) =
i−r

M∑
j=1

j−r

, (5)
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(a) chromosome (b) semicircle (c) leaf

Fig. 3. Three benchmark curves

where r is the parameter used to adjust the probability distribution. According
to the selection probability, choose a point pki from the set Z and merge the two
adjacent arcs into a single one.

5.3 Algorithm Flow

The proposed algorithm has two parameters, one is the parameter of adjusting
the probability distribution r, the other is the iteration number G.

input. A shape boundary C = {p1, p2, . . . , pN} and a pre-specified tolerance
error ε.

output. polygon B and its number of sides.
step 1. Randomly select two points from C and segment the boundary into two

sections.
step 2. Repeat do split operation with ranking-selection to the boundary until

the approximation error of the obtained polygon V is smaller or equal to ε.
V → B and 0 → k.

step 3. Repeat do merge operation with ranking-selection to the boundary until
the approximation error of the obtained polygon V is larger than ε.

step 4. Repeat do split operation with ranking-selection to the boundary until
the approximation error of the obtained polygon V is smaller or equal to ε.

step 5. If the number of the sides of the polygon V is smaller than the number
of the sides of the polygon B, then V → B.

step 6. k + 1 → k and if k ≤ G, then goto step 3.
step 7. output polygon B and its number of sides.

6 Experimental Results and Discussions

Three benchmarks, as shown in Fig. 3, are used to evaluate the performance of
the proposed split and merge technique (SMT). Among them, (a) is a chromo-
some shape, (b) is a shape with four semi-circles and (c) is a leaf shape. The
number of their boundary points is 60, 102 and 120 respectively. Their chain
codes can be obtained from [9].
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( ε = 30,M = 20)
(b) GA

( ε = 30,M = 18)
(b) ST

( ε = 30,M = 17)
(b) SMT

( ε = 6,M = 15)
(c) GA

( ε = 6,M = 15)
(c) ST

( ε = 6,M = 13)
(c) SMT

( ε = 15,M = 22)
(d) GA

( ε = 15,M = 19)
(d) ST

( ε = 15,M = 17)
(d) SMT

Fig. 4. The comparative results of ST, GA and SMT, where ε is the specified tolerance
error, M is the number of sides of the obtained approximating polygon

Two other methods, split technique (ST)[4] and Genetic algorithms (GA) [6],
are used as comparisons with the proposed method. Each competitive methods
are implemented on a PC with a PM 1.5 CPU under Windows XP. The pa-
rameter of SMT is set as : G = 1500 and r = 1.8. For shape boundary and a
specified error tolerance ε, the simulation conducts ten independent runs. The
best solution, average solution and variance of solutions during ten independent
runs are listed in Table 1. Parts of best simulation results of three methods are
shown in Fig. 4, where ε is the specified error tolerance and M is the number of
sides of obtained approximating polygon.

From Table 1 and Fig. 4, we can see that, for the same tolerance error, SMT
yields approximating polygon with relatively smaller number of sides than GA
and ST. Variance is used to evaluate the stability of the three methods. Table 1
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Table 1. Experimental results for ST, GA and SMT

Curves ε BEST AVERAGE VARIANCE
ST GA SMT ST GA SMT ST GA SMT

150 12 15 11 14.4 15.4 12.3 2.3 0.5 0.7
100 14 16 13 16.7 16.2 14.3 4.2 0.3 0.5

Leaf 90 15 17 13 17.7 17.4 14.3 1.8 0.4 0.7
(N = 120) 30 18 20 17 19.3 20.3 18.0 1.3 0.3 0.7

15 21 23 21 24.5 23.1 22.2 4.5 0.4 0.4
30 9 7 7 10.5 7.6 7.2 0.7 0.2 0.2

Chromo- 20 10 8 7 10.7 9.1 8.0 1.1 0.3 0.2
some 10 13 10 10 13.4 10.4 10.9 0.5 0.4 0.3
(N = 60) 8 13 12 11 14.0 12.4 11.9 0.4 0.3 0.5

6 15 15 13 15.6 15.4 13.5 0.5 0.4 0.5
60 11 12 10 12.0 13.3 10.7 0.4 0.3 0.5
30 14 13 13 15.1 13.6 13.9 1.7 0.4 0.3

Semicirle 25 14 15 14 15.4 16.3 15.0 3.6 0.5 0.6
(N = 102) 20 15 19 15 18.1 19.5 17.0 6.5 0.3 1.1

15 19 22 17 20.4 23.0 19.1 0.9 0.7 0.7

also shows that the proposed method SMT and genetic algorithms are more sta-
ble than ST. From all the experimental results, we can see that SMT outperforms
genetic algorithms and the traditional split technique.

7 Conclusions

We have proposed a novel split and merge technique for solving error-bounded
polygonal approximation. Since the ranking-selection scheme is used to choose
split and merge points, the proposed method is not sensitivity to the initial
segmentation against the shape boundary. The experimental results show that
our method is superior to the traditional split technique and genetic algorithms.
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Abstract. A fast and simple solution was suggested to reduce the inter-pixels 
correlations in natural images, of which the power spectra roughly fell off with 
the increasing spatial frequency f  according to a power law; but the 1 f  ex-
ponent, α , was different from image to image. The essential of the proposed 
method was to flatten the decreasing power spectrum of each image by using an 
adaptive low-pass and whitening filter. The act of low-pass filtering was just to 
reduce the effects of noise usually took place in the high frequencies. The act of 
whitening filtering was a special processing, which was to attenuate the low 
frequencies and boost the high frequencies so as to yield a roughly flat power 
spectrum across all spatial frequencies. The suggested method was computa-
tionally more economical than the geometric covariance matrix based PCA 
method. Meanwhile, the performance degradations accompanied with the com-
putational economy improvement were fairly insignificant. 

1   Introduction 

In a task of image analysis, the inter-pixels correlations within each individual image 
will result in vast inequities in variance at different frequencies of the image [1]. That 
is, the information at some frequencies might swamp the equally useful information at 
other frequencies, which may be troublesome for gradient descent techniques [2] 
searching for structures in images, such as independent component analysis (ICA) 
[3,4,5] and sparse coding analysis (SCA) [6,7,8].  

The inter-pixels correlations within a natural image can be obtained by observation 
of its geometric covariance matrix [9]. The geometric covariance matrix is the covari-
ance matrix of a data matrix, the columns of which are an image vector and its circu-
lar shifts. Since principle components analysis (PCA) [10,11] is an optimum trans-
formation for decreasing pair-wise correlations between variables, it is possible to 
make use of PCA method to reduce the correlations between pair-wise pixels within 
one image. However, solving eigenvalues and corresponding eigenvectors from the 
geometric covariance matrix is always a non-trivial task. For example, if we want to 
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decrease the inter-pixels correlations in an image with 64 64×  pixels in size, there will 
be 122  random variables in the data matrix. It will then produce a geometric covari-
ance matrix with 242  entries, which is too big to compute. The PCA method is hereby 
limited when used to reduce inter-pixels correlations, even for an image of ordinary 
size.  

Fortunately, the inter-pixels correlations within a natural image can also be meas-
ured by observation of its power spectrum [12] as well as its geometric covariance 
matrix. The link between the power spectrum and the geometric covariance matrix is 
the autocorrelation function. The autocorrelation function describes how closely re-
lated two pixels in an image are as a function of their relative separation. From one 
side, the autocorrelation function can be shifted to form each row of the geometric 
covariance matrix; the diagonal components of the geometric covariance matrix are 
equal to the autocorrelation function at zero separation. From the other side, the 
power spectrum and the autocorrelation function forms a Fourier pair. That is the 
Fourier transform (FT) of the autocorrelation function is the power spectrum, and the 
autocorrelation function is the inverse Fourier transform (IFT) of the power spectrum.  

Under the translation invariance assumption [13] for natural images, any change of 
the power spectrum will also bring change to the autocorrelation function. Especially, 
when the power spectrum is a constant function, the autocorrelation function will be a 
delta function for sure, because the IFT of a constant function is a delta function. The 
geometric covariance matrix will then be a diagonal matrix. It suggests that when the 
power spectra of natural images are nearly flat, the inter-pixels correlations within the 
images are little. This is consistent with one of the hypotheses in neuroscience, that is 
the retina and the lateral geniculate nucleus (LGN) are dedicted to recording input 
visual information into a whitening form [14], for the power spectra of retina and 
LGN responses evoked by natural visual stimuli are essentially flat or white. It is 
obvious that the statistics of the visual environment have crucial influence on the way 
that the visual system process information [15,16]. 

In this article, we mainly discussed how to white natural images, the power spectra 
of which obeyed the following statistical rule: they fell with the spatial frequency f , 

according to a power law of αf/1 , in which the exponent α  was different from image 
to image. The essential of the proposed method was to filter each natural image with a 
combined whitening and low-pass filter. The whitening parameter, wα  , was adaptive 

to the current input image, not be fixed at the value of 2 as used in other works [1,17], 
so that the power spectrum of the whitened image is as flat as possible.  

We begin by introducing the relationships among the autocorrelation function, the 
geometric covariance matrix, and the power spectrum. The next section describes the 
exciting properties of natural images by their power spectra, based on which we then 
derive a method for reducing the inter-pixels correlations within natural images. Per-
formances of the geometric covariance matrix based PCA method and our power 
spectrum based method for whitening natural images are compared with each other 
for a 32 32×  image. Further experimental results obtained by applying our method to 
natural images of larger size are described and analyzed afterwards. Finally, we make 
a conclusion and discuss experimental predictions that arise from the method. 
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2   Autocorrelation Function, Geometric Covariance Matrix and 
Power Spectrum 

Let an N -by- M  array, ),( yxI , denote the intensity function of some natural image 
with N M×  pixels in size; ( , )k kI x x y y+ Δ + Δ  denote the result of circularly shifting 

),( yxI  by kxΔ  and kyΔ  in the horizontal and vertical directions, respectively. The 

subscript k  was an integer, ranging from 0  to 1N M× − , and 

mod( , )        div( , ) k kx k N y k NΔ = Δ =  (1) 

where ‘mod’ and ‘div’ were used to dedicate computing the modulus and the quotient, 
respectively. It was obvious that there were, in total, 2( )N M×  circular shifts for one 
natural image with N M×  pixels in size. 

The autocorrelation function was defined as 

1 1

0 0

1
( , , ) ( , ) ( , )

0,1,2, , 1        0,1,2, , 1

M N

k k k k
y x

C x y k I x x y y I x x x y y y
N M

x N y M

− −

= =
Δ Δ = + Δ + Δ + Δ + Δ + Δ + Δ

×
Δ = − Δ = −

 (2) 

Due to the stationarity [18] of natural image statistics, the autocorrelation function of 
),( yxI  only depended on the relative separation between pixels, being independent of 

their absolute positions, therefore 

( , ,0) ( , ,1) ( , , 1)C x y C x y C x y N MΔ Δ = Δ Δ = = Δ Δ × −  (3) 

Such a series of functions could be regarded as one function and simply represented 
by ( , )C x yΔ Δ , with 

1 1

0 0

1
( , ) ( , ) ( , )

M N

y x

C x y I x y I x x y y
N M

− −

= =
Δ Δ = + Δ + Δ

×
 (4) 

The function ( , )C x yΔ Δ  was also called autocorrelation function, and it had the same 
dimensionality as the input image, that was N M× . 

Let kI  denote a column vector, in which the rows of ( , )k kI x x y y+ Δ + Δ  placed one 

after the other. Then a data matrix I  could be organized by 0 1[ , , , , ]k N MI I I × −=I . 

The geometric covariance matrix [9] was then T { }klR= =R I I , with 

1 1

0 0

1
( , ) ( , )

    ( , )

M N

kl k k l l
y x

l k l k

R I x x y y I x x y y
N M

C x x y y

− −

= =
= + Δ + Δ + Δ + Δ

×

= Δ − Δ Δ − Δ
 (5) 

Thus the autocorrelation function could be shifted to form each row of the geomet-
ric covariance matrix. Especially, when the autocorrelation function became a delta 
function only with non-zero at the zero separation, the geometric covariance matrix of 
the input image would be a diagonal matrix with zero everywhere except for the di-
agonal entries. 
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Let ( , )S u v  denote the discrete Fourier transform (DFT) of the autocorrelation 
function ( , )C x yΔ Δ , that was 

1 1

0 0

1
( , ) ( , )exp 2

         0,1,2, , 1        0,1,2, , 1

M N

y x

u x v y
S u v C x y j

N M N M

u N v M

π
− −

Δ = Δ =

Δ Δ= Δ Δ − +
×

= − = −
 (6) 

where u  and v  were the spatial frequency coordinates in the horizontal and vertical 
directions, respectively. An elementary but tedious computation could lead to 

2
( , ) ( , )S u v F u v=  (7) 

where ( , )F u v  represented the DFT of ),( yxI . That meant the Fourier transform of the 
autocorrelation function was the power spectrum of the input image. Thus the auto-
correlation function and the power spectrum formed a Fourier pair. 

The translation invariance assumption [13] suggested that the intensity characteris-
tics of natural images would not change even if the observing coordinates system 
changes from the space domain to the frequency one. The deep meaning of such an 
assumption for natural images, the alteration of the power spectrum in the frequency 
domain will also bring change to the autocorrelation function in the space domain. 
Especially, when the power spectrum was approximating a constant function, the 
autocorrelation function would be near a delta function, and then the geometric co-
variance matrix would be close to a diagonal matrix. In one word, when the power 
spectra of natural images were nearly flat, the inter-pixels correlations within the 
images would be very little. 

3   Power Spectra Statistics for Natural Images 

In this section we discussed the important properties of natural images by their power 
spectra. This topic was discussed in greater detail in other papers, such as [12]. How-
ever, since the conclusion of this section played an important part in the next section, 
it was discussed briefly here. 

The power spectra were estimated for the ensemble of images of four different sub-
jects, including natural scenes (from http://calphotos.berkeley.edu/), aerial images, 
man-made structures and faces (from http://sipi.usc.edu/database). All of the gray 
images were 512 512× pixels in size. Fig. 1 gave four sample images in our dataset, 
each of which was of different subjects. 

The two-dimensional power spectra ( , )S u v  of the four sample images were shown 
in Fig. 2, respectively. For the sake of the clarity, each 512 512×  power spectrum was 
processed by averaging each 16 16×  distinct region of the spectrum. The centers of 
such plots represented the low spatial frequencies. It could be seen that the power 
spectra of these images were quite characteristic, having greater values at low fre-
quencies and decreasing sharply with the increasing frequency at all orientations. 
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Fig. 1. Four sample images 
from the ensemble 

Fig. 2. Two-dimensional power 
spectra of the samples 

Fig. 3. Average power spec- 
trum across all orientations 

Fig. 3 gave the orientation averaged power spectrum, ( )P f , of the natural scene 
from Fig. 1, on the log-log scale. The orientation power spectrum was calculated by 

1
( ) ( cos , sin )P f S f f

L ϕϕ
ϕ ϕ=  (8)  

where 2 2f u v= +  was the spatial frequency and ( )arctan u vϕ =  was the orientation 

in the frequency polar coordinates system, respectively; Lϕ  was the number of orien-

tations being computed. Note that the power at frequencies above 128 cycles per 
image were cut out from Fig. 3, for the highest frequencies were always easily cor-
rupted by noise or affected by the effects of aliasing. The regression line in Fig. 3  
was determined by linear curve-fitting of the average power spectrum plots. The value 
of 1.9473  for α  was then negative to the slope of the regression line. It could be seen 
that the orientation averaged power spectrum approximately fell off with the spatial 
frequency according to a power law, as 

( ) 1P f f α∝  (9)  

The average value of α  for the four different subjects in our set of images 
were 2.1186 , 2.3481 , 2.5877  and 3.0223  respectively, in the order of natural scenes, 
aerial images, man-made structures and faces. The distribution of α  for our images 
ensemble was nearly consistent with the conclusions in Ref. [12]. 

4   Adaptive Low-Pass and Whitening Filter 

The prime difference between uncorrelated data and natural images by the power 
spectra was that uncorrelated data had its power uniformly distributed over the entire 
spectrum. In other words, the power spectrum of uncorrelated data was nearly as flat 
as a constant function, which was also testified by the decorrelating responses of 
retina and LGN evoked by natural visual stimuli [14]. Therefore, it would be feasible 
to white natural images simply by flattening their power-law power spectra into con-
stant functions. 
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Since the orientation averaged power spectrum ( )P f  of image ( , )I x y  was nearly 

proportional to 1 f α , the whitening filter for the image could be designed as 

( )2 2 4( , ) exp 2
w ux vy

W u v u v j
N M

α

π= + − +  (10)  

where wα  was named the whitening parameter. It could be seen that the whitening 

filter was, in fact, the result of multiplying a Fourier basis by the factor ( ) 42 2 w
u v

α
+ .  

Fig. 4 (left) gave the real parts of a Fourier basis, when 16N =  and 16M = ; Fig. 4 
(middle) showed a corresponding whitening filter with 2wα = . Fig. 4 (right) was a 

low-pass whitening filter, which would be discussed in detail later. In such plots, the 
centers stood for the low frequencies. 

 

Fig. 4. Real parts of a Fourier basis (Left), a whitening filter (Middle) and a low-pass whitening 
filter (Right) 

Filtering the image ),( yxI  with the whitening filter, we would obtain a series of 
frequency coefficients ( , )wF u v , with 

( )2 2 4( , ) ( , )
w

wF u v u v F u v
α

= +  (11) 

Let ( , )wI x y  denote the IFT of ( , )wF u v , the two-dimensional power spectrum of 

( , )wI x y  would be 

( )2 2 2( , ) ( , )
w

wS u v u v S u v
α

= +  (12) 

The orientation power spectrum was then 

( ) ( )w w
wP f f P f f fα α α= ∝  (13) 

It was obvious that when the whitening parameter  wα  was equal to the 1 f  expo-

nent, α , of the original image ( , )I x y ,  the orientation averaged power spectrum of 
( , )wI x y  would be nearly a constant function. Therefore, we could regard ( , )wI x y  as 

whitening form of the image ),( yxI . 
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Furthermore, to guarantee that no significant noise at the highest frequencies could 
be allowed to pass, the whitening filter in eq. (10) was then improved to be a com-
bined low-pass and whitening one as  

( )2 2 4( , ) ( , )exp 2
w ux vy

LW u v u v L u v j
N M

α

π= + − +  (14) 

where ( , )L u v  was an exponential low-pass filter as 

2 2

( , ) exp

n

c

u v
L u v

f

+= −  (15) 

The frequency cf  in the low-pass filter was called cut-off frequency, at which the 

attenuation of frequency components was started; and n  was the steepness parameter. 
The values for cf  and n were selected to guarantee that not only no significant noise 

could be allowed to pass, but also the total power of the original image could not be 
attenuated highly.  

The coefficients by filtering ( , )I x y  with the low-pass whitening filter would be 

( , ) ( , ) ( , )lw wF u v L u v F u v=  (16) 

If ( , )lwI x y  was the IFT of ( , )lwF u v , its orientation averaged power spectrum would be  

( ) ( )lw wP f P f≈  (17) 

because the employed low-pass filter would not change or only change little the 
power of the original image at the low frequencies, which was the primary part of the 
total power. Fig. 4 (right) gave the real parts of a low-pass whitening filter, when 

16N = , 16M = , 2wα = , 6.4cf =  and 4n = . 

In summary, the processing of whitening an image ),( yxI  could be summarized as: 

1. Estimate the value for the 1 f  exponent, α , from the orientation averaged power 

spectrum plots of ),( yxI ;  
2. Calculate the frequency coefficients ( , )lwF u v by filtering ),( yxI  with the low-pass 

whitening filter ( , )LW u v , in which the whitening parameter wα  is equal to α ; 

3. Compute the inverse Fourier transform ( , )lwF u v  to obtain the whitening form the 

original image ),( yxI  in the space domain, that was ( , )lwI x y . 

5   Experiments and Results 

A small image piece of 32 32×  pixels was first taken on trial to compare the perform-
ance of the method proposed in this article with that of the geometric covariance  
matrix based PCA method. The first 256  from the total 1024  principle components of 
the 32 32×  image were shown in Fig. 5, with the components of high variances being 
shifted into the center. The geometric covariance matrices for natural images had 
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repeated eigenvalues indeed. As illustrated in Fig. 5, the eigenvectors with the same 
eigenvalues had the same spatial frequency information, while there was a phase lag 
between them.  

Fig. 6 (top) was the 32 32×  image piece. Because of low resolution, it was blur in-
deed. Fig. 6 (bottom left) represented its two-dimensional PCA representation. And 
Fig. 6 (bottom right) was its whitened result by employing our proposed method. For 
the sake of clarity, all three two-dimensional images in Fig. 6 was specified so that the 
minimum value in the image displayed as black, the maximum value displayed as 
white, and values in between displayed as intermediate shades of gray. It was obvious 
that our whitened result kept the same edge or line structures as the original image, 
while it was very difficult or even impossible to make out the appearance of the origi-
nal image from the decorrelating form by employing PCA method. The deep reason 
for this was that we only changed the amplitude spectra of natural images, without 
scrambling their phase spectra, which decided the higher-order statistics of natural 
images, such as edges or lines [18]. 

 

Fig. 5. First 256 principle 
components of the small 
image piece 

Fig. 6. Image piece and its 
decorrelating forms by PCA 
and our methods, respectivley 

Fig. 7. Whitened results of 
four sample images 

To measure the degree of inter-pixels correlations being reduced from the original 
image, we could use the measure η , which was 

2

2η
−

=
−

X Y

X

C C

C D
 (18) 

where XC  was the normalized autocorrelation function of the raw image, in which the 

value at the zero separation was 1 ; YC  was the normalized autocorrelation function 

of the transformed image; and D  was a sparse matrix with zero everywhere except 
for the zero separation position. Values of η  near 100%  indicated good performance; 
values of η  near 0%  indicated bad performance, then. Ref. [19] used another meas-
ure to weigh degree of correlations being reduced, but it needed to calculate the  
geometric covariance matrix of the input image, which was easily beyond the reason-
able computation when the image was large, as mentioned above. 
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For the 32 32×  image piece from Fig. 6, the values for η  when using PCA method 
and ours were 97.97%  and 91.55% , respectively, as illustrated in Table 1. In addition, 
the time needed to calculate the PCA decorrelating form was about 24.1961 second, 
while it only spent 0.0047  second to compute our whitening form, because we em-
ployed the well-known fast Fourier transform algorithm. Thus it could be seen that 
although the performance of the geometric covariance matrix based PCA method was 
better than our power spectrum based method, the related operation speed was pretty 
slower indeed. Moreover, when the input image became larger such as 64 64× , the 
PCA method could not work anaymore, for the  geometric covariance matrix would 
be as large as 242 , beyond the reasonable computation. 

Table 1. Performace Comparison between PCA Method and Our Method 

 PCA method Our method 
η  97.97% 91.55% 
Time consuming 24.1961 '  0.0047 '  

Fig. 7 gave the whitened results of the four 512 512×  sample images from Fig. 1, 
which also had the same edges or lines as the original images. The values for η  were 
then listed in Table 2, when wα  was adaptive to the input image and fixed at the value 

of 2  [1,17], respectively. It was obvious that the whitening filters with adaptive wα  

performed a little more well than the fixed ones. Meanwhile, the time needed to 
whiten each 512 512×  natural image was about 1.3650  second. 

Table 2. Performance of Whitening Filters for Four Sample Images with Adaptive and Fixed 
α , respectively 

 Top left Top right Bottom left Bottom right 

wα α=  99.44% 99.15% 98.82% 98.78% 

2wα =  97.89% 97.42% 97.74% 97.89% 

6   Discussion 

We have investigated that the second-order redundancy in natural images would be 
decreased if the first-order redundancy of the power spectra were reduced in the fre-
quency domain. By making use of fast Fourier transform algorithms, our method was 
computation saving and therefore could be used to whiten natural images of large 
size. Therefore, in the sparse and over-complete models for natural images, we could 
whiten each image into a decorrelating form before dividing them into small patches, 
to keep away from the limitation that the number of basis functions should not be 
larger than the dimensionality of the input data, which was necessary for PCA 
method, on the contrary. 
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Abstract. Concerning the control of plasma column evolution in ITER
machine, the reconstruction of the plasma shape in the vacuum vessel
represents an important step. In this work, starting from magnetic mea-
surements, a soft computing approach to estimate the distances of the
plasma boundary from the first wall of the vacuum vessel is carried out by
means of Neural Networks (NNs). In particular, Multi-Layer Perceptron
(MLP) nets have been exploited for the purpose. Finally, to verify the
robustness of the proposed approach, any different database and number
of input parameters has been used.

1 Introduction

In order to control the plasma column evolution within the vacuum chamber of
the ITER machine [1], it is required to timely identify the position and shape
of the plasma. Regarding ITER configuration, the plasma shape is delineated
bye some distances calculated from the plasma boundary to the first wall in
the vacuum vessel (gaps) (Fig. 1). Then, the problem under study is an inverse
problem in which the input of the final identification device is the set of the
simulated magnetic measurements and the output are the gaps. These solutions
are called magnetohydrodinamic equilibria (MHD model). The aim of our work
is to supply a contribution to the reconstruction of the plasma and the posi-
tion (outputs parameters), using flux (Ψ) and field (B) measurements (inputs
parameters). Practically, an inverse approach to solve the reconstruction prob-
lem has been followed. So that, having N input data related to N-functionals of
flux (magnetic signals), we reconstruct Ψ(R,Z), describing the equilibriums sur-
face (Ψ(R,Z) = cos(t)), and the current profile J(R,Z), when both the plasma
current and the distance between plasma-first wall (Gap) are known and the
Grad-Shafranovs equation [1], [2] is satisfied. In this case, when small perturba-
tions take place, big variations of the solution occur. A configuration that does
not take into account the problem above mentioned cannot be considered as an

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 353–360, 2006.
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optimal one: particularly, even if just a few output parameters are affected by
errors, the reconstruction of plasma shape is not correct. Then, we need different
magnetic measurements carried out by a lot of external probes with respect to
the first wall. In order to improve the goodness of results, we also exploit internal
measurements. In the recent years, the neural computing approach has emerged
as a successful framework for fast analysis of multi-channel data in plasma shape
recognition [1], [2], [3]. The similar procedure of plasma shape reconstruction’s
has been made by means the mixed approach Functional Parameterizations and
Principal Component Analysis [4]. The NN yields flexibility: indeed, the iden-
tification model (yet non linear, sigmoidal, with respect to linear combinations
of the measurements) is dependent on non-orthogonal input combinations, can
retain some information possibly included in the minor components (for example
present in the transition between two different plasma shape configurations, like
X-point and limiter ones), is less prone to noise in the measurements and permits
simple CAD procedures on the architecture of the model. This is very useful in
the hardware implementation of the processors. In this paper, MLPs have been
exploited to solve the inverse problem reconstructing the plasma shape in the
vacuum vessel in ITER machine. The paper is organized as follows: in section
2, a brief description of numerical database is presented; section 3 describes the
NN-based approach; some important results take place in section 4. Finally some
conclusions are drawn.

2 The Exploited Numerical Database

Using the ITER coil and vessel geometry [4], including the 6 dominant passive
current eigenmodes, a database of 4848 lower single null equilibria has been
generated by the Plasma Data Analysis Group (PDAG), Physics Department,
University College Cork, Association EURATOM-DCU. The equilibria were gen-
erated using a Database Generation and Analysis Package (DGAP) which has
been developed by PDAG. The core equilibrium calculation in DGAP is per-
formed by the Garching Equilibrium Code (GEC). The database consists of Ip

Fig. 1. Magnetic signals dislocations (left) and gap position (right)



An Exhaustive Employment of Neural Networks 355

Table 1. Structure of exploited numerical database

6 PF (Poloidal Field) Parameters associate to the currents
6 CS (Central Solenoid) in the windings and the
6 Mode Structure passive currents presents in the structure

24 B Tangential Signals on the Parameters associate to the magnetic signals
Vacuum Vessel Inner Skin and measured by means of magnetic
Contour probes

24 B Normal signals on the Vacuum
vessel Inner Skin Contour

6 B Tangential signals below
the Divertor Contour

6 B Normal signals below the
Divertor Contour
120 B Tangential signals on the
Vacuum Vessel Outer Skin Contour
120 B Normal signals on the Vacuum
Vessel Outer Skin Contour

71 Plasma Parameters Parameters associate to geometry
and structure of the plasma

= 15MA, Bo = 5.3T (at R = 6.2 m) lower X-point plasmas The coils were
modeled by partitioning the rectangular poloidal cross-section for each coil into
sub-regions, each of which contains a single computational winding located at the
centroid of the sub-region and which corresponds to approximately 10 physical
windings (this number varies from coil to coil).

The database structure is presented in Table 1 in which a brief description of
each parameter takes place. We have in the whole dataset 389 variables and 4848
samples (equilibria). The process of merging features is explicitly carried out in
NNs approaches by means of learning process. In NNs the output of hidden layers
of neurons build an internal representation of the problem. To be useful such
intermediate representation of the data must preserve distance among patterns.
This means that similar patterns must be represented by similar feature vectors.
The data are thus clustered around specific classes of patterns. This is precisely
what we are asked for in our identification problem. This implies a first derivative
discontinuity of the mapping plasma parameter-magnetic measurement. It is a
fact that numerical global regression, i.e. regressions carried out on the whole
database which includes plasmas from all of the six possible categories, suffer
from inadequacy. Global regressions typically show an error level about twice
that the least accurate individual category regression. This inability is mainly
related to the handling of the first order discontinuities in parameter behavior
across category transitions.

In the Fig. 1 we reported the position of used magnetic probe and Gap loca-
tion. The gap are a particular plasma parameters that represented the distance
between plasma-first wall. With the same characteristic the used database are
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three; the difference is the noise level added in the simulation phase. The used
value are: 2mTesla, 10mTesla and 20mTesla [4]; we emphasize that the added
signal noise concerning the tangential and normal magnetic field.

3 NNs: An Overview

Artificial Neural Network (ANN) implements a non linear function mapping
one multidimensional space, {x}, into another one, {z} [3]. This function has
a predefined structure but contains several parameters which are going to be
determined during the training phase which consists in the evaluation of the
parameters which minimize the differences between the target output t and the
network output, z. Among several possible structures of the network, we use
a so called, feed-forward MLP. This kind of network is known to approximate
arbitrarily any continuous multi dimensional mapping [5]. The h-th component
of the output vector (h = 1, ..., nz), can be written as:

zh = F (
ny∑
i=1

WYhiyi) · yi = F (
nx∑
j=1

WXijxj). (1)

where: yi is the i-th component of the output of the first layer; zh is the h-th
component of the networks output; W is the vector of link weights; nx, ny and
nz are the dimension of the input vector, the number of the hidden neurons and
the dimension of the networks output respectively; F is a non-linear function
[3]. In each layer, the input variable to the specific layer is transformed first
linearly, by means of a matrix (WX and WY for the first and the second layer
respectively) and then by a non-linear function. The values of the (nx ∗ny +ny ∗
nz) unknown elements of the matrixes WX and WY are found by minimizing
an error function of the type:

E = 0.5 ∗
n∑

k=1

[z(x(k),WX,WY− t(k))]2. (2)

in which the sum is extended to the whole training set. A slow but reliable
method to minimize the above equation is known as back-propagation algorithm
[6] and consist of evaluating the derivatives of E with respect to the elements of
the WX and WY matrixes and correct the unknown parameters using gradient
descendent in the following way:

WXn+1
ij −WXn

ij = −δ ∂E

∂WXij
. (3)

where δ is an appropriate learning rate parameter and n is the iteration number.

4 NNs Approach: Reconstruction Results

In this Section, we shall report about the performance of the NNs approach in the
test cases already introduced in the previous Section. The NNs models used are
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based on a scheme with two hidden layers, the first one of linear transfer function,
acting as a redundancy reduction layer, the second one with hyperbolic tangent
transfer functions, that is responsible for the non-linearity of the resulting model;
the number of nodes in the NN is shown for each column. A typical example of
NN is reported in the Figure 2.

Fig. 2. The general representation of MLP network

4.1 Outer Skin Vessel Measurements: Sensitivity to Sensor Sub-sets
Failure

The first comparative analysis has been conducted with respect to a diminution
of the number of sensors; the committed error is evaluated by means of Root
Mean Square Error (RMSE). Table 2 reports the obtained results in which, in
the first line for both, the used configuration is reported; 240-30-40-6 is a network
that has the input layer of 240 neurons two hidden layer of 30 and 40 neurons
respectively, and an output layer of 6 neurons (6 gaps, in our case).

4.2 Inner Skin Vessel Measurements

Sensitivity to Noise Model. In according to previous notation, the exploited
NN is 60-16-25-6, where 60 are the Inner Skin B measurements. RMSE is eval-
uated with respect to the added noise (Table 3).

Table 2. Summary of best results

GapXin GapXo GapMo Gap45 GapTop GapMin

240-30-40-6 0.0347 0.0275 0.0223 0.0235 0.0545 0.0224
120-25-35-6 0.0395 0.0291 0.0265 0.0285 0.0565 0.0288
80-25-35-6 0.0415 0.0315 0.0277 0.0301 0.0601 0.0261
60-20-30-6 0.0455 0.0355 0.0307 0.0362 0.0680 0.0332
48-18-25-6 0.0465 0.0386 0.0315 0.0367 0.0677 0.0343
40-10-20-6 0.0584 0.0406 0.0342 0.0401 0.0822 0.0355
20-8-15-6 0.0622 0.0455 0.0397 0.0422 0.0855 0.0441
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Table 3. Best results with respect to added signal noise

2 mT + 2 mT 10 mT + 10 mT 20 mT + 20 mT

GapXin 0.0088 0.0128 0.0177
GapXo 0.0077 0.0111 0.0161
GapMo 0.0089 0.0155 0.0203
Gap45 0.0095 0.0158 0.0199
GapTop 0.0298 0.0354 0.0412
GapMin 0.0066 0.0122 0.0197

Table 4. Best results with respect to diminution of Inner Skin measurements

60 30 20

GapXin 0.0128 0.0148 0.0221
GapXo 0.0111 0.0151 0.0187
GapMo 0.0155 0.0191 0.0356
Gap45 0.0158 0.0193 0.0287
GapTop 0.0354 0.0378 0.0514
GapMin 0.0122 0.0134 0.0316

Table 5. Best results respect to full Inner Skin measurements and absence of Divertor
module

60 30

GapXin 0.0128 0.0532
GapXo 0.0111 0.0527
GapMo 0.0155 0.0187
Gap45 0.0158 0.0173
GapTop 0.0354 0.0401
GapMin 0.0122 0.0152

Sensitivity to sensor sub-sets failure. In Table 4 we report the increasing
of error when we consider a recursive diminution of the input parameters.

Sensitivity to sensor sub-sets failure. Table 5 is referred to the failure mode
analysis for the divertor coils, that are fed out through a common connector.
The Full input (60 Inner Skin B measurements) and absence of Divertor Module
Measurements (48 inputs) are used.

Figs. 3 and 4 resume the results achieved with the NN approach. In particular,
Fig. 3 reports, on the left hand, the reconstruction accuracy for the 6 gaps by
using only external (outer skin) measurements (7 blocks of measurements have
been used). Fig. 3 (at right) reports the results achieved by using the Inner Skin
Vessel measurements for three different levels of noise. On the left of Fig. 4 the
sensitivity of the reconstruction at the failure of sensors (60, 30 and 20 sensors)
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Fig. 3. Reconstruction accuracy for the six gaps using outer (left) and inner (right)
skin vessel measurements. In particular, it is shown: sensitivity to the noise added in
the database of equilibria at left; sensitivity to the failure of subsets of sensors at right.

Fig. 4. Reconstruction accuracy for the six gaps using inner skin vessel measurements.
Sensitivity to the failure of: some subsets of sensors (left); the subset of sensors in the
divertor cassette (right).

is reported. Right part of Fig. 4 refers to the failure mode analysis in the case
of lack of divertor sensors.

5 Conclusions

The paper has presented the main results of the analysis carried out on noisy
data-base based on ITER configuration. Stochastic approaches have been ex-
ploited throughout the report. The obtained results have shown that NNs can
be useful in order to reconstruct plasma shape in ITER configuration. The dis-
tributed representation can be very useful to face possible failure in the sensors,
while the extrapolation capabilities are comparable with other techniques. The
global performance can benefit from optimization of the input signals. The large
redundancy of the input vector is an important issue to be investigated in fu-
ture analysis, also to cope with the difficulty of learning in a multi-dimensional
space with a large number of collinear and/or seemingly useless inputs. Others
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advantages of the MLP networks are the continuity of the solution and their
employment in a multidimensional space having a great dimension.
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Abstract. Functional Magnetic Resonance Imaging (fMRI) requires
ultra-fast imaging in order to capture the on-going spatio-temporal dy-
namics of the cognitive task. We make use of correlations in both k-space
and time, and thereby reconstruct the time series by acquiring only a
fraction of the data, using an improved form of the well-known dynamic
imaging technique k-t BLAST (Broad-use Linear Acquisition Speed-up
Technique). k-t BLAST (k-tB) works by unwrapping the aliased Fourier
conjugate space of k-t ( y-f space). The unwrapping process makes use
of an estimate of the true y-f space, obtained by acquiring a blurred
unaliased version. In this paper, we propose two changes to the existing
algorithm. Firstly, we improve the map estimate using generalized series
reconstruction. The second change is to incorporate phase constraints
from the training map. The proposed technique is compared with ex-
isting k-tB on visual stimulation fMRI data obtained on 5 volunteers.
Results show that the proposed changes lead to gain in temporal resolu-
tion by as much as a factor of 6. Performance evaluation is carried out by
comparing activation maps obtained using reconstructed images, against
that obtained from the true images. We observe upto 10dB improvement
in PSNR of activation maps. Besides, RMSE reduction on fMRI images,
of about 10% averaged over the entire time series, with a peak improve-
ment of 35% compared to the existing k-tB, averaged over 5 data sets,
is also observed.

1 Introduction

Magnetic resonance imaging (MRI) has emerged as a powerful tool in medical
imaging and diagnosis in the last decade, due to its non-invasive nature and
excellent soft-tissue contrast. Although high spatial resolution images are essen-
tial in medical diagnosis and image analysis, high temporal resolution is critical
in applications like dynamic contrast-enhanced MRI or functional MRI (fMRI),
where dynamic events are monitored. Today, fMRI has the potential to probe
neurophysiological activation in the brain at a much higher spatial resolution
than that offered by other non-invasive neuroimaging techniques like PET. The
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high sensitivity measurement of blood oxygenation level dependent (BOLD) sig-
nal modulation points to regions in the cortex responsible for the underlying
activity. Currently fMRI applications interrogate neural activity changes only
on the order of seconds, although neural activity happens on time scales of the
order of milliseconds. One way of increasing the temporal resolution is to recon-
struct high quality images from partial data. Parallel imaging methods can also
be used to achieve accelerated imaging, but they require customized hardware.
Parallel imaging involves utilizing an array of receiver coils with varying coil
sensitivities, instead of a single coil, with homogeneous sensitivity.

In MRI, data is sampled in the spatial frequency domain of the object being
imaged (called k space), directly leading to the well known trade-off between
temporal and spatial resolution. Parallel imaging techniques [1,2] are gaining
popularity but they require customized hardware. However, partial data-based
reconstruction have no such requirements. Partial data acquisition involves ac-
quiring a pre-determined region in k-space. Many techniques like Keyhole [3],
Reduced encoding Imaging by Generalized series Reconstruction (RIGR) [4],
Two-reference Reduced encoding Imaging by Generalized series Reconstruction
(TRIGR) [5], Unaliasing by Fourier-Encoding the Overlaps Using the Temporal
Dimension (UNFOLD) [6], k-t BLAST [7], that reconstruct images from partial
data, have been reported. Some of the methods use direct replacement, while
others extrapolate the missing values using correlations in k-space and/or time.
Keyhole is the simplest known technique where during the course of dynamic
changes only low frequencies in k-space are acquired, while the unacquired high
frequencies are simply replaced by the corresponding values obtained from a
static high-resolution acquisition. However, discontinuities in reconstructed k-
space lead to artifacts in images, and hence higher acceleration factors cannot
be explored. Methods like RIGR and TRIGR use generalized-series modeling to
estimate the unacquired values in k-space. High resolution static images serve
as estimates to obtain the corresponding values at instants of dynamic changes.
Both these methods linearly fit the unacquired values in terms of the acquired
data, and basically solve a system of linear equations. Reported works using these
methods claim acceleration factors of 4-6. However, methods like UNFOLD and
k-tB are radically different from the above. They employ a sparse acquisition
scheme that results in a known form of aliasing that is eventually unwrapped
either using temporal filtering (UNFOLD) or using a low resolution, alias-free
training map (k-tB). In this paper, we propose changes to two aspects of the
existing k-tB algorithm. Firstly, the estimates obtained from the training map
are improved using generalized series modeling (labelled as RIGR in further ref-
erences). The second proposed change is the incorporation of phase constraints
obtained from the alias-free training map. These two changes together were uti-
lized for reconstruction of fMRI data sets obtained from a photic stimulation
experiment, and improvements in resulting images were quantified. The paper is
organised as follows. The variations proposed to the existing k-tB technique is
given in section 2. The data used and results obtained are discussed in section 3.
Finally, section 4 concludes the paper.
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2 Proposed Method

2.1 Data Acquisition Schemes

In the original k-tB scheme [7], the training and actual data acquisitions are
done at disjoint instants of time, and follow different sampling schemes [8]. The
training data samples only low-frequency k-space data, while the actual data
acquisition is along a pre-designed sparsely sampled lattice, as shown in Fig. 1(a).
A variation of data acquisition scheme that couples both the training and actual

(a) (b)

Fig. 1. Data acquisition (a) Uniform density (Existing) (b)Variable density (Utilized)

scans is shown in Fig. 1(b). This is a variable density sampling lattice. This
scheme was chosen in order to minimize the mismatch between training and data
scans. This scheme of acquisition reduces the acceleration factor achievable, but
eliminates possible artifacts due to mis-registration. In our trials, we utilized this
variable-density sampling scheme.

2.2 Training Map

The reported work of Hansen et al [9], deals with how the quality of training
data influences the working of k-tB, in contexts where training and actual data
are acquired at disjoint instants of time. It reports that increasing the number of
time frames for which the training data is acquired, results in only a negligible
decrease of reconstruction error. It also reports that filtering of the training
data in order to reduce truncation artifacts had minor impact on reconstruction
errors. However, in a variable-density acquisition scheme like ours, training data
is available at all time frames of the experiment. We explored the impact of
including higher frequencies in the training data, on the working of k-tB. We
compared k-tB reconstructions that use low resolution training data against k-
tB reconstructions that use all the frequencies (ideal training) in the training
map. It is seen that the errors can be brought down using higher frequencies in
the training map, by a factor of 2. The disparity in the two reconstructions led
us to explore the possibility of obtaining an improved resolution training-map
using the acquired low frequencies. It must be observed that at locations in the
aliased y-f space, where the signal is dominated by noise, the values from the
training map that are chosen as estimates, can lead to meaningful results only
if the estimate is close to the truth.
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2.3 Proposed Variations to k-tB

The proposed method generates an improved-resolution training map, despite
acquiring only the lower spatial frequencies. This is done by extrapolation using
the generalized series model, which requires one full-resolution acquisition. The
high-resolution static acquisition serves to estimate the missing high-frequencies
in the training map. The working of the generalized series modeling is outlined
below.

Generalized series modeling: In generalized series modeling, the missing
high spatial frequencies is split into two components as shown in (1). The first
part comes from the apriori static information, whereas the second part comes
by adaptively adjusting the coefficients so that data consistency is maintained.

dGS(k) = dc(k) +
∑
m

cmdc(k −m.Δk) (1)

where, dGS is the Generalized series estimate, dc is the Fourier transform of
the static image, cm are the generalized series coefficients and Δk refers to the
spatial-frequency resolution. A fast version of this algorithm outlined in [5] is
used for implementation. After this extrapolation, it follows that the deviation of
the training data from the ideal, full k-space training data decreases. We expect
better training data to translate to better training maps in y-f space.

Phase constraints: The second change proposed is the incorporation of phase
constraints from the training map. The training map, though not of best possible
resolution, however does contain unaliased signal distributions. Hence, we use
the phase information of the training map in estimating the true y-f map.

Θ = � ρtrain (2)
ρ̃ = |ρ| exp(iΘ) (3)

where, ρ̃ is the final estimate of the signal distribution in y-f plane. ρtrain is the
training map.

3 Results and Discussion

3.1 Data Description

fMRI data was obtained for experiments with “visual stimulus” While a sub-
ject performed the experiment, 3 two-dimensional T*2-weighted images, each
with 64 scans, were acquired using a gradient-echo FLASH sequence (TE/TR
40msec/80.5msec, matrix = 128 × 64; The image matrices were zero-filled to
obtain 128 × 128 images with a spatial resolution of 1.953 × 1.953 mm; slice
thickness = 5-mm and 2-mm gap). The corresponding two-dimensional anatom-
ical slices were also acquired with a T1-weighted IR RARE sequence (TI = 900
msec; TE/TR 3900msec/40msec, matrix = 512 × 512) in the same experiment
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session. In all experiments, ON and OFF stimuli were presented at a rate of
5.162 sec/sample. Each stimulation period had four successive stimulation ON
states followed by four stimulation OFF states. The stimulations were repeated
for eight cycles (total experiment time = 5.5 min), and experiments were car-
ried out at different sessions with different subjects. The visual stimulation task
comprised an 8-Hz alternating checkerboard pattern with a central fixation point
projected on a LCD system. The subjects were asked to fixate on the point dur-
ing stimulations. Images were acquired at three axial levels of the brain at the
visual cortex.

3.2 Performance Evaluation

fMRI images are mainly studied for the activation maps which interpret the infor-
mation contained in the entire time series of images. Hence, to evaluate the recon-
struction performance, we compare the activation maps obtained against the ref-
erence activation map. Statistical Parametric Mapping (SPM) is the most widely
used method for fMRI time-series analysis [10]. The software package SPM2,
that implements SPM, downloaded from [11], was used for analysis. The primary
objective is to detect activated voxels and the resulting statistical parametric
maps represent the activation strength of each voxel. The scale of the activation-
strength obtained is important, since the activation maps are eventually thresh-
olded to obtain truly activated regions. Hence when drastic changes in the scales
of activation-strength are observed, the activation maps are considered degraded.
Root Mean square error (RMSE), correlation with reference, and mean activa-
tion level of the activation maps are used to quantify the degradation in activa-
tion. If we analyze the true image time series A and the reconstructed series B,
using same SPM method and parameters, we expect comparable scales in acti-
vation strength at similar locations, in the resulting statistical parametric maps
SA and SB. fMRI time-series are first realigned to remove movement effects using
least-squares minimization [10] and then smoothed with Full Width at Half Max-
imum (FWHM) = 4.47mm, 3D Gaussian kernel to decrease spatial noise. Canon-
ical hemodynamic response function (HRF) plus time and dispersion derivatives
is used as basis function and changes in BOLD signal associated with the task
were assessed on a pixel-by-pixel basis, using the general linear model and the
theory of Gaussian fields as implemented in SPM2. This method takes advan-
tage of multivariate regression analysis and corrects for temporal and spatial au-
tocorrelations in the fMRI data. Voxels in the statistical parametric map based
on F-contrast below a threshold of p ≤ 0.05 are identified as activation, which
was corrected for multiple comparisons using family-wise-error (FWE).

3.3 Experimental Results

MATLAB was used for all simulations. For our trials, the training and actual
acquisitions were generated from the full resolution true k-space, by using the
appropriate sub-sampling masks.

In Fig.2 (a), the deviation of the training data with respect to the ideal data
is shown in 2 cases. In the first case, the training data is simply zero-padded as
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Fig. 2. Errors for acceleration factor 5 in (a) Training k-space data (b) y-f -Training
map
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Fig. 3. Reconstruction errors for acceleration factor 5 in (a) y-f map (b) Image series
(RMSE) ; (c) Correlation with reference activation map

in the existing (baseline) k-tB, where as in the second case, the obtained low
frequencies are RIGR-extrapolated (proposed). Clearly, the RIGR-extrapolated
data is seen to be closer to the truth. In Fig.2 (b), we compare how the gains
of Fig.2 (a), translate in the y-f space. It can be observed that the RIGR-
extrapolated training map is close to the training map that would have been
generated had all the frequencies been available for training (ideal/full training)
and is more accurate than the zero-padded map that the original k-tB algorithm
uses. In Fig. 3 (a), we see errors in the reconstructed y-f plane as compared to
the true y-f plane. The three cases compared are : The training map being ideal
(full training), zero-padded (baseline k-tB) and RIGR-extrapolated (proposed).
It can be seen that the RIGR-extrapolated case results in lower errors compared
to the zero-padded case, consistently for all instants of the time series. In Fig.
3 (b) the time series of errors in RMSE, incurred during image reconstruction
in all the three cases outlined above, is shown. It can be seen that the RIGR-
extrapolated case and the ideal training map case, are quite comparable, while
both consistently outperform the baseline k-tB reconstruction. Fig. 3(c) shows
the decline in correlation of the obtained activation map with the reference map,
against acceleration factor.

In Fig.4, we observe the activation maps obtained using the two methods, for a
gain of factor 5 in temporal resolution. Clearly, the map obtained using Baseline
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(a) (b) (c)

Fig. 4. Thresholded Activation maps obtained using SPM for acceleration factor 5 (a)
True Images (b) Proposed method (c) Baseline ktB

k-tB displays more artifacts than the proposed method. We also observe that
the gain in PSNR goes upto 10dB. The RMSE of the fMRI time series reduces
by about 10% averaged over all time points, with a peak improvement of 35%
compared to the existing k-tB for acceleration factors upto 6. For acceleration
factor of 6 we notice that the scales of activation maps obtained using baseline
k-tB are lower by a factor more than 10, and hence it is not possible to threshold
them to see activated regions. On the other hand, the proposed method results
in activation maps that are lower by a factor 2 and hence activated regions
can be seen at lower thresholds. At accelerations above 6 we notice significant
degradation in the strength scales of the activation maps, and hence do not
consider them.

We also carried out trials where only one of the two proposed changes were
made to the existing algorithm. We first chose to extrapolate training data and
skip the incorporation of phase constraints. It was observed that the resulting
reconstructions did not show much change when compared against the case where
zero-padded training data was used. In this case, we know that the best possible
reconstruction achievable is what results out of using the ideal training set. In the
next trial, we retained the zero-padded training map, and incorporated only the
phase constraint. It was seen that this worsens the performance of the baseline
k-tB, since the phase map imposed is a blurred version of the original. Hence, it is
observed that incorporating both changes leads better reconstruction compared
to the baseline k-tB.

4 Conclusion

In this paper, we have proposed an improved version of the existing dynamic
imaging technique k-tB. The changes include improvement in the training map
that serves as an estimate to obtain the true signal distribution. The other
proposed change is the utilization of the phase-constraints from the training map,
rather than the aliased map. Trials on real fMRI data have shown that these
2 changes together lead to improved reconstructions and acceleration factors
of upto 6. The reconstruction performance is evaluated using activation maps
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obtained. We observe upto 10dB improvement in PSNR of activation maps. The
proposed technique results in more accurate activation maps and also the image
time series incurs mean RMSE of less than 10% averaged over the entire time
series, for acceleration factors upto 6.
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Abstract. First, a modified Neighborhood-Based Clustering (MNBC)
algorithm using the directed tree for data clustering is presented. It rep-
resents a dataset as some directed trees corresponding to meaningful
clusters. Governed by Neighborhood-based Density Factor (NDF), it also
can discover clusters of arbitrary shape and different densities like NBC.
Moreover, it greatly simplify NBC. However, a failure applying in image
segmentation is due to an unsuitable use of Euclidean distance between
image pixels. Second, Gray NDF (GNDF) is introduced to make MNBC
suitable for image segmentation. The dataset to be segmented is all grays
and thus MNBC has the constant computational complexity O(256).
The experiments on synthetic datasets and real-world images shows that
MNBC outperforms some existing graph-theoretical approaches in terms
of computation time as well as segmentation effect.

1 Introduction

Neighborhood-Based Clustering (NBC) algorithm [1] proposed by Zhou S. G.
etc is a good data clustering algorithm and can discover clusters of arbitrary
shape and different densities using the neighborhood relationship among data
points. Experiments in [1] show that NBC is advantageous over DBSCAN [2]
in both clustering effectiveness and efficiency. However, in order to develop the
algorithm the authors introduced thirteen pre-requisite definitions including the
neighborhood based density factor (NDF). Besides, they incorporated the cell-
based structure and VA file [3] for clustering very large and high dimensional
databases. The two aspects mentioned above make NBC conceptually and struc-
turally complex. In addition, NBC fails in segmenting an image due to an un-
suitable use of Euclidean distance between image pixels.

In fact, we just require three key definitions from the thirteen basic ones in
NBC, i.e. k-neighborhood, reverse k-neighborhood and NDF, and additionally
borrow the idea of directed tree to develop a modified NBC (MNBC) for data
clustering, which not only simplifies NBC but also can discover clusters of ar-
bitrary shape and different densities like NBC. It represents a dataset as some
directed trees corresponding to meaningful clusters. So, its goal is to find the
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numbers of directed trees constructed in a top-down strategy. On the other hand,
we introduce Grayscale k-neighborhood, Grayscale reverse k-neighborhood and
Grayscale NDF (GNDF) and apply MNBC to image segmentation. GNDF char-
acterizes the local density of a gray scale’s neighborhood in a relative sense.
And MNBC governed by GNDF takes the 256 intensities in a common gray
image Im×n (encoded with 8-bit resolution, m and n are the numbers of rows
and columns respectively) as the dataset to be segmented and accomplishes seg-
mentation fast and efficiently. Its computational complexity is O(256), which is
independent of the size of the image m× n.

There is some of the related work to our approach: early graph-based methods
(EGA) [6], spectral clustering algorithms (SCA) [4], [5], minimum spanning trees
(MST) based clustering algorithm [7], [8]. EGA is to generate directed trees for
data clustering with a bottom-up process and also guided by a single-scalar con-
trol variable but the user must specify it by cross-validation. Its computational
complexity is O(N2). SCA cluster points using eigenvectors of affinity matrices
derived from the data set. While powerful, computational cost remains a ma-
jor obstacle for real-time applications. Its computational complexities is O(N3).
MST based clustering algorithm is a greedy one for segmenting images based on
intensity differences between neighboring pixels and requires O(MlogM),where
M is the number of edges in the graph.

The remainder of this paper is organized as follows: Section 2 gives an overview
of NBC and refines its three key definitions. The three key definitions avail to
design MNBC. Section 3 describes MNBC in detail and presents the evaluation
results on some synthetic toy datasets with (EGA) [6], (SCA) [4], [5] and MST
[7], [8] to show the good performance of MNBC. Section 4 introduces GNDF
and details MNBC for image segmentation, while Sect. 5 delivers comparisons
on real world images with MST [7], [8], and Sect. 6 concludes the whole paper.

2 Review of NBC

NBC algorithm [1] uses the neighborhood relationship among data points to
build a neighborhood based clustering model with goal to discover clusters of
arbitrary shape and different densities. In the description of NBC algorithm, the
authors had to introduce thirteen pre-requisite definitions including the neigh-
borhood based density factor (NDF). Here we refine its thirteen basic concepts
into just three ones: k-neighborhood, reverse k-neighborhood and NDF. The
three key definitions facilitate to design MNBC based on the directed tree. Given
a dataset, X = {x1, x2, · · · , xN} , N is the size of the d-dimension data set. Eu-
clidean distance between x and y is denoted by dist(x, y).

Definition 1. (k-Neighborhood) The k-nearest neighbors set of x (kNN(x)) is
a set of k nearest neighbors of x( k > 0), then the x’s k-neighborhood (kNB(x))
is the set of objects that lie within the circle region with x as the center and r
as the radius, where r is the maximal distance of between x and kNN(x), i.e.
∃z ∈ kNN(x), r = dist (x, z), s.t. ∀y ∈ kNN(x), dist(x, y) ≤ r.
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Definition 2. (Reverse k-Neighborhood) The reverse k-neighborhood of x (R-
kNB(x)) is the set of objects whose k neighborhood contain x, which can be
formally represented as R-kNB(x) = {y ∈ X : x ∈ kNB(y)}
Definition 3. (Neighbor-based Density Factor) The neighbor-based density fac-
tor of data point x, denoted by NDF(x),is evaluated as follows:

NDF (x) =
|R-kNB(x)|
|kNB(x)| (1)

In practice, |kNN(x)| is around k for a given single-scalar control variable k.
According to Definition 1, it may be a little greater but not less than k. |R-
kNB(x)| is quite discrepant for different data points. As a result, there are three
situations for NDF(x): larger than 1 (dense point), equal to 1 (even point) and
less than 1 (sparse point) [1]. In MNBC, the data points with NDF(x) ≥ 1
are seed nodes, which could be taken as a root node while the others with
NDF(x) < 1 can only be taken as leaf nodes or outlier nodes appearing in no
directed trees.

3 MNBC

In this section, we describe MNBC. EGA [6] generates directed trees in a bottom-
up process and while MNBC adopts a top-down process to construct the directed
trees. We will begin by discussing the concepts of graph theory (see [9] and [6])
which are pertinent to MNBC in Sect.3.1 and then proceed to construct the
direct trees in Sect.3.2. The evaluation results on some synthetic toy datasets
are presented in Sect.3.3.

3.1 The Concepts of Graph Theory

Definition 4. (Directed Graph and Directed Path) A directed graph is a set of
nodes and arcs, each arc leading from an initial node A to a final node A’. A set
of arcs e1, e2, · · · , en is said to be a directed path from A to A’, if A is the initial
node of e1, A’ is the final node of en, and the final node of ek is the initial node
of ek+1 for k = 1, 2, · · · , n− 1.

Definition 5. (Directed Tree) A directed tree is a directed graph satisfying 1)
Every node A �= R is the final node of exactly one arc; 2) L is the initial node
of no arc; 3) R is the final node of no arc; 4) There is no directed path from a
node A to itself (i.e. no cycles).

The nodes R and L are called the root and leaf of the directed tree respectively.
The final node of the arc whose initial node is A is called the child node of A,
denoted C(A). Notice that the root of a directed tree must be unique but the
leaf of a directed tree can be more than one, and a path from the root to one
of the leaves in a directed tree is unique and consists of the arcs from R to one
C(R), C(R) to one C(C(R)), etc.
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3.2 Construction of the Directed Trees Based on NDF

For a given k, MNBC is made up of three phases:
(P1) Computing all kNB(x), R-kNB(x) and NDF (x) according to (1);
(P2) Constructing all directed trees based on NDF evaluated in P1;
(P3) Nodes exist in no directed tree are called outliers.
Obviously, one or more directed trees can be constructed in P2, dependent of
the single variable k. The following algorithmic steps summarize P2:

1. Initially, numT = 0, V = {x : NDF (x) ≥ 1, x ∈ X};
2. While V �= ∅, an arbitrary x ∈ V is taken as a root node to construct Tx

(the directed tree of x):
Tx = ∅; C(x) = kNB(x); Tx = {x} ∪ C(x);
Y = {y : y ∈ C(x), NDF (y) ≥ 1};

While Y �= ∅,
For each seed node y ∈ Y , C(y) = {z : z ∈ kNB(y), z �∈ Tx}

If C(y) = ∅, y becomes a leaf node of Tx;
Else y is a root node of the subtree Ty, Ty = {y} ∪ C(y);
End

End
C(C(x)) =

⋃
y∈Y

C(y), Tx = Tx ∪
⋃

y∈Y

Ty;

C(x) = C(C(x)); Y = {y : y ∈ C(x),NDF(y) ≥ 1};
End

numT = numT + 1;X = X\Tx;V = {x : NDF (x) ≥ 1, x ∈ X};
End

Complexity. The time complexity of P1 is O(N2) because the most time-
consuming work in P1 is the evaluation of kNB queries, which takes O(N2). The
recursive procedure of constructing the directed trees to discover clusters takes
O(N) with only three key definitions, i.e. the time complexity of P2 is O(N).
Therefore, the total computational complexity of MNBC is O(N2). MNBC, ro-
bust to the order of the initial node selection, has the outstanding capability of
discovering all clusters of arbitrary shape and recognizing the outlier points as
well as NBC [1].

3.3 Synthetic Datasets and Experimental Results

To evaluate the performance of MNBC for data clustering, we compare it with
EGA [6], SCA [4], [5] and MST [7], [8] on three synthetic datasets: three concentric
circles (out-circle: 300 points; mediate-circle: 200 points; inner-circle: 100 points),
two half circles (each has 500 points) and three spirals (each has 400 points). The
NDF values of all data points in the respective dataset and the cluster results of
MNBC identified by label are put in Fig.1, which shows that MNBC does not
cluster data wrongly. The experimental results are illustrated in Fig.2. For each
method, its parameters are tuned over a range in which their clustering results
for the three toy data sets are different. To make a fair comparison, we carefully
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(a) (b) (c)

Fig. 1. The NDF curves and cluster labels in MNBC for (a) Three concentric circles
(N=600, k=14); (b) Two half circles (N=1000, k=50); (c) Three spirals (N=1200,
k=25)

choose those parameters for each dataset which make each method work best.
From Fig.2, EGA and SCA perform poorly for the three synthetic toy data sets;
whereas MNBC and MST have a good structural representation, especially the
clustering results by MNBC are identical to the original synthetic data sets as
show in the first row of Fig.2. Therefore, MNBC outperforms the others.

4 GNDF and MNBC for Image Segmentation

Image segmentation is the most essential and important step of any low-level
vision system. In general, a common gray image Im×n is encoded with 8-bit
resolution and has at most 256 grays (m and n are the number of rows and
columns respectively). To apply MNBC to segment an image fast and efficiently,
we introduce Grayscale k-neighborhood, Grayscale reverse k-neighborhood and
Grayscale NDF (GNDF), which characterizes the local density of a gray’s neigh-
borhood in a relative sense. MNBC governed by GNDF takes the 256 intensities
as the dataset to be segmented and has the computational complexity O(256),
which is independent of the size of the image m× n.

4.1 Grayscale Neighborhood-Based Density Factor (GNDF)

Suppose I = {0, 1, · · · , N}, 0 ≤ N ≤ 255, then GNDF is given in Definition 6.

Definition 6. (Grayscale Neighborhood-based Density Factor)

GNDF (q) =
|R-kNB(q)|
|kNB(q)| , q = 0, 1, · · · , 255 (2)
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MNBC: (a) k = 14 (b) k = 50 (c) k = 25

SC: (a) num= 3 (b) num= 2 (c) num= 3

EGA: (a) θ = 1.65 (b) θ = 45 (c) θ = 1.7

MST: (a) d = 0.4, k = 100 (b) d = 10, k = 300 (c) d = 1, k = 100

Fig. 2. Clustering results by MNBC (1st row), SC (2nd row), EGA (3rd row) and MST
(4th row), respectively

Denote num(q) as the number of pixels whose intensity is q and l(q) as a natural
number satisfying (num(q) �= 0)

l(q) = min

⎧⎨⎩l(q) ≥ 0;
∑

x∈I,|x−q|≤l(q)

num(x) ≥ k

⎫⎬⎭ (3)

Then

kNB(q) = I ∩ {q − l(q), q − l(q) + 1, · · · , q + l(q)− 1, q + l(q)}, (4)

R-kNB(q) = {y ∈ I; y ∈ kNB(q)}, (5)

where kNB(q) and R-kNB(q) are k-neighborhood and reverse k-neighborhood
of the grayscale q respectively.
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Because the grays of an image are consecutive natural numbers, both k-
neighborhood and reverse k-neighborhood of arbitrary grays q are the inter-
section between the truncation of several consecutive natural numbers and X .
Further, it is easy to draw a conclusion in Proposition 1 but its proof is left out
due to space of limitation:

Proposition 1. If q1 ≤ q2, then q1 − l(q1) ≤ q2 − l(q2), q1 + l(q1) ≤ q2 + l(q2).

Proposition 1 indicates that the left and right endpoint values of k-neighborhood
of gray q both are monotonically increasing with respect to q, which implies that
there is some expanded direction of k-neighborhood of the q. Since MNBC is
robust to the initial node selection analyzed above, we can select the minimal
gray q* as the initial node to construct a directed tree.

Like NDF, GNDF of a gray will also probably be larger than 1 or equal to 1
or smaller than 1. The grays with GNDF(q) ≥ 1 are seed nodes, which could be
taken as root nodes while the others with GNDF(q) < 1 can only be taken as
leaf nodes or outlier nodes not residing on any directed trees. Figure 3 illustrates
a simple schematic diagram (k = 200), e.g. num(28) = 50 < 200, then according
to (3) and (4), l(28) = 2, kNB(28) = {26, 27, 28, 29, 30} and |kNB(28)| = 282

because
29∑

q=27
num(q) = 134 < 200

30∑
q=26

num(q) = 282 > 200; According to (5),

R-kNB(28) = {27, 28}, |R-kNB(28)| = 104, then GNDF(28) = 104/282 < 1
according to (2).

4.2 MNBC for Image Segmentation with GNDF

Similarly, MNBC based on GNDF is also made up of three phases:

(P1’) Input k and compute GNDF (q) according to (2), q = 1, · · · , N ;
(P2’) Construct the directed trees based on GNDF evaluated in P1’;
(P3’) Assign pixels to a corresponding directed tree constructed in P2’ and the
pixels with its gray not in any directed trees are designated as outliers.

Fig. 3. A simple schematic diagram of kNB(q), R-kNB(q)
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However, P2’ is different from P2. First, the directed trees are constructed with
a non-decreasing order, namely, the root of each directed tree Tq is minimal gray
q instead of arbitrary q, q ∈ I,GNDF (q) ≥ 1. Second, according to Proposition
1, only the maximal seed node p, p ∈ C(q), GNDF (p) ≥ 1 is qualified as the
root of a subtree of Tq to expand Tq, denoted by Tp, where C(q) is the children
nodes of the q, while in P2 all seed nodes must be traversed over x′s children
nodes to expand Tx. Such a one-direction search makes it for MNBC to segment
image easily and fast. P2’ is summarized in the following:

1. Initially, numT = 0, V = {q : GNDF (q) ≥ 1, q ∈ I};
2. While V �= ∅, q∗ = minV, q = q∗, then q is taken as a root node to construct

Tq (the directed tree of q):
Tq = ∅; C(q) = kNB(q)\q, Tq = Tq ∪ kNB(q);
P = {p : p ∈ C(q), GNDF (p) ≥ 1};
While P �= ∅, p∗ = maxP ; p = p∗;
C(p) = {o : o ∈ kNB(p)\p, o �∈ Tq};
If C(p) = ∅, p becomes a leaf node of Tq, Tq = Tq; break
Else p is a root node of Tp (a subtree of Tq):

Tp = kNB(p);Tq = Tq ∪ Tp;
C(q) = C(p);P = {p : p ∈ C(q), GNDF (p) ≥ 1};

End
End

numT = numT + 1; I = I\Tq;V = {q : GNDF (q) ≥ 1, q ∈ I};
End

I) Selection of k. The single input parameter k determines the number of regions
and the relative size of each region. It can be selected flexibly and purposefully.
Let nmin = minq∈Inum(q), ntot =

∑
q∈I num(q). When k ≤ nmin, each gray

itself becomes a single cluster. Hence, the number of so-formed regions will be
close to 256, which is an over-segmentation problem. In contrast, when k ≥ ntot ,
all grays are grouped together to form a single cluster. Thus the number of
regions formed is only 1, meaning an under-segmentation. To avoid these two
unacceptable extreme cases, we should select k satisfying nmin < k < ntot. Once
k is appropriately selected, the number of regions to be formed is determined
automatically.

II) Complexity. The total time complexity of MNBC based on GNDF is O(256),
which is independent of the size m × n of the image Im×n. Because the most
time-consuming part of the whole algorithm is the evaluation of kNB queries,
which takes only O(256) according to (3) and (4).

4.3 Real Images and Segmented Results

In this subsection, we present three real image experiments to show that MNBC
based on GNDF outperforms MST in terms of segmented quality as well as
computation time.
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Fig. 4. Segmented Results

Figure 4 shows the segmentation results for three real world images, namely,
”Plane A”, ”Elk”, ”Trees” and ”Plane F-16”. Each of them presents differ-
ent level of difficulties in image segmentation. From left to right, the three
columns correspond to respectively the original images, segmented images based
on MNBC and MST. The segmentation results are shown with different gray
levels representing different segmenting regions. It can be seen that MNBC vi-
sually outperforms MST. On one hand, MNBC is capable of preserving details
well, such as (1) the letter ”A” in the image ”Plane A”; (2) ”F-16’ mark, the
entrance with shape ”�”, the star signature, the text ”US.ATR.FORCE” and
ID # ”01568” in the image ”Plane F-16”, whereas MST completely fails. On the
other hand, although MST segments the sky correctly as a whole for the image
”Plane A”, the plane A is under-segmented. For the image ”Elk”, MST succeeds
in segmenting the body of elk correctly as a whole except for the antler, but the
background is over-segmented. For the image ”Trees”, MST has the branches of
the trees merged with the riverbank.

5 Conclusion

This paper first presents a MNBC algorithm using the directed tree, which not
only can discover clusters of arbitrary shape and different densities like NBC [1]
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but also simplify NBC greatly. MNBC represents a dataset as some directed trees
corresponding to meaningful clusters with just three key definitions refined from
NBC. Second, GNDF is defined to make MNBC suitable for image segmentation.
Taking all grays in an image as the dataset to be segmented, MNBC has the
computational complexity O(256), which is independent of the size of the image.
The experiments on synthetic datasets and real-world images shows that MNBC
outperforms some existing graph-theoretical approaches in terms of computation
time as well as segmentation effect. Our future work will include incorporating
the spatial information to MNBC for more effective image segmentation and
exploring various applications to which MNBC can be applied.
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Abstract. In this paper, we present an efficient unsupervised mixture
model image segmentation method. The idea of this method is that
individual image region classes are modeled as mixtures of fuzzy sub-
classes of mixture distributions, and classification is performed based on
the Expectation-Maximization algorithm. To overcome the difficulty of
classical mixture model method for noisy image segmentation, spatial
contextual information should be taken into account. In particular, the
proposed approach based on Markov Random Field was shown to pro-
vide more accurate classification of images than traditional Expectation-
Maximization algorithm and traditional Markov Random Field image
segmentation techniques. The effectiveness of the proposed method is
illustrated with synthetic and real images data. The experiments results
have shown that the proposed method can achieve more robust segmen-
tation for noisy images.

1 Introduction

Mixture model has widespread applications in image processing and computer vi-
sion [1],[2],[3],[4],[5],[6]. Among statistical model image segmentation algorithms,
the mixture model has attracted considerable attention in last decade, because
for image processing problems, each image region can be characterized by a Gaus-
sian distribution and the entire image can be obtained by describing the image
data set with a mixture model. Gaussian finite mixture model is a well-known
statistical model for data clustering techniques and image segmentation.

However, the application of finite mixtures model to image segmentation faces
some difficulties. First, the estimation of the number of components is still an
open question. Second, finite mixture-model based image segmentation technique
does not consider image spatial information; this causes the finite mixture model
to work only on well-defined images with low levels of noise. In classical mix-
ture statistical model, the each image pixel is associated with exactly one class.
This assumption may not be realistic. Some researchers mixed fuzzy and statis-
tical model to solve the problem [7]. These model parameters can be estimated
through likelihood maximization using EM algorithm [9]. But the commonly
used Maximum likelihood algorithm for image segmentation tends to have an

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 379–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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unacceptably large number of misclassified pixels since they ignore spatial con-
textual information. Markov Random Field(MRF) is considered as a powerful
stochastic tool to model the joint probability distribution of the image pixels
in terms of local spatial interaction[10], [11],[12],[13],[14].Markov Random Field
represents the local characteristics of image structure such that neighboring pix-
els have a higher probability of being members of the same class. Unsupervised
segmentation based on Markov Random Field has been used extensively for the
analysis of images segmentation in computer vision. In this work, we present an
efficient statistical model to segment an image.

In this paper, we incorporate fuzzy idea into mixture model segmentation
scheme. To overcome the difficulty of classical mixture model method for a
noisy image segmentation, spatial contextual information should be taken into
account. Markov Random Field of prior contextual information is a powerful
tool for modeling spatial continuity and other features, and can provide useful
information for the image segmentation process. Experiments with synthetic and
real images show that the proposed method is more effective for noisy images
segmentation problem than traditional method.

The rest of the paper is organized as follows. Section 2, introduces finite
mixture model for image segmentation problem. Section 3, describe our proposal
to solve image segmentation problem. Section 4, experiments and validate the
algorithm.

2 Image Model

The finite mixture model is an efficient clustering analysis tool. Let X =
{x1, x2, · · ·, xn} be a finite set of pixel of an image. The observed image can be
modelled by finite mixture model,The distribution of the image data can be ap-
proached by the probability distribution function p(xi|Θ) .The mixture model
then has the form

p(xi|Θ) =
K∑

k=1

πkpk(xi|θk) with

K∑
k=1

πk = 1 (1)

where K is the number of image classes,the πk is mixture weights or mixing
coefficient and the parameters of each image class as θk = (μk, σk) .The set of
parameters of a given mixture model is Θ = {θ1, · · ·, θk;π1, · · ·, πk} .

The density function of the k class region image can be written as

pk(x|μk, σk) =
1√

2πσk

exp(− (x− μk)2

2σ2
k

) (2)

where μk and σk are the mean and variance of the each image class.The
whole image can be described by an independent identically distribution of the
X .The likelihood function for an image is
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p(X |Θ) =
N∏

i=1

K∑
k=1

πkpk(xi|θk) (3)

The image segmentation goal will be to estimate vector Θ . Various procedures
have been developed for determining the parameters of a mixture of normal
densities, often based on the maximum likelihood technique, leading to the EM
algorithm. The technique is used to maximize the likelihood function relies on the
choice of Θ most likely to give rise to the observed data. In maximum likelihood
estimation,the unknown parameter Θ is estimated so that the log-likelihood
function as :

Θ̂ = arg max(log p(X |Θ)) (4)

The Expectation-Maximization (EM) algorithm[9] is a well-known statistical
tool for finding the maximum likelihood estimate(ML) estimate of the mixture
model parameters Θ .The EM algorithm used in the analysis consists of the
following two steps, namely, the Expectation step and the Maximisation step.

1: The E-Setp(Expectation): compute parts of Q(Θ|Θm)

Q(Θ|Θm) = E[log p(X |Θ)|Θm] (5)

2: The M-Step(Maximization):search Θm+1 = arg maxQ(Θ|Θm)

The above two steps are repeatedly performed until a certain convergence
criterion is meet.The iterative EM algorithm for estimating the parameters of
the component densities is given by:

wm
k =

πm
k pk(xi|μm

k , σ
m
k )∑K

k=1 π
m
k pk(xi|μm

k , σ
m
k )

πm+1
k =

1
N

N∑
i=1

wm
k (6)

μm+1
k =

∑N
i=1 wm

k xi∑N
i=1 wm

k

(σ2
k)m+1 =

∑N
i=1 wm

k |xi − μm+1
k |2∑N

i=1 wm
k

(7)

3 The Proposed Segmentation Method

The fuzzy sets,introduced by Zadeh[8]. Let X = x1, x2, · · ·, xn be a set of unla-
belled feature vectors xk .The fuzzy Clustering of data set X into C clusters
is characterized by C functions uik ,the fuzzy partition satisfy the following
conditions:

uik : X → [0, 1], i = 1, ..., C (8)

and
c∑

i=1

uik = 1, i = 1, ..., C 0 <
T∑

k=1

uik < T, i = 1, ..., C (9)
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These are called membership functions.Because all the components are in-
dependent of each other,The whole image can be described by an independent
identically distribution of the X . So the corresponding joint pdf is

p(X |Θ) =
N∏

i=1

K∑
k=1

uikπkp(xi|θk) (10)

where uik is the fuzzy membership function,from the above equation, we can
see that the mixture density is determined by groups,and all the groups are
different from each other.

The classical mixture model segmentation method is done each image pixel
independently,without taking the classification of its neighbors into account.
One common approach is to introduce spatial contextual information for im-
proving segmentation.To modelling the label field image using a Gibbs random
field(GRF). Hence the distribution of x is specified by that a Gibbs distribution,

p(x) =
1
Z

exp{−β
∑
C

VC(x)} (11)

where Z is a normalizing constant and the summation is over all cliques C , β is
a positive parameter that controls the granularity of the image region. VC is the
potential function. If we consider that a 2-D image is defined on the Cartesian
grid and the neighborhood of a pixel is represented by its four nearest pixels
then the clique potentials can be defined as

Vij(xi, xj) =
{

1 ifxi = xj

0 ifxi �= xj
(12)

This is known as Potts model with an external field Vij ,that weights the
relative importance of different class present in the image. The second term
takes into account the spatial neighbors information relative to the image data.
Here,we define the neighborhood of pixel i ,denote by ∂i ,by 3X3 windows with
pixel i being the central pixel. From Eq(10) and Eq(11), the complete-data log
likelihood is given by

L(Θ) =
N∑

i=1

K∑
k=1

uik log pk(xk|θk) + log p(x)

=
N∑

i=1

K∑
k=1

uik log pk(xk|θk)− β
∑
C

Vij(x)− logZ (13)

The EM algorithm for the estimation of the parameters Θ requires that the
expectation values uik of the hidden variables are compute at the E-Step
process.
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E-step:
Q(Θ, Θ̂m) = E[L(Θ)|um

ik, Θ
m] (14)

M-Step: Thus ,to computer of the mixture parameters, it can use the same
method as it in the M-Step of the EM algorithm.Then the parameters of each
image class μm+1

k and (σ2
k)m+1 on the (m+1)th iteration of the EM algorithm

are given by

μm+1
k =

∑N
i=1 u

m+1
ik xi∑N

i=1 u
m+1
ik

(σ2
k)m+1 =

∑N
i=1 u

m+1
ik |xi − μm+1

k |2∑N
i=1 u

m+1
ik

(15)

4 Experimental Results

In order to examine the performances more carefully, we use synthetic images
,real images and medical images to compare the experiment performance of the
new method present in this paper with the traditional statistical method.

4.1 Noise Synthesis Images Segmentation

The first experiment image is a 256X256 image obtained by adding some gaus-
sian noise to the synthesis image of Fig.1,leading to Fig1.(b).The suggested SNR
value is 5.44dB in this example. Fig.1 show 4 class image segmentation. The dif-
ferent segmentation obtained with the different methods are shown in Fig1.We
can observe a real visual improvement of results when applying our algorithm.
Fig.1(d) shows the EM segmentation results.Fig.1(e) shows classical MRF model
segmentation results. By using our proposed method,noisy image can segmented

(a) (b) (c)

(d) (e) (f)

Fig. 1. Synthetic images segmentation.(a)original Image,(b)noise Image,(c)image his-
togram(d)EM segmentation results,(e)classical MRF model segmentation results,(f)our
method results
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Fig. 2. Performance of the segmentation methods with different levels of noise

well . The result displayed in bottom row of Fig.1(f) demonstrates the parameters
of each class are properly estimated and the segmented regions are uniform re-
spectively. This is great improvement over the EM and classical MRF model.We
simulated synthesis images with different noise.The quality of segmentation with
different levels of noise was analyzed in Fig.2.

4.2 Real Images Segmentation

For this experiment on Baboon image, we consider the 256X256 images of ba-
boon’s face presented in Fig.3(a).we add gaussian noise to baboon image shown
in Fig.3(b).The value would be suggested in this example. We can observe a real
visual improvement of results when applying our algorithm. Clear, this model is
enough to capture some finer features of the baoon’s face than classical method.

(a) (b)

(c) (d) (e)

Fig. 3. segmentation experiment on an baboon image with 4 class.(c) EM segmentation
results,(d) classical MRF model segmentation results,(e) our method results.
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(a) (b) (c) (d)

Fig. 4. Performance of the proposed methods for noise MR images.(a)original MR im-
ages,(b)EM segmentation results,(c)classical MRF model segmentation results,(d)our
method results.

(a) (b) (c) (d)

Fig. 5. Performance of the proposed methods for real MR images.(a)original MR im-
ages,(b)EM segmentation results,(c)classical MRF model segmentation results,(d)our
method results.

4.3 Application in Medical Image

In this experiment, we apply this approach in Magnetic resonance(MR) im-
ages.The accurate Segmentation of MR images into different tissue classes, espe-
cially gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), is an
important task. for research and clinical study of many neurological pathologies.
Fig.5(a)and Fig.4(a) shows two sample slice of real MRI.Fig.5(b) and Fig.4(b)
shows the EM segmentation results.Fig.5(c) and Fig.4(c) shows traditional MRF
segmentation results,Fig.5(d) and Fig.4(d) shows the segmentation results of our
approach are shown above. From these segmentation results, we can see that the
segmentation results of our approach are comparable with that of traditional
EM and traditional MRF image segmentation method. Our approach has a high
ability to resist noise.

5 Conclusions

In this paper, we have presented an efficient unsupervised mixture model im-
age segmentation method, which incorporate fuzzy idea into mixture model.
To overcome the difficulty of classical mixture model method for noisy image
segmentation,we consider spatial contextual information by incorporating the
prior spatial information based on the Markov Random field.We have compared
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our method with traditional EM and traditional MRF image segmentation tech-
niques.The new algorithm exhibits more reasonable pixel classification and noise
suppression performance. We present some examples on synthetic image and real
image to illustrate the versatility of our approach. The experimental results show
that this method has a significant improvement over classical MRF-based im-
age segmentation. We conclude from the experiments for the synthesis and real
images that our algorithm is robust to resist noise.
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Abstract. The polarimetric synthetic aperture radar (PSAR) images are mod-
eled by a mixture model that results from the product of two independent mod-
els, one characterizes the target response and the other characterizes the speckle 
phenomenon. For the scene interpretation, it is desirable to separate between the 
target response and the speckle. For this purpose, we proposed a new speckle 
reduction approach using independent component analysis (ICA) based on sta-
tistical formulation of PSAR image. In addition, we apply four ICA algorithms 
on real PSAR images and compare their performances. The comparison reveals 
characteristic differences between the studied neural ICA algorithms, comple-
menting the results obtained earlier. 

1   Introduction 

Recent advances in the remote sensing polarimetric synthetic aperture radar (PSAR) 
systems provide a rich set of data for the same scene. This set of data brings knowl-
edge on the nature of targets [1]. However, the PSAR images are corrupted by speckle 
that appears as a granular signal-dependent noise. It has the characteristics of a non-
Gaussian multiplicative noise [2]. Due to its granular appearance in an image, speckle 
noise makes it very difficult to visually and automatically interpret SAR data. There-
fore, speckle filtering is a critical preprocessing step for many SAR image processing 
tasks, such as segmentation and classification [3]. 

Independent component analysis (ICA) is an unsupervised technique that tries to 
represent the data in terms of statistically independent variables [4]. ICA has lately 
drawn a lot of attention both in unsupervised neural learning and statistical signal 
processing. ICA is suitable for neural network implementation and different theories 
recently proposed for that purpose lead to the same iterative learning algorithm. Dif-
ferent neural-based blind source separation algorithms are reviewed in [5-9]. The 
potential application of ICA in remote sensing has been validated, especially in SAR 
image processing. It can improve the image quality and enhance the performance of 
pixel classification. In short, ICA algorithm will be a useful method for remote sens-
ing research [10]. 
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For the same scenario, polarimetric SAR can provide a group of different po-
larimetric image data, and the characters of target are separated in the images polluted 
by speckle and are independent to the speckle noise. Thus ICA can be applied to this 
model and a new method is put forward to reduce speckle. In addition, it is important 
to know the computational properties of available algorithms in remote sensing appli-
cations. This calls for an experimental comparison of the ICA algorithms. In a com-
panion paper [11], it had presented a first comparison of neural ICA algorithms using 
artificially generated data related blind source separation (BSS) problem. In this pa-
per, we complementing the results obtained earlier by apply the four ICA algorithms 
to reduce speckle and compare their performance.  

2   Model and Statistics of PSAR Image 

Let ix be the content of the pixel in the i th SAR image, is the noise-free signal re-

sponse of the target, and in the speckle. Then, we have the following multiplicative 

model [2]: 

i i ix s n= ⋅  (1) 

By supposing that the speckle has unity mean, standard deviation of iσ , and is sta-

tistically independent from the observed signal ix , the multiplicative model in (1) can 

be rewritten as: 

( 1)i i i ix s s n= + ⋅ −  (2) 

The term ( 1)i is n⋅ − represents the zero mean signal-dependent noise and character-

izes the speckle noise variation. Thus, we have converted the multiplicative model 
into the additive model. The speckle filtering can be considered as the estimation of 
the unobservable image is from the noisy observation ix .  

3   ICA Formulation 

The concept of ICA was first proposed by Common [4] in 1994, which has undergone 
a rapid development. By transforming the input signals, ICA algorithms make the 
mutual dependency among different signal components minimum. When the mutual 
dependency among signal components is measured by the different criteria, the dif-
ferent ICA algorithms can be derived. 

Let us assume that an array of sensors provides a vector of m  observed signals 
[ ]1 2, , ,

T

mx x x=x that are linear mixtures of n m≤  unobserved random processes 
[ ]1 2s ,s , ,s

T

n=s  sources. The ICA problem is typically formulated as follows [4]. 

+x = As e  (3) 

where A  is an unknown m n×  full-column rank matrix that represents the mixing 

system, and [ ]1 2, , ,
T

me e e=e  is the vector of noise components which are assumed in 

this paper to be Gaussian and statistically independent of the sources.  
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In order to recover the sources, the observations are processed by a n m×  separat-
ing matrix B  to produce the vector of outputs or sources estimation 

=u Bx  (4) 

When the separation is obtained the overall mixing and separating transfer matrix 
=G BA  contains a single nonzero element per row and per column. 
In several ICA algorithms, the data vectors x  are preprocessed by whitening 

(sphering) them: =v Vx . Here v denotes the whitened vector satisfying [ ]TE =vv I , 
where I is the unit matrix, and V  is a m n× whitening matrix. After prewhitening the 
subsequent m m× separating matrix W can be taken orthogonal, which often improves 
the convergence. Thus in whitening approaches the total separating matrix is 

=B WV .  

4   Neural ICA Algorithms 

In this paper we concentrate on reduction speckle for PASR image, describing the algo-
rithms included in our study only briefly. For more details, see the references [5-9]. 

4.1   Natural Gradient Algorithm (NG) 

Originally proposed on heuristic grounds [5], this popular and simple neural gradient 
algorithm was later on derived from information-theoretic criteria [6]. The update rule 
for the separating matrix B is 

[ ( ) ]T
kμΔ = −B I g u u B  (5) 

The notation ( )g u means that the nonlinearity ( )g t is applied to each component of the 
vector =u Bx . The learning parameter kμ is usually a small constant. The basic algo-

rithm (5) does not use prewhitening, which leads in many cases to a poor conver-
gence. Therefore whitening is often applied to improve the convergence properties.  

4.2   Equivariant (EICA) Algorithm 

This algorithm is a quasi-Newton iteration that will converge to a saddle point with 
locally isotropic convergence, regardless of the distributions of sources. It has the 
following equivariant and robust in respect to Gaussian noise algorithm [7]: 

1, 1( ) ( 1) ( ) [ ( , ) ( )] ( )l q ql l l y y y lη +Δ = + − = −B B B I C S B  (6) 

where 1 1,( ) sign(diag( ( , )))q qy y y+ =S C an , ( , )p q y yC denotes the cross-cumulant matrix 

whose elements are ,[ ( , )] ( , )p q ij i i j j

p q

y y Cum y y y y=C . 

4.3   Extended Information Maximization (Infomax) Algorithm 

The purpose of extended information maximization algorithm [8] is, to provide a 
learning rule with a fixed nonlinearity that can separate sources with sub- and  
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super-Gaussian p.d.f.’s. Employing a strictly symmetric bimodal univariate distribu-
tion, obtained by a weighted sum of two Gaussian distributions, given as, 

2 21
( ) ( ( , ) ( , ))

2
p N Nμ σ μ σ= + −u  (7) 

leads to the learning rule [4] for strictly sub-Gaussian sources, 

[ tanh( ) ]T TΔ ∞ + −W I u u uu W  (8) 

For unimodal super-Gaussian sources, the following density model is adopted, 
2( ) (0,1)sech ( )p N∞u u  (9) 

which leads to the following learning rule for strictly super-Gaussian sources, 

[ tanh( ) ]T TΔ ∞ − −W I u u uu W  (10) 

Therefore, using these two equations, we can obtain a generalized learning rule, us-
ing the switching criterion in order to distinguish between the sub- and super-
Gaussian sources by the sign before the hyperbolic tangent function as, 

[ tanh( ) ]T TΔ ∞ − −W I K u u uu W  (11) 

where K  is an N -dimensional diagonal matrix composed of ik ’s, defined as, 

sign( ( ))i ik kurt u=  (12) 

4.4   Fast Fixed-Point (FastICA) Algorithms 

One iteration of the generalised fixed-point algorithm for finding a row vector T
iw of 

W is [9]: 
* { ( )} { ( )}T T
i i i ig g′= −w E v w v E w v w  (13) 

* */ || ||i i i=w w w  (14) 

Here ( )g t is a suitable nonlinearity, typically 3( )g t t= or ( ) tanh( )g t t= , and ( )g t′ is its 
derivative. The expectations are in practice replaced by their sample means.Hence the 
fixed-point algorithm is not a truly neural adaptive algorithm. The algorithm requires 
prewhitening of the data. The vectors iw must be orthogonalised against each other; 

this can be done either sequentially or symmetrically. Usually the algorithm (13) 
converges after 5-20 iterations.  

5   Simulations and Results 

JPL AIRSAR L-band data from San Francisco are used for illustration. This San Fran-
cisco scene contains a rich variety of scatterers: specular scattering from the ocean at 
the top of the scene, double bounce scattering from the city blocks, volume scattering 
from trees, and surface scattering from grass. The original images are shown in  
Fig.1, including three polarimetric modes, they are HH (Horizontal- Horizontal), 
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(a) HH image                                                     (b) HV image 
 

       
 

       (c) VV image                                  (d) HH/VV radio image 

Fig. 1. L band PSAR images 

HV (Horizontal-Vertical) and VV (Vertical-Vertical). In polarimetric datas, the ampli-
tude ratio has a number of important uses, both as a means of inferring physical proper-
tied of a medium and as a way of removing terrain effects. In order to get better speckle 
reduction image, we also add HH/VV radio image to be the input data.  
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During the ICA application, pre-processing should be taken: Every image of 
700×900 pixels should be transformed to vector, and a 4×630000 matrix was pro-
duced from the four images; The data matrix should be normalized in order to trans-
form the pixel intensity from the nature data field to traditional data field. 

In order to analyze the ability of speckle reduction by quantity, we define equiva-
lent number of look (ENL), a good approach of estimating the speckle noise level 
in a SAR image, to measure the performance of speckle intensity over a uniform 
image region [1]. That is: 

2(mean)
ENL

variance
=  (14) 

The ENL is equivalent to the number of independent intensity values averaged per 
pixel. The larger the ENL, the less the speckle effect and the stronger the ability of 
speckle reduction. 

The output matrix u of ICA has become 4×630000. Comparing the four independ-
ent components (ICs), the IC 4 is complex noise. Therefore we only compute ENL of 
IC 1, IC 2 and IC 3. The ability of speckle reduction with different algorithms is 
showed in Table. 1, the ENL of original images, PCA, NG, EICA Infomax and Fas-
tICA were listed. Table 2 shows the runtime of different ICA methods. Compared 
with the three original images, the ENL of three PCs were increased obviously. But 
the ENL of PCs is lower than that of ICs. The results shown in Table 1 indicate that 
the FastICA and EICA algorithms performed best, with NG and Infomax having close 
values, while PCA is the most remote. In addition, Table 2 shows that the FastICA’s 
speed is fastest, while Infomax has slowest speed. 

Table 1. Comparison ENL of different ICA algorithms 

HH mode 4.89 IC 1 24.82 
VV mode 3.77 IC 2 17.87 

Origin 
PSAR 
image HV mode 7.79 

 
EICA 

IC 3 7.15 
PC 1 16.11 IC 1 29.41 
PC 2 7.71 IC 2 9.13 

 
PCA 

PC 3 4.58 

 
Infomax 

IC 3 6.61 
IC 1 20.98 IC 1 28.76 
IC 2 10.49 IC 2 16.24 

 
NG 

IC 3 9.79 

 
FastICA 

IC 3 6.38 

Table 2. Comparison runtime of different ICA algorithms 

Algorithm NG EICA Infomax FastICA 
Runtime(s) 687 92 1267 23 

In conclusion, the original images were improved after PCA processing, and four ICA 
are efficient optimizing algorithm. After ICA processing, IC 1 is the best component, the 
speckle index is decreased more, and the speckle is farthest separated from the original 
images. Comparing with other algorithms, FastICA is a fast and efficient method. 
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6   Conclusions 

Based on rigorous statistical formulation of PSAR image, a new speckle reduction 
approach using ICA is proposed. In addition, we apply four ICA algorithms on real 
PSAR images and compare their performances. The experiment shows that ICA has 
effectively reduced the speckle noise of SAR image, has improved the image quality 
and manifested its strong ability in image separation. ICA has been widely used in 
blind source separation, but it is not widely used in image processing and is rarely 
used in remote sensing. We expect that ICA will be widely applied in remote sensing 
and will accelerate the development of it. 
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Abstract. Independent component analysis (ICA) has shown success in the 
separation of sources in lots of applications. However, in synthenic aperture ra-
dar (SAR) images the noise is multiplicative, so the applicability of ICA is seri-
ously reduced. This paper proposes a new robust independent component analy-
sis neural network (RICANN) that improves the robustness of ICA by adding 
outlier rejection rule. Its application in synthetic aperture radar (SAR) is dis-
cussed. The results show the potential usage in SAR image processing  
problems. 

1   Introduction 

Synthenic aperture radar (SAR) can penetrate clouds and operate day and night, and 
image with high resolution, therefore it has important use in the construction of na-
tional economy and national defence. But for the speckle consisted in SAR image, 
good result of SAR image analysis can not be gotten with traditional analysis meth-
ods, therefore it is very necessary to study new methods to analysis SAR with speckle 
and it have wide application foreground. 

Independent Component Analysis (ICA) is an unsupervised technique which tries 
to represent the data in terms of statistically independent variables. ICA has lately 
drawn a lot of attention both in unsupervised neural learning and statistical signal 
processing. Most of these methods were developed in the case of noiseless data, and 
differ from one another in the way they enforce independence. The Maximum Likeli-
hood (ML) method [1] directly assumes a factorized form for the joint source distribu-
tion; in the infomax method [2], entropy is used as a measure of independence; other 
methods ensure independence by minimizing contrast functions related to statistics of 
order greater than two [3]. The strict relationships among the various methods have 
been investigated as well [4], and some fast and efficient algorithms have been pro-
posed, such as cumulant ICA [5] and FastICA [6]. Although some of the proposed 
algorithms have been experimentally shown to perform well even in the lack of  
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independence, all of them perform poorly when noise affects the data. Recently, some 
work has been done to overcome this limitation. In particular, the noisy FastICA algo-
rithm [7], and an Independent Factor Analysis (IFA) method [8] [9] have been devel-
oped, the latter being also capable of estimating the noise covariance matrix. Never-
theless, while providing satisfactory estimates of the mixing matrices, these methods 
still produce noisy source estimates [10]. 

Here we propose a robust ICA neural network (RICANN) to SAR image analy-
sis. The objective of this paper is to develop novel algorithms that are more robust 
with respect to noise than existing techniques or that can reduce the noise in the esti-
mated output vector. After a pre-processing stage means of PCA, we remove outliers 
by applying outlier rejection rule for multivariate data. Then we apply the ICA 
method on the clean data set. Finally, we provide experimental results for this algo-
rithm to SAR image separation, and compare its performance with the conventional 
ICA. We also give an application experiment of multi-frequency polarimetric SAR 
images enhancement and feature extraction. The results claim that our RICANN 
method enables us to increase robustness against speckle noise and be effective in 
SAR image analysis. 

2   Classical ICA 

Let us assume that an array of sensors provides a vector of m  observed signals 

[ ]1 2( ) ( ), ( ), , ( )
T

nx t x t x t x t= that are linear mixtures of n m≥  unobserved random proc-

esses [ ]1 2( ) s ( ),s ( ), ,s ( )
T

ms t t t t=  sources. The problem of ICA is defined for the noise 

case, where the sources and observations have the following linear relation. 

1
( ) ( ) ( ) ( ) ( )

m

i ii
x t As t n t a s t n t

=
= + = +  (1) 

1[ , , ]mA a a= is a constant full-rank n m× mixing matrix whose elements are the un-

known coefficients of the mixtures. The vectors ia are basis vectors of ICA. 

In standard neural and adaptive source separation approaches, an m n× separating 
matrix ( )W t is updated so that the m -vector 

( ) ( ) ( )y t W t x t=  (2) 

becomes an estimate ( ) ( )y t s t= of the original independent source signals. Fig. 1 
shows a schematic diagram of the mixing and ICA system. In neural 
realizations, ( )y t is the output vector of the network and the matrix ( )W t is the total 
weight matrix between the input and output layers. 

With a neural realization in mind, it is desirable to choose the learning algorithms 
so that they are as simple as possible but yet provide sufficient performance. In this 
paper, we use the neural rule proposed by S. Cruces [5]:   

1, 1( ) ( 1) ( ) [ ( , ) ( )] ( )l q qW l W l W l y y y W lη +Δ = + − = −I C S  (3) 
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Fig. 1. The mixing model and neural network for ICA.  LA means learning algorithm. 

where 1 1,( ) sign(diag( ( , )))q qy y y+ =S C and , ( , )p q y yC  denotes the cross-cumulant matrix 

whose elements are 

,[ ( , )] ( , )p q ij i i j j

p q

y y Cum y y y y=C  
(4) 

This algorithm is a quasi-Newton iteration that will converge to a saddle point with 
locally isotropic convergence, regardless of the distributions of sources. 

The data vectors ( )x t usually are pre-processed using a whitening transformation 

( ) ( ) ( )v t V t x t=  (5) 

here ( )v t denotes the whitened vector, and ( )V t is a m n× whitening matrix. In whiten-

ing, the matrix ( )V t is chosen so that the covariance matrix { ( ) ( ) }TE v t v t becomes the 
unit matrix mI . Thus the components of the whitened vectors ( )v t are mutually uncor-

related and they have unit variance. Uncorrelatedness is a necessary condition for the 
stronger independence condition. After pre-whitening the separation task usually 

becomes easier, because the subsequent separating matrixW can be constrained to be 
orthogonal [4]: 

T

mWW I=  (6) 

where mI is the m m× unit matrix.  

3   The Robust ICA Neural Network (RICANN) 

Because the result of ICA can be affected a lot by outliers in the data, we want to 
avoid this sensitivity and remove the worst outliers in a preprocessing step. We will 
try two rules for flagging outliers in the raw data [11]. They are based on different 
distances or outlying measures computed at each data point. The corresponding rejec-
tion rule then flags all points whose outlyingness exceeds a certain cutoff value. 
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First the data points of the data matrix ix are projected on a subspace defined by 

means of a measure of outlyingness. This measure is obtained by projecting the data 
points on many univariate directions z . For every direction a robust center and scale 

of the projected data points ix z′ is computed, namely the univariate Minimum Covari-

ance Determinant (MCD) estimator [12] of location MCDˆ iμ and scale MCDˆ iσ . The outly-

ingness of a data point ix is then measured by means of: 

MCD

MCD

ˆ| |
outl( ) max

ˆ

i
i

i iz B

x z
x

μ
σ∈

′ −=  (7) 

where B contains all directions(unit length vectors) we search over. Then we obtain a 
subspace with smallest outlyinhness that fits the data well. We project the data points 
on this subspace where we robustly estimate their location and their scatter matrix by 
means of the MCD estimator, of which we compute its m non-zero eigenval-
ues 1, , ml l . The corresponding eigenvectors are the m robust principal components. 

Formally, writing the (column) robust eigenvectors next to each other yields the 
n m× matrix P with orthogonal columns. The location estimate is denoted as the col-
umn vector μ̂ and called the robust center. Thus, projecting the observations onto this 
subspace yields the scores it satisfy 

ˆ( )i it x Pμ′= −  (8) 

To distinguish between regular observations and the outliers, we take into account 
the orthogonal distance ODi of each observation: 

ˆODi i ix Ptμ ′= − −  (9) 

The first rejection rule flags all points whose robust distance ODi exceeds a cutoff 

value. 
We also consider the score distance SDi which represents the distance inside the 

PCA space taking into account the covariance structure of the data. More formally 
this distance is defined by: 

1SD T
i i it L t−=  (10) 

where L is the diagonal matrix with the eigenvalues 1, , ml l . The corresponding rejec-

tion rule flags all points whose outlyingness SDi exceeds a cutoff. 

Fig. 2 shows a three-layer neural network for RICANN, where the first layer per-

forms pre whitening (sphering), the second layer is flag noisy using rejection rule and 

the third one - separation of sources. The operation of the network is described by 

( ) ( ) ( ) ( ) ( ) ( )y t W t v t WVx t W t x t= = =  (11) 

where W WV= is the total separating matrix. 
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Fig. 2 The three–layer robust network for pre–whitening, noisy rejection and blind separation 

4   Experiments with Blind Separation SAR Images 

Most of the geological and vegetative ground surfaces are not homogeneous. The 
pixels resulting from the scanned images of the mentioned zones are, therefore, 
formed of a mixture of spectral signatures. In theory, one estimates that the global 
radiometric value of pixels is equal to the contribution average of electromagnetic 
radiation, emitted or reflected by the study surfaces. Thus, the needed information is 
not immediately provided by the single radiometric pixel value. For this reason, the 
mixed pixels are often sources of uncertainty and inaccuracy [13]. This is a situation 
that seems suited for handling by blind source separation (BSS) techniques. In this 
section, the performance of the RICANN algorithm is demonstrated using two separa-
tion examples(case and case ). 

 

Fig. 3. The score diagnostic plot of example
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4.1   Case  

Here we attempt to unmix three SAR sources images, which were obtained by mixing 
gray images by a random mixing matrix [14]. The SAR images are 256 by 256 pixels, 
and they are stored as vectors by putting the rows of pixels (i.e., their grayscale  
values) next to each other. After the mixing we have a 3 by 65536 matrix to which  
ICA can be applied. The three source SAR images shown in Fig. 4(a) have been  
mixed using the mixing matrix whose rows are 1 [0.877 0.779 0.679]a = , 

2 [0.013 0.307 0.074]a = and 3 [0.310 0.923 0.071]a = . 

     
(a) The three source SAR images 

     
(b) The separated images using ERICA 

     
(c) The separated images using RICANN 

Fig. 4. The separation example  

We use the RICANN introduced in section 3 to separate mixed images. Fig. 3 
shows the score diagnostic plot, in which we display the robust score distance SDi of 

each observation on the vertical axis and indexes of observations on the horizontal 
axis. Now we want to measure whether unmixing matrix W has done a good job. We 
use the inaccuracy measure proposed in [15]: 

1 1 1 1

| | | |
1 1

max | | max | |
INACC

2 ( 1)

N N N Nij ij

i j j i
k ik k kj

N N

= = = =
− + −

=
−

Q Q

Q Q
 

(12) 
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where , 1, ,( )ij i j mWA == =Q Q . In the ideal case Q ψis the product of a permutation ma-

trix and a diagonal matrix with diagonal entries 1 and -1, that is, a matrix which has 
mostly zeros except for a single nonzero value, either 1 or -1, in each row and in each 
column. In that case INACC = 0. At the other extreme, the worst case is when all 
| |ijQ  are equal, and then INACC = 1. 

In our paper, the ICA algorithm used in RICANN is ERICA, so we compared our 
method with ERICA [5]. Fig. 4 shows the resulting separation images using our 
method and ERICA, respectively. In the figure it can be seen how the separation re-
sults are clearly improved by our method. The INACC for the separation images of 
using ERICA are found to be 34.86%. But the INACC for the separation images of 
use our method with reject rules is found to be 18.23%. 

4.2   Case  

In this example, we add 10 dB Gaussian white noise to the three SAR images. The 
images have been mixed using the mixing matrix whose rows 
are 1 [0.301 0.698 0.854]a = , 2 [0.542 0.378 0.594]a = and 3 [0.151 0.860 0.497]a = . 
Fig. 5 shows the score diagnostic plot. The SAR image separation results are 
showed in Fig. 6. The INACC for the separation images of using ERICA are found to 
be 26.33%. But the INACC for the separation images of use our method with reject 
rules is found to be 8.12%. 

 

Fig. 5. The score diagnostic plot of example  

5   Experiments with Multi-frequency Polarimetric SAR Image 
Enhancement and Feature Extraction 

Recent advances in SAR with multiple frequencies and polarizations, such as those 
developed by NASNJPL, provide a rich set of data for the same scene. The amount of 
information is scattered in many images that are correlated as indicated by the  
high correlation coefficients. The ability of the feature extraction methods to pack  
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(a) The three source SAR images 

     
(b) The separated images using ERICA 

     
(c) The separated images using RICANN 

Fig. 6. The separation example

 

Fig. 7. The score diagnostic plot of multi-frequency polarimetric SAR image 

information, decorrelate images, and reduce the noise enables efficient automated 
image classification and better human scene interpretation.  

The considered image data is from an agricultural area near the village of Feltwell, 
United Kingdom and consists of 9 channels of SAR images: The data consist of three 
frequency bands; in each band there are three different polarizations (HH, HV, and 
VV); the available SAR images in polarizations HH, HV and VV of band C, are  
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depicted in the Fig. 8 (a). Figure 7 shows the score diagnostic plot. Fig. 8(b) and (c) 
show the best three ICA image, produced by the proposed ERICA and RICANN, 
respectively. The RICANN images are better in contrast than the ERICA image. The 
RICANN appears as promising model for multi-frequency polarimetric SAR image 
analysis and interpretation. 

     
C-HH                         C-HV                       C-VV 

(a) Three SAR images in band C 

     
(b) Best three ICA images using ERICA 

     
(c) Best three ICA images using RICANN 

Fig. 8. Enhancement result for multi-frequency polarimetric SAR image 

6   Conclusion 

In this paper, we have proposed a new robust independent component neural network 
for SAR images analysis in the presence of speckle noise. The method tries to over-
come the limitations that the ICA methods have in this kind of signals. The method 
proposed here is to preprocess the data by rejecting outliers based on orthogonal dis-
tance and score distance outlyingness measure, using a high enough cutoff value. We 
show how our method can be used respectively for blind SAR image separation and 
for multi-frequency polarimetric SAR image enhancement. 
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Abstract. Kernel fisher discriminant analysis (KFDA) has received extensive 
study in recent years as a dimensionality reduction technique. KFDA always 
encounters an intrinsic singularity of scatter matrices in the feature space, 
namely ‘small sample size’ (SSS) problem. Several novel methods have been 
proposed to cope with this problem. In this paper, kernel uncorrelated discrimi-
nant analysis (KUDA) is proposed, which not only can bear on the SSS prob-
lem but also extract uncorrelated features, a desirable property for many appli-
cations. And then, we have conducted a comparative study on the application of 
KUDA and other variants of KFDA in radar target recognition problem. The 
experimental results indicate the effectiveness of KUDA and illustrate the util-
ity of KFDA on the problem.  

1   Introduction 

Radar target recognition is a difficulty of task in pattern recognition due to the com-
plex movement of radar target, including transformation and rotation. Particularly for 
military application, the target is so incooperative that the samples data is much insuf-
ficient and noisy. A very simple and rapid approach for recognizing radar target is 
through the use of radar range profiles which are essentially one-dimension radar 
images. Due to the high dimensionality of range profiles, it is necessary to perform 
feature extraction at first to reduce the dimensionality and then perform classification 
for recognition. 

Linear discriminant analysis (LDA), also called fisher discriminant analysis is a 
widely-used statistical method for feature extraction and dimension reduction, which 
has been successfully applied in many problems such as face recognition. Because of 
the nature of linearity, LDA is inadequate to describe the complexity in real world 
problems. The nonlinearly clustered structure is not easily captured by LDA. In recent 
years, a category of nonlinear algorithms using the so-called kernel trick have aroused 
considerable interest in the fields of pattern recognition and machine learning [1]. 
Generalization of LDA for solving nonlinear problems based on kernel trick has be-
come an active research area. A group of kernel-based fisher discriminant analysis 
(KFDA) algorithms has been proposed [2]. Extensive empirical comparisons have 
shown that KFDA works as well as other kernel based classifiers. However, because 
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of the implicit high-dimensional nonlinear mapping, the so-called “small sample size” 
(SSS) problem is very common in the feature space. 

Several techniques that might alleviate this problem have been proposed. Mika et 
al. used the regularization technique to make the inner product matrix nonsingular [3]. 
But his method was developed to handle binary classification only. Following that, 
Baudat and Anouar developed a GDA for multiple classification [4]. Yang et al. per-
formed LDA in KPCA feature space to deal with the problem [5]. Recently, Park et 
al. proposed a kernel based disciminant analysis based on the generalized singular 
value decomposition called KDA/GSVD, which works regardless of the nonsingular-
ity of the scatter matrices in either the input space or feature space [6]. 

For feature extraction, the uncorrelated attributes with minimum redundancy are 
highly desirable. Jin et al. proposed uncorrelated LDA (ULDA) for extracting feature 
vectors with uncorrelated attributes [7]. However, the proposed method has two limi-
tations, i.e. the expensive computation of the d generalized eigenvalue problems, 
where d is number of optimal discriminant vectors by ULDA, and the non-
applicability to the SSS problem as the classical LDA. To overcome these limitations, 
Ye et al. presented an efficient algorithm to compute the optimal discriminant vectors 
of ULDA and at the same time addressed the SSS problem of ULDA [8]. In [9], the 
optimization criteria of classical LDA was extended to solve the SSS problem, and 
the solutions to the proposed criterion form a family of algorithms to which ULDA 
and a novel algorithm, namely orthogonal LDA (OLDA) belong. 

In this paper, we present the nonlinear extension of ULDA based on kernel trick, 
called KUDA, which can work regardless of the SSS problem. We also investigate the 
application of KUDA and some KFDA variants in radar target recognition problem. 
Through the experiments, we not only demonstrate that KUDA is an effective nonlin-
ear dimension reduction approach, but also conclude that all the KFDA variants 
achieve higher classification accuracy on radar target recognition problem compared 
with classical LDA. Another surprisingly observation is that a special kernel function, 
Cauchy kernel, has a remarkable performance on the problem. 

2   Related Work on Kernel Fisher Discriminant Analysis 

Classical fisher discriminant analysis aims to find the optimal transformation, which 
maximizes the between-class scatter matrix while minimizing the within-class scatter 
matrix simultaneously. Thus, the cluster structure of the original high-dimensional 
space is preserved in the reduced-dimensional space. But this method fails for a 
nonlinear problem. There have been extensive researches in nonlinear discriminant 
analysis using kernel function, called by a joined name kernel fisher discriminant 
analysis (KFDA). Due to the nonlinear map by a kernel function, the dimension of the 
feature space often becomes much larger than that of the original data space, and as a 
result, the scatter matrices become singular, which is referred to as “small sample 
size” (SSS) problem. In the following, we will review some recent proposed KFDA 
algorithms, all of which attempt to deal with the SSS problem in the feature space. 
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KPCA plus LDA. PCA plus LDA, a two stage approach, is a popular technique for 
face recognition [5]. In Euclidean space, the theoretical foundation of why LDA can 
be performed in the PCA transformed space has been given in [10]. Since real-world 
problems are always turned into SSS problems by a nonlinear mapping, we can gen-
eralize the result directly to the data in a mapped feature space. At first stage, PCA is 
performed in the feature space. It is equivalent to performing KPCA in the input 
space. And then, in the KPCA transformed space, LDA is performed. 

The biggest challenge in using KPCA plus LDA is that it is difficult to choose an 
optimal reduced dimension m . If m  is chosen large, the eigenvalue problem in the 
discriminant stage will be expensive and unstable because of the high dimensionality. 
If too small, it may not provide sufficient discriminant information. 

GDA. Generalized discriminant analysis (GDA) is proposed for multiclass classifica-
tion. As such for LDA, the purpose of GDA method is to maximize the between class 
scatter matrix while minimizing the within class scatter matrix in the feature space. In 
order to cope with the singularity of scatter matrices in the feature space, the eigen-
vectors decomposition of the kernel matrix is employed, and the singularity is avoided 
by removing some small eigenvalues. As KPCA plus LDA, it is difficult to determine 
the magnitude of eigenvalue that should be removed. 

KDA/GSVD. A recent work on overcoming SSS problem in LDA lies in the use of 
Generalized Singular Value Decomposition (GSVD), named LDA/GSVD [11]. The 
method avoids inversing the within-class scatter matrix, so it computes the solution 
exactly without losing any information. Recently, Park presented the nonlinear exten-
sion of LDA based on kernel functions and the GSVD, named KDA/GSVD. The 
GSVD is employed to solve the generalized eigenvalue problem which is formulated 
in the feature space defined by a nonlinear mapping through kernel functions. The 
adventage of KDA/GSVD is that it can be applied regardless of singularity of the 
scatter matrics both in the original space and in the feature space. The detailed deriva-
tion can be found in [6].  

3   Kernel Uncorrelated Discriminant Analysis 

Uncorrelated linear discriminant analysis (ULDA) [7] was proposed for feature ex-
traction. The feature vectors transformed by ULDA were shown to be statistically 
uncorrelated, which is a desirable property for many applications. ULDA aims to find 
the optimal discriminant vectors that are tS -orthogonal (Two vectors x  and y  are 

tS -orthogonal, if 0T
tx S y = ). In this section, we present a nonlinear extension of 

ULDA based on kernel functions, and solve it using the technique of simultaneous 
diagonalization of the three scatter matrices [9]. 

Let n  denotes the dimension of the original sample space, and r  is the number of 

classes. And let { }1 2, , , lX = x x x  be the training samples set, where n
i X R∈ ⊂x . 

For a given nonlinear mapping φ , the input data space nR  can be mapped into the 
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feature space F : : nR Fφ → . As a result, a sample in the original input space nR  is 

mapped into a potentially much higher dimensional feature vector: ( )φ→x x  in the 

feature space F . To avoid computing the dot products in a high-dimensional feature 
space, kernel trick is introduced to facilitate the computation. A kernel is defined by 

an inner product ( ) ( )( )( , )i j i jk φ φ=x x x x . 

Let 
(1 ,1 )

( , )i j i l j l
k

≤ ≤ ≤ ≤
=K x x  be the kernel matrix. Then, we can consider each col-

umn in K  as a data point in the n –dimensional space. As in the LDA, we define 
between-class scatter matrix and within-class scatter and total scatter matrix in the 
feature space as below: 

F T
b b b=S K K , F T

w w w=S K K , F T
t t t=S K K  , (1) 

where 

(1 ,1 )
1

(1 ,1 )

(1 ,1 )
1

1 1
[ ] ,    ( ( , ) ( , ))

1
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n

b ij i n j r ij j i s i s
s N sj

w ij i n j n ij i j i s j
s Nl

n
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s
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n n

w w k k x l
n
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n
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∈
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=

= = −
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K x x x x
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. (2) 

According to the definition of tS -orthogonal discriminant vector, we can define a 

trace optimization problem in the feature space as follows: 

( )1

:
arg   max ( )

t
p t T F

t

T F T F
w b

I
trace

×

−

∈ =
=

G G S G
G G S G G S G . (3) 

Since F F F
t w bS = S + S , the problem above is equivalent to 

( )1

:
arg   max ( )

t
p t T F

t

T F T F
t b

I
trace

×

−

∈ =
=

G G S G
G G S G G S G . (4) 

Note that F
tS  and F

bS  are both singular. In order to solve the problem, a natural ex-

tension is that the inverse of a matrix is replaced by the pseudo-inverse [12]:  

( )
:

arg   max ( )
t

p t T F
t

T F T F
t b

I
trace

×

+

∈ =
=

G G S G
G G S G G S G . (5) 

The above optimization problem can be solved by diagonalizing the three scatter 
matrices F

bS , F
wS , and F

tS  simultaneously.  

Let T
t =K U V  be the SVD of tK , where tK  is defined in (2), U  and V  are or-

thogonal, 
  t=

0

0     0
 , t t

t
×∈  is diagonal, and ( )F

tt rank= S  . Then, we have 
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2   F T T T T T T Tt
t t t= = = =

0
S K K U V V U U U U U

0     0
. (6) 

Let ( )1 2,=U U U be a partition of U , such that ( )
1 2,n t n n t× × −∈ ∈U U .  (6) can be 

rewritten as 

( ) ( )

2

1 1
1 2 1 2

2 2

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

  
( )

             = , ,

      
            

      

T F Ft
b w

T T
F F
b wT T

T F T F T F T F
b b w w

T F T F T F T F
b b w w

=

+

= +

0
U S + S U

0     0

U U
S U U S U U

U U

U S U U S U U S U U S U

U S U U S U U S U U S U

. (7) 

Since both F
bS  and F

wS  are positive semidefinite, we thus have  

1 1 1 1     
,  

      

T F T F
T F T Fb w

b w= =
U S U 0 U S U 0

U S U U S U
 0           0  0           0

. (8) 

According to (7) and (8), we can derive the following equation 

1 1 1 1
1 1 1 1I T F T F

t t b t t w t
− − − −= +U S U U S U . (9) 

Denote 1
1
T

t b
−=B U K  and let T=B P Q  be the SVD of B . Then, we get 

1 1 2
1 1
T F T T

t b t b
− − = =U S U P P P P , (10) 

where 2
1 1 1( , , ),  0b t q q tdiag λ λ λ λ λ λ+≡ = ≥ ≥ > = = = , and ( )F

bq rank= S . 

It follows from (9) that 

1 1
1 1

T T F
t w t t b w
− − = − ≡P U S U P I . (11) 

According to (9), (10), and (11), F
bS , F

wS and F
tS  can be diagonalized as 

T F b
b b= ≡

  0
X S X D

0     0
, wT F

w w= ≡
  0

X S X D
0     0

, 
 

 
T F t

t t= ≡
I   0

X S X D
0   0

   (12) 

where 
-1
t=

P   0
X U

0          I
. 

Let qX  be the matrix consisting of the first q  columns of X , where  

( )F
bq rank= S . F

q=G X  is the solution to the optimization problem (5) [9]. Conse-

quently, kernel uncorrelated discriminant analysis (KUDA) algorithm can be de-
scribed as the following. 
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Algorithm. KUDA 

Given a data matrix 1[ , , ] n l
lX ×= ∈x x  with r  classes and a 

kernel function k  
1. Compute n r

b
×∈K , n n

w
×∈K , and  n n

t
×∈K  as in (2); 

2. Compute the reduced SVD of tK  as 1 1
T

t t=K U V ; 

3. 1
1
T

t b
−=B U K ; 

4. Compute SVD of B  as T=B P Q ; ( )q rank= B ; 

5. 1
1 t

−=X U P ; 

6. F
q=G X ; 

4   Performance Comparison on Radar Target Recognition 

Radar target recognition refers to the detection and recognition of target signatures 
using high-resolution range profiles, in our case, in inverse synthetic aperture radar. A 
radar image represents a spatial distribution of microwave reflectivity that is sufficient 
to characterize the illuminated target. Range resolution allows the sorting of reflected 
signals on the basis of range. When range-gating or time-delay sorting is used to inter-
rogate the entire range extent of the target space, a one-dimensional image, called a 
range profile, will be generated. 

Our task is to recognize the range profile of the three different plane models, i.e. J-
6, J-7 and B-52, based on experimental data acquired in a microwave anechoic cham-
ber. The dimensionality of the range profiles is 64. The full data set is split into 363 
training samples and 721 test samples. Training samples consist of 104 1-dimensional 
images of J-6, 151 1-dimensional images of J-7 and 108 1-dimensional images of B-
52. Test samples consist of 207 1-dimension images of J-6, 300 1-dimension images 
of J-7 and 214 1-dimension images of B-52. 

Table 1. Number of misclassification of several classifiers 

Method Recognition Rate Error Number 
LDA 94.73 38 
GDA 98.61 10 

KPCA-LDA 99.69 2 
KDA/GSVD 99.71 2 

KUDA 99.86 1 

A simple classifier, k-nearest neighbor (KNN), is employed to evaluate the quality 
of different dimension reduction algorithms. Leave-one-out error is used to find the 
best number of neighbor k. The experimental results for several methods using an 
optimal kernel function are summarized in Table 1. For KPCA-LDA, we find the  
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optimal value of the principle components on an interval. From Table 1, we can see 
that only one wrong recognition occur in KUDA, and only 2 in KDA/GSVD and 
KPCA-LDA. This indicates that these algorithms proposed to bear on SSS problem 
are superior to LDA, GDA, and have similar high performance on the radar target 
recognition problem. 

After performing discriminant analysis, the dimensionality of range files is reduced 
to 2 because the class number is three. Therefore, these real world data can be visual-
ized in Figure 2. From the projection image of low dimension, we can see that LDA is 
not good enough because of the intrinsic nonlinearity for the problem, and on the 
contrary, the variants of kernel based discriminant analysis preserve the information 
for classification well. 

  

Fig. 2. 2-dimensional visualization of the radar range profiles with kernel (left) and without 
kernel (right) 

Table 2. Performance of variants of kernel discriminant analysis with different kernels 

Method RBF Coswave Cauchy 
GDA 98.61 98.20 98.61 

KPCA-LDA 97.23 97.09 99.69 
KDA/GSVD 97.45 97.05 99.71 

KUDA 97.23 97.09 99.86 

We also compare the performance of variants of kernel fisher discriminant analysis on  

three popular kernels, i.e. Gaussian RBF kernel ( )
2

2
, exp( )

2
k

p

− −
=

x y
x y , Coswave kernel 

( ) 2
,

p
k

p
=

+ −
x y

x y
 and Cauchy kernel ( )

2

2

( )
, cos(1.75 )exp( )

2
k

p p

−−= × −
x yx y

x y , 

where p R∈ . The results are summarized in Table 2. From the experimental results, 

we find unexpectedly that the Cauchy kernel has a predominant performance on the 
problem. 
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5   Conclusion 

In this paper, we propose a new kernel fisher discriminant analysis, namely KUDA to 
deal with the SSS problem in the feature space. And then, we describe the application 
of KUDA and some other KFDA variants in radar target recognition problem. Ex-
periment results have shown that KUDA and the KFDA variants developed for solv-
ing the SSS problem perform significantly better than the classical LDA. Further-
more, it is worth to mention that a specific kernel, i.e. Cauchy kernel, performs best 
on the problem. These observations are expected to be useful when we attempt to 
apply kernel discriminant analysis to other target recognition problems. 
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Abstract. There are increasing demands for high-resolution (HR) images in 
various applications. Image superresolution (SR) reconstruction refers to meth-
ods that increase image spatial resolution by fusing information from either a 
sequence of temporal adjacent images or multi-source images from different 
sensors. In the paper we propose a hybrid Bayesian method for image recon-
struction, which firstly estimates the unknown point spread function(PSF) and 
an approximation for the original ideal image, and then sets up the HMRF im-
age prior model and assesses its tuning parameter using maximum likelihood 
estimator, finally computes the regularized solution automatically. Hybrid 
Bayesian estimates computed on actual satellite images and video sequence 
show dramatic visual and quantitative improvements in comparison with the bi-
linear interpolation result, the projection onto convex sets (POCS) estimate and 
Maximum A Posteriori (MAP) estimate.  

1   Introduction 

There are increasing demands for high-resolution (HR) images in various applica-
tions. Although the most direct way to increase spatial resolution is to use a HR image 
acquisition system, fabrication limitations and high cost for high precision optics and 
image sensors are always prohibitive concerns in many commercial applications. 
Therefore, the new image SR reconstruction approach, which is capable of generating 
a HR image from multiple low-resolution (LR) images, has been a hot research topic 
recently[1].Since Tsai and Huang’s work[2], many work has been reported in the 
literature, including the weighted least-squares algorithm[1], the nonuniform interpo-
lation approach[1], the POCS method[3-4] and MAP Bayesian approach[5-7]. Among 
these algorithms, the Bayesian approach is most notable for it robustness and flexibil-
ity in modeling noise characteristics and a priori knowledge about the solution. As-
suming that the noise process is white Gaussian, the Bayesian estimation with convex 
energy functions ensures the uniqueness of the solution. But existing Bayesian recon-
struction methods suffer from several impractical assumptions. Previous research 
often assumes that PSF is definitely known during reconstruction, which is impossible 
for actual images reconstruction as many uncertain blurring factors are involved dur-
ing imaging process. Further, the image prior model founded upon the upsampled LR 
image greatly affects the quality of the reconstruction result as the LR images are 
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already contaminated and the resulted prior model is not robust to noise. Finally, the 
edge threshold parameter of the image prior model needs to be adjusted by experi-
enced experts empirically, which limits the wide usage of the Bayesian estimator. 

Therefore, we propose a novel hybrid Bayesian estimator for SR image reconstruc-
tion. Under the Bayesian framework, it deconvolutes the upsampled LR image to 
access PSF and approximation value for the ideal HR image with APEX algorithm 
first, and then models the HMRF image prior model and assesses its edge threshold 
parameter through maximum likelihood (ML) estimation, finally regularizes the ill-
posed reconstruction process automatically. 

2   Statement on Hybrid Bayesian Reconstruction Algorithm 

Above all we formulate an observation model that relates the original HR image to 
the observed LR image. Consider the desired HR image x =[ x1 , x2 ,...., xN]T, N= 
L1N1×L2N2, which is sampled at or above the Nyquist rate from a hypothetically 
bandlimited continuous scene. L1 and L2 are the horizontal and vertical down-sampling 
factors, respectively. Let the kth LR image be denoted as y(k) =[ y(k)

1 , y
(k)

2 ,....,
 y(k)

M]T, 
M = N1×N2. During the imaging process, the observed LR image result from warping, 
blurring, and subsampling operators performed on x and is also corrupted by additive 
noise, we can then represent the observation model as 

kkkkk nxWnxDHTy +=+=   for 1 k p. (1) 

where Tk is a warp matrix, H represents a blur matrix , D is a subsampling matrix and 
nk represents a noise vector, assumed to be Gaussian, white and stationary, p is the 
number of images.  

The SR image reconstruction problem is ill-posed. A well-posed problem can be 
formulated under the MAP stochastic framework by introducing a priori constraint, 

( ) ( ){ }xxyyyx PP log,,,logmaxarg p21 += . (2) 

Both the priori image model P(x) and the conditional density P(y1 ,y2 ,… ,yp |x) 
will be defined by a priori knowledge concerning x and the statistical information of 
noise. If the motion estimation error between images is assumed to be independent 
and noise is assumed to be an independent identically distributed zero mean Gaussian 
distribution, the conditional density can be expressed in the compact form 
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where 2 is error variance, y =[ y1 , y2 ,...., yp]
T, W =[ W 1 , W 2 ,...., W p]

T. 
In order to reconstruct the high-frequency information lost through imaging, we 

take the HMRF prior model, which represents piecewise smooth image data[5], 
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where Z is a normalizing constraint,  is the temperature parameter, c is a local group 
of pixels contained within the image cliques S, α  is the edge threshold parameter 

separating the quadratic and linear regions. The quantity xt
ld  measures the second-

order finite differences in four directions at each pixel in the HR image, small in 
smooth locations and large at edges[5].The likelihood of edges in the data is con-
trolled by the Huber penalty function 
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The regularized solution is then equivalent to minimizing the cost function 
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The HMRF prior model should be founded on the ideal HR image and parameter 
α  should also be decided upon it. But in the existing MAP research, the upsampling 
LR image is usually taken as substitute for the ideal HR image and α is set empiri-
cally. However, the ideal HR image can’t be approximated by its degraded version 
because the LR image is blurred and noisy. Parameter α  estimated on a blurred im-
age has too high a value and leads to over-smoothed solutions. Parameter α  esti-
mated on a noisy image is too low, and provides insufficient regularization, leading to 
noisy solutions. A bad initialization for the prior model often leads to degenerated 
solutions[7]. The Bayesian estimator is only significant and supplies good regularized 
estimate in the case of ideal HR image Therefore, an approximation of x has to be 
accurately determined before reconstruction.  

We choose APEX algorithm to compute the approximation of x as the deconvo-
luted result produced by APEX algorithm is sufficiently close to the original image to 
enable us to set up an accurate HRMF prior model. Moreover, the unknown PSF can 
also be determined. In the following, we detail how to get an approximation of x with 
APEX algorithm, how to estimate parameter α  from the approximation image, and 
how to generate a reconstruction estimate automatically. 

3   Hybrid Bayesian Reconstruction Solution  

3.1   APEX Prior Blind Deconvolution 

The APEX[8] method is a FFT-based direct blind deconvolution technique, which is 
applicable to a restricted two-dimensional radially symmetric shift-invariant G class 
blurs. The OTF (Optical Transfer Function) form of G class blur h(x, y) is defined as 

( ) ( ) ( )ba

R

yxi edxdyeyxhH
22

2

)(2,, ηεηεπηε +−+− == . (7) 

where (a>0, 0<b<1). When just blurring factor considered, the relationship between 
the HR image x(x,y) and the LR image y(x,y) in the frequency domain is as follows, 

( ) ( ) ( ) ( )ηεηεηεηε ,,,, NXHY += . (8) 
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where Y( , ), X( , ) and N( , ) are Fourier transforms of x(x, y), y(x, y) and n(x, y), 
respectively. We may surely assume that the noise n(x, y) satisfies 

( ) ( ) 0,,
2

>=≤ σdxdyyxfdxdyyxn
R

 (σ is a normalizing constant), so that we 

can ignore N( , ) and further normalize (8) into (9), assuming Y( , ), X( , ) and 
the OTF keep the following relation in a region Ω  in the frequency domain 

( ) ( ) ( )ηεηεηε ,log,log 22 XaY
b

++−≈ . (9) 

We replace log|X( , )|  by negative constant -A and solve (a, b) in (9) with nonlin-
ear least squares algorithms. Putting  (a, b) into (10), we can get the optimal approxi-

mation value for ideal HR image after inverse Fourier transform. H is the conjugate 
of H , K and s are adjustable parameters 
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3.2   Maximum Likelihood Estimation on HMRF Parameter 

The ML estimation of the edge threshold parameter α  based on the approximation 
value provided by APEX deconvolution is calculated as 

( )αα xPmaxargˆ = . (11) 

Parameter α  can be assessed according to a predetermined cutoff ratio T 
( ( ) ( )xx t

l
t
l dfdfT α= ), which corresponds to the percentage of high-frequency com-

ponents in the image. ( )xt
ldf is the norm from( ) of the second order derivative, 

( )xt
ldfα  is the norm when α  is taken into consider (any value lower than α  is set to 

zero). Since the approximation of the original image is known, T can be chosen ac-
cording to the available information of energy distribution in the HR image. After 
ratio T is set, the estimation on α  consists of solving the system 
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where r is the component within the high frequency components set. Thus it gives 

( ) nd
Rr

t
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∈

= xα̂ , n is the number of high-frequency components. 

3.3   Gradient Projection Solution 

We select the improved Newton gradient optimization technique to compute the 
unique minimum solution, which searches the global minimum of the objective func-
tion along the Newton direction. Any starting point x0 that satisfies (1) is valid. We 
use APEX restored image as the initial value x0. Suppose the gradient matrix of the 
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cost function U(xi) is gi = U(xi) and the Hessian matrix is Gi =
2U(xi) (i=0,…,K) , in 

each iteration the Newton direction pi is calculated as 

iii gGp 1−−= . (13) 

And x̂  moves in the Newton direction pi with step size i to minimize U(xi). 
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A sequence of iterates { }K

ii 0=x , more closely to x̂ , are generated. The convergence 

is achieved until the relative state change for a single iteration has fallen below a 
predetermined threshold ε , such that ε≤−+ iii xxx 1

. 

The whole procedure of the hybrid Bayesian estimator is summarized as follows. 

1) Upsample the LR images according to the enhancement factor q using bi-
linear interpolation, construct matrix D according to q, construct the geo-
metric distortion matrix T using the hierarchical block matching[5]. 

2) Deconvolute the reference upsampling image with APEX algorithm to ob-
tain the optimal approximation value for HR image and PSF. 

3) Calculate the Newton direction pi. 
4) Compute the step size i and update the state according to (14) and (15). 
5) If convergence criterion is satisfied, the estimate is given as 1ˆ += ixx . Oth-

erwise, increment xi+1= xi+ ipi and return step 3.  

4   Results 

In order to demonstrate the performance of the proposed algorithm, two groups of 
experiment results are presented here, which involve actual satellite remote sensing 
images and actual video sequence grabbed from a digital video film during play back. 
The enhancement factor is set to be 2. The bilinear interpolation scheme, the POCS 
algorithm[3], the Huber-MAP algorithm[5] and our proposed hybrid Bayesian estima-
tor (HBE)  are applied in each group of test.  

In the first group of test, we try to generate a HR satellite image from a sequence 
of five 5.0m resolution SPOT 5 satellite images. Fig.1 (a) is the reference 5.0m 
resolution LR image. The bilinear interpolation of the reference image, the POCS, 
Huber-MAP and HBE estimates are shown in shown in Fig. 1(b), 1(c), 1(d) and 1(e) 
respectively. Fig. 1(f) is the 2.5m resolution SPOT 5 image. The PSNR (Peak Sig-
nal-to-Noise Ratio) of the bilinear interpolation is 20.1, those of POCS, Huber-
MAP and HBE estimates are 24.3, 25.2 and 26.7 respectively. Obviously, the HBE 
method achieves a significant improvement in PSNR, with considerably much 
higher resolution than the bilinear interpolation, POCS and Huber-MAP estimates. 
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(a) (b)          

                 
(c)                                                                     (d) 

                 
(e)                                                              (f) 

Fig. 1. Actual Satellite Image Sequence. (a) the reference 5.0m image. (b) Bilinear interpolation 
result. (c) POCS estimate. (d) Huber-MAP estimate. (e) HBE result. (f) the 2.5m HR image. 

In the second group of test, nine frames are grabbed from the video sequence dur-
ing playback. The frame shown in Fig. 2(b) is the bilinear interpolation of the refer-
ence frame in Fig. 2(a). The POCS result after 20 iterations is shown Fig. 2(c). The 
Huber-MAP result after 20 iterations is shown Fig. 2(d) and the HBE result after 16 
iterations is shown Fig. 2(e). Fig. 2(f) is the original HR image.  



418 T. Wang, Y. Zhang, and Y.S. Zhang 

                         
(a)                                                                         (b) 

     
                                 (c)                                                                       (d) 

    
(e)   (f) 

Fig. 2. Actual Video Sequence. (a) the reference LR image. (b) Bilinear interpolation result. (c) 
POCS estimate. (d) Huber-MAP estimate. (e) HBE result. (f) the HR image.  

The PSNR values of the bilinear interpolation, POCS, Huber-MAP and HBE esti-
mates are 22.3, 25.2, 25.7 and 27.1 respectively. Experimental result shows that the 
image generated by the HBE approach outperforms those produced by bilinear inter-
polation, POCS and Huber-MAP estimators, especially in the areas of man’s face and 
the bars far behind the man. 
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5   Conclusion 

In the paper a novel hybrid Bayesian algorithm is proposed for HR image reconstruc-
tion from actual LR images or video sequence. The proposed approach firstly gets a 
good approximation of the ideal HR image, then estimate the edge threshold parame-
ter from approximation data by ML estimation, and finally obtains a regularized re-
construction estimate automatically. Its main contributions are setting up an accurate 
HMRF image prior model, which enables the reconstruction processing to be carried 
out automatically and ensures the robustness of the estimate. Experimental results 
demonstrate this new technique is robust and gives very excellent reconstruction re-
sult in actual satellite data and video data. The resulted images exhibit much sharper 
and clearer details than images reconstructed by the bilinear interpolation, the POCS 
estimator and the Huber-MAP estimator. 

References 

1. Park, S. C., Park, M. K., Kang, M. G..: Super-Resolution Image Reconstruction: A Techni-
cal Overview. IEEE Signal Processing Magazine. 5 (2003) 21-36 

2. Tsai R. Y., Huang, T.S.: Multiframe image restoration and registration. In: in Huang, 
T.S.(Ed.): Advances in computer vision and image processing, JAI Press,  (1984) 317-339 

3. Patti, A.J., Sezan, M. I., Tekalp, A. M.: Superresolution Video Reconstruction with Arbi-
trary Sampling Lattices and Nonzereo Aperture Time. IEEE Trans. Image Processing. 8 
(1997) 1064-1997 

4. Patti, A.J., Altunbasak, Y.: Artifact reduction for set theoretic super resolution image recon-
struction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image 
Processing. 1(2001) 179-186 

5. Schulz, R.R., Stevenson, R. L.: Extraction of High-Resolution Frames from Video Se-
quences. IEEE Trans. Image Processing. 6 (1996)  996-1011 

6. Hardie, R.C., Barnard ,K.J., Armstrong E.E.: Joint MAP registration and high-resolution 
image estimation using a sequence of undersampled images. IEEE Trans. Image Processing. 
12 (1997)  1621-1633  

7. Jalobeanu, A., Blanc-Féraud, L. et al.: An Adaptive Gaussian Model for Satellite Image de-
blurring. IEEE Trans. Image Processing, 4(2004) 613-621 

8. CARASSO, A.S.,: THE APEX Method in Image Sharpening and the use of low exponent 
Lévy Stable Laws. SIAM J. APPL. MATH., 2(2002) 593-618 



Retrieval-Aware Image Compression, Its Format
and Viewer Based Upon Learned Bases

Naoto Katsumata1, Yasuo Matsuyama2, Takeshi Chikagawa3,
Fuminori Ohashi2, Fumiaki Horiike2,

Shun’ichi Honma2, and Tomohiro Nakamura2

1 Yahoo Japan,
2 Waseda University, Tokyo 169-8555, Japan

3 Nomura Research Institute, Japan
{katsu, yasuo, take-c-chika, fumi, fmi h, shunichi1029,

nt naka}@wiz.cs.waseda.ac.jp
http://www.wiz.cs.waseda.ac.jp/index-e.html

Abstract. A retrieval-aware image format (rim format) is developed for
the usage in the similar-image retrieval. The format is based on PCA and
ICA which can compress source images with an equivalent or often bet-
ter rate-distortion than JPEG. Besides the data compression, the learned
PCA/ICA bases are utilized in the similar-image retrieval since they re-
flect each source image’s local patterns. Following the format presenta-
tion, an image search viewer for network environments (Wisvi; Waseda
image search viewer) is presented. Therein, each query is an image per se.
The Wisvi system based on the “rim” method successfully finds similar-
images from non-uniform network environments. Experiments support
that the PCA/ICA methods are viable to the joint compression and re-
trieval of digital images. Interested test users can download a β-version
of the tool for the joint image compression and retrieval from a web site
specified in this paper.

1 Joint Data Compression and Retrieval of Images

Growing popularity of the Internet increases the necessity of image retrieval sys-
tems more and more. For instance, the service of flickr [1] helps image sharing
among blog groups. Thus, retrieved images migrate frequently among the net-
work environments which contain PC’s and mobile phones. In such cases, the
direct retrieval from a query image is desirable. Then, computational intelli-
gence methods with learning are expected to contribute to this class of problems
Therefore, this paper addresses the following problems:

(a) To utilize learned image bases from the principal component analysis (PCA)
and the independent component analysis (ICA) so that the joint data com-
pression and retrieval is effectively achieved. The data compression presented
in the text can outperform JPEG. On the similar-image retrieval, the au-
thors had made extensive experiments to compare the color bin method and
the learned bases method [2]. Due to this, the main purpose of this paper is

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 420–429, 2006.
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set to find the method to achieve the joint performance of the compression
and retrieval of digital images.

(b) To define the retrieval-aware image format, say rim (Retrieval-aware IMage
format).

(c) To give a useful viewer. As will be observed in the main text, items (a)
and (b) are successfully fulfilled. Therefore, systems which can handle im-
ages directly as queries become worthy to build. The Wisvi (Waseda Image
Searchable VIewer) is presented for this purpose so that uninitiated users
can find desirable images via human-friendly method. This system is helpful
for the opinion test to measure the system performance.

(d) To design the whole methods and systems to be applicable to scattered
network environments as well as databases.

Sampling
Average

Separation

Bases
Learning

Average
Quantization

Bases
Normalization

Entropy
Codingimage

Compressed File

Bases
Quantization

Entropy
Coding

Calculating
Coefficients

Coefficients
Quantization

Entropy
Coding

1 2 7-1 7-2 7-3

5 6-1 6-2 6-3

3 4

Fig. 1. Retrieval-aware image compression

2 Utilization of Learned Image Bases

As was stated in Section 1, the purpose of this paper is

(a) to show efficient and retrieval-aware image compression methods,
(b) to give an effective format for this purpose,
(c) and to design a user-friendly viewer system.

Figure 1 illustrates the total system for the image compression with the purpose
of the similar image retrieval. This system will use PCA and ICA bases after the
mean value separation. The blocks with numbers in this figure have the functions
explained below. Each item number corresponds to the block number.

(1) Sampling:
At this stage, patches {I(x, y)} with the size of m ×m are obtained. Each
patch is considered as a vector x.
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x = [ R(x1, y1), R(x2, y1), · · · , R(xm, ym),
G(x1, y1), G(x2, y1), · · · , G(xm, ym),
B(x1, y1),B(x2, y1), · · · ,B(xm, ym) ]T

def= [xR,xG,xB ]T (1)

(2) Average separation:
Color component’s sample mean values are computed and subtracted from
each component of {R, G, B}.

x← [xR − μR, xG − μG, xB − μB]T (2)

In later experiments, the image compression using

μ = [μR, μG, μB] (3)

will be found better than using μall−color, which is a single vector mean of
vector patches, contrary to our naive intuition.

(3) Average quantization:
The average μcolor (the index “color” stands for R, G, or B) is quantized as
follows.

μ̂color ← �μcolor/qavg� (4)

The quantization step size is as follows.

qavg ← �qcff/(1.5m)� (5)

Here, qcff is the quantization size for basis coefficients explained in later
sections.

(4) Average entropy coding:
This step computes the difference between contiguous frames as is adopted
in JPEG.

Δμ̂color(k)← μ̂color(k)− μ̂color(k − 1) (6)

After this step, the run-length Huffman coding is executed for the average
compression.

(5) PCA bases learning:
Computing the bases for PCA starts from the normalization for the zero
mean. This is already completed in the average separation. Then, the co-
variance is computed by

C = E[xxT ]. (7)

Then, the data reduction matrix is computed.

V = D−1/2ET (8)

Here, D is a diagonal matrix of the first L large eigenvalues of C. E is
a matrix whose columns are eigenvectors corresponding to D. Then, the
reduced or low-pass filtered vector is expressed by

z = V x. (9)
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Then,
x̄

def= V −1z
def= ÛPCAz (10)

is the image restoration. This Û
PCA

is the set of the PCA bases.
(5’) ICA bases learning:

After obtaining the PCA bases, another set of powerful bases can be ob-
tained. These are ICA bases (independent component analysis) [3], [4].

ŝ = Ŵz = ŴV x (11)

Here, ŝ is the estimated coefficients whose components are independent each
other. The image restoration is performed by

x̄
def= (ŴV )−1ŝ

def= Û
ICA

ŝ. (12)

This Û
ICA

is the set of the ICA bases.
(6) Bases normalization (6-1):

Let A be the PCA or ICA basis matrix. First, each basis which is a column
vector of A is normalized so that the basis norm is unity: ‖ai‖ = 1.
Basis quantization (6-2):
Then, the quantization step size is computed.

qbases(i)←
⌊(

2bprec−1 − 1
)
/amax(i)

⌋
(13)

Here, amax(i) is the maximum value of the normalized basis a(i). The num-
ber bprec sets the granularity of the quantization. Experimentally decided
value is 6 bits, i.e., bprec = 6. Then, the quantization for the bases is per-
formed by

â(i) ← �a(i)qbases(i)�. (14)

Entropy coding (6-3):
The loss-less data compression is performed by the run-length Huffman cod-
ing after computing the difference as is illustrated in Figure 2.

(7) Coefficients calculation (7-1):
Using the quantized bases, the superposition coefficients for the bases are
computed.

s← A−1x (15)

Coefficients quantization (7-2):
The i-th component is quantized as follows.

ŝ(i)← �(s(i)qbases(i)) /qcff� (16)

Here, qcff is a design parameter which can be set by users.
Entropy coding (7-3):
Finally, the run-length Huffman coding is applied column-wise to the coeffi-
cient matrix S for the handled image.
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Fig. 2. Computation of bases components’ differences

3 File Format with Learned Bases

Figure 3 illustrates the file format which contains headers and compressed in-
formation. As can be observed in this figure, the organization of this format is
blockwise.

(1) File header:
The file header contains the image size and the offset for each block. But, the
file header is free from each block’s format so that each block information’s
independence is maintained.

(2) Information header:
This part is prepared for extra important information which may or may not
be related to the image compression. Such information includes the author
name and the copyright. Tags like MPEG7 can also be such information.

(3) Average:
The average is used for the image retrieval using color information. This
information can be utilized to make thumbnails and progressive expressions.

(4) Bases:
This part contains compressed information of image bases. PCA bases and
ICA bases are major targets in this study.

(5) Coefficients:
This part contains compressed information for the superposition of bases.
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average bases coefficients

File Header
Info Header

Block Header

Compression Info Header

Fig. 3. File format

4 Viewer for Similar Image Retrieval

Figure 4 is a screen shot of the designed viewer Wisvi for the similar-image
retrieval. Given a directory name, Wisvi looks for images including all subdi-
rectories. Wisvi is used in the compression performance evaluation and opinion
tests for the retrieval.

Fig. 4. Wisvi: A similar-image retrieval viewer
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The large picture in the upper-left of Figure 4 is the query image. The task is
to find similar images from specified directories. Small images on the right side
are sorted from the query image to others which are judged similar. It is worthy
to note here that the PCA/ICA-based search described in the next section can
find similar images with different x-y ratios [2].

5 Preliminary Experiments to Evaluate the Design
Principle

Here, we explain why the aforementioned compression method fits to the similar-
image retrieval.

(a) Average of colors:
In this system, three averages of {R, G, B} are encoded for the image com-
pression. From an uninitiated intuition, this might look inferior to using a
single granular average of the whole color. But, experiments showed that the
three component method beats the one average method. This illustration is
omitted because of the space limitation.
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(b) Tight fitting versus universal bases:
Here, “tight fitting bases” stands for the bases from handled images (e.g.,
the query image). On the other hand, “universal bases” means the bases
obtained from a good amount of mixtures of images. Experiments show that
the universal bases wins for images with smaller sizes. On the other hand,
tightly fitting bases are better for images with larger sizes (illustration is
omitted because of the space limitation). Since pixel sizes adopted by recent
digital cameras and cellular mobile phones are increasing, this experiment
recommends the method of tightly fitting bases.

(c) Compression performance:
Figure 5 illustrates the rate-distortion curves of three compression methods
{PCA bases, ICA bases, JPEG} (actually, they are rate-quality curves).
These are examples from extensive studies. As can be observed from this
figure, the PCA bases outperform the two others. JPEG wins only within
low quality ranges. Due to the margin of this win, the joint compression and
retrieval of images is made possible.

(d) Similarity measures:
The similarity measure which compare two images is a combination of the
color-sensitive part Scolor and the texture/edge sensitive part Sbases.

S = αSbases + (1 − α)Scolor, 0 � α � 1. (17)

Here, α is a design parameter set by users (e.g., α = 0.3).
The color similarity Scolor is computed as the average of patch similarity

defined by the inner product. The basis similarity Sbases is also computed by
using the inner product. But, this part needs to consider how to find bases pair
to compare for the computational efficiency. Readers are requested refer to [2]
for details.

6 Performance of the Similar-Image Retrieval

Figure 6 summarizes the result of the opinion tests by 10 uninitiated users on
the Ground Truth Database [5]. This figure compares the retrieval performances
by the PCA basis method and the ICA basis method.

The retrieval is judged to be in success if the target to the query image
was contained within top x% of all images. This x is called the success line
which is the horizontal axis of Figure 6. The vertical axis, the success rate,
is measured by showing images one by one to the opinion test subjects. The
following summarizes this result on the similar-image retrieval.

(a) Both PCA and ICA methods are judged to be viable.
(b) The ICA basis method outperforms the PCA basis method.
(c) The PCA basis method is faster. This is because the ICA basis computation

requires the result of PCA (cf. Section 2).
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7 Conclusion

The retrieval-aware image compression using learned bases was presented. This
paper presented the following.

(1) The presented methods for the joint data compression and similar-image
retrieval were successful. These methods are based on the learned PCA and
ICA image bases.

(2) A basic image format was presented (the rim format; Retrieval-aware IMage
format).

(3) The PCA basis method outperforms JPEG for data compression.
(4) Both PCA and ICA bases are successfully retrieval-aware.

This paper leads to the following studies for improvements, which are in progress.
Some already show promising results.

(a) The compression experiments in the text used the uniform quantization and
the run-length Huffman coding. This part can be improved at the cost of
slight increase of computational complexity. The arithmetic coding is one
possibility. Therefore, we applied EBCOT (Embedded Block Coding with
Optimal Truncation) which is used in JPEG2000. EBCOT comprises the
arithmetic coding as the main step. The compression performance was im-
proved. Quantitative results will be given in a separate repots.
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(b) Computation speedup for bases using software and/or hardware is desirable.
(c) Comparison with JPEG2000 needs to be studied. JPEG2000 is compression

effective. On the compression performance per se, item (a) already gives an
answer. On the performance for the retrieval-awareness, additional sophisti-
cations are necessary. This is in progress.

(d) Upon this paper is published, a β-version of the tool set for the joint image
compression and retrieval will be made downloadable at the URL given in
the first page of this paper.
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Abstract. 25% of the total revenue earning is achieved from Textile exports for 
some countries like Bangladesh. It is thus important to produce defect free high 
quality garment products. Inspection processes done on fabric industries are 
mostly manual hence time consuming. To reduce error on identifying fabric 
defects requires automotive and accurate inspection process. Considering this 
lacking, this research implements a Textile Defect detector. A multi-layer 
neural network is determined that best classifies the specific problems. To feed 
neural network the digital fabric images taken by a digital camera and converts 
the RGB images are first converted into binary images by restoration process 
and local threshold techniques, then three different features are determined for 
the actual input to the neural network, which are the area of the defects, number 
of the objects in a image and finally the shape factor. The develop system is 
able to identify two very commonly defects such as Holes and Scratches and 
other types of minor defects. The developed system is very suitable for Least 
Developed Countries, identifies the fabric defects within economical cost and 
produces less error prone inspection system in real time.  

Keywords: Textile defects, threshold decision tree, multi-layer neural networks, 
resilient back propagation, cross validation. 

1   Introduction 

In the least developed countries like Bangladesh, most defects arising in the 
production process of a textile material are still detected by human inspection. The 
work of inspectors is very tedious and time consuming. They have to detect small 
details that can be located in a wide area that is moving through their visual field. The 
identification rate is about 70%. In addition, the effectiveness of visual inspection 
decreases quickly with fatigue. Digital image processing techniques have been 
increasingly applied to textured samples analysis over the last ten years [1]. Wastage 
reduction through accurate and early stage detection of defects in fabrics is also an 
important aspect of quality improvement. Table 1 [2] summarizes the comparison 
between human visual inspection and automated inspection. Also, it has been 
observed [3] that price of textile fabric is reduced by 45% to 65% due to defects. 
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Table 1.  Visual inspection versus automated inspection   

Inspection Type Visual Automated 
Fabric Types 100% 70% 

Defect Detection Rate 70% 80%+ 
Reproducibility 50% 90%+ 

Objective Defect Judgment 50% 100% 
Statistics Ability 0% 95%+ 
Inspection Speed 30 m/min 120 m/min 
Response Type 50% 80% 

Information Content 50% 90%+ 
Information Exchange 20% 90%+ 

In textile sectors, different types of faults are available i.e. hole, scratch, stretch, fly 
yarn, dirty spot, slub, cracked point, color bleeding etc; if not detected properly these 
faults can affect the production process massively.  

Machine vision automated inspection system for textile defects has been in the 
research industry for longtime [8], [9]. Recognition of patterns independent of 
position, size, brightness and orientation in the visual field has been the goal of much 
recent work. However, there is still a lack of work in machine vision automated 
system for recognizing textile defects using AI. A neural network pattern recognizer 
was developed in [10]. Fully connected three multilayer percetron network was used 
to identify different sizable objects. The input of this network is seven standardized 
invariant moment and the weights are trained using back propagation. Since the 
network uses standardized moments as input, neural net similar to this requires lots of 
iteration to train. The research takes directly input as binary images as a result no 
preprocessing of image is performed.  

Today’s automated fabric inspection systems are based on adaptive neural 
networks. So instead of going through complex programming routines, the users are 
able to simply scan a short length of good quality fabric to show the inspection system 
what to expect. This coupled with specialized computer processors that have the 
computing power of several hundred Pentium chips makes these systems viable [20]. 
Three state-of-the-art fabric inspection systems are – BarcoVision’s Cyclops, Elbit 
Vision System’s I-Tex and Zellweger Uster’s Fabriscan. These systems can be 
criticized on grounds that they all work under structured environments – a feat that is 
almost non-existent in list developed countries like Bangladesh.  

There are some works in [11] based on the optical Fourier transform directly 
obtained from the fabric with optical devices and a laser beam. Digital image 
processing techniques have been increasingly applied to textured samples analysis 
over the last ten years. Several authors have considered defect detection on textile 
materials. Kang et al. [12], [13] analyzed fabric samples from the images obtained 
from transmission and reflection of light to determine its interlacing pattern. Wavelets 
had been applied to fabric analysis by Jasper et al. [14], [15]. Escofet et al. [16], [17] 
have applied Gabor filters (wavelets) to the automatic segmentation of defects on 
non-solid fabric images for a wide variety of interlacing patterns. Millán and Escofet 
[18] introduced Fourier-domain-based angular correlation as a method to recognize 
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similar periodic patterns, even though the defective fabric sample image appeared 
rotated and scaled. Recognition was achieved when the maximum correlation value of 
the scaled and rotated power spectra was similar to the autocorrelation of the power 
spectrum of the pattern fabric sample. If the method above was applied to the spectra 
presented in Fig.1, the maximum angular correlation value would be considerably 
lower than the autocorrelation value of the defect free fabric spectrum. Fourier 
analysis does not provide, in general, enough information to detect and segment local 
defects. 

Electronic textiles (e-textiles) are fabrics with interconnections and electronics 
woven into them. The electronics consist of both processing and sensing elements, 
distributed throughout the fabric. Thomas Martin et al. [19] describe the design of a 
simulation environment for electronic textiles (e-textiles) but having a greater 
dependence on physical locality of computation. The current status of the simulation 
environment for e-textiles and present results generated by the environment and 
associated prototypes for two applications, a large-scale acoustic beam forming fabric 
for locating vehicles and a pair of pants for classifying and analyzing wearer motions. 
Gabor filter is a widely feature extraction method, especially in image texture 
analysis. The selection of optimal filter parameters is usually problematic and unclear. 
Yimiing et al. [21] analyze the filter design essentials and proposes two different 
methods to segment the Gabor filtered multi-channel images. The first method 
integrates Gabor filters with labeling algorithm for edge detection and object 
segmentation. The second method uses the K-means clustering with simulated 
annealing for image segmentation of a stack of Gabor filtered multi-channel images. 
But the classic Gabor expansion is computationally expensive and since it combines 
all the space and frequency details of the original signal, it is difficult to take 
advantage of the gigantic amount of numbers. From the literature it is clear that there 
exists many systems that can detect textile defects but hardly affordable by the small 
industries of the List Developed countries like Bangladesh.    

In this paper we propose a textile defect recognizer that can detect three types of 
very common faults in textile production, that are hole, scratch, and other fault. An 
automated textile defect detector based on computer vision methodology and adaptive 
neural networks is built combining engines of image processing and artificial neural 
networks in textile industries research arena. 

Here the textile defect recognizer is viewed as a real-time control agent that 
transforms the captured digital image into adjusted resultant output and operates the 
automated machine (i.e. combination of two leaser beams and production machine), 
 

 

Fig. 1. Power spectrum of the pattern fabric sample (left) and the defective fabric sample (right)  
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In the proposed system as the recognizer identifies a fault of any type mentioned 
above, will immediately recognize the type of fault which in return will trigger the 
laser beams in order to display the upper offset and the lower offset of the faulty 
portion.  The upper offset and the lower offset implies the 2 inches left and 2 inches 
right offset of faulty portion. This guided triggered area by the laser beans will 
indicate the faulty portion that needs to be extracted from the roll. After cutting the 
desired portions of fabric, textile defect recognizer resumes its operation. 

2   Mythology and Implementation of the System 

Major steps required to implement the proposed system is depicted in Fig. 2. The 
proposed system can be a competitive model for recognizing textile defects in real 
world. Base on the research, the proposed system design is separated into two parts. 
The first part of our research focuses on the processing of the images to prepare to 
feed into the neural network. The second part is about building a neural network that 
best performs on the criteria to sort out the textile defects.  

 

 

Fig. 2. Major components of the textile defect detector 

2.1   Processing Textile Image for the Neural Network Input  

At first the images of the fabric is captured by digital camera in RGB format (top left 
image in figure and figure) and passes the image through serial port to the computer. 
Then, noise is removed using standard techniques and an adaptive median filter 
algorithm has been used as spatial filtering for minimizing time complexity and 
maximizing performance [4] to converts digital (RGB) images to grayscale images 
(top middle image in Fig. 3). After restoration local thresholding technique (the 
process is discussed in next sub-section) is used in order to convert grayscale image 

 
 
Part 1 

 
 
Part 2 
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into binary image (top right in Fig. 3). Finally, this binary image is used to calculate 
the following attributes: 

1. The area of the faulty portion: calculates the total defected area of a image. 
2. Number of objects: uses image segmentation to calculate the number of labels 

in an image. 
3. Shape factor: distinguishes a circular image form a noncircular image. Shape 

Factor uses the area of a circle to identify the circular portions of the fault.  

These three attributes are used as input sets to adapt the neural net through training set 
in order to recognize expected defects. 

  

 

 

 

Fig. 3. Original Faulty (Scratch) Fabric (top left), gray (top middle) and binary (top right) 
representation and histogram (bottom) of the gray 

Decision tree for threshold from gray to binary. A decision tree is constructed 
based on the histogram of the image in hand to convert the gray scale image in a 
binary representation. As we know from the problem description that there are 
different types of textile fabrics and also different types of defects in textile industries 
hence different threshold values to different pattern of faults there is no way to 
generalize threshold value (T) from one image for all types of fabrics. Notice this 
phenomenon in histograms illustrated in Fig. 3. (The identified threshold value (T) 
should be greater then 120 and less than 170) and Fig. 4. (The identified threshold 
value (T) should be greater then 155 and less then 200). A local threshold was used 
based on decision tree which was constricted using set of 200 image histograms of 
fabric data. Illustration of the decision tree is provided in Fig. 5. 
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Fig. 4. Original Faulty (Hole) Fabric (left) and the histogram of the gray representation (right)   

 

Fig. 5.  Decision Tree for Threshold Value (T) to convert from gray to binary  

 

Fig. 6.  Design of Feed Forward Back propagation Neural Network 

2.2   The Suitable Neural Network  

In search of a fully connected multi-layer neural network that will sort out the 
defected textiles we start with a two layer neural network (Fig. 6). Our neural network 
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contains one hidden of 44 neurons and one output layer of 4 neurons. The neurons in 
the output layer is delegated as 1st neuron of the output layer is to Hole type fault, 2nd 
neuron of the output layer is to Scratch type fault, 3rd neuron of the output layer is to 
Other type of fault and 4th neuron of the output layer is for No fault (not defected 
fabric).  The output range of the each neuron is in the range of [0 ~ 1] as we use log-
sigmoid threshold function to calculate the final out put of the neurons. Although 
during the training we try to reach the following for the target output [{1 0 0 0}, {0 1 
0 0}, {0 0 1 0},  {0 0 0 1}] consecutively for Hole type defects, Scratch type defects, 
Other type defects and No defects, the final output from the output layer is determined 
using the winner- take-all method.  

To determine the number of optimal neurons in the hidden layer was the tricky 
part, we start with 20 neurons in the hidden layer and test the performance of the 
neural network on the basis of a fixed test set, and then we increase the number of 
neurons one by one and till 60, the number of neurons in the hidden layer is chosen 
based on the best performance. The error curve is illustrated in Fig. 7.     
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Fig. 7.  Performance (in % error) carve on the neuron number in the hidden layer     

The parameters used in the neural network can be summarized as: 

• Training data set contains 200 images; 50 from each class.  
• Test data set contains 20 images; 5 from each class 
• The transfer function is Log Sigmoid. 
• Performance function used is mean square error 
• Widrow-Hoff algorithm is used as learning function [5] with a learning rate 

of .01. 
• To train the network resilient back propagation algorithm [6], [7] is used. 

Weights and biases are randomly initialized. Initial delta is set to .05 and the 
maximum value for delta is set to 50, the decay in delta is set to .2.    

• Training time or total iteration allowed for the neural networks to train is set 
to infinity as we know it is a conversable problem. And we have the next 
parameter to work as stopping criterion 

• Disparity or maximum error in the actual output and network output is set to 
10-5.  
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3   Results and Discussions   

The performance of the textile recognizer is determined based on the cross validation 
method. The average result is provided in Fig. 8. Here notice that the recognizer can 
successfully identifying Hole type faults with 72% accuracy, 65% of Scratch type 
faults, 86% of the Other type faults and 83% No faults accurately. The average 
performance of the system determining the defects in textile industry is 74.33% and 
the overall all performance of the system is 76.5%.  

 

Fig. 8.  The bar chart for the performance accuracy of the system 

4   Conclusion 

All textile industries aim to produce competitive fabrics. The competition 
enhancement depends mainly on productivity and quality of the fabrics produced by 
each industry. In the textile sector, there have been an enlarge amount of losses due to 
faulty fabrics. Here we have demonstrated that Textile Defect Recognition System is 
capable of detecting fabrics’ defects with more accuracy and efficiency. In the 
research arena, our system tried to use the local threshold technique without the 
decision tree process.  

The system performs quite well except the problem of false negative classification, 
where it fails to classify the good fabric as good and marks it as faulty fabric; the 
future versions of the system will try to notice this problem more precisely.   
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Abstract. A modeling and classification model for MPEG video traffic
data using a Fuzzy C-Means algorithm with a Divergence-based Ker-
nel (FCMDK) for clustering GPDF data is proposed in this paper. The
FCMDK is based on the Fuzzy C-Means clustering algorithm and thus
exploits advantageous features of fuzzy clustering techniques. To further
improve classification accuracies and deal with nonlinear data, the input
data is projected into a feature space of a higher dimensionality. Conse-
quently, nonlinear problems existing in the input space can be solved lin-
early in the feature space. The divergence-based kernel method adopted
in the FCMDK employs a divergence measure between two probability
distributions for its similarity measure. By adopting the divergence-based
kernel method for probability data, the FCMDK can not only utilize ad-
vantageous features of the kernel method but also exploit the statistical
nature of the input data. Experiments and results on several MPEG
video traffic data sets demonstrate that the classification model employ-
ing the FCMDK for clustering GPDF data can archive improvements of
28.19% and 34.60% in terms of False Alarm Rate (FAR) over the models
using the conventional k-means and SOM algorithms, respectively.

1 Introduction

Content-based retrieval of video data has attracted a great attention in recent
years. Many video applications such as video on demand, video databases, and
video teleconferencing can benefit from retrieval of the video data based on
their content. However, with the rapid increase in various multimedia services,
numerous video databases are available through the internet. Organizing these
huge video databases into libraries and providing effective indexing require an
efficient modeling and classification model.

Recently, various video data classification models have been proposed [1,2,3,4].
Most of classification models are based on pattern recognition approaches which
often use a Gaussian Mixture Model (GMM) for modeling video traffic data and
a Bayesian classifier [4]. In order to obtain mixture components , also called
Gaussian Probability Density Function (GPDF) data, in GMMs, clustering al-
gorithms are often employed. For clustering GPDF data, conventional Self Orga-
nizing Map (SOM) [5] and k-means [6] algorithms have been most widely used in
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practice because of their simplicity. Later, the Fuzzy C-Means (FCM) clustering
algorithm is proposed as an improvement of the k-means and the SOM [7,8]. The
FCM has been successfully applied in clustering the probabilistic distribution of
the log-value of the frame size in the MPEG video classification model proposed
by Liang and Mendel [4]. However, these algorithms were designed with the
Euclidean distance. This implies that most of video classification models using
these clustering algorithms used only mean values of GPDF data for clustering
while leaving out covariance information of GPDF data. To exploit entire infor-
mation in data including the mean value and covariance information, Park and
Kwon proposed a divergence-based centroid neural network (DCNN) algorithm
for clustering GPDF data [9]. The DCNN has been successfully applied to the
clustering GPDF data for Hidden Markov Model (HMM) in speech applications.

In this paper, a MPEG video traffic classification model using a Fuzzy C-
Means Algorithm with a Divergence-based Kernel (FCMDK) is proposed. The
proposed classification model is designed for the classification of compressed
video data without going through the decompressing procedure. The FCMDK
adopted in the proposed classification model is used for clustering the GPDF
data. The FCMDK is based on the FCM algorithm and thus utilizes advanta-
geous features of fuzzy clustering techniques. Before clustering, the input data is
projected to a feature space using a kernel method. The kernel method adopted in
the FCMDK is used to transform the input data from a low dimensional space
to a feature space of a higher dimensionality [10,11]. Consequently, nonlinear
problems associated with the input space can be solved linearly in the feature
space according to the well-known Mercer theorem [12]. Furthermore, the statis-
tical nature of the data is utilized by using both the mean value and covariance
information in GPDF data. For clustering of probability data, a divergence-
based kernel using a divergence measure as its measure distance between two
probability distributions is employed.

The remainder of this paper is organized as follows. Section 2 summarizes the
Fuzzy C-Means and the Kernel-based Fuzzy C-Means algorithms. Section 3 in-
troduces the Fuzzy C-Means algorithm with Divergence-based Kernel. Section 4
presents experiments and results on several MPEG video data sets including
comparisons with other conventional algorithms. Conclusions are presented in
Section 5.

2 Kernel-Based Fuzzy C-Means Algorithm

2.1 Fuzzy C-Means Algorithm

The FCM algorithm has successfully been applied to a wide variety of clus-
tering problems. The FCM algorithm attempts to partition a finite collection
of elements X = {x1,x2, ...,xN} into a collection of C fuzzy clusters. Bezdek
first generalized the fuzzy ISODATA by defining a family of objective functions
Jm, 1 < m < ∞, and established a convergence theorem for that family of ob-
jective functions [7,8]. For the FCM, the objective function is defined as :
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Jm(U,v) =
C∑

i=1

N∑
k=1

μm
ik‖xk − vi‖2 (1)

where ‖.‖2 denotes Euclidean distance measure, xk and vi is the input data, k,
and cluster prototype, i, respectively. μki is the membership grade of the input
data xk to the cluster vi, and m is the weighting exponent, m ∈ {1, · · · ,∞},
while N and C are the number of input data and clusters, respectively.

The FCM objective function is minimized when high membership grades are
assigned to objects which are close to their centroid and low membership grades
are assigned when objects are far from their centroid [8].

By using the Lagrange multiplier to minimize the objective function, the cen-
ter prototypes and membership grades can be updated as follows:

μik =
1

C∑
j=1

‖xk−vi‖2

‖xk−vj‖2

(2)

vi =

N∑
k=1

μm
ikxk

N∑
k=1

μm
ik

(3)

The FCM finds the optimal values of group centers iteratively by applying
Eq. (2) and Eq. (3) in an alternating fashion.

2.2 Kernel-Based Fuzzy C-Means Algorithm

Though the FCM has been applied to numerous clustering problems [13], it still
suffers from poor performance when boundaries among clusters in the input data
are nonlinear. One alternative approach is to transform the input data into a
feature space of a higher dimensionality using a nonlinear mapping function so
that nonlinear problems in the input space can be linearly treated in the feature
space according to the well-known Mercer theorem [12,11]. One of the most
popular data transformation methods adopted in recent studies is the kernel
method [10]. One of the advantageous features of the kernel method is that input
data can be implicitly transformed into the feature space without knowledge of
the mapping function. Further, the dot product in the feature space can be
calculated using a kernel function.

With the incorporation of the kernel method, the objective function in the
feature space using the mapping function Φ can be rewritten as follow:

Fm =
C∑

i=1

N∑
k=1

μm
ik ‖Φ(xk)− Φ(vi)‖ (4)

Through kernel substitution, the objective function can be rewritten as:

Fm = 2
C∑

i=1

N∑
k=1

μm
ik(1−K(xi,vk)) (5)
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where K(x,y) is a kernel function used for calculating the dot product of vectors
x and y in the feature space. To calculate the kernel between two vectors, the
Gaussian kernel function is widely used:

K(x,y) = exp

(
−‖x− y‖2

σ2

)
(6)

By using the Lagrange multiplier to minimize the objective function, the clus-
ter prototypes can be updated as follow:

vi =

N∑
k=1

μm
ikK(xk,vi)xk

N∑
k=1

μm
ikK(xk,vi)

(7)

And the membership grades can be updated as follow:

μik =
1

C∑
j=1

(
1−K(xk,vi)
1−K(xk,vj)

) 1
m−1

(8)

3 Fuzzy C-Means Algorithm with Divergence-Based
Kernel

Since conventional kernel-based clustering algorithms were designed for deter-
ministic data, they cannot be used for clustering probability data. In this pa-
per, we propose a Fuzzy C-Means algorithm with a Divergence-based Kernel
(FCMDK) in which a divergence distance is employed to measure the distance
between two probability distributions. The proposed FCMDK incorporates the
FCM for clustering data and the divergence-based kernel method for data trans-
formation.

For GPDF data, each cluster prototype is not represented by a deterministic
vector in the input space but is represented by a GPDF with a mean vector and
covariance matrix. In order to calculate the kernel between two GPDF data, a
divergence-based kernel is employed. The divergence-based kernel is an exten-
sion of the standard Gaussian kernel. While the Gaussian kernel is the negative
exponent of the weighted Euclidean distance between two deterministic vectors
as shown in Eq. 6, the divergence-based kernel is the negative exponent of the
weighted divergence measure between two GPDF data. The divergence-based
kernel function between two GPDF data is defined as follows:

DK(gx, gy) = exp (−αD(gx, gy) + β) (9)

whereDK(gx, gy) is the divergence distance between two Gaussian distributions,
gx and gy. α and β are the constants which depend on the data. After evalu-
ating several divergence distance measures, the popular Bhattacharyya distance
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measure is employed. The similarity measure between two distributions using
the Bhattacharyya distance measure is defined as follows:

D(Gi, Gj) =
1
8
(μi − μj)T

[
Σi + Σj

2

]−1

(μi − μj) +
1
2

ln

∣∣∣Σi+Σj

2

∣∣∣√|Σi| |Σj |
(10)

where μi and Σi denote the mean vector and covariance matrix of a Gaussian
distribution Gi, respectively. T denotes the transpose matrix.

Similar to the cluster prototypes and membership grades in the kernel-based
FCM, the cluster prototypes and membership grades in the FCMDK can be
updated using a Lagrange multiplier to minimize its objective function. However,
each cluster prototype representing a cluster in the FCMDK is a probability
distribution with a mean vector and a covariance matrix. Therefore, cluster
prototypes in each iteration are updated by modifying their mean vector and
covariance matrix as follows:

mvi
=

N∑
k=1

μm
ikDK(xk,vi)mxk

N∑
k=1

μm
ikDK(xk,vi)

(11)

Σvi
=

N∑
k=1

μm
ikDK(xk,vi)Σxk

N∑
k=1

μm
ikDK(xk,vi)

(12)

where mvi and mxk
are the mean of the cluster prototype vi and the vector in

input xk, respectively. Σvi
and Σxk

are the covariance of the cluster prototype
vi and the vector in input xk, respectively. DK(xk,vj) is the divergence-based
kernel function between two Gaussian distributions xk and vj .

The membership grades are similar to those in the KFCM and can be updated
as follows:

μik =
1

c∑
j=1

(
1−DK(xk,vi)
1−DK(xk,vj)

) 1
m−1

(13)

where xk and vi are the probability distribution input vector and probability
distribution cluster prototype, respectively. DK(xk,vj) is the divergence-based
kernel function between two Gaussian distributions, xk and vj .

With the incorporation of the divergence-based kernel method and the FCM,
the proposed FCMDK can be used for clustering GPDF data while utilizing the
advantageous features of the fuzzy clustering techniques and the kernel method.
Thus, it provides an efficient clustering algorithm for GPDF data.
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4 Experiments and Results

To demonstrate the performance of MPEG video traffic classification model us-
ing the FCMDK, several MPEG video traces were used for experiments. These
MPEG video traces were coded with the MPEG-1 standard according to the
Moving Picture Expert Group. Table 1 shows the list of video traces used
in our experiments. These data are provided by the University of Wuerzburg,
Wuerzburg, Germany and are available at the following website:

http://www3.informatik.uni-wuerzburg.de/MPEG/
Table 1 consists of 5 “movie” traces and 5 “sports” traces. Each trace consists

of 40,000 frames which result in 3,333 GOPs. Each GOP can be represented by
the sequence IBBPBBPBBPBB with 12 frames for each GOP. More details
on these video traces can be found in [14].

Table 1. MPEG-1 Video used for experiments

MOVIE SPORTS

“Jurassic Park” “ATP Tennis Final”

“The Silence of the Lambs” “Formula 1 Race: GP Hockenheim 1994”

“Star Wars” “Super Bowl Final 1995: SanDiego-San Francisco”

“Terminator 2” “Two 1993 Soccer World Cup Matches”

“A 1994 Movie Preview” “Two 1993 Soccer World Cup Matches”

From video traces in Table 1, we used the first 24,000 frames, resulting in
2,000 GOPs from each trace, for training and the remaining frames from each
trace for testing. Fig. 1 shows an example of MPEG-1 data with I-, P-, and
B-frame from the video data “Two 1993 soccer World Cup matches”.

The proposed classification model using the FCMDK is based on a Gaus-
sian Mixture Model (GMM) and a Bayesian classifier. In order to model and
classify the MPEG video data, we consider the MPEG data as Gaussian Proba-
bility Density Function (GPDF) data [14]. The classification process of proposed
classification model can be divided into two steps: the modeling step and the
classification step. In the modeling step, mixture components of GMMs are ob-
tained using the FCMDK algorithm. Then, in the classification step, a Bayesian
classifier is employed to decide the genre, “movie” or “sports”, to which a video
sequence belongs. The genre decision procedure can be summarized by the fol-
lowing equations:

Genre(x) = argmax
i
P (x|vi) (14)

P (x|vi) =
M∑
i=1

ciℵ(x, μi, Σi) (15)

ℵ(x, μi, Σi) =
1√

(2π)d|Σi|
e−0.5(x−μi)T Σ−1

i (x−μi) (16)
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(a) (b)

(c) (d)

Fig. 1. Example of MPEG data: (a) whole data (b) I-frame (c) P-frame (d) B-frame

where M is the number of code vectors, ci is weight of the code vectors, d is the
number of dimensions of feature vectors (d = 12), and mi and Σi are the mean
and covariance matrix of the i-th group of the genre’s distribution, respectively.

In order to evaluate the performance of the proposed classification model, the
classification performance is measured by the False Alarm Rate (FAR) which is
calculated by the following equation:

FAR(%) =
Number of misclassification GOPs

Total number of GOPs
× 100 (17)

One of the most important parameters that has to be selected in most cluster-
ing algorithms is the number of clusters in the data. Most clustering algorithms
partition data into a specified number of clusters, regardless of whether the clus-
ters are meaningful. In our experiments, the number of code vectors is varied
from 3 to 8 in order to determine a sufficient number of code vectors to represent
the number of mixture components in the GMMs. Fig. 2 shows the classifica-
tion performance in terms of FAR of classification models using the SOM, the
k-means, and the FCMDK. As can be seen from Fig. 2, the FARs of all clas-
sification models are decreased significantly when the number of code vectors
is increased from 3 to 5 while they tend to saturate when the number of code
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Fig. 2. Overall classification accuracies using different algorithms

Table 2. Average FAR (%) of different classification models

Overall FAR(%)
SOM 10.748

k-means 9.789

FCMDK 7.029

vectors is greater than 5. This implies that using 5 code vectors for representing
the number of mixture components is sufficient.

Table 2 summarizes the classification performance in terms of FAR for dif-
ferent models using the SOM, the k-means, and the proposed FCMDK. As can
be seen from Table 2, the classification model using the proposed FCMDK out-
performs the models using the SOM and k-means. Improvements in terms of
FAR of 28.19% and 34.60% are achieved over the k-means and the SOM algo-
rithms, respectively. These results imply that the covariance information plays
an important role in modeling and classification of MPEG video traffic data. By
using divergence-based kernel, the FCMDK can utilize the covariance informa-
tion of the GPDF data for clustering. Thus, it can be used as an efficient tool
for clustering GPDF data in GMMs.

5 Conclusion

A new approach for modeling and classification of MPEG video traffic data
using a Fuzzy C-Means (FCMDK) algorithm with a Divergence-based Kernel is
proposed in this paper. The proposed classification model is based on a Gaussian
Mixture Model (GMM) and a Bayesian classifier. The FCMDK adopted in the
proposed classification model is employed for clustering of the GPDF data in
GMMs. The proposed classification model using the FCMDK for clustering of
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GPDFs is applied to a modeling and classification problem of MPEG video
traffic data. Our experiments and results for several MPEG video traffic data sets
show that respective improvements of 28.19% and 34.60% in terms of FAR are
archived over the conventional k-means and the SOM algorithms, respectively.
The proposed MPEG video traffic classification model provide an efficient tool
for organizing and retrieval of video databases.
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Abstract. Replays are key cues for events detection in sport videos
since they are the immediate consequence of highlights or important
events happened in sports. In many sports videos, replays are usually
sandwiched with two identical logo transitions, prompt the beginning
and end of a replay. A logo transition is a kind of special digital video
effects, usually contains 12-35 consecutive frames, describe a flying or
variable object. In this paper, a novel automatic logo detection approach
is proposed. It contains two main stages: a logo transition template is
automatically learned by dynamic programming and unsupervised clus-
tering, a key frame is also extracted; then the extracted key frame and
the learned logo template are used jointly to detect logos in sports videos.
The optical flow features are used to depict the motion characteristics of
the logo transitions. Experiments on different types of sports videos show
that the proposed approach can reliably detect logos in sports videos ef-
ficiently.

1 Introduction

Replay is reliable indicator of sports highlight due to the incorporation of expert’s
judgement [1,2]. In sports videos, a replay can contain slow motion or non-slow
motion or both. In the literature, some works were proposed to detect the slow
motion replays by the observation that the slow motion replay sequences have
the different motion model with the normal sequences [3,4,5]. These approaches
have difficulties in slow motion replays generated by high speed cameras, and
can not be applied to replays without slow motion. However many sports videos
have replays sandwiched by two identical logo transitions. Thus a replay can be
located by detecting the logos around of it. The problem of replay detection is
then converted to the logo detection. The replays can be located by pairing the
detected logos.

It is well known that usually a replay is sandwiched with a special transition
at the beginning and end of it, in which a highlighted logo comes in and out
quickly. We call this transition as “logo-transition”. Some works have been done

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 448–457, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to detect the logos in sports videos. Pan et al. [6] proposed a replay detection
method based on detection of the logos. It first detects two replay segments, then
searches two most similar frames that precede the two detected replay segments.
And consider the most similar frames are candidate logos. Finally a verification
procedure is employed. The problem of this approach is that it needs find con-
fident replay segments first. Duan et al. [7] proposed a logo detection approach
based on mean shift which is a kind of motion features. In [8], Tong et al. pro-
posed an approach based on the difference between two consecutive frames. It
assumed that the logo was highlighted and located at the center part of a frame.

All above approaches try to find a single key frame which is considered as a
representation of a logo. In fact, a single frame is not sufficient to represent a
logo, since a logo transition contains a continues movement of a “logo object”,
and each occurrence of a logo transition in a same sport video are different. A
logo transition is generated by superposing a foreground logo object onto the
complex variational background. Instead of a single frame, a sequence of logo
frames (a logo template) that characterize the whole logo transition is considered
here. The key frame is also used to filter out those non-logo positions to speedup
the whole detection procedure.

Also a logo transition in a sports video has some additional characteristics
that can help to identify:

(1)Occur at the start and end of a replay.
(2)Repeat tens of times in the same video.
(3)During the whole game, the logo object will keep in same.
(4)The logo object usually runs faster than the background, and is different

in color, brightness etc. with non-logo frames.
(5)The duration of a logo transition is usually less than 1 second.

Based on above observations, a robust and generic logo template detector is
proposed. The paper is organized as following. Section 2 will introduce the whole
system framework. The logo template extraction algorithm will be proposed in
section 3. In section 4, the experiment results are shown. Conclusions are given
in section 5.

2 System Overview

Logo transitions will occur in many broadcasting sports videos, such as the
World Cup, UEFA Champions League, Olympics Game. Figure 1(a) shows two
logo transitions. In the sports video, logo transitions pairwise occur, shown in
Figure 1(b), and the replay is sandwiched by these two logos.

The whole system of logo detection contains two main stages: training stage
and detection stage, shown in Figure 2.

In the training stage, first the video is parsed by a shot boundary detection
tool, some of the logo transitions can be labeled as Gradual Transition (GT).
Note that the exactly boundary of each GT is not required in this system. Motion
features are calculated for each frame in these GT sequences, then dynamic
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(a)Two Logos Transitions (b) Logo Transition and Replay

Fig. 1. Examples of Logo Transition

programming is performed to align each pair of the GT sequences. A gaussian
mixture model (GMM) is applied to determine if each GT is a candidate logo. A
logo template is then selected from those candidate logo sequences. At the same
time, a key frame in the logo template are extracted, and the decision rule that
to judge if a sequence is a real logo is also determined.

In the detection stage, the whole video is scanned by the extracted key frame,
and all the candidate logo positions are determined. Each this candidate sequence
then be verified by aligning with the logo template that generated in the training
stage. Those sequences that accord with the decision rule will be regarded as a
real logo.

Select Candidate
Logos

Calculate  M otion
Feature

Extract Lo g o
Temp late ,  Key  Frame

an d  Decis io n  Ru le

Align Logos
Sequences

Sho t Boundary
Detection

(a) Training Stage

Candidate  Logo
Sequence

Calculate  M otion
Feature

Decision and
Output

Align Candiate Logo
Sequenc es  w ith
Logo T em plate

D etect Candidate
Logo by K ey Frame

(b) Detection Stage

Fig. 2. Logo Detection Flowchart

3 Proposed Method

3.1 Shot Boundary Detection

A shot boundary detection tool [9]developed by the Tsinghua University is used
for shot segmentation. It has three components: fade out/in (FOI) detector,
cut detector and gradual transition detector. The standard deviation feature is
utilized in FOI detection process. In the cut detector, the second order derivative
method is used to boost the precision of cut candidates.The finite state automata
model is adapted for the gradual transition detector.

In a half soccer video (∼ 45 minutes), generally there are tens of logo se-
quences, some of the logo sequences can be segmented out as a separate shot,
and labeled as GT by the shot boundary detection tool. A histogram of these
GTs according to their durations is built. See Figure 3 for two examples. Mul-
tiple local peaks will occur. The highest peak is assumed to contain the logo
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Fig. 3. Histogram of GT Duration in a Sport Video

sequences, and is fed into the alignment procedure. Select the remain highest
peak, feed into the alignment procedure if a confident logo template has not
been found before. Repeat above procedure until a high confident logo template
is extracted successfully.

3.2 Calculate Motion Features

Color histogram has been used as the feature in the literature [7,8]. The result is
not satisfy since the background is very complicate in a logo transition and the
background changes from logo to logo. According to observation 4 above, the
motion of a logo object is significant and generic. Here the optical flow feature
is used.

In [10], Horn and Schunck use intensity-based difference features to calculate
the feature [11]. In one frame, suppose an image point(x, y) at time t is moved
to (x+ dx, y+ dy) at time t+ dt, where the motion vector is denoted as (dx, dy).
The Figure 4 is a frame in a logo template and the correspond optical flow field.
In Figure 4 (b) The length of the black lines stand for the moving distance of
a pixel, and the direction of the line is the moving direction of the pixel. From
Figure 1(a) below and Figure 4(a), we can see that the logo is flying from left
to right. Figure 4(b) demonstrates the corresponding optical flow field for frame
in Figure 4(a).

(a) Original Frame (b) Optical Flow Field

Fig. 4. Motion Vector Feature
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Each frame in the system is reshaped to 320×240 for convenience. Each frame
is then partitioned into 40× 40 blocks uniformly. In each block, the optical flow
features are computed for each pixel, and the magnitudes and dominant direction
of each block is computed by accumulating on pixels in the block. See Equation
(1), where I is the motion magnitudes and αi is the direction of optical flow
of a pixel i in the block. The direction histogram is formed with 16 bins. The
direction that has the maximum number of pixels is chosen as the dominant
direction. Thus each block has two parameters: one magnitude and one dominant
direction.

I =
∑

i∈block

√
d2

xi + d2
yi αi = arctan(dyi/dxi) (1)

3.3 Align the GT Sequences by Dynamic Programming

The similarity score SCframe(i, j) between frame i and j is defined as: select top
10% blocks that have the highest magnitudes in frame i and j respectively. If a
block index is occurred in both top 10% lists, and both has the same dominant
direction, the score add by 1. Figure 5 shows two example logo frames with
the selected blocks. So the similarity of two frames is the proportion of common
blocks that have the same position and same motion direction in two frames.The
higher the score, the more similar of the two frames.

(a) AcMilan-Eindhoven Video (b) Uklan-China Video

Fig. 5. The Top 10% Blocks of Motion Magnitudes

Sequence alignment is based on the dynamic programming. The Needleman-
Wunsch-Sellers algorithm [12] [13] is a classic global dynamic programming and
widely used. If the length of two sequences areM,N respectively, the substitution
matrix is defined in Equation (2)

Di,j = max

⎧⎪⎨⎪⎩
Di−1,j−1 + SCframe(i, j)
Di,j−1 + ω

Di−1,j + ω

(2)

where D0,0 = 0, ω is the gap penalty, SCframe(i, j) is the match score between
frame i and frame j. Usually SCframe(i, j) is 0.1 ∼ 0.3. Here ω is set to 0.

The final score SCseq of two GT sequences Si and Sj is defined by SCseq(Si, Sj)
= DM,N/n, where DM,N is the right-bottom value of the substitute matrix and
n is the number of matches of two sequences.
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3.4 Extract the Logo Template and Key Frame

After the sequence alignment, C2
N match scores between each pair of sequences

is acquired. N is the number of sequences in consideration. Higher scores come
from the matching of two logo sequences. Other alignments such as logo with
non-logo, non-logo with non-logo, will produce lower score. These scores can be
classified into two classes: high scores class and low scores class.

The Gaussian Mixture Model [14] with two components is used to describe
the distribution of the scores. See Equation (3), where x is the score, the pi is
gaussian component weight. Each component λi is represented by a Gaussian
distribution λi = N(pi, μi, σ

2
i ). EM algorithm is used to estimate the parameter.

g(x|Λ) =
n∑

i=1

pigi(x) (3)

According to the Maximum Likelihood, the decision rule for feature x can be
expressed by Equation (4) {

L(x) > T if x ∈ λ1

L(x) ≤ T if x ∈ λ2
(4)

where L(x) = (x− μ2)2/σ2
2 − (x− μ1)2/σ2

1 , T = ln(σ2
1/σ

2
2) + 2 ln(p2/p1).

In the logo class, the sequence with highest sum score with all other logo
sequences is considered as the logo template S1. See Equation (5), where N
is the number of logo sequences in consideration. Also the parameters of the
Gaussian mixture model are acquired.

S1 � arg max
i

∑
Si,Sj∈logo
1≤j≤N,j �=i

SCseq(Si, Sj) (5)

In the same time, the key frame which is a frame in the learned logo template
is extracted according to the previous alignment results, the key frame has the
highest alignment sum score with other logos. Also the difference threshold Td

and logo duration is learned. The difference threshold Td is equal to the average
difference value between the key frame and the correspond frames in other logo
sequences. The duration of the logo template L is the average duration of all the
sequences in logo class.

3.5 Detection

In the logo detection stage, the key frame is used as a filter to scan the whole
videos and provide the candidate logos position, shown in Figure 2(b). This
procedure can efficiently speedup the procedure and promote the recall.

The difference threshold Td is acquired to evaluate the difference between the
current frame and key frame. If

∑
H∈B

(Hkey −Hcur) < Td, the frame is consid-
ered as a candidate logo position, where Hkey and Hcur are the hue component



454 H. Bai et al.

of key frame and current frame respectively. All the candidate logos are extended
by logo duration L and the position that the key frame is in the logo template.
Then the extended candidate logo sequence is aligned with logo template, if the
similarity SCseq score meet with the Equation (4), the candidate sequence is a
real logo.

4 Experiments

Extensive experiments are conducted on 5 soccer games and 1 table tennis game
and 1 NBA game, totally there are 6 different logos in these videos, see Figure 6.
For each soccer videos, the first half is used as the training set and the second
half is used for detection. For the table tennis and NBA game, the first and
second rounds are used for training, and the total videos are for logo detection.

Fig. 6. Different Logos in the Experiments

For each video, two experiments were conducted: one for logo detection only
within GTs that come from the shot detection tool, use only the logo template
(it is computation infeasible to scan the whole video by the logo template); the
other is performed on the whole video data by combining the key frame and logo
template detection.

4.1 Results on GT Sequences Only

The results of the first experiment is shown in Table 1. We see the precision is
very high, up to 100%, which demonstrates the effectiveness of our logo template
alignment method. The recall is low, even 46.7% because many logo sequences
has not been correctly segmented as GTs by shot detection tool. For the below
6 videos, the average recall is 77.4%.

4.2 Results on Whole Videos

The logo detection use both key frame and logo template is shown in Table 2.
Again, the precision is perfect nearly 100% except in table tennis game. The
recall is much higher than in Table 1, shown the detection that combining of key
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Table 1. Results Detection Logos only on GT Sequences

Test Video Detect Miss False Precision Recall
AcMilan-Eindhoven 55 7 0 100% 88.7%
Arsenal-Ajax 28 2 0 100% 93.3%
Uklan-China 34 2 0 100% 94.4%
Manchestercity-Birmingham 14 16 0 100% 46.7%
Spur-Sun(NBA) 23 20 0 100% 53.5%
Waldner-Kong(Table Tennis) 45 11 0 100% 80.4%
Total 199 58 0 100% 77.4%

Table 2. Results Detection Logos only on Whole Videos

Test Video Detect Miss False Precision Recall
AcMilan-Eindhoven 62 0 0 100% 100%
Arsenal-Ajax 28 2 0 100% 93.3%
Uklan-China 30 6 0 100% 83.3%
Manchestercity-Birmingham 26 4 0 100% 86.7%
Spur-Sun(NBA) 30 13 0 100% 69.8%
Waldner-Kong(Table Tennis) 56 0 1 98.2% 100%
Total 232 25 1 99.6% 90.3%

Table 3. Results on Two Different Logos in the Same Video

Result Detect Miss False Precision Recall
on GT Sequences 9 39 0 100% 18.8%
on Whole Videos 31 17 0 100% 64.6%

(a) (b)

Fig. 7. Two Different Logos in the same video

frame and logo template is very efficient. For the below 6 videos, the average
recall is 90.3%.

Results on the WestHamUnited-AstonVilla game is pretty bad, see Table 3.
The recall is low in both cases because there are two different logos in the same
video, shown in Figure 7.
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5 Conclusions

In this paper, a novel sports logo detection method Based on motion analysis is
proposed. The experiment results are satisfied. It has three advantages compare
to previous methods: a logo template that contains a sequence of logo frames is
used compare to only a single frame. The template can model the whole tran-
sition of the logo object; Dynamic programming is used to align two sequences.
By clustering the scores of the dynamic programming, a logo template can be
acquired automatically; The optical features are used to depict the motion char-
acteristics of the logo object accurately. The whole system contains training and
detection stages. In the training stage,a logo template and key frame is extracted.
In the detection stage,the key frame is used to find the candidate logo positions
and the logo template is used to verify. In both stages, dynamic programming
is used. Experiments on different types of sports videos show that this method
is effective and robust for detecting logos in sports videos.

However, the logo detector can not work well in some situations, for example,
when multiple different logo objects occur in a same video, the performance will
degrade greatly. This suggests that automatically detection of logos is still a
problem far from being solved.
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Abstract. The newest video coding standard H.264/AVC provides multiple ref-
erence frames motion estimation in the spatial region, and the optimal frame is 
selected by RDO (Rate Distortion Optimization) with high coding complexity. 
However, the coding efficiency only depends on the attribute of sequences, not 
on the number of reference frames. In this paper, statistical characteristics of the 
best reference frame with variable block size are studied, and a fast algorithm 
that takes into account the correlation is proposed. The reference frame of block 
mode may be chosen based on the computing result of the above block mode. 
Experimental results show that with similar Distortion performance, the algo-
rithm can efficiently reduce the computational complexity by 19% averagely. 

1   Introduction 

The newest video coding standard H.264/AVC [1] is developed by the Joint Video 
Team (JVT) which was organized by ITU-T Video Coding Experts Group (VCEG) 
and the ISO/IEC Moving Picture Experts Group (MPEG) in 2001, which can typically 
outperforms all existing standards. H.264/AVC is similar to other standards such as 
MPEG-4 Video, which consists of a hybrid of temporal and spatial prediction, in 
conjunction with transform coding. But H.264 includes a number of new techniques 
such as variable block size, enhanced intra/inter prediction, 44 × integer transform, 
adaptive in-loop deblocking filter, refined motion-compensated prediction, and new 
entropy coding, etc. Compared with the H.263 and MPEG-4(advanced simple profile), 
H.264/AVC can reduce 40%~50% bits-rate while keeping the equivalent video quality. 
However, the compression performance comes at a high computational cost [2]. 

In order to enhance the compression efficiency of P type frame, the motion estima-
tion in H.264/AVC uses variable block size and multiple reference frames, which can 
greatly reduce prediction errors and obtain better performance. Reference software of 
H.264 adopts full search mode for each encode size block in every reference frame, 
and the optimal result is selected based on RDO, which contributes to heaviest com-
putational load. To satisfy the requirement of real time, studying the fast algorithms 
how to reduce the code complexity becomes a key issue for specific encoder/decoder 
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applications. Currently the research and implementation work mainly focus on 
mode decision process and achieves fairly good results. The main idea is as follows: 
forecasting the most coding mode based on the nature of sequences (Movement, 
venation, etc.); then using effective threshold value mechanisms for early with-
drawal, which thereby reduces predictive modes and improves coding speed. In [3], 
candidate modes for current macroblock are first inferred from given coded adja-
cent macroblocks by adopting motion information and ratios of defined mode, and 
the final selection is made by a RDO approach. In [4], the threshold value is dy-
namically updated for each block mode in order to stop prediction quickly and cor-
rectly. Similar ideas are also explored in [5~6]. However, it can be seen that the 
computation is in proportion to the number of search frames, so it is necessary to 
reduce the multiple reference frames number. In [7~8], a fast motion estimation 
algorithm is proposed that takes into account the correlation of motion vectors in 
multiple frames, and a minor search windows is needed. [9] proposed a new idea 
that several conditions are used to decide whether it is necessary to search more 
reference frames. But algorithm simply adopt full search when the rest reference 
frame is beneficial. 

A fast selection algorithm for multiple reference frames (FSAMR) in H.264/AVC 
is proposed in this paper, which reduces the encoding time by 19% averagely and can 
be combined with other methods such as [3~6] to further improve the speed. The 
paper is organized as follows: Section 2 briefly introduces the mode decision algo-
rithm of multiple reference frames in H.264/AVC and gives the benefits of multiple 
reference frame prediction. In section 3, we analyze the statistical characteristics of 
the best reference frame among variable block size, and describe the details of our 
proposed fast algorithm for multiple reference frames selection. Finally, experiment 
results and concluding remarks are given in Section 4 and 5, respectively. 

2   Overview of Multiple Reference Frames Prediction 

2.1   Description of Multiple Reference Frames Prediction 

H.264/AVC standard has extended the block based motion compensation by introduc-
ing tree structured variable-block size to approximate the shape of the moving objects 
within the MB more accurately. The size of a block can be 1616 × , 816 × , 

168 × and 88 ×  for motion compensation. In case 88 × size is chosen, it can be 
further divided into smaller block size 48 × , 84 ×  and 44 × . Besides the seven 
different sizes, an inter macroblock can also be coded in the Intra mode (Intra 44 ×  
and Intra 1616 × ) and so-called SKIP mode. For this mode, neither a quantized pre-
diction error signal, nor a motion vector or reference index parameter, has to be 
transmitted. H.264/AVC also supports multi-frame motion-compensated prediction. 
That is, more than one prior-coded frame can be used as a reference for motion-
compensated prediction. The reference software of H.264/AVC JM94 performs full 
search to find the motion vector for each block in different sizes from previous one to 
five reference frame, shown as Fig.1 . 
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Fig. 1. Variable block size and multiple reference frames motion estimation 

H.264/AVC selects the best mode and reference by using the RDO, which means 
that the final decision is made by minimizing the Lagrange formula (1): 

( ) ( )refRrefDJ MODEMODEMODE ×+= λ  (1) 

Where ref  being the reference frame position; 
MODEJ  being R-D cost of the corre-

sponding mode; λ  being the Lagrange multiplier; 
MODER  being the total bits-rate 

including the motion vectors, block mode, all transform coefficients, etc; 
MODED  being 

the distortion between original frame and reconstructed frame. 
The above scheme can gain better coding efficiency, but the RD cost of every 

mode and reference frame should be computed based on the actual rate and distortion, 
which are obtained only after compression and decompression. So the trans-
form/inverse transform, quantization/inverse quantization, entropy coding have to be 
used repeatedly, and the complexity of computation is enhanced notably. 

2.2   Benefits of Multiple Reference Frame Prediction 

The video compression standard such as H.263 and MPEG-4, use single decoded 
frame as the reference frame, which can achieve better predictive results in most 
cases, except that there are some non-compensation regions in some special circum-
stances. However, multiple reference frames can gain better prediction result. The 
major reasons are described as follows, and the further details can be referred to [7,9]: 

1) Due to the repetition of motion, objects or veins may have a better appearance at 
previous several frames than the latest reference frame. 

2) Some parts of the objects or background may be covered by a moving object, 
which happens in many sequences, the hidden parts can not find a proper match in the 
latest reference frame, and may be found in the previous pictures when they were 
uncovered. 

3) The shake and telescopic of the camera will lead to a rapid scene switch, and the 
same object position is in the difference reference frame. 

4) Other reasons, why motion estimation of multiple reference frame get better per-
formance than single reference, include the change of lighting and shadow, the sam-
pling of picture, etc. 
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3   A Fast Multiple Reference Frames Selective Algorithm 

3.1   Analyze of Multiple Reference Frames Prediction 

In order to statistic and analysis of multiple reference frames motion estimation, we 
did some experiments on different sequences based on the H.264/AVC reference 
software JM94. we selected six typical sequences which are QCIF format (176×144) 
provided by MPEG standard: type A sequence, Mthr_dotr, Container with simple 
veins or slow movement; type B sequence, Foreman, Coastguard with middle veins or 
movement; type C sequence, Mobile, Bus with complex veins or intense movement. 
Table 1 lists the main parameters, and the conditions for all tests will be consistent. 

Table 1. Test conditions 

UseHadamard On 
SearchRange 16 
SymbolMode UVLC 
ReferenceFrames 5 
LoopFilter On 
AllMode On 
RDOptimization On 

We encoded 15 frames for each sequence, the structure of GOP (Group of picture) 
is IPPP (I type frame and P type frame), and the fixed QP is set to 28. Table2 shows 
the experimental result of coding efficiency with different reference frames. Com-
pared with the single reference frame, Δ PSNR represents the benefits in luminance 
PSNR and Δ Bits (%) denotes the percent of bit-rate variety with further reference 
frames. From Table2, we can conclude that the coding efficiency only depends on the 
nature of sequences, not on the number of reference frames. Generally, most benefits 
depend on the previous two reference frames obviously. We can also find that with 
the increased number of reference frames, the coding efficiency gain little, but the 
computational complexity increased sharply. 

The mode decision result after motion estimation and intra prediction is also a very 
important cue [9].In Table3, in the expression A|B, A represents the possibility of a  
 

Table 2. Comparison of the encode with different reference frame 

2 Reference 3 Reference 4 Reference 5 Reference  

Δ PSNR(dB)| Δ Bits(%) 
Mthr_dotr +0.048| +0.7 +0.059 | +0.9 +0.059|+0.9 +0.099|+1.7 
Container -0.028 | -6.1 +0.015 | -12.6 +0.025|-21.5 +0.049|-19.8 
Foreman +0.081| -3.0 +0.134 | -2.4 +0.152|-1.8 +0.174|-1.7 
Coastguard +0.082| +0.6 +0.092 | +0.5 +0.104|+1.8 +0.099|+1.4 
Mobile +0.069| -6.9 +0.129 |-13.5 +0.180|-16.5 +0.189|-19.0 
Bus +0.122| -2.6 +0.140 | -4.3 +0.158|-4.5 +0.177|-4.1 
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mode that can be chosen after the latest reference frame estimation, B is the possibility 
of A mode that can keep unchanged after 5 frame searched. Compared with [9], we 
added the analysis of SKIP mode. From Table3, we can see that: 53% of macroblocks 
need the latest reference frame; furthermore, when macroblock is split into smaller 
block size of 48 × , 84 ×  and 44 × , there will be a better match on other reference 
frames; if macroblock adopt 1616 ×  mode or SKIP mode, there is simply circum-
stance and no further search is needed; Intra mode is seldom used. Summarily, the 
multiple reference gains better prediction for some special non-compensation region, 
and the efficiency depends on the nature of sequences such as veins and movement. 

Table 3. Comparison of the encode with different reference frame 

 SKIP 16×16 16×8 8×16 8×8 Intra 
Mthr_dotr 51 | 90 19 | 54 11 | 73 08 | 49 09 | 62 2 |100 
Container 80 | 95 10 | 53 03 | 31 05 | 31 02 | 44 0 | 0 
Foreman 31 | 65 27 | 52 10 | 36 17 | 47 15 | 53 0 | 0 
Coastguard 19 | 51 40 | 68 14 | 37 12 | 40 15 | 54 0 | 0 
Mobile 06 | 25 27 | 42 11 | 28 10 | 34 46 | 58 0 | 0 
Bus 08 | 51 36 | 54 17 | 41 10 | 39 28 | 78 1 | 77 

33 | 53 27 | 54 11 | 54 11 | 40 18 | 58 0 | 30 
Average 

33×53+27×54+11×54+11×40+18×58=53% 

Now we try to find out the correlation of variable block sizes. After motion estimation 
with 5 reference frames, we can get one best reference for 1616 ×  block mode, two best 
references for 816 ×  block mode, and two best references for 168 × block mode. From 
Table4 result, we can get some very useful information that about 84.5% blocks of 816 ×  
and 168 × mode have the same reference frame which is consistent with 1616 ×  mode, 
and the percentage in 88 × mode and further smaller block sizes is 89.8%. 

Table 4. Correlation of the best reference frame among variable mode 

 16×16 | 16×8 and 8×16 8×8 | 8×4 and 4×8 
Mthr_dotr 88.8% 91.7% 
Container 95.6% 97.5% 
Foreman 81.2% 89.1% 
Coastguard 86.7% 90.8% 
Mobile 76.2% 83.5% 
Bus 78.4% 85.9% 
Average 84.5% 89.8% 

3.2   Description of Fast Reference Frame Decision 

Based on the above statistic and analysis, we propose a fast multiple reference frames 
selection algorithm for H.264/AVC, which is composed of the following steps: 
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Step 1: Perform the 1616 ×  block mode motion estimation referring to previous 
one to five reference frames, and obtain the best reference frame, noted as

16F . 

Step 2: Do motion estimation on size of 816 ×  and 168 × , and only the latest 
reference frame and 

16F  frame need to calculate the R-D cost. 

Step 3: If 88 × size is chosen, it can be further divided into smaller block size 
48 × , 84 ×  and 44 × , and a macroblock will loop four times for sub-macroblock 

mode. Perform the 88 ×  block mode motion estimation for each reference frame, 
and obtain the best reference frame 

8F  and R-D cost. 
88×J , respectively. 

Step 4: Calculate the R-D cost 
48×J and 

84×J  of the latest reference frame and 
8F  

frame.If 
88×J >

48×J /
84×J , the 44 ×  mode block search not only the latest reference 

frame, but also reference frames between 
8F  and available furthest reference frame. 

Otherwise select the best reference between the latest reference frame and 
8F . 

Step 5: If all block mode have been processed, then process the next macroblock, 
otherwise jumps to step 3. 

In the steps above, only the reference frame selection is modified during motion 
esti-mation, and it can be integrated with other fast algorithms to reduce complexity 
further. 

4   Experimental Result and Discussions 

The proposed FSAMR has been implemented based on JM94. The sequences and 
encoder condition are the same as shown in section 3.1. We encode 60 frames for each 
sequence, the structure of GOP is IPPP, the frame rate is 15f/s and the fixed QP value 
is set to 28. Peak signal noise ratio (PSNR), total motion estimation time, and total 
bits-rate of P-type frame are used as measurement. The results achieved by FSAMR 
and full search algorithm are presented in Table 5 and Figure 2. Δ PSNR represents 
the difference in luminance PSNR, Δ Bits and Δ Time is defined as the formula (2): 

%100×
−

=
full

fullpro

T

TT
Ratio  

(2) 

Where fullT  and proT  denote the result of full search and FSAMR, respectively. 

Table 5. Comparison results 

Sequence Δ PSNR(dB) Δ Bits (%) Δ Time (%) 
Mthr_dotr -0.022 +0.26 -20.8 
Container -0.022 -0.21 -20.0 
Foreman -0.037 +0.20 -19.2 

Coastguard +0.001 +0.17 -19.4 
Mobile -0.012 +1.70 -15.0 

Bus -0.024 +0.73 -19.6 
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As shown in Table5, our proposed algorithm reduces the computational complexity 
by 19%, meanwhile PSNR only decreases 0.02 slightly, and bits-rate increases only 
0.47%, averagely. Besides, it can be seen that algorithm has a high content correlation 
between image sequences and FSAMR. Because the FSMAR algorithm uses statisti-
cal characteristics of the best reference frame among variable block size. Generally, 
simple veins or slow movement sequence has the stronger relativity, and this algo-
rithm gains the better benefits; conversely, the effect of the fast reference frames 
selection algorithm may decrease. 

 

 
Fig. 2. Rate distortion curves and average searched frame 

Fig.2 is the rate-distortion curves and average searched frames between 5 refer-
ence frames with full search, 1 reference frames with full search and 5 reference 
frames with FSAMR for different sequences. It is shown that compared with 5 refer-
ence frames with full search, FSAMR can efficiently reduce the number of searched 
reference frames with similar R-D, and the number of  searched frames is no more 
than 3. 
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5   Conclusions 

In this paper, we propose a new a fast selection algorithm, called FSAMR, for multi-
ple reference frames in H.264/AVC. It is based on an analysis of statistical character-
istics of the best reference frame among variable block size. The reference frame of 
block mode may be chosen based on the computing result of the above block mode. 
Experimental results show that compared with 5 reference frames search method, the 
algorithm can efficiently reduce the computational complexity, and meanwhile the 
degradation of the reconstructive video quality and the increase of the bits-rate are 
controlled under a reasonable level. Besides, this algorithm can be combined with 
other methods such as [3~6] to further improve the speed. How to perform a fast 
mode selection will also be our further work. 
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Abstract. The conventional side-view and rear-view mirrors are not enough for 
driver’s safety in an automobile. A driver may not be able to recognize the 
vehicle in a blind spot. In this paper, we propose an automotive detector 
algorithm using biologically motivated selective attention model for a blind 
spot monitor. This method decides a region of interest (ROI) which includes the 
blind spot from the successive image frames obtained by side-view cameras. It 
can detect the dangerous situations in the ROI using novelty points from the 
biologically motivated selective attention model, and alerts the driver whether 
there is dangerous object for changing the lane in driving. The proposed 
algorithm is based on deciding the ROI using difference from intensity 
histogram of a Gaussian smoothed image and finding the novelty points from 
the biologically motivated selective attention model. From variations of those 
novelty points, we determine whether a vehicle is approaching or not. 

Keywords: Blind Spot Monitor; An Automotive Detector; Biologically 
Motivated Selective Attention Model. 

1   Introduction 

Automotive safety system has been advanced through the 21st century. The 
conventional auto safety technology was limited to passive purpose which was to 
protect occupants during a collision as seat belts and air bags. Recently, however, the 
passive safety system is combined with an active safety system which helps to avoid 
collisions. There are many examples of active safety system like anti-lock brakes and 
blind spot monitoring. The major causes of the worst car accidents mainly cause from 
the failure of drivers to stay within a lane. Therefore, active safety systems will be 
required to alert the driver before a collision happen when the driver attempts to 
change a lane without noticing the vehicle.  

Vision-based technology has been used in order to improve automotive safety [1-3]. 
This system will be intelligent using advanced vision technologies including smart 
sensing [1]. Although the vision-based automotive detector relies on the performance 
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of automotive-specific cameras, the image processing techniques are highly required 
to detect a dangerous situation with reliable performance. Most reliable ones are 
driving with an expert assistant who can give an alert signal whenever a driver 
attempts to change a lane without noticing an approaching vehicle. In this paper, we 
try to develop intelligent artificial assistant with human-like visual attention 
mechanism for giving alert signal in dangerous situation. 

We propose a new algorithm to identify the vehicle in a blind spot using 
biologically motivated selective attention model. The human eye can focus on an 
attentive location in an input scene and select interesting visual information to process 
[6-8]. Considering the human-like selective-attention function, we determine a 
saliency map(SM) and several novelty points using bottom-up or task-independent 
processing. The bottom-up SM model generates plausible salient areas and novelty 
points using primitive features such as intensity, edge, and symmetry information. 
However, all of the novelty points in the SM may not be useful because we need to 
pay attention to the blind spot areas in driving. Therefore, we should consider the ROI 
decision method from the successive image frames. After deciding the ROI, we select 
meaningful novelty points within the ROI. As variations of those novelty points 
between successive two frames, we can determine whether a vehicle is approaching or 
not. We use a Euclidean distance and the longest path among the novelty points as a 
measure to alert the driver.  

This paper is organized as follows; Section 2 describes a relation between a blind 
spot monitor and an ROI. Section 3 explains the proposed algorithm which consists of 
the SM and novelty points by biological background using the bottom-up SM model. 
Additionally, it includes the ROI decision method and measure to decide a dangerous 
situation. Section 4 shows the simulation results. Section 5 presents conclusion and 
discusses further works. 

2   The Relation Between a Blind Spot and an ROI 

We assume a freeway which has only cars and trucks with above 60km/h speed. A 
field of view (FOV) of the camera mounted a side-view mirror is about from 40 to 45 
degrees and the FOV of the camera mounted a rear-view mirror about 120 degrees. In 
order to verify the automotive detector algorithm, we consider only the images from 
the camera of the side-view mirror until now. In addition, the proposed algorithm can 
process between 8 frames per second in real time from a camera. Cameras play an 
important role in vision-based intelligent safety systems. Side-view and rear-view 
enhancement is a common issue of a vision-based application. This paper focuses on 
a blind spot monitoring and warning of side-view. Thus, we mount side-view cameras 
of both side-view mirrors having about from 40 to 45 degrees of a FOV (field of 
view). For a camera to perform well in automotive applications, it must meet strict 
requirements. However, General-purpose cameras such as digital cameras, 
camcorders, and cell phone cameras are not well suited for use in automotive 
intelligent safety systems. The automotive camera must well perform in all conditions 
of intensity and direction of illumination, wavelengths of light in the scene, and speed 
of motion of the object being detected [4]. We use wide-VGA CMOS image sensor 
and global shutter robust the speed of motion. 
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A blind spot area is defined as shown in Fig. 1 [4]. When a driver plans to change 
lanes, area 1 can be seen by the driver through the side-view and the rear-view 
mirrors. And area 3 is directly visible area as the driver turning his/her head left. 
Additionally, a vehicle C can be seen by the side-view camera and by the driver 
through the side-view and the rear-view mirrors. However, area 2 and a vehicle B are 
the blind spot to be covered by the camera. The proposed algorithm only focuses on 
the blind spot area, whereas we do not consider a potential hazard. Therefore, we need 
to detect the vehicle B and area 2 in the blind spot using the side-view camera [4]. 

 

Fig. 1. Blind spot area from a side-view camera 

Before an automotive detector algorithm uses the saliency map based on 
biologically motivated selective attention model, we decide a region of interest (ROI) 
from the frames of image obtained by the side-view camera. There are two reasons in 
deciding the ROI. One is to separate object from background of input image. Another 
is to find the saliency points within the ROI. This idea causes from the fact that there 
is hardly a difference between consecutive frames. A scenery and road can be a 
background. A vehicle can be separated as object. Therefore, we can only consider 
the saliency points inside the ROI without considering all of the input images. We 
employ a Euclidean distance and the longest length among the salient points as a 
measure to alert the driver. 

3   An Automotive Detector Method 

3.1   Saliency Map and Novelty Points Using a Visual Selective Attention Model 
for a Blind Spot Monitor 

We use a visual selective attention model which is a biologically motivated bottom-up 
saliency map model. Fig. 2 shows the architecture of the bottom-up SM model. In 
order to model the human-like visual attention mechanism, we use the three bases of 
edge, intensity, and symmetry information, for which the roles of the retina cells, the 
LGN and the primary visual cortex are reflected in the previously proposed attention 
model [6-8]. In order to consider the shape information of an object, we consider the 
symmetry information. The symmetry information is obtained by the noise tolerant 
general symmetry transform (NTGST) method. Three feature maps are obtained by 
the following equations: 

I(c, s) = |I(c)  I(s)| (1) 
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E(c, s) = |E(c)  E(s)| (2) 

S (c, s) = |S (c)  S (s)| (3) 

where “ ” represents interpolation to the finer scale and point-by-point subtraction. 
Totally, 18 feature maps are computed because the three feature maps individually 
have 6 different scales [6, 7]. Feature maps are combined into three “conspicuity 

maps,” as shown in Eq. (4) where I , E , and S  stand for intensity, edge, and 
symmetry, respectively. These are obtained through across-scale addition “ ” [7]. 

The feature maps ( I , E , and S ) are constructed by center surround difference 
and normalization (CSD & N) of the three bases, which mimics the on-center and off-
surround mechanism in our brain. 
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The saliency map is simply computed by summation of the feature maps for every 
location.  

 

Fig. 2. The architecture considering both the bottom-up selective attention model, I: intensity 
image, E: edge image, S: symmetry image, CSD & N: center-surround difference and 

normalization, I : intensity feature map, E : edge feature map, S : symmetry feature map, 
SM: saliency map, SP : saliency point, the small square block of feature maps : saliency area. 

3.2   Decision of Region of Interest (ROI) 

All of the novelty points in the SM may not be useful because we need to pay 
attention to the blind spot areas in driving. Therefore, we should consider the ROI 
decision method from the successive image frames. The proposed algorithm is based 
on deciding an ROI using difference from intensity histogram of Gaussian smoothed 
images. 

Fig. 3 shows the ROI decision processor. In order to reduce noises of input images, 
we use a Gaussian filter. This processor may process about 8 frames per second. A 
vehicle speed is above 60km/h. We divide the Gaussian smoothed input images into 
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20 by 10 small block images and find an intensity histogram for each block to see the 
intensity variation of the local area. When the background scenery and road only 
change, the value of the intensity difference between frames can be very small. 
However, if the novelty, a vehicle approaches, the value of the intensity difference is 
larger than that when no objects appear. Thus, we need to consider the variation of 
intensity between successive frames. In order to find an appropriate value for each 
block, we include three processing, sliding-intensity histogram, quantization and 
mean operator for each block. Sliding-intensity histogram processor moves each 
block to column direction overlapping by fifty percentages and obtain the value of 
intensity histogram. Fifty percentages are obtained by trial and error using computer 
simulations. After finishing the sliding-intensity histogram processing to column 
direction, the processor moves it to row direction as same as to column direction. 
Because of each block with overlapping, the number of intensity histogram for blocks 
increases. Overlapping each block helps the ROI decision more accurate. The second 
processor, quantization processor decides an average value of the numbers of pixels 
for each block according to a quantization level.  Eq. (5) represents quantization 
processing. 
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where quantization level is divided into 16 level, LQ is 16 and ,bhτ  means intensity 

histogram in b block at τ frame. , , 0b lNτ = means an average value of intensity 

histogram at quantization level 0,1,2, ,15l = , and τ frame for I(x,y), a pixel 

intensity range from lQ to 1lQ + . After quantization processor, we need to obtain the 

difference of the quantized value between two successive frames in order to know the 
intensity variation. Eq. (6) represents the difference of the quantized value between 
two successive frames at quantization level l, b block, τ and tτ + Δ  frames. Then, we 
find mean value for each block as shown in Eq. (7). 
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where, , ,t b lQτ +Δ  represents the difference of the quantized value between two 

successive frames between , ,t b lNτ +Δ  and , ,b lNτ  for 0,1,2, ,15l = . We need the 

representative value from , ,t b lQτ +Δ , 0,1,2, ,15l = for each block using an average 

operation. bM  means an average value. From all mean values for all blocks, we 
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decide a threshold whether blocks in tτ + Δ  frame is the ROI or not. The threshold is 
obtained by choosing a median of all mean values. If the mean value of the block is 
smaller than the threshold, the block can not be the ROI. Otherwise, the block may be 
the ROI. However, the overlapping part is preferentially chosen by a value decided 
not for the ROI.   

τ
n tτ + Δ τ tτ + Δ 2 tτ + Δ

τ

tτ + Δ

τ
2 tτ + Δ

tτ + Δτ
n tτ + Δ τ tτ + Δ 2 tτ + Δ

τ

tτ + Δ

τ
2 tτ + Δ

tτ + Δ

 

Fig. 3. The proposed ROI based histogram model 

Fig. 4 shows simple sketch for novelty points within the ROI. This process applies 
the ROI to SM in order to determine meaningful novelty points. Fig. 4 (a) represents 
that the novelty points within the ROI are only determined by the variation of 
background. Fig. 4 (b) shows that the novelty points within the ROI are determined 
by the intensity variation due to a vehicle’s appearance. If the vehicle is approaching, 
the ROI extends to wider area including a blind spot.  Otherwise, the ROI is 
distributed in many places in image with smaller area. Finally, we need to determine 
when we give a warning signal of a dangerous situation to driver. 

There can be various methods deciding whether there is a dangerous element in the 
ROI or not. We use Euclidian distances considering distribution information of 
novelty points. In case of approaching a dangerous object such as a car and a truck 
 

 

Fig. 4. (a) Novelty points and ED within the ROI when there is no a vehicle. (b) Novelty points 
and ED within the ROI when there is a vehicle. 
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in the ROI, novelty points are closely distributed in the object because the dangerous 
object may be more salient than background. On the other hand, in case of not 
existing a dangerous object, novelty points are evenly distributed in the ROI and are 
relatively far from each novelty point. From the fact, we use two measures, of which 
the first is to check the longest distance between novelty points in the ROI is less than 
a threshold, and the second is to check whether the number of novelty points within a 
predefined distance is above three, because the novelty points in ROI are denser in 
dangerous situation than that in normal situation. Using the proposed algorithm, we 
can give the warning signal to a driver through the blind spot monitor. 

4   Computer Simulation and Experimental Results 

In order to verify the automotive detection algorithm, we simulate and analyze one 
case of images. The case has a truck in a blind spot. Fig. 5 shows the result of an 
automotive detector using an ROI decision method combined with a visual selective 
attention model for a truck. Fig. 5 (a) shows input images for a truck. We process a 
Gaussian smoothing filter in input frames to reduce noises and decide the ROI using 
intensity histogram based on blocks as shown in Fig. 5 (b) and (c). Fig. 5 (d) and (e) 
show the saliency map and the novelty points using a visual selective attention model, 
respectively. Then we choose only the novelty points included in the ROI as shown in 
Fig. 5 (f). We consider only frames having more than three novelty points. For the 
truck images, we can consider τ , 2 tτ + Δ  and 7 tτ + Δ . When we find Euclidian 
distances (ED) of all cases among novelty points for chosen frames, we see two 
frames, atτ and 2 tτ + Δ  have only long paths having about over ED 100. However, in 
frame, at 7 tτ + Δ , there are more than three short paths having about ED 20~30. 
Therefore, we can give the warning signal at the frame at 7 tτ + Δ  to driver.  

τ tτ + Δ 2 tτ + Δ 7 tτ + Δτ tτ + Δ 2 tτ + Δ 7 tτ + Δ

 
Fig. 5. The result of an automotive detector using an ROI decision method combined with a 
visual selective attention model: (a) input images, (b) Gaussian smoothed images (c) the ROI 
images using intensity histogram based on blocks (d) the saliency map using a visual selective 
attention model (e) novelty points in the saliency map (f) Novelty points within the ROI 
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5   Conclusions 

We propose an automotive detection algorithm using a biologically motivated 
selective attention model for a blind spot monitor. This method decides an effective 
ROI which includes the blind spot from the successive image frames obtained by 
side-view cameras. It can detect the dangerous situations in the ROI using novelty 
points from the biologically motivated selective attention model, and alerts the driver 
whether there is dangerous for changing the lane in driving. The proposed algorithm 
is based on deciding the ROI using difference from intensity histogram of a Gaussian 
smoothed image and finding the novelty points from the biologically motivated 
selective attention model. From variations of those novelty points, we determine 
whether a vehicle is approaching or not. From simulation results, we can verify the 
proposed method detects the hazardous situation from input images. 

Acknowledgement 

This research is supported by Components and Materials Technology Development 
Program, VISS(Vision-based Intelligent Steering System) Project. Specifically, this 
research is commissioned by MANDO's sub-project IPAS(Intelligent Parking 
Assistant System). 

References 

1. Katz, D., Lukasiak, T., and Gentile, R.: Use of Video Technology To Improve Automotive 
Safety Becomes More Feasible with Blackfin™ Processors, Analog Devices,  
http://www.analog.com/analogdialogue 

2. Furukawa, Y.: Overview R&D on Active Safety in Japan, Shibaura Institute of technology 
3. Mota, S., Ros, E., Ortigosa, E. M., and Pelayo, F. J.: Bio-inspired Motion Detection for a 

Blind Spot Overtaking Monitor, International Journal of Robotics and Automation, vol. 19 
(2004) 

4. Automotive Cameras for Safety and Convenience Applications - White Paper by SMaL 
Camera Technologies, Inc. (2004) ver. 1 

5. Rasshofer, R. H., and Gresser, K.: Automotive Radar and Lidar Systems for Next 
Generation Driver Assistance Functions, BMW Group Research and Technology, Germany  

6. Park, S. J., Shin, J. K., and Lee, M.: Biologically inspired saliency map model for bottom-
up visual attention, Lecture Notes in Computer Science, vol. 2525 (2002) 418-426  

7. Itti, L., Koch, C., and Niebur, E.: A model of saliency-based visual attention for rapid scene 
analysis, IEEE Trans. Patt. Anal. Mach. Intell. vol. 20, no. 11 (1998) 1254-1259 

8. Navalpakkam, V., and Itti, L.: A goal oriented attention guidance model, BMCV 2002, 
Lecture Notes in Computer Science, vol. 2525 (2002) 472-479 



I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 474 – 480, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Wavelet Energy Signature: Comparison and Analysis 

Xiaobin Li1 and Zheng Tian2 

1 Department of Applied Mathematics, Northwestern Polytechnical University,  
Xi’an, 710072, China 

lixiaobin2006@gmail.com 
2 Department of Applied Mathematics, Northwestern Polytechnical University, 

Xi’an, 710072, China 

Abstract. Though wavelet transform based methods have recently raised in-
creasing interests in texture analysis due to their good space and frequency lo-
calization, many issues related to the choice of the wavelet basis and texture 
feature remain unresolved. In this paper, we evaluate the performance of seven 
wavelet energy signatures and eight wavelet basis for texture discrimination. 
Experimental results on 111 Brodatz textures show that the feature extracted 
from high and middle frequency channels is more suitable for texture analysis 
and the choice of wavelet basis has some influence on texture discrimination. 

1   Introduction 

Texture analysis has played an important role in many areas including robotic vision, 
industrial monitoring, remote sensing, assisted medical diagnosis and automated target 
recognition. There are three primary issues in texture analysis, such as texture classi-
fication, texture segmentation and synthesis. Extracting textural features is the main 
step for analyzing texture. 

Many features extraction techniques have been invented in the past for texture 
analysis, such as features based on gray level co-occurrence matrix [1], features based 
on run length matrix[2] and singular value decomposition spectrum[3], features based 
on Gaussian Markov random fields (GMRF) [4] and Gibbs random fields[5] and fea-
tures based on local linear transformations [6] etc. These methods above are usually 
restricted to the analysis of spatial interactions over relatively small neighborhoods on a 
single scale. However, psychovisual studies indicate that the human visual system 
processed images in a multiscale way and an important aspect of texture is scale [7]. So, 
as a result, more recently methods based on multi-resolusion or multi-channel analysis 
such as Gabor filters [8], [9] and wavelet transform [10~13] have received a lot of at-
tention. Though the Gabor filter is famous for its simulation with human vision, the 
output of Gabor filter banks are not mutually orthogonal, which may result in a sig-
nificant correlation between textures. Moreover, these transformations are usually not 
reversible, which limits their applicability for texture synthesis. As a preferred tool for 
multiresolution analysis, wavelet theory provides a more formal, solid and unified 
approach to multiresolution representation [14], [15]. 
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Many wavelet transform based features have been invented. Among them are 
wavelet energy signature (WES) which is the most popular feature used in wavelet 
texture analysis [12]. Despite the empirical success, the choices of wavelet basis (WB) 
and WES remain unsolved. The impact of the WB has been partially addressed in re-
cently published papers. For example, in [16], Chang and Kuo have suggested that the 
filter selection has little information on the texture classification. But, on the other 
hand, the experiments in [17], [18] imply that it is an important issue the choice of filter 
bank in the wavelet texture characterization. In this paper we analyze the performance 
of seven WESs, which are combinations of features extracted from different frequency 
bands, and eight WBs on 111 Brodatz textures [19]. The primary aim is to investigate 
which frequency bands play an important role in texture description and whether the 
choice of WB can influence the texture discrimination. This paper is organized as 
follows. Section 2 presents the basic concept of the wavelet transform. Section 3 gives 
the methodology and experiment results. Conclusions are given in section 4. 

2   Wavelet Transforms 

The wavelet transform performs the decomposition of a signal f  with a family of 

function m n xψ , ( )  obtained through translation and dilation of a kernel function called 

mother wavelet via 

22 2m m
m n x x nψ ψ− −= −/

, ( ) ( ) . (1) 

The mother wavelet can be constructed from two-scale difference equations 
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x g k x kψ ϕ= −( ) ( ) ( ) , (3) 

where xϕ( )  is called scaling function , and h k( )  and g k( )  can be viewed as filter 

coefficients of half band low-pass and high-pass filters, respectively. 
The filter coefficients h k( )  and g k( )  play a very crucial role in discrete wavelet 

transform (DWT) and they can be used for DWT computation instead of the explicit 
forms for xϕ( )  and xψ( ) . In fact, a J -level wavelet decomposition can be written as  
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where coefficients 0 kc , are given and 
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1 2j n j k
k

c c h k n+ = −, , ( ) , (6) 

1 2j n j k
k

d d g k n+ = −, , ( ) . (7) 

The above two formulas provides a recursive algorithm for wavelet decomposition 
through filter coefficients h k( ) and g k( ) . The final output of DWT of a signal include 

a set of detail coefficients j kd , and approximation coefficients j kc , . 

A two-dimensional DWT can be treated as two one-dimensional transforms over 
image rows and columns separately. This will generate three orientation selective detail 

subimages k
jD( ) , k h v d= , , and an approximate subimage jA  where j denotes the 

decomposition level. The process then repeated on the approximate subimage to pro-
duce the next level of the resolution. Figure 1 shows a two-level hierarchical decom-
position. 

Since textures, either micro or macro, have non-uniform gray level variations, they 
are statistically characterized by the features derived from transformed coefficients in 
approximation and detail subimages. In other words, we can use these features to 
analyze the texture.  

 

Fig. 1. Wavelet representation of image by detail subimages and approximate subimage 

3   Comparison and Analysis 

Wavelet texture analysis is considered to be the current state of the art among other 
texture analysis methods and has shown better performance than other methods in 
many cases. In this section, we evaluate the performance of seven WESs and eight WBs 
by using 111 Brodatz textures, each with a size of 75 75× pixels and 256 gray levels. 
Fig. 2 illustrates some textures from our experimental set. The eight WBs are Haar 
wavelet, Db2 wavelet, Db4 wavelet, Db7 wavelet, Coif2 wavelet, Bior 2.6 wavelet and 
Dmey wavelet.  
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Fig. 2. Some textures from the experimental set 

Table 1. Seven wavelet energy signatures 

F1 

2 2 2 2 2 22

2 2 2 1 1 12

2 2 2 2 1 1 1

h v d h v d

F F F F F F F
h v d h v d

D D D D D DA

area A area D area D area D area D area D area D

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
 

F2 

2 2 2

1 1 1

1 1 1

h v d

F F F
h v d

D D D

area D area D area D

( ) ( ) ( )

( ) ( ) ( )
, ,

( ) ( ) ( )
 

F3 

2 2 2 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

h v d h v d

F F F F F F
h v d h v d

D D D D D D

area D area D area D area D area D area D

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, , , , ,

( ) ( ) ( ) ( ) ( ) ( )
 

F4 

2 2 2 2

1 1 1 2

1 1 1 2

h v d d

F F F F
h v d d

D D D D

area D area D area D area D

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
 

F5 

2 2 22

1 1 12

2 1 1 1

h v d

F F F F
h v d

D D DA

area A area D area D area D

( ) ( ) ( )

( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
 

F6 

2 2 22

2 2 22

2 2 2 2

h v d

F F F F
h v d

D D DA

area A area D area D area D

( ) ( ) ( )

( ) ( ) ( )
, , ,

( ) ( ) ( ) ( )
 

F7 

2 2 2

2 2 2

2 2 2

h v d

F F F
h v d

D D D

area D area D area D

( ) ( ) ( )

( ) ( ) ( )
, ,

( ) ( ) ( )
 



478 X. Li and Z. Tian 

3.1   Texture Features Selection 

The two-level DWT is firstly applied to the texture image. This generates six detail 
subimages and one approximation subimage. Then the normalized energy of each 
subimage is calculated and some of them are employed as elements of the texture 
feature vector. In our test, we choose seven WESs which are given in table I, where 

F
denotes the Frobenius norm and ( )area denotes the product of row number and 

column number of a matrix. 

3.2   Performance Evaluation 

For every WB, firstly, we select randomly 20 texture images from 111 Brodatz texture 
images. Then we extract feature vector 1 2 6( , , , )=iF i from each texture image. 

For iF , this results in 20 vectors. The cosine of angle of every two of 20 vectors is 

computed and 190 values are got. Finally, the mean and variance of these 190 values, 
denoted by ( )imean F and var ( )iF , are calculated to show the performance of feature 

iF . At the same time the best feature for every WB is given. In our experiments, since 

the variation of seven var ( )iF s  is small, we choose the feature corresponding to the 

minimal ( )imean F  as the best choice for every WB. To derive some significant sta-

tistics, this experiment was repeated 100 times. Table II shows the experimental results, 

Where 
1 6

1

100
ar ccos( mi n{ ( ) })

≤ ≤
=

ii
Angle mean F . In 100 experiments, a surprising 

thing is for every WB the best feature is same at each time, so Table II also shows the 
best feature for every wavelet.  

From the experiment results, one thing is obvious that for eight WBs the best features 

are all 4F which extracted from the detail subimages 1
jD j h v d=( )( , , )  and 2

dD( ) . This 

shows that the texture characteristic are mainly in high and middle frequency regions. 

The other thing is Angle s for eight WBs all lie in the interval 34 40[ , ]o o , this shows 

the ability of WB for texture discrimination. If set  

max{ }MaxA Angle= , min{ }MinA Angle= , (8) 

then 

0.1072
1

8

MaxA MinA

Angle

− = . 
(9) 

This shows that in wavelet texture characterization the choice of WB could affect the 
texture discrimination. Especially, in eight WBs, Haar wavelet is the most unsuitable 
for texture discrimination and in contrast Db7 wavelet is the best. 
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Table 2. The experimental results 

WB Haar Db2 Db4 Db7 

( degr ee)
Angle  35.0888 36.8757 38.4868 39.1391 

Feature F4 F4 F4 F4 

WB Sym8 Coif2 Bior2.6 Dmey 

( degr ee)
Angle  38.3809 38.8173 36.6914 38.8966 

Feature F4 F4 F4 F4 

4   Conclusions 

In this paper we evaluate the performance of seven WESs and eight WBs for texture 
discrimination. Our experiment results show that in the wavelet texture characterization 
the choice of WB could influence the texture discrimination. Our findings, that feature 

4F  is more suitable for texture analysis than other six features which are used in many 

other studies, show that the texture characteristic are mainly in high and middle fre-
quency regions. This result can be used for feature selection in the design of system for 
texture description and synthesis and other areas, such as image coding. 
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Abstract. On the basis of analyzing the performances of popular image fusion 
methods, a new remote sensing image fusion method based on principal 
component analysis (PCA), high pass filter (HPF) and undecimated discrete 
wavelet transform (UDWT) is proposed. Some measure parameters are 
suggested to evaluate the fusion method. Experiments have been performed with 
the SPOT panchromatic image and the TM multi-spectral image. Both 
subjectively qualitative analysis and objectively quantitative evaluation verify 
the performance of the new method. With the same wavelet transform level, the 
fusion image using the proposed method preserves more sophisticated spatial 
details and distorts less spectral information in comparison with the fusion image 
using the traditional discrete wavelet transform (DWT) method. 

1   Introduction 

By the organic integration of various and complementary information, multi-sensor 
data fusion can furthest utilize multi-resource information and reduce the uncertainty or 
error of interpretation with the single resource, thereby greatly enhance the 
effectiveness of features extraction, classification, target detection, identification, etc. 

Multi-spectral and panchromatic images are two kinds of data commonly used. 
Multi-spectral images contain abundant spectral information, but have poorly 
performance of the spatial details because of lower resolution. Panchromatic images 
have rich spatial details. The purpose of fusion is to maintain spectral information of 
multi-spectral images and improve the spatial details at the same time. 

The classical multi-spectral and panchromatic imagery fusion methods include the 
High Pass Filter (HPF) method [1], the Hue-Intensity-Saturation (HIS) transform 
method [2], the Principal Component Analysis (PCA) method [3] and the wavelet 
transform (WT) method [4-5]. The HPF method improves the spatial details, but 
produces serious noise. The HIS transform method directly replaces the component I of 
the multi-spectral image with the high-resolution panchromatic image, and it improves 
the spatial details of the multi-spectral image, but produces serious spectral information 
distortion because the component I contains spectral information. The PCA method 
replaces the first principle component of the multi-spectral image with the 
panchromatic image, and it improves the spatial details, but also seriously distorts 
spectral information. The WT method is to replace high frequency coefficients of the 
multi-spectral image with corresponding components of the panchromatic image in the 
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transform domain. If the decomposition level is too small, the fusion image preserves 
spectral characteristics of the multi-spectral image, but fails to improve the spatial 
details well because the discarded low frequency coefficient of the panchromatic image 
still contains many spatial details. When the level is increased, the performance 
capacity of the spatial details gradually increased in the fusion image, but the spectral 
information is not preserved well because the low frequency coefficient is decomposed 
time after time, and the mosaic phenomenon may be produced. To resolve the conflict, 
the usual method is to find the balance between performance capabilities of the spectral 
information and the spatial details with the adjustment of the wavelet decomposition 
level. 

The fusion method based on PCA, HPF and UDWT (undecimated discrete wavelet 
transform) is proposed through the performance analysis of the classical image fusion 
methods. The performances of the new method are tested by merging the SPOT 
panchromatic image and the TM multi-spectral image, and experimental results verify 
the validity of the method. With the same wavelet decomposition level, the new method 
has the advantage of preserving more spatial details and distorting less spectral 
information in comparison with the traditional wavelet transform method. 

2   Principal Component Analysis 

Principal Component Analysis (PCA) is one of the linear mapping techniques. To fix 
notations, consider n wave bands multi-spectral images as the vector X 

T
nxxxxX ],,,,[ 321=  . (1) 

The variance between different wave bands is denoted as 
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The covariance matrix is then diagonalized, and the eigenvectors 
),,2,1( nrr =ϕ are calculated according to the corresponding eigenvalues from high to 

low. The eigenvectors vector is given by 

T
nn ],,,,[ 321 ϕϕϕϕφ =  . (4) 

The n wave bands multi-spectral images are mapped onto the eigenvector 

XY n ⋅= φ  . (5) 
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In the PCA method, the multi-spectral images are transformed with PCA, and the 
principle components yi ),,2,1( ni =  are obtained. The panchromatic image is matched 
by the first principle component with the histogram matched method, and the first 
principle component y1 is replaced with the matched panchromatic image. The fusion 
image is obtained when the new first principle component and the other principle 
components are transformed with the inverse PCA transform. The PCA method 
improves the spatial details of the multi-spectral images, but it produces serious 
spectral information distortion because the first component of the multi-spectral images 
contains much spectral information. 

3   Undecimated Discrete Wavelet Transform 

With the ability of multi-solution analysis and multi-resolution image decomposition, 
the wavelet transform has been employed for remote sensing image fusion. According 
to the discrete wavelet transform (DWT) method [4-5], the high frequency coefficients 
of the multi-spectral image are replaced with those of the panchromatic image in the 
wavelet transform domain. The fused image is synthesized by the inverse discrete 
wavelet transform (IDWT). The multi-resolution analysis of the DWT does not 
preserve the translation invariance because of subsampling following each filtering 
stage. The wavelet coefficient of an image discontinuity could disappear arbitrarily. To 
preserve the translation invariance, the undecimated discrete wavelet transform 
(UDWT) method has been introduced [6]. The downsampling operation is suppressed, 
and the filters of the level j are acquired by 2j upsampling the DWT filters 
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The frequency response of Eq.(6) will be )2( wH j  and )2( wG j  respectively. The 
coefficients of the level j+1 obtained from the level j are the following 
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(7) 

where (m,n) stands for the pixel position, jA  is the approximation of the original image 

at the scale j2 , and three high frequency components LH
jW , HL

jW  and HH
jW  

corresponding to horizontal, vertical and diagonal spatial details. The scheme of the 
decimated discrete wavelet coefficient decomposition and reconstruction is depicted in 
Fig. 1(a), and the scheme of the undecimated discrete wavelet transform is shown in 
Fig. 1(b). 
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Fig. 1. Discrete wavelet decomposition and reconstruction. (a) Decimated, (b) Undecimated 

4   The Fusion Method Based on PCA and UDWT 

To improve the performance of the spatial details when preserving the spectral 
information, the new fusion method makes use of PCA, HPF and UDWT. The 
panchromatic image is first processed by HPF, and the fused image preserves spectral 
information and spatial details well when the wavelet decomposition level is small.  

The whole processing program of the realization is as follows:         

Step1. The multi-spectral images are transformed with PCA, and the panchromatic 
image is processed with HPF. 

Step2. The low frequency part of the panchromatic image is matched by the first 
principle component of the multi-spectral image with the histogram matched method. 

Step3. The matched low frequency part of the panchromatic image and the first 
principle component are both transformed with the undecimated discrete wavelet 
transform. Two sets of undecimated wavelet coefficients are obtained, including 
approximation (LL) and detail (HL, LH and HH) components of the original data. The 
first principle component of the multi-spectral image is reconstructed through the 
fusion process of the wavelet domain and inverse UDWT. The fusion rule in the 
transform domain is introduced as follow: 

(1) At the level 2j, the low frequency approximate coefficient used in the fusion 
process is the LL coefficient of the multi-spectral image. 

(2) At each level, the high frequency coefficient with the higher gradient value 
between two sets of detail components is adopted in each direction.  

Step4. The high frequency part of the panchromatic image is added to the 
reconstructed first principle component, a new first principle component of the 
multi-spectral image is acquired. 

Step5. Finally, the new first principle component and the other principle 
components are transformed with the inverse PCA to obtain the fusion image. 

5   Experimental Results and Performance Evaluation 

The registration TM multi-spectral image and SPOT panchromatic image are used to 
verify the validity of the new method. The TM image is shown in Fig. 2(a), and the 
SPOT panchromatic image is illustrated as Fig. 2(b). The fusion image with the 2-level 
DWT method is illustrated as Fig. 2(c), and the fusion image with the 3-lelve DWT 
method is shown in Fig. 2(d). The fusion image using the new method with 2-level 
UDWT is illustrated as Fig. 2(e), and Fig. 2(f) is the fused image using the new method 
with 3-level UDWT. 
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                                           (a)                                                         (b) 

         

      (c)                                                       (d) 

         

(e) (f) 

Fig. 2. The original images and fusion images. (a) The TM multi-spectral image. (b) The SPOT 
panchromatic image. (c) The fusion image with the 2-level DWT method. (d) The fusion image 
with the 3-level DWT method. (e) The fusion image using the new method with 2-level UDWT. 
(f) The fused image using the new method with 3-level UDWT. 
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Generally, the performance evaluation of the image fusion method can be divided 
into two ways, namely, subjectively qualitative analysis and objectively quantitative 
evaluation. 

5.1   Subjectively Qualitative Analysis 

Subjectively qualitative analysis mainly includes two areas:  

(1) The visual quality of the fused image, such as spatial resolution, clarity, contrast, 
sophisticated details, etc. 

(2) The spectral fidelity, it indicates the extent of preserving original spectral signal 
or spectrum characteristics. 

Fig. 2(c) is the fusion image with the traditional 2-level DWT method. When the 
number of decomposition level is increased to 3, the fusion image Fig. 2(d) preserves 
more spatial details, especially in the left part of the image, but has increased spectral 
distortion, such as the river region of the image. 

Fig. 2(e) is the fusion image using the new method with 2-level UDWT, the spatial 
details is more sophisticated than those of Fig. 2(c), and their spectral information are 
similar. Fig. 2(f) is the fused image using the new method with 3-level UDWT, its 
spatial details is more sophisticated than those of Fig. 2(e), but spectral information 
distortion begins. Compared Fig. 2(f) with Fig. 2(d), the new method preserves spectral 
information and spatial details well, i.e. the new method provides the better fusion 
solution than the DWT method with the same decomposition level. 

5.2   Objectively Quantitative Evaluation 

In the way of subjectively qualitative judgment, different results could be acquired by 
reason of differences between individual visual and psychological factors, and 
professional experience of observers will also affect the final conclusion. Therefore, it 
is necessary to define a series of quantitative evaluation parameters of the visual quality 
and spectral fidelity. The current quantitative parameters mainly include mean, 
standard deviation, average error, entropy, entropy difference, average gradient value, 
deviation index, correlation coefficient, etc. The information entropy, average gradient 
and deviation index are used to measure fusion results of different methods. 

5.2.1  Entropy 
Entropy is an important index to measure the information deposited in images. 
According to the principle of Shannon information theory, the entropy of the 8-bit 
image can be defined as 

−=
=

255

0
2log)(

i
ii PPxH  , (8) 

where ip  is the probability of the gray i  in the image. 

5.2.2   Average Gradient 
Average gradient is sensitive to minor details of the image. It can be used to assess the 
ambiguous extent of the image, and is calculated as 
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Generally, the greater the average gradient, the clearer the image. 

5.2.3   Deviation Index 
Deviation index is introduced to measure the deviation extent between the fused image 
and the original multi-spectral image. It is defined as follows: 
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where FUS is the fused image, MUL is the original multi-spectral image. Generally, the 
greater the deviation index, the more serious the spectral distortion. 

Table 1 shows the quantitative evaluation of the fused images with three parameters. 
The Deviation index is acquired by calculating the deviation between the intensity 
component I of the original multi-spectral image and the intensity component I of the 
fused image.  

Table 1. The statistical comparison of the fusion results 

Image Entropy Average gradient Deviation index 

The Panchromatic image 7.6764 22.2506  

The Multi-spectral image 5.9120 9.4943  

The fusion image with the 
DWT method 2 level  

7.5342 19.8748 0.1104 

The fusion image with the 
DWT method 3 level  

7.5826 20.3007 0.1717 

The fusion image with the 
new method 2 level  

7.4077 20.2581 0.1087 

The fusion image with the 
new method 3 level  

7.5314 20.8206 0.1376 

The entropies of four fusion images are all increased as compared with the original 
multi-spectral image. Compared with the fusion image using 2-level DWT method, the 
average gradient of the fusion image using 3-level DWT method becomes greater, and 
the same is the deviation index. It indicates that spatial details are enhanced, but the 
distortion of spectral information is exacerbated. The new method with 2-level UDWT 
is superior to the 2-level DWT method in the average gradient, and is similar in the 
deviation index. Compared with the fusion image using the new method with 2-level 
UDWT, the average gradient of the fusion image using the new method with 3-level 
UDWT is greater, and the distortion of spectral information is increased. But the new 
method with 3-level UDWT is superior to the 3-level DWT method in the average 
gradient and the deviation index of the fused image. It is obvious that the conclusion of 
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quantitative data evaluation consists with the above conclusion of subjectively 
qualitative analysis. 

Synthesized the conclusions of subjectively qualitative analysis and objectively 
quantitative evaluation, it is concluded that the new method not only distinctly 
improves the spatial details but also preserves more spectral information of the 
multi-spectral image. With the same wavelet transform level, the fusion image using 
the proposed method has more sophisticated spatial details, and distorts less spectral 
information compared with the fusion image using the DWT method. 

6   Conclusion 

A remote sensing image fusion method based on PCA, HPF and undecimated discrete 
wavelet transform is presented. The performances of the proposed method are tested by 
merging the SPOT panchromatic image and the TM multi-spectral image. Both 
subjectively qualitative analysis and objectively quantitative evaluation verify the 
validity of the new method. The multi-spectral image contains abundant spectral 
information, but lacks in spatial details owing to the lower resolution. The 
panchromatic image is rich in details. The new method can improve the spatial details 
while preserving the spectral information of the multi-spectral image. Compared with 
the traditional discrete wavelet transform method of the same wavelet transform level, 
the new method has the advantage of preserving more spatial details and spectral 
information.  
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Abstract. Recent researches have been focusing on fusion of audio and visual 
features for reliable speech recognition in noisy environments. In this paper, we 
propose a neural network based model of robust speech recognition by integrat-
ing audio, visual, and contextual information. Bimodal Neural Network 
(BMNN) is a multi-layer perceptron of 4 layers, which combines audio and vis-
ual features of speech to compensate loss of audio information caused by 
noise.  In order to improve the accuracy of speech recognition in noisy envi-
ronments, we also propose a post-processing based on contextual information 
which are sequential patterns of words spoken by a user. Our experimental re-
sults show that our model outperforms any single mode models. Particularly, 
when we use the contextual information, we can obtain over 90% recognition 
accuracy even in noisy environments, which is a significant improvement com-
pared with the state of art in speech recognition.  

Keywords: speech recognition, neural network, post-processing, contextual in-
formation, sequential pattern. 

1   Introduction 

As the technology of mobile devices advances and such devices come into wide use, 
speech becomes one of important human computer interfaces (HCI). Recently, a study 
of multi-modal speech recognition is in progress to realize easier and more precise 
human computer interfaces. Particularly, the bimodal speech recognition has been 
studied for high recognition rate at environments with background noise. In the bi-
modal speech recognition if the audio signal is of low quality or ambiguous, visual 
information, i.e. lip-movements can contribute to the recognition process as well.  

In the bimodal speech recognition the most important issues are how well we ex-
tract the visual information, as supplementary to the audio signal, and how efficiently 
we merge these different modes of information. We investigate the second issue 
which is called the ‘information fusion’ problem.  

The existing fusion methods are divided into feature fusion and decision fusion de-
pending on the point of time that different sources of information are fusioned [1]. 
The feature fusion is a method which fuses features extracted from different sources 
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of information to produce the recognition results, while the decision fusion is a 
method which combines the recognition results of various independent recognizers to 
produce the final result. The HMM (Hidden Markov Model) and the neural networks 
are models generally used to implement these fusion methods. 

[2] proposed a feature fusion method using the HMM. Feature fusion has the syn-
chronization problem because the sampling rates of audio and visual information are 
different. The low-pass interpolation method is used to extract samples to solve the 
synchronization problem, and a new feature was created from the 25msec window 
where 10msec is overlapped. However, it is difficult to decide the number of states 
and the number of Gaussian mixtures which correspond to the learning variables that 
show a sensitive response to the fusion method using the HMM. Moreover, it is espe-
cially difficult to apply the generally used CDMM(Continuous Density Hidden 
Markov Model) because of restriction that its input features satisfy probabilistic inde-
pendence [3][4]. 

The TDNN (Time-Delay Neural Network) is a neural network which can recognize 
phonemes. It has two important properties. 1) Using a 3 layer arrangement of simple 
computing units, it can represent arbitrary nonlinear decision surfaces. The TDNN 
learns these decision surfaces automatically using error back-propagation. 2) The 
time-delay arrangement enables the network to discover acoustic-phonetic features 
and the temporal relationships between them independent of position in time and 
hence not blurred by temporal shifts in the input[5]. The MS-TDNN(Multi-State 
TDNN) is an expanded model of TDNN to recognize continuous words by adding the 
DTW(Dynamic Time Wrapping) layer[6][7]. Using the MS-TDNN, the bimodal MS-
TDNN which integrates audio and visual features was proposed in [8]. 

The bimodal MS-TDNN is constructed through the two-level learning process. In 
the first learning process the preprocessed acoustic and visual data are fed into two 
front-end TDNNs, respectively. Each TDNN consists of an input layer, one hidden 
layer and the phone-state layer. Back-propagation was applied to train the networks in 
bootstrapping phase, to fit phoneme targets. Above the two phone-state layers, the 
DTW algorithm is applied to find the optimal path of phone-hypotheses for the word 
models. In the word layer the activation of the phone-state units along the optimal 
paths are accumulated. The highest score of the word units represents the recognized 
word. In the second learning process the networks are trained to fit word targets. The 
error derivatives are back-propagated from the word units through the best path in the 
DTW layer down to the front-end TDNNs, ensuring that the network is optimized for 
the actual evaluation task, which is word and not phoneme recognition.  

The DTW algorithm is required to solve the time axis variation problem because 
the bimodal MS-TDNN needs to recognize words from phonemes. Therefore, the 
MS-TDNN is complex in structure and it still has the problem that its performance is 
sensitive to noise.   

In this paper, we propose the BMNN(Bimodal Neural Network), a neural network 
model for isolated word recognition, which can efficiently combines diverse sources 
of information. To improve speech recognition accuracy in noisy environments we 
also propose the post-processing method using contextual information such as se-
quential patterns of the words spoken by the user. 

This paper is organized as follows. Section 2 describes the methods for extraction 
of audio features from speech signal and visual features from lip movement images. 
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Section 3 explains our proposed bimodal neural network model, and Section 4 de-
scribes the post-processing method using contextual information to improve the 
speech recognition accuracy. Section 5 discusses the experiments with the proposed 
method, and finally Section 6 concludes the paper.  

2   Audio and Visual Feature Extraction 

In this paper we adopt the existing feature extraction methods, the ZCPA(Zero Cross-
ing with Peak Amplitude)[9] method for audio features, and the PCA(Principle  
Component Analysis) method for visual features. In the following we describe these 
methods in detail. 

2.1   Audio Feature Extraction 

The ZCPA models the auditory system to the auditory nerve, which is composed of 
the cochlear filter bank and a nonlinear transformer connected to the output of each 
cochlear filter bank. The cochlear filter bank is a modeling of the basilar membrane 
just like the general auditory model, where the nonlinear transform block is the mod-
eling of the stimulating process of the nerve cell through a mechanical vibration of the 
basilar membrane, and is connected in series with the linear filters. 

The ZCPA is composed of a 16 channel filter bank block, a zero-crossing detection 
block, a nonlinear transform block, and a feature extraction block. The filter bank is 
composed of a FIR filter which has the powers-of-two coefficients, and made fre-
quency calculations of high precision possible using bisections recursively. The bi-
secting method and the binary search method are used in the nonlinear transform 
block which increases the calculation speed and the memory size. Lastly, the feature 
vector was extracted for the feature extraction method by accumulating the maximum 
value which is non-linearized to the corresponding frequency band in the size of the 
frame of each filter bank. 

2.2   Visual Feature Extraction 

The most widely used method for visual feature extraction is the PCA, which is a 
transformation of data based on statistical analysis. The PCA reduces the visual input 
dimension through statistical analysis, and has the property that it preserves important 
information even with the reduced dimensions. We extract a basis for representing 
visual features of an image through the PCA. The given 16x16 sized image of 
speaker’s lips can be represented as a linear combination of those basis as in Fig. 1. 
Here, (c1, c2 , ..., cn) is a feature vector representing the image of a speaker’s lips.   

Fig. 1. Lip image representation 
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When an image stream consists of M frames, M n-dimensional vectors are calcu-
lated and represent the visual features of lips movement. However, the extracted fea-
tures are different between speakers, so it would be better to represent the lips move-
ment by the difference between the feature vector and the average of the feature vec-
tors of the images of M frames as described in equation (1). 

1

1

, 1,2,...,

M

i
i

k k

u u
M

v u u k M
=

=

= − =

 (1) 

where uk is the feature vector for the k-th frame, and vk is the extracted feature vector 
for the k-th frame. In this paper we set the dimension of the feature vector (n) and the 
number of frames (M) to 16 and 64, respectively. In addition,  we use the interpola-
tion method to create the feature vectors for 64 frames because the number of input 
vectors need to be fixed according to the structure of the recognizer.  

3   BMNN (Bimodal Neural Network) 

This paper proposes the bimodal speech recognition model that is robust in noisy 
environments using neural network. The proposed BMNN structure is as shown in 
Fig. 2. 

The BMNN consists of 4 layers (input layer, hidden layer, combined layer, output 
layer) and is designed as a feed-forward network with the error back-propagation 
algorithm as the learning algorithm. Since we deal with isolated word recognition, an 
overlap zone structure is used which shows high performance for isolated word rec-
ognition [10]. The third layer combines audio and visual features of speech to com-
pensate loss of audio information caused by noise. 

When the connection structure of the model and the number of frames of each 
layer is observed, the nodes of the upper layer frame and the corresponding nodes of 
every frame included in the window are fully connected, and the combined layer is 
also fully connected to the output layer because no windows are used. Therefore, the 
number of frames for each layer is automatically determined by equation (2), when 
the number of lower layer frames, the size of the window, and the size of the overlap 
zone is determined. This paper set the value of equation (2) to be a constant for the 
size of the overlap zone, and the number of feature frames of each layer is set so that 
the number of feature frames of the lower layer is reduced in half each time to it 
through the experiment. A structure like this can be more efficient compared with the 
model in [11] because the size of the model and the number of connections reduce.  

LF O
HF

W O

−=
−

 (2) 

where HF and LF  represent the number of frames of the upper layer and the number 
of frames of the lower layer, respectively, and W is the window size, and O is the 
overlap zone size. 
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Fig. 2. BMNN architecture 

The BMNN recognizes isolated words so we do not have the problem of time axis 
variation. Therefore, it has the advantage that the learning method and the structure is 
simpler compared with the bimodal MS-TDNN of phoneme units. We take the advan-
tage of neural network that it allows more efficient fusion of heterogeneous informa-
tion than the HMM. However, the BMNN with the feature fusion method has the 
problem that speech and visual information must be synchronized properly. For that 
reason, the image captured by a camera is stored together the system tick into the 
visual buffer, and simultaneously the speech signal is input from the microphone, and 
then the input speech signal is segmented to an isolated word using the endpoint de-
tecting algorithm. At this moment, the tick which indicates the same time as the end-
point detecting time is calculated, and the image which is input at the identical time 
(starting time ~ finishing time) from the image buffer, is read in from the buffer. 
Through this process, the extracted images and speech signals are synchronized by 
extracting feature vectors using the feature extraction method described in section 2. 

4   Post-processing of Speech Using Contextual Information 

The need of speech recognition that is robust in noisy environments is rising due to 
the wild use of mobile devices. Therefore, we propose a post-processing method of 
speech to improve the recognition accuracy using contextual information such as 
sequential patterns of words spoken by the user.  
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4.1   Context Recognizer 

The context recognizer which recognizes sequential patterns of commands is a multi-
layer perceptron with 3 layers. The context recognizer predicts the current command 
from a sequence of preceding commands. Its input layer represents a sequence of 
preceding commands while the output layer represents the current command. In this 
research we adopt local coding in representing data both in the input layer and the 
output layer, in which each command is represented by a single node. If we take the 
total number of commands in use and the length of sequences of preceding commands 
to be n and m, respectively, then we have m blocks of n nodes in the input layer, while 
we have n nodes in the output layer. A sequence of commands is mapped into geo-
graphical positions of input nodes. For example, the first command in a sequence into 
the left most block of input nodes and the second command into the next left block of 
nodes and so on.  

This structure of neural network is used to capture useful sequential patterns of 
commands that a user utters. Once the model is trained using the training data, the 
model learns sequential patterns of commands and can predict the current commands 
given a sequence of preceding commands.  

 

Fig. 3. Context recognizer architecture 

4.2   Post-processing Using Word Sequence Patterns  

The structure of speech recognition with the post-processing method is shown in Fig. 4. 
The final recognition result is given by combining the output of the BMNN recog-
nizer and the output of the context recognizer.  

To efficiently combine the results of the two recognizers, a sequential combination 
method is used as shown in Fig. 4. In the method we take the word of the maximum 
output value of the BMNN if any output value of the BMNN is greater than the given 
threshold( ). Else, we take the word of the maximum output value of the context 
recognizer if any output value of the recognizer is greater than the threshold.  
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Otherwise, we assume that none of the recognition result is reliable and the output 
values of the two recognizers are multiplied and the word of the largest value is se-
lected to be the final recognition result. The threshold is given by the user and it 
means the lower margin of the degree that the user can rely on the recognition result. 

Fig. 4. Sequential combination algorithm 

5   Experiments 

The speech data used in our experiments is speaker dependent data produced by the 
ETRI(Electronics and Telecommunications Research Institute). The speech data con-
stitutes of 35 isolated Korean words spoken 27 times. The words are commands 
which can be used in a mobile device. The noisy data was generated by artificially 
adding Gaussian noises (20db, 10db, 5db) to simulate speech signal in noisy envi-
ronments. 

The model structure of the BMNN used in this experiment set the number of input 
frames to 64 (10ms per frame) for isolated word recognition and extracted 16 features 
from each frame. The window size of the input layer is set to 3 frames of 30ms which 
is sufficient to represent a phoneme, while the overlap zone size is set to 2 frames. 
The window size of the hidden layer is set to 5 frames while the overlap zone size is 
set to 4 frames. Therefore, the number of frames of the hidden layer is 62 and that of 
the combined layer is 58 on the basis of equation (2). 

To verify the efficiency of the BMNN in noisy environments, performance is com-
pared with single mode recognizers using either audio features or visual features only. 
A single mode recognizer (the speech recognizer or the image recognizer) can be 
achieved simply by the BMNN with ‘0’ as input for audio features or visual features.  

5.1   Speaker Dependent Recognition Without Post-processing 

For the speaker dependent recognition we made 350 training data of 35 isolated Ko-
rean words spoken 10 times and 595 test data spoken 17 times.  

When the SNR is 30db, there is no significant difference between the speech rec-
ognizer’s performance (94.43%) and the BMNN’s performance (95.49%), but when 
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the noise level increases the recognition accuracy decreases by 13.16% for  the speech 
recognizer, while the performance decrease of the BMNN is 8.2%, which is about 
3.96% lower. We can notice that the visual features contribute more significantly 
when there is more noise in speech.   

Table 1. Performance comparison without post-processing 

SNR 
 

30db 20db 10db 5db 
Speech 94.48 89.24 72.54 54.99 
Visual 51.08 51.08 51.08 51.08 
BMNN 95.49 94.13 85.81 70.89 

5.2   Experiment with Post-processing  

In this experiment we define sequential command patterns which are spoken by the 
user for a mobile device as the contextual information, and we demonstrate the effi-
ciency of the post-processing method in noisy environments. 

First of all, it is assumed that sequential patterns among commands which are spo-
ken by the user and we create a context recognizer modeled by a multi-layer percep-
tron which learn such sequential patterns. In our experiment, we create three context 
recognizers for different regularities 70%, 50% and 30% of command sequential 
patterns. For example, for a sequential patterns of regularity 70%, ‘start browser, 
favorite sites, item 5’ is uttered as a sequence of commands, and the probability of the 
‘select’ command being followed is 70%, while the probability of any other command 
followed is 30%. The reason that we consider different regularities is to find out how 
much the regularity of command sequential patterns affects the performance of post-
processing of speech recognition.  

For the context recognizer we set the number of preceding commands to 3. The 
multi-layer perceptron as a context recognizer consists of three layers and 105 nodes 
for the input layer, 52 nodes for the hidden layer and 35 nodes for the output layer. 
We have 105 input nodes since there are 35 commands to recognize and the number 
of the preceding commands is 3.  The number of hidden nodes was obtained experi-
mentally.  

Fig. 5 compares the performances of the single mode speech recognizer, BMNN 
and BMNN with post-processing. We can see that the average performance of the 
speech recognizer is 69.51% for the noise levels of 20 db, 10 db, and 5 db, and that of 
the BMNN is 81.84%, while the BMNN with the post-processing shows the average 
accuracy of 93.57%. Also, the average reduction of performance was examined as the 
noise level increases. The speech recognizer shows the average performance decrease 
of 13.36% and the BMNN shows 9.24%, while for BMNN with post-processing the 
average performance decrease is 2.72%.  We can see that the BMNN with post-
processing is very little affected by noise. This paper clearly demonstrates the possibil-
ity of exploiting contextual information such as sequential patterns of commands of the 
user for improved speech recognition accuracy, particularly in noisy environments. 
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Fig. 5. Experimental result with post-processing  

6   Conclusion  

This paper has proposed the BMNN, which can efficiently fusion the audio and visual 
information for robust speech recognition in noisy environments. BMNN is a multi-
layer perceptron of 4 layers, each of which performs a certain level of abstraction of 
input features. In the BMNN the third layer combines audio and visual features of 
speech to compensate loss of audio information caused by noise. In order to improve 
the accuracy of speech recognition in noisy environments, we also proposed a post-
processing based on contextual information such as sequential patterns of words spo-
ken by a user. Our experimental results show that our model outperforms any single 
mode models. Particularly, when we use the contextual information, we can obtain 
over 90% recognition accuracy even in noisy environments, which is a significant 
improvement compared with the state of art in speech recognition. Our research dem-
onstrates that other sources of information need to be integrated to improve the accu-
racy of speech recognition particularly in noisy environments. 

For future research, we need to investigate diverse sources of contextual informa-
tion such as the topics or situation of speech that can be used to improve speech rec-
ognition. We will also investigate a more robust method for integrating different 
sources of information in speech recognition.  
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Abstract. An analysis based on wavelet modulation scales feature extraction is 
proposed. Considering human auditory perception and varieties of disturbances, 
instead of the frequency differences, wavelet modulation scales are adopted to 
reflect the dynamic features of speech in ASR. Experiments for the Chinese 
digit-string recognition show extracting the wavelet modulation scales as the 
dynamic features  have good performance both in additional noises and convo-
lutional noises environment.  

Keywords: Feature extraction, Wavelet analysis, Modulation scales. 

1   Introduction 

Automatic recognition of speech (ASR) has good performance in clean environment, 
but when speech signal is distorted by noise, the performance of ASR will degrade. 
Usually the environmental noises are additional and convolutional noises. To elimi-
nate the effects of noises, some methods, such as spectrum subtraction, noise compen-
sation are often introduced and they can effectively suppress the noisy disturbance. 
But when the condition of environment changes, the results of recognition will be-
come worse.  

Noise can be suppressed by improving the robustness of features. As is well known 
in automatic speech recognition based MFCC features [2], difference and acceleration 
coefficients are often adopted as auxiliary features to improve the robustness against 
the noises [3], and they are good dynamic features of speech. Similarly, modulation 
spectrum is another feature that can well reflect the dynamic feature of speech. In area 
of modulation spectra, the components that irrelevant to the recognition can be easily 
separated from the speech features [4].  

Usually we can get modulation spectrum by Fourier transform, however, some 
other studies [5] suggest human perception for modulation accords to a constant-Q 
property, directly applying Fourier transform can only get uniform distribution in 
frequency area. To mimic this constant-Q property of human perception, in this paper, 
we adopt the wavelet transform to get modulation scales as speech features and use 
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them in ASR, and use normalizing technique to improve the robustness of speech 
features against noises. Experiments for the Chinese digit-string recognition prove 
these approaches have good effects for recognition rate under noisy environments. 

The paper is organized as follows: in section 2, first, the theory of modulation 
spectrum and wavelet modulation scale features  are described, then the normalizing 
process are presented. Experiments and analysis of  results are shown in section 3, 
finally the conclusions are given in Section 4. 

2   Modulation Spectrum and Wavelet Modulation Scale  

2.1   Theory of Modulation Spectrum   

The actual modulation transform is based on the spectrogram,  the spectrogram can be 
defined as 

( ) ( ) 2

x x
|S (t, )=STFT (t, )| . (1) 

 It complies with principle of quadratic superposition [6], if a signal can be ex-
pressed   as   1 1 2 2x(t)=c x (t)+c x (t) , the spectrogram of x(t) can be written as 

2 2 * *

x 1 x1 2 x2 1 2 x1, x2 1 2 x2,x1
T (t,f)=|c | T (t,f)+|c | T (t,f)+c c T (t,f)+c c T (t,f) . (2) 

From above equation, we can see spectrogram of a signal has distinct interference 
terms. Modulation spectrum can be calculated from spectrogram as follows: 

+
-j t

x x-
M ( , )= S (t, )e dt

∞

∞
. 

(3) 

Where and  are the acoustic frequency and modulation frequency    respectively. 

x
M ( , )  can also be viewed as the two-dimensional transform of the instantaneous 

autocorrelation function, or the correlation function of a Fourier transform X( ) [7], 

but in 
x

M ( , )  there are still interference terms ,which can be attenuated by smooth-

ing process using proper window function. Here we use MSP( , ) standing for the 
smoothed M( , ), that is 

sp

W x
M ( , )=M ( , )* M ( , ) . (4) 

spM ( , )  is the result of the convolution of  
x

M ( , )  and 
W

M ( , )  in ,the inter-

ference terms can be reduced evidently in smoothed modulation features [8]. This 
conclusion is the base of modulation spectrum using in robustness improvement. The 
usually steps are as follows: first we frame the speech signal using short windows, the 
short-time fourier transform is used to acquire the spectrogram, then the spectrogram 
is divided into subbands in which the modulation frequency transform is performed. 
As the most useful components for speech recognition in modulation spectrum is 
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between 2-16Hz [9], we select proper bands of modulation frequencies as the speech 
features. 

2.2   Wavelet Modulation Scales 

Considering of the constant-Q property of human perception for modulation, instead 
of fourier transform, we use the wavelet transform for  every subbands and acquire 
the wavelet modulation scales representation. The detailed calculation of speech sig-
nal x(t) is as follows: 

-jwu 21

y 2
S (t, )= | x(u)w*(u-t) e | . (5) 

y
S (t, ) is the spectrogram of x(t) , w*(t)  is short-time window function. Along the 

time directions of yS (t, ) ,wavelet transform can be witten as 

x x

1 t -
W ( s , , ) = S ( t , ) ( ) d t

s s
. (6) 

(t)  is wavelet function,  is translation factor
x

W (s, , )  is the wavelet modula-

tion scales representation of x(t) . 

2.3   Modulation Scales Normalization 

If a signal x(t)  was corrupted by additive noise d(t)  and convolutional noise h(t) , 

the noisy signal can be written as 

y(t)=[x(t)+d(t)]*h(t) . (7) 

Here for convenience we let s(t)=x(t)+d(t) , then the spectrogram of s(t)  can be writ-

ten as  

y s h
S (t, )=S (t, )S (t, ) . (8) 

s
S (t, )  and 

h
S (t, )  are the spectrogram of s(t) and h(t) ,

y
S (t, )  is windowed along 

time scales and transformed by wavelet along time scales, the results are the wavelet 
scale representations of y(t) , 

y x L

1 t-
W (s, , )= S (t, )W (t-B) ( )dt

s s
. (9) 

WL(t) is window function used for not only avoiding the spectrum leakage but also 
smoothing the interference terms which was illustrated in equation (2), so here it is 
called smoothing window function. 

If the frequency characteristic of convolutional noises can be thought as linear and 
time invariant over the smoothing window, we can get following approximate  
formula, 
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y s h
W (s, , ) W (s, , )W ( )≈ . (10) 

It can be normalized as  

y s h s

y,norm s,norm

y s h s

W (s, , ) W (s, , )W ( ) W (s, , )
W (s, , )= = = =W (s, , )

W (s, , )ds W (s, , )W ( )ds W (s, , )ds
 (11) 

In actual applying the formula (9) to calculate the wavelet scales, the scale parame-

ter s  and translation factor  need to be discretized to ds  and 
n

separately, we can 

write the discrete representation 

s d n

y,norm d n

d

s d n
s

W (s , , )
W (s , , )=

W (s , , )
. 

(12) 

Recently research about modulation spectrum manifests that the distributions of dis-
turbances and the speech signal are different in the whole scales of modulation spec-

trum [3]. By select the proper scope of 
d

s , interference terms made from noises can 

be attenuated, and formula  (12) can be further approximated as  

y,norm d n x,norm d n
W (s , , )=W (s , , ) . (13) 

x,norm d n
W (s , , )  is normalized modulation scale representation of x(t) .  

3   Experiments and Analysis of  Results 

The speech signals was framed into 25ms (400 samples) per frame and windowed by 
hamming window with 8.75ms frame rate. This can acquire 128Hz sampling rate for 
modulation frequency. For extracting modulation scales features, the bior1.1 function 
was used as wavelet function. We use Mel subbands instead of uniform frequencies 

bands for complying the human perception. After we calculated the 
x

S (t, ) , we need 

transform it to representations of the power spectrum under Mel  scales.  Here we 
divided the frequencies  into  26 Mel  subbands ( k =26), every subband was framed 
and windowed by hamming window. For acquiring enough resolution, the frame 
should have enough length, here the 1s 128 frames frame length was used, so 
every long frame include 128 short frame energy values 

nE (0 n<128). There are 2 

dots overlaps because the length of bior1.1 filters are 2. Eight dyadic scales wavelet 
transforms was conducted to get the modulation scales vectors, the first two values of 
which should be discarded, like overlap-save method filtering quoted in [11]. Finally, 
the modulation scales features were normalized and filtered as quoted in section 2.3 
of this paper. According to [1], only the third, forth, and fifth layer were saved as 
modulation scales parameters. So from  every long frame we can acquire 3×128 
wavelet scales matrix, every column in the matrix was used as  parameters of corre-
sponding short frame. 
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3.1   Recognition Experiments Under Clean Environments 

Firstly, we used test set to perform speech recognition experiment under clean envi-
ronment (no convolutional and additional noise), and assumed that both the training 
set and the test set are recorded under same channel conditions. The recognition errors 
on the test  set are shown in Table 1.  

Table 1. Recognition rate for clean speech 

MFCC MOD NORM_MOD 
7.92% 7.8% 8.6% 

From table1, we can see that the performance of above three methods is similar under 
clean environment. 

3.2   Recognition Experiments  in Additive Noises 

Noises signal n(k) superposed over the clean speech signals as additive disturbance, 
were extracted from NoiseX-92 database, signal-noise ratio can be determined as 

2 2

k k

SNR=10log( |s(k)| / |n(k)| ) . (14) 

Table 2 shows  recognition error rate of three methods for test set speech signal 
corrupted by white, pink, and babble noises. THE SNR of all test speech is 10dB.  

Table 2. Recognition error rate of three methods for additive noisy speech 

          noise       
method 

white Babble pink 

MFCC 28.35 32.44 36.12 

Mod 20.24 23.61 25.61 

Norm_Mod 22.51 27.68 26.44 

From  Table 2, we can see that the modulation scales features show better robustness 
under additive noisy environments. Normalized modulation features have good resis-
tance to color noise. 

3.3   Recognition Experiments  in Convolutional  Noises 

The environment for a practical recognizer not only has additive noise but may have 
convolutional disturbance such as telephone network. For simulating the convolutional 
distortion to the speech, we use a telephone channel impulse response signal to corrupt 
the tested speech signal. The  telephone channel impulse response signal was obtained 
from a real telephone channels, and its response feature curve was plotted in figure1. 
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Fig. 1. Channel impulse was obtained from a real telephone channels 

The recognition errors on the test  set are shown in table 3.  

Table 3. Recognition error rate of three methods for convolutional noisy speech 

MFCC MOD NORM_MOD 
21.55% 20.85% 10.4% 

The recognition results of MFCC, modulation scales and normalized modulation 
scales are showed in Table 3. From Table 3, we can see the recognition result of un-
normalized wavelet modulation scales features is not very good. However, after nor-
malized, the wavelet modulation scales have good performances under convolutive 
environments.  

4   Conclusion 

Modulation spectrum is another way to reflect dynamic features of speech signals. 
The results of experiments for the Chinese  digit-string recognitions show the new 
method has positive efforts in improving the robustness of speech recognition system.  
Further  research  will be done to exploit the modes and extents of its contributions 
for large vocabulary continuous speech recognition. 
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Abstract. As multimedia and group-oriented computing becomes increasingly 
popular for the users of mobile ad hoc networks (MANET). Due to the dynamic 
nature of the network topology and restricted resources, quality of service 
(QoS) and multicast routing in MANET is a challenging task. It attracts the 
interests of many people. In this paper, we present a fuzzy controllers based 
QoS routing algorithm with a multiclass scheme (FQRA) in MANET. The 
performance of this scheduler is studied using NS2 and evaluated in terms of 
quantitative met-rics such as path success ratio, average end-to-end delay and 
throughput. Simu-lation shows that the approach is efficient, promising and 
applicable in MANET.  

1   Introduction  

A Mobile Ad hoc NETwork (MANET) is an autonomous system of mobile nodes 
connected by wireless links. There is no static infrastructure such as base station as 
that was in cell mobile communication. In ad hoc network, if two nodes are not within 
radio range, all message communication between them must pass through one or 
more intermediate nodes. All the nodes are free to move around randomly, thus 
changing the network topology dynamically [1-5,7,8]. These types of networks have 
many advantages, such as self-reconfiguration and adaptability to highly variable 
mobile characteristics like the transmission conditions, propagation channel distribu-
tion characteristics and power level. They are useful in many situations such as mili-
tary applications, conferences, lectures, emergency search, rescue operations and law 
enforcement. However, such benefits come with new challenges which mainly re-
sides in the unpredictability of the network topology due to mobility of nodes and the 
limited available bandwidth due to the wireless channel. These characteristics de-
mand a new way of designing and operating this type of networks. For such networks, 
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an effective routing protocol is critical for adapting to node mobility as well as possi-
ble channel error to provide a feasible path for data transmission [9-15].  

Multicasting is a promising technique to provide a subset of the network with the 
service it demands while not jeopardizing the bandwidth requirements of others. The 
advantage of multicasting is that packets are multiplexed only when it is necessary to 
reach two or more receivers on disjoint paths [1,2,6-7,15]. As a result of their broad-
casting capability, ad hoc networks are inherently ready for multicasting. In addition 
multicast gives robust communication whereby the receiver address is unknown or 
modifiable without the knowledge of the source within the wireless environment.  

Quality of service (QoS) support for multimedia applications is closely related to 
resource allocation, the objective of which is to decide how to reserve resources such 
that QoS requirements of all the applications can be satisfied [1-3,6-9]. However, it is 
a significant technical challenge to provide reliable high-speed end-to-end communi-
cations in these networks, due to their dynamic topology, distributed management, 
and multi-hop connections. The provision of QoS requirements is of utmost impor-
tance for the development of future networks. For supporting QoS aware applications, 
QoS based routing algorithms such as Core extraction dynamic source routing 
(CEDAR) [7] and Ticket base routing (TBR) [8] are proposed in the literature. Lo-
renz and Orda demonstrate in [9] that this uncertainty places additional constraints on 
QoS provisioning. These algorithms determine a path that satisfies the required QoS. 
The success of these algorithms purely depends on the existence and reliability of that 
path.  

Fuzzy Logic based decision algorithm influences caching decisions of multiple 
paths uncovered during route discovery and avoids low quality paths [10]. Differenti-
ated resource allocation considering message type and network queue status is evalu-
ated using fuzzy logic scheme [11]. In [4-6], they proposed the use of fuzzy logic 
controllers for the dynamic reconfiguration of edge and core routers. This reconfigu-
ration allows for adjusting the network provisioning according to the incoming traffic 
and the QoS level achieved. A fuzzy controller is specified by fuzzy sets definition 
(membership function) and a set of rules (rule base).  

In this paper, we present a Fuzzy controllers based QoS Routing Algorithm with a 
multiclass scheme (FQRA) in mobile ad hoc networks. The performance of this 
scheduler is studied using NS2 and evaluated in terms of quantitative metrics such as 
improved path success ratio, reduced average end-to-end delay and increased 
throughput.  

The rest of the paper is organized as follows. Section 2 introduces the ad hoc net-work 
model and route issues. Section 3 presents the fuzzy QoS controller. Some simulation 
results are provided in Section 4. Finally, Section 5 presents the conclu-sions.  

2   Network Model and Routing Issues  

A network is usually represented as a weighted digraph G = (N, E), where N denotes 
the set of nodes and E denotes the set of communication links connecting the nodes. 
|N| and |E| denote the number of nodes and links in the network respectively, Without 
loss of generality, only digraphs are considered in which there exists at most one link 
between a pair of ordered nodes.   
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In G(N, E), considering a QoS constrained multicast routing problem from a source 
node to multi-destination nodes, namely given a non-empty set M={s, u

1
, u

2
, …, u

m
}, 

MN, s is source node, U={u
1
, u

2
, …, u

m
} be a set of destination nodes. In multicast 

tree T= (N
T
, E

T
), where N

T
 N, E

T
 E. if C(T) is the cost of T,  P

T
(s,u) is the path from 

source node s to destination node u U in T, D
T
(s, u) and B

T
(s, u)  are the delay and 

usable bandwidth of P
T
(s, u).  

Definition 1: The cost of multicast tree T is:  

C(T
e
) = , e E

T
.  

Definition 2: The bandwidth of multicast tree T is the minimum value of link 
bandwidth in the path from source node s to each destination node u U. i.e.  

B
T 
(s, u) = min (B(e), e E

T
).  

Definition 3: The delay of multicast tree T is the maximum value of delay in the path 
from source node s to each destination node u U. i.e.  

D
T 
(s, u) = max  .  

Definition 4: Assume the minimum bandwidth constraint of multicast tree is B, the 
maximum delay constraint is D, given a multicast demand R, then, the problem of 
bandwidth, delay constrained multicast routing is to find a multicast tree T, satisfying:  

(1) Bandwidth constraint: B
T 
(s, u)  B, u U.  

(2) Delay constraint: D
T 
(s, u)  D, u U.  

Suppose S(R) is the set, S(R) satisfies the conditions above, then, the multicast tree 
T which we find is:  

C(T) = min (C (T
s
), T

s
 S(R))  

3   Fuzzy QoS Controller  

3.1   Fuzzy Logic Controller  

The fuzzy logic was introduced by Zadeh [13] as a generalization of the boolean 
logic. The difference between these logics is that fuzzy set theory provides a form to 
repre-sent uncertainties, that is, it accepts conditions partially true or partially false. 
Fuzzy logic is the best logic to treat random uncertainty, i.e., when the prediction of a 
se-quence of events is not possible.  

Fuzzy logic control system is rule-based system in which a set of so-called fuzzy 
rules represents a control decision mechanism to adjust the effects of certain causes 
coming from the system. The aim of fuzzy control system is normally to substitute for 
or replace a skilled human operator with a fuzzy rule-based system. Specifically, 
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based on the current state of a system, an inference engine equipped with a fuzzy rule 
base determines an on-line decision to adjust the system behavior in order to guaran-
tee that it is optimal in some certain senses.  

There are generally two kinds of fuzzy logic controllers. One is feedback control-
ler, which is not suitable for the high performance communication networks. Another 
one, which is used in this paper, is shown in Fig. 1. The output of the fuzzy logic 
controller in Fig. 1 is used to tune the controlled system’s parameters based on the 
state of the system. This control mechanism is different from the conventional feed-
back control and considered as an adaptive control.  

The specific features of the fuzzy controller depend on the model under control and 
performance measurement. However, in principle, in the fuzzy controller we explore 
the implicit and explicit relationships within the system and subsequently develop the 
optimal fuzzy control rules as well as a knowledge base.  

Traffic Class   Application Type

Input Membership Fuzzification

Fuzzy Rules Inference Engine 

Fuzzy Routing Decision 

Output Rules Defuzzification

 0 80 60 40 20

0
Scheduler Queue Weight (Input) 

Class 3Class 1 Class 4Class 2

 

Fig. 1. The fuzzy routing in MANET Fig. 2. Scheduler membership functions  

3.2   Scheduler Controller  

The packet scheduler used in our architecture is WRR (Weighted Round Robin). In 
this scheduler, queues are served according to a configurable weight that can be 
changed during network operation. This allows having control of the bandwidth as-
signed to each service class. The packet delay and discard rate for each queue (class) 
can be controlled by changing this weight. An example of membership function of 
schedule controller is showed in Fig. 2. Other membership functions are: packet delay 
in the expedited forwarding queue and discard rate due to queue overflow in the best-
effort class. The output membership functions are also defined as trapezoid functions 
by the same previous reasons. We used the center of gravity defuzzification method, 
since it gives better results. The output membership function gives the weights as-
signed to each class in the WRR scheduler.  

3.3   Fuzzy Rule Base  

Fuzzy systems reason with multi-valued fuzzy sets instead of crisp sets. The Fuzzy 
Logic Controller (FLC) (Fig. 1) has two inputs: Residual Bandwidth and Traffic Class 
and one output: Fuzzy Routing Decision [11, 14].  

Mamdani fuzzy-rule based systems constitute of a linguistic description in both the 
antecedent parts and the consequent parts. Each rule (Table 1) is a description of a 
condition-action statement that may be clearly interpreted by the users. Rule base is  
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an IF-THEN rule group with fuzzy sets that represents the desired behavior of a fuzzy 
system. It can be defined in agreement with the administrative policy.  

Ri: IF x
1
 is A

i1
 and … and x

n
 is A

in
 THEN y is C

i
, i = 1, 2, …, L  

where L is the number of fuzzy rules, x
j
 U

j
, j = 1, 2, …, n, are the input variables, y 

is the output variable, and A
ij
 and C

i
 are linguistic variables or fuzzy sets for x

j
 and y 

respectively. A
ij
 and C

i
 are characterized by both membership functions.  

Inputs are of the form: x
1
 is A

1
’, x

2
 is A

2
’, …, x

n
 is A

n
’ where A

1
’, A

2
’, …, A

n
’ are 

fuzzy subsets of U
1
, U

2
, … U

n
, which are the universe of discourse of inputs.  

Table 1. Fuzzy rule base – QoS classes and application type  

QoS Class Bandwidth Requirement Application Type  
1  256 Kbps  Non-real-time flow with normal service  
2  512 Kbps  Non-real-time flow with preference service  
3     2 Mbps  Real-time flow with normal service  
4     4 Mbps  Real-time flow with preference service  

4   Simulation  

4.1   Random Graph Generation  

In generating random graphs, we have adopted the method used in [16], where verti-
ces are placed randomly in a rectangular coordinate grid by generating uniformly 
distributed values for their x and y coordinates. The remaining edges of the graph are 
chosen by examining each possible edge (u,v) and generating a random number 
0 r<1. If r is less than a probability function P(u,v) based on the edge distance be-
tween u and v, then the edge is included in the graph. The distance for each edge is 
the Euclidean distance (denoted as d(u,v) between the nodes that form the end-points 
of the edge. We used the probability  

P (u,v) = exp(- d(u,v)aL )  

where d(u,v) is geometric distance from node u to node v, L is maximum distance 
between two nodes. The parameters  and  are in the range (0, 1) and can be used 
to obtain certain desirable characteristics in the topology, parameter  can be used to 
control short edge and long edge of the random graph, and parameter  can be used 
to control the value of average degree of the random graph.  

4.2   Simulation Model  

To conduct the simulation studies, we have used randomly generated networks on 
which the algorithms were executed. This ensures that the simulation results are inde-
pendent of the characteristics of any particular network topology. Using randomly 
generated network topologies also provides the necessary flexibility to tune various 
network parameters such as average degree, number of nodes, and number of edges, 
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and to study the effect of these parameters on the performance of the algorithms. The 
platform used was the Network Simulator (NS), version 2.26 [17].  

Our simulation modeled a network of mobile nodes placed randomly within 1000 x 
1000 meter area. Each node has a radio propagation range of 250 meters and chan-nel 
capacity of 5 Mbps. Two-ray propagation model was used. The IEEE 802.11 
distributed coordination function was used as the medium access control protocol. A 
random waypoint mobility model was used: each node randomly selects a position, 
and moves toward that location with a speed ranging from just above 0 m/s to 10 m/s. 
When the node reaches that position, it becomes stationary for a programmable pause 
time; then it selects another position and repeats the process. The simulation was 
repeated with different seed values. A traffic generator was developed to simulate 
CBR sources. The size of the data payload is 512 bytes. Data sessions with randomly 
selected sources and destinations were simulated. Each source transmits data packets 
at a minimum rate of 4 packets/sec. and maximum rate of 10 packets/sec. Traffic 
Classes were randomly assigned and simulation was carried out with different band-
width requirements. There were no network partitions throughout the simulation. 
Each simulation is executed for 600 seconds of simulation time. Multiple runs with 
different seed values were conducted for each scenario and collected data was aver-
aged over those runs. Table 2 lists the simulation parameters which are used as de-
fault values unless otherwise specified.  

Table 2. Simulation parameters  

Number of nodes  100  
Terrain range  1000m ×1000 m  
Transmission range  250 m  
Simulation duration  1 h  
Speed  0-10 m/s  
Mobility model  Random way point 
Propagation model  Free space  
Channel bandwidth  5 Mbps  
Traffic type  CBR  
Data payload  512 bytes/packet  
Service class distribution 4:2:3:1  
Node pause time  0-10 seconds  

4.3   Performance Metrics  

The following metrics are used in computing the scheduler performance. The metrics 
were derived from one suggested by the MANET working group for routing protocol 
evaluation.  

• Throughput  
The rate of data being received at the servers.  
• Average end-to-end delay  
This indicates the end-to-end delay experienced by packets from source to destina-tion.   
• Path success ratio  

 



512 C. Gui and B. Sun  

Route success ratio is the ratio of the number of total number of connection re-
quest discover to the destinations to the number of routed connection requests. This 
number presents the effectiveness of the protocol.  

4.4   Simulation Results  

In this performance evaluation the following performance metrics were evaluated: 
percentile of path success ratio, edge-to-edge delay and throughput. For each evalua-
tion, we used CBR. All simulations start with initial scheduler configuration with 
60% of the bandwidth for each class. To eliminate simulation results with an empty 
network, we start collecting results 30 seconds after the beginning of the simulation.  

After optimization procedure was executed, we could verify the result comparing 
packet delivery ratio, average end-to-end delay and throughput.   

Fig. 3 shows the effect of network size on throughput. We can see that non-QoS’s 
throughput is smaller than of FQRA with the increasing of the scale of the network.  

Fig. 4 shows the effect of number of nodes over average end-to-end delay. Delay is 
more in FQRA and can be improved by introducing multiple paths during fuzzy 
routing and by giving more precedence to the packets which are waiting for their 
service.  
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Fig. 5 depicts a comparison path success rate to find the path through non-QoS and 
FQRA. With the relaxation of bandwidth constraints, the path success rate becomes 
higher for non-QoS. The success rate is still higher than that of non-QoS, which 
means is more suitable for the routing choosing under timely data transmission appli-
cation and dynamic network structure.  

The average and-to-end delay performance as shown in the Fig. 6, proves that the 
end-to-end delay improves when scheduler is included. As the mobility varies from 0-
10 m/s, the fuzzy controllers scheduler provides an end-to-end delay reduced by 
around 0.01 sec. to 0.05 sec.  

5   Conclusion and Future Work  

Our QoS routing algorithm has produced significant improvements in throughput, 
average end-to-end delay and path success ratio. Fuzzy logic implementation relates 
input and output in linguistic terms, the overlap composition of many input variables 
(multiple QoS criterion) in taking a single output decision shows the robustness of the 
system in adapting to constantly changing mobile scenario. The membership func-
tions and rule bases of the fuzzy scheduler are carefully designed. The use of fuzzy 
logic improves the handling of inaccuracy and uncertainties of the ingress traffic into 
the domain.  

In this paper, we present a fuzzy controllers based QoS routing algorithm with a 
multiclass scheme in mobile ad hoc networks. The performance of this scheduler is 
studied using NS2 and evaluated in terms of quantitative metrics such as path success 
ratio, average end-to-end delay and throughput. Simulation shows that the approach is 
efficient, promising and applicable in ad hoc networks.  

Future work includes comparison with “crisp” versions of the fuzzy algorithm to 
isolate the contributions of fuzzy logic, as well as applications of fuzzy control to 
power consumption and directional antennas in MANETs. We also intend to compare 
FQRA with other QoS routing.  
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Abstract. Many high resolution DOA estimation algorithms like MUSIC and 
ESPRIT estimation are based on the sub-space concept and require the eigen-
decomposition of the input correlation matrix. As quantities of computation of 
eigen-decomposition, it is unsuitable for real time processing. An algorithm for 
noise subspace estimation based on minor component analysis is proposed. 
These algorithms are based on anti-Hebbian learning neural network and con-
tain only relatively simple operations, which are stable, convergent, and have 
self-organizing properties. Finally a method of real-time parallel processing is 
proposed, and data processing can be finished at end time of sampling. Simula-
tions show that the proposed algorithm has an analogy performance with the 
MUSIC algorithm. 

1   Introduction 

Most of the antenna array direction of arrival(DOA) estimation methods are based on 
the sub-space concept and require the eigen-decomposition of the input correlation 
matrix. State-space method [2], MUSIC [3], ESPRIT[4], and Min-Norm [5] are ex-
amples of these techniques. Based on the eigen-decomposition of covariance matrix 
of the array output, they offer high resolution and give accurate estimates. A key 
limitation of these techniques is the computational burden to process a new sample 
(snapshot), so they are unsuitable for real time applications. Some attempts have been 
made to reduce the computational burden of these methods[1][6][7][8]. In this work, 
An algorithm for noise subspace estimation based on minor component analysis is 
proposed. These algorithms are based on anti-Hebbian learning neural network and 
contain only relatively simple operations, These algorithms are stable, convergent, 
and have self-organizing properties[9][10]. Finally a method of Real-time parallel 
processing is proposed, at end time of sampling data, processing also can be finished. 
Simulations show that the proposed algorithm has an analogy performance with 
MUSIC algorithm. 

2   DOA Principle  

Most of the antenna array DOA estimation methods are based on the sub-space con-
cept and require the eigen-decomposition of the input correlation matrix. 
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2.1   DOA Data Model   

If there are p signals incident onto the array, the received input data vector at an M-
element array can be expressed as a linear combination of the p incident waveforms 
and noises.  

If )(tx  is the array element received signal, )( ts is source signal, )( tw  is additive 
noise, the first array element is taken as the reference array element, then the kth array 
element received signal is 

)()()()(
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p

i
ik +=

=
θ  (1) 

where Mk ,2,1= , the vector form is as follow: 
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A is the matrix of steering vectors  
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=  is a noise vector with com-

ponents of variance 2
nσ . 

The received vectors and the steering vectors can be visualized as vectors in an M-
dimensional vector space. 

2.2   MUSIC Algorithm 

The input covariance matrix is  

IAARXXER n
H

SS
H

xx
2][ σ+==  (4) 

where ssR  is the signal correlation matrix. I  is an identity matrix of appropriate 
dimension, and (.)H denotes conjugate transpose. 

The eigen-decomposition of the positive definite Hermitian matrix 
xxR  is given by 
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where lλ  is the eigenvalue corresponding to the eigenvector ie , stored in decreasing 

order, for all i=1 . . . M . 
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The eigenvectors of the covariance matrix xxR  belong to either of the two or-

thogonal subspaces, the principal eigen subspace (signal subspace) and the minor 
eigen subspace (noise subspace).  

The dimension of the signal subspace is p, while the dimension of the noise sub-
space is M-p. 

The M-p smallest eigenvalues of xxR
 are equal to 2

nσ , and the eigenvectors ie
, 

i=p+1, ... ,M, corresponding to these eigenvalues span the noise subspace.  
The p steering vectors that make up A lie in the signal subspace and are hence or-

thogonal to the noise subspace.  
By searching through all possible array steering vectors to find those which are or-

thogonal to the space spanned by the noise eigenvectors ie
, i=p+1, ... ,M, the DOAs 

Pθθθ ,......, 21 , can be determined. 

To form the noise subspace, we form a matrix nV  containing the noise eigenvec-

tors ie
, i=p+1, ... ,M.  

Then 0)()( =θθ aVVa H
nn

H  for θ corresponding to the DOA of a multiple 

component.  
The DOAs of the multiple incident signals can be estimated by locating the peaks 

of a MUSIC spatial spectrum 

)()(

1
)(

θθ
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aVVa H
nn

H
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The resolution of MUSIC is very high even in low SNR. 

3   Extracting Multiple Minor Components 

Extracting multiple minor components is based on anti-Hebbian learning neural net-
work, it contains only relatively simple operations, which is stable, convergent, and 
have self-organizing properties. 

3.1   Hebbian Learning 

A self-organizing principle was proposed by Hebb in 1949 in the context of biological 
neurons Hebb’s principle. When a neuron repeatedly excites another neuron, then the 
threshold of the latter neuron is decreased, or the synaptic weight between the neurons 
is increased, in effect increasing the likelihood of the second neuron to excite. 

3.2   Generalized Hebbian Algorithm (GHA) [9] 

The step of extracting principal components analysis by GHA is as follows: 
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1. Subtract the contribution of the first principal component. 
2. Drive the difference into another Hebbian neuron. 
3. This extracts the next principal component. 
4. Subtract its contribution. Goto step 2. 

With N Hebbian neurons, we'll get all N principal components. 
Embodied in Sanger's rule:ˇ

kkk WWW Δ+=+1   −=Δ
=

kj

i

k
kjiij wVVw

1

ξη  (7) 

Sanger's rule in action based on the Hebbian Neuron, revisited is explained as Fig 1. 

 

Fig. 1. Cascading multiple Hebbian neurons 

3.3   Extracting Multiple Minor Components[10] 

Modifying the GHA rule is as follows: 

kkk WWW Δ+=+1     −−=Δ
=

kj

i

k
kjiij wVVw

1

ξη  (8) 

It is anti-Hebbian network, the anti-Hebbian rule find the direction in space that 
has the minimum variance. In other words, it can extract multiple minor components. 

Anti-Hebbian does de-correlation, which de-correlates the output from the input. 
Hebbian rule is unstable, since it tries to maximize the variance. Anti-Hebbian rule, 

on the other hand, is stable and convergent. 
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3.4   Complex Signal Processing 

)(tx  is  complex-value data. To convert it into a real-value modal, the complex vec-

tors ke , k = 1,...,M and xxR  should first be decomposed into their real and 

imaginary constituents as follows [1]: 

kikrk jeee +=  and ir jRRR +=  (9) 

Then the equation becomes: 

)())(( kikrkkikrir jeejeejRR +=++ λ  (10) 

It equivalently is : 

kikkirkrikrkkiikrr eeReReeReR λλ =+=− ,  (11) 

Moreover, by combining terms, we get: 
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3.5   Real-Time Parallel Processing 

Can be seen from the equation(13), when the sampling data  is finished, the calcula-
tion has not been finished, there is a need of computation for data 

i

r

x

x .As this neural 

network algorithms is not relation  of data sequence, we change  the data sequence, 
and equation(13) can be changed to  equation(14). 

−−−
=

rNiNriri

iNrNirir
c xxxxxx

xxxxxx
X

2211

2211
 (14) 

Where N is numbers of snapshot. 
Using this model, when dynamic sampling data is end, the calculation of this algo-

rithms also can be finished, so it can be used for the real-time processing. 



520 D. Li et al. 

4   Simulations 

In this section, we present some simulation results illustrating the properties of the 
proposed approach. In all examples, we use a uniform linear array with 16 elements 
spaced /2 apart, where  denotes the wavelength of the sources signals. 

There are three signals, angles are 30,50,70 degree, data input sequence is as equa-
tion(14),numbers of snapshot is 2048, We have simulated the above iterative proce-

dure using the learning rule (8), the number of iterations  is 1 ,with rate η  =0.005 and 
initial weights matrix W=0.5*I; to extract the noise subspace. Fig. 2 gives the result 
by MUSIC at 10dB, Fig.3 gives the result by neural network at 10dB, and Fig. 4 gives 
the results by MUSIC at 30dB, Fig.5 gives the results by neural network  at 30dB. 

 

Fig. 2. DOA estimation by MUSIC at 10dB 

 

Fig. 3. DOA estimation by neural network at 10dB 
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Fig. 4. DOA estimation by MUSIC at 30dB 

 

Fig. 5. DOA estimation by neural network at 30dB 

5   Conclusion 

An algorithm for noise subspace estimation based on minor component analysis is 
proposed in this paper. These algorithms are based on anti-Hebbian learning neural 
network and contain only relatively simple operations, These algorithms are stable 
and convergent. A method of real-time parallel processing is proposed, and data proc-
essing can be finished at end time of sampling. Simulated results show that the pro-
posed algorithm be of an analogy performance with MUSIC algorithm. 
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Abstract. To extract source signals with certain temporal structures,
such as periodicity, we propose a two-stage extraction algorithm. Its first
stage uses the autocorrelation property of the desired source signal, and
the second stage exploits the independence assumption. The algorithm
is suitable to extract periodic or quasi-periodic source signals, without
requiring that they have distinct periods. It outperforms many existing
algorithms in many aspects, confirmed by simulations. Finally, we use the
proposed algorithm to extract the components of visual event-related po-
tentials evoked by three geometrical figure stimuli, and the classification
accuracy based on the extracted components achieves 93.2%.

1 Introduction

It is known that blind source extraction (BSE) algorithms are suitable for ex-
tracting a few of temporally correlated source signals from large numbers of
sensor signals, say recordings of 128 EEG sensors [1]. In practice they require
certain additional a priori information of the desired source signals. Thus they
generally are implemented in a semi-blind way [2,3,5,6,7].

Among the extraction algorithms there are two famous algorithms, i.e. the
cICA algorithm [5] and the FICAR algorithm [6], both of which need to design a
so-called reference signal that is closely related to the desired underlying source
signal. That is to say, the phase and the morphology of the reference must be
matched to that of the desired signal to great extent, or the occurrence time
of each impulse of the reference signal is consistent with that of the desired
signal [8]. However, in some applications it is difficult to design such a reference,
especially when the morphology and the phase of the desired source signals are
not expected [3].

Based on our previous primary work [2,3], in this paper we propose a Tem-
porally Correlated signal Extraction algorithm (TCExt algorithm), which does
not need the reference, unlike the cICA algorithm and the FICAR algorithm.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 523–532, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Computer simulations on artificially generated data and experiments on the ex-
traction of event-related potentials show its many advantages.

2 Problem Statement

Suppose that the unknown source signals s(k) = [s1(k), · · · , sn(k)]T are mu-
tually statistically independent with zero mean and unit variance, holding the
basic simultaneous mixture ICA model [1]. Without lose of generality, we fur-
ther assume s1 is the desired temporally correlated source signal, satisfying the
following relationship:{

E {s1(k)s1(k − τ∗)} > 0
E {sj(k)sj(k − τ∗)} = 0 ∀j �= 1 (1)

where sj are other source signals, and τ∗ is the optimal lag defined below:

Definition 1. The non-zero τ∗ is called the optimal lag, if the delayed auto-
correlation at τ∗ of the desired source signal s1 is non-zero, while the delayed
autocorrelation at τ∗ of other source signals is zero. Here all of the source signals
are supposed to be mutually independent.

In addition, we give the definition of the optimal weight vector as follows:

Definition 2. The column vector w∗ is called the optimal weight vector of the
desired source signal s1, if the following relationship holds:

(w∗)TVAs = cs1, (2)

where c is a non-zero constant, V is a whitening matrix, and A is a mixing
matrix.

3 Framework of the Proposed Algorithm

Based on the assumptions in the previous section, we have proposed a two-stage
extraction algorithm framework [3], shown in Fig.1. The first stage is called the
capture stage. In this stage, the algorithm coarsely extracts the desired source
signal by using correlation information. At the end of the stage, we obtain the
weight vector ŵ. But it can be shown that due to some practical issues [2,3] ŵ is
only close to the optimal weight vector w∗. Therefore the captured source signal
ŷ = ŵTx is still mixed by the “cross-talk noise”.

Next, in the second stage, we exploit the independence assumption and use
the output of the first stage, i.e. ŵ. At the end of this stage, we obtain a sub-
optimal solution w̄ 1, which is much closer to w∗ than ŵ is. Thus we finally
obtain the desired source signal ȳ = w̄Tx, which is almost not mixed by the
“cross-talk noise”.

In the framework we will propose an improved extraction algorithm with
higher performance, even if the desired source signals have the same period or
are near Gaussian.
1 Note that in practice we almost cannot obtain the optimal solution w∗.
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Stage 1 Stage 2X
n wŵ

n

Fig. 1. The framework of the proposed algorithm

3.1 Finding Lags

In practice we cannot find the optimal lag, and we can only find lags that satisfy
E {s1(k)s1(k − τi)} > E {sj(k)sj(k − τi)} , ∀j �= 1, i = 1, · · · , P . Thus, due
to performance consideration [2] we suggest to select several suitable lags that
correspond to the time structure of the desire source signal, instead of selecting
only one lag. For example, for a periodic signal we select the lags corresponding
to its fundamental period and multiple periods. The use of several lags, instead
of only one lag, can improve the extraction performance, as shown in [3].

There are many methods for finding these lags or the temporal structures [7].
For example, the cepstrally transformed discrete cosine transform [11] can be
used to detect the periods of source signals, even if the strengths of signals differ
by about 60 dB. In addition, in some applications, such as biomedical signal
processing, the lags are often readily available [7,8].

3.2 The First Stage: Coarse Recovery

After choosing suitable lags τi(i = 1, · · · , P ) and whitening the original obser-
vations, the first stage employs our previously proposed algorithm [2] to obtain
the weight vector ŵ:

ŵ = EIG
( P∑

i=1

(
Rz(τi) + Rz(τi)T

))
, (3)

where Rz(τi) = E{z(k)z(k − τi)T }, z(k) are the whitened observations, and
EIG(Q) is the operator that calculates the normalized eigenvector corresponding
to the maximal eigenvalue of the matrix Q.

If the desired signal is periodic, then the algorithm (3) can be rewritten as

ŵ = EIG
( P∑

i=1

(
Rz(iτ) + Rz(iτ)T

))
, (4)

where τ is the fundamental period of the desired source signal. If several desired
source signals have the same period, they still can be extracted under some weak
conditions, confirmed by the following theorem.
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Theorem 1. Suppose there are q source signals (s1, · · · , sq) that are mutually
uncorrelated and have the same period N , and also suppose their autocorrelations
satisfy E{si(k)si(k−N)} �= E{sj(k)sj(k−N)}, ∀i �= j and 1 ≤ i, j ≤ q. Without
lose of generality, further suppose r1 > · · · > rq, where ri = E{si(k)si(k −N)}.
Then the i-th source signal can be perfectly extracted by the weight vector wi

that is the normalized eigenvector corresponding to the i-th largest eigenvalue of
E{z(k)z(k −N)T }.
Proof: Since wi is the normalized eigenvector corresponding to the i-th largest
eigenvalue of E{z(k)z(k − N)T }, we have E{z(k)z(k − N)T }wi = λiwi, i =
1, · · · , q, where λi is the i-th largest eigenvalue. In other words, VAE{s(k)s(k−
N)T }ATVT wi = λiwi. Since VA is an orthogonal matrix, then E{s(k)s(k −
N)T }(ATVTwi) = λi(ATVTwi), indicating that (ATVTwi) is the normalized
eigenvector corresponding to the eigenvalue λi of E{s(k)s(k−N)T }. Due to the
distinction of the eigenvalues of E{s(k)s(k − N)T }, we can deduce that λi is
its i-th largest eigenvalue, i.e., λi = ri. According to the assumptions and the
previous development, E{s(k)s(k−N)T } is a diagonal matrix, and thus we have
(AT VTwi) = ei, whose the i-th element is one while other elements are zero.
On the other hand, we have y = wT

i z = wT
i VAs = eT

i s, implying the i-th source
signal is perfectly extracted. �

The algorithm (3) has many advantages (see [2,3] for details). However, although
it can achieve good extraction quality, it can be shown that the algorithm is
insufficient to perfectly recover the desired source signal, and that the solution
ŵ in this stage is just close to the optimal weight vector w∗ [3]. Thus, to make
the solution ŵ further closer to w∗, in the second stage we derive a higher-order
statistics based algorithm.

3.3 The Second Stage: Fine Extraction

Under the constraint ‖w‖ = 1, the maximum likelihood criteria for extracting
one source signal is given by{

min l(w) = −E{log p(wT z(k))}
s.t. ‖w‖ = 1 (5)

where p(·) denotes the probability density function (pdf) of the desired source
signal. Note that minimizing (5) only leads to one source signal, but not neces-
sarily the desired source signal s1. However, if we use the ŵ from the first stage
as the initial value, then we can necessarily obtain the s1.

By the Newton optimization method, we obtain the following algorithm for
extracting the desired source signal s1:{

w+ = w− μE{f(wT z
)
z
}
/E
{
f ′(wT z

)}
w = w+/‖w+‖, (6)

with the initial value w(0) = ŵ. μ is a step-size that may change with the
iteration count. In particular, it is often a good strategy to start with μ = 1.
f(·) is a nonlinearity, given by f(·) = −(log p(·))′ = −p(·)′/p(·).
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In general, the pdf p is unknown and should be estimated. We present a density
model that combines the t-distribution density model, the generalized Gaussian
distribution density model and the Pearson system model. Our motivation is that
the nonlinearity derived from the t-distribution is more robust to the outliers and
avoids the stability problem [9], and that the nonlinearity derived from Pearson
system can achieve good performance when the desired source signals are skewed
and/or near Gaussian [10].

We use the t-distribution [9] to model the super-Gaussian distribution. The
derived nonlinearity is

f(y) = −p(y)′/p(y) =
(1 + β)y
y2 + β

λ2

. (7)

where parameters β and λ2 can be calculated by λ2 = βΓ (β−2
2 )/(2m2Γ (β

2 )) and
κt = m4

m2
2
− 3 = 3Γ (β−4

2 )Γ (β
2 )/(Γ (β−2

2 )2)− 3, where m2 and m4 are respectively
the second-order moment and the fourth-order moment of the distribution. It
is clear to see that the function f(y) approaches to zero when the value of y
abruptly increases, implying that it is robust to the undue influence of outliers.

To extract the sub-Gaussian source signal, we use the well-known fixed non-
linearity

f(y) = y3, (8)

which belongs to the generalized Gaussian density model.
In some applications the desired source signals are skewed, such as the com-

ponents of the ECG with absolute skewness ranging from 1 to 10. In addition, in
some cases the desired source signals are close to Gaussian. Due to these facts,
we use the Pearson system to derive a family nonlinearities that are more suit-
able to extract the skewed and/or near Gaussian signals than the ones derived
from the t-distribution and the generalized Gaussian distribution.

The nonlinearity derived from the Pearson system is given by [10]

f(y) = −p
′
p(y)
pp(y)

= − (y − a)
b0 + b1y + b2y2 , (9)

where a, b0, b1 and b2 are the parameters of the distribution, calculated by a =
b1 = −m3(m4 + 3m2

2)/C, b0 = −m2(4m2m4 − 3m2
3)/C, b2 = −(2m2m4 − 3m2

3 −
6m3

2/C, where C = 10m4m2− 12m2
3− 18m3

2. Note that this type of nonlinearity
is also robust to the outliers, just as the nonlinearity given in (7).

Now we have presented three types of nonlinearities for three types of signals.
According to the estimated moments, the algorithm (6) adopts suitable nonlin-
earities. A procedure for the adaptive nonlinearity selection using the sample
moments may be given as follows.

Repeat until convergence:

1. Calculate the second, third and fourth sample moments m̂2, m̂3, m̂4 for cur-
rent data y(l) = wT (l)z, where l represents the iteration number.
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2. According to the estimated moments, select the nonlinearity as follows:
– If m̂4 > m̂2

3 + 4.5, then calculate the nonlinearity (7);
– if m̂4 < 2.5, then use the nonlinearity (8);
– if 2.5 ≤ m̂4 ≤ m̂2

3 + 4.5, then calculate the nonlinearity (9).
3. Calculate the weight vector w(l + 1) using the algorithm (6).

4 Simulations

In the first simulation, we generated seven zero-mean and unit-variance source
signals, shown in Fig.2. Each signal had 2000 samples, and its statistics prop-
erty is shown in Table 1. These signals were randomly mixed and whitened. Our
goal was to extract the temporally correlated source signals s1, s2, s3, s6 and s7
one by one. After estimated the suitable lags for extracting each desired signal,
we employed our proposed two-stage algorithm (TCExt). To make comparisons,
we also employed the akExt algorithm [4], the cICA algorithm [5], the FICAR
algorithm [6], the SOS algorithm [7], the CPursuit algorithm [13], the SOBI al-
gorithm [12] and the pBSS algorithm [14] on the whitened signals. Note that,
in this simulation both the cICA and the FICAR could not extract the source
signals due to the difficulty to design the reference signals, but in order to com-
pare the extraction quality, we designed suitable reference signals in advance
according to the waveforms of the source signals. To compare the extraction
performance we used the following performance index

PI = −10E{lg(s(k)− s̃(k))2} (dB) (10)

where s(k) is the desired source signal, and s̃(k) is the extracted signal (both
of them are normalized to be zero-mean and unit-variance). The higher PI
is, the better the performance is. The averaged performance indexes over 100
independent trials of each algorithm are shown in Table 2, from which we can
see that the proposed algorithm generally has better performance than the other
algorithms.

Table 1. The properties of the source signals in Fig.2. ‘p’ denotes the corresponding
signal was strictly periodic; ‘c’ denotes temporally correlated but not strictly periodic;
‘n’ denotes random noise without any time structure.

source signal s1 s2 s3 s4 s5 s6 s7

periodicity p c c n n c p
kurtosis -1.5 -1.0 0.7 -1.2 2.8 0.4 7.5

In the next experiment we applied our algorithm to extract potentials evoked
by three types of geometrical figures stimuli, and our objective is to classify each
type of figures according to the extracted visual evoked potentials (VEPs).

One right-handed subject, aged 21, volunteered to participate in the present
study. The subject was healthy both in psychological and neurological, and had
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Fig. 2. Source signals. (a) A segment of the seven source signals. Note that s1, s2, s3 had
the same period, but differ in autocorrelations. (b) The corresponding autocorrelation
functions of the source signals of (a).

Table 2. The averaged performance index of each algorithm over 100 independent
trials. ‘-’ indicates that PI was less than 5 dB or the algorithm could not converge in all
the trials. ‘akExt(1)’ indicates that the value of the parameter τ of the akExt algorithm
was equal to the fundamental period of the desired signal; ‘akExt(2)’ indicates the
value of τ was equal to the doubled fundamental period. The same with ‘SOS(1)’ and
‘SOS(2)’.

TCExt akExt(1) akExt(2) SOS(1)SOS(2) cICAFICARSOBICPursuit pBSS
PI of s1 48.0 17.6 15.9 41.2 37.3 20.6 13.2 8.9 48.3 7.9
PI of s2 26.9 - - - - - - 8.7 27.8 10.2
PI of s3 12.2 - - - - - - 14.6 10.7 6.7
PI of s6 22.0 34.9 - - - - 20.9 32.2 21.4 -
PI of s7 57.3 42.0 37.7 45.6 41.4 39.4 34.3 35.7 36.2 20.1

a normal vision. He was seated in a comfort and fixed chair, 0.7m far from the
screen of monitor, in a sound and light attenuated RF shielded room.

Three types of geometrical figures(five different-size units for each type) were
presented to the subject, i.e. the circle, the square, and the triangle figures. In
each trial, a type of geometrical figures, say the circle figure, appeared according
to the sequence illustrated in Fig.3. In order to reduce the subject’s expectation,
each trial showed a type of figures randomly (each type was showed in identical
probability). EEG signals were recorded (see Fig.4), sampled at 1000 Hz (thus
each trial had 3174 samples) and bandpass filtered between 0.1 Hz and 200 Hz,
by a 64-channel EEG system (SynAmps2, Neuroscan, at our Lab for Perception
Computing at Shanghai Jiao Tong University, China).

From the original EEG data, we used the proposed algorithm to extract three
VEP components by the following procedure. Suppose we had extracted q (q < 3)
components of VEPs, which corresponded to the first q largest eigenvalues among
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Fig. 3. A stimuli sequence in one trial. The X axis showed the lasting time of the
presence or the non-presence of the figure stimuli. The Y axis showed the relative size
of the geometrical figure.
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Fig. 4. Five-second segments of the original EEGs recorded by sensors (from Channel
44 to Channel 58). (a) EEGs of the Circle Class after the epoch-finding. (b) EEGs
of the Square Class after the epoch-finding. (c) EEGs of the Triangle Class after the
epoch-finding.

all of the eigenvalues of
∑P

i=1(Rz(iτ) + Rz(iτ)T ), and we extracted the next
VEP component:

1. Applied the proposed algorithm to extract the component that corresponded
to the (q + 1)-th largest eigenvalue of

∑P
i=1(Rz(iτ) + Rz(iτ)T );

2. To ensure the extracted component was not the component of artifacts, we
calculated its autocorrelation;

3. Since the components of VEPs exhibited time-locked activation to task-
related events and those of artifacts did not, the autocorrelations of VEP
components had peaks locating at lag 3174, lag 6348, lag 9522, et al., while
those of artifacts components did not. By this method, if we found the ex-
tracted component was not a component of VEPs, then we discarded it and
went back to step 1. It should be noticed that there are many approaches, e.g.
[15], that can help us further distinguishing artifacts from evoked potentials.

This loop continued until we extracted three VEP components; each component
consisted of 120 trials. Then the epoch-finding was conducted using the Neu-
roscan toolbox so that the trials corresponding to the same type of figures were
gathered into a class (Fig.5 shows the average result of the trials belonging to the
same extracted VEP component in each class). Thereby we had three classes,
namely the Circle Class, the Square Class and the Triangle Class.

We randomly selected 60 trials of each extracted component as the training set
and the remained trials of each extracted component as the test set. For classifi-
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Fig. 5. The averaged trials. The signal in i-th row and j-th column is the average
result of the trails belonging to the i-th extracted VEP component of the j-th class
(i, j = 1, 2, 3).

cation, the feature vectors of each class were constructed as follows: we selected
some features from each trial of the first, the second and the third extracted
components, respectively, and these features were concatenated orderly to form
a feature vector. Here we selected 30 features from the frequency components of
each trial according to the MIFS-U algorithm [16], an effective feature selection
method based on mutual information. Finally, we used the multi-category SVM
as the classifier, and the classification accuracy reached 93.2%.

5 Conclusions

We propose a two-stage algorithm for extracting source signals that satisfy some
given temporal structure. The algorithm is suitable to extract the periodic or
quasi-periodic source signals, even if the desired source signals have the same pe-
riod (but they should have different autocorrelation structure). Compared with
many widely-used extraction algorithms, the algorithm has better performance,
verified by simulations and experiments.
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Abstract. This paper examines the relation between the degree of experimen-
tally induced focal ischemia in the left-brain of 24 experimental rats and Higher 
Order Statistics (HOS) such as the bispectrum and the bicoherence index of 
scalp EEG recorded at the time of the ischemic event. The aim is to propose the 
assessment of HOS in non-invasive scalp EEG to facilitate identification and 
even classification of focal ischemic events in terms of the degree of tissue 
damage. The latter is achieved by a supervised, multilayer, feed-forward Artifi-
cial Neural Network (ANN). The ANN utilizes a back propagation algorithm to 
classify ischemic states of the brain. The target values used during the training 
session of the network are the degree of ischemic tissue damage (graded as se-
rious, middle and slight) as assessed by histological and immunhistochemical 
methods in the brain slice of the experimental animals. The results show that 
the ANN can correctly identify and classify ischemic events with high precision 
91.67% based on HOS measures of scalp EEG obtained during ischemia. These 
findings may potentially be of great scientific merit, especially due to their pos-
sibly very important medical implications: a potential non-invasive method that 
reliably identifies the presence and the degree of ischemia at the time of its oc-
currence. 

1   Introduction 

Cerebral vascular diseases are one of the most important factors influencing morbidity 
and mortality now [1]. Most of the cerebral vascular diseases can be associated with 
cerebral ischemia. A noninvasive technique for early detection of brain's ischemic 
injury is quite needed [2][3], but at present, no objective method to detect and monitor 
brain’s ischemic injury exist in clinical diagnosis. 

Since cerebral ischemia can directly affect the brain function, so neuroelectrical 
signals(such as EEG) analysis seems to be a good choice to look for a correlation 
between the state of injury and the signals. However, the use of EEG as a measure of 
estimation of ischemic injury has achieved very limited success, this partly may be 
attributed to the fact that commonly used signal processing methods is based on the 
assumption that EEG arises from a linear and stationary process. 
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The previous works showed that bispectrum analysis of the EEG can yield vari-
ables, which might correlate with ischemic cerebral injury. These parameters are 
sensitive to focal ischemic cerebral injury, such as the maximum magnitude and the 
WCOB[4]. In this paper, a further method is introduced to detect the extent of cere-
bral injury. 

2   Experiment and Data Acquisition 

2.1   Animal Experiment of Focal Brain's Ischemic Injury  

Twenty-four adult SD rats weighting 200–350g, either sex, were anesthetized by 
injecting 2% sodium pentobarbital into abdominal cavity(0.8ml/250g). Left carotid 
arterys were separated for about 0.8cm length and the blood vessels were tied up at 
the heart side and incised at another side. A cannula was inserted in the trachea and a 
thin polyethylene catheter was placed in the common carotid artery, infused physio-
logical saline along the direction of blood flow for 8 min, 18 min and 30 min to cause 
cerebral mild acute ischemia in different extent. The rate of infusion maintains at 
0.2ml/min and the pressure was adjusted at 14 kPa to prevent the blood offering by 
lateral blood circulation. After surgery, the rat was kept at rest for a few minutes to 
stabilize it. Environment temperature was maintaining at 28°C ± 3°C. 

2.2   EEG Data Collection 

After preparation, the rat head was fixed in a stereotaxic frame and the scalp was 
dissected. Four channels of EEG using subdermal needle electrodes with shielded 
cable, placed in left-frontal-parietal, left occipital, right frontal-parietal and right oc-
cipital areas, labeled lead1, 2, 3, 4, respectively, were recorded by Spectrum32 
(CADWELL Lab, USA), with the reference points at the nose and the ground elec-
trodes at the tongue. The EEG data were filtered with a high-pass filter at 0.3Hz and a 
low-pass filter at 70Hz and sampled at 200Hz, digitized to 12bits. A 50Hz notch filter 
was also employed. 

The EEG signals were recorded after graded ischemic injury of 8 min, 18 min and 
30 min, respectively. Each record is about 20 s long. The number of the experimental 
rats in different times of ischemia was arranged as Table 1. 

Table 1. Number of rats arranged in the experiment 

Ischemia time Left brain injury 

8 min 8 

18 min 8 
30 min 8 
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Table 2. States classification in HSP70 and HE 

Injury level Classification rules description 

1.0 Injury area was less than 10% 

0.5 More than 10% but less 20% 

0.0 Injury area was more than 20% 

2.3   States Classification of Injury 

After the experiment the rats were killed for immunohistochemistry and histopathol-
ogy study. Some slices were made by cryoultramicrotomy to perform immunohistical 
chemical experiment (HSP70 expression) and conventional hematoxylin and eosin 
(HE) staining. State of ischemia was graded as three different levels (serious, middle 
and slight) by observing the extent from slices of HSP70 and HE staining. The set of 
non-EEG criteria was given in Table 2. The corresponding EEG was labeled from 
zero to one in increments of 0.5. 

3   Method 

3.1   Bispectrum Analysis  

The conventional power spectra is useful for studying only the linear mechanisms 
governing the process since it suppresses phase relations between frequency compo-
nents[4]. At present, higher-order spectra, especially bispectrum play an important 
role due to their ability of preserving non-minimum phase information, as well as 
information due to deviations from Gaussianity and degrees of nonlinearities in time 
series. Since we expected EEG to have nonlinearities in the generating mechanism, 
bispectrum analysis of EEG might reveal additional non-Gaussian and nonlinear in-
formation due to its certain advantage [5][6]. 

3.1.1   Definition of Bispectrum  
Higher-order spectra are multi-dimensional Fourier transforms of higher-order statis-
tics. Thus, the bispectrum is defined by third-order cumulant or third-moment se-
quence. Let )(nX be a stationary, discrete, zero-mean random process and its third-

order cumulant sequence ),( 213 ττxc  will be identical to its third-moment sequence:  

{ })()()(),( 21213 ττττ ++= kXkXkXEc x  (1) 

where {}⋅E denotes statistical expectation. The bispectrum ),( 21 ωωB of )(nX is de-

fined as the two-dimensional(2-D) Fourier transform of ),( 213 ττxc  
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In general, ),( 21 ωωB is complex and a sufficient condition for its existence is that 

),( 213 ττxc  is absolutely summable.  

3.1.2   TOR Method to Estimate Bispectrum 
Consider a real pth order autoregression )(AR process )(nX described by  

=
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where )(nW is a non-Gaussian function with { } 0)( =nWE  and { } 0)(3 ≠= βnWE , 

α  is the AR parameter, and β is the third-order moment of the driving noise. )(mX  

is independent of )(nW  for nm < .  

Since )(nW is third-order stationary it follows that )(nX  is also third-order sta-

tionary assuming it is a stable AR model. The third moment of the )(nX is also  

described as { })()()(),( 2121 ττττ ++= nXnXnXER  and it satisfies the following 

third-order recursion: 
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where ),( 21 ττR is the third moment sequence of the AR process and ),( lkδ is the 2-D 

unit impulse function. Then, we can estimate the third-order moment ),(ˆ
21 ττR using 

the conventional indirect bispectrum estimation method [7]. Substituting ),( 21 ττR  by 

),(ˆ
21 ττR in (4), we can obtain the estimated value of bispectrum  

),()()(),( 212121 ωωωωβωω ∗= HHHB  (5) 

or more conveniently the normalized estimate 
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This method to estimate bispectrum is called the third-order recursion (TOR) 
method.  

3.1.3   Definition of WOCB 
To quantify the diagnosis indicators, Zhang et al defined a WCOB[8]. Supposed the 
bispectrum of point ),( yx is xyB , then the ),( 21 mm ffWCOB in the bi-frequency plane 

can be calculated as 

=
xy

xy
m

B

xB
f1      =

xy

xy
m

B

yB
f2  (8) 

The WCOB is a vector with two variables mf1 and mf2 . 

3.1.4   Definition of Bicoherence Index 
Bispectrum estimation is useful in detecting and quantifying quadratic phase coupling 
present between any two-frequency components of a process. A function called the 
bicoherence index combines two completely different entities namely the bispectrum 
and the power spectrum of a process and is given by Huber et al. in [9] as 

),()()(

),(
),(

2121

21
21 ωωωω

ωωωω
PPP

B
b =  (9) 

where ),( 21 ωωB and )(ωP are the bispectrum and the power spectrum of the proc-

ess, respectively. ),( 21 ωωb  is the bicoherence index at frequencies ),( 21 ωω . 

3.2   Artificial Neural Networks 

It is more likely that the focal ischemic states would be differentiated by the bispec-
trum of the EEGs if we analyze the values of the bicoherence index and WCOB. 
Among these values and the ischemic states, there may be a certain correlation, which 
may be difficult to express using analytical methods, but can be captured by a multi-
layer ANN, as the hidden and output nodes used a logistic sigmoidal activation func-
tion to analyze the nonlinearities in the data. In our study, compared with three-
layer(one hidden layer) ANNs, the four-layer ANN(two hidden layers) has a certain 
advantage in estimating the ischemic states(see Table 4). The number of the second 
hidden units and the optimum number of clusters are determined according to analysis 
of  input and output feature space[10, 11] and pseudo F-statistic(PFS) clustering tech-
nique[12]. The optimum result of ANN structure is 12-7-2-1. We build up the net-
work in such a way that each layer is fully connected to the next layer. 

The input vector of the ANN consists of four values of maximum bicoherence in-
dex and eight values of mf1 , mf2 from WCOB, which were extracted from four-

channel EEG of each rat. The output will be the estimation result of brain’s injury. 
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Training of the ANN, essentially an adjustment of the weights, was carried out on 
the training set, using the back-propagation algorithm. Our ANN was trained using 
‘leave-one-out’ strategy, because of our small number of sample recording [13]. 

4   Results 

Fig 1 (a)~(d) shows the bispectrum contour maps of a SD rat’s EEG from lead 1 at the 
four different ischemic stages. From these figures, we can observe that the contour 
maps become quite different for the left brain at different ischemia stages (different 
ischemic extent).  

Fig 2 shows changes of the brain’s frequency coordinates of WCOB from four-lead 
EEGs at the different ischemia stages. Before ischemia, the 1f  and 2f  of left and 
right brain is almost identical. When the ischemia lasts 8 min, all of the frequency 
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Fig. 1. Bispectrum contour maps of a SD rat’s EEG from lead 1 at the four different stages,  (a) 
ischemia starting, (b) 8 min, (c) 18 min and (d) 30 min 
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Fig. 2.  Changes of the frequency coordinates of WCOB during ischemic injury in a typical rat, 
(a) f1       (b) f2 

values increase. This may be caused by the emergent response when ischemia is being 
induced. When the ischemia lasts 18 min, 1f  values decrease. Especially, the values 

of left brain (ischemic region) decrease more quickly than that of right one. But 2f  

values of right brain increase when the left brain’s values decrease at this ischemia 
stage. When the ischemia lasts 30 min, the frequency values of left brain decrease 
rapidly, while the right brain’s values decrease slowly. The values of left brain are not 
only less than that of right brain, but also far less than that of normal state (ischemia  
0 min). 

Fig. 3 displays changes of maximum bicoherence index at different ischemia 
stages. When the ischemia is induced, three of the four values decrease. With the 
continuance of ischemia, all indexes increase. But the values of left brain increase 
quickly, the right brain’s values increase just a little. 

Although these parameters seem to be rather sensitive to ischemic extent, it is dif-
ficult to use them as an accurate measure for quantitative discrimination of ischemic 
states. ANN can help us to capture the certain nonlinear correlation between these 
parameters and the ischemic extent. 
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Fig. 3. Changes of the maximum bicoherennce indexes during ischemic injury in a typical rat 
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According to the rule of injury state classification, the results of testing our pro-
posed scheme are shown in Table 3. In total, one rat with slight ischemic state was 
misclassified as middle ischemia, and one rat with middle ischemic state was misclas-
sified as slight one. For injury extent assessment, the average accuracy is 91.67%. We 
tested our scheme using different ANNs, for four-layer (12-7-2-1) and three-layer 
(12- 4-1) ANNs, the accuracy for the injury extent prediction is 91.67 and 83.33%, 
respectively. The comparison of the performances is shown in Table 4. 

Table 3. Testing results of ischemic extent(12-7-2-1) 

extent of ischemia 
induced 

Number of 
rats 

Misclassified rate 
for injury extent 

Accuracy 

slight  8 1/8 87.5% 

middle 8 1/8 87.5 % 

serious 8 0/8 100 % 

Table 4. Comparison of performances of different ANN employed 

Types of ANN employed Accuracy for the extent prediction  

Four-layer ANN (12-7-2-1) 91.67 %  

Three-layer ANN (12-4-1) 83.33 %  

5   Discussion 

The previous study shows [4] that the contour maps of brain's bispectrum at the dif-
ferent ischemic stages may give more comprehensive information in another way. 
The power spectra cannot show the obvious difference among the different ischemia 
stages and distinguish the ischemic region; the visible changes of the EEG rhythm 
parameters δ ,θ ,α and β  are also not clear.  

Bispectrum is based on the third-order statistics which preserves phase information 
present in a signal, unlike the power spectrum that is phase blind. The phase of a 
signal is particularly critical in analyzing nonlinear systems where sinusoidal compo-
nents of distinct frequencies could interact nonlinearly to produce one or more sinu-
soidal components at sum and difference frequencies [5,14,15]. EEG, being generated 
by a nonlinear system, would be expected to have many such sinusoidal components 
produced due to the nonlinearity in the system. The third-order statistics, therefore, 
help in identifying those components. In this paper, we propose a new approach to 
early detect ischemic extent using bispectrum quantification analysis method. The 
results show that the approach is a new potential way to assess cerebral ischemic 
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injury. Our studies further indicate that, in most cases, the EEG contains sufficient 
information to estimate brain’s ischemia, the key is whether or not the method used is 
suited to the nature of the EEG signal properly. 

Early quantitative diagnosis of cerebral injury and prognosis for neurological re-
covery are a complicated concept and it is difficult to be accurately evaluated by a 
single parameter or single method. Combination of different methods, especially 
nonlinear methods may be a potential trend.     

During the on-line application of our system, the recorded EEG and other parame-
ters can also be stored in the specific database for updating. Thus, every certain pe-
riod, the ANN is retrained off-line using the newly updated specific database, and 
then the new weights are sent to the trained ANN to update its weights. In so doing, 
the system can keep ‘dynamic update’ during real application. 

When the number of samples is very large, it would be reasonable to partition the 
data into a training set and a test set. But owing to the restricted experimental condi-
tions, we have only 24 recordings from 24 SD rats for training and testing the ANN. 
A good way to tackle such a dilemma would be to train the ANN on samples from n–
1 rats and test on samples from the remaining one. This process is repeated n times 
and each time a different rat is left behind. That is so-called ‘drop-one-rat’ method, or 
‘leave-one-out’ method [13], it is a standard method to evaluating classification sys-
tems, especially in the case of small samples for training and test. As the training and 
test samples belong to different rats, there is not any bias in the results. 

To supply the criterion for distinguishing the states of ischemic injury, we analyzed 
the cellular expression of HSP70 and conventional HE staining in the animal brain. 
The HE stained and HSP test show that the left brain is lightly insulted, and the right 
brain is normal. No HSP70 proteins were found in the normal brain tissue. This is 
identical to our analysis result. These methods can successfully verify our ischemic 
experiment model and our new approach. 

Although the results of this initial study are significant, more animal experiments 
and clinical studies need to be performed to test the effectiveness of the method. 
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Abstract. In this paper, an adaptive array beamforming by an unstruc-
tured neural network based on the mathematics of holographic storage
is presented. This work is inspired by similarities between brain waves
and the wave propagation and subsequent interference patterns seen in
holograms. Then the mathematics to produce a general mathematical
description of the holographic process is analyzed. From this analysis it
is shown that how the holographic process can be used as an associative
memory network. Additionally, the process may also be used a regular
feed-forward network. The most striking aspect of these network is that,
using the holographic process, the apriori knowledge of the system may
be better utilized to tailor the neural network for an adaptive beamform-
ing problem. This aspect, makes this neural network formation process
particularly useful for the beamforming.

Keywords: holographic processing, wave propagation, Green’s func-
tions, radial basis functions, feed-forward neural network, adaptive beam-
forming.

1 Introduction

Here a hologram formation process will be analyzed by the distributed signal
processing principles. We will study on how we may use the knowledge gained
from holograms to construct the adaptive beamforming radial basis network. A
hologram is formed when momochromatic, coherent light is reflected off an ob-
ject, then interfered with by another monochromatic, coherent reference beam[1].
Since the beams are monochromatic, they can be represented in rotating phasor
form

u(x, t) = �{A(x)ejφ(x)ej2πft} (1)

where x is a position, and f is the frequency. This monochromatic wave must
satisfy the Maxwell equation[2],

∇2u− 1
c2
∂2u

∂t2
= 0 (2)

Since the time dependence is known a priori[3], the complex phasor function

U(x) = A(x)ejφ(x) (3)
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may be used. Equation 3 must then satisfy the Helmholtz equation[3],

(∇2 + k2)U = 0 (4)

where k = 2πv/c = 2πλ is the wave number. Equation 4 is also known as the
reduced wave equation, and has a known solution using Green’s functions[4]. Let
G be defined such that

LG = δ(xα − xβ) (5)

For a system with operator L
LU = h (6)

for all x in a volume V . Multiplying equation 6 by G and Equation 5 by U(xβ),
then integrating and subtracting the equation produce∫

V

(U(xβ)LG(xα, xβ)−G(xα, xβ)LU(xα))dV = U(xβ −
∫

V

G(xα, xβ)h(xα)dV

(7)
where the α-plane is the object plane and theβ-plane is the recording plane.
Equation 7 is in a general mathematical form, the specifics of the hologram
problem reduces the complexity. The operator L has the form

LU = (∇2 + k2)U (8)

Therefore, Equation 7 may be simplified and rewritten as∫
V

U(xβ)(∇2)G(xα, xβ)dV −
∫

V

G(xα, xβ)(∇2)U(xα)dV = U(xβ) (9)

However, the left side of Equation 9 can be evaluated as∫
V

(U(xβ(∇2)G(xα, xβ)−G(xα, xβ)(∇2)U(xα)dV =
∫

∂V

(U
∂G

∂n
−G∂U

∂n
)dS

(10)
where n is the normal to the surface ∂V of the volume V . With proper choice
of the Green’s function[3] the right hand side of Equation 10 reduces to∫

V

(U(xβ(∇2)G(xα, xβ)−G(xα, xβ)(∇2)U(xα)dV =
∫

∂V

U
∂G

∂n
dS (11)

A reference wave R, is now added to the propagated wave to store multiple
images at various angles.

I(xβ) = |R(xβ) + U(xβ)|2 (12)

The propagated wave equation is actually an integral transform equation[5]. The
kernel of the equation is

Kα−β(xα, xβ) =
∂G(xα, xβ)

∂n
(13)
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The formation process may now be written in a general mathematical form. Let
Uα(xα) be the signal from the object. This signal propagates to a new location
xβ such that

Uβ(xβ) =
∫

Sα

Uα(xα)Kα−β(xα, xβ)dxα (14)

where Sα is the α-plane. This solution is for only some operators[6]. The math-
ematical description of L such that Uβ in Equation 14 is a solution is currently
being investigated. An important result occurs, when δ(xα−xR) is the boundary
condition, where δ is the Dirac delta function and xR is a reference point on the
α-plane. The resulting signal at a point xγ is

Uγ(xγ) =
∫

Sα

δ(xα − xR)Kα−γ(xα, xγ)dxα = Kα−γ(xR, xγ) (15)

Similarly, at a point xβ the wave would be

Uβ(xβ) = Kα−β(xR, xβ) (16)

However, if we let the β-plane be the boundary, and observe the signal at the
γ-plane, then we get

Uγ(xγ) =
∫

Sα

δ(xα − xR)
∫

Sβ

Kα−β(xα, xβ)Kα−γ(xα, xγ)dxβdxα (17)

From Equations 16 and 17,

Kα−γ(xα, xγ) =
∫

Sβ

Kα−β(xα, xβ)Kβ−γ(xβ , xγ)dxβ (18)

The general mathematical description of the recorded wave is

ψ(xβ) = Uβ(xβ) +R(xβ) (19)

The recorded information is actually the norm of ψ. Let I(xβ) represent the
intensity stored at a location xβ , then

I(xβ) =< ψ(xβ , ψ(xβ > (20)

where < ., . > is the inner product. For the case of the hologram, the norm is

I(xβ) = (ψ(xβ)∗ψ(xβ))1/2 (21)

where ∗ designates the complex conjugate transpose.

2 Hologram Reconstruction

If the magnitude and phase information are stored, an inversion process may be
used to recover Uα(xα)[7]. Let

Z(ξ) =
∫

Sβ

H(ξ, xβ)Uβ(xβ)dxβ (22)
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be an invertible transform. then,

Z(ξ) =
∫

Sβ

H(ξ, xβ)
∫

Sα

K(xα, xβ)Uα(xα)dxαdxβ

=
∫

Sβ

∫
Sα

H(ξ, xβ)K(xα, xβ)Uα(xα)dxαdxβ (23)

At this point, a restriction needs to be placed upon the kernel K. The kernel
must be able to be written as

K(xα, xβ) = K(xβ − xα) (24)

With this restriction, the function for Uβ(xβ) becomes a convolution integral.

Z(ξ) =
∫

Sβ

H(ξ, xβ)
∫

Sα

K(xβ − xα)Uα(xα)dxαdxβ

=
∫

Sβ

H(ξ, xβ)K(xβ)dxβ

∫
Sα

H(ξ, xα)Uα(xα)dxα (25)

if, ∫
Sβ

H(ξ, xβ)K(xβ − xα)dxβ = H(ξ, xα)
∫

Sβ

H(ξ, xβ)K(xβ)dxβ (26)

Let xc = xβ − xα, then the left hand side of Equation 26 becomes∫
Sβ

H(ξ, xβ)K(xβ − xα)dxβ =
∫

Sβ

H(ξ, xc + xα)K(xc)dxc (27)

or, ∫
Sβ

H(ξ, xβ)K(xβ − xα)dxβ =
∫

Sβ

H(ξ, xβ + xα)K(xβ)dxβ (28)

From, Equation 28 and Equation 26∫
Sβ

H(ξ, xβ + xα)K(xβ)dxβ =
∫

Sβ

H(ξ, xα)H(ξ, xβ)K(xβ)dxβ (29)

or,
H(ξ, xβ + xα) = H(ξ, xα)H(ξ, xβ) (30)

Equation 30 is valid for most of the transform such as the Fourier transform[5].
To complete the inversion of Uβ, rearranging Equation 23, combining it with
Equation 25, and letting H−1 be the inverse operator of H , then

Uα(xα) =
∫

Sβ

∫
H−1(xα, ξ)(

∫
Sβ

H(ξ, xβ)K(xβ)dxβ)−1H(ξ, xβ)dξUβ(xβ)dxβ

(31)
under this condition we do not require the use of a reference signal, but we
require the storage of the magnitude and the phase of the signal.
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The reconstruction begins by multiplying I(xβ) and R(xβ). The new signal is
then propagated to the γ-plane[2], such that

Uγ(xγ) =
∫

Sβ

Kβ−γ(xβ , xγ)I(xβ)R(xβ)dxβ

=
∫

Sβ

Kβ−γ(xβ , xγ) < Uβ(xβ), Uβ(xβ) > R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < R(xβ), R(xβ) > R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < Uβ(xβ), R(xβ) > R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < Uβ(xβ), R(xβ) >∗ R(xβ)dxβ (32)

The first two inner product terms of Equation 32 are the squared norms of the
propagated wave and the reference wave, respectively. The third inner product
term will be the conjugate image, while the last inner product term will be
the recovered image after filtering[2]. Equation 32 is rewritten using the inner
product for holograms as

Uγ(xγ) =
∫

Sβ

Kβ−γ(xβ , xγ)||Uβ(xβ)||2R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ)||R(xβ)||2R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ)Uβ(xβ)∗R(xβ)R(xβ)dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ)Uβ(xβ)R(xβ)∗R(xβ)dxβ (33)

In the first term of Equation 33, we see that the two norm terms will only change
the magnitude of the resulting signal. Therefore, the first term in Equation 33
represents just a scaled version of the propagated reference wave at the same
angle of the reference wave. The second term of Equation 33 has the reference
wave squared. The resulting image will then be at twice the angle of the refer-
ence wave. The last term of Equation 33 has R(xβ)∗R(xβ) which is simply the
magnitude squared of the reference wave. The last term, therefore, becomes

R2
0

∫
Sβ

Kβ−γ(xβ , xγ)Uβ(xβ)dxβ (34)

By selecting the angle of the reference R properly, we may filter out the first two
terms of Equation 33. Figure 1 shows how process. By placing a spatial filter
centered on-axis that is the same size as the original image, the third term of
Equation 33 is extracted as
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Fig. 1. Schematics of the hologram processes

Ufiltered(xγ) = R2
0

∫
Sβ

Kβ−γ(xβ , xγ)Uβ(xβ)dxβ (35)

Equation 14 may be combined with Equation 35 to produce the final result. Such
that,

Ufiltered(xγ) = R2
0

∫
Sβ

Kβ−γ(xβ , xγ)
∫

Sα

Uα(xα)Kα−β(xα, xβ)dxαdxβ

= R2
0

∫
Sα

[
∫

Sβ

Kβ−γ(xβ , xγ)Kα−β(xα, xβ)dxβ ]Uα(xα)dxα (36)

The bracketed term in Equation 36 has already been shown to be Kα−γ(xα, xγ)
by Equation 18. Therefore, it is possible to recover Uα(xα) by inverting the
equation for Ufiltered(xγ). To show multiple images are recovered from the same
storage media, we take the sum of the inner products of the multiple sources as

I(xβ) =< U1 +R1, U1 +R1 > + < U2 +R2, U2 +R2 > (37)

where U1 and U2 are the propagated waves and R1 and R2 are the reference
waves with different angles of incident. If the signal from U2 is desired, I(xβ is
multiplied by the reference wave R2, such that

Uγ(xγ) =
∫

Sβ

Kβ−γ(xβ , xγ) < U1 +R1, U1 +R1 > R2dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < U2 +R2, U2 +R2 > R2dxβ (38)

The second term of Equation 38 will produce the same case as in Equation 33.
The first term, however, becomes
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Sβ

Kβ−γ(xβ , xγ) < ψ,ψ > R2dxβ =
∫

Sβ

Kβ−γ(xβ , xγ)(||U1||2 + ||R1||2)R2dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < U1, R1 > R2dxβ

+
∫

Sβ

Kβ−γ(xβ , xγ) < U1 +R1 >
∗ R2dxβ

(39)

where ψ = U1+R1. The only term in Equation 39 that will not shift the image by
at least the angle of R2 is (

∫
Sβ
Kβ−γ(xβ , xγ) < U1 +R1 >

∗ R2dxβ). The angles
of R1 and R2 will cancel in this case. But by picking the angles as multiplies
of a minimum angle φ we get |� R2 − � R1| > φ. Therefore, the resulting image
will be off-axis and will be filtered out by on-axis filter. The only image passing
through the filter will then be the desired image from U2.

3 Application of the Hologram Process to Radar
Beamforming

We will now show the hologram process can be used to create unstructured
neural networks. We will show that a feed-forward network which is a single
hidden layer radial basis function network is a subset of the general form derived
from holograms. And we will examine an adaptation of this network to adaptive
beamforming problem.

3.1 Adaptive Beamforming by Radial Basis Function Network

If a linear array system is considered with m identical isotropic sensors, where
the sensor separation is D as shown in Figure 2, the signal xi(n) received at the
ith array sensor is given by

xi(n) =
p∑

k=1

ske
jω0(i−l)τk (40)

for i = 1, ...,m, where ω0 = 2πfc, τk = (D/c)sinθk, the kth signal comes from
the directions of arrival θk for k = 1, ..., p, the carrier frequency and speed of
propagation are fc and c, and the source signal sk(n) is independent of sl(n)
with θk �= θl for k �= l. From Equation 40, we have a vector form to express the
obtained sensor data

x(n) = A(θ)s(n) (41)

where x(n) = [x1(n), ..., xm(n)]T , the steering matrix A(θ) and signal vector
s(n) are defined by A(θ) = [a(θ1), ...,a(θp), s(n) = [s1(n), ..., sp(n)]T , and the
array response vector a(θk) is given by a(θk) = [1, ejω0τk , ..., ejω0(m−l)τk ]T . Thus
the array output y(n) can be written as

y(n) = wHx(n) (42)
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Fig. 2. Mapping processes among Source, Radar and Array output spaces

where w = [w1, ...,wm]T is the weight vector, and H denotes complex conjuga-
tion transpose. The array output in Equation 42 can be written as

y =
m∑

i=1

wH
i xi (43)

A linear array beamforming process may be viewed as a mapping from one space
to another. An unknown system y, maps the input vector Sk to the output y as
shown in Figure 3a. If an unknown system F , maps the input vector Sk(n) to
the output y, such that y = F (Sk(n)) as shown in Figure 3a. Let adapt this to
Figure 2. A linear array beamforming can approximate F by first creating the
signal xi(n) received at the ith array sensor is given by Equation 40. The output
in Equation 43 can then be written as

y = F ∗(x) =
m∑

i=1

wiG(x,xi) (44)

where F ∗ is the approximation of F , wi for i = 1, ...,m are the weights, and
G(x,xi) is the Green’s function (basis function). In matrix notation

F∗ = GW (45)
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Fig. 3. Mapping processes among Input, Feature and Output spaces

3.2 Generalized Radial Basis Beamforming Derived from
Holograms

A generalized radial basis adaptive beamforming network can be naturally de-
veloped from the mathematics of holograms. If we first consider the object plane
as the input space, then each location in the object plane represents an input
vector of the x-space. Therefore, if we let the input to the hologram be

Uα(xα) = δ(xα) (46)

then we have only the vector x as input into the network. The β-plane then
becomes the feature space, where

Uβ(xβ) = Kα−β(xα, xβ) (47)

The filtered output of the hologram is then

Ufiltered(xγ) =
∫

Sβ

R2
0Kβ−γ(xβ , xγ)Kα−β(xα, xβ)dxβ (48)

The output location xγ is arbitrary, therefore the generalized neural network
approximating the function F may be written as

F ∗(xα) =
∫

Sβ

R2
0Kβ−γ(xβ , xγ)Kα−β(xα, xβ)dxβ (49)

By this way, Figure 3b can be seen as the feature space for the generalized
network. Creating a radial basis beamforming function neural network from the
generalized form is straight forward. First, the feature space of the generalized
network is continuous, so by making it discrete we have the same type feature
space as the radial basis network. The equation for the network is then

F ∗(xα) =
N∑

i=1

R2
0Kβ−γ(xβi , xγ)Kα−β(xα, xβi)dxβ (50)

Comparing this to the radial basis form, we see that
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Kα−β(xα, xβi) = G(xα, xβi) = G(x,xi) (51)

and
wi = R2

0Kβ−γ(xβi , xγ) (52)

where xγ is arbitrary. The main benefit of the generalized derivation compared
to the derivation found in[9] is that more information about the system may be
utilized. The generalized network uses the kernel K to perform the mapping.
However, K is generated from the differential equation Lu. So, by changing the
kernel, it should be possible to create different classes of neural networks besides
the radial basis network.

4 Conclusion

In this study, we presented a radial basis adaptive beamforming network based
upon the mathematical description of holographic storage. The network is un-
structured in that the hologram process can produce the same results as a num-
ber of different neural network structures within a single context. The only
change needed for the hologram process is the specific kernel. We concluded
by showing how the hologram process is a superset of radial basis beamforming
networks. The most important feature of the process is the kernel. Any network
may be created if the kernel is known. Furthermore, we have shown that neural
networks can be grounded in physical laws. Once the kernel is known, the orga-
nization of network is known. This then gives the designer another tool to use
in generating a better system.
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Abstract. Kohonen neural network is capable of self-organizing and recognizing 
clustering center, which is used in many artificial intelligence (AI) fields. One 
electronic support measures (ESM) system must sort the received radar pulses to 
cells with same features by pulse parameters, such as radio frequency (RF), angle 
of arrival (AOA), pulse width (PW), Pulse Repetition Interval(PRI), etc. 
Kohonen SOFM algorithm is one valid method for clustering, which can be used 
to accomplish such radar pulses sorting. Considering the variety character of 
pulses parameters which is the character of modern radar system, a new 
definition of “distance” in the SOFM neural net is proposed in this paper, which 
decreases the effect of large variety range of special parameter among them. This 
paper employs the “distance” to improve the clustering capability in such special 
environments. The computer simulation shows the validity of these 
improvements. 

1   Introduction 

In the dense electromagnetic environments encountered in modern warfare, the ESM 
receiver may receive large number of pulses shown as pulse stream from different 
emitters. In order to identify individual emitters, their pulse trains must be segregated. 
The ESM receiver is a passive radar receiver, picks up the pulses transmitted by various 
radars emitters and measures their parameters, which are angle of arrival (AOA), radio 
frequency (RF), pulse width (PW), pulse amplitude (PA) and time of arrival (TOA). 
The measured parameters of every intercepted pulse are encoded in digital format 
called the pulse descriptor vector (PDV). And the deinterleaver sorts the PDVs and 
forms pulse cells, each containing a set of PDVs assumed to belong to the same radar 
emitter. Then, other parameter is generated, which is pulse repetition interval (PRI), 
and its definition is: 

1−−= iii TOATOAPRI  (1) 

Generally, deinterleaving algorithms are classified on the basis of whether they use 
the parameters of more than one pulse such as the pulse repetition interval (PRI), or 
they use the parameters of a single pulse such as AOA, RF, and PW [5]. The multiple 
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parameters deinterleaving algorithm will improve the reliability and the processing 
speed, compared with the former algorithm.  

In the ESM system, many methods are applied to sort the pulse train. Such methods 
can solve the problems that the received signal pulses are not much polluted by the 
performance of the receiver or by the noise. Frankly speaking, the pulses in each radar 
cell may not be all the ones which are transmitted by the outer radar emitter. One or 
more pulses may be lost by the receiver, which requires the flexibility of the 
deinterleaver for sorting. And in ESM system, the period of process is strictly limited, 
which demands the method with the character of rapidity. Considering all above, the 
improved artificial neural net, Self-Organizing Feature Map net is used to the field of 
radar pulse sorting.  

SOFM net as one method without human participant can be use to the ESM system, 
which has the character of topology order preserving and can form clustering by 
feature. Then this paper uses improved SOFM net to sort the received radar pulse  
train. 

2   Structure of SOFM Net 

2.1   SOFM Net Principle 

SOFM method, also called Kohonen method, was first proposed by Kohonen in 1982, 
which is an artificial neural net without teacher. It can study automatically from the 
environments, and is applied widely to many fields, such as voice recognition, image 
compress, robot control, etc. Such net is based on the physiology and brain science. 
According to Kohonen, the human neural net is divided into different parts to respond 
to different input patterns, and all of these are done by itself. It has the ability of lateral 
association, and its output nodes are distributed as two-dimension array. The output 
nodes are connected with the others, and affect each other. All the output nodes in one 
near zone have resembling outputs, and the distribution of such clustering is similar 
with the input pattern.  

2.2   Structure of SOFM Net 

The Kohonen SOFM net consists of two layers, which are the input layer and the output 
layer. Every nerve cell of the input layer is connected with every nerve cell of the 
output layers. The cells of output layer are arranged by two dimensions structure. Each 
corresponds to one input pattern. The Structure is shown as figure 1. The process of 
competition in the output layer is described as follows: the cells of the near zone Nc of 
one “win” cell c will be excited to different degree, while the cells out of the zone will 
be restrained. Nc(t) is a function varied by t. It will decrease with the increase of t until 
only one or one group nerve cell is left, which delegates the property of the input class 
pattern.  
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Fig. 1. The structure of SOFM 

3   Improved SOFM Algorithm 

The improved algorithm is based on the character of radar pulse parameters in ESM 
environments. With the radar system becoming more and more complex, many radar 
signal parameters are not single, or stable, which causes the difficulty of the ESM 
system. For example, the frequency of the frequency-jump radar can change in the 
range of 5~10% around the central value; and the frequency of frequency-agile radar 
system can change in the range of 30% around the central value; and the PRI-change 
radar system, such as stagger PRI radar system(it means the PRI will stagger between 
the 5% around the central value), etc. 

This paper first analyses the pulse signal character of different radar systems, and 
improves the Kohonen SOFM net to accomplish the process of radar pulse sorting work. 

3.1   Revised Definition of “Distance” 

When one or more parameters in the training patterns vary in a large range, it can cause 
the SOFM unable to get the stable output, which can be shown in the later experiments. 
The essential reason lies in the shortest Euclidean distance between the weight of cell 
and the train pattern as the cells compete on the output layer of the SOFM net. The 
Euclidean distance can not delegate the correct “distance”. For example, for a 
frequency –agile radar, the large variety range cause long distance between two 
patterns of the same type radar. So the two patterns will be responded to different cells 
wrongly. A new definition of distance is proposed in this paper, which “debases” the 
effect of the problem of not being able to converge and slow convergence speed which 
are caused by one or more large variety-range parameters. 

The definition of distance is as follows. 
The distance between the k pattern and the j cell is defined as: 
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Where: 

n : the no. n parameter in one pattern; 

kx :  k input pattern, k=1,..,K; 
jm : the weight of the j cell on the output layer;  j=0,1,2, …, M;  

nα : the proportion of  n parameter, which is get by many valid experiments; k
nx : the n parameter in the 

kx  pattern; j
nm : the weight between the n parameter of  the input pattern and the j cell of the 

output layer; 
)max( nx : the maximum value among the n parameter in all input patterns. 

Such “distance” defined here cant be understood by normal distance sense. It means 
the some measure between the input pattern and the given cell in the output layer, 
which is the base to modify the weights of each cell. We find such “distance” proposed 
here is very useful for the following experiments, although we cant prove it by strict 
math method for a while. 

3.2   Input Pattern and Improved Algorithm 

The input pattern of SOFM net is P*N matrix, signed as Xp here p is the serial number 
of patterns, and P represents the total number of patterns, N as the length of each 
pattern. There are M cells in the output layer, M>>P; 

The “distance” defined by this paper (see equation (2) )is used here to show the 
matching degree of the input pattern vector x and mj (j=1,2,…,M). 

If one cell of the output matches the input vector x, signed as c, as follows: 

)(min)( j
j

c mxdmxd −′=−′    Mj ,...,1=  (3) 

The output of c is: 

j
j

c yy max=    Mj ,...2,1=  (4) 

The improved algorithm is as follows: 

Step 1: Initialize the weight as small random value, )0(jj mm = ; 
Step 2: Set one pattern at random among patterns pxxx ,...,, 21 as the input of 
Kohonen SOFM. 
Step 3: Calculate the “distance” between rx and the weight jm  according to equation 
(2), get the smallest distance Mjmxd j

k ,...,2,1=−=′ , according to the 

cy  output as the “win” cell; 
Step 4: Revise the weight jm  as follows: 

)(

)(

)()1(

))()(()()1( 0

tNj

tNj

tmtm

tmxtatmtm

c

c

jj

jjj

∉
∈

=+
−+=+

 (5) 

Where  
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)/exp()( 00 τtAta −=  (6) 

0A ,τ are constant. 
Where )(tNc  is the revised zone, and it is larger at the beginning centered by 

cy .Then it will decrease as follows: 

1/
21)( τt

c eAAtN −+=  (7) 

1A , 2A and 1τ  are constant.  
Step 5: Back to Step 2, till the output of the “excited” cell in the output layer becomes 
stable or the maxim epochs reach. 

4   Computer Simulation 

In ESM environments, the normal parameters used for sorting are angle of arrival 
(AOA), radio frequency (RF), pulse width (PW), and pulse repetition interval (PRI). 
For AOA, it is the only one parameter which is not affected by the radar signal itself, so 
it can be one of the parameters for sorting; For RF and PW, they are all stable enough 
on some condition, so it can also be chosen to be one parameter for sorting; For PRI, it 
is the important parameter to identify, so it can be one for sorting. Four representative 
types of radar are chosen for experiments which are listed in table 1. 

Table 1. The four types of radar for experiments 

Radar 
Type 

AOA 
o  

RF 
MHz  

PW 
us  

Radar System PRI 
us  

1 32 3030.2 1.52 Stable 315 
2 43 3100.3 1.86 Frequency-agile 145 
3 112 3600.5 2.60 PRI stagger 250 
4 86 2680.8 1.06 Frequency-jump 125 

Firstly each type generates 10, 20, 30, 40, 50 patterns to compose the input radar 
signals. For AOA, they follow as follows: N(32,3), N(43,3), N(112,3), N(86,3); For 
RF, they follow as follows: N(3030.2,3), N(3100.3, 100), N(3600,5,3), N(2680.8,200); 
For PRI, they follow as follows: N(115,2), N(145,2), N(150,15), N(125,3). 

The α =[0.95,0.76,0.94,0.86],which is got by experiments in some ESM 
environments. The Euclidean distance and the distance defined in this paper are both 
used in the simulation. The total cell number in the output layer is 6 cells in line 
arrangement. 

The clustering rate is the in-class distance in the patterns generated by one original 
radar type. If all the patterns generated by one original radar type cluster to one class, the 
total clustering rate will be 100%. The partition rate is the out-class distance between 
each class which clustering. If different patterns generated by different original radar 
type cause different “win” cells in the output layer, the partition rate will be 100%. 

Table 2 shows that with the pattern number generated by each radar type, the 
clustering rate and partition rate will reach some level.  
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Table 2. Simulation Result of Differnt Definitions of Distance after 500 epochs 

Euclidean Distance Defined Distance 

Clustering 
Rate 

Partition 
Rate 

Clustering  
Rate 

Partition 
Rate 

10 32.1% 11.3% 95.0% 94.0% 
20 62.0% 30.2% 98.2% 93.7% 
30 65.2% 32.0% 97.5% 92.3% 
40 49.5% 42.3% 96.7% 90.8% 
50 80.0% 45.1% 99.4% 87.9% 

The result shows the improvement of clustering ability, compared with traditional 
distance definition. And with the increasing of pattern number generated by the original 
radar parameters, the clustering rate and recognition rate will increase. It also can show 
the Partition Rate decrease with the increasing of pattern number, which is caused by the 
“distance” defined. In ESM system, 15-25 patterns is used commonly. 

Secondly we chose the case which 20 patterns generated by one original radar type. 
And after different average epochs, we check the recognition rate. It shows by figure 2 
as follows. 

 

Fig. 2. the learning curve, red line shows the defined “distance” recognition rate, and the dot blue 
line shows the traditional one. After 500 epochs averagely, the red one will be above 95%. 

During the experiences, we tried all the possible parameters of radar, the method 
used by this paper holds true. So the confidence intervals cover all the possible value of 
parameters of radar. 

5   Conclusion 

This paper proposes one revised SOFM net to solve the problem met when it is used in 
the field of radar pulse sorting in ESM system. The Euclidean distance definition is 

Pattern 

Nums 

Results 
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revised to fit the signal character of ESM environments. Finally, the computer 
simulation results show the revised network can reach the expected target. Although 
short of strict math prove of such “distance”, but it is very useful for such special ESM 
system. 
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Abstract. In this paper, the application of minimal resource allocation network 
(MRAN) trained with Unscented Kalman Filter (UKF) to the nonlinear channel 
equalization problems was discussed. Using novel criterion and prune strategy, 
the algorithm uses online learning, and has the ability to grow and prune the 
hidden neurons to realize a minimal network structure. Simulation results show 
that the equalizer is well suited for nonlinear channel equalization problems and 
the proposed equalizer required short training data to attain good performance. 

1   Introduction 

In the digital communication system, intersymbol interference (ISI) is a limiting 
factor in several communication environments. To achieve reliable communication in 
these situations, channel equalization is necessary to eliminate ISI. Fig.1 depicts the 
typical digital baseband transmission system; the channel model takes into account 
the effects of the transmitter, the transmission medium, and the receiver. The 
transmitted symbol ( )s n  is assumed to be an equiprobable and independent binary 

sequence taking values either 1 or -1. The channel output ( )x n  is corrupted by 

additive zero mean Gaussian noise ( )v n . Here n is the time index. The nonlinear 

channel in a digital communication system, shown in Fig.1, can be described by: 

 

Fig. 1. Schematic of data transmission system 

2 3 4
1 2 3

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
L

k

x n r n k r n k r n k r n v n

r n h k s n k
=

= + + + +

= −
 (1) 

                                                           
* Corresponding author. 



 Unscented Kalman Filter-Trained MRAN Equalizer for Nonlinear Channels 561 

where k1, k2,, k3 are constants. The linear component,
0

( ) ( )
L

k

k

H z h k z−

=

= , of the 

channel can be modeled as a finite impulse response filter, where L is the order of the 
channel impulse response. The higher-order components of the linear channel are 
added to it to produce the nonlinear effect. In the absence of noise, the channel output 
takes only finite number of possible values. There are 2L m

sN +=  possible 

combinations or channel states for the vector ˆ ˆ ˆ( ) [ ( ), ( 1)Tn x n x n m= − +x . These 

output vectors are also referred to as desired channel states, and are partitioned into 
different classes, ,m d

+X  and 
,m d

−X , for ( ) 1s n d− = or ( ) 1s n d− = −  respectively. Here d 

is time delay. In the presence of noise, the channel outputs will form clusters around 
each of these desired channel states, and the noisy observation vector 

[ ]( ) ( ) ( 1)
T

n x n x n m= − +x  is used to estimate the input signal ( )s n d− , according 

to the Bayesian theory. The equalization may be considered as a pattern classification 
problem. The associated Bayesian risk function is 

2
2

2 2( ( )) exp( ( ) / 2 ) exp( ( ) / 2 )
s s

i j
i N j N

f n n nσ σ
+ −

+ −

∈ ∈

= − − − − −x x c x c  (2) 

where 
sN + and 

sN − are the number of  
i
+c  and j

−c  states in ,m d
+X  and 

,m d
−X , 

respectively, and 2σ is the noise variance. The optimal decision boundary is defined 
by ( ( )) 0f n =x . 

Because that neural network is well suited for solving nonlinear classification 
problems, multilayer feedforward neural networks, radial basis function (RBF) 
networks and recurrent neural networks have gained popularity in their use for 
equalization problems. In [4], minimal resource allocation network (MRAN) was 
used for channel equalization. The MRAN has the same structure as a RBF network 
and has the ability to grow and prune the hidden neurons to achieve a compact 
network. Several training algorithms have been used to train RBF network, including 
gradient descent, back propagation (BP) [1], extended Kalman filter (EKF) [4], and so 
on. Major disadvantage of gradient descent and BP methods are slow convergence 
rates and the long training symbols required [1]. The EKF can be used to determine 
the centers, radius and weights of the RBF network; the advantage of this method is 
not necessary to estimate the channel order. But the EKF algorithm provides first-
order approximations to optimal nonlinear estimation through the linearization of the 
nonlinear system. These approximations can include large errors in the true posterior 
mean and covariance of the transformed (Gaussian) random variable, which may lead 
to suboptimal performance and sometimes divergence. The unscented Kalman filter 
(UKF) is an alternative to the EKF algorithm and provides third-order approximation 
of process and measurement errors for Gaussian distributions and at least second-
order approximation for non-Gaussian distributions [2]. Consequently, the UKF may 
have better performance than the EKF. In this paper, we use UKF to estimate the  
 



562 Y. Zhang et al. 

parameters of the MRAN network. In our simulation, the performance of the MRAN 
equalizer trained with UKF is superior to the MRAN equalizer trained with EKF. 

2   MRAN Channel Equalizer and EKF 

The MARN is a sequential learning RBF network and the MRAN algorithm uses 
online learning, and has the ability to grow and prune the hidden neurons to realize a 
minimal network structure [4]. Fig.2 shows a schematic of a channel equalizer based 
on RBF network. Two layers; hidden layer consisting of N local units, and a linear 
output layer form the RBF neural network. The output is given by: 

 

Fig. 2. Architecture of MRAN equalizer 

1

( ) ( ( )) ( ) ( ( ))
N

i i
i

y n f n w n n
=

= = Φx x  (3) 

where input vector [ ]( ) ( ) ( 1)
T

n x n x n m= − +x , ( )iΦ ⋅ denotes the mapping 

performed by a local unit, and ( )iw n  is the weight associated with that unit. The basis 

function is usually selected as Gaussian function  

2 2exp( ( ) ( ) ( ))i i in n nΦ = − − σx c  (4) 

where ( )i nc  and ( )i nσ  will be referred to as the center and radius, respectively. 

Comparing the network response (3) with the optimal Bayesian equalizer filter (2), it 
is obvious that they have the same structure. The RBF network is therefore an ideal 
processing means to implement the optimal Bayesian equalizer [4]. It can be seen that 
the design of a RBF requires several decisions, including the centers ( )i nc , the radius 

( )i nσ , the number N, and weight ( )iw n . In MRAN algorithms, the number N of 

neurons in the hidden layer does not estimate, so the order of the channel is not 
necessary to be estimated, the network is built based on certain growth criteria. Other 
network parameters, such as ( ), ( ), ( )i i in n w nσc , can be adapted using the EKF [4]. 

The MRAN network begins with no hidden neuron. As input vector ( )nx  are 

sequentially received, the network builds up based on certain growth and pruning 
criteria [6]. The following three criteria decide whether a new hidden neuron should 
be added to the network: 



 Unscented Kalman Filter-Trained MRAN Equalizer for Nonlinear Channels 563 

[ ]
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n n n

e n s n f n e

d n f n
e n e

M
= − +

− > ε

= − >
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′= >
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(5) 

where ( )j nc  is a centre of the hidden neuron that is nearest to ( )nx , the data that was 

just received. 
min min( ), and n e e′ε  are threshold to be selected appropriately. M 

represents the size of a sliding data window that the network has not met the required 
sum squared error specification. Only when all these criteria are met a new hidden 
node added to the network. The parameters associated with it: 

1 1 1( ),   = ( ),   ( ) ( )N N N jw e n n n n+ + += σ = κ −c x x c  (6) 

where κ is an overlap factor that determine the overlap of the response of the hidden 
neuron in the input space. When an input to the network does not meet the criteria for 
adding a new hidden neuron, EKF will be used to adjust the parameters 

1 1 1, , , , , ,
TT T

N N Nw w= σ σc c of the network. The network model to which the EKF 

can be applied is 

1

( 1) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( )

       ( ( ), ( )) ( )

N

i i
i

n n n

y n f n w n n v n

g n n v n
=

+ = +

= = Φ +

= +

x x

x

 
(7) 

where ( ) and ( )n v n are artificial added noise processes, ( )n is the process noise, 

( )v n is the observation noise. The desired estimate ˆ( )n can be obtained by the 

recursion  

1

ˆ ˆ( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( )

T

T

n n n e n

n n n n n n n

n n n n n

−

= − +

= − + −

= − − +

K

K P a R a P a

P I k a P Q I

 
(8) 

where ( )nK  is the Kalman gain, ( )na is the gradient vector and has the following form 

ˆ ( )

( , ( ))
( )T

n

g n
n

=

∂=
∂

x
a  (9) 

( )nP is the error covariance matrix, ( )nR and ( )nQ  are the covariance matrices of the 

artificial noise processes ( )n and ( )v n , respectively. When a new hidden neuron is 

added the dimensionality of ( )nP is increased by 

0

( 1) 0
( )

0

n
n

−
=

P
P

P I
 (10) 
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The new rows and columns are initialized by
0P . 

0P is an estimate of the uncertainty 

in the initial values assigned to the parameters. The dimension of identity matrix I is 
equal to the number of new parameters introduced by adding a new hidden neuron. 

In order to keep the MRAN in a minimal size and a pruning strategy is employed 
[4]. According to this, for every observation, each normalized hidden neuron output 
value ( )kr n is examined to decide whether or not it should be removed.  

2 2

max

( ) ( ) exp( ( ) ( ) / ( ))

( )
( ) ,   1, ,

( )

k k k k

k
k

o n w n n n n

o n
r n k N

o n

= − − σ

= =

x c
 

(11) 

where ( )ko n is the output for kth hidden neuron at time n and max ( )o n , the largest 

absolute hidden neuron output value at n. These normalized values are compared with 
a threshold δ and if any of them falls below this threshold for M consecutive 
observation then this particular hidden neuron is removed from the network. 

3   Using UKF for Training the MRAN Channel Equalizer 

The EKF described in the previous section provides first-order approximations to 
optimal nonlinear estimation through the linearization of the nonlinear system. These 
approximations can include large errors in the true posterior mean and covariance of 
the transformed (Gaussian) random variable, which may lead to suboptimal 
performance and sometimes divergence [1]. The unscented Kalman filter is an 
alternative to the EKF algorithm. The UKF provides third-order approximation of 
process and measurement errors for Gaussian distributions and at least second-order 
approximation for non-Gaussian distributions [2]. Consequently, The UKF may have 
better performance than the EKF. In this section, we propose the UKF algorithm to 
adjust the parameters of the network, when an input to the network does not meet the 
criteria for adding a new hidden neuron.  

Foundation to the UKF is the unscented transformation (UT). The UT is a method 
for calculating the statistic of a random variable that undergoes a nonlinear 
transformation [7]. Consider propagating a random variable x (dimension m) through 
a nonlinear function, ( )g=y x . To calculate the statistic of y, a matrix  of 2m+1 

sigma vectors 
iχ  is formed as the followings: 
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2
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(12) 
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where x and 
xxP are the mean and covariance of x, respectively, and 

2 ( )a m mλ = + ρ − is a scaling factor. a determines the spread of the sigma points 

around x  and usually set to a small positive value, typically in the range 0.001 1a< < . 
ρ is a secondary scaling parameter which is usually set to 0, and β  is used to take 

account for prior knowledge on the distribution of x, and 2β = is the optimal choice 

for Gaussian distribution[8]. These sigma vectors are propagated through the 
nonlinear function 

( )    0, , 2i iy g i m= =  (13) 

 This propagation produces a corresponding vector set that can be used to estimate the 
mean and covariance matrix of the nonlinear transformed vector y . 
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From the state-space model of the MRAN given in (7), when an input to the 
network does not meet the criteria for adding a new hidden neuron, we can use the 
UKF algorithm to adjust the parameters of the network. The algorithms are 
summarized below. 

Initialized with:  

[ ]ˆ(0)

ˆ ˆ(0) ( (0)( (0)T

E

E

=

= − −P
 (15) 

The sigma-point calculation: 
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Measurement update equations: 
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(17) 

1( ) ( ) ( )n n n−= y yyP P  (18) 

ˆ ˆ( 1) ( ) ( ) ( )n n n e n+ = + K  (19) 

( 1) ( ) ( ) ( ) ( )T
yyn n n n n+ = −P P K P K  (20) 

The parameter vector of the MRAN is update with the above equations. 
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4   Experiment Results and Conclusion 

In the experiments, the thresholds 
min min, ,and e e′ ε , respectively, set as 0.22, 0.40, and 

0.5, the thresholds were chosen largely by trial and error. The other parameters were 
set as M=10 and δ=0.1. To test the algorithm for non-linear channels, the following 
2PAM nonlinear channel [4] was chosen: 

2

1 2

( )  ( )  0.2 ( ) ( )

( ) 0.3482  0.8704   0.3482

x n r n r n v n

H z z z− −

= + +
= + +

 (21) 

For the purpose of graphical display, the equalizer order is chosen as L =2. In the 
example, m=2. Thus, there will be 16 desired states for the channel output, (2L+m =16). 
The decision delay was set to one (d=1). By using the MRAN algorithm with 500 data 
samples at 12dB SNR, we were able to obtain the classification boundary shown in 
figure 3. The continuous line shows the Bayesian boundary, while the boundary 
obtained by the UKF algorithm is shown by the dotted line. The MRAN centres 
created by the UKF algorithm are indicated by the ' '∗ , while the actual desired states 
are indicated by the ' ' . The network has built up 17 hidden nodes and this is more 
than the 16 desired channel states. It can be seen that the Bayesian boundary is still 
well approximated, at the critical region, which is at the centre of the figure. At the 
bottom region in the figure, the network boundary deviates from the Bayesian 
boundary, but this can be seen to be less critical in the equalization task, from the 
BER curves shown in Fig. 4.  

  

Fig. 3. Boundary and location of the equalizer      Fig. 4. The performance of the equalizers 

Fig.4 shows the BER performance for the three equalizers for the channel, 
averaged over 20 independent trials. In each trial, the first 200 symbols are used for 
training and the next 105 symbols are used for testing. The parameter vectors of the 
equalizers are constant after the training stage, and then the test is continued. It is 
clear that the MRAN trained with UKF is better than the MRAN trained with EKF for 
the nonlinear channel and the performance of the MRAN trained with UKF is only 
slightly poorer than the Bayesian equalizer. 

We have presented a MRAN equalizer trained with the UKF for nonlinear channel 
equalization over 2PAM signals. Simulation results show that the equalizer is well 
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suited for nonlinear channel equalization problems. The performance of the MRAN 
equalizer trained with UKF has been compared with that of the ideal Bayesian 
equalizer, and the MRAN equalizer trained with EKF. Simulation results showed that 
the MRAN equalizer trained with UKF performed better than the MRAN trained with 
EKF. Moreover, the proposed equalizer required short training data to attain good 
performance. 
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Abstract. A Jumping Genes Paradigm that combines with fuzzy rules is applied 
for optimizing the digital IIR filters. The criteria that govern the quality of the 
optimization procedure are based on two basic measures. A newly formulated 
performance metric for the digital IIR filter is formed for checking its 
performance while its system order which usually reflects upon the required 
computational power is also adopted as another objective function for the 
optimization. The proposed scheme in this paper was able to obtain frequency-
selective filters for lowpass, highpass, bandpass and bandstop with better 
performance than those previously obtained and the filter system order was also 
optimized with lower possible number. 

Keywords: IIR Filter, Genetic Algorithm, Fuzzy Logic. 

1   Introduction 

In digital signal processing, the Infinite Impulse Response (IIR) Filter [1], or 
recursive filter is an important component for signal filtering. The traditional methods 
of designing the frequency-selective IIR Filters include Butterworth, Chebyshev Type 
1, Chebyshev Type 2, and Elliptic function have been well reported. The improved  
Hierarchical Genetic Algorithm (HGA) approach for IIR filter design was presented 
in [2-3]. A minimum filter order that meets the specific frequency response is 
obtained. In this paper, a new scheme for improving the HGA approach in IIR filter 
design is presented. In this scheme, fuzzy rules [4] are applied in evaluating the 
performance of IIR filter based on the pass-band ripple and stop-band ripple. The 
performance metric of the filter is used as an objective function for optimizing the 
filter performance. A novel Evolutionary Computing Algorithm, Jumping Genes 
Evolutionary Algorithm (JGEA) [5-7] is adopted as the optimization scheme. The 
advantage of using JGEA is its ability in obtaining a set of non-dominated solutions 
that is close to Pareto-optimal front. Using the JGEA combining with fuzzy rules, the 
lowpass (LP) filter, highpass (HP) filter, bandpass filter (BP) and bandstop (BS) filter 
are successfully designed.  

The paper is organized as follows: The fuzzy rules for evaluating the performance 
of IIR will be presented in Section 2. In Section 3, the JGEA scheme combining the 
fuzzy rules for the optimization of IIR filter will be discussed. Then, Section 4 will 
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compare the proposed fuzzy scheme with other choices of objective functions for 
filter design. Finally, the conclusion will be given in Section 5. 

2   Fuzzy Rules for Filter Performance Evaluation 

In the design process of frequency-selective IIR filter, designer should specific the 
requirement on the tolerance of the ripple inside the pass-band and stop-band, which 
are denoted as δ1 and δ2 respectively. Fig. 1 illustrates the concepts of the tolerance 
scheme on the filter design for an example of a low-pass filter design. To describe the 
magnitude of the ripple inside the pass-band and the stop-band regions, the linguistic 
terms Very Small (VS), Small (S), Medium (M), Large (L), Very Large (VL) are 
used, where Fig. 2 shows the membership functions. Note that the membership 
functions are depending on the tolerance δ1 and δ2 for ripples inside the pass-band and 
the stop-band respectively. 
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Fig. 1. Tolerance scheme for a low-pass filter design 
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Fig. 2. Membership Function for input variable filter ripple 

The linguistic terms of Very Good (VG), Good (G), Average (A), Bad (B), Very 
Bad (VB) are used to describe the performance of the filter. The membership function 
are shown in Fig. 3. The performance of the filter depends on the pass-band and stop-
band ripple by fuzzy relations, where it is implemented as the fuzzy rules base in 
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Table 1. Note that the filter performance is above “GOOD” only if the pass-band and 
stop-band ripples are both “Small” or “Very Small”, and the ripple is “Small” or 
“Very Small” when the ripple is smaller than the tolerance δ. Thus, the performance 
above “GOOD” indicates that both ripples in the pass-band and stop-band are smaller 
than the tolerance δ, and hence becomes a feasible solution for the filter design.  
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Fig. 3. Membership Function for output variable filter performance 

Table 1. Fuzzy Rules Base determining the Filter Performance 
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2.1   Filter Performance Metric Evaluation 

The defuzzification is the process of turning the membership values on the filter 
performance to a single performance metric, and it is given by the following 
weighted-average formula:  

VBBAGVG

VBBAGVG

uuuuu

uuuuu
e MetricPerformanc

++++
×+×+×+×+×

=
9.07.05.03.01.0  (1) 

The performance metric that has a value of 0.3 classifies that the performance is 
“GOOD”, so a performance metric value below 0.3 indicates both ripples in the pass-band 
and stop-band are smaller than the tolerance, and hence it is a feasible filter solution.  

The steps for obtaining a filter performance metric by fuzzy rules are summarized 
as below: 

Step 1:  From the filter coefficients, calculate the pass-band and stop-band 
ripples; 
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Step 2:  Define the tolerance requirements δ1 and δ2 on the pass-band and 
the stop-band, and calculate the membership functions of the pass-
band and stop-band ripples; 

Step 3:  Use the fuzzy rules to calculate the membership functions of the 
filter performance; and 

Step 4:  Defuzzification on the filter performance to obtain the performance 
metric. If the evaluated value is smaller than 0.3, the filter satisfies 
the tolerance requirements. 

3   JGEA for IIR Filter Optimization 

JGEA is applied for optimizing the IIR filters in cooperating with the fuzzy rules 
introduced in Section 2. 

3.1   Optimization Problem Formulation 

The filter performance metric obtained by the fuzzy rules are used as an objective 
function for optimizing the performance of the filter. Four kinds of frequency-
selective filters: LP, HP, BP and BS filters are considered. The criteria that govern the 
performance are formulated as follows. 
 
 Minimize 

e MetricPerformancf =1
 (2) 

erFilter Ordf =2  (3) 

The objective function f1 is the filter performance metric evaluated by the method 
stated in Section II, whereas f2 is the order of the filter that determines the less 
required filter order of the transfer function directly. In filter design, the filter order 
should also be minimized so that a minimum use of computational power for filtering 
is ensured. This can be arranged in the form of HGA format for the chromosome 
structure. 

3.2   Optimization Algorithm JGEA 

JGEA [5-7] is a novel evolutionary algorithm for multi-objective optimization 
(MOEA) [8-9], where it introduces a new genetic operator using a horizontal gene 
transmission mechanism, i.e. jumping genes transposition. It enables the genes 
transfer between the individuals within the same generation. After the evaluation of 
the objective functions, the fast non-dominated sorting is used for ranking the 
solutions and crowding distance assignment [10] is used for the diversity preservation 
of the population pool. It has been proven to out-perform others MOEAs in various 
applications, such as wireless local area network in IC factory [5], radio-to-fiber 
repeater placement [6], and resource management in wideband CDMA systems [7]. 

As JGEA is applied for optimizing the IIR filters in cooperating with the fuzzy 
rules, the flowchart of the optimization process is shown in Fig. 4.  
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Fig. 4. Flowchart of the Optimization Process  

3.3   Optimal Filter Solutions 

Given that with the selected values of tolerance δ1 = 0.10785 and δ2 = 0.17783 for the 
filter design requirement, the JGEA optimization scheme produced the filter solutions 
with different filter order, of which all the non-dominated solutions are shown in  
Fig. 5. The solutions with filter performance value lower than 0.3 in the figure are 
considered the feasible solutions, as this indicates that the ripples is inside both the 
pass-band and the stop-band satisfy the tolerance requirement. The higher order filter 
may be preferred than the lower order filters for achieving better performance, but 
low order solution has the advantage of lower computational power requirement.  
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Fig. 5. Non-dominated solution fronts 

The obtained LP, HP, BP and BS filters that meet the design requirements are 
shown in Fig. 6, 7, 8 and 9 respectively. Whereas the typical transfer functions of the 
optimized lowest order filters are listed below: 
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For comparison purpose, the results obtained originally from HGA filters design 
methodology in [2-3] are made to compare with the solutions produced by JGEA. The 
magnitude of the pass-band ripple and the stop-band ripple are marked in the Fig. 6, 
7, 8 and 9 for ease of reference. 

Table 2. Filters Design Criteria 

Filter Type Pass-band Stop-band Iteration for EA
Filter Order 

Search Range

LP 0 ≤ | | ≤ 0.2π 0.3π ≤ | | ≤ π 500 [1, 15]

HP 0 ≤ | | ≤ 0.7π 0.8π ≤ | | ≤ π 500 [1, 15]

BP 0.4π ≤ | | ≤ 0.6π
0 ≤ | | ≤ 0.25π
0.75π ≤ | | ≤ π

5000 [2, 15]

BS
0 ≤ | | ≤ 0.25π
0.75π ≤ | | ≤ π 0.4π ≤ | | ≤ 0.6π 5000 [4, 15]
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Fig. 6. Optimized Lowpass Filter 

The comparative results are tabulated in Table 3. It is clear that the LP, BP and BS 
filters designed by JGEA with fuzzy rules were found to have smaller ripples than 
those designed by HGA. Furthermore, JGEA was able to obtain a lower order with 
smaller ripples for BP filter. Thus, the new proposed method, applying JGEA and 
fuzzy rules, can be considered as a better alternative method for IIR filter design. 
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Fig. 7. Optimized Highpass Filter 
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Fig. 8. Optimized Bandpass Filter 
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Fig. 9. Optimized Bandstop Filter 
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Table 3. Optimized Filters Performance 

Pass-band Ripple Stop-band Ripple Filter Order Pass-band Ripple Stop-band Ripple Filter Order

LP 0.086 0.121 3 0.113 0.179 3

HP 0.103 0.163 3 0.077 0.182 3

BP 0.094 0.17 4 0.104 0.177 6

BS 0.077 0.14 4 0.108 0.172 4

HGA [2-3]JGEA with Fuzzy RulesFilter Type

Design Methodology

 

4   Discussion on Other Choices of Objectives Functions 

In this section, other possible choices of objective functions for IIR filter design will 
be discussed. Two optimization schemes which use three objective functions will be 
investigated. They will be compared with the proposed scheme where fuzzy evaluated 
objective function is used. 

4.1   Three Objectives Optimization Scheme 

Now, consider another optimization scheme where pass-band and stop-band ripples 
are minimized separately instead of using a single fuzzy filter quality measure. Hence, 
in total three optimization objectives are used: f1 and f2 minimize the maximum 
magnitude of pass-band ripple and stop-band ripple, respectively, whereas f3 minimize 
the filter order.  

Fig. 10 shows all the non-dominated solutions for low-pass filter design where 
2000 generations of evolution is set as the termination criteria. However, only one 
solution satisfies the tolerance requirement, where the pass-band and stop-band 
ripples are smaller than δ1 = 0.10785 and δ2 = 0.17783, respectively. It should be 
noted that solutions which do not satisfy the tolerance requirement can be also 
classified as non-dominated solutions throughout the optimization process. For 
instance, solutions in Fig. 10 do not dominate each other, but only one of them is 
feasible solution. Hence, this optimization scheme is not effective as compared with 
the proposed fuzzy scheme. 

4.2   Original Proposed HGA Filter Design Scheme in [2-3] 

The original proposed HGA filter optimization scheme in [2-3] also use three 
objective functions, but with some difference:  f1 and f2 minimize the summation of 
excessive filter ripple at different frequency points, in pass-band and stop-band, 
respectively, whereas f3 minimize the filter order. This scheme has successfully 
designed the filter satisfying the tolerance requirement with minimum filter order. 
However, whenever the pass-band and stop-band satisfy the user defined tolerance 
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Fig. 10. Non-dominated solutions obtained by the 3 objectives optimization scheme 

requirement, the objective values will be f1 = 0 and f2 = 0. In this case, the magnitude 
of the ripples inside the pass-band and stop-band can not be given by the objective 
values, but only it is given that the filter satisfies the tolerance requirement. As a 
result, this optimization scheme will not further minimize the ripples after the filter 
has satisfied the tolerance requirement. As a comparison, the proposed fuzzy 
evaluated objective function can further minimize the ripples when the filter has 
already satisfied the tolerance requirement: when the filter ripple exactly equals the 
tolerance requirement, f1 = 0.3; when the filter ripple is smaller than the tolerance 
requirement, f1 < 0.3. 

5   Conclusion 

In this paper, the use of JGEA with fuzzy rules for the optimization of IIR filters has 
been demonstrated. Given with the tolerance requirements, the designed LP, BP and 
BS and BP filters were all found to have smaller ripple than that originally designed 
filter by HGA approach while a newly discovered lower order for BP filter by JGEA 
was obtained. Moreover, the obtained Pareto-optimal solutions as indicated in Fig. 5 
also provided useful tradeoff information between the filter performance and the filter 
order in which this allows the designer to choose an appropriate solution to meet the 
design requirements. Also, it is demonstrated that the proposed fuzzy optimization 
scheme is better than some other schemes which uses three objectives functions.  
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Abstract. Magnetoencephalography (MEG) is an important noninvasive, non-
hazardous technology for functional brain mapping, measuring the magnetic 
fields due to the intracellular neuronal current flow in the brain. However, the 
inherent level of noise in the data collection process is large enough to obscure 
the signal(s) of interest most often. In this paper, a practical denoising technique 
based on the wavelet transform and the multiresolution signal decomposition 
technique is presented. The proposed technique is substantiated by the applica-
tion results using three different mother wavelets on the recorded MEG signal. 

1   Introduction 

Magnetoencephalography (MEG) is completely noninvasive, non-hazardous technol-
ogy for functional brain mapping. Every current generates a magnetic field, and fol-
lowing this same principle in the nervous system, the longitudinal neuronal current 
flow generates an associated magnetic field. MEG measures the intercellular currents 
of the neurons in the brain giving a direct information on the brain activity, spontane-
ously or to a given stimulus. That is, MEG detects weak extracranial magnetic fields 
in the brain, and allows determination of their intracranial sources [1].  

Unlike Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), 
which provide structural/anatomical information, MEG provides functional mapping 
information. By measuring these magnetic fields, scientists can accurately pinpoint 
the location of the cells that produce each field. In this way, they can identify zones of 
the brain that are producing abnormal signals. These spatiotemporal signals are used 
to study human cognition and, in clinical settings, for preoperative functional brain 
mapping, epilepsy diagnosis and the like. 

One common method of collecting functional data involves the presentation of a 
stimulus to a subject. However, most often the inherent noise level in the data collec-
tion process is large enough to obscure the signal(s) of interest. In order to reduce the 
level of noise the stimulus is repeated for as many as 100-500 trials, the trials are 
temporally aligned based on the timing of the stimulus presentation, and then an aver-
age is computed. This ubiquitously-used approach works well, but it requires numer-
ous trials. This in turn causes subject fatigue and, therefore, limits the number of  
conditions that can be tested for a given subject.  
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In this paper, a practical denoising technique of the MEG data using the wavelet 
transform is presented with application results. The remainder of the paper is organ-
ized as follows. In Section 2, practical MEG technique and the associated noise prob-
lem is discussed in details. Section 3 provides a brief review of the wavelet transform. 
Section 4 discusses about the denoising technique using the wavelet transform along 
with the application results, and conclusion is given in Section 5.  

2   MEG Technique and Noise Problem 

MEG technique measures the extremely weak magnetic field (of the order of femto 
Tesla, 1 fT = 10-15 Tesla) generated by the intracellular neuronal current flow in the 
brain. This was initiated by the first recordings of the human magnetic alpha rhythm 
by Cohen in 1968 [2].  

The spontaneous or evoked magnetic fields emanating from the brain induce a cur-
rent in some induction coils, which in turn produce a magnetic field in a special de-
vice called a superconducting quantum interference device (SQUID) [3]. The MEG 
sensors consist of a flux transformer coupled to a SQUID, which amplifies the weak 
extracranial magnetic field and transforms it into a voltage. Present-day whole-head 
MEG devices typically contain 64-306 sensors for clinical and experimental works. 
Overall, MEG technique provides high resolution measurement both in space (2-3 
mm) and time (1 ms).  

Different techniques have been proposed for analysis of the noisy MEG signals, 
like, independent component analysis [4], maximum-likelihood technique [5], blind 
source separation [6] etc. In this paper, we present the wavelet transform-based prac-
tical denoising technique of the MEG signals.  

The experimental setup used in this work consisted of 274 sensors detecting the 
magnetic field (fT) for pre- and post-stimulus period, while the stimulus is presented 
to the subject at time t = 0 ms. The total duration of the recording of the sensor data 
for each trial is for 361 ms, of which 120 ms is for pre- and 241 ms is for post-
stimulus period. We are interested for the analysis of the post-stimulus period. 10 tri-
als of the MEG recorded signals using the above-mentioned experimental setup have 
been used for the experimentation.      

3   Wavelet Transform 

The Wavelet transform (WT) is a mathematical tool, like the Fourier transform for 
signal analysis. A wavelet is an oscillatory waveform of effectively limited duration 
that has an average value of zero. Fourier analysis consists of breaking up a signal 
into sine waves of various frequencies. Similarly, wavelet analysis is the breaking up 
of a signal into shifted and scaled versions of the original (or mother) wavelet. While 
detail mathematical descriptions of WT can be referred to in [7], [8], a brief mathe-
matical summary of WT is provided in the following sections. 

The continuous wavelet transform (CWT) is defined as the sum over all time of the 
signal multiplied by scaled and shifted versions of the wavelet function ψ . The CWT 

of a signal x(t) is defined as  
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By careful selection of 0a  and 0b , the family of scaled and shifted mother wave-

lets constitutes an orthonormal basis. With this choice of 0a  and 0b , there exists a 

novel algorithm, known as multiresolution signal decomposition [9] technique, to de-
compose a signal into scales with different time and frequency resolution. The MSD 
[9] technique decomposes a given signal into its detailed and smoothed versions. 
MSD technique can be realized with the cascaded Quadrature Mirror Filter (QMF) 
[10] banks. A QMF pair consists of two finite impulse response filters, one being a 
low-pass filter (LPF) and the other a high-pass filter (HPF). 

4   Denoising Using Wavelet Transform 

For denoising purpose, first all the 274 sensor recordings (for the post-stimulus pe-
riod) are concatenated as a single vector of size 1x66034 (66034=274x241). This is 
followed by denoising using the wavelet transform. MSD [9] approach is used, for 8 
scales, using different mother wavelets. This results in (28 =)256 times less samples. 
So, we get an estimate for 66034/256= 258 sensor data. For the rest of the sensors, i.e. 
274-258=16, are estimated from the recordings as the mean. These are concatenated 
with the estimated 256 data from the wavelet analysis to get the 274 sensor data esti-
mation. The final output variable (denoised MEG signal) is constructed by iterating 
for the 241 post-stimulus period using the denoised estimation. This approach can be 
applied to get the denoised signal for single representative trial, or for n number of 
trials (iteratively) followed by the average. Obviously the single trial estimation is 
faster, but the n-trial estimation results in better signal quality. If the MSD N-scale 
decomposition results in less number of sensor data (like the case here), we have to 
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perform end-point signal estimation; otherwise if the decomposition results in more 
number of sensor data, we have to throw away the end-points. We have used three 
different mother wavelets, Daubechies 4 [7], Coiflets [7] and Adjusted Haar [11]. Fig. 
1 shows the average MEG data for the post-stimulus period.  

 

Fig. 1. Average MEG Signal over 10 Trials for 274 Sensors 

4.1   Analysis Using Daubechies 4 Mother Wavelet 

For the Daubechies 4 [7] wavelet, the scaling function )(xφ  has the form 

)32()22()12()2()( 3210 −+−+−+= xcxcxcxcx φφφφφ  (4) 

where  

4/)31(0 +=c ,  4/)33(1 +=c ,  4/)33(2 −=c ,  4/)31(4 −=c . (5) 

The Daubechies 4 wavelet function )(xψ  for the four-coefficient scaling function 

is given by 

)32()22()12()2()( 0123 −+−−−+−= xcxcxcxcx φφφφψ . (6) 

We used the daubechies 4 (db4) mother wavelet for the 8-scale signal decomposi-
tion and denoising. The end-point estimation was done by iterating over the 10 trials. 
Fig. 2 shows the denoised signal using the db4 mother wavelet compared against the 
noisy signal in Fig. 1. The magnitude of the magnetic field (Y-axis) remains more or 
less at same scale while reducing the superimposed noisy components.  

4.2   Analysis Using Coiflet 1 Mother Wavelet 

Coiflets are compactly supported symmetrical wavelets [7]. It has orthonormal wave-
let bases with vanishing moments not only for the wavelet function ψ , but also for 

the scaling function φ . For coiflets, the goal is to find ψ , φ  so that  



582 A. Ukil 

= 0)( dxxx lψ ,    1,...,1,0 −= Ll  (7) 

=1)( dxxφ ,    = 0)( dxxx lφ ,   1,...,1,0 −= Ll .  (8) 

 

Fig. 2. Denoised MEG Signal using the Daubechies 4 Mother Wavelet 

L is called the order of the coiflet [7]. Following several tests, we have chosen L=1 
for our application, which provided the best denoising performance. The 8-scale sig-
nal denoising is followed by the end-point estimation by iterating over the 10 trials. 
Fig. 3 shows the denoised signal using the coiflet 1 mother wavelet.  

 

Fig. 3. Denoised MEG Signal using the Coiflet 1 Mother Wavelet 

4.3   Analysis Using Adjusted Haar Mother Wavelet 

In general, the  FIR (finite impulse response) scaling filter for the Haar wavelet is 
1]    [15.0=h , where 0.5 is the normalization factor. As an adjustment and  
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improvement of the characteristics of the Haar wavelet, Ukil & Zivavovic proposed 
to introduce 2n zeroes (n is a positive integer) in the Haar wavelet scaling filter, 
keeping the first and last coefficients 1 [11]. The scaling filter kernel for the ad-
justment parameter n is shown below. 

2for      1]  0  0  0  0  [15.0

1for             1]  0  0  [15.0

0for                   1]    [15.0

==
==
==

nh

nh

nh

 (9) 

It should to be noted that the original Haar wavelet scaling filter corresponds to 
0=n , and complex conjugate pairs of zeroes for each 0>n  are introduced [11]. 

It has been shown mathematically in [11] that the introduction of the adjusting ze-
roes does not violate the key wavelet properties like compact support, orthogonality 
and perfect reconstruction. A theorem has been proven in [11] which states: 
“The introduction of the 2n adjusting zeroes to the Haar wavelet scaling filter im-
proves the frequency characteristics of the adjusted wavelet function by an order of 
2n+1.” 

Following the proof, the adjusted wavelet function )(ωψ n  of the adjusted Haar 

wavelet becomes, 

( ){ }
ωω

ωωψ
)12(

4

4)12(

4)12(sin
)(

2

+
<

+
+=

nn

n
n . (10) 

The factor 2n+1 in the denominator of (18) improves the frequency characteristics 
of the adjusted Haar wavelet function, by decreasing the ripples (as 0>n ) [11]. 

We used the adjusted Haar mother wavelet with 4 adjusting zeros for the 8-scale 
signal denoising. Four zeros were chosen for best possible performance without ham-
pering the speed. Fig. 4 shows the denoised signal using the adjusted Haar wavelet.  

4.4   Performance 

The performance metric used is the signal-to-interference/noise ratio, 

( )
)(

1
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1
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1

2
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SNIROutput
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n
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−
≅

=

=

= , (11) 

where 241=N  (post-stimulus period), 274=K  (no. of sensors), meanY  is the average 

MEG signal computed over the 10 trials (shown in Fig. 1), and calcY  is the denoised 

MEG signal using the three different mother wavelets. The output SNIR, indicated as 
dB, for the denoising operation using the daubechies 4, coiflet 1 and adjusted Haar 
mother wavelets are -28 dB, -30 dB and -26 dB respectively. Higher values of the 
output SNIR indicate better performance. Hence, the denoising operation using the 
adjusted Haar mother wavelet performs best followed by the daubechies 4 and the 
coiflet 1 mother wavelets.  
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Fig. 4. Denoised MEG Signal using the Adjusted Haar Mother Wavelet 

The average computation time using the MATLAB® Wavelet toolbox in an Intel® 
Celeron® 1.9 GHz, 256 MB RAM notebook was 13.42 s, 14.85 s and 13.64 s respec-
tively for the daubechies 4, coiflet 1 and adjusted Haar mother wavelets.     

5   Conclusion 

MEG, the noninvasive technique to measure the magnetic fields resulting from intra-
cellular neuronal current flow, is quite important for functional brain imaging. How-
ever, the level of noise that is inherent in the data collection process is large enough 
that it oftentimes obscures the signal(s) of interest. Normal averaging over numerous 
trials of signal recording most often does not produce optimum result and also causes 
subject fatigue. In this paper, we have presented the wavelet transform-based denois-
ing technique of the MEG signal. The concatenated MEG signal from 274 sensors is 
denoised using the mutiresolution signal decomposition technique. Three different 
mother wavelets, namely, daubechies 4, coiflet 1 and adjusted Haar have been used 
for the analysis. The denoising performance is quite robust. Hence, the wavelet tran-
form-based denoising technique of the MEG signals is quite effective from practical 
point of view.   
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Abstract. Single ion-channel signal of cell membrane is a stochastic ionic 
current in the order of picoampere (pA). Because of the weakness of the signal, 
the background noise always dominates in the patch-clamp recordings. The 
threshold detector is traditionally used to denoise and restore the ionic single 
channel currents. However, this method cannot work satisfactorily when signal-
to-noise ratio is lower. A new approach based on hidden Markov model (HMM) 
is presented to restore ionic single-channel currents and estimate model 
parameters under white background noise. In the study, a global optimization 
method of HMM parameters based on stochastic relaxation (SR) algorithm is 
used to estimate the kinetic parameters of channel. Then, the ideal channel 
currents are reconstructed applying Viterbi algorithm from the patch-clamp 
recordings contaminated by noise. The theory and experiments have shown that 
the method performs effectively under the low signal-to-noise ratio (SNR<5.0) 
and has fast parameter convergence, high restoration precision and strong noise 
robusticity. 

1   Introduction 

Ion channel is a special large protein molecule spanning the membrane of excitable 
cells. In the protein molecule there exists a pore, which, in certain conformations, 
keeps open and allows the passage of selected ions along the electrochemical gradient 
to form ionic currents in the order of picoampere. In the other conformations the pore 
keeps closed and no currents exist. Respectively we say the channel is open and 
closed. The stochastic open and closed states of channel are related to the 
transmembrane voltage, the mechanical pressure and neurotransmitter. The patch-
clamp technique can record the ionic currents flowing through single-channel protein 
molecules [1]. The error for recordings exists due to the weakness of single-channel 
currents and the effect of background noise. In order to discover the unknown 
channels and study the kinetic characters of ion channel as well, it is necessary to 
accurately restore the channel current from patch-clamp recordings. Generally, signal-
channel currents are detected by half-amplitude threshold detection [2]. However, 
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because of the small magnitude of the unitary current in many channels, signal-to-
noise ratio of patch-clamp recordings is low (SNR<5.0). In this case, the method for 
threshold detection fails completely. The restoration of ionic single-channel signal 
based on HMM is an effective means of idealizing patch-clamp recordings under 
strong background noise [3], [4]. 

An approach based on hidden Markov model is presented to restore ionic single-
channel currents and estimate model parameters under white background noise. In 
this method, a global optimization algorithm based on stochastic relaxation is used to 
estimate the kinetic parameters of channel firstly. On the basis, the ideal channel 
current is reconstructed utilizing Viterbi algorithm from patch-clamp data 
contaminated by noise. The experimental results have shown the effectiveness of this 
method. 

2   HMM Parameter Estimation 

2.1   HMM Basic Theory 

HMM is a dual stochastic model. One is Markov chain, which, is described by the 
transition between states with parameters (π , A) and exports a sequence for states. 
The other one is stochastic process which is described with parameter B and exports 
an observed sequence. The parameters are detailedly elucidated as follows: 

(1) Q ={q1, q2,… qN} is a state set for Markov chain in which N denotes the number of 
states. In this paper, it represents the number of channel current amplitude levels. 
Usually, N =2 or 3. st denotes the state at time t. ST=(s1,s2,...,sT). 
(2)  =( 1... i… N) is initial state probability. Where, i=P(s1=qi) ,1  i N 
(3) A =(aij)N×N  is state transition probability matrix. Where, aij P(st+1=qj|st=qi), i, 
j=1,2,...,N. 
(4)YT =(y1...,yt....,yT) is an observed sequence, which is sampled from patch-clamp 
recordings by computer in the paper. T is the length of sampling. 1 t T 
(5)B=(bj(yt)) is probability density matrix of observation value. Where, 
bj(yt)=P(yt|st=qi), the   probability of observed yt while the state being qj at time t. 1  
j N    

Therefore, hidden Markov model is denoted with a parameter set ( , A,B,Q ). 
There are three correlative HMM questions when model  and observed sequence YT 

are known. 

(1) Given  and YT, seek the probability P(YT| ). 
(2) Given  and YT, seek r=(rt(i)). Where, rt (i)= P(st=qi|YT, i). And obtain the most 
likely state sequence. 
(3) Given  and YT, reestimate parameter *= ( *,A*,B*,Q*) and seek optimal model 
parameter ML, where ML denotes maximum likelihood estimation. 

The fundamental methods to solve above three questions are forward-backward 
algorithm, Viterbi algorithm and Baum-Welch algorithm [5], [6]. 
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In order to get the optimal ionic single-channel state sequence, the parameters of 
hidden Markov model are estimated by maximizing a prior probability using Baum-
Welch reestimation algorithm. The single-channel current is then uncovered as the 
most likely state sequence by maximizing a posterior probability using the Viterbi 
algorithm. 

2.2   HMM Description on Patch-Clamp Recordings 

Ion channel currents appear quantal in nature, transiting in a seemingly random 
manner between the open and closed, and have the characteristic of “all” or “none”. 
They are one by one rectangle, with invariable current amplitude and stochastically 
variable dwelling duration. Though the current signal of single channel has only two 
current amplitude levels, which respectively correspond to the open and closed of 
channel, the channel kinetics has multi open or closed states of different mean 
dwelling durations (corresponding to different open or closed conformations), which 
take on same open or closed current levels. This is called the “aggregation” of ion 
channel conformations [3]. The states are connected by certain way, and the transition 
between states is indicated with transition rate constant matrix R. Admittedly the 
transition between all states is a first-order, finite state Markov process [4]. Some 
channels are more complicated, having more than two current amplitudes 
(conformation class). Due to the aggregation of the channel conformation states and 
the background noise from patch-clamp system, the Markov feature of state transition 
cannot be observed directly. Therefore, we adopt HMM to describe the patch-clamp 
recordings, which are sum of ion channel currents and background noise.  

Because ion channel current signals sampled by computer are discrete at time, 
original Markov processes convert to a discrete Markov chain. Matrix R (transition 
rate constant matrix) denotes transition intensity between states of Markov processes, 
which is denoted with transition probability matrix A = (a ij)N×N  in Markov chain. If 
sampling interval is , matrix R can be calculated by A = exp(R ) after matrix A 
estimated. 

Due to strong background noise, it is different to decide the number of current 
amplitude levels directly from patch-clamp recordings. Say nothing of deciding 
conformation states of ion channel. Conformation states are determined only by 
fitting dwell time histogram of current amplitude signals [7]. In the paper, the word 
“state” can be directly referred to as the current amplitude, and the transition between 
different states (current amplitudes) can be considered to be Markovian.  

2.3   Parameter Estimation Algorithm Based on HMM 

Parameters' estimation based on HMM usually adopt Baum-Welch iterative 
algorithm. To a given observation sequence YT, make the probability P(YT| ) arrive at 
local maximum by adjusting each parameter of model = ( , A, B, Q). 

Supposing a patch-clamp recording sequence YT =(y1...,yt....,yT), the probability 
P(YT| ) may be calculated by the forward-backward algorithm. 

)()()|(P
1

ii
N

i
tt

=

= βαλTY  (1) 



 Signal Restoration and Parameters’ Estimation of Ionic Single-Channel 589 

Where, forward variables )(itα and backward variables )(itβ respectively are 
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To avoid “underflow” phenomena in calculation, we adopt the method to add 
proportion factor [8]. For forward variables )( jtα : 
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Similarly for backward variables )(itβ : 
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Then, estimate kinetic parameter *= ( * ,A*,B*,Q* ) in terms of reestimation 
formula to make probability P(YT| * ) maximum. Baum-Welch reestimation formula is 
as follows and its deduction sees also reference literature [9]. 

Let, 

),,(),( 1 λξ Tjtitt YqsqsPji === + , ),()( λTitt YqsPir == ,

),|())(( λTiTT YqPihh ==  

(9) 

(10) 

According to Byes rule and Markov characteristics of channel signal, exist 
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Thereby, 
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According to obtained parameter Q* by reestimation formula, parameter B* is 
revised correspondingly. 
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2.4   Algorithm Improving 

Baum has proved that the model parameters revised by above reestimation formula 

satisfy )()( * λλ TYPP ≥TY . However, Baum-Welch iterative algorithm makes 

)( λTYP  local maximum by recursion, not but whole maximum [10]. Therefore, the 

last parameter values are correlative to choose for parameter initial values. If the 
initial model parameters inadequately choose, Baum-Welch algorithm usually obtains 
local optimal solution [11].  

In the paper, we use a global optimization algorithm of HMM parameters based on 
stochastic relaxation (HMM-SR). Namely, by adding a tiny stochastic perturbation, 
the parameters’ training avoids getting into local optimization. Because the effect of 
HMM parameter A and  to objective function is less than that of parameter B, we 
introduce stochastic perturbation only to parameter B. Furthermore, training HMM 
parameters being an iterative process, the perturbation to parameter B will bring a 
change of forward-backward variables and indirectly influence parameter A. SR 
algorithm is described as follows: 

(1) Set the initial HMM parameters, initial probability matrix  =[1,0,… 0]. 
(2) Set maximal iterative times I  and convergent condition  (for example =10-3). 
(3) Let calculating pace m=0. 
(4) Set temperature specification Tm=T0 * f(m). Where, f(m) is a descending function 

of variable m.  
f(m)=Km   (K<1) 

(5) Produce N×T (N denotes state numbers and T denotes sequence length) 
independently normal stochastic variable x whose mean is zero and variance is 
Tm. Let 

Tt1N,1* ≤≤≤≤+= ix)(yb)(yb titi  (15) 

To )(*
ti yb  unitary processing, we can obtain 
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If m I  or satisfying convergent condition, end the parameter training. Otherwise, 
go to (4) for continued training. 

On the algorithm, the initial temperature is very important. If it is too low, the 
global searching ability is restricted. If it is too high, the algorithm is easy to get into 
stochastic operation at beginning and add training time. The temperature coefficient K 
value directly influence the degressive speed of system temperature. In the 
experiment, we choose T0=1/64 and K=0.98. 

3   Statistical Reconstruction Algorithm Based on HMM 

That restore current signals from contaminated patch-clamp recordings by statistical 
technique is to determine the optimal state sequence s1, s2…… sT-1 , sT according to the 
given patch-clamp recordings YT and estimated model  . Consider the probability of 
each state sequence occurring at all time t from 1 to T. The sequence corresponding to 
probability maximum is to be the channel signal sequence. Namely 

         s1, s2…… sT-1 , sT =argmax P(s1, s2…… sT-1 , sT|YT,, ) 

channel
   currents

Patch-
clamp 

amplifier

Filter
and

sampling

patch-clamp
recordings

HMM-SR
parameter
estimation

Viterbi
decode

restoration
currents

 

Fig. 1. Reconstruction system based on HMM 

We exploit Viterbi algorithm to restore the most likely state sequence after the 
model parameters have been estimated. To avoid “underflow” questions, logarithmic 
processing technology is adopted [12]. The algorithm proceeds as follows. 

(1) Initializtion: 1(i)=log[ i]+log[bi(y1)],  1 (i)=0 , 1  i N 1  t T 
(2) Recursion: t(j)=

Ni≤≤1
maxarg [ t-1(i)+logaij]+log[bj(yt)],  

t(j)=
Ni≤≤1

maxarg [ t-1(i)+logaij], 1  j N, 2  t T 

(3) End: P*(YT| )
Ni≤≤1

max [ T(i)],  sT
*=

Ni≤≤1
maxarg [ T(i)] 

(4) Reconstructing state sequences: st
*= t+1(st+1

*)  t =T-1,T-2,...1. 
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The reconstruction system of ionic single-channel currents based on HMM is 
shown in Fig.1.  

4   Simulation Experiment and Application 

4.1   Simulation Experiment 

The data were sampled at 20kHz, and a total of 20000 samples were generated under 
no open channel activity by patch-clamp EPC-10 amplifier. The time sequence is just 
background noise, which is approximatively white noise under a low cutoff frequency 
of filter and A/D sample frequency. Noise mean m  = 0.0066pA, variance 2 =0.59, 
and Gaussian distribution. Namely, ( t)=N(0,0.59). Thereby, the probability density 
matrix of the observation B = (bj(yk)) is known. Make standard deviation of noise 
equal to 1 by multiplying a coefficient (1.302). We denote noise sequence with { t}, 
which indicates the background noise from patch-clamp recordings having the 
minimum (-2.365pA) and the maximum (2.831pA). 

Stimulate a Markov sequence {st }of 20000 samples, which was generated from a 
two-state model with current amplitude levels 1pA and 0pA, as shown in Fig. 2A 
(only shown 2000 samples). State transition probability a11=a22=0.96, a12=a21=0.04, 
T=20000, N=2, Q=(0pA,1pA), SNR=1.0. Patch-clamp recordings {yt} was simulated 
by noise { t} superposing to signal {st } (shown in Fig. 2B). Its maximum is 3.126pA 
and minimum is -2.508pA.  

Supposing that initial state transition probability a11= a22 =0.60, a12=a21=0.40, 

1= 2=0.5, )(* itα  and )(* itβ  were calculated utilizing forward-backward algorithm. 

Then, calculate *A and *π  by Baum-Welch reestimation formula and HMM-SR 

algorithm. Finally, the ideal current amplitude sequence { *
ts } was reconstructed by 

Viterbi algorithm. The result is shown in Fig. 2C. The algorithm converges by 16 
times iteration, and a11=0.9581, a22=0.9593. ER denotes error rate, which is defined 
the ratio to the samples restored falsely and the length T of sampling sequence. 
ER=4.16%. The error mainly appears at the samples which signal {st } sharply change 
from 0pA to 1pA or contrarily. 

4.2   Application to Practical Data 

Under effect of 50 Mμ GABA receptor agonist, K+ channel currents were recorded by 
a cell-attached mode in rat hippocampal neurons of 10-14 days. In these patches, only 
a single channel was active. Pipette solution (in mmol/L): KCl,120; 
CaCl2,1;MgCl2,2;HEPES,10;EGTA,10. The depolarizing voltage was -40mV. Before 
joining GABA, the sampled time sequence was a background noise due to no opened 
channels. After joining GABA 2 minutes, the data were recorded by patch-clamp 
EPC-10 amplifier. The data were digitized at sampling rate of 20kHz and low-pass 
filtered to 5kHz. A sequence for 20000 samples was obtained, which current 
amplitudes were from minimum -2.87pA to maximum 3.16pA as shown in Fig. 3A 
(only shown 2000 samples).  

 



 Signal Restoration and Parameters’ Estimation of Ionic Single-Channel 593 

 

Fig. 2. Simulation results of reconstructing channel signal based on HMM-SR (A) A simulative 
Markov sequence {st} (B) A simulative sequence for patch-clamp recordings {yt}, (C) A 
reconstructed current sequence 

 

Fig. 3. Practical results of reconstructing channel signal based on HMM-SR (A) Practical data 
of patch-clamp recordings (B) A restoration sequence by HMM-SR algorithm  

According to the sampling sequence, we presume that the channel currents have 
thirty initial amplitude levels from -2.5pA to 3.3pA for 0.2pA intervals. And 
transition probability a11=a22=…=a29=0.71, aij=0.01(i  j). First, calculating 

))(( mhh TT =  by Baum-Welch algorithm, the potential current amplitude levels are 

located at -1pA, 0pA and 2pA after 35 times iteration. The probability distribution for 
different current amplitude levels is such as Fig. 4, which shows three distinct peaks. 
Namely, the channel has three open and closed states. Then, the kinetic parameters 
such as transition probability of ion channel can be estimated by above HMM-SR 
algorithm, which are convergent to a11=0.9857, a22=0.9662, a33=0.6831 by 18 times  
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iteration. Simultaneously, three current amplitude levels are accurately adjusted to -
0.967pA, 0pA and 1.978pA. At last, Reconstruct the ideal channel current amplitude 
sequence by logarithmic Viterbi algorithm. The result is shown in Fig. 3B. After data 
idealization, the conformation states can be determined by fitting a current amplitude 
dwell time histogram. 
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Fig. 4. Probability distribution for different current amplitude levels 

5   Conclusions 

In this paper, an algorithm based on HMM-SR is applied to effectively solve ion- 
channel parameters' estimation and signal reconstruction in the patch-clamp technique 
under white background noise (SNR<5.0). This model makes fully use of the 
capability to HMM modeling time sequence as well as the global optimization 
performance of stochastic relaxation algorithm to avoid parameters’ training getting 
into local optimization. The hybrid algorithm has shown the fast convergence, high 
restoration precision, and strong noise robusticity. Therefore, it can be used to 
reconstruct ion single-channel currents under a strong background noise. 
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Abstract. As radar signal environments become denser and radar sig-
nals become more complex, the task of an ESM operator becomes more
difficult. This paper presented a de-interleaving/recognition system of
radar pulses based on the combination of SVC and K-means clustering.
Compared the conventional de-interleaving system, it can produce more
complex and compact clustering boundaries according to the distribution
characteristics of data set and has good generalization performance. The
simulation experiment result shows that the system can sort efficiently
radar signals in the high density and complex pulses environment.

1 Introduction

Radar signal sorting is a key technology in electronic support measures (ESM)
system.This paper adopted the theories of SVC, K-Means clustering and in-
formation entropy. And it presented a novel joint de-interleaving/recognition
system on the basis of the combination of SVC & K-Means with the recog-
nition technology of type-entropy. Compared the conventional deinterleaving
system[1,2], the SVC sorting method has broken the limit of setting tolerance in
the conventional sorting proceeding, it can produce more complex and compact
clustering boundaries according to the distribution characteristics of data set
and has good generalization performance. In radar signals sorting, the number
of data to be handled is very large. If all the data are be treated as the training
samples, it would make the scale of adjacency matrix of SVC clustering algo-
rithm enormous. Then the speed of calculation would be affected. Therefore, we
can adopt the de-interleaving method of the joint K-Means and support vector
clustering to speed the calculation up.

We make entropy as a measure of electromagnetic signal environment, which
benefits to quantify the complexity of it. Type-entropy has the capability of
macroscopic analysis on electromagnetic signal environment. The result of clus-
tering sorting can be recognized by type-entropy to assist sorting. Through it,
we can adjust the parameters of SVC & K-Means sorting so that it could develop
a novel system of radar pulse sequence sorting. The experiment result of radar
signal sorting in the novel system is to be obtained by computer simulation.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 596–603, 2006.
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2 ESM Data Processing Scheme

The ESM data processing scheme has the structure shown in Fig.1. The block
former accumulates pulses from the ESM front end. When a certain number
have been accumulated, the block of pulses is submitted to the multiparame-
ter clustering sorter.The block former then starts to accumulate another block.
The multi-parameter clustering sorter and the TOA-difference histogram de-

Fig. 1. Structure of ESM data processing scheme

interleave the pulses in the block into pulse chains. Ideally, each pulse chain will
consist of all the pulses in the block which have originated from one emitter, and
no other pulses. The de-interleaving process takes place in two stages. Firstly,
the multi-parameter clustering sorter splits each block of pulses into a number
of batches of pulses. The batches are then processed sequentially by the TOA-
difference histogram, and split into individual pulse chains. The parameters to
be entered in the emitter table are then evaluated for each de-interleaved pulse
chain by the pulse chain characterizer.The parameters of the characterized pulse
chains are then compared with those in the current emitter table by the emit-
ter table updater.A novel multi-parameter sorter is embedded in the ESM data
processing system. It de-interleaves radar pulse sequence in multidimensional at-
tribute space according to the character that signals from single radar have self
similarity and the signals from different radars have little similarity. The follow
is the detailed introduction.
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3 A De-interleaving Method Based on SVC & K-Means
Clustering

A radar pulse descriptor vector vi, i = 1, 2, · · · , N (N is the length of the radar
pulse sequence) with 3-dimension attribute information is constituted with di-
rection of arrival (DOA), radio frequency (RF ) and pulse width (PW ) of emitter
pulse. Sorting algorithm can be summarized in the following steps: Firstly, ex-
tract a small sample subsequence whose length is n(n � N)in the radar pulse
sequences and cluster by SVC. And adjust the parameters of SVC to cluster to
be k subclass by the type-entropy recognition of complexity. Secondly, figure out
the centroid, Gi(i = 1, · · · , k), of each subclass individually. Finally, treat the
number of clusters and centroids at the first step as the initial parameters to
clustering sort by K-Means. And we can obtain the final pre-sorting result. This
method is described here.

3.1 Support Vector Clustering

Support vector machines [3] are a kind of statistical learning method which is
about pre-estimate on finite samples. It founded on the principle of structure
risk minimization and combined the idea of the maximal margin classifier with
kernel-based learning methods. It shows good generalization performance and
can effectively overcome some problems such as the curse of dimensionality, over-
fitting and so on. At the same time, it can obtain the globally optimal solution.
The basic idea of SVC presented by Ben-Hur [4] et al is: first, the data sample is
mapped from attribute space to a high dimensional feature space by non-linear
transformation. Then we are looking for the optimum separating hypersphere
in this new space. The non-linear transformation is founded by kernel function
non-linear mapping. We introduce the SVC process on intercepted subsequences
here.

Let V ⊆ R3 be a data space of the above radar pulse description vector
vi, with vi ⊆ V , i = 1, 2, · · · , N . The distribution characteristics of received
radar pulse parameters are so complex that the boundaries of clusters are also
complicate. The clustering feature of the data sets will be more outstanding by
using a nonlinear transformation Φ from V to some high dimensional feature
space. We are looking for the smallest closed convex sphere of radius R in the
feature space. This is described by the constraints:

‖Φ(Vi)− a‖2 ≤ R2 + ξj(∀j, ξj ≥ 0) (1)

where ‖• ‖ is the Euclidean norm and a is the center of the sphere. Soft con-
straints are incorporated by adding slack variables ξj .

To solve this problem, the Lagrangian is introduced

L = R2 −
∑

j

(R2 + ξj − ‖Φ(Vj)− a‖2)βj −
∑

j

ξjμj + C
∑

j

ξj (2)
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where βj ≥ 0, μj ≥ 0 are Lagrangian multipliers, C is a penalty factor, and
C
∑
j

ξj is a penalty term.

Under the Karush-Kuhn-Tucker conditions [5], we conclude:

1. A point Φ(vi) with βi = C is mapped to the outside of the feature space
sphere whose the minimal radius is R. The points as vi will be called outliers
and lie outside of cluster boundaries.
2. A point Φ(vi) with 0 < βi < C is mapped to the surface of the feature space
sphere whose the minimal radius is R. The points as vi will be called Support
vectors (SV s) and lie on cluster boundaries.
3. All other points lie inside cluster boundaries.

Throughout this paper, the Gaussian kernel is used:

K(vi, vj) = Φ(vi) · Φ(vj) = e−q‖vi−vj‖2
(3)

with width parameter q.
The Lagrangian Wolfe dual form W is now written as:

W =
∑

j

K(vi, vj)βj −
∑
i,j

βiβjK(vi, vj) (4)

At each point v, the distance of its image is defined in feature space from the
center of the sphere:

R2(v) = ‖Φ(v) − a‖2 =

∥∥∥∥∥Φ(v) −∑
j

βjΦ(vj)

∥∥∥∥∥
2

= K(v, v)− 2
∑
j

βjK(vj , v) +
∑
i,j

βiβjK(vi, vj)
(5)

The radius of the sphere is: R = {R(vi)|vi is a support vector}. The contours
that enclose the points in data space are defined by the set {v|R(v) = R}. SV s
lie on the contours, which forms the cluster boundaries of the parameters of
single radar.

Cluster assignment: given a pair of data points that belong to different clus-
ters, any path that connects them must exit from the sphere in feature space.
Therefore, such a path contains a segment of points y such that R(y) > R. This
leads to the definition of the adjacency matrix Aij between pairs of points vi

and vj whose images lie in or on the sphere in feature space:

Aij =
{

1, R(y) ≤ R
0, other (6)

Clusters are now defined as the connected components of the graph induced by
A. Cluster assignment is to be made again based on the connected components
by Depth First Search (DFS).
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3.2 K-Means Clustering Sorting Based on Centroids

For the data set V = {v1, · · · , vN}, where vi = {AOAi, RFi, PWi}, i = 1, · · · , N,
K-Means will find a partition of V , Pk = {C1, · · · , Ck}, to minimize the value of
the target function

f(Pk) =
k∑

i=1

∑
vl∈Ci

d(vl,mi) (7)

Where mi = 1
ni

∑
vl∈Ci

vl is the position of the centroid of No.i cluster. i =

1, · · · , k, ni is the number of the data items in cluster Ci . d(vl,mi) is the distance
from vl to mi.There are two obvious defects—the initial centroid vector and the
number of clusters are given in advance based on the prior information of the
data samples distribution—in the radar pulse serial sorting by K-Means clus-
tering method. However, modern electronic countermeasure faces such a radar
pulse environment that of complex, dense and insufficient prior information. The
“increasing batch” and “missing batch” would be produced significantly when
we chose the unsuitable initial centroids and the chosen clustering parameter k
isn’t the same as the number of real emitters. Therefore, “false alarm” and “false
dismissal” are formed unavoidably in the final sorting result [6].

In the de-interleaving method introduced in this paper, firstly, cluster a stage
of small samples of radar pulse sequence data by adjusting the clustering pa-
rameters of SVC, q and C, to cluster to be k subclass. Secondly, figure out the
centroid, Gi(i = 1, · · · , k), of each subclass individually, i.e. figure out the statis-
tics average value. Finally, treat the above number of clusters, k, and centroids,
Gi(i = 1, · · · , k), as the initial parameters to clustering sort by K-Means. And
we can obtain the final pre-sorting result.

The advantages of the joint SVC & K-Means method are:

1. The clustering centroids and the number of clusters, k, are to be set self-
adaptively, which is based on the real distribution feature of the data samples
instead of the initial centroid and the number of clusters installed in advance
by the sorting based on SVC. Moreover, it can avoid the defects of K-Means
that the initial centroid is set installed unsuitably so that the iteration of the
algorithm is converged to a local optimum.
2. At the same time because of the complexity of SVC algorithm, O(N2),the
data size that of the clustering pulses increased undoubtedly to make a drastic
drop in calculating speed. Cluster to the small samples radar pulses data by SVC
to get the parameter, k, and the initial centroids of the K-Means clustering by
the character of the small samples learning of support vector machines [7]. To
process the data sets on a large scale, K-Means algorithm is relatively flexible
and efficient because its complexity of time is O(nkl) [8]. Where n is the number
of the samples, k is the number of clusters, l is the number of times of iteration
when the algorithm is to be converged. Generally, k and l are given in advance,
k << n, l << n. Therefore, it is a linear relation between the complexity of time
of the algorithm and the size of the data sets so that it can meet the need of
real time process in radar signal sorting.



Signal Sorting Based on SVC & K-Means Clustering in ESM Systems 601

4 The Recognition Method of Entropy Measure for
Radar Pulses

In electronic countermeasure system, seeking for a suitable physical quantity as
the measurement to the complexity of signal environment is not only an urgent
need to engineering practice but a difficulty to electronic countermeasure for
many years. Adopting the notion of information entropy provided a feasible
basis for scientifically evaluating signal environment.

In this paper, radar pulse environment (or its subset) is faced by ESM system
is treated as the information source. In this way, complexity of pulse environment
can be expressed by uncertainty. In information theory, it is named information
source entropy that mean amount of information or uncertainty provided from
a message from information source [9]. It is indicated as:

H(X) = −
n∑

i=1

P (xi) logP (xi) (8)

From (8), we can see that, when the distribution of information source proba-
bility space is equiprobability, uncertainty value H(x) is the biggest. Whose size
is related to the number of possible states or probability in probability space.
The more the number of possible states or the smaller probability, the bigger the
uncertainty value is. Information source entropy is the function of probability
distribution of information source probability space.

According to the definition of information source entropy, we describe the
complexity of signal environment by employing type-entropy in accordance with
the character of radar environment. Type-entropy can be indicated as the esti-
mating to the description of pulse categories. Let a pulse be described as RF ,
PW and DOA, in another word, the same RF , PW and DOA are looked as a
kind of pulses, in this sense, we can describe how many the pulse categories are
in signal environment by employing type-entropy. It is defined as:

HT (P ) = −
N∑

i=1

Pn logPn (9)

Where Pn is the probability of each kind of pulses, N is the categories.

5 Parameter Adjustment Control of Q and C by
Type-Entropy

Cluster boundaries are controlled by the width parameter q of Gaussian kernel
and the penalty factor C of Lagrangian function in SVC clustering sorting. With
parameter q is increased, cluster boundaries perform a more compact character.
The size of parameter C determines the number of outliers. With the value C
(C ≤ 1) is reduced, the number of outliers can be increased accordingly.Cluster
boundaries can be smoothed by reducing the value C [10].
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According to the character that type-entropy value is getting big with the in-
creasing categories and complexity of pulse signals, we can calculate type-entropy
on the multi-parameters clustering results. Through recognizing the complexity
of it by type-entropy, we can macro-analyze the results of clustering sorting in
order to judge it to decide the final parameters q and C of clustering sorting.

6 Simulation Experiment Result

To verify the effect of the novel joint deinterleaving/ recognition system, we
adopt the radar signal data as Table 1 in the simulation experiment. At the
pulse simulating data being produced, sampling intervals want set and the si-
multaneously arrived signals are losing proceeded.The first 5000 pulses are sorted
in the radar pulse serial data flow. When the above radar pulse sequence is sorted

Table 1. The radar parameters information

radars PRF RF PW DOA The number
(kHz) (MHz) (μs) (deg) of pulses

Radar1 0.3-0.4 2080-2250 1.2-1.3 48-60 824
Radar2 0.3-0.4 2750-2850 1-1.1 60-80 823
Radar3 0.8-1.0 2250-2350 1.2-1.25 68-80 2149
Radar4 0.7-0.9 2550-2750 1.3-1.4 56-64 1891

by SVC&K-Means and parameters are adjusted to q = 30, C = 1 by typeen-
tropy recognition technology, we can obtain a better result of clustering sorting,
as Fig.2 and Fig.3. Statistic on the sorting result shows the sorting accuracy is
97.86%.

Fig. 2. The distribution of 2-dimension attribute parameters of the clustering result
on first 50 data samples by SVC
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Fig. 3. The statistic histogram of the sorting result by the SVC&K-Means clustering
sorter

7 Conclusions

This paper presents a novel joint deinterleaving/ recognition system of radar
pulse sequence. It introduces a novel sorting method based on SVC and K-Means
clustering. At the same time, the notion of typeentropy is to be adopted and
type-entropy recognition is used to assist signal sorting. Simulation experiment
shows that the sorting system is effective to the high pulse density environment
and the complex signal pattern.
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Abstract. Reconstruction of a three-dimensional scene using images
taken from two views is possible if the relative pose of the cameras is
known. A traditional approach to estimating the pose of the cameras
uses eight pairs of corresponding points and involves the solution of a
set of homogeneous equations. We propose a multi-layered feedforward
network solution. Empirical results demonstrate the feasibility of using
the network to recover the relative pose of the cameras in the three-
dimensional world.

1 Introduction

Understanding the three-dimensional (3D) world by a computer has such diverse
applications as in autonomous vehicle navigation, visualization content creation,
surveillance, and digital photogrammetry. Because the 3D world is projected to
a 2D image plane, the information loss must be compensated by other means.
A passive solution is to use images taken from more than one viewpoint to
recover the depth information through the triangulation principle. This has the
advantage of not requiring active devices such as ultrasound or lidar sensors,
or using intrusive structured lighting, or making specific assumptions about the
shape and structures of the scene objects.

The triangulation principle can be used to solve for the 3D location of a scene
point if two sets of camera parameters are available, viz. the intrinsic and the
extrinsic parameters [1]. The intrinsic parameters are the lens focal length, pixel
pitch, and the center of the image plane. These can be obtained off-line via
camera calibration methods [4]. The extrinsic parameters refer to the relative
orientation and position of the cameras while the two images are taken. Recovery
of the extrinsic parameters is often referred to as the pose estimation problem.

The projection of a scene point

X =

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦
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in homogeneous coordinates on the image plane of a camera is

x =

⎡⎣xy
1

⎤⎦
given as:

λx = KPgX,

where λ is the distance of the scene point to the camera center, K is the calibra-
tion matrix, P is the projection matrix representing the perspective transforma-
tion, and g is the transformation that relates the world coordinates to the camera
coordinates. The transformation g uses a rotation matrix R and a translation T
to move the world coordinates to the camera center. When the camera is cali-
brated, we can invert K on both sides so that x is in the normalized coordinates.
Since P = [I |0], we can re-write the projection equation as

λx = RX + T,

where X = [X Y Z]T .
When two images are taken by cameras from different viewpoints, the two

corresponding image points are given as [3]:

λ1x1 = R1X + T1,

and
λ2x2 = R2X + T2.

If we assume the first camera coordinates to be the world coordinates, then we
are left with one set of R and T that relates the coordinates of the second camera
to those of the first:

λ1x1 = X, (1)

and
λ2x2 = RX + T. (2)

Since the distances λ1 and λ2 are not known, equations (1) and (2) are combined
as:

xT
2 T̂Rx1 = 0, (3)

where T̂ is the 3× 3 skew symmetric matrix so that, for any 3× 1 vector v, T̂ v
is the cross product of T and v.

The unknown 3 by 3 matrix E = T̂R is referred to as the essential matrix.
The camera pose information encoded in the matrices T̂ and R is recovered as
follows. The essential matrix E is first estimated from observed corresponding
point pairs extracted from the stereo pair of images; it is then decomposed into
its components R and T [2].

The importance of estimating the camera pose can be seen by observing that
by substituting Equation (1) into (2), we have

λ2x2 = λ1Rx1 + T.
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If R and T are known, we can use the image point locations x1 and x2 to solve
for either λ1 or λ2, which gives the depth corresponding to the respective image
point. The individual depth values collectively can be used to constitute the 3D
structure information of the scene.

2 Camera Pose Estimation

The essential matrix is usually recovered by an eight-point algorithm, so called
because eight pairs of corresponding points (x(i)

1 ,x(i)
2 ), i = 1, ..., 8 are used in

the estimation. Rewrite Equation (3) in terms of the essential matrix E as

xT
2 Ex1 = 0, (4)

the so-called epipolar constraint for each corresponding point pair (x1,x2). The
unknown matrix E has 9 elements, but the structure of the essential matrix is
such that it has at most 8 degrees of freedom, so that it can be determined by
8 pairs of corresponding points. For i = 1, · · · , 8, we can put the ith point pair
(x(i)

1 ,x(i)
2 ) in Equation (4):

x(i)
2

TEx(i)
1 = 0. (5)

We write Equation (5) in terms of the unknown elements of E as

a(i)Te = 0, (6)

where a(i) is a 9 × 1 vector whose elements are the pairwise products of the
elements of ith point pair (x(i)

1 ,x(i)
2 ) and e is the 9×1 vector formed by stacking

the elements of the matrix E. Equation (6) for i = 1, · · · , 8 can be stacked to
form a matrix equation

Ae = 0. (7)

The linear solution of E from the homogeneous matrix equation (7) requires
the singular value decomposition of an 8× 9 matrix and is known to be numeri-
cally unstable, so that improvements such as bundle adjustments are developed.
These add to the considerable computation requirements. Consequently, we ex-
plore the use of a multi-layered feedforward neural network to perform pose
estimation.

The number of point pairs needed is related to the degrees of freedom in
the estimation problem. There are three degrees of freedom in a 3D rotation,
and another three degrees of freedom in a 3D translation. In general, we cannot
completely recover the translation component, as can be seen from the following.
Suppose a scene point is projected onto the image planes of a pair of cameras. If
we move the second camera twice as far from the first camera, the same pair of
image coordinates would be obtained if we translate the scene point twice as far
from the cameras. Hence, we can only obtain the direction of the second camera
from the first, and the estimation problem has only five degrees of freedom.
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3 Estimation by an Artificial Neural Network

Our hypothesis is that we can train a neural network to learn the camera pose
given a set of observed corresponding points. The design issues to be explored
include the representations of input data and that of the parameters to be esti-
mated. The input is, in general, a set of matched image point coordinates, and
the output are the pose parameters, such as the rotation angles and translation
components.

In this work, we follow the convention of using eight pairs of corresponding
points and so we are solving an overdetermined system. The input can therefore
be the eight point pairs (x(i)

1 ,x(i)
2 ), for i = 1, · · · , 8. Since each image point has

two components, we have a total of 32 input values. In a feedforward layered
network, our hidden layer is fully connected to the input layer, so that the
corresponding point pairs are essentially uncoupled from the network’s point of
view.

An alternative input representation is to compute the average and difference
of the corresponding point pairs. Let the ith point pair be (x(i)

1 ,x(i)
2 ), where

x(i)
1 =

[
x

(i)
1

y
(i)
1

]

and

x(i)
2 =

[
x

(i)
2

y
(i)
2

]

For i = 1, · · · , 8, we compute a pair of average and difference vectors (a(i),d(i)),
where

a(i) =

[
(x(i)

1 + x
(i)
2 )/2

(y(i)
1 + y

(i)
2 )/2

]
and

d(i) =

[
x

(i)
1 − x(i)

2

y
(i)
1 − y(i)

2

]
.

The pair (a(i),d(i)) couples the ith corresponding point pair (x(i)
1 ,x(i)

2 ). We refer
to the 32 values of (a(i),d(i)), i = 1, · · · , 8, as the coupled input set.

As discussed before, the pose parameters are in general 5 angles that define
the orientation and the location of the second camara relative to the first. These
five parameters can each take on a range [−π, π]. Our convention is that the x
and y directions are aligned with the horizontal and vertical directions of the
image plane. Each camera is looking towards negative infinity along the z-axis.
There is no theoretical restriction on the pose of the second camera relative to
the first, but clearly there are practical reasons to impose some constraints. For
instance, if the headings of the two cameras are π radians apart, they cannot be
observing the same scene. In practice, we can also reasonably determine which
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of the cameras is to the left of the other, so that we can restrict the direction of
the translation component.

We decompose the rotation matrix into individual rotations so that

R = Rz(θz)Ry(θy)Rx(θx),

where θz , θy, and θx are the rotation angles about the z-, y-, and x-axes, respec-
tively. In our work, we restrict each of these angles to the range [−π/4, π/4]. We
assume the stereo pair is left-eye dominant, so that the left camera coordinates
form the world coordinates. The translation component can then be written in
polar form in terms of ρ as the magnitude of the translation and φ, γ specifying
the direction of the translation. As observed before, the parameter ρ cannot be
recovered from the essential matrix. In our work, we restrict γ and φ to the range
[π/8, π/8]. This is not unreasonably restrictive in typical cases of stereo vision
setup. The five parameters to be recovered are therefore θx, θy, θz , φ, and γ,
within their respective restricted ranges.

Artifical neural networks can be used for functional approximation and for
classification problems. Using a functional approximation approach, our solution
is to train a network so that it can approximate the parameters as functions of
the inputs, viz. to approximate the nonlinear functions

θα({(x(i)
1 ,x(i)

2 ) : i = 1, ..., 8})

where αε{x, y, z}. When we use coupled input set, the function becomes

θα({(a(i),d(i)) : i = 1, ..., 8})

where αε{x, y, z}.
The functional approximation problem can be transformed into a classification

problem by binary coding the output values. This requires that each parameter
be quantized into a fixed number of bins; the true parameter value then defines
a binary pattern, which is to be learned by the network.

4 Experimental Results

In our preliminary functional approximation experiment, we set φ and γ to zero.
To generate a sample in a training set, we randomly generate 8 scene points as
well as a set of 3 pose parameters. The 8 scene points are then projected onto
the two cameras to generate 8 pairs of corresponding image points. The data
sample vector then consists of the 32 image point coordinates and the 3 target
values. This process is repeated as many times as needed to form a training set.

We used a training set of 200 scene points with each of their 3D locations
randomly chosen from [−1, 1] × [−1, 1] × [−9,−11]. The rotation angles were
randomly chosen from [−π/4, π/4], as discussed earlier. The output values were
the rotation angles normalized to the range [−1, 1]. The test set consisted of 200
scene points with the rotation angles uniformly spaced in the range [−π/4, π/4].
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A network with 32 inputs, 20 hidden units, and 3 output units was used. The
neurons used the tanh function as the activation function. The tanh function has
only a short, finite interval in which the output is not clamped to −1 or +1. A
linear activation function used at the output units might increase the likelihood
of the network output to produce intermediate values, thus intuitively it should
improve the functional approximation performance. In practice, linear activation
functions led to difficulty during learning.

We note that if we use the tanh function as the activation function in the
output units, the network is better suited to classification tasks than functional
approximation. Nevertheless, we would like to verify to what extent the network
can follow the target values. The target and output values of the three rotation
angles in the test set are shown in Figures 1 to 3. In these plots, the abscissa
is the index of the input set. The input set is ordered so that the target value
increases from -1 to 1, corresponding to the angles −π/4 to π/4. Whereas the
nonlinear nature of the neurons limits the ability of the network to work as
a function approximator, the network clearly showed the ability to follow the
target from -1 to +1 over the range for all three rotation angles.

-1.5
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-0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180 200

target
output

Fig. 1. Target and output values for θx

In our second set of experiments, we encode the output values and use the
classification capability of the neural network. We quantize a rotation angle
to four ranges and use four outputs to represent each of the range. The four
ranges were [−π/4,−π/8), [−π/8, 0), [0, π/8), and [π/8, π/4) and the respec-
tive target patterns were [+1,−1,−1,−1], [−1,+1,−1,−1], [−1,−1,+1,−1],
and [−1,−1,−1,+1]. We focus on estimating θy, which had the worst perfor-
mance in our functional approximation experiment. The network has 32 input
units, 20 hidden units, and 4 output units.

For these experiments, we use a training set of 2000 samples and a test set
of 2000 samples. In the case of uncoupled input data, we were able to obtain a
classification rate of 94.85%. In the case of coupled input data, the classification
rate was 95.925%.

Four bins form a rather coarse quantization of the range of the rotation angle.
If we add more bins, the number of output units in the artificial neural network
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Fig. 2. Target and output values for θy
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Fig. 3. Target and output values for θz

increases. For instance, if we want the rotation angle precision to be within
5 degrees, we need 18 output units. The additional output units may in turn
require more hidden units, resulting in a large network that may not be easy to
train. It is therefore reasonable to consider using binary coding on the bin index
so that, in general, K bins would need only log2K output units. In the example
described above, the four ranges could correspond to four patterns, each with
two output units: [−1,−1], [−1,+1], [+1,−1], and [+1,+1]. The network has
32 input units, 20 hidden units, and 2 output units. In our experiment using
uncoupled data, the classification rate drops to 71.5% (57 errors in 200 input
sets) in the case of θy.

5 Concluding Remarks

Pose estimation is an important step in 3D reconstruction using stereo pairs of
images. We train an artificial neural network using a 32-element input represent-
ing eight corresponding xy-pairs for each camera pose. The trained network is
then tested with novel sets of scene points as well as camera poses. We propose
that by configuring the network as a classifier, we can learn the input-output
map so as to recover the quantized rotation angles.
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Besides demonstrations of the efficacy of this approach, our ongoing work is
to optimize the network architecture, to determine the effect of the number of
point pairs in the training set, to involve further testing with a wider range of
parameters, as well as to quantitatively compare the results with those obtained
via the conventional eight-point algorithm.
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Abstract. The adaptive disparity filter is refined, along with the monoc-
ular feature filter designed based on neuron dynamics, and a new stere-
opsis model is set up in this study. The disparities of the matched binoc-
ular features in stereo image pair are detected by the adaptive disparity
filter, and removed by the monocular feature filter, only leaving those un-
matched monocular features to be added to all depth planes determined
by the disparities of the matched binocular features. Finally, visible sur-
face perception is generated by the closed boundaries in the correspond-
ing depth plane during the filling-in processing. By the above mechanism,
the depth perception of surfaces in the occluded scenic images is realized,
also, the figure-ground segmentation.

Keywords: Neuron Dynamics, Stereo Vision, Occlude, Disparity Filter,
Monocular Feature Filter, FACADE Theory.

1 Introduction

Stereoscopic vision is an important research area, so far, most studies on this
subject are focused on how to match the image features effectively. In order
to reduce the difficulties in features matching, certain constraints have been
implemented by the traditional vision theory which is dominated by Marr’s
computational system of stereo vision (see [1]), however, it doesn’t work well
in the images of the real-world scenes since these constraints may not be fully
complied with (e.g. disparity smoothness constraint). When occlusion occurs, the
occluded features in one image have no matchable features in the other image.
Besides, if there’s no apparent gray scale difference between an occluded area
and a non-occluded one, the corresponding features also can not been matched.
Not all these problems can be solved by simply improving the feature matching
algorithms.

Inspired by the uniqueness and superiority of neural mechanisms such as com-
petition and cooperation, the stereopsis is explored from the other point of view
in this study – adopting the achievements in visual physiology and neuropsy-
chology, to develop computer vision system by simulating mechanisms of human
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biological vision. Many researchers developed vision system by analyzing and
simulating mechanisms of biological vision (see [2], [3], etc.), and Grossberg’s
FACADE (Form-And-Color-And-DEpth) theory may be one of the most suc-
cessful and integrated framework among all the efforts and work in this field,
which is based on the neuron dynamics and simulates the functions of the bi-
ologic vision system (see [4], [5], etc.). In 2003, Grossberg and Howe refined
the FACADE model, set up the 3D LAMINART model (see [5]) to cope with
data about perceptual development, learning, grouping and attention. Then, the
3D LAMINART model was developed by Grossberg and Yazdanbakhsh in 2005
to explain how the visual cortex generates 3D percepts of stratification, trans-
parency and neon color spreading in response to 2D pictures and 3D scenes (see
[6]). Cao and Grosserg combined FACADE figure-ground mechanisms and 3D
LAMINART stereopsis mechanisms, in 2005, proposed the enhanced 3D LAM-
INART model to explain an even wider range of data about 3D vision and
figure-ground perception than was previously possible (see [7]).

FACADE theory has established primary frameworks of binocular vision sys-
tem upon biological foundations. However, it is chiefly applied to explain some
visual phenomena such as illusions and the experimental results by adopting
the biological vision mechanism. Both the FACADE model and the 3D LAM-
INART model can only simulate the visual information processing of simple
images which contain regular geometries, and it is difficult for such models to
analyze and process images of the real-world scenes in which there are lots of
confusions, fuzzy edges.

To implement a practical computational model and construct an image pro-
cessing computer system that can process real-world images of 3D scenes ac-
cording to biological mechanism, in 2004, we designed an adaptive disparity filter
based on neuron dynamics which implemented the binocular matching of dispar-
ity features in stereo images, and integrated it with FACADE theory to achieve
a stereopsis system to process complex images with feasible computational load
(see [8]). By using this stereopsis system, depth perception of surfaces in real-
world stereo images is effectively and efficiently realized, which is not achieved
by other models that instantiate the FACADE theory.

However, the stereopsis system proposed in 2004 by us could not process the
the occluded scenic images. So, we developed it further. A new stereopsis model
is proposed in this study, which could not only achieve depth perception of the
surfaces in occluded scenic images but also separate the object from background,
resolving those inextricable problems being difficult to the features matching
algorithms and the figure-ground segmentation algorithms. In what follows, this
stereopsis model and its primary mechanisms are introduced.

2 Stereopsis Model

The diagram of this stereopsis model proposed by us is shown in Fig.1. As
what can be seen in it, the monocular preprocessing (MP) of the left and right
image inputs generates parallel signals to the oriented contrast filter (OCF) and
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brightness capturing units via pathways 1 and 2 respectively. MP functions as
the lateral geniculate nucleus (LGN) in the biological vision system, modeling
the center-surround interaction of the LGN ON cells and the LGN OFF cells,
discounting the illuminant by reducing the overall brightness while reserving the
ratio contrast of the local image region.

Fig. 1. Diagram of the stereopsis model

The oriented contrast filter models the simple cells in cortical area V1, and
fulfills the local contrast detection in certain orientations utilizing a group of
contrast detectors in the shape of ellipse. Corresponding to each orientation
are pairs of simple cells sensitive to two opposite contrast polarities: one for
dark-to-light contrast represented by positive polarity and one for light-to-dark
contrast represented by negative polarity. Then, the positive and negative po-
larities outputs in multi-orientations generated by OCF are transported to the
adaptive disparity filter unit via the pathway 4, and the sum of positive and
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negative polarities outputs in each orientation are transported to the monocular
cooperative-competitive loop (CCL) unit via the pathway 3.

The adaptive disparity filter models the binocular complex cells of the cor-
tical area V2. This unit detects the boundary features that can be matched in
stereo image pair and forms multiple depth planes to code different disparities.
Therefore, It is the key aspect of the stereopsis model. It’s outputs reach the
binocular CCL 1 via the pathway 6.

Both the monocular CCL and the binocular ones function alike in the model,
all consisting of hyper-complex and bi-pole cells, organizing the overall boundary
consistently, sharpening and enhancing the fuzzy edges, connecting the broken
edges caused by noise, and realizing the boundary grouping and optimizing. In
this model, binocular CCL 1 generates parallel signals to the monocular feature
filter unit, boundary combining unit and brightness capturing unit via pathways
7, 8 and 9 respectively. Meanwhile, the outputs of monocular CCL are carried
to the monocular feature filter unit via the pathway 5.

In the monocular filter unit, the function of monocular complex cells is sim-
ulated, and the matched binocular features in stereo image pair are removed,
only those unmatched monocular features are left in the left and right images.

The boundary combining unit adds those unmatched monocular features com-
ing from the monocular filter unit via the pathway 10 to all depth planes along
their respective lines-of-sight. The outputs of this unit are transported to the
binocular CCL 2 via the pathway 11. Through the processing of binocular CCL
2 unit, the grouped and optimized boundaries in each depth plan are carried to
the filling-in unit via the pathway 12.

The brightness capturing unit and filling-in unit model the action of the cor-
tical area V4. The brightness capturing unit captures the monocular brightness
information from left and right eyes, using the information coming from the
pathway 9, forms brightness signals in each depth plane that are transported to
the last unit via the pathway 13 to act as the seeds of filling-in operation.

Ultimately, in the filling-in unit, these brightness information and the bound-
ary features are used to fulfill diffusive filling-in within the each depth plane,
gaining the depth perception of surfaces and figure-ground segmentation of the
real-world scenes.

The following text will only present and discuss those significant processing
units of this stereopsis model, full description of the others can be found in [4],
[5] and [8], this paper won’t repeatedly discuss their details.

2.1 Adaptive Disparity Filter

After MP has discounted the illuminant and OCF has achieved boundary lo-
calization, the adaptive disparity filter combines the left and right monocular
information, forms multiple depth planes determined by the disparities of the
binocular boundary features. The disparities of binocular boundary features in
one depth plane are equal, but different depth plane corresponds to different
disparity.
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The adaptive disparity filter is composed of the binocular combination and
the disparity competition. The binocular combination receives the output signals
from OCFs of the left and right eyes via the pathway 4. When the complex cells
in the binocular combination receive the outputs with approximately the same
magnitude of contrast from like-polarity simple cells of left and right eyes, they
register a high pattern match and are strongly activated, otherwise they register
a less perfect match and aren’t strongly activated:

Fijk̂d = max
−V ≤v≤V

[∣∣∣AL
i+v,j,k̂,d

+ AR
i,j,k̂,d

∣∣∣ ·W (
AL

i+v,j,k̂,d
,AR

i,j,k̂,d

)]
. (1)

Fijk̄d =
V∑

v=−V

[∣∣∣AL
i,j+v,k̄,d + AR

i,j,k̄,d

∣∣∣ ·W (
AL

i,j+v,k̄,d ,A
R
i,j,k̄,d

)]
. (2)

where,

AL
ijkd = SL,+

i+Md,j,k − SL,−
i+Md,j,k , AR

ijkd = SR,+
i−Md,j,k − SR,−

i−Md,j,k . (3)

In (1), (2) and (3), k represents the different orientation of the contrast, k ∈
{0, 1, · · · ,K−1} (e.g. k = 0 represents the horizontal orientation), K is the total
number of the orientations, k̄ and k̂ respectively designates the horizontal and
non-horizontal orientations; Fijkd is the total input to the complex cell centered
on location (i, j), of orientation k, and tuned to disparity d, it represents the
matching degree of the binocular boundary features in every depth plane after
processing of the binocular combination; S

L/R,+/−
ijk denotes the output from

the simple cells of the positive and negative polarities in OCFs of the left and
right eyes; Md is the vision shift determined by the disparity d for the binocular
combination. W

(
AL

ijkd ,A
R
ijkd

)
is the weight function revealing the matching

degree of the boundary features of left and right images, determined by the
adjoining region centered on location (i, j), being used to activate strongly the
binocular boundary features with the same polarity and nearly equal contrast.
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where,

ĀL
ijkd =

∑
p,q

Gpqk ·AL
i+p,j+q,k,d , ĀR

ijkd =
∑
p,q
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K

)
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)
2σ2

s

)
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In (5), Gpqk is used to reduce the noise effect on binocular combination by Gauss
smoothing on the surrounding area; in (6), β > 0 and σc > σs > 0.
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The max function in (1) and sum function in (2) are used to match the same
figure well in the same depth plane, even if it is not the same size in the left and
right images, which makes the adaptive disparity filter more robust.

Since the disparities only exist in the matched non-horizontal boundaries that
are called as the disparity features in this paper. To the non-disparity features,
they are transported directly to the next unit – binocular CCL 1; the phe-
nomenon that the horizontal edges get fuzzy in each depth plan, caused by the
sum function in (2), will be reduced by the processing of the binocular CCL 1,
for the CCL has the action of sharpening and enhancing the fuzzy edges. While,
to the disparity features, the following disparity competition suppresses the false
binocular matches in each depth plane, and implements the function that each
depth plane only codes the information corresponding its depth.

Because, the activities of complex cells, that have been perfectly activated
in the binocular combination, are approximately 2 times as strong as the ac-
tivities of those that receive the common monocular inputs but aren’t perfectly
activated. To suppress the false and weak binocular matches in the binocular
combination, thus, the dynamics equation of the disparity competition is de-
signed as follows:

d Jijk̂d

d t
= −α1Jijk̂d +

(
U1 − Jijk̂d

)
Fijk̂d −

(
Jijk̂d + L1

)
C . (7)

where,

C =
∑

e�=d,p

g
(
Fi+Me−Md+p,j,k̂,e, Γijk̂d

)
+
∑

e�=d,p

g
(
Fi+Md−Me+p,j,k̂,e, Γijk̂d

)
. (8)

Γijk̂d = λFijk̂d . (9)

g(x, y) =
{
x, for x > y
0, others . (10)

In (7), α1 is a positive constant decay rate, U1/L1 bounds the upper or lower
limit of cell activity; Jijk̂d is the output activity of complex cell, it represents
the final result of the adaptive disparity filter. In (9), 0.5 < λ < 1. Equation (9)
and (10) embody the adaptive threshold. Equation (7) has an analytical equilib-
rium solution, therefore the adaptive disparity filter generates the outputs in one
step without iterative operations, which remarkably reduces computational load
(see [8]).

2.2 Monocular Feature Filter

The monocular feature filter gets rid of those matched binocular features in the
left and right images, leaving those unmatchable features. The neuron dynamics
equation is as follows:

dX
L/R
ijk

d t
= −α2X

L/R
ijk +

(
U2 −XL/R

ijk

)
Y

L/R
ijk −

(
X

L/R
ijk + L2

)
EL/R . (11)
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where,

EL =

{∑
d,v Zi−Md,j+v,k,d , for k = k̂∑
d,v Zi−Md+v,j,k,d , for k = k̄

. (12)

ER =

{∑
d,v Zi+Md,j+v,k,d , for k = k̂∑
d,v Zi+Md+v,j,k,d , for k = k̄

. (13)

In (11), (12) and (13), XL/R
ijk is the final output of the left and right monocular

feature filter, Y L/R
ijk is the output from the left and right monocular CCL via the

pathway 5, Zi,j,k,d is the output from the binocular CCL 1 via the pathway 7.

2.3 Boundary Combining

Since the depth of those unmatched monocular features can’t be determined by
the adaptive disparity filter, they are added to each depth plane according to
(14).

Hijkd = Zijkd +XL
i+Md,j,k +XR

i−Md,j,k . (14)

In (14), Hijkd is the output of the boundary combining.
There are redundant monocular features in each depth plane, however, only

those belonging to the object in that depth plane could connect with the binocu-
lar features to form the closed boundaries of this object. Finally, in the filling-in
unit, only closed boundaries could gain surface perception, while the others don’t
and disappear.

2.4 Brightness Capturing

The brightness signals are captured by this unit in accordance with (15), using
information coming from the pathway 9. Since the disparities only exist in the
binocular disparity features, they are used to select the brightness signals that are
spatially coincident and orientationally aligned with them in each depth plane,
realizing the one-to-many topographic registration of the monocular brightness
signals.

B
L,+/−
ijd = I

L,+/−
i+Md,jh

⎛⎝∑
p,k∈k̂

Zi+p,j,k,d

⎞⎠ ,B
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i−Md,jh

⎛⎝∑
p,k∈k̂

Zi+p,j,k,d

⎞⎠ .

(15)
where,

h(x) =
{

1, for x > Γc

0, others . (16)

In (15), IL/R,+/−
ij denotes the LGN ON signal and LGN OFF signal coming from

the outputs of the MP unit of left and right eyes via the pathway 2, B
L/R,+/−
ijd

represents the brightness signal outputted by this unit. In (16), Γc is the constant
threshold and Γc > 0.
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2.5 Filling-In

In this unit, firstly the brightness signals from left and right eyes via the path-
way 13 are binocularly matched. Within this current implementation, we simply
model this matching process as an average of brightness signals of left and right
eyes.

B̃
+/−
ijd =

1
2

(
B

L,+/−
ijd + B

R,+/−
ijd

)
. (17)

Then the matched signals B̃
+/−
ijd in each depth plane are used for the seeds of

filling-in operation, which allows the brightness signals to diffuse spatially across
the image except where gated by the presence of boundaries (see [4],[7]). So, only
the closed boundaries could gain surface perception by the diffusive filling-in in
the corresponding depth plane, while the others don’t and disappear, for they
can’t enclose the brightness signals. Thus, the depth of the unmatched monocular
feature is determined by the depth of the matched binocular features, too.

3 Simulation

This model has been realized and simulated in the computer system. Because of
space limitations, and to illustrate more expressly, only a sample stereo image
pair in which there are three kinds of typically unmatchable monocular features,
as presented in Fig.2, are processed and exhibited here. Firstly, the edge feature
’a’ between the occluded and non-occluded areas, cannot be matched for lacking
of clear gray distinction. Secondly, the monocular feature ’b’ in the right image
is occluded in the left image, therefore, its corresponding features cannot be

(a) Left image (b) Right image

Fig. 2. The stereo image pair processed in the simulation of this paper

(a) Far plane (b) Middle plane (c) Near plane

Fig. 3. The matched binocular features
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found. Thirdly, the monocular feature ’c’ in the left image doesn’t appear in the
right image. Depth of these three edge features cannot be determined by simply
improving the feature-matching algorithm, while it is solved in this model.

Figure 3 shows the final output of the adaptive disparity filter after being
processed by the binocular CCL 1. It’s easy to see that the binocular features
have been matched and their depth planes have been determined. Because of the
horizontal bias of eyes configuration in binocular vision system, the horizontal
boundary features in these three depth planes are almost the same.

While, the monocular feature filter outputs those unmatched monocular fea-
tures shown in Fig.4.

The redundant horizontal boundary features and unmatched monocular fea-
tures in each depth plane will not effect the final 3D surface perception, because
those redundant edges that cannot form a closed structure don’t produce surface
presentation during the final filling-in processing. The final result of this model
is shown in Fig.5, it is clear that each depth plane presents an intact figure. The
depths of the features in the stereo image pair, including those in the occluded
area (viz. feature a and b) and that missed by the camera (viz. feature c), are

(a) The monocular features of left image (b) The monocular features of right image

Fig. 4. The unmatched monocular features

(a) Far plane (b) Middle plane

(c) Near plane

Fig. 5. The final outputs of the stereopsis model
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all determined according to their surface structure. Also, shadows of objects are
suppressed and figure-ground separation is fulfilled.

4 Discussion

Stereopsis is researched in this study by applying the biological vision theory in
the computer vision, a new stereo vision model is proposed by developing further
the adaptive disparity filter and designing a monocular feature filter.

It is proved that the depth perception of the surfaces in the occluded scenes
could be gained efficiently by this model. Some difficult problems in the stereo
vision field are solved, which cannot be effectively settled by simply improving
the feature-matching algorithms and the image segmentation algorithms.

Moreover, a new framework is provided to cope with the occluding problems
in the stereopsis. Mathematic depiction of this model is supported by neuron
dynamics equations, while actually any mathematic means being capable of im-
plementing the model could be adopted.
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Abstract. The camera model could be approximated by a set of linear
models defined on a set of local receptive fields regions. Camera cali-
bration could then be a learning procedure to evolve the size and shape
of every receptive field as well as parameters of the associated linear
model. For a multi-camera system, its unified model is obtained from
a fusion procedure integrated with all linear models weighted by their
corresponding approximation measurements. The 3-D measurements of
the multi-camera vision system are produced from a weighted regression
fusion on all receptive fields of cameras. The resultant calibration model
of a multi-camera system is expected to have higher accuracy than either
of them. Simulation and experiment results illustrate effectiveness and
properties of the proposed method. Comparisons with the Tsai’s method
are also provided to exhibit advantages of the method.

1 Introduction

Camera calibration is to establish a mapping between the camera’s 2-D image
plane and a 3-D world coordinate system so that a measurement of a 3-D point
position can be inferred from its projections in cameras’ image frames. In a large
variety of applications, multiple cameras are often deployed to construct a stere-
ovision [1] or a multi-camera system [2],[3] in order to provide measurements for
3-D surroundings. For these vision systems, details of a single camera model, i.e.,
the internal and external parameters of the camera involved, are not important
and explicit calibration methods appear to be too fragile and expensive, which
leads to the implicit calibration [4]. Most of works in this category are based
on neural networks [5],[6],[7], which take advantage of capability of neural net-
works to approximate a continuous function with arbitrary accuracy. The neural
network is trained offline, with the image positions of a feature in cameras as
inputs and the 3-D coordinate of the feature as output. This method is simple in
methodology, thus has presumably been accepted by those who have to respect
a stereovision system but are not expertised in computer vision theory.

However, it is often confusing to use neural network for camera calibration
in practice since it is not clear what kind of structure of the neural network
should be deployed and which learning algorithm is acknowledged to converge
to a reasonable performance. Moreover, if the configuration of a vision system
is changed, its neural network-based calibration model should be trained again,
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even if most of the cameras in the system are the same. This will increase the cost
of the system, especially when reconfiguration of the vision system is frequent.

In this paper, we propose a new implicit method for multi-camera calibration
based on receptive fields and data fusion strategy [8]. The receptive field weighted
regression (RFWR) algorithm was first proposed by Shaal [9] as an incremental
learning method that can overcome negative inference and bias-variance dilemma
problems. A nonlinear function is approximated by a set of linear functions,
each of which associates with a weighting function describing its approximation
accuracy. The definition domain of a linear function is called a receptive field.
The final estimation to the nonlinear function is the regression result of all
linear functions’ estimations weighted by their respective weighting functions.
Accordingly, the nonlinear model of a camera can be learned and realized by
the RFWR models. The nonlinear mapping between a 3-D position and its 2-
D image projections defined by a stereovision system or a multi-camera vision
system can be implemented based on the RFWR models of each camera with
the help of a weighted average fusion algorithm. The number of receptive fields is
evolved automatically according to predefined approximation accuracy. So it is
not necessary to determine prior structure of the calibration model or its initial
parameters, which facilitates its practical utility to a great extent.

The paper is organized as follows: Section 2 presents preliminaries of recep-
tive field weighted regression algorithm. Section 3 shows how the algorithm is
applied to camera calibration problem. Simulation and experiment results of the
proposed method are reported in Section 4 and Section 5 respectively, followed
by conclusions in Section 6.

2 Receptive Field Weighted Regression

The receptive field weighted regression algorithm is an incremental learning algo-
rithm based on local fields [9]. The essence is to approximate a globally nonlinear
function by a number of locally defined linear functions whose definition domains
are called receptive fields and each of them is a partition of the definition domain
of the nonlinear function. Fig. 1 illustrates principle of the algorithm. In Fig.
1(a), y = f(x) is a nonlinear function to be approximated. The neighborhood
region between two dotted curves illustrates noises and other uncertainties that
affect approximation to the nonlinear function. The receptive field is a region
in x axis, where two functions, ŷ = l(x) and w = u(x), are defined. ŷ = l(x)
is the local linear function to approximate y = f(x), ŷ is an estimation to y in
this receptive field. w = u(x) indicates approximation effect of ŷ to y. For ex-
ample, w = u(c) = 1 means the linear model has a perfect approximation to the
nonlinear function at point c. Obviously, a nonlinear function should be jointly
approximated by several linear functions defined on different receptive fields, as
shown in Fig.1(b). In each receptive field, an output ŷ can be obtained from the
associated linear model as an estimation to y along with a weight w specifying
contribution of ŷ to the final approximation of y. Here we call the linear model
ŷ = l(x) the regression model and w = u(x) the uncertainty model.
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Fig. 1. Receptive fields

RFWR algorithm consists of two steps: 1) learning on the receptive field; and
2) generating prediction with weighted average algorithm. For a training sample
(x, y), assuming there are K receptive fields to yield estimations to the true
function relations between x and y. The linear and weighting models in the k-th
(k = 1, . . . ,K) receptive field can be expressed as:

ŷk = (x − ck)Tbk + b0,k = x̃Tβk, (1)

wk = exp

(
−1

2
(x− ck)TDk(x− ck)

)
. (2)

A new receptive field is created if a training sample (x, y) does not activate
any of the existing receptive fields by more than a weight threshold wgen, while
a receptive field is pruned if it overlaps another receptive field too much. The
overlap is detected when a training sample activates two receptive fields simul-
taneously more than a predefined weight threshold wprun.

It is clear that the update of Mk cannot be implemented by using (2) directly.
A cost function should be employed, which addresses the final approximation
errors of the RFWR model [8]:

J =
1
2
‖y − ŷ‖2 +

K∑
k=1

wk(y − ŷk)2

K∑
k=1

wk

. (3)

The first part of Eq. (3) emphasizes on the bias between the actual output y
and the estimation from the whole RFWR model ŷ. Moreover, according to
the property of RFWR, each weight wk is more directly related to the local
estimation bias, which leads to the second part of the cost function in (3). This
part also leads to a balance among all the receptive fields in terms of local
estimation errors in each of individual fields. We believe that balance among
all receptive fields is important because this implies approximation accuracy
from all receptive fields are similar and estimations from all receptive fields have
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2ŷ

Kŷ
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Fig. 2. Learning procedure and the inner structure of an RFWR model. (LM stands
for linear model and UM stands for uncertainty model)

identical contributions to the final result. Fig. 2 shows the learning procedure
by the cost function in (3), in which LM stands for the linear model and UM
stands for uncertainty model.

To learn the uncertainty model in the k-th receptive field, we minimize J with
respect to Mk:

∂J

∂Mk
= (ŷ − y) ŷk − ŷ

J1

∂wk

∂Mk
+

(y − ŷk)2 − J2
J1

J1

∂wk

∂Mk
, (4)

where we define J1 =
∑K

k=1 wk and J2 =
∑K

k=1 wk(y − ŷk)2. Eq. (4) is efficient
for iterating Mk in RFWR training.

It is straightforward that the final estimation ŷ for a query point x from
all receptive fields comes from a weighted average algorithm [10] that takes all
estimations and their associated weights into account:

ŷ =

K∑
k=1

wkŷk

K∑
k=1

wk

. (5)

Fig. 2 also shows this procedure as a part of a complete RFWR model. It is
worthwhile noting that the number of the linear models and uncertainty models,
thus the number of receptive fields, included finally in a RFWR model is pro-
duced automatically according to the learning procedure. Parameters of the lin-
ear model defines a local estimation to the global input-output relations, whereas
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parameters of the uncertainty model defines the shape and size of the receptive
field, thus accuracy weights of the local estimation.

3 Implicit Camera Calibration

The mapping from 2-D image feature points and their corresponding 3-D object
position is inherently a nonlinear function of the cameras’ internal parameters
and their relative positions and orientations. We can utilize RFWR algorithm
to learn the nonlinear mapping of the vision system and obtain RFWR models
for it, which is actually an implicit calibration for the vision system.

We take the known observations from the image planes of the cameras as
input and the unknown object position in 3-D space as output. If T = (x, y, z)
is the position of the object in a properly defined 3-D world coordinate system,
Ci = (ui, vi), (i = 1, . . . , N) is the image coordinate of the object from the i-th
camera among all N cameras, there exists a nonlinear relation:

T = f(C1,C2, . . . ,CN ). (6)

Calibration of the multi-camera system is to learn the nonlinear function f by
RFWR algorithm. Practically, we adopt one RFWR model for each of input-
output relations, i.e.⎧⎨⎩

x̂i = RFWRi
x(ui, vi)

ŷi = RFWRi
y(ui, vi)

ẑi = RFWRi
z(ui, vi)

, i = 1, . . . , N. (7)

where x̂i, ŷi, and ẑi are estimations from the i-th RFWR model for x, y and z,
respectively.

After training, we can obtainN RFWR models for estimations of each of coor-
dinate positions of x, y and z, respectively, i.e.,RFWRi

x, RFWRi
y, RFWRi

z, (i =
1, . . . , N). The final estimation for either of them must be an integrated result
from its all RFWR models. For example, the estimation for x should be an in-
tegrated results from all RFWRi

x, (i = 1, . . . , N) models. It is again natural to
employ a weighted average algorithm to fuse estimations from all RFWR model.
Suppose there are Ki, (i = 1, . . . , N) receptive fields in the i-th RFWR model,
RFWRi

x, in x direction, then the final estimation for x is

x̂ =

K1∑
j=1

w1j x̂1j +
K2∑
j=1

w2j x̂2j + · · ·+
KN∑
j=1

wNj x̂Nj

K1∑
j=1

w1j +
K2∑
j=1

w2j + · · ·+
KN∑
j=1

wNj

, (8)

where wij and x̂ij(i = 1, . . . , N, j = 1, . . . ,Ki) are the weight and local esti-
mation at the j-th receptive field of i-th RFWR model RFWRi

x, respectively.
Fig. 3 illustrates the structure of the calibration method based on RFWR models
and the weighted regression data fusion strategy to elaborate final results with
estimations from different RFWR models of different cameras.
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Fig. 3. Camera calibration based on RFWR models and weighted regression algorithms

From the structure of the RFWR model shown in Fig. 2 and the calibration
method shown in Fig. 3, we can see that 1) For the fusion algorithm based on
RFWR, every receptive field is a subsystem to be fused, with fusion algorithm of
weighted regression. Hence, the system shown in Fig. 2 is actually a fusion system
composed of several subsystems of similar fusion structures; 2) RFWR algorithm
is an incremental learning algorithm. When a new receptive field is generated, it
does not affect other existing receptive fields. When the approximation space is
enlarged, the whole model is updated by only generating new receptive fields to
cover enlarged space. The updated model is not only fit for the enlarged part of
the approximation space, but also fit for original part. This incremental learning
ability is very important for applications in dynamic environment and dynamic
tasks. When a vision system is updated to include more cameras, only the recep-
tive field models of the newly added cameras are included to update the model
of the whole vision system. In this sense, RFWR-based calibration method has
better adaptability than other implicit calibration methods; 3) RFWR algorithm
not only describes an approximate model for the whole vision system, but also
provides uncertainty measurements for the approximation.

4 Simulations

We consider a vision system of two cameras. The pinhole model is adopted
for all cameras with radial distortion and imaging noises. The internal param-
eters of each camera are set the same. The focal length is 6mm, the size of
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image plane is 6× 3mm2, and the first-order radial distortion coefficient is 0.01.
The imaging noise is a Gaussian type with N(0, 0.001). The two cameras are
fixed in a world coordinate system, with similar orientations defined by Eu-
ler angles (90◦,−90◦, 180◦). Their positions in the world coordinate system are
(400,−50, 450) for camera 1, and (400, 50, 450) for camera 2.

To clarify the calibration procedure, we calibrate the vision system in x, y
and z directions independently. That is, an independent calibration model is
to be set up for each of the coordinate directions. Without loss of generality,
we take the calibration in x direction as an example to demonstrate calibration
procedure of the proposed method. Calibrations in y and z directions follow the
same procedure described below.

We first generate a number of training data pairs, each data pair composes
of a 3-D point in the common visual field of camera 1 and camera 2 and its
projections in the cameras’ image planes based on their internal and external
models. In simulations, we randomly select 90 pairs of sample data for each of
the cameras, among which 60 are for training and 30 are for evaluation test.
Two RFWR models, RFWR1

x and RFWR2
x, are respectively established for

two cameras in x direction. The convergence condition for training is prescribed
that the 3-D reconstruction errors of all training data are less than 1mm.

The training iterations converge after 4 epochs for RFWR1
x and 1 epoch for

RFWR2
x. Each of the two models includes 15 receptive fields after training. The

trained models are fused by weighted average algorithm to obtain final results.
The training and fusion results are shown in Table 1, in which ME denotes
the maximum error and MSE denotes mean squared error, and they are all
measured in millimeters(mm).

Table 1. Training and fusion results for a stereovision system(Unit:mm)

RFWR1
x RFWR2

x Fusion
ME 0.2320 0.2164 0.1756
MSE 0.0052 0.0069 0.0046

From simulations, we found that training procedure for RFWR is stable and
easy to converge with high accuracy. Besides, it is clear that the fusion results
are better than either of the models, which exhibits good capability of the fusion
strategy in suppressing errors from individual RFWR models.

5 Experiments

We apply the RFWR-based method to establish calibration model for a stereo-
vision system that provides visual feedback for robot control. Similar to many
other calibration methods [11], a plane of grids is adopted as the calibration ref-
erence in the experiment, shown in Fig. 4. The reference plane consists of 7× 9
black squares, each of which has the size of 5× 5mm2.
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Fig. 4. A planar calibration reference of squares with identical and known sizes

Table 2. Back-projection errors in x direction from RFWR model

RFWR1
x RFWR2

xItems
Training Test Training Test

ME 3.3274 4.3420 3.8856 4.4406
MSE 0.7689 2.5152 1.1632 2.9102

We take advantage of corner points of all squares as reference points for cali-
bration. Cameras in the stereovision system take images of the reference plane.
The corner points in images are extracted with SUSAN algorithm. Due to in-
consistency of SUSAN method, all extracted points are preprocessed to reject
those false corner points. Consequently, 252 corner points of 63 black squares
are obtained.

Coordinates of the 252 corner points in the two camera image planes are
known via image processing. In experiment, we simply set up a world coordinate
system, with its origin at the lower-left corner point of the calibration reference.
So positions of all 252 feature points in the world coordinate system are known.
Each corner point’s image coordinates and world coordinate are combined to be
a sample data vector and all 252 data vectors are used to train the RFWR models
of the two-camera vision system. Training procedures converge after 7 iterations,
with 121 receptive fields in RFWR1

x and 140 in RFWR2
x. The training results

are evaluated by reconstruction errors of the corner points’ positions in 3-D
world coordinate system, as shown in Table 3, in which only statistical errors in
x direction are listed.

The training errors shown in Table 3 are relatively large due to improper
distribution of the sample data. From Fig. 4 , it is easy to see that there are no
calibration squares in the edge areas of the image plane. Meanwhile, the cameras
used in experiment are of large distortions since the calibration squares in image
planes are deformed explicitly.
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Table 3. Reconstruction errors by RFWR model and Tsai’s model

Items RFWR1
x RFWR2

x Fusion Tsai
ME 2.8864 3.1606 1.2090 2.5013
MSE 1.9998 2.0158 0.8996 1.6915

The stereovision system is also calibrated by the well known two-step method
proposed by Tsai [11] for comparison. We randomly take 16 corner points that
can be found in both image planes to train the RFWR-based calibration model
for each of the two cameras. Reconstruction errors from both methods are shown
in Table 4. Results by RFWR method are expectedly better than those in Table
3. It is clear in Table 4 that although either of the RFWR models of the two
cameras has higher error than Tsai’s model does, the fusion results from the
RFWR models are better than Tsai’s model.

Moreover, Fig.5 demonstrates reconstruction differences (Z axis) between
Tsai’s model and RFWR model in terms of image coordinates (X and Y axes)
of camera 1. It is obvious that the reconstruction differences between these two
models are small in the central regions and large in the boundary regions. If
we take Tsai’s model as the ground truth, this means RFWR model has larger
errors in boundary regions of the image planes. This observation agrees with
distribution of the sampling data for RFWR model training shown in Fig. 4.
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Fig. 5. Reconstruction differences of Tsai’s model and RFER models of the stereovision
system

6 Conclusion

A new implicit camera calibration method has been presented in this paper based
on receptive field weighted regression algorithm. This method inherently approx-
imate the nonlinear camera calibration models with piecewise linear approxima-
tions, which are evolved via a learning procedure. Since the approximation ac-
curacy is associated with the set of linear models from learning procedure, final
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results can easily be obtained by weighted regression fusion algorithms. More-
over, fusion strategy is also exhibited to be an effective way for a multi-camera
vision system to achieve better performance. Simulations and experimental re-
sults show the performance of the proposed method. Comparisons with Tsai’s
method are also provided to show its advantages.
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Abstract. The accuracy of 3D measurements of objects is highly af-
fected by the errors originated from camera calibration. Therefore, cam-
era calibration has been one of the most challenging research fields in
the computer vision and photogrammetry recently. In this paper, an Ar-
tificial Neural Network Based Camera Calibration Method, NBM, is
proposed. The NBM is especially useful for back-projection in the ap-
plications that do not require internal and external camera calibration
parameters in addition to the expert knowledge. The NBM offers solu-
tions to various camera calibration problems such as calibrating cameras
with automated active lenses that are often encountered in computer
vision applications. The difference of the NBM from the other artificial
neural network based back-projection algorithms used in intelligent pho-
togrammetry (photogrammetron) is its ability to support the multiple
view geometry. In this paper, a comparison of the proposed method has
been made with the Bundle Block Adjustment based back-projection al-
gorithm, BBA. The performance of accuracy and validity of the NBM
have been tested and verified over real images by extensive simulations.

1 Introduction

Camera calibration is the process of transforming the 3D position and orien-
tation of the camera frame into 2D image coordinates [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15]. Camera calibration is a very important step in many
machine vision applications such as robotics, computer graphics, virtual reality
and 3D vision. The goal of machine vision is to interpret the visible world by
inferring 3D properties from 2D images. In this sense, machine vision employs
camera calibration in the process of modelling the relationship between the 2D
images and the 3D world. In the traditional camera calibration methods such
as Bundle Block Adjustment based self-camera calibration (BBA), the coordi-
nate transformation is made using camera calibration parameters that include
rotation angles (ω, φ, κ), translations (X0,Y0, Z0), the coordinates of principal
points (u0, v0), scale factors (βu, βv) and the skewness (λ) between image axes.
In the literature, several methods have been implemented using various camera
calibration parameters such as radial lens distortion coefficients (k1, k2), affine
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image parameters (A, B) and decentering lens parameters (p1, p2). Non-linear
optimization algorithms are used to obtain camera calibration parameters in
most of the traditional approaches [1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15].

The Intelligent Photogrammetry (Photogrammetron) [15, 16, 17] consists of
ideas, methods and applications from digital photogrammetry, intelligent agents
and active vision. Full automation of the photogrammetry, which is referred as
intelligent photogrammetry, can only be possible with an autonomous and in-
telligent agent system. Photogrammetron is basically a stereo photogrammetric
system that has a full functionality of photogrammetry in addition to an intel-
ligent agent system and a physical structure of active vision. It may have dif-
ferent forms as coherent stereo photogrammetron, separated stereo photogram-
metron and multi-camera network photogrammetron. Photogrammetron can be
used in various applications including photogrammetry-enabled robots, intel-
ligent close-range photogrammetry, intelligent video surveillance and real-time
digital videogrammetry. The method proposed in this paper, NBM, is a novel
application of Photogrammetron [15, 16, 17] which provides transformation of
3D world coordinates into 2D image coordinates using an artificial neural net-
work (ANN) structure without restricting the use of zoom lenses and various
camera focal-lengths. Therefore, the camera calibration parameters have been
described as the ANN parameters such as weights and transfer functions.

In the literature, various camera calibration methods have been implemented
with ANNs [3, 4, 11, 12, 14, 15, 16, 17, 18]. Most of these methods employ
an ANN structure either to learn the mapping from 3D world to 2D images
coordinates, or to improve the performance of other existing methods. Know-
ing that the camera calibration parameters are important in various computer
vision applications such as stereo-reconstruction, the NBM goes beyond the
existing ones by providing 3D reconstruction from multi-view images besides
stereo-images [3, 4, 11, 12, 14, 15, 16, 17, 18].

In this paper, the camera calibration problem is addressed within a multi-
layer feed-forward neural network (MLFN) structure [19, 20, 21, 22, 23]. The
NBM can be used with automated active lenses and does not require a good
initial guess of classical camera calibration parameters.

The rest of the paper is organized as follows: A Novel Approach For Camera
Calibration Based On Resilient Neural Networks is explained in Section 2. Ex-
periments and Statistical Analysis are given in Section 3. Finally, Conclusions
are given in Section 4.

2 A Novel Approach for Camera Calibration Based on
Resilient Neural Networks

A number of calibration methods employing an ANN structure have been intro-
duced recentlyS [3, 4, 11, 12, 14, 15, 16, 17, 18]. These methods generally require
a set of image points with their 3D world coordinates of the control points and
the corresponding 2D image coordinates for the learning stage. However, NBM
offers to use not only stereo images but also multi-view images obtained at
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Fig. 1. Structure of the employed MLP

different camera positions as well. This provides using different image scales as
if zoom lenses are used. Thus, changes in the geometry of the control points on
images help the ANN to learn the relationship between 3D world and 2D image
coordinates easily and accurately.

In this paper, the preparation steps of the learning and training data (train-
ing input, training output and test input) used in the training of the proposed
ANN structure to obtain the 3D world coordinates (X,Y,Z) of a point (p) are
given below.

Training data preparation steps:

– Find out the images (j) that encapsulate the point (p) whose 3D world
coordinates of (X,Y,Z) will be computed.

– Determine the control points whose image coordinates (uj ,vj) can be ob-
tained in images (j) found in the first step and obtain the image coordinates
(uj ,vj) of the control points.

– Convert all the image coordinates (uj ,vj) of ith control point into a raw
vector so that Training Input i=[uij vij ], where j denotes the related image
number.

– Train the ANN structure using the Training Data (Training Input, Train-
ing Output).

Training Data are obtained using the images that encapsulate point (p) of
whose (X,Y,Z) coordinates will be computed. Training Data designed for each
point (p) can have different number of input parameters. Therefore, preparation
of Training Data is an adaptive process. Extensive simulations show that this
approach increases the accuracy of Back-Projection.

Back-Projection computation steps of the 3D world coordinates (X,Y,Z), of a
point (p), using a trained ANN structure are given below:
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– Find out the images (j) that encapsulate point (p), whose 3D world coordi-
nates (X,Y,Z) will be computed.

– Find out the image coordinates (upj , vpj) that belong to the point (p) in
these images (j).

– Convert the obtained image coordinates (upj , vpj) into a raw vector so that
Test Input=[upj vpj ], where j denotes the related image number.

– Simulate the trained ANN structure using Test Input raw vector in order to
compute the (X,Y,Z) coordinates of point (p).

As shown in Fig. 1, the Multi-layer perceptron (MLP) has been used to trans-
late the image coordinates (u,v)i into the world coordinates (X,Y,Z)i. In the
hidden and output layers of the implemented ANN structure, 10 and 3 neurons
have been used, respectively. All the neural network structures have been trained
with a resilient back-propagation algorithm through a linear transfer function
with 1000 epochs. The number of neurons used in the input layer of the ANN
structures has been taken as twice the number of images in which the point (i) is
encapsulated. For example, the point (i) is encapsulated in 4 images with their
(u,v)i image coordinate pairs and, therefore, the number of neurons in the ANN
input layer is taken as T=8 (see Fig. 1).

2.1 Resilient Neural Networks (Rprop)

ANN [22, 23] is an advanced learning and decision-making technology that mim-
ics the working process of a human brain. Various kinds of ANN structures and
learning algorithms have been introduced in the literature [20, 21, 22, 23]. In this
study, an ANN structure and Rprop learning algorithm have been used [22, 23].

In contrast to other gradient algorithms, this algorithm does not use the
magnitude of the gradient. It is a direct adaptation of the weight step based on
local gradient sign. The Rprop generally provides faster convergence than most
other algorithms [21]. The role of the Rprop is to avoid the bad influence of the
size of the partial derivative on the weight update. The size of the weight change
is achieved by each weight’s update value, Aji(k), on the error function E(k),
which is used to calculate the delta weight as in Equation 1.

Δwji (k) =

⎧⎨⎩−Aji (k) if B (k) > 0
+Aji (k) if B (k) < 0

0 else
(1)

where B (k) is ∂E
∂wji

(k) and

Aji =

⎧⎨⎩
ηAji (k − 1) , B (k − 1) B (k) > 0
μAji (k − 1) , B (k − 1) B (k) < 0
Aji (k − 1) , else

(2)

where B (k − 1) is ∂E
∂wji

(k − 1), η and μ are the increase and decrease factors,
respectively where 0 < μ < 1 < η.

More details about the algorithm can be found in [21, 22, 23].
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3 Experiments and Statistical Analysis

A set of real images have been employed in the analysis of the NBM. Then the
obtained results have been compared with the BBA method. BBA requires the
calibration of the camera, therefore, the camera, Casio QV 3000EX/ır, used in
the study, has been calibrated.

In the analysis of the NBM, the images obtained from the camera have been
employed directly and no deformation corrections have made in the images. The

Fig. 2. Positions of the used 24 control points

Fig. 3. C(1,2,3,4,5) camera positions and P(1,2,3) control point-planes



Implicit Camera Calibration by Using Resilient Neural Networks 637

Fig. 4. (a) The model obtained using the 3D model of the NBM (b) Texture mapped
Model

Table 1. Mean and standard deviation of the differences between the results obtained
using the NBM and BBA

ΔX =BBAX -NBMX ΔY =BBAY -NBMY ΔZ =BBAZ -NBMZ

μ BBA−NBM 0.013 0.015 0.062
σ BBA−NBM 0.012 0.013 0.064

Table 2. MSE and Pearson correlation coefficient values between the results obtained
using the NBM and BBA

MSE Corr
ΔXBBA−NBM 0.000 0.985
ΔY BBA−NBM 0.003 0.991
ΔZBBA−NBM 0.003 0.938

image coordinates of the control points have been extracted by employing the
well-known least square matching algorithm. On the other hand, the required
corrections have been made to the coordinates obtained as a result of the image
matching before using the BBA method. The results obtained using the NBM
and BBA methods have been compared statistically with each other.

As a result, 89.34% of the Δx , 92.84% of the Δy and 81.15% of the Δz values
obtained with the NBM were found between (μ± 2σ) ,where Δx, Δy and Δz
denote the differences between NBM and BBA.

Positions of the used 24 control points and the 3D model of the camera posi-
tions are illustrated in Figures 2 and 3. In addition, the 3D model of the NBM
and the texture mapped model are illustrated in Figure 4. Extensive simulations
show that the NBM supplies statistically acceptable and accurate results as
seen in Tables 1-2.
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3.1 One Way Multivariate Analysis of Variance (Manova)

In the Manova [24], mean vectors of a number of multidimensional groups are
compared. Therefore, the Manova is employed to find out whether the differences
in the results of NBM and BBA are statistically significant or not.

The tested null hypothesis is;
H0: μ1 = μ2= ... =μ
H1: at least two μ’s are unequal
Where μ1 is the mean vector of the group # 1, μ2 is the mean vector of the

group # 2 and μ is population mean vector.
As a result of the implemented Manova, no statistically significant difference

has been found between the results of NBM and BBA. That means that the null
hypothesis cannot be rejected. This hypothesis test has been made using Wilk’s
Λ and χ2 tests. The details of these tests and Manova can be found in [24].

For the Wilk’s Λ test, the test and critical values are computed as 0.97 and
0.94, respectively, given that α significance level is 0.05 and cross-products are 1
and 123. Due to the condition of Λtest > Λcritic, the null hypothesis cannot be
rejected.

For the χ2 test [24], the test and the critical values are computed as 3.40 and
7.81, respectively, given that α significance level is 0.05 and degrees of freedom is
3. Due to the condition of χ2

test < χ2
Critic, the null hypothesis cannot be rejected.

That is to say that there is no statistically significant difference between the
results of NBM and BBA. This outcome statistically verifies the advantages of
the NBM method in various perspectives.

4 Conclusions

An ANN based camera calibration method for 3D information recovery from
2D images is proposed in this paper. The obtained results have been compared
with the traditional BBA. The main advantages of the NBM are as follows: It
does not require the knowledge of complex mathematical models and an initial
estimation of camera calibration, it can be used with various cameras by pro-
ducing correct outputs, and it can be used in dynamical systems to recognize the
position of the camera after training the ANN structure. Therefore, the NBM
is more flexible and straightforward.

The advantages of the NBM may be summarized as follows:

– Does not require expert knowledge
– Suitable for multi-view geometry
– Offers high accuracy
– Simple to apply
– Its accuracy depends on the distribution and number of the control points

in addition to the structure of the neural network.
– Suitable for computer vision and small scale desktop photogrammetry
– Does not use traditional calibration methods and parameters.
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640 P. Çiviciog̃lu and E. Beşdok
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Abstract. A camera calibration method based on a nonlinear modeling
function of an artificial neural network (ANN) is proposed in this paper.
With the application of the nonlinear mapping feature of an ANN, the
proposed method successfully finds the relationship between image coor-
dinates without explicitly calculating all the camera parameters, includ-
ing position, orientation, focal length, and lens distortion. Experiments
on the estimation of 2-D coordinates of image world given 3-D space
coordinates are performed. In comparison with Tsai’s two stage method,
the proposed method reduced modeling errors by 11.45% on average.

1 Introduction

Camera calibration can be considered as a preliminary step toward computer
vision, which makes a relation between real world coordinates and image coor-
dinates. Generally, there are two different kinds of calibration methods: explicit
and implicit approaches. Physical parameters of a camera including the image
center, the focal length, the position, and the orientation can be obtained through
explicit camera calibration [1,2,3,4]. However, physical parameters of a camera
are not necessarily available in some stereo vision cases. In this case, we have
to use an implicit calibration method. In particular, when the lens distortion is
excessive and the image center is assumed to be the center of the frame grabber,
it may be difficult to align both the CCD cells and lens in a perfectly parallel po-
sition. Some intermediate parameters should be calibrated by estimating image
coordinates from known world coordinates. Martins first proposed the two-plane
method [5]. Martins’ two-plane method considers lens distortions. However, in
general, calibrated parameters are not globally valid in the whole image plane.
The more recent work of Mohr and Morin [6] can be used for both 3-D recon-
struction and the computation of image coordinates. However, lens distortion
has not been considered in the implicit camera calibration approach.

In this paper, a new camera calibration approach based on an artificial neural
network(ANN) model is proposed. ANNs have been shown to have the ability to
model an unspecified nonlinear relationship between input patterns and output
patterns. This nonlinear mapping ability can be utilized to address some physical
parameters in implicit camera calibration that cannot be readily estimated by the
existing calibration methods. The ANN-based camera calibration approach does
not estimate camera physical parameters. However, this is not an issue when the

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 641–650, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The imaging geometry

objective of the camera calibration process is to obtain the correlation between
the camera image coordinates and the 3-D real world coordinates. The implicit
camera calibration approach, which can calibrate a camera without explicitly
computing its physical parameters, can be used for both the 3-D measurement
and the generation of image coordinates.

The remainder of this paper is organized as follows: Section 2 describes the
implicit and explicit calibration methods for the camera calibration problem.
Section 3 briefly describes the ANN and the training algorithm adopted in this
paper. Section 4 presents experiments and results including the experimental
environment used in this work and a performance comparison between the pro-
posed method and Tsai’s two stage method. Concluding remarks are given in
Section 5.

2 Camera Calibration-Method Using Neural Network

2.1 Implicit Camera Calibration

Suppose that there is a calibration plane and the center of the calibration plane is
defined asO. In the calibration plane, we haveN points. A point, P:(Xi, Yi) ∈ wi,
i = 1, 2, · · · , N , in the world plane is ideally projected to p̄ : (x̄i, ȳi) in the camera
CCD plane. However, because of the distance of the camera lens, the point of the
world plane is projected to a distorted point, p:(xi, yi). This point is observed
through the frame buffer coordinate p(ui, vi) in pixels, as shown in Fig. 1.

For a back-projection problem, a transformation from the image coordinates
in the frame buffer to the world coordinates in the calibration plane is required.
For this purpose, an ANN is adopted in the proposed ANN-based calibration
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Fig. 2. The center of a perspective projection

approach, where the input and the output of the ANN are the image coordinates
and the world coordinates, respectively. After proper training of the ANN with
training points, the ANN can map the relation of two planes. Owing to the
nonlinear system modeling capability of the ANN, it is not necessary to utilize
all the physical parameters involved with the camera calibration, including the
lens distortion and the focal length of the camera.

With the coordinate system shown in Fig. 2, (x1, y1, 0) and (x2, y2, 0) are de-
fined as two points on the calibration plane Z = 0 and (x′1, y

′
1, 40) and (x′2, y

′
2, 40)

are two other points on the plane Z = 40. The line equations that pass each of
the two points can be expressed by the following equations:

−→
P = (x1,y1,z1) + t(x′1 − x1, y

′
1 − y1, 40) (1)

−→
Q = (x2,y2,z2) + t(x′2 − x2, y

′
2 − y2, 40) (2)

−→
P = −→

Q (3)

Since the equations given by Eq.(1) and Eq.(2) meet at the point C, i.e.,
Eq.(3), this point can be considered as the perspective center of the image, as
shown in Fig 2.
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(a) (b)

Fig. 3. (a) Image coordinate prediction (b) The camera model used in Tsai’s two stage
model

By using the perspective center of an image, the estimation of the image
coordinates of any 3-D world point P can be obtained. In this case, an ANN
that is trained with the real world coordinates of points on Z=0 as inputs and
the image plane coordinates for the corresponding points as targets is given. It
should be noted that the input and target for the ANN in this case are different
from those of the back-projection problem. When the image coordinate of a
point (P1) on any calibration plane Z is needed, the line equation that passes the
point(P1) in the calibration plane Z and the perspective center of a camera(C)
is first obtained. The line equation can produce P0 on the calibration plane Z
= 0. By using P0 as the input to the trained ANN, we can obtain the image
coordinates of the point p̂. This process is shown in Fig. 3-(a).

2.2 Explicit Calibration Method

Tsai’s two stage method (TSM)[4], which is considered one of the most powerful
methods for explicit camera calibration, is chosen for the purpose of performance
comparison. The TSM first obtains the transformation parameters with the as-
sumption that there exists no distortion in the camera. The TSM then refines
the transformation parameters with the distortion of the camera by using a non-
linear search. That is, first, the camera model is assumed to be ideal for the
camera calibration by neglecting the lens distortion.

Fig. 3-(b) shows the camera model used in Tsai’s two stage model. In Fig.
3-(b), a point P is an object of the real world coordinate(Xw, Yw, Zw) and (x,y,z)
is a 3-D camera coordinate. The center of the camera coordinate is the optical
center O and (X,Y) is the image coordinate with the center of Oi. The distance
between O and Oi is f, the focal length of the camera. (Xu, Yu) is the correspond-
ing point with the assumption of no lens distortion. (Xu, Yu) is then translated
to (Xf , Yf ), which is a point in computer image coordinate on the image buffer
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and is expressed in pixel numbers. The basic geometry of the camera model
can be written as the transformation of the two coordinates with the following
displacement and orientation:⎡⎣x

y
z

⎤⎦ =

⎡⎣ r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤⎦⎡⎣Xw

Yw

Zw

⎤⎦ +

⎡⎣Tx

Ty

Tz

⎤⎦ (4)

with
r1 = cosψ cos θ
r2 = sinψ cos θ
r3 = − sin θ
r4 = − sinψ cos θ + cosψ sin θ cosπ
r5 = cosψ cos θ + sinψ sin θ sinπ
r6 = cos θ sinπ
r7 = sinψ sinπ + cosψ sin θ cosπ
r8 = cos θ cosπ

where θ, π, and ψ represent yaw, pitch, and tilta, respectively.
As can be seen from the above equations, there are six extrinsic parameters:

θ, π, and ψ for rotation, and three components for the translation vector T . The
problem of camera calibration is to find the six parameters θ, π, ψ,Tx, Ty, and Tz

by using the number of points measured in the (Xw, Yw, Zw) coordinate.
In the second stage of the TSM, a distortion parameter is considered. The

relations between the computer image coordinate with distortion and the real
world coordinate can be derived as follows:

Sx(Xf − Cx)(1 +G(X2
d + Y 2

d )) = f

(
r1xw + r2yw + r3zx + Tx

r7xw + r8yw + r9zw + Tx

)
(5)

Sx(Xf − Cy)(1 +G(X2
d + Y 2

d )) = f

(
r4xw + r5yw + r6zx + Tx

r7xw + r8yw + r9zw + Tx

)
(6)

where (Xf , Yf ) is the image coordinate of the frame grabber, (Cx, Cy) is the im-
age center, Sx and Sy are components of the translating scale of the x-axis and
y-axis when the transform A/D,(Xd, Yd) is a distorted coordinate by lens distor-
tion, and G is the distortion parameter. Tsai obtained the solution by using a
gradient-based nonlinear search method. In an explicit calibration, the calibra-
tion is performed with extrinsic parameters. However, the distortion parameters
cannot include all the parameters involved in the distortion of the image. Even
with the assumption of perfect inclusion of distortion parameters, there still
remains room for errors in finding the right solution for such parameters.

3 ANN for Camera Calibration

The ANN model adopted in this paper is a standard MultiLayer Perceptron
Type Neural Network (MLPNN) and an error back-propagation algorithm is
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used for training the MLPNN. After several experiments, the architecture of the
MLPNN is selected as 2 × 10 × 8 × 2. Note that the selection of a specific
architecture is a state of art and other architectures can be also used without
any degradation of the resulting performance. With the architecture chosen,
no overfitting problem was experienced with 5,000 training epochs. Note that
proper numbers of training epochs are dependent on the complexity of the given
problem and the number of training data. Note that the neurons in the input
and output layers represent the 2-D coordinates. More detailed information on
the MLPNN and error back-propagation algorithm can be found in [7].

Unlike the explicit camera calibration method, the proposed ANN-based
method finds the direct relation between the world coordinates and the image
coordinates. The ANN adopted in this implicit calibration approach can incor-
porate all the extrinsic parameters of the camera and the distortion parameters
when the ANN is trained properly.

4 Experiments and Results

4.1 System Environment for Experiments

The specifications of the image acquisition tool for our simulation environment
are summarized in Table 1.

Table 1. The specification of image acquisition

Image aquisition tool Specification
Frame grabber Horizontal resolution (X-axis) 512 Vertical resolution 512

CCD Image censor Scale of cell(X-axis) 17 μm Scale of cell (Y-axis) 13 μm

lens Focal length (F 1.4) 16mm

Images are acquired at three different positions. The performance of camera
calibration results using artificial neural networks is compared and analyzed
with that of Tsai’s two stage method, the most widely used approach for explicit
camera calibration. In this paper, the average error between the calibrated image
coordinates and real world coordinates is used to compare the performance of
the camera calibration methods. The average error in pixels (AEIP) is defined
as follows:

AEIP =
1
N

N∑
i=1

[(Xfi − X̂fi)2 + (Yfi − Ŷfi)2]1/2 (7)

where (X̂fi, Ŷfi) is the estimated image coordinate, which is computed by using
calibrated variables from the real coordinate point (Xwi, Ywi, Zwi) corresponding
to the computer image coordinate (Xfi, Yfi).
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(a) (b)

(c)

Fig. 4. The calibration points at different heights: (a) Z = 40, (b) Z = 20, and (c) Z
= 0

The images used for the experiments are obtained by positioning the camera in
the real world coordinate. The positions of the camera are also changed along the
Z-axis for obtaining image data with different heights. Each image is composed of
99 calibration points (11 × 9), which have an interval of 25mm between columns
and an interval of 20mm between rows. Among the calibration points acquired
from two images including 99 calibration points for each different heights, 79
randomly selected calibration points in each image are used for training the
ANN and the remaining 20 points are used for evaluation of the trained ANN.
Fig. 4 shows the images with different heights used in our experiments.

The proposed method is compared with Tsai’s two stages method, which
finds the physical parameters of the camera using the interrelation between the
image coordinates and the known 3-D space coordinates. For the calculation
of the physical parameters for Tsai’s method and training ANN, 10 sets of 79
randomly chosen calibration points are collected. For each set of calibration
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Table 2. Comparison of estimation errors in AEIP

Case Tsai’s two stage method ANN-based method
Case #1 0.5322 0.4829
Case #2 0.5277 0.4936
Case #3 0.5576 0.4642
Case #4 0.6201 0.5014
Case #5 0.5970 0.5235
Case #6 0.5128 0.4726
Case #7 0.6026 0.5198
Case #8 0.5844 0.4976
Case #9 0.6214 0.5527
Case #10 0.5993 0.5878
Average 0.5755 0.5096

points, the remaining 20 points are used for testing the performance of both
methods. Table 2 shows the test results for both methods. As shown in Table 2,
the average improvement of the proposed ANN-based method over Tsai’s method
in terms of AEIP is 11.45 %.

4.2 Experiments on 3-D Real World Coordinate Reconstruction

The real space coordinate obtained by estimating the 3-D space coordinate at
an arbitrary height can be reconstructed after training the ANN with points on
two calibration plans, i.e., Z = 0 and Z = 40, as follows: select a certain point of
the image and then find the point of the real space coordinate of Z=0 and Z=40
calibration plane corresponding to the selected image point. Using Eq. (1) - Eq.
(3), the perspective center of the image can be found. In our experiments, the
coordinate of the perspective center is found as Cx = 556.1233, Cy = 53.0954,
Cz = 634.2666. When the ANN is trained, ten points of an image are randomly

Table 3. 3-D world coordinate reconstruction error

Real world coordinate Z=20 Result of using ANN Error
(75,0) (74.8411, 0.6174) 0.6375
(175,0) (174.3714, 0.3128) 0.7021
(150,60) (150.3574, 59.8253) 0.3978
(100,80) (99.1724, 81.0134) 1.3084
(175,100) (174.9242, 99.4123) 0.5926
(255,100) (224.9027, 100.0124) 0.0981
(25,120) (24.6350, 120.3124) 0.4804
(150,140) (149.9113, 139.0824) 0.9219
(125,160) (126.0524, 160.3122) 1.0975
(175,160) (175.2814, 159.8412) 0.3231

Average error 0.6559
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selected first. The real points for the space coordinate of the Z = 0 and Z = 40
calibration plane corresponding to the selected image points are then found. By
using Eq. (1) - Eq. (3), ten linear equations connecting points of Z = 0 plane
with points of the Z = 40 plane are formulated for estimating the coordinate
of the 3-D space on the Z = 20 calibration plane. Table 3 shows the estimation
results for 3-D space.

4.3 Result and Error of Image Coordinate Estimation

In order to estimate the 2-D image coordinate, the center of perspective pro-
jection is first obtained. Ten arbitrary points on the Z = 20 plane are selected
and the linear equations that connect the selected points with the obtained per-
spective center in the previous experiment are then found. Finally, intersection
points on the Z = 0 and Z = 40 plane are obtained. Therefore, by using the
trained ANN, the image coordinates from the intersecting points of the Z = 0
and Z = 40 plane are estimated. These experiments are performed with 10 ran-
domly chosen training/test data sets. Table 4 shows the average results over 10
different sets of training/test sets on the 10 data points for coordinates of the
2-D image from the intersecting points of the Z = 0 calibration plane and the
Z = 40 calibration plane.

Table 4. Summary of estimation errors with real world coordinates at z=20

2-D coordinates of image world Average AEIP
at Z = 0 0.7120
at Z = 40 0.6826

5 Conclusion

A camera calibration method using an artificial neural network is proposed in
this paper. The proposed method calibrates a camera using the trained ANN
instead of computing the physical camera parameters. The proposed ANN-based
implicit method is applied to the estimation of 2-D coordinates of an image world
with given 3-D space coordinates. The results are compared with Tsai’s widely
used two stage method. Results show that the proposed method can reduce
the modeling errors by 11.45 % on average in terms of AEIP. The proposed
method has advantages over Tsai’s two stage method in real-time applications
as it can be operated in real time after proper training while Tsai’s two stage
method requires somewhat time consuming procedures for calculating proper
parameters for a given task. The proposed method is also more flexible than
Tsai’s two stage method since it is not affected by camera position, illumination
or distortion of the camera lens. More importantly, the proposed ANN-based
method is not affected by the quality of the camera lens in finding the mapping
function between the image coordinates and the real coordinates whereas Tsai’s
method is considerably affected by the quality of the camera. In comparison to
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the conventional approach Tsai’s two stage method, the proposed ANN-based
method shows promising results for calibrating camera when issues including
practical applicability, flexibility, and real-time operation are relevant.
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Abstract. A novel intelligent approach into 3D freeform surface reconstruction 
from planar sketches is proposed. A multilayer perceptron (MLP) neural 
network is employed to induce 3D freeform surfaces from planar freehand 
curves. Planar curves were used to represent the boundaries of a freeform 
surface patch. The curves were varied iteratively and sampled to produce 
training data to train and test the neural network. The obtained results 
demonstrate that the network successfully learned the inverse-projection map 
and correctly inferred the respective surfaces from fresh curves. 

Keywords: neural networks, freeform surfaces, sketch-based interfaces. 

1   Introduction 

The preliminary stages of the conceptual product design process are characterised by 
a high degree of creative activity. Designers strive to convert new ideas into graphical 
form as soon as possible. It can be argued that sketching is an essential activity for 
creative design. The reasons are manifold. It permits the rapid exploration and 
evaluation of concepts [1]. It also assists the designer’s short-term memory and 
facilitates communication with other people. When designers sketch shapes on a sheet 
of paper, they start with a vague concept, which they progressively refine into a final 
product. While numerous iterations are usually undertaken, the salient properties of 
the original idea are often maintained. Recently, the desire to automate the early phase 
of the conceptual product design have given impetus to the development intelligent 
tools to simulated the way of sketching is performed by designers [2-4]. However, 
most existing approaches are restricted to fairly simple objects such as planar and 
polygonal shapes. Consideration of complex free-form surfaces is a challenging 
process. The problem has surprisingly received little attention in the literature. 

The problem of reconstructing a three dimensional (3D) shape from a planar 
drawing is fundamental problem in computer vision and computer aided geometric 
design. Clowes [5], developed a classification method based on labelling drawings 
and sorting their edges to recognise polyhedral shapes. Though, their method was 
extended to other line drawings [6-8], their work mainly involved determination of 
the depth from a 2D drawing consisting of flat surfaces with straight line edges. With 
regard to freeform surfaces some of the foundation work was developed by Igarashi et 
al. [3] who reproduced rough freeform models from freehand sketch input. Since then 
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only moderate progress has been achieved in recovering freeform surfaces from on-
line sketches. Michalik et al. [9] proposed a constraint-based system that 
reconstructed a B-spline surface from a sketch into 3D. These papers employ 
techniques based on rules or constraints to extract the correlation between the 2D 
drawings and their respective 3D shapes. In the same vein, the work of Lipson and 
Shpitalni [6] is also based on the notion of correlation. 

Work in recognition of shape features from 2D input was reported by Nezis and 
Volniakos [10].  The topology of the input drawing was exploited to categorize the 
shape features. Peng and Shamsuddin [11] claimed that a neural network was able to 
estimate the pose of a 3D object from a 2D image from any arbitrary viewpoint. 
Reconstruction of 3D shapes by estimating their depth was done by Yuan and 
Niemann [12]. They represented objects using a triangular mesh from reverse 
engineered data and demonstrated that a neural network could reconstruct 3D 
geometry from 2D input.  

Early work pertaining to reconstruction of freeform surfaces was covered by Gu 
and Yan [13]. A non-uniform b-spline (NURB) surface was fitted over scattered data 
from a reverse engineering source using an unsupervised neural network. Hoffman 
and Varady [14] and Barhak and Fischer [15] extended this line of research. However, 
their methods required that all three dimensions be available for reconstruction 
purposes.  

The present paper proposes and develops a methodology for 3D freeform surface 
inference from freehand planar sketches. The methodology is based on neural 
networks. Specifically, an MLP neural network, trained with a momentum-augmented 
backpropagation learning algorithm, is employed to induce 3D freeform surfaces from 
2D sketches. The reconstruction procedure consists of two steps: first a neural 
network is trained on pairs of normalised 3D surfaces and their corresponding 
projection curves, then the trained neural network is used to reconstruct unknown 2D 
sketches. The methodology is tested with a range of data and produced satisfactory 
results.  

The remainder of this paper is organised as follows. In section 2 3D freeform 
surface reconstruction is formulated as an inverse problem. In section 3, neural 
networks together with their learning algorithms are discussed. The data generation 
procedure is discussed in section 4. The computational results are presented in section 5. 
Finally section 6 treats conclusions and future work. 

2   Problem Formulation 

Volumetric concepts originate in the mind of a designer as 3D entities. They are then 
transformed, via an isometric projection onto an arbitrary view plane, into planar 
sketches.  Such a task is considered as the direct problem. The 3D freeform surface 
inference problem consists of extracting the 3D geometry from the 3D, i.e., to recover 
the depth information that was lost during the projection process. This process can be 
regarded as the inverse process of the original projection. The direct problem is, in 
general, a well-posed problem and can be solved analytically using concepts from 
projective geometry.  
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In contrast, the inverse problem is, in general, ill-posed. The solution may not be 
unique, may lack continuity could be highly influenced by the amount of noise 
present in the data. Therefore, 3D surface reconstruction is indeterminate in that an 
infinite number of possible 3D surfaces can correspond to the same 2D curve. To 
obtain a unique and physically meaningful solution requires additional information in 
terms of general assumptions, constraints and clues from experience. In the context of 
this paper, the planar curves are constrained to lie in the x-z or the y-z planes and their 
control points are restricted to vary only along the z-direction. Such constraint ensures 
the maintenance of the planar property of the inferred 3D surfaces and leads to a 
single one to one mapping from the input 2D curves to the expected 3D surfaces. This 
renders the inverse problem tractable.  

Given a set of p ordered pairs {(xi, yi), i = 1,…, p} with xi ∈ R2 and yi ∈ R3, the 
surface reconstruction problem is to find a mapping F : R2  R3 such that F(xi) = yi, i 
= 1,…, p. In practice, the function F is unknown and must be determined from the 
given data {(xi, yi), i = 1,…, p}. A neural network solution of this problem is a two-
step process: training, where the neural network learns the function from the training 
data {xi, yi}, and generalisation, where the neural network predicts the output for a 
test input. We demonstrate how an MLP neural network trained with a momentum-
augmented backpropagation algorithm on a collection of 2D-3D dependencies, can 
approximate the inverse map in a computationally efficient form. 

3   Neural Networks 

Neural networks are connectionist computational models motivated by the need to 
understand how the human brain might function. A neural network consists of a large 
number of simple processing elements called neurons. Feedforward neural networks 
have established universal approximation capability [16] and have proven to be potent 
tool in the solution of approximation, regression, classification and inverse problems.  

For this reason, a MLP neural network is selected for the solution of the 
reconstruction problem. The MLP neural network is composed of three layers: the 
input layer, the hidden layer and the output layer. The neurons of the input layer feed 
data to the hidden layer where it performs the following nonlinear transformation: 

( )=
k kjkj xwfs  .         (1) 

where xk are the neurons inputs signals, sj are neural outputs and wjk the synapses and 
f is an activation function. For MLP neural network, the sigmoid function is used as 
the activation function. The output layer of the neurons takes the linear 
transformation:  

( )=
k kjkj swfy  . (2) 

where yj are the output layer neuron outputs, and wij are synapses.  Neural network 
training can be formulated as a nonlinear unconstrained optimisation problem. So the 
training process can be realised by minimising the error function E defined by: 
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where yjk is the actual output value at the j-th neuron of output layer for the k-th 
pattern and tjk is the target output value. The training process can be thought of as a 
search for the optimal set of synaptic weights in a manner that the errors of the output 
is minimised.  

3.1   Backpropagation Algorithm 

Most learning algorithms are based on the gradient descent strategy. The 
backpropagation algorithm (BP) [17] is no exception. The BP algorithm uses the 
steepest descent search direction with a fixed step size  to minimise the error 
function. The iterative form of this algorithm can be expressed as: 

kkk gww α−=+1  . (4) 

where w denotes the vector of synaptic weights and  g = ∇ E(w) is the gradient of the 
error function E with respect to the weight vector w. 

In the BP learning algorithm the weight changes are proportional to the gradient of 
the error. The larger the learning rate, the larger weight changes on each iteration, and 
the quicker the network learns. However, the size of the learning rate can also 
influence the network’s ability to achieve a stable solution. In a neighbourhood of the 
error surface where the gradient retains the same sign, a larger value of the learning 
rate  results in a rapid reduction of the energy function faster. On the other hand, in 
an area where the gradient rapidly changes sign, a smaller value of  maintains the 
descent direct along the error surface. 

Despite its computational simplicity and popularity, the BP training algorithm is 
plagued by such problems as slow convergence, oscillation, divergence and 
“zigzagging” effect. The BP learning algorithm is in essence a gradient descent 
optimisation strategy of a multidimensional error surface in the weight space. Such 
strategy exhibits has inherently slow convergence; especially on large-scale problems. 
This trait becomes more pronounced when the condition number of the Hessian 
matrix is large. The condition number is the ratio of the largest to the smallest 
eigenvalue of the network's Hessian matrix. The Hessian matrix is the matrix of 
second order derivatives of the error function with respect to the weights.  

In many cases the error hypersurface is no longer isotropic but rather exhibits 
substantially different curvatures along different directions, leading to the formation 
of long narrow valleys. For most points on the surface, the gradient does not point 
towards the minimum, and successive steps along the gradient descent oscillates from 
one side to the other. Progress towards the minimum becomes very slow. This 
suggests a method that dynamically adapts the value of the learning rate,  to the 
topography of the error surface.  

3.2   Momentum-Augmented Backpropagation 

One way to circumvent the above problem, the BP propagation in eq. 4 is augmented 
with a momentum term: 
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( )11 −+ −+−= kkkkk wwgww βα  .      (5) 

The momentum term,  has the following effects: 1) it smoothes the oscillations 
across narrow valleys; 2) it amplifies the learning rate when all the weights change in 
the same direction; and 3) enables the algorithm to escape from shallow local minima.  

In essence, the momentum strategy implements a variable learning rate implicitly. 
It introduces a kind of 'inertia' in the dynamics of the weight vector. Once the weight 
vector starts moving in a particular direction in the weight space, it tends to continue 
moving along the same direction. 

If the weight vector acquires sufficient momentum, it bypasses local minima and 
continues moving downhill. This increases the speed along narrow valleys, and 
prevents oscillations across them. This effect can also be regarded as a smoothing of 
the gradient and becomes more pronounced as the momentum term approaches unity. 
However, a conservative choice of the momentum term should be adopted because of 
the adverse effect that might emerge: in a narrow valley bend the weight movement 
might jump over the walls of the valley, if too much momentum has been acquired. 

The learning algorithm requires the a priori selection of the learning rate and the 
momentum coefficient. However, it may not easy to choose judicious values for these 
parameters because a theoretical basis does not seem to exists for the selection of 
optimal values. One possible strategy is to experiment with different values of these 
parameters to determine their influence on the overall performance. The moment 
augmented backpropagation algorithm may be used both in batch and on-line training 
modes. In this paper the batch version is used. 

4   Data Generation 

The neural network used in this paper is trained in a supervised mode via a collection 
of input-output pairs to optimise the network parameters (i.e. synaptic weights and 
biases). Training is accomplished through a learning algorithm that iteratively adjusts 
the network parameters until the mean squared error (MSE) between the predicted 
and the desired outputs reaches a suitable minimum.  

A training set was generated from a family of freeform surfaces whose edges also 
referred to as the boundaries, consisted of four orthogonally arranged planar curves. 
An example of a planar curve is shown in Fig. 1. Each curve was governed by four 
independent control points and represented by a Non Uniform Rational B-Spline 
(NURBS). Two control points determined the ends of the curve whereas the remaining 
ones controlled its general shape. NURBS control points need not intersect the curve 
and can lie anywhere in the 3D space. The curve was uniformly sampled and the 
coordinates of the sample points formed the input features for the neural network.  

The planar curves were placed in the x-z plane or the y-z plane and their control 
points were only altered along the z-direction to maintain their planar property.  Each 
of the four boundary curves were uniformly sampled at 10 positions. Hence a surface, 
whether represented in 2D or 3D, consisted of 40 sample points. A point on the 3D 
surface is represented by the x, y and z coordinates whereas in 2D, it is represented by 
its x and y coordinates. Therefore a 3D surface is represented by 120 independent 
features and its respective 2D curve by 80 features. 
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Fig. 1. Planar 3D NURBS curve. Each control point of the curve lies on the same plane as the 
others. 

The positions of the control points were varied to produce a class of unique 
freeform surfaces. Each surface was projected onto the view plane to produce the 
respective 2D planar projection. The training set is composed of pattern pairs, each 
containing a 3D surface and its corresponding 2D curve.  

The data set was normalised so that the input 3D pattern would fit within a unit 
cube and its respective 2D pattern within the unit square. Normalisation ensures that 
the values lie within the characteristic bounds of the activation functions. 

Fig. 2 shows two examples of normalised pattern pairs that were used to train the 
neural network. The 2D input patterns are depicted in Fig. 2 (a) whereas their  
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Fig. 2. Examples of 2D input patterns and corresponding 3D output patterns 
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corresponding 3D output patterns are shown in Fig. 2 (b). It can be seen that the 
boundary of the surfaces are described by a series of sample points and fits within a 
unit square for 2D and unit cube for 3D. Notice that the viewpoint of the 3D desired 
pattern coincides with the viewpoint of the 2D input pattern. 

The entire data set was composed of 4096 patterns. The whole set cannot be used 
to train the network because no data would be left to test the network’s ability to 
generalise into fresh inputs. Therefore the data set was randomly split, using three 
subsets that were used for training, validation and testing. Accordingly, the number of 
training, validation and testing patterns pairs were therefore 2867, 819 and 410 
respectively. This corresponds to a 70, 20 and 10 percent split of the data. 

5   Computational Results 

A three-layer MLP network was employed in our research. The input and output layer 
dimensions of the neural network were determined from the features of the training 
set. The input layer consist of 80 nodes and while the output layer consists of 120 
nodes. The number of nodes in the hidden layer is freely adjustable and results in 
different network performance depending on the number of hidden nodes used. The 
parameters used in the network are shown in Table 1. 

Table 1. Network Architecture and Parameters 

 
 
 
 
 
 
 
 

The number of hidden nodes indicates the network complexity and governs how 
accurately it learns the mapping from the input patterns to the outputs. It also affects 
how long the network takes to perform each training cycle. The higher the number of 
hidden nodes, the more computation is required and hence a longer training time is 
needed. Experimentation with different numbers of nodes in the hidden layer was 
conducted. Multiple neural networks were trained with similar parameters such as the 
learning rate, momentum and training sets. In this case the learning rate was 0.7 and 
the momentum was 0.6. Only the number of hidden nodes was changed. It was found 
that a neural network of 50 hidden nodes produced the best reconstruction error over a 
fixed number of epochs. This was found by comparing the average reconstruction 
error of the networks based on a fresh test set containing 410 patterns.  

Finally a new network of 50 hidden units was trained again for 5000 epochs. The 
final training error was 0.06. At the end of the training, the net was saved the test set 
applied to the network. The obtained results show that the neural network was able to 
infer the 3D shape of a freeform surface from its respective 2D input pattern.   

Number of Input Nodes 80 
Number of Output Nodes 120 
Learning Rate ( ) 0.7 
Momentum ( ) 0.6 
Number of Epochs  5000 
Number of Training Patterns 2867 
Learning Mode Batch  
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(a) (b) 

Fig. 3. Test Input Patterns with Predicted and Desired Outputs 

An example test pattern that was applied to the trained network is shown in Fig. 3 
(a). The predicted and the expected 3D patterns that correspond to the 2D surface are 
shown in Fig. 3 (b). The predicted pattern is depicted in green whereas the desired 
pattern is in blue. It can be noticed from the plots in Fig. 3 (b) that the two surfaces 
per image are almost identical and hence that the neural network has inferred the 
correct shape that was desired. However, small deviations in the predicted patterns 
can be seen when observed closely. They relate to the network’s ability to predict the 
desired surfaces. The distributions of errors are presented in Fig. 4. This shows the 
Euclidean distances between each point from the predicted surface and its 
corresponding point on the desired surface. The RMS error for this pattern was 
0.33%. 

 

Fig. 4. Distribution of Squared Errors Between Predicted Output and Expected Output 

6   Conclusions and Future Work 

In this paper a methodology for the inference of 3D freeform surfaces from 2D 
surface representations using neural networks has been proposed. A representative 
dataset was generated by iteratively adjusting the control points of freeform surface 
boundary curves that were previously uniformly sampled. The dataset was normalised 
and randomly split into three subsets: training, validation and test sets. An MLP was 
optimised using different numbers of hidden nodes. The best network, i.e. the network 
with the lowest training RMSE, was trained with a representative family of 2D and 
3D pattern pairs. The neural network was applied to a set of 2D patterns had not been 
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encountered before. Obtained 3D results demonstrate that the target freeform surfaces 
can be reproduced from 2D input patterns within 2 % accuracy. Future work will 
extend the methodology to more complex shapes and reconstruct the 3D surface that 
corresponds to the inferred surface boundary. 
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Abstract. In volume data visualization, the classification is used to determine 
voxel visibility and is usually carried out by transfer functions that define a 
mapping between voxel value and color/opacity. The design of transfer 
functions is a key process in volume visualization applications. However, one 
transfer function that is suitable for a data set usually dose not suit others, so it 
is difficult and time-consuming for users to design new proper transfer function 
when the types of the studied data sets are changed. By introducing neural 
networks into the transfer function design, a general adaptive transfer function 
(GATF) is proposed in this paper. Experimental results showed that by using 
neural networks to guide the transfer function design, the robustness of volume 
rendering is promoted and the corresponding classification process is 
optimized. 

Keywords: classification; transfer functions; visualization; neural network. 

1   Introduction 

A volumetric data object is described as a space-filling three-dimensional grid of 
discrete sample points, which, in turn, support the interpolation of any arbitrary point 
within the grid’s 3D bounding box. A great variety of disciplines generate, use, and 
modify volumetric data. Examples are the medical field in diagnosis and surgical 
simulation, engineering in CAD/CAM prototyping, the oil and gas industry in natural 
resource exploration, designers in virtual sculpting design, the computer game 
industry in the generation of realistic natural phenomena, computational scientists in 
scientific data exploration, and the business world in visual data mining. 

Direct volume rendering is a key technology for visualizing large 3D data sets 
from scientific or medical applications, which allows scientists to gain insights into 
their data sets through the display of materials of varying opacities and colors. 
Volumetric data sets often have a single scalar value per voxel, so classification of 
these voxels to assign color and opacity is critical in obtaining useful visualizations 
that help to provide understanding into a data set. Without a proper classification 
function to show interesting features or remove obscuring data, it is impossible to 
correctly interpret the volumetric content. 

Transfer functions (TFs) are typically employed to perform this task of 
classification, which are particularly important to the quality of direct volume-
rendered images. A transfer function (TF) assigns optical properties, such as color and 
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opacity, to original values of the data set being visualized. Unfortunately, finding 
good TFs proves difficult. Pat Hanrahan called it one of the top 10 problems in 
volume visualization in his inspiring keynote address at the 1992 Symposium on 
Volume Visualization. And it seems that today, almost a decade later, there are still 
no good solutions at hand.  

The most common scheme for TF specification is by trial and error, and other 
methods are also used to generate TF. But, automatic design of a high performance 
TF has been proved difficult. First, in many cases, little pre-knowledge makes it 
difficult to obtain information and gain understanding of the data set. Second, the 
same data value may belong to different structures or matters, in reverse, the same 
structure or matter may present the same data value due to noise, so automatic 
segmentation and classification of arbitrary volume data are still difficult in science. 
Third, complexity of the volume rendering process results in the nonlinear 
relationship between the optical properties produced by the transfer function and the 
final rendering image. Trivial tune of transfer function may lead to tremendous 
change in the final rendering. And another important fact is that a new TF designed 
for one type of dataset in most cases can’t be used to render other types. It means that 
you may need to design different TFs for different types of datasets, which consumes 
much time. 

While this paper aims to propose a new TF design method for volume rendering 
based on neural network, our main contributions are two techniques which use 
Kohonen's Self-Organizing Map (SOM) network [22] to identify the type information 
of a data set and use Back Propagation Neural Networks (BPN) to classify the data set 
and assign optical properties to it. Section 2 surveys current volume TF research 
progress. Our new method is presented in section 3. In section 4, the experiments and 
results are presented. Finally the conclusion and future work in section 5. 

2   Related Work 

Current literature reports various efforts being made toward the construction of 
optimal TFs.  

(1) The most common scheme for TF specification is by trial and error [20]. This 
involves manually editing a typically linear function by manipulating “control points” 
and periodically checking the resulting volume rendering. Even if specialized 
hardware support is available, e.g. a VolumePro board [8], this method can be very 
laborious and time-consuming. The problem lies in the lack of a precise 
correspondence between control point manipulation and its effects on the rendered 
images. 
(2) Data centric without data model [18]. This method uses a gradient integral 

function scheme which automatically discriminates between diverse materials within 
the data set from which appropriate color and opacity maps are obtained. However, 
due to the association of isosurfaces with isocontours display, not all the voxels may 
contribute to the final rendered volume. Bajaj et al. [18] describe a tool for assisting 
the user in selecting isovalues for effective isosurface volume visualizations of 
unstructured triangular meshes for isosurface rendering. Fujishiro et al. [10] use a 
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"Hyper Reed graph" to depict the isosurface topology at any given isovalue, as well as 
the isovalues corresponding to critical points where the topology changes. 
(3) Data Centric with data model [21]. This work expands and generalizes three 

previously proposed methods: barycentric opacity maps, hue-balls (for color), and lit-
tensors (for shading). It is a semiautomatic process that constructs TFs and OP values 
with an edge detection algorithm. Boundaries, opacity and shading are located in a 1D 
space of the data set. The method experiences difficulties with data sets that include 
noise and coarse boundary samples such as certain MRI samples. Kindlmann et 
a1.[11][12] demonstrate an innovate semi-automatic transfer function design method 
based on the analysis of a three-dimensional histogram which records the correlation, 
throughout the given data set, between data value, gradient magnitude, and the second 
directional derivative along the gradient direction. The method calculates opacity 
functions which aim to only make those positions in the transfer function domain 
opaque which reliably correspond to the boundary between two relatively 
homogeneous regions. Sato et al. [13] use weighting functions of eigenvalues of the 
Hessian matrix to measure the shape of local structures in terms of edge, sheet, line, 
and blob. Two or three of these measures can be used as axes of a transfer function 
emphasize different structures in the volume according to their shapes, which tends to 
have biological significance in the context of medical imaging. Pekar et al. [14] 
propose a method which requires only a single pass through the data set to create a 
Laplacian-weighted histogram of data values to guide the isovalue selection and 
opacity function creation. Hladiivka et al. [4] use two-dimensional space of principal 
surface curvature magnitudes (KO, K2) to form a transfer function domain, which is 
trivial to enhance and color different structures in the volume according to their 
surface shape. Jiawan Zhang et a1. [15] propose a semi-automatic data-driven transfer 
function design method by examining relationships among three eigenvalues of 
inertia matrix. Local features detected by local block based moments, such as flat, 
round, elongated shapes are used to guide the design of transfer functions.  
(4) Image-centric using organized sampling [9]. He et al. [5] describe the search 

of good transfer functions as a parameter optimization problem. One of common 
genetic algorithms-stochastic search is used to achieve global optimization. Here, TFs 
are designed and implemented with the Design Gallery method which contains the 
volume rendering construct VolDG. With VolDG, (a) TFs may be generated 
automatically; (b) manipulation of color and opacity TFs generates gray scale images. 
However, generating time may be significant for complex data sets (7 hours for 
20,000 iterations). Fang et a1. [7] present an image-based transfer function model 
based on three dimensional(3D) image processing operations. Konig and Groller [19] 
organize the rendered thumbnails efficiently to guide the transfer function process 
based on volume hardware. 

The methods just presented reflect real significant advances in volume rendering. 
However, they did not answer the question of which one is suitable for an unknown 
data set. That is, when a new data set is given, which method is the most efficient to 
reveal the underlined data set essence? How much does each parameter in the transfer 
function domain contribute to the final rendered image?  

In this paper, by introducing Kohonen's SOM and the BPN into the TF design, we 
obtain  preliminary answers to the questions above. 
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3   A General Adaptive Transfer Function (GATF) 

The dataflow of our approach is shown in Fig. 1. In the Machine Learning engine, the 
Information Bank is designed to store the type information of the data sets and the 
weights of the BPN for each data set. The module SOM identifies the type of the date 
set, and the module BPN generates a proper TF for the data set consequently. During 
rendering process, the adaptive transfer function is exploited to assign opacity to 
every voxel. 

 

Fig. 1. The visualization process  based on our approach. Users first input a data set, and then 
the machine learning engine generates an adaptive transfer function automatically for volume 
rendering. 

3.1   The Module Som 

As the first module of the Machine Learning engine, Kohonen's SOM [22] is 
responsible for identifying the data set, of which the network is shown in Fig. 2. On 
receiving a data set, the SOM trains itself to get the data set type. The type 
information generated by the SOM is then compared with the obtained type 
information stored in the Information Bank. A similarity value is computed for the 
data set type and each one in the Information Bank. On one hand, if the maximum 
similarity value is less than the desired one, it indicates that the data set is of new 
type, and it is sent to the BPN and its type information is stored into the Information 
Bank at the same time. On the other hand, if the similarity value is larger than the 
desired one, the remaining task is to give this information to the BPN module. Hence 
the key work of this module is how to get the similarity value.      

 

Fig. 2. The structure of SOM network 
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The competitive learning SOM is proposed by Kohonen [22], which plays an 
important role as a component in a variety of natural and artificial neural information 
processing systems. The underlying principle of SOM (and its variants) is the 
preservation of the probability distribution and topology. The SOM model used in our 
paper is a simple single layer network in which xi is the input vector and each neuron 
has a weight vector Wj, j=1,…,m, where m is the number of neurons. For an input data 
p, we first compute the similarity between p and each neuron j, and then we 
accumulate all the similarities. Considering Euclidean distance often be a estimated 
function in the self-organizing training of SOM, we first compute the Euclidean 
distance between p and neuron j, which is dj = ||p- wj ||, j=1,2,…,m.. Then we use the 
Euclidean distance dj to compute the similarity between p and neuron j, in which f(dj) 
is a decreasing function. It means that the shorter distance (dj) the larger similarity 
value. In this paper, we choose f(dj) as a typical sigmoid function  

1
( )

1 jj df d
e

=
+

, (1) 

with parameter dj we have got. Finally we accumulate all the similarities between p 
and all neurons given as 

1 1

1
( )

1 j

m m

p j d
j j

S f d
e= =

= =
+

. (2) 

We can use the similarity Sp to decide whether the type information of p is in the 
information bank. 

Fig. 3 shows the identifying capability of our SOM network. 

 

Fig. 3. This figure illustrates the SOM’s capability of classification. If there are two classes to 
be classified, most machine learning algorithms find a separation to well classify the training 
data, as shown in the left image. SOM in the right image, provide the maximal capability that 
not only separates the training data, but has the potential to better classify the data which are 
not shown in the training data set. 

3.2   The Module BPN 

The module BPN, the second part of the machine learning engine, is designed to 
generate a TF for each data set, of which the structure is shown in Fig. 4. On 
receiving a data set from SOM, it checks additional information from the module 
SOM to decide whether to train the network to get a new TF for the data set. If the 
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SOM tells the BPN that the data set is an old one in the information bank, then what 
we need to do is only to get weights of the data set for the BPN from the information 
bank and to establish a BPN network which generates a TF to assign color and 
opacity to the current data set. If the information from the SOM indicates that it is a 
new data set, we must to train the BPN to get the weights and generate a TF for the 
data set, and finally the weights must be saved in the corresponding position in the 
information bank.  

 

Fig. 4. Structure of an artificial neural network with m inputs, n hidden nodes, and one output 

Considering the BPN network given in Fig.4, for a given sample set (Xp ,Yp) ( p = 
1,2…P), Ep  is the error function of the pth neuron, and the iterative weight function is 
w(k+1)=w(k)+ Δw(k), where  

( 1)
( )

E
w k

w k
η ∂Δ + = −

∂
, (3) 

η is the step length, 

( ) ( )
p

p

EE

w k w k

∂∂ =
∂ ∂

, 1, 2,k = , (4) 

k is the number of iteration. 
We use two approaches to improve on BP algorithm. 

(a) Adding the momentum item and decreasing item. We add the momentum item and 
decreasing item to Δw(k+1), so  

( 1) ( ) ( )
( )

E
w k w k w k

w k
η α β∂Δ + = − + ⋅Δ − ⋅

∂
, (5) 

where α is momentum item which stands for damp for diminishing the tendency of 
oscillation and better convergence 0<=α<=1. Using a decay factor 0.01> >0 
enables only those weights doing useful work in reducing the error to survive and 
hence improves the generalization capabilities of the network  
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(b) The self-adapting step length of learning (η). Because the step length of learning 
η is changeless on the whole learning process, the learning process will be too long or 
the network will not converge. So the adjusted values of connection strength and the 
step length of learning η should be increased when the error is increasing, and the 
adjusted values and the step length of learning η should be decreased when the error 
is decreasing. In this paper, we employ a method of self-adapting step length of 
learning which is given as 

2 2( ) ( )
i j j kij jk

E

E E

w w

ση

→ →

=
∂ ∂+
∂ ∂

, 
(6) 

Where σ is step length factor, 0 < σ < 1.   

 

Fig. 5. Variation of perfect classification (%), best classification (%), and mean square error 
with number of sweeps through the training set, using a three-layered neural net with perc 
(percentage of samples) = 50, = 0.001, α = 0.9 and m=10 nodes in each hidden layer 

In Fig. 5 we illustrate the variation of the best classification and perfect 
classification performance and the mean square error with the number of sweeps over 
the training set, in which our BPN network is denoted by solid curves and the 
traditional BPN network is plotted using a dotted curve.  

4   Experiments and Results 

To test the applicability and usefulness of our proposed method, several experiments 
were conducted. The PC used in the experiments was with Xeon3.20GHz 
CPU/2.50GB memory. In the first experiment, a volume data of 100x100x300 with 
multiple variables was tested. This data shows the result of the simulation of a laser 
injecting into a plasma and interacting with each other, in which the variables are 
laser intensity, density and current of the plasma. Fig. 6 shows the result of the 
experiment. Using interactive TF without manual control or using an inappropriate 
TF, users can not get a good rendering result. However, with GATF, we can get a 
more detailed result than others.  
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Fig. 6. (a) The result of using surface rendering. (b) Volume rendering result of using 
interactive TF without manual control. (c) Volume rendering result of using interactive TF with 
manual control. (d) Volume rendering result with an inappropriate TF. (e) Volume rendering 
result of using a Trial and Error TF. (f) Volume rendering result using our GATF.   

 

Fig. 7. Time (s) consumed in Fig. 6 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Fig. 7 shows the corresponding time consuming, and we can see that GATF spends 
the least time rendering than others do. We also conducted other experiments with 
several data sets and table 1 shows the result. 

Table 1. Using the Training Set Obtained Based on our approach 

Data Sets Plasma Foot Iron Protein 

Number of Trainings Sample 391104 5038800 262144 

Time of SOM Classification 2.02s 1.22s 1.05s 

Time of BPN Adjusting 
Weights 

12.50s 12.27s 12.12s 

Rendered Classified Volume  

   

5   Conclusion and Future Work 

By introducing SOM and BPN into the optimization of transfer function design, 
together with a proper image References evaluation strategy, a new volume rendering 
frameworks is proposed in this paper. Experiments results demonstrated that our 
method can obtain optimized transfer function and excellent rendering results. Even 
though it is possible to implement the training step in hardware, the current software 
implementation provides an adequate performance to meet the needed interactivity. In 
fact, a more interesting and helpful capability is fast data decompressing in hardware 
since one potential bottleneck for large data sets is the need to transmit data between 
the disk and video memory. We will explore this option in the future. 
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Abstract. In this paper, we present a novel real-time approach to syn-
thesizing 3D character animations of required style by adjusting a few pa-
rameters or scratching mouse cursor. Our approach regards learning cap-
tured 3D human motions as parametric Gaussians by the self-organizing
mixture network (SOMN). The learned model describes motions under
the control of a vector variable called the style variable, and acts as
a probabilistic mapping from the low-dimensional style values to high-
dimensional 3D poses. We have designed a pose synthesis algorithm and
developed a user friendly graphical interface to allow the users, especially
animators, to easily generate poses by giving style values. We have also
designed a style-interpolation method, which accepts a sparse sequence
of key style values and interpolates it and generates a dense sequence
of style values for synthesizing a segment of animation. This key-styling
method is able to produce animations that are more realistic and natural-
looking than those synthesized by the traditional key-framing technique.

1 Introduction

The traditional technique of creating 3D animations, the key-framing technique,
relies heavily on intensive and expensive manual labor. In recent years, with the
development of motion capture technique, which could record the 3D movement
of a set of markers placed on the body of human performer, learning approaches
are developed to capture characteristics of certain types of human motion and
automate the synthesis of new motions according to users’ requirements. Some
typical and impressive works have been published on top conference and journals,
include [1], [2] and [3] (c.f. Table 1).

In [1], Li and et al. used an unsupervised learning approach to learn possible
recombinations of motion segments as a segment hidden Markov model ([4] and
[5]). In [2], Grochow and et al. used a non-linear principle component analysis
method called Gaussian process latent variable model ([6]), to project 3D poses,

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 671–678, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



672 Y. Wang et al.

into a low-dimensional space called style space. In contrast with that as [1], the
learning approach used in [2] is unsupervised, and the subject to be modelled is
static poses other than dynamic motions. In [3], Brand and Hertzmann proposed
to learn the human motion under control of a style variable as an improved
parametric hidden Markov model ([7]) with an unsupervised learning algorithm
([8]). In this paper, we present a new supervised approach that learns 3D poses
under control of a vector variable called style variable. The comparison of our
approach with previous ones are listed in Table 1.

Table 1. The placement of our contribution

Learning (dynamic) motions Learning (static) poses
Supervised approach [8] Brand (1999) This paper
Unsupervised approach [1] Li (2002); [3] Brand (2000) [2] Grochow (2004)

The idea of extracting motion style and modeling it separately from the mo-
tion data [7] is potential to develop novel productive motion synthesis approaches
that manipulate the style value other than the high-dimensional motion data.
The motion data is composed of a dense sequence of 3D poses, where each pose
is defined by the 3D rotations of all major joints of the human body and have
to be represented by a high dimensional vector (usually over 60-D [1]). The high
dimensionality makes the motion data difficult to model and to manipulate.
In contrast, the style variable is usually a low-dimensional vector (2-D in our
experiments) that encodes a few important aspects of the motion. These facts
intrigued us to learn a probabilistic mapping from style to human motion as a
conditional probabilistic distribution (p.d.f.) P (x | θ), which, given a style value
θ, is able to output one or more 3D poses x that have the style as specified by θ.

A well-known model that represents a conditional distribution is the para-
metric Gaussian, whose mean vectors are functions f(θ). However, in order to
capture the complex distribution of 3D poses caused by the complex dynamics
of human motion, we model P (x | θ) as a mixture of parametric Gaussians.
Although most mixture models are learned by the Expectation-Maximization
(EM) algorithm, we derived a learning algorithm based on the self-organizing
mixture network (SOMN) [9], which, different with the deterministic ascent na-
ture of the EM algorithm, is in fact a stochastic approximation algorithm with
faster convergence speed and less probability of being trapped in local optima.

2 Learning SOMN of Parametric Gaussians

The SOMN of Parametric Gaussians Model. Mixture models are a usual tool
to capture complex distributions over a set of observables X = {x1, . . . ,xN}.
Denote Λ as the set of parameters of the model, the likelihood of a mixture
model is,
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p(x | Λ) =
K∑

j=1

αjpj(x | λj) , (1)

where each pj(x) is a component of the mixture, αj is the corresponding weight
of the component, and λj denotes the parameters of the j-th component.

Given the observations X = {x1, . . . ,xN}, learning a mixture model is ac-
tually an adaptive clustering process, where some of the observations, to some
extent, are used to estimate a component; while others are used to estimate
other components. A traditional approach for learning a mixture model is the
expectation-maximization (EM) algorithm, which, as a generalization of the K-
means clustering algorithm, alternatively executes two step: E-step and M-step.
In the E-step each observation xi is assigned to a component pj to the extent λij ;
and in the M-step each pj is estimated from those observations xi with λij > 0.
It has been proven in [10] that this iteration process is actually a deterministic
ascent maximum likelihood algorithm.

The SOMN proposed by Yin and Allinson in 2001 [9] is a neural network
that is a probabilistic extension of the well-known clustering algorithm, the self-
organizing map (SOM), with each node representing a component of a mixture
model. The main difference between the learning algorithm of the SOMN and
the EM algorithm is that the former one employs the Robbins–Monro stochastic
approximation method to estimate the mixture model to achieve generally faster
convergence and to avoid being trapped by local optima.

In this paper, we derive a specific SOMN learning algorithm to learn the
conditional probability distribution p(x | θ) between 3D pose x and the motion
style θ as a mixture model of,

p (x | θ,Λ) =
K∑

i=1

αipj (x | θ,λi) , (2)

where, each component pj(·) a linearly parametric Gaussian distribution,

pj (x | θ,λj) = N (x; W jθ + μj ,Σj) , (3)

where W j is called the style transformation matrix, which, together with μj and
Σj forms the parameter set λj of the j-th component.

The Learning Algorithm. Learning a SOMN of parametric Gaussians minimizes
the following Kullback–Leibler divergence1 between the true distribution p(x |
θ,Λ) and the estimated one p̂(x | θ,Λ),

D (p̂; p) = −
∫

log
p̂(x | θ,Λ)
p(x | θ,Λ)

p(x | θ,Λ)dx , (4)

1 The Kullback–Leibler is a generalized form of the likelihood. The EM algorithm
learns a model by maximizing the likelihood.
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which is always a positive number and will be zero if and only if the estimated
distribution is the same as the true one. When the estimated distribution is mod-
elled as a mixture model, taking partial derivatives of Equation 4 with respect
to λi and αi leads to

∂

∂λi
D (p̂; p) = −

∫ [
1

p̂(x | θ, Λ̂)
∂p̂(x | θ, Λ̂)

∂λi

]
p(x)dx ,

∂

∂αi
D (p̂; p) = −

∫ [
1

p̂(x | θ, Λ̂)
∂p̂(x | θ, Λ̂)

∂αi

]
p(x)dx + ξ

∂

∂αi

⎡⎣ K∑
j=1

α̂i − 1

⎤⎦
= − 1

α̂i

∫ [
αip̂i(x | θ, λ̂i)
p̂i(x | θ, Λ̂)

− ξα̂i

]
p(x)dx ,

(5)

where ξ is a Lagrange multiplier to ensure
∑

i αi = 1.
Following in [9], the Robbins–Monro stochastic approximation is used to solve

Equation 5 because the true distribution is not known and the equation has
to depend only on the estimated version. Then the following set of iterative
updating rules are obtained:

λ̂i(t+ 1) = λ̂i(t) + δ(t)

[
1

p̂(x | θ, Λ̂)
∂p̂(x | θ, Λ̂)
∂λi(t)

]

= λ̂i(t) + δ(t)

[
αi

p̂(x | θ, Λ̂)
∂p̂(x | θ, λ̂i)

∂λi(t)

]
,

(6)

α̂i(t+ 1) = α̂i(t) + δ(t)

[
αi(t)p̂(x | θ, λ̂i)
p̂(x | θ, Λ̂)

− αi(t)

]
= α̂i(t)− δ(t) [p̂(i | x,θ)− αi(t)] ,

(7)

where δ(t) is the learning rate at time step t, and p̂(x | θ,Λ) is the estimated
likelihood p̂(x | θ,Λ) $∑

i αip̂(x | θ,λi). The detailed derivation of Equation 5,
6 and 7 are the same to those in [9].

To derive the partial derivative of the component distribution in Equation 6,
we denote Zi = [W i,μi] and Ω = [θ, 1]T , so that p̂(x |,θ, λ̂i) = N (x; W iθ +
μi,Σi) = N (x; ZiΩ,Σi). Then, the updating rule of Zi can be derived from
Equation 6:

Z
(t+1)
i =Z

(t)
i + δ(t)

[
αi
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∂N (x; Z iΩ, Σi)
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(t)
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∂ logN (x; ZiΩ, Σi)
∂Zi

]
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i + δ(t)

[
p̂(i | x)

∂ logN (x; Z iΩ, Σi)
∂Z i

]
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. (8)

So, the updating rule of Zi is,

ΔZi = −1
2
δ(t)p̂(i | x)Σ−1 [xΩT − ZΩΩT

]
. (9)

By considering p̂(i | x,θ), which is a Gaussian function, as the Gaussian
neighborhood function, we can consider Equation 9 exactly as the SOM updating
algorithm. Although an updating rule of ΔΣi may be derived similarly, it is
unnecessary in the learning algorithm, because the covariance of each component
distribution implicitly corresponds to the neighborhood function p̂(i | x), or,
the spread range of updating a winner at each iteration. As the neighborhood
function has the same form for every nodes, the learned mixture distribution is
homoscedastic.

3 SOMN of Parametric Gaussians for Motion Synthesis

Determine the Physical Meaning of the Style Variable. A learned SOMN of
parametric Gaussian model p(x | θ,Λ) could be considered as a probabilistic
mapping from a given style value θ̂ to a 3D poses x̂. If the users know the physical
meaning of each dimension of the style variable θ, they can give precise style
value θ̂ to express their requirement to the synthesized poses. The supervised
learning framework presented in Section 2 allows the users to determine physical
meaning of the style variable prior to learning.

As an example, suppose that we captured a boxing motion as training data,
where the boxer sometimes crouches to evade from attacking and some other
times punches his fist to attack. We can use a 2-dimensional style variable to
describe the details of the boxing motion, where one dimension encodes the body
height, which varies from crouching to standing up, and with the other dimension
encodes the distance of arm when punching. Once the physical meaning of each
dimension of the style variable is determined, the style values λ = {λ1, . . . ,λN}
of each one of the training frames X = {x1, . . . ,xN} can be calculated from the
training motion itself.
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It is notable that if we carefully choose a number of dimensions of the style
variable that encode visually independent characteristics of the training motion,
the style space, which is spanned by all possible style values, will be an Euclidean
space, within which, any curve corresponds to a smooth change of the style value.
This is interesting for synthesizing character animations, instead of static poses,
because the smooth change of motion style like body height and punch distance
usually leads to smooth body movement. Experiments are shown in Section 4.

Generate 3D Pose from Given Style Value. Given a learned SOMN of parametric
Gaussians p(x | θ,Λ) with K components, mapping a given style value θ̂ to a
3D pose x̂ can be achieved by substitute θ̂ into the model and draw a sample x̂
from the distribution p(x | θ̂,Λ). Although the Monte Carlo sampling method
is generally applicable for most complex distributions, to avoid the intensive
computation and achieve real-time performance, we designed the following two
step algorithm as shown in Algorithm 1 to calculate the pose x̂ with the highest
probability. The first step of the algorithm calculate the poses {x̂j}K

j=1 that
are most probable for each component pj of the learned model; and then the
algorithm selects and returns the most probable one x̂ among all the {x̂j}K

j=1.

input : The given new style θ̂
output: The synthesized pose x̂
calculate the most probable pose from each component;
foreach j ∈ [1, K] do

x̂j ← W j θ̂ + μj ;
end
select the most probable one among the calculation result;
j ← argmaxj αjpj(x̂j | θ̂, Λ);
x̂ ← x̂j ;

Algorithm 1. synthesize pose from given style value

The Prototype of Motion Synthesis System. We developed an interactive graph-
ical user interface (GUI) program as shown in Figure 1 to ease the pose and
motion synthesis. With the parameter adjustment panel (to the left of the main
window), users are able to specify a style value by adjusting every dimension
of the style variable. The changed style value is instantly input to Algorithm 1,
and the synthesized pose x̂ is displayed in real-time.

With this GUI program, users can also create animations by (1) select a
sparse sequence of key-styles to define the basic movement of a motion segment,
(2) produce a dense sequence of style values interpolating the key-styles, and
(3) map each style value into a frame to synthesize the motion sequence. As the
traditional method of producing character animations is called keyframing, which
interpolate a sparse sequence of keyframes, we name our method key-styling.

A known problem of keyframing is that the synthesized animation seems rigid
and robotic. This is because the keyframes is represented by a high-dimensional
vector consisting of 3D joint rotations. Evenly interpolating the rotations cannot
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Fig. 1. The prototype motion synthesis system

ensure evenly interpolated dynamics. While, interpolating the key-styles results
in smooth change of the major dynamics, and style-to-pose mapping adds kine-
matics details to the motion. The change of kinematics details does not need to
be evenly.

4 Experiments

To demonstrate the usability of our synthesis approach, we captured a segment
of boxing motion of about 3 minutes under the frame-rate of 66 frame-per-second
as the training data. Some typical poses in the motion is shown in Figure 1 (a),
(b) and (c). Because the boxer sometimes crouches to evade and some other
times punches his fist to attack, we use a 2-dimensional style variable to encode
the body height and the distance of punching.

Once the dimensionality of style variable is determined, labelling the training
frames with style values is not a difficult problem. For the application of auto-
matic motion synthesis, we must have the skeleton (the connections of joints)
for rendering the synthesized motion and must have the rotations of joints as
training data. With these two kinds of informations, it is easy to compute the
style value θi for each training frame xi. In our experiment, we wrote a simple
Perl script program to calculate the 3D positions of the joints and to derive the
style values.

After estimating a SOMN of parametric Gaussians from the labelled training
frames, we can give new style value by dragging the slide bars of our prototype
motion synthesis system (as shown in Figure 1). A simple dragging of the slide
bar that represents the punch distance synthesized a segment of animation as
shown in Figure 1(d).
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5 Conclusion and Discussion

In this paper, we present a novel approach to real-time synthesis of 3D character
animations. The first step of the approach is to learn a probabilistic mapping
from a low-dimensional style variable to high-dimensional 3D poses. By modeling
the probabilistic mapping using the SOMN on parametric Gaussians, we come up
a learning algorithm which is numerically more tolerant to local optima problem
and converges faster than the EM-based algorithms for learning mixture models.
The supervised learning frame gives the users an interface to specify the physical
meaning of each dimension of the style variable. So, given a learned model and
using our prototype motion synthesis system, the users are able to create 3D
poses by simply dragging slide-bar widgets and/or to produce desired character
animations by the so-called key-styling method.
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Abstract. This paper focuses on enhancing the effectiveness of filter feature 
selection models from two aspects. One is to modify feature searching engines 
based on optimization theory, and the other is to improve the regularization 
capability using point injection techniques. The second topic is undoubtedly 
important in the situations where overfitting is likely to be met, for example, the 
ones with only small sample sets available.  Synthetic and real data are used to 
demonstrate the contribution of our proposed strategies.  

1   Introduction 

As computer technology advances rapidly, data are accumulated in an enormous 
speed unprecedentedly experienced in human history.  In some advanced engineering 
and physical science applications, most conventional computational methods have 
already experienced difficulty in handling the enormous data size.  In handling these 
data sets, feature selection is an essential and widely used technique.  It reduces the 
size of features through eliminating irrelevant and redundant features, and thus results 
with increased accuracy, enhanced efficiency, and improved scalability for 
classification and other applications such as data mining (Han, 2001). Feature 
selection is especially important when one is handling a huge data set with 
dimensions up to thousands.  

A feature selection framework generally consists of two parts: a searching engine 
used to determine the promising feature subset candidates and a criterion used to 
determine the best candidate (Liu, 1998; Molina, 2002). Currently, there are several 
searching engines: ranking, optimal searching, heuristic searching and stochastic 
searching. Among these engines, heuristic searching, which can easily be 
implemented and is able to deliver respectable results (Pudil, 1994), is widely used.  
Feature selection models can be broadly categorized as filter model, wrapper model, 
and embedded model according to their evaluation criteria. Filter models explore 
various types of statistical information, such as distribution probabilities underlying 
data. Wrapper and embedded models are classifier-specified and the selected features 
may vary with different classifiers.  Given a feature subset, say S, wrapper and 
embedded models firstly require to build a classifier based on S. Wrapper models then 
rely on the performance of the built classifier to determine the goodness of S, while 
embedded models make use of the parameters of the built classifier to assess S.  
Wrapper models are usually more computationally expensive than filter models.   



680 D. Huang and T.W.S. Chow 

In a filter model, good feature selection results rely on a respectable evaluation 
criterion and an appropriate searching strategy. The former issue has been heavily 
investigated. Various types of information, including mutual information (Battit, 
1994; Bonnlander, 1996; Chow, 2005), correlation (Hall 1999), etc., have been 
explored for evaluating features. By comparison, there are fewer studies focused on 
searching engines. Also, most of those studies are completely designed in discrete 
feature domains. For example, sequential forward searching (SFS), a typical heuristic 
searching scheme, identifies k important features from unselected features and places 
them into a selected feature subset in each iteration. To improve SFS, a stepwise 
strategy is designed – in each iteration, selecting k “good” unselected features is 
followed by deleting r “worst” selected features (r < k) (Pudil, 1994). And Al-Ani et 
al., (2000) employ “elite” selected features, not all of them, to identify important 
features from unselected ones. These algorithms, studied in a discrete feature space, 
depend on the testing of more feature combinations in order to deliver improved 
results. Clearly, more testing will increase the computational complexity. 

Given a set of n samples D = {(x1,y1), (x2,y2), …, (xn,yn)} which is drawn from a 
joint distribution P on X×Y, a feature selection process is per se a learning process in 
the domain of X×Y to optimize the employed feature evaluation criterion, say  
L(x,y)~P(x, y). As P is unknown, L(x,y)~P(x, y) has to be substituted by L(x,y)∈D(x, y). 
Clearly, when D cannot correctly represent P, this substitution may cause overfitting 
in which the selected features are unable to deal with testing data satisfactorily despite 
performing splendidly on the training data D (Bishop, 1995). In many applications, a 
machine learning process suffers from insufficient learning samples. For instance, in 
most microarray gene profile expression based cancer diagnosis data sets that may 
only consist of tens samples. With small sample sets, overfitting is likely to happen 
and this issue must be addressed accordingly. A wrapper/embedded feature selection 
models always involve with classification learning processes. Thus, the regularization 
techniques developed for classification learning can be directly employed in a 
wrapper/embedded model. For example, support vector machine and penalized Cox 
regression model, which have been argued to have high generalization capability, are 
employed in embedded models (Guyon, 2002; Gui, 2005). And an embedded feature 
selection model is trained based upon with regularized classification loss functions 
(Perkins, 2003). On the other hand, since filter schemes do not explicitly include a 
classification learning process, the regularization techniques developed for 
classification learning cannot be explored. In this sense, it is a need to design 
specified regularization strategies. To our knowledge, only a few attempts are done on 
this topic. In order to address problem of overfitting, a bootstrap framework has been 
adopted for mutual information estimation (Zhou, 2003). Under this framework, 
mutual information estimation should be conducted several times in order to deliver 
one result. The bootstrap framework is thus highly computationally demanding, 
which precludes it from being widely used.  

In this paper, we propose two strategies – the one is for improving the 
effectiveness of searching engines, and the other is for addressing the problem of 
overfitting. And we choose a typical filter feature selection model as example to 
demonstrate these strategies. In this filter model, the searching engine and the feature 
evaluation index are SFS (Devijver, 1982) and Bayesian discriminant criterion (BD) 
(Huang, 2005), respectively. We firstly analyze SFS according to the well-established 



 An Excellent Feature Selection Model 681 

optimization theory (Bishop, 1995). The analysis of this type, which has been 
overlooked in previous studies, can reveal the shortcoming of conventional SFS – 
SFS is unable to perform optimization in a maximal way. To address this issue, we 
naturally come to the optimization theory. As a result, a modified SFS is proposed, 
which conducts the feature searching along the possible steepest optimization 
direction. To enhance the regularization capability, a point injection approach is 
proposed. This approach generates certain points according to the distribution of 
given samples, which is similar to the ones developed for classification learning. In 
our proposed approach, the injected points are just employed for evaluating the 
feature subsets. This mechanism is able to minimize the undesired side-effect of 
injected points.  

In the next section, the BD sequential forward searching (SFS) feature selection 
model is briefed. After that, our proposed strategies are described in section 3. Finally 
the proposed strategies are extensively evaluated.  

2   Bayesian Discriminat Based Sequential Forward Feature 
Searching Process  

Assume that the feature set of n-sample dataset D is F = {f1, f2, …, fM}. Also, each 
pattern (say, xi) falls into one of L categories, i.e., yi = ωk where 1≤ i ≤ n and 1 ≤ k ≤ L.  

2.1   Bayesian Discriminant Feature Evaluation 

In filter models, probability based feature evaluation criteria are commonly used. 
Bayesian discriminant criterion (BD), a typical probability based approach, is 
developed by Huang et al. (2005). With the dataset D, BD is defined as 
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where iy  means all the classes but class yi, and pS(.) represents a probability which is 

estimated in the data domain defined by S. As shown in (1), BD(S) directly measures 
the likelihood of given samples being correctly recognized in the data domain defined 
by S. A large BD(S), which indicates that most given samples can be correctly 
classified, is preferred.  

And in our study, the probabilities required by BD(S) are estimated with Parzen 
window (Parzen, 1962) which is modeled as  
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where κ and hi are the kernel function and the width of window, respectively. The 
parzen window estimator (2) or (3) has been shown to be able to converge the real 
probability when κ  and hi are selected properly (Parzen, 1962). κ is required to be a 

finite-value nonnegative function and satisfies 1),( =− dxhxx iiκ . And the width of  
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κ , i.e. hi, is required to have 0lim =
∞→

h
n

 where n is the number of given samples. 

Following the common way, we choose Gaussian function as κ . That is,  
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where M is the dimension of x. And the window width hi is set with hi=2distance(xi,xj) 
where xj is the 3rd nearest neighbor of xi. We use Euclidean distance, i.e., 

T
jijiji xxxxxx ))((),(distance −−=  for two data vectors xi and xj. As to p(xi) of 

the equations (2) and (3), it is estimated with p(xi) = 1/n. With the equations (2) and 
(3) and based on p(y|x)=p(x,y)/p(x),  p(y|x) required by BD(S) is finally obtained.  

2.2   Sequential Forward Searching  

In a BD based feature selection process, the aim is to determine the feature subset S 
that can maximize BD(S) (1). In general, BD(S) is optimized in the following way: 
after a pool of feature subsets is suggested by a searching engine, BD of each 
suggested feature subset is calculated, and one with the largest BD is either outputted 
as the finial feature selection result or remembered as the reference to guide the 
subsequent feature selection process.  Many schemes for determining feature subset 
pools have been developed to trade the quality of optimization results with 
computational consumption. Among these schemes, the sequential forward searching 
(SFS) is the most popular one.  

The SFS firstly sets the selected feature set (denoted by S, below) empty and 
enriches S through iteratively adding k important features into it.  In each iteration, to 
select the k features, all the feature combinations {S, k unselected features} are 
examined, and the one with the largest BD is selected out to remember as a new S.  
Based upon this S, another iteration of feature selection is conducted. This process 
continues until certain stopping criteria are met.  

3   Modified Sequential Forward Searching Scheme 

3.1   Weighting-Sample  

The objective of feature selection is to optimize the employed evaluation criterion, for 
example, BD(S) (1) in this study, through adjusting S. To clearly explain our idea, we 
recast BD(S) (1) as  
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According to the optimization theory, the steepest direction of adjusting S to 
maximize (4) is determined by 
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It shows that, to optimize BD(S), the updating of S depends on the two terms, 
∂BD(S)/∂f((x,y),S) and ∂f((x,y),S)/∂S. The former one happens in a continuous domain, 
while the latter one is related to S and has to be tackled in a discrete feature domain. 
In this sense, (5) cannot be solved directly. To maximize BD(S), SFS tests all 
combinations of S and an unselected feature, and remains the one having the maximal 
BD. Clearly, SFS only considers the second term of (5), but overlooks the first term. It 
means that the searching direction of SFS is not in accordance with the steepest 
optimization one. This shortcoming may reduce the optimization effectiveness, and 
thus motivates our modification.  

Naturally, our proposed strategy is based on the optimization theory, i.e., equation 
(5). The second term of (5) is resolved by using any conventional discrete-domain 
searching scheme. We use SFS for this purpose. The first term of (5) can be directly 
calculated in the way of   
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This shows that ∂BD(S)/∂f((x,y),S), which is only related to x, is independent of the 
change making on S. With this observation, we use (6) as weights to samples. In such 
way, feature searching is conducted with the weighted samples, not the original ones.  

Assume that the dataset D is weighted by {w1,w2,…,wn}. With this weighted 
dataset, the criterion BD (1) and the probability estimations (2) and (3) are adjusted 
accordingly. The rule of p(xi)=1/n  is replaced by nwxp ii =)( . Also, we have 
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And the criterion BD is modified as 
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Apparently, it is natural to regard different samples may have different 
contributions to the learning processes. Currently, most machine learning algorithms 
have already incorporated this idea. For instance, the classification learning aims to 

minimize the mean square error −Λ=Λ
),( all
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model f, i.e., adjusting the parameter set ∧ of f. The steepest decent type algorithm, 
which is commonly used for classification learning, determines the updating direction 
with  
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where (xi,yi) is a given training sample. It is noted that the contribution of (xi,yi) is 
penalized by |f(xi,∧)-yi|. Another example is AdaBoosting (Hastie et al., 2001), a 
typical boosting learning algorithm. During the course of learning, AdaBoosting 

repeats weighting the sample (xi,yi)  with )( ii xfy
i ew −  where wi is the current weight to 

(xi,yi). Also, in order to reduce the risk of overfitting, it is intuitively expected that the 
negative samples (i.e., incorrectly-recognized ones) have more influence to the 
subsequent learning than positive ones do. In such a way, the convergence rate can be 
speeded up, and the problem of overfitting can be alleviated (Lampariello et al., 
2001). AdaBoosting clearly can meet this expectation. The equation (9), however, 
indicates that the steepest decent algorithm fell short on tackling overfitting in a way 
that the correctly-recognized patterns still carry large weights. This fact has motivated 
modifications on the gradient-based algorithms (Lampariello et al., 2001). Consider 
our proposed weighting-sample strategy, defined by equation (6). It penalizes the 
negative patterns heavily. Thus it will be helpful in alleviating the problem of 
overfitting.  

3.2   Point Injection  

Overfitting is caused by the deviation between the real optimization goal and the 
actual achievable optimization objective. The real goal of the BD based feature 
selection process is to maximize BDP(S) where P is the underlying probability. Since 
P is unknown in most cases, BDP(S) can not be actually defined, and thus has to be 
substituted with its empirical estimate BDD(S) (simplified as BD(S), like equation (1) 
does). When BD(S) cannot always reflect BDP(S) correctly, overfitting is caused.  To 
avoid overfitting, it is preferred that BDP(S) varies smoothly enough. 

In the area of classification/regression, overfitting can be tackled through 
modifying the employed empirical objective function with regularization terms. These 
regularization terms penalized the complex models. With them, the simple learned 
models can be obtained, and the likelihood of overfitting happens will thus be 
decreased (Bishop, 1995). The penalty terms, however, cannot always be built 
without thorough theoretical analysis. This is especially the case when the parameters 
or factors controlling smoothness of a training model are hard to determine. Another 
widely used regularization technique is point injection. It is known that smooth means 
that samples near to each other should correspond to similar performance, which is 
the rationale behind the techniques of point injection. In many literatures, this 
technique is referred as noise injection (Matsuoka 1992; Skurichina et al., 2000; 
Zagoruiko et al., 1976), but it is certainly expected that injected points are not real 
noise. Thus, to avoid the confusion, we use the term point injection instead of noise 
injection in this paper.  

Under the frameworks of classification/regression learning, injected points are 
always treated just like the original samples – a classifier/regression model is built 
upon the original samples as well as the injected points. This working mechanism 
requires high-quality points. Spherical Gaussian distributed points are generated 
around each training object (Bishop, 1995; Matsuoka 1992). Then, the undesirable 
fact that the added points may increase the complexity of the solved problem is 
revealed. To avoid this, high quality injected points, such as, k-NN direction points 
(Skurichina et al., 2000) and eigenvector direction points (Zagoruiko et al., 1976), are 
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suggested to replace Gaussian distributed points. Also, points are generated in a way 
of feature-knock-out (Wolf et al., 2004). With the injected points of improved quality, 
contributions of injected point techniques are naturally enhanced. In this study, we 
reduce the risk caused by point injection through adopting a different working 
mechanism. Under our mechanism, only the given samples are used for building the 
probability estimators required by our feature evaluation criterion BD, and the given 
samples as well as the injected points are employed for evaluating feature subsets. 
Without participating in the process of model-building, the undesirable impacts of 
injected points must be reduced. 

Around a pattern xi, a point injection technique adds v points which are generated 
from a distribution b(x-xi). v and b(x-xi) play important parts in a point injection 
scheme (Kim, 2002; Skurichina, 2000). In order to strike the balance between 
performance stability and computational efficiency, v can be determined. Also, it has 
been argued that, for the reasonable choice of v, such as v = 8, 10 or 20, the effect of 
point injection is slightly different (Skurichina, 2000). We thus set v = 10. As to b(x-
xi), the “width” of b(x-xi), which determines the variance of the injected points, is 
crucial. Since the aim of point injection is to test the properties of the region around 
xi, a large width of b(x-xi) is not expected. And a small width of b(x-xi) must 
correspond to the insignificant contribution.  

To determine an appropriate width, the simulation based strategies can be used 
(Skurichina, 2000). We develop an analytic approach to determine the width of b(x-
xi). This approach is inspired by the ideas mentioned in (Glick, 1985; Kim, 2002). 
Aiming to reduce the bias intrinsic to the re-substitution error estimation as much as 
possible (Glick, 1985), our approach depends on the joint distribution (X,C) to 
determine the width of b(x-xi). Around a given pattern, say xi, we generate several 
points around from Gaussian distribution N(xi,σi) where σi = di/2 and di is the distance 
of xi to the nearest samples, i.e.,  

ji
ijj

i xxd −=
≠    ,

minarg .          (10) 

In this way, it can be guaranteed that x’ having ||xi-x’|| = di occurs with the close-zero 
probability.  

The given sample set D cannot cover each part of the whole data domain very well. 
In turn, the probability estimators built with these samples cannot describe every part 
of the data domain. In detail, there may exist the parts where the conditional 
probabilities p(x|y) for all classes are very small. According to the equation (8), it is 

that 
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 for all classes ω. It indicates that, when all p(x|y) are small, 

a very little change of x will cause a large change of BD(S). The points of such type 
are not expected.   

For the originally given samples on which the probability models are built, at least 
one p(x|y) must be large enough. On the other hand, an injected point may be 
uncertain. That is, all the probabilities about it are very small. It is better to minimize 
the impact of uncertain points, although it can be argued that they may equally affect 
the quality of different feature subset candidates. With this idea, the way of 
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calculating BD(S) of injected points is modified. Suppose that, according to the given 
D, we generate dataset D’ for which we have  
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where |D’| means the cardinality of D’. y’i and w’ i are the weight and class label of x’i 
and are inherited from the corresponding sample in D. With part A, the impact of 
uncertain points will be limited, which satisfies our expectation.   

Below, contributions of the point injection strategy are assessed on a group of 3-
class and 8-feature synthetic datasets. In these data, the first four features are 
generated according to 

Class 1 ~ m samples from N((1, 1, -1, -1), σ), 
Class 2 ~ m samples from N((-1, -1, 1, 1), σ), 
Class 3 ~ m samples from N((1, -1, 1, -1), σ). 

And the other four features are randomly determined from normal distribution with 
zero means and unit variance. Clearly, among totally eight features, the first four are 
equally relevant to the classification task, and the others are irrelevant. Three feature 
selection methods are applied to this data to determine four salience features. They 
are the conventional SFS, SFS with the feature-knock-out and the proposed point 
injection approaches. Only if all relevant features are selected out, the selection 
results can be considered correct.  

Table 1. Comparisons on a synthetic data. These results demonstrate the merits of the proposed 
point injection strategy. 

 SFS SFS with feature-
knock-out strategy 

SFS with the point 
injection strategy 

m = 3 0.980 0.941 0.991 
 = 0.3 

m = 9 1.000 1.000 1.000 

m = 3 0.357 0.358 0.392 
 = 0.8 

m = 9 0.933 0.930 0.931 
 

Different settings of σ and m are investigated. For reliable estimation, in each 
setting, three feature selection methods are run on 10,000 datasets independently 
generated. And the correct results over 10,000 trials are counted. In Table 1, the 
correctness ratios are presented. It shows that the feature-knock-out point injection 
strategy cannot bring the improved feature selection results in this example. This may 
be because this strategy is originally designed for classification learning, not for 
feature selection. Turn to the proposed point injection strategy. Its advantage becomes 
more significant either when the sample size becomes small or when σ becomes 
large. All these conditions actually mean there is a high likelihood of overfitting since 
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a larger σ means a more complex problem. Thus, the presented results suggest that 
our approach can improve the generalization capability of SFS.  

3.3   Procedure  

With the above described weighting-sample and point injection strategies, the 
conventional BD based SFS feature selection models are modified as follows. 

Step 1. (Initialization) Set the selected feature set S empty. Also set the injected 
point set D’ empty. Also, for each sample, assign a weight of 1, i.e., wi = 1, 
1≤i≤n. 

Step 2. (Feature selection) From the feature set F, identify the feature fm which 
satisfying  

[ ]'|)(|)(maxarg DD
Ff

m SfBDSfBDf +++=
∈

. 

The probability estimators required by BD are established with (7) based on the 
dataset D. And the BDs on D and D’ are defined in (8) and (11) 
respectively. Put the feature fm into S and delete it from F at the same time.  

Step 3. (Update the sample weights) Set wi based on equation (6). Then normalize 

wi as == n
j jii www

1
. 

Step 4. (Point-injection) Set D’ with empty. In the data domain described by S, 
conduct point injection around each sample in the following way.  

Around the pattern xi, produce 10 points based on the distribution N(xi,di/2) where 
di is defined by the equation (10). Place these points into D’. Also, the class 
label and the weight of these injected points are set with yi and wi, 
respectively.  

Step 5. If the size in S has reached the desired value, then Stop the whole process 
and output S, otherwise Go to step 2.  

4   Experimental Results 

Our modified SFS, called gradient and point injection based SFS (gp-SFS), is 
evaluated through comparing with several related methods, namely, the conventional 
SFS, support machine learning recursive feature elimination scheme (SVM RFE) 
(Guyon, 2002), and the conventional SFS with the feature-knock-out regularization 
technique (fko-SFS) (Wolf, 2004). SVM RFE, a typical embedded feature selection 
model, begins with the training of an SVM (of linear kernel) with all the given 
features. Then according to the parameters of the trained SVM, features are ranked in 
terms of importance, and half of the features are eliminated. The training-SVM-
eliminating-half-of-features process repeats until no feature is left. The feature-knock-
out point injection scheme is designed for classification learning in which a point x’ is 
added in each learning iteration. To generate x’, two samples (say x1 and x2) are 
randomly selected and a feature f is specified according to the newly-built model. And 
all information about x’ is set with that of x1, except that x’(f) = x2(f). We adopt this 
point injection scheme to modify the conventional SFS as fko-SFS.  
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To assess the quality of feature selection results, we rely on experimental 
classification results. In details, given a feature subset for examining, say S, certain 
classifiers are constructed using training data which is also used for feature selection. 
Then, based on the performance of these classifiers on a test dataset, the quality of S 
is evaluated. Respectable feature subsets should correspond to good classification 
results. For this evaluation purpose, four typical classifiers are employed. They are 
multiply percepton model (MLP), support vector machine model with linear kernel 
(SVM-L), the support vector machine model with RBF kernel (SVM-R) and the 3-NN 
rule classifier. The MLP used in our study is available at 
http://www.ncrg.aston.ac.uk/netlab/. For convenience, we set 6 hidden neurons of 
MLP for all examples.  It is worth noting that slightly different number of hidden 
neurons will not have effect on the overall performance. The number of training  
cycles is set with 100 in order to ease the concerns on overfitting. And other learning 
parameters are set with default values. SVM models are available at 
http://www.isis.ecs.soton.ac.uk/resources/ svminfo.  

4.1   Data  

Sonar classification. It consists of 208 samples. Each sample is described with 60 
features and falls into one of two classes, metal/rock. From 208 samples, 40 ones are 
randomly selected for training and the others are used for test.  
Vehicle classification. This is 4-class dataset for distinguishing the type of vehicle. 
There are totally 846 samples provided. Each sample is described with 18 features. 
We randomly select 80 samples for training. The remained 766 samples are used for 
testing.  
Colon tumor classification. This is a microarray data set and is built for colon 
tumor classification, which contains 62 samples collected from colon-cancer 
patients (Alon, 1999).  Among these samples, 40 samples are tumor, and 22 are 
labeled “normal”. There are 2,000 genes (features) selected based on the confidence 
in the measured expression levels. We randomly split the 62 samples into two 
disjoint groups – one group with 31 samples for training and the other one with 31 
samples for test.  
Prostate cancer classification. This is another microarray dataset, which are 
collected with the aims to prostate cancer cases from non-cancer cases (Singh, 2002). 
This dataset consists of 102 samples from the same experimental conditions. And 
each sample is described by using 12600 genes (features). We split the 102 samples 
into two disjoint groups – one group with 60 samples for training and the other with 
42 samples for testing.  

4.2   Results  

In each example, we repeat investigation on 10 different sets of training and test data. 
The presented results are the statistics of 10 different trials. Also, in each training 
data, the original ratios between different classes are roughly remained. For example,  
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(a) 

 
(b) 

Fig. 1. Comparisons on UCI datasets. (a) sonar classification. (b) vehicle classification. 

during the investigation on the colon cancer classification, the original ratio between 
tumor and normal class, i.e., 40 normal vs. 22 tumor, is roughly kept in each training 
dataset. For each training dataset, we preprocess it so that each input variable has zero 
means and unit variance. And the same transformation is then applied to the 
corresponding test dataset.  

The computational complexity of SFS type models is O(M2) where M is the 
number of features. A microarray dataset generally contains information of thousands 
or ten thousands genes. Clearly, directly handling the huge gene sets cost SFSs 
unbearable computational burden. To improve the computational efficiency, and 
given by the fact that most genes originally given in a microarray dataset are  
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Fig. 2. Comparisons on the colon cancer classification data 

 

Fig. 3. Comparisons on the prostate cancer classification data 
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irrelevant to a specified task, a widely used pre-filtering-gene strategy is adopted in 
our study to eliminate the irrelevant and insignificantly relevant genes before the  
commencement of feature selection. In details, all the given features (genes) are 
ranked in a descend order of BD (8). And the one third top-ranked features are left 
behind for further feature selection.  

The comparative results are presented in Figure 1 (for sonar classification and for 
vehiecle classification), Figure 2 (for colon cancer classification) and Figure 3 (for 
prostate cancer classification).  In most cases, our modified SFS greatly outperform 
the conventional SFS. This is contributed by the gradient based and point injection 
strategies. Also, compared with fko-SFS and SVM RFE in which the problem of 
small-sample is tackled implicitly or explicitly, the proposed SFS still shows its 
advantages. The contributions of our study can thus be proved.  

5   Conclusions 

In this paper, two strategies are proposed to enhance the performance of filter feature 
selection models.  The first one is a graident based strategy which is used to enhance 
the searching effectivenss, and another is a new point-injection approach which is 
aimed to improve generalization ability. The results obtained on synthetic data and 
real data obivously demonstrate that these proposed strategies can bring a remarkable 
improvement. The proposed strategies are only applied to one representative filter 
model – BD based sequential forward searching. In furture work, we will extend these 
strategies to other filter models and further evaluate their merits and limitations. 
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Abstract. In the field of neural networks, feature selection has been
studied for the last ten years and classical as well as original methods
have been employed. This paper reviews the efficiency of four approaches
to do a driven forward features selection on neural networks . We assess
the efficiency of these methods compare to the simple Pearson criterion
in case of a regression problem.

1 Introduction

Up to 1997, when a special issue on relevance including several papers on vari-
able and feature selection was published, few domains explored more than 40
features. The situation has changed considerably in the past few years, notably
in the field of data-mining with the availability of ever more powerful data ware-
housing environments. A recent special issue of JMLR [1] gives a large overview
of techniques devoted to variable selection and an introduction to variable and
feature selection can be found in this special issue [2]. A challenge on feature se-
lection has been organized during the NIPS 2003 conference to share techniques
and methods on databases with up to 100000 features. This challenge lead to
provide an interesting and exhaustive book [3].

The objective of variable selection is three-fold: improve the prediction per-
formance of the predictors, provide faster and more cost-effective predictors,
and allow a better understanding of the underlying process that generated data.
Among techniques devoted to variable selection, we find filter methods, which
select variables without using a model (for example by ranking them with cor-
relation coefficients), and subset selection methods, which assess subsets of vari-
ables according to their usefulness to a given model. Wrapper methods [4] use
the elaborated model as a black box to score subsets of variables according to
their usefulness for the modeling task. In practice, one needs to define: (i) how to
search the space of all possible variable subsets; (ii) how to assess the prediction
performance of a model to guide the search and halt it; (iii) how to select the
predictor to use.

We discuss in this paper the problem of feature selection and review four
methods which have been developed in this field. The main idea is to compare
four popular techniques in sense of methods which are integrated in data mining
software (Clementine, SAS, Statistica Data Miner...). This paper presents the
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comparison specifically for neural networks (NN) therefore point (iii) listed above
is fixed.

The remainder of the document is organized as follows. Next section deals
with classical ingredients which are required in feature selection methods (1) a
feature evaluation criterion to compare variable subsets (2) a search procedure,
to explore (sub)space of possible variable combinations (3) a stop criterion or a
model selection strategy. The section 3 presents the driven forward strategy and
four methods to do variable selection with neural networks. Section 4 proceeds
with an experimental evaluation on each method on the driven forward strategy
for a regression problem.

2 Basic Ingredients of Feature Selection Methods

For all methods in this paper, the notations employed are (1) about data dis-
tribution: J the number of variables in the full set; I the number of exam-
ples in the training set; Vj the variable for which we look for the importance;
Vij the realization of the variable Vj for the example i; Im the input vector
part of the example m with n components; PVj (u) the probability distribution
of the variable Vj ; PI(ν) the probability distribution of examples I; and (2)
about neural network: OL the output layer; HL the hidden layer; IL the in-
put layer; wwz a weight between a neuron w and a neuron z; f the predictive
model (here a neural network); Ym the output vector part of the example m;
and fj(a; b) = fj(a1, ..., an; b) = f(a1, ..., aj−1, b, aj+1, ..., an) where ap is the pth

component of the vector a. Finally we note S(Vj |f) as being the importance of
the variable Vj using the predictive model f . Note that all methods are pre-
sented for an output vector which has only one component but extension to
many component is straightforward.

2.1 Features Evaluation

Several evaluation criteria, based either on statistical grounds or heuristics, have
been proposed for measuring the importance of a variable subset. For regression,
classical candidates are prediction error measures. We will use the mean squared
error to compare results in section 4. A survey of classical statistical methods
may be found in [5] for regression, [6] for classification, [3] for both; and [7] for
neural networks.

2.2 Search Strategy

In general, since evaluation criteria are non monotonous, comparison of fea-
ture subsets amounts to a combinatorial problem which rapidly becomes com-
putationally unfeasible. Most algorithms are based upon heuristic performance
measures for the evaluation and sub-optimal search. Most sub-optimal search
methods follow one of the following sequential search techniques [8]: (a) start
with an empty set of variables and add variables to the already selected variable
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set (forward methods); (b) start with the full set of variables and eliminate vari-
ables from the selected variable set (backward methods); (c) start with an empty
set and alternate forward and backward steps (stepwise methods). In this paper
we will compare criteria only with a driven forward strategy described below.

2.3 Driven Forward Selection

In this paper we define a driven forward selection strategy such as: 1) compute
the variable importance using a criterion; 2) rank the variables using the result
of the first step; 3) train models where variables are added more and more using
the ranking of the variable importance computed in the second step; 4) observe
the results versus the number of variables used. This strategy is driven since the
first ranking is not questioned and therefore one have at most J model to train.

A simple driven forward strategy uses, for example, the Pearson correlation
coefficient which is adapted for linear dependencies1 and which is not model
oriented (it does not take into account the regression model during selection):

S(Vj |f) = S(Vj) =
∑I

i=1

(
Vij − Vj

) (
Yi − Y

)√∑I
i=1

(
Vij − Vj

)2∑I
i=1

(
Yi − Y

)2 (1)

For Pearson criterion the driven strategy described is clear since this criterion
does not need to use a model in the first step (S(Vj |f) = S(Vj)). However any
wrapper criterion which allows to measure variable importance could be use in
the same way. In this case there is a preliminary step which is to train a model
which uses the full set. Then the first step compute the variable importance
using this model (S(Vj |f)). Others step are not changed. What we can except
is that all criteria studied in this paper can achieved better results than using
Pearson criterion.

2.4 Stopping Criterion

No stopping criterion has been used in this paper. The performance obtained by
each variable selection method has been memorized to be able to plot all results
on all selected variables subset with all criteria.

3 Features Selection Methods with Neural Networks
Compared

3.1 A Feature Selection Method Based on Empirical Data
Probability

The method described here [9] combines the definition of the ‘variable impor-
tance’ as given in Féraud et al. [10] with an extension of Breiman’s idea [11].
1 To capture non linear dependencies, the mutual information is more appropriate but

it needs estimates of the marginal and joint densities which are hard to obtain for
continuous variables. This method has not been tested in this paper.
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This new definition of variable importance both takes into account the prob-
ability distribution of the studied variable and the probability distribution of
the examples. The importance of an input variable is a function of examples
I probability distribution and of the probability distribution of the considered
variable (Vj). This method is tested for the first time in this paper on a regression
problem.

The importance of the variable Vj is the sum of the measured variation of the
predictive model output when examples are perturbed according to the proba-
bility distribution of the variable Vj . The perturbed output of the model f , for
an example Ii is the model output for this example but having exchanged the
jth component of this example with the jth component of another example, k.
The measured variation, for the example Ii is then the difference between the
‘true output’ fj(Ii;Vij) and the ‘perturbed output’ fj(Ii;Vkj) of the model. The
importance of the variable Vj is computed on both the examples probability
distribution and the probability distribution of the variable Vj . The importance
of the variable Vj for the model f is then:

S(Vj |f) =
∫∫

PVj (u)duPI(v)dv |fj (Ii;Vij)− fj (Ii;Vkj)| (2)

Approximating the distributions by the empirical distributions, the computa-
tion of the average of S(Vj |f) would require to use all the possible values of the
variable Vj for all examples available such as:

S(Vj |f) =
1
I

∑
i∈I

∑
k∈I

|fj (Ii;Vij)− fj (Ii;Vkj)| (3)

As the variable probability distribution can be approximated using representa-
tive examples (P ) of an ordered statistic:

S(Vj |f) =
1
I

∑
i∈I

∑
p∈P

|fj (Ii;Vij)− fj (Ii; vp)|Prob(vp) (4)

This method is especially useful when Vj takes only discrete values since the
inner sum is exact and not an approximation. View the size of the database
used for comparison section 4 P has been fixed to 10 (the deciles are used).
For all deciles we chose to used their median as representative values. This
approximation allows to speed up the computation and prevents errors which
are due to outliers or pathological values.

3.2 A Features Selection Method Based on Neural Networks
Weights

This method uses only the network parameter values. Although this is not sound
for non linear models, there have been some attempts for using the input weight
values in the computation of variable relevance. The weight value in the input
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layer2, IL, can provide information about variable importance. The variable
importance based on neural networks weights is:

S(Vj |f) =
∑

z∈HL ‖wzj‖∑
z∈HL

∑
w∈IL ‖wzw‖ (5)

3.3 A Features Selection Method Based on Saliency

Several methods propose to evaluate the relevance of a variable by the derivative
of the error or of the output with respect to this variable. These evaluation
criteria are easy to compute, most of them lead to very similar results. These
derivatives measure the local change in the outputs with respect of a given input,
the other inputs being fixed. Since these derivatives are not constant as in linear
models, they must be averaged over the training set. For these measures to be
fully meaningful inputs should be independent and since these measures average
local sensitivity values, the training set should be representative of the input
space (which is a minimum assumption).

The Saliency Based Pruning method [13] uses as evaluation criterion the vari-
ation of the learning error when a variable Vj is replaced by its empirical mean
Vj (zero if variables are assumed centered). The saliency is:

S(Vj |f) =
1
I

(
I∑

i=1

∥∥f(Ii;Vij)− yi

∥∥2

)
− 1
I

(∥∥ I∑
i=1

f(Ii;Vj)− yi

∥∥2

)
(6)

This is a direct measure of the usefulness of the variable for computing the
output. Changes in MSE are not ambiguous only when inputs are not correlated.
Variable relevance being computed once here, this method does not take into
account possible correlations between variables.

3.4 A Features Selection Method Based on Output Derivatives

Several authors have proposed to measure the sensitivity of the network trans-
fer function with respect to input Vj by computing the mean value of outputs
derivative with respect to Vj over the whole training set. Most measures use
average squared or absolute derivatives [14,15,16]. The variable importance is:
S(Vj |f) = 1

I

∑I
i=1 (∂f/∂Vj(Vij)). These measures being very sensitive to the in-

put space representativeness of the sample set, several authors have proposed to
use a subset of the sample in order to increase the significance of their relevance
measure. In order to obtain robust methods, “non-pathological” training exam-
ples should be discarded. A parameter, here ε, is needed to adjust the range
variation over Vj given an example (Vij). In this paper we choose to use the
definition:

S(Vj |f) =
1
I

I∑
i=1

|fj(Ii, V ij − ε)− fj(Ii, V ij + ε)| (7)

2 A more sophisticated heuristic, but very close to the one above in case of a single
output neuron, has been proposed by Yacoub and Bennani [12], it exploits both the
weight values and the network structure of a multilayer perceptron.
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4 Experimental Results on Orange Juice Database

4.1 Experimental Conditions and Results Presentations

Database: The database has been provided by Prof. Marc Meurens, Université
Catholique de Louvain, BNUT unit. The goal is to estimate the level of saccha-
rose of an orange juice from its observed near-infrared spectrum. The training
set is constituted of 150 examples described by 700 features (variables) and the
test set is constituted of 68 examples described also by 700 features. There is no
missing value and variables are continuous but note that the number of training
examples (150) is more of four times as small as the number of features (700).
Nothing else is known about this database (see http://www.ucl.ac.be/mlg/
index.php?page=DataBases). The preprocessing used for input variable as well
as for output variable is only a min-max standardization. All the results pre-
sented below (the mean squared error) are computed on the standardized
output.

Cross Validation: For all experimental conditions, 25 trainings are per-
formed with different initialization of the weights and different training, valida-
tion set as follow: we have drawn a training set (100 examples) from the training
set available on the web site (among 150) and the others example of the train-
ing set has been used as a validation set. Each training is stopped when the
cost (the mean squared error) on the validation set does not decrease since 200
iterations. At the end of each training, the global mean squared error on the
test set is computed for comparison purposes. In the driven forward strategy
the variables importance are not questioned. So, when one gives results over 25
training there are results over 25 forward procedures (for a given step, a given
number of variables, the variables chosen are not necessary the same to compute
the mean errors presented in Figure 7).

Neural network topology and training parameters: A single multi-
layer perceptron with 1 hidden layer, tangent hyperbolic activation function and
stochastic back-propagation of the squared error as training algorithm has been
used. Using full set of variables the learning rate has been determined to be
α=0.001 and the number of hidden unit has been determined to be HL=15.
Again, these parameters has been evaluated over 25 training from a range vari-
ation of α from 0.0001 up to 0.1 and HL from 1 up to 30.

Regularization: The orange juice database is constituted of 700 variables
which are very correlated to the output target (see Figure 1, coefficients be-
tween normalized input variables and the normalized output). Methods pre-
sented above test the importance of all variables one by one so a successful
regularization method has to be employed. We added a regularization term ac-
tive only on directions in weight space which are orthogonal to the training up-
date [17]. This regularization prevents correlation effects between input variables
without learning degradations. The regularization term (in batch procedure for
it) has been always 10−3 of the learning rate.



Driven Forward Features Selection 699

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700

Input Variable Number

Fig. 1. Absolute Pearson coefficient

 1

 10

 100

 1000

 0  100  200  300  400  500  600  700

Pearson

Fig. 2. Ranking of Pearson coefficient

4.2 Comparison Using the Full Set and a Same Neural Network

Figures 3,4,5,6 show variable importance found using the five criterion described
above (except Pearson criterion for which one can see this representation in
Figure 2) and computed with the same neural networks trained with the full
set of variables. Figure 3, Figure 4, Figure 5, Figure 6 show respectively versus
the number of the variables the “Norm Importance” obtained using equation 5,
“Saliency Importance” obtained using equation 6, “Local Importance” obtained
using equation 7 and “Global Importance” obtained using equation 4 . On all
sub figure horizontal axis represents the number of the variables and vertical axis
represents (in log-scale to focus on first important variables) the ranking of the
variables from 1 (the most useful) to 700 (the less useful). This representation
identifies clearly first important variables for all criterion using the same neural
network and allows to compare behaviors.

The four criteria Norm, Saliency, Local and Global do not agree with Pearson
criterion (see Figure 2). For criteria Norm, Local and Global important variables
are near the six hundredth variable. Saliency criterion selects variables near the
130th. Global criterion ranks this group after the group near the six hundredth
variable. Among group near the 600th variable Global criterion does not order
variables as Norm and Local criteria (the 562th before the 592th). Norm and
Local criteria very agree on this regression problem. Results presented in next
section with the driven forward procedure will give more results elements.

4.3 Results with the Driven Forward Strategy

Whatever is the neural network trained the results obtained using Pearson cri-
terion will be the same since this criterion does not use the model to compute
variable importance. But it is not the case for others criteria described above.
The ranking obtained can depend on the neural network trained and therefore
of its initialization, the order to present examples, etc... For all criteria 20 neu-
ral networks (k = 20) have been trained using the full set of variables. The
mean value of the criterion has been computed on all neural networks such as:
S(Vj |f) = 1/k

∑
k S(Vj |fk). Using this mean value on all variables a ranking has

been determined. Table 1 presents this ranking. Then this ranking has not been
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questioned. It is used to train neural networks which used one, two or more im-
portant variables. Experimentations have been made twenty times to obtained
mean results using one, two or more important variables on all criteria.

Table 1. The ten more important variables

Pearson 80 273 85 332 617 71 83 268 599 118
Norm 595 596 592 593 590 594 591 570 597 598
Saliency 595 131 1 2 129 3 130 592 6 593
Local 595 592 596 593 590 594 591 599 597 598
Global 570 595 592 596 590 593 594 572 569 571

The Figure 7 presents results obtained with the four methods and Pearson
criterion which is a baseline results. Results after 100 variables are not presented
since they are the same for all criteria and are the same than using the full
set. Each plot represents the mean results of the mean squared error on the
normalized output through 20 forward procedures. The standard deviation is
not represented for reading reasons and a figure which is not overloaded. The
standard deviation is± 0.003 for all points. For example, for the Pearson criterion
and using ten variables, the result is therefore 0.045 ± 0.003.

On this regression problem, which is compose of a full set of 700 variables
and few examples for training, we observe the following ranking of criteria (from
the best to the least): (1) Global, (2) Saliency (3) Local and Norm, (4) Pearson.
With less than 100 variables criteria Global, Saliency and Pearson obtain the
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same results than using all variables (0.011 ± 0.003). To obtain this performance
Norm and Local criteria need 150 variables. Significant degradations on results
appear under 60 variables on all criteria. The Global criterion gives excellent
and best results: better performances of the neural network trained are always
obtained before others (until all criteria allow to obtained same results).

To analysis more in depth the difference in term of performances we focus on
the 131th variable since there is a disagreement between criteria for this variable.
We plot on Figure 8 ordered values of the 131th variable on horizontal axis and
the estimated output on the vertical axis (using the same neural network as in
section 4.2). Clearly for this variable, which constituted by two groups of values,
it is not relevant to measure its importance with saliency: its mean is out of the
data distribution. This discontinuity explains the overestimation of the variable
importance using Saliency criterion. On the other hand, Local criterion does not
rank this 131th variable in the ten most important variables since derivatives
importance is not adapted to bimodal distribution. The Global criterion where
data distribution is used is able to take into account bimodal distribution. It
ranks this variable as an important variable. This type of difference in behaviors
explains the difference in performances.

5 Conclusion

These comparisons show that, on this real application, it is possible to ob-
tain excellent performances with the four criteria with a large preference for
the Global criterion; knowing that the database used is a particular database
with very correlated variables and few examples compare to the number of the
full set of variables. Future work should address experiments on larger data
sets3.

3 as for example http://theoval.cmp.uea.ac.uk/∼gcc/competition/
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Abstract. The unlabeled document or text collections are becoming larger and 
larger which is common and obvious; mining such data sets are a challenging 
task. Using the simple word-document frequency matrix as feature space the 
mining process is becoming more complex. The text documents are often repre-
sented as high dimensional about few thousand sparse vectors with sparsity 
about 95 to 99% which significantly affects the efficiency and the results of the 
mining process. In this paper, we propose the two-stage Non-negative Matrix 
Factorization (NMF): in the first stage we tried to extract the uncorrelated basis 
probabilistic document feature vectors by significantly reducing the dimension 
of the feature vectors of the word-document frequency from few thousand to 
few hundred, and in the second stage for clustering or classification. In our  
propose approach it has been observed that the clustering or classification per-
formance with more than 98.5% accuracy. The dimension reduction and classi-
fication performance has observed for the Classic3 dataset.  

1   Introduction 

Text Mining is the process of discovering useful knowledge or patterns from unstruc-
tured or semi-structured text. The clustering or categorizing of text documents are one 
of the fundamental part of the text mining process. One of the great challenges for 
today’s information science and technology is to develop algorithms and software for 
efficiently and effectively organizing, accessing and mining the information from a 
huge amount of text collection.  

Feature extraction of the huge collection of textual data is important factor to 
achieve an efficient and effective algorithm for categorize the unstructured text data. 
Many researchers have given their attention to reduce the dimension of the document 
feature vector. In this paper, we focus on the task of reducing the document feature 
vector and classifying text documents into a pre-defined set of topical categories, 
commonly referred to as document clustering which is an enabling technology for 
information processing applications. 
                                                           
* To whom it will be correspondent.  
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The NMF algorithm has been using successfully for semantic analysis [1]. NMF 
algorithm shows an outperform in document clustering [3] over the methods such as 
singular value decomposition and is comparable to graph partitioning methods, K-
mean clustering [4], probabilistic clustering using the Naive Bayes [5] or Gaussian 
mixture model [6] etc. F Shahnaz et al. [7] cluster the text documents by imposing 
sparsity constrain into the NMF algorithm this sparsity constrains makes slow con-
vergence of the algorithm.  

Another related line of research is the simultaneous clustering approach I. S. Dhil-
lon [8] information theoretic co-clustering of join probability distribution of two ran-
dom variables or co-clustering, or bipartite graph partitioning Zha et al., [9] to reduce 
the dimensionality of feature vectors. Jia Li et al [10] use the two-way Poisson mix-
ture models to reduce the dimension of the document feature vectors. One common 
approach has associated with these methods is that they all consider the whole docu-
ment collection which gives a very high dimensional document feature vector at start-
ing point. 

The general paradigm i.e., term-frequency document matrix of representing text 
documents are more commonly using approach. The elements of the matrix V = [vij] 
where vij is the term frequency i.e., the number of times word i occurs in document j. 
Each document is represented as a collection of an n-dimensional vector. The number 
of distinct words in any single document is usually smaller than the size of the vo-
cabulary, leading to sparse document vectors, vectors with many zero components 
which make the classification algorithms more challenging.  

In our approach, we reduce the sparsity of the document vectors by reducing the 
number of insignificant words as a result of decreasing the correlation coefficient 
among the feature vectors, which increase the classification performance. We used 
two stage NMF algorithms: in the first stage we reduce the feature dimension for each 
document vectors, and the second stage we used for clustering or classification of the 
text documents. We explain the approaches details in section 3. 

2   Nonnegative Matrix Factorization (NMF) Algorithm 

Given a non-negative n x m matrix V; find non-negative factors, W, of n x r matrix, 
and H, r x m, such that:      V  WH or 

)( =≈
a ajiaijij HWWHV                                     (1) 

where r is chosen as )/( mnnmr +<   

V is the word-frequency matrix; W is basis feature matrix; H   is encoded matrix 
and it is one-to-one correspondence with a sample of V. 

For our application purpose we make a single modification in the update rule of [1] 
[2]. In our case we also normalize the encoding matrix H, like W, which are as fol-
lows, 
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division and multiplications are computed element by element.  

3   Propose NMF Model and Data Set 

We propose the two-stage NMF model in order to reduce the feature vector dimension 
and reduce the complexity of the clustering or classification process of the text data. 

The first stage is for feature extraction of the text data using the basis-probability 
model of the basis vectors obtained by the NMF algorithm discuss in section 3.2 and 
in the second stage we used the NMF algorithm for classification of the text docu-
ments. We normalize the encoding matrix H to find the relevant probability of the 
documents to a certain cluster or category. Typically, the basis vectors Wi are random 
probability distribution of high dimension. We approximate these vectors as exponen-
tial probability distribution and we defined these distributions as basis-probability 
distributions. The overall model of our works shows in figure1.  

For our experiment we have consider the Classic31  text data set. This corpus con-
sists of 3891 abstract of three different journal articles. The distribution of the articles 
is as follows: MEDLINE: 1033 abstracts from medical journal, CISI: 1460 abstracts 
from information retrieval journal, CRANFIELD: 1398 abstracts from aeronautical 
systems papers. 

3.1   Pre-processing 

In the pre-processing step we have randomly selected about 15% representative or 
training documents from the whole document collection. We have filtered out some 
English stop words2 such as ‘the’, ‘to’, the numerical values, and the special charac-
ters such as ‘<’, ‘=’, etc. After removing the words or characters, find the term-
frequency document matrix V. Let },.....,,{ ′= n21 tttT  be the complete vocabulary 

set of the training documents where ti is the ith word or term in the vocabulary set. The 

term-document frequency vector for document i is },.....,,{ 21 niiii xxxv =  where xji 

represents the frequency of the term j in document i.  

                                                           
1 http://www.cs.utk.edu/~list 
2 http://www.perseus.tufts.edu/Texts/engstop.html 
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Fig. 1. Text Document clustering process using NMF algorithms 

3.2   Create a Vocabulary Set of Significant Terms  

In the first step NMF algorithm of figure 1, using update rules equations 2 to 5 of 
NMF algorithm we factorize the term-frequency document matrix V into non-
negative basis matrix W and encoding matrix H. The basis feature vectors Wi, i= 1, 
2,…, r, represents is the number of clusters or categories of the text data are random 
probability distribution of high dimension. To select r we measure the correlation 
coefficient R among the basis vectors Wi for different values of r using equation (6) 
than find ))min(max( R  which means to find the maximum independency among 

the basis feature vectors the results shown in table 1. 
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where n = basis feature vector dimension and {i # j} = 1, 2,…,r. We consider the basis 
feature as basis-probability distribution and arrange the terms of each basis vector in 
descending order according to probability. The probability of each vector decreases 
exponential with increasing the number of terms. Now convert the basis-probability 
distribution into logarithmic scale as shown in figure 2 and truncate the nonlinear 
portions of the feature vectors. As a result we get the feature vectors of significant 
terms with reduced dimension. We make a new vocabulary set Tnew by considering 
the terms of each reduced feature vectors.   

3.3   Feature Extraction for Whole Text Corpora 

Using the vocabulary set Tnew and let Tnew = N, we extract the word-document fre-
quency feature matrix Vnew for the whole corpus to classify the documents or any new 
coming documents which is relevant to this document collection. Now the term-

frequency vector for ith document is defined as T
Nii2i1

new
i xxxv ],...,,[=  where xji 

represents the frequency of the term j in document i, in this case: i=1, 2 …m, total 
number of documents, and j=1, to N (the size of new vocabulary set). 
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3.4   NMF Clustering 

The second stage NMF algorithm of figure 2 factorizes the new word-frequency ma-
trix Vnew into two factors W (the basis weight matrix) and H (the encoding matrix) 
using same update rules as before. The encoding matrix H of dimension r×m, (where r 
is the number of clusters and m is the numbers of documents) has been used to cluster 
the documents. Since the matrix H is a column wise normalized as in equation (3) it 
represents the relevant probability of the documents corresponding to each row i.e., to 
each cluster. In our case we consider the maximum probability for clustering the 
documents. Let us consider a particular document j its ith row has maximum then 
consider the jth document in class or cluster i. 

4   Experiments 

At first we try to find the number of distinct classes or clusters in the given text data 
base, to do this we randomly chose about 15% (600 out of 3891) documents of the 
total number of text collection. After preprocessing and making the word-frequency 
matrix we apply the NMF algorithm in this case the vocabulary size is n=7972,  
number of documents m=600. Initially we consider r = 3, 5 and 7 then calculate the 
correlation coefficient R equation (6). Finally choose r=3 because for r = 3, we get 
minimum value for maximum (R) as shown in table 1. 

After fixing the number of clusters (in our case r = 3) we extract the basis feature 
vectors and plot in the logarithmic scale as shown in the figure 2. We consider the 
terms only in the approximate linear region of the curve. To find the appropriate 
numbers of significant terms for better clustering or classification performance we 
consider different number of terms. Figure 3 represents the reduced basis feature 
vectors (only for four cases with dimension 300, 500, 700, and 900) in the logarithmic 
scale. With in the linear region of the curve we consider the feature vector dimension 
from 50 to 1500 terms and tested the correlation coefficient among the feature vectors 
as shown in table 2 and figure 4 to check the clustering performance. We test the 
clustering or classification efficiency by considering different values of feature vec-
tors dimension.  

5   Results 

It has been observed that for r=3, the value of ))min(max(R  is minimum which 

means the basis vectors show maximum independency among them as a result we 
consider there are 3 clusters in the text collection. We consider the threshold of maxi-
mum independency is less than 15%. For example in the case of r=5, the basis vectors 
3 and 5 are mostly correlated each other since the correlation coefficient among them 
is 0.54477 similarly for the case of r= 7. We have also tried to reduce the correlation 
among the feature vectors by excluding some common terms or words from the basis 
vectors. 
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Table 1. Correlation coefficient among the basis vectors for various number of clustering r 

 

Table 2. Absolute value of correlation coefficient among the basis vectors for various number 
of words for three clusters 

 

Figure 2 represents the logarithmic probability of the basis vectors. In our experi-
ment, at first we arrange the basis vectors in descending order according to each term 
probability to the corresponding vectors. We observed that due to the sparsity of the 
basis vectors the log of probability become abruptly low after certain number of terms 
(about 1200). We choose the terms within the linear part of log probability distribu-
tion. In this approach we try to achieve the maximum limit of the significant terms in 
each basis vector. Figure 3 represents the linearly decreasing the log probability of the 
feature vectors for various number of words or terms.  

Table 2 represents the observed the absolute value of the correlation coefficient 
among the basis vectors. Out intension is to achieve the basis vectors as independent 
as possible. It has been observed that the absolute value of correlation coefficients are 
minimum near zero for a certain number of indices and increase either decreasing or 
increasing the number of terms as shown in figure 4. We have got better classification  
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Fig. 2. This figure represents the probabilities of words relevant to each basis feature vectors.  
The X-axis represents the number of distinct word’s index which is equal to the initial vocabu-
lary size (7972); Y-axis is the relative probability or strength of the words corresponding to the 
feature vectors.  

 

Fig. 3. This figure represents the probabilities of words relevant to each basis feature vectors 
with different dimensions (300, 500, 700, and 900 words).  The X-axis represents the number 
of distinct word’s index and Y-axis is the relative probability or strength of the words corre-
sponding to the feature vectors.  
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performance of the NMF algorithm within the feature dimension from 200 to 1200  
words. For very low dimension of the feature vectors the features are insufficient for  
proper classification and for high dimension the basis vectors are become correlated 
so reduce the performance as shown in figure 5. Table 3 represents the clustering or 
classification performance of the NMF algorithm, first three columns before reducing 
the feature vectors dimension for the training case, next three columns after reducing 
the dimension it has been observed that the clustering performance increased. The last 
three columns show the classification performance for whole documents, the result is 
well comparable with Inderjit S. Dhillon et. al. [8] reported in SIGKDD ’03. 

 

Fig. 4. This figure represents the correlation coefficients among the feature vectors correspond-
ing to the number of words in each basis feature vectors.  The X-axis represents the number of 
words in the feature vectors and Y-axis represents the relative correlation coefficient among the 
feature vectors.  

Table 3. The clustering performance of the NMF algorithm where the first  two column show 
the performance for the training set of 600 documents (200 from each categories) and the last 
column shows for whole Classic3 data set   
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Fig. 5. This figure represents the classification performance for training data set (600 docu-
ments) and whole document set (3891 documents). X-axis represents the feature dimension, 
and Y-axis represents the accuracy.  

6   Conclusion and Future Works 

The main focus point in our work is make the feature vectors are independent i.e., to 
reduce the correlation coefficient among the feature vectors near to zero by reducing 
the dimension or vocabulary size. As we know the feature of the text data is very 
sparse means the major portion of the word-frequency matrix is zero and it is mainly 
depends on the number of the unique words in the vocabulary set. There so many 
non-significant words which don’t have major contribution for clustering or catego-
rizing the documents. NMF is a very simple and effective algorithm to reduce the 
dimension of the feature vectors of the text data. It is also simple and adaptive algo-
rithm for document clustering. By reducing the feature vectors dimension in the train-
ing stage of the document clustering process it significantly helps to save the learning 
time and memory, and also increase the clustering efficiency as we have seen the 
sparsity of the document feature reduce the clustering or classification efficiency.  

In this document we have present only the hard-clustering. In future we will try to 
soft-clustering. We will also try to sub-clustering (tree like clustering) the documents.  
We will also try the text-base user identification for an intelligent office-assistant system.  
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Abstract. Pulse coupled neural network (PCNN) is different from traditional 
artificial neural networks, models of which have biological background and are 
based on the experimental observations of synchronous pulse bursts in the cat 
visual cortex. However, it is very difficult to determine the exact relationship 
between the parameters of PCNN model. Focusing on the famous difficult 
problem of PCNN, how to determine the optimum parameters automatically, 
this paper proposes the definition of water valley area, establishes a modified 
PCNN, and puts forward an adaptive PCNN parameters determination 
algorithm based on water valley area. Extensive experimental results on image 
processing demonstrate its validity and robustness.  

1   Introduction 

Pulse-coupled neural network (PCNN) based on Eckhorn’s model of the cat visual 
cortex has great significant advantage in image processing, including segmentation, 
target recognition et al[1,2]. However, the performance depends on the suitable 
PCNN parameters, which are tuned by trial so far.  

During recent years, some work on determining the optimal values of PCNN 
parameters has been done. Some of them are concentrated on optimizing single 
parameter while keeping others fixed [3,4,5]. Some train the parameters with desired 
images to achieve the optimal values [6].  

G. Kuntimad and H. S. Ranganath [2] have provided conditions for perfect image 
segmentation using PCNN. However, the conditions and algorithm are only fit for 
those applications with single object and single background, which is too strict to be 
applied to usual images.  

Ma Y.D. et al. [3] have proposed a new PCNN algorithm of automatically 
determining the optimum iteration times N based on the entropy of segmented image. 
It is the criterion of maximal entropy of segmented binary image of PCNN output. 
Lots of experiments based on this method showed that images can be segmented well 
when the pixel numbers of object and background are nearly the same. But when the 
pixel numbers of object and background are different significantly, the segmentation 
performs badly.  
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Liu, Q., et al. [4] have proposed an improved method based on reference [2], in 
which cross-entropy is put forward to replace maximal Shannon entropy as the 
criterion of cyclic iterations times N. However, the segmented results are lack of 
adaptability just as the approach in reference [3]. 

Currently, adopting simplified PCNN model to decrease the parameters number is 
an important trend in image segmentation field. There are lots of simplified PCNN 
models [5~11]. 

Karvonen, J.A. [6] has presented a method for segmentation and classification of 
Baltic Sea ice synthetic aperture radar (SAR) images, based on PCNN. As the authors 
mentioned, a very large set of data representing different sea ice conditions should be 
required to optimize PCNN parameters, which is unfeasible in most applications. 

Since image segmentation is an important step for image analysis and image 
interpretation, we focus on PCNN applications on image segmentation, establish a 
modified PCNN model, and propose a multi-threshold approach according to water 
valley area in histogram. Meanwhile, the adaptive determination method of PCNN 
parameters for image segmentation is presented.  

2   PCNN Neuron Model 

As showed in Fig.1, each PCNN neuron is divided into three compartments with 
characteristics of the receptive field, the modulation field, and the pulse generator.  

Mijkl
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ij 1

Fij Uij

step(·)
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Lij
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V

Yij

Ykl

VL
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Wijkl

ij

pulse generator
modulation

fieldreceptive field
 

Fig. 1. Traditional PCNN neuron model 

Each traditional PCNN neuron model has nine parameters to be determined, 
including three time decay constants ( F, L, ), three amplification factors (VF, VL, 
V ), linking coefficient ij, linking matrix M and W. The following five equations are 
satisfied. 

)1()1()exp()( −⋅++−⋅−= nYMVSnFnF klijklFijijFij α  .            (1) 

−+−⋅−= )1()1()exp()( nYWVnLnL lkijklLijLij α  .              (2) 
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))(1)(()( nLnFnU ijijijij ⋅+= β .                                       (3) 

)1()1()exp()( −+−−= nYVnn ijijij θθ θαθ  .                     (4) 

))()(()( nnUstepnY ijijij θ−=  .                             (5) 

Where step(•) is the unit step function. Moreover, to the whole neural network, the 
iteration times N should also be decided. The various parameters used in the PCNN 
model are of great significance when preparing the PCNN for a certain task. 

The performance of segmentation results based on PCNN depends on the suitable 
PCNN parameters. It is necessary to determine the near optimal parameters of the 
network to achieve satisfactory segmentation results for different images. Up to now, 
the parameters are most adjusted manually and it is a difficult task to determine 
PCNN parameters automatically for different kinds of images. 

3   Water Valley Area Based Adaptive Parameters Determination  

3.1   Multi-threshold Approach Using Water Valley Area Method 

In this paper, we propose the definition of ‘water valley area’ to determine multi-
threshold in image segmentation. Assume hist(f(x,y)) is the histogram of image f(x,y); 
Si (i=1,2,…,K) is the maximum points on hist(f(x,y)); Qj (j=1,2,…,N) is the minimum 
points on hist(f(x,y)); Pm (m=1,2,…,M+1) is the peak points, which satisfied with P1< 
P2<…< PM+1; Tn (n=1,2,…,M) is the multi-thresholds, which satisfied with T1< 
T2<…< TM. Pm and Tn are unknown and waiting for solution. Obviously, P⊆S and 
T⊆Q.  

Defination (water valley, water valley area). Assume Si1 and Si2 is two maximum 
points of hist(f(x,y)), whose corresponding gray value is gSi1 and gSi2 respectively, and 
gSi1<gSi2. If there is no other maximum points in gSi1, gSi2 or the value of existed 
maximum points is small than min{Si1, Si2}, we define a water valley between Si1 and 
Si2. The bottom of water valley is the borderline of hist(f(x,y)), and the height of water 
valley is min{Si1, Si2}. Imagine we can use ‘water’ to abound the whole space, then 
the capacity can be defined as ‘water valley area’, area(gSi1, gSi2) the calculation 
formula is  

[ ]{ }dxxhistSSxhistSSggarea ii

g

g iiSiSi

Si

Si

)( ,min{)( ,min{
2

1
) ,( 212121

2

1

−}+−}=      (6) 

Assume Qj is the minimum point of (gSi1, gSi2), namely for ∀gx∈ (gSi1, gSi2), 
hist(gx)≤Qj is satisfied, we use valley(Si1, Qj, Si2) to denote water valley. 

The detailed process to get peak points and multi-thresholds is given below. 

Step1.Draw image histogram hist(f(x,y))and smooth it to decrease noise influence 
if necessary. 

Step2. Seek all extremum points in the histogram, including maximum points Si 

(i=1,2,…,K) and minimum points Qj (j=1,2,…, N). For the need of building water 
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valley, the extremum points on two sides of hist(f(x,y)) must be maximum points, so 
K =N +1. 

Step3. From the left minimum point Q1 and maximum points S1 S2 on its two 
sides(S1<Q1<S2), we built water valley, valley(Sl, Qc, Sr)(l= 1 c=1 r=2), and 
calculate its area, A=area(gSl, gSr), by formula.(6). 

Step4. Determine multi-thresholds and peak points, here, define Θ as a lower 
limitation ranging from 0.01 to 0.03. The smaller the value of Θ is, the more threshold 
points we will get.  

(1) If A Θ, Qc will be kept in threshold array Tn. Meanwhile, Sl will be kept in 
peak points array Pm. Sl = Sr, Qc = Qr, and Sr =Sr+1. 

(2) If A Θ, the valley will be taken as invalid. At this situation, compare the value 
of Sl and Sr: 

(i) if Sl > Sr, then Sl will be regarded as the new left maximum point, Sr+1 is the new 
right maximum point. The smaller of Qc and Qr is minimum point in new water 
valley. 

(ii) if Sl ≤ Sr, then Sr Qr Sr+1 will be the left maximum point, minimum point and 
right maximum point of new water valley. 

Step5. Calculate water valley area, A=area(gSl, gSr), by formula.(6) and iteratively 
execute step 4 until all minimum points have been processed. 

At last, we can get the threshold array Tn (n=1,…M and T1<…<TM) and the 
corresponding peak array Pm(m=1,…M+1 and P1<…<PM+1). Hence, a valid water 
valley valley(Pm, Tm, Pm+1) includes two neighboring peaks {Pm, Pm+1} and Fig.3 (c) 
shows water valleys and corresponding thresholds determined by this method.    

3.2   Modified Pulse Coupled Neural Network 

We have established a modified PCNN, which is implemented by applying iteratively 
the equations 

−= ]1[][ nYWnL klijklij            (7) 

])[][1(][ j,i nLnSnU ijijij β+=           (8) 

>
=

       otherwise.    0,

 ][][    ,1
][

nTnU
nY ijij

ij
                 (9) 

The indexes i and j refer to the pixel location in the image, indexes k and l refer to 
the dislocation in a symmetric neighborhood around a pixel, and n refers to the time 
(number of iteration). Lij[n] is linking from a neighborhood of the pixel at location 
(i,j), Uij[n] is internal activity at location (i,j) , which is dependent on the signal value 
Sij at (i,j) and linking value. i,j[n] is the PCNN linking parameter, and Yij[n] is the 
output value of the PCNN element at (i,j). Tij[n] is a threshold value. We use a set of 
fixed threshold values, Tn(n=1,…M) determined by water valley area method 
mentioned above. 

If Yij[n] is 1 at location (i,j) at n=t, we say that the PCNN element at the location 
(i,j) fires at t. The firing due to the primary input Sij is called the natural firing. The 
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second type of firing, which occurs mainly due to the neighborhood firing at the 
previous iteration, we call the excitatory firing, or secondary firing. 

Starting with the biggest threshold TM, object whose mean gray value is larger than 
TM will be picked out at the first iteration. We keep the threshold TM fixed during the 
following iterations until no firing happens. At a certain threshold, the iteration times 
differ from image to image and a suitable amount of iterations in practice is 20-70. 
After the first iteration loop, both the natural firing pixels and excitatory firing pixels 
are collected, which is the first level PCNN segmented objects with the largest gray 
value. Then the second level objects can be got by the same algorithm using threshold 
TM-1. Repeating this progress until all thresholds are processed, we will get M+1 levels 
of objects with different intensities at last. 

In this PCNN algorithm, we are using the neighborhood with the radius r=1.5 (i.e., 
a usual 3×3 neighborhood, with the linking relative to the inverse of the squared 
distance from the midpixel and normalized to one. 

Considering those pixels whose intensities are smaller than peak point Pm ought 
not to be captured at Tn even if they have the largest linking value 1, so in the iteration 
loop at Tn, the value of m is chosen to be 

1n −=
m

m P

Tβ             (10) 

Because P1 may be 0, we choose the value of 1 to be 0.1-0.3 at this situation. 

4   Experiments 

4.1   Compared with Current Typical Methods 

To evaluate the performance of the proposed method, we have compared with other 
typical PCNN parameters determination methods in image segmentation applications. 

Gu X.D. et al. [5] have brought forward a new approach for image segmentation 
based on unit-linking PCNN. The main characteristic of the method is that linking Lij 
is a binary function. The linking input is 1 if any neuron fire is in its nearest-neighbor 
3 3 field, otherwise it is 0. As to optimum PCNN iteration times N, the maximal 
Shannon entropy method provided in reference [3] is used to determine it. We have 
segmented some images by this method and the results are not satisfying. Take the 
image in Fig.2 (a) as an example, Fig.2 (b) shows the binary segmented image’s 
entropy value curve during iteration process, from which we can see the segmented 
image has the largest Shannon entropy 0.9989 when iteration times N is 12, the 
corresponding segmented result is showed as Fig.2 (c). Apparently, the segmented 
result has poor performance at that point. 

Bi Y.W. and Qiu T.SH. [7] have brought forward a segmentation method based on 
a simplified PCNN with the parameters determined by images’ spatial and grey 
characteristics automatically. Linking matrix M and W are determined by the pixel 
value distribution of central pixel neighbor r r field and various from one another. 
Linking coefficient ij is defined as CV (Coefficient of Variation) 

ij = CVij = ijij MV /                            (11) 
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where Vij and Mij are the mean square deviation and mean gray value of pixel (i,j) 
neighbor field respectively. Threshold amplification factor is given a large value 50. 
Iteration times N is also determined by the maximal Shannon entropy method 
provided in reference [3]. Fig.2 (d) shows the binary segmented image’s entropy 
value curve during iteration process, from which we can see the segmented image has 
the largest Shannon entropy 0.9995 when iteration times N is 9, the corresponding 
segmented result is showed as Fig.2 (e). Obviously, the segmented result is not 
satisfying too. Moreover, this method needs lots of calculations. Fig.2 (f) is the 
segmented image with our automatically parameters determination method based on 
the modified PCNN, from which we can see the performance of our method 
outperforms current methods greatly. 

(a) pepsi image (b) entropy value curve in ref[5] (c) segmented result ref[5] 

(e) segmented result ref[7] (f) segmented result by 
the proposed method 

(d) entropy value curve in 
ref[7] 

 

Fig. 2. Compared with other typical methods 

4.2   Compared with Traditional PCNN Performance 

In order to comparing with the performance with traditional PCNN (showed as Fig.1), 
the experiments that PCNN used in image fusion applications are also carried out.  

As Fig.3 shown, Fig.3 (a) is source images. Fig.3 (b) is the segmented results by 
traditional PCNN. Fig.3 (c) shows the corresponding water valleys and multi-
thresholds determined by water valley area. The segmented result by modified PCNN, 
which parameters are determined by water valley area, is showed as Fig.3 (d). Table.1 
shows the parameters of traditional PCNN which were tuned by trial in order to get 
perfect segmentation performance. 
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Fig. 3. The “Pepsi” source images (256 level, size of 512 512) and segmented results  

Table 1. Values of parameters in image segmentation by traditional PCNN 

parameters  F L  VF VL V  r N 
Fig.3(b) 0.3 1 4 2 10 10 100 1 2 

From Fig.3, we can see the image segmented by the proposed method provides 
more details and useful information. The idea of multi-threshold makes segmented 
image more levels than traditional PCNN. We must mention that comparing with the 
parameters of traditional PCNN, which were tuned by trial, the parameters in our 
method can be determined automatically, this has great importance in expanding the 
application range of PCNN.   

5   Conclusion 

In order to determine PCNN parameters adaptively, this paper brings forward an 
adaptive segmentation algorithm based on a modified PCNN with the multi-
thresholds determined by water valley area method. The main contributions include 
establishing a modified PCNN, proposing adaptive PCNN parameters determination 
algorithm based on water valley area, and implementing the described methods on 
PCNN applications. Experimental results show its good performance and robustness. 

(a) Pepsi image 

(d) modified PCNN 
segmentation result of (a) 

(c) water valleys and 
multi-hresholds of (a) 

(b) traditional PCNN 
segmentation result of (a) 
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The research fruits have great importance both on the theory research and practical 
application of PCNN. 
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Abstract. Multirate systems are abundant in process industry, many
soft-sensor design problems are related to modeling, parameter identifi-
cation, or state estimation involving multirate systems. In this paper, a
polynomial transformation technique has been used to derive a dual-rate
model with a finite number of parameters; based on this model, the dual-
rate forgetting gradient algorithm has been used to estimate the model
parameters and intersample outputs based on the dual-rate input-output
data directly. Furthermore, convergence properties of the algorithms in
the stochastic framework are studied and show that 1) the parameter
estimation error consistently converges to zero under the persistent exci-
tation condition; 2) the intersample output estimation error is uniformly
bounded. Finally, a simulation example show excellent effectiveness in
parameter and output estimation.

1 Introduction

This paper deals with a class of multirate systems-the dual-rate systems as shown
in Fig. 1, where Pc is assumed to be a continuous-time process with an additive
disturbance v(t); the input to Pc is produced by a zero-order hold HT with
period T , processing a discrete-time signal u(kT ); y0(t) is the noise-free output
or true output of Pc but unmeasurable; the output y(t) of Pc is sampled by a
sampler SqT with period qT . The available on-line input-output measurement
data are:

– {u(k) : k = 0, 1, 2, · · ·} at the fast rate, and
– {y(kq) : k = 0, 1, 2, · · ·} at the slow rate.

T is the basic sampling period and q is any finite positive integer. For notational
simplicity, T = 1 in the following discussion.

Such multirate systems exist widely in process industries, many soft-sensor
design problems are related to modeling, parameter identification, or state esti-
mation involving multirate systems. For example, in polymer reactors[1,2], the
� This research was supported by the the National Natural Science Foundation of

China (No. 60574051).
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v(t)

�y0(t)u(kT ) u(t) y(t) y(kT )

Fig. 1. The dual-rate systems

composition, density or molecular weight distribution measurements are typi-
cally obtained after several minutes of analysis, whereas the manipulated vari-
ables can be adjusted at relatively fast rate. Model identification and intersam-
ple output estimation in such multirate framework are important in that using
these can monitor the output variables(which are sampled infrequently due to
hard limits on sensoring devices[3-5]) between samples, performing inferential
control[6] and self-turning control[7].

In the process identification literature, Lu and Fisher used projection and
least-squares based algorithms for estimating intersample outputs [8,9]; but their
algorithms handle only noise-free dual-rate systems. Ding proposes dual-rate
least-squares(DR-LS) algorithms for various system model based on the poly-
nomial transformation technique in stochastic framework[10-12]. Although the
DR-LS may be used to identify a dual-rate model, but this model has more pa-
rameters than the original system, especially for large q; hence the corresponding
algorithm requires a large amount of computation. The objective of this paper
is to provide a DR-FG algorithm to estimate the parameters of the dual-rate
models and the intersample outputs based on dual-rate data directly.

2 Modeling of Dual-Rate Systems

Fig. 1 is a simple dual-rate system, where HT is a zero-order holder with period
T , SqT a sampler with period qT (q > 2 being an integer). For convenience, writ-
ing u(k) := u(kT ), y(kq) := y(kqT ). Thus, the intersample outputs (also called
missing outputs), y(kqT + iT ) =: y(kq+ i), i = 1, 2, · · · , q−1 are unavailable due
to hardware limitation. Therefore, the objectives of modeling and identification
of multirate systems are two parts: 1) to establish the mapping relationship be-
tween available input and output data, 2) to estimate the intersample (missing)
outputs by using the obtained model.

The open-loop transfer function from u(k) to y(k) takes the following real-
rational form:

P1(z) =
b(z)
a(z)

, or y(k) =
b(z)
a(z)

u(k) (1)

with

a(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz−n,

b(z) = b0 + b1z
−1 + b2z

−2 + · · ·+ bnz−n.
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But the model in (1) is not appropriate for dual-rate system identification.
Therefore, P1(z) needs to be transformed into a form with which directly uses the
dual-rate data. A polynomial transformation technique[11,12] can be adopted to
do this. The details are as follows.

Let the roots of a(z) be zi, then

a(z) =
n∏

i=1

(1− ziz
−1).

Define

φq(z) :=
n∏

i=1

(1+ziz
−1+z2

i z−2+· · ·+zq−1
i z−q+1) =

n∏
i=1

1− zq
i z−q

1− ziz−1 .

Multiplying the numerator and denominator of P1(z) by φq(z) , transforming
the denominator of P1(z) into the desired form:

P2(z) =
b(z)φq(z)
a(z)φq(z)

=:
β(z)
α(z)

(2)

with

α(z) = a(z)φq(z) = 1 + α1z
−q + · · ·+ αnz−qn (3)

β(z) = b(z)φq(z) = β0 + β1z
−1 + · · ·+ βqnz−qn (4)

In this way obtaining the desired dual-rate transfer function model in (2). Of
course, the two models in (1) and (2) are equivalent: the one in (1) with a(z)
and b(z) is simpler, and the one in (2) with α(z) and β(z) is more complicated
due to the common factor φq(z). However, the advantage with the model in (2)
is that the denominator is a polynomial of z−q; arising from here is a recursive
equation using only slowly sampled outputs.

3 The Parameter Estimation and Output Estimation
Algorithms

In this section, the parameter and intersample output estimation problem using
the model in (2) in the stochastic framework is studied. Based on the model in
(2) and introducing a noise term v(k), giving

α(z)y(k) = β(z)u(k) + v(k)

where v(k) is assumed to be a zero-mean random signal. Substituting the poly-
nomials α(z) in z−q in (3) and β(z) in z−1 in (4) leads to the following regression
equation,

y(k) = ϕT (k)θ + v(k) (5)
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where the superscript T denotes the matrix transpose, and the parameter vector
θ and information vector ϕ(k) are defined by

θ = [α1, α2, · · · , αn, β0, β1, · · · , βqn]T ∈ RN , N = qn+ n+ 1

ϕ(k) = [−y(k − q), · · · , y(k − qn), u(k), u(k − 1), · · · , u(k − qn)]T

Here θ contains all parameters in the model in (5) to be estimated, and ϕ(k)
uses only available dual-rate data – if k is an integer multiple of q, then ϕ(k)
contains only the past measurement outputs (slow rate) and past and (possibly)
current inputs (fast rate). Replacing k in (7)with kq gives

y(kq) = ϕT (kq)θ + v(kq) (6)

Let θ̂(kq) be the estimate of θ at time kq. The following stochastic gradient algo-
rithm for estimating the parameter vector θ of the dual-rate system in (6)(DR-SG
for short).

θ̂(kq) = θ̂(kq − q) +
ϕ(kq)
r(kq)

[y(kq)− ϕT (kq)θ̂(kq − q)] (7)

θ̂(kq + i) = θ̂(kq), i = 1, 2, · · · , q − 1

r(kq) = r(kq − q) + ‖ϕ(kq)‖2, r(0) = 1 (8)

where θ̂(kq) is the estimation of θ in kq, and ˆθ(0) some small real vector. The
norm of matrix x was defined as ‖X‖2 = tr(XXT ). Notice that the paratemer
estimate θ̂ is updated every q samples, namely, at the slow rate; between the
slow samples, keeping θ̂ unchanged. Thus, when having q new input samples
and one new output sample, θ̂ is updated once.

The intersample outputs can be estimated as follows:

ŷ(kq + i) =
{
y(kq) , i = 0
ϕ̂T (kq + i)θ̂(kq), i = 1, 2, . . . , q − 1

where

ϕ̂(kq + i) = [−ŷ(kq − q + i),−ŷ(kq − 2q + i) · · · − ŷ(kq − qn+ i)

u(kq + i), u(kq + i− 1) · · ·u(kq + i− qn)]T

Another important work in this paper is the convergency property of the
parameter estimate, as well as how to bound the intersample output estimation
error, if the model is used to estimate missing output samples.
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4 Convergence of the Parameter and Output Estimation

Theorem 1. For the dual-rate system in (6) and the DR-SG algorithm, assume
that {v(k),Fk} is a martingale difference sequence defined on a probability space
{Ω,F , P}, where {Fk} is the σ algebra sequence generated by {v(k)}, i.e., Fk =
σ(v(k), v(k − 1), v(k − 2), · · ·), and that the noise sequence {v(k)} satisfies the
following conditions:

1)E[v(k)|Fk−1] = 0, a.s

2)E[v2(k)|Fk−1] = σ2
v(k) ≤ σ̄2

v <∞, a.s

3) lim sup
k→∞

1
k

k∑
i=1

v2(i) ≤ σ̄2
v <∞, a.s

where ”a.s” is ”almost surely”. If the SPE condition in (*) holds. Then the
parameter estimation θ̂(kq) given by the DR-SG algorithm converges to true
parameter θ. That is

lim
k→∞

θ̂(kq) = θ

In order to improve the convergence rate and, a forgetting factor λ is introduced
getting the following DR-FG algorithm:

θ̂(kq) = θ̂(kq − q) +
ϕ(kq)
r(kq)

[y(kq)− ϕT (kq)θ̂(kq − q)]

θ̂(kq + i) = θ̂(kq), i = 1, 2, · · · , q − 1

r(kq) = λr(kq − q) + ‖ϕ(kq)‖2, r(0) = 1, 0 ≤ λ ≤ 1,

When λ = 1, the DR-FG algorithm reduces to the DR-SG algorithm; when
λ = 0, the DR-FG algorithm is the dual-rate projection algorithm.

The following theorem gives convergence of the intersample output estimates.

Theorem 2. For the dual-rate system in (6) and the DR-FG algorithm , assume
that α(z) is strictly stable, i.e., all zeros of α(z) are strictly inside the unit circle.
Then the bounded input assumption implies that the output estimation error
η(kq + i) = ŷ(kq + i)− y(kq + i) is bounded, i.e,

lim
k→∞

1
k

k∑
i=k0

E[η2(i)|Fk−1] ≤ σ2
v , for any k0 <∞.

Proof. Because α(z) is strictly stable, there exists an integer k0 such that for
any k ≥ k0, α̂(kq, z) is also stable, and ϕ̂(k) is bounded, i.e.,

‖ϕ̂(k)‖2 ≤ δϕ̂ <∞, , for any k ≥ k0.

From the definitions of η(kq + i) and ŷ(kq + i), having

α(z)η(kq + i) = α(z)ŷ(kq + i)− α(z)y(kq + i) = ϕ̂T (kq + i)θ̃(kq)− v(kq + i).
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Since η(kq) = 0, applying Lemma B.3.3 in (13), there existing constants
c5 <∞ and c6 <∞ such that for all k ≥ k0,

k∑
i=k0

η2(i) ≤ c5

k∑
i=k0

[ϕ̂T (i)θ̃(i)− v(i)]2 + c6 ≤ 2c5
k∑

i=k0

[δϕ̂‖θ̃(i)‖2 + v2(i)] + c6

Taking expectation, dividing k and using 3) yield

1
k

k∑
i=k0

E[η2(i)|Fk−1] ≈ σ2
v

5 Examples

Assume that the discrete system model takes the following form

P1(z) =
b(z)
a(z)

=
0.412 + 0.309z−1

1− 1.60z−1 + 0.80z−2 ,

Taking q = 4, i.e., {u(k), y(4k)} are available data. The corresponding dual-rate
model with additive white noise can be expressed as Here {u(k)} is taken as
a persistent excitation sequence with zero mean and unit variance, and {v(k)}
as a white noise sequence with zero mean and variance σ2

v . Applying the DR-
FG algorithm to estimate the parameters (αi, βi) of this system. The parameter
estimates are shown in Table 1, where δ is the relative parameter estimation
error measured in the Euclidean norm:δ = ‖θ̂(k) − θ‖/‖θ‖, δa = ‖θ̂(kq) − θ‖ is
the absolute parameter estimation error. From Table 1, it is clear that δ, δa are
becoming smaller as k increases.

Fig. 2 illustrates a simulation for q = 4, where the whole transient is shown
and the output estimation error approaches state before 200T , i.e., before 50

Table 1. The DR-FG estimate of parameter(λ = 0.5, σ2
v = 1.00)

k 100 500 1000 2200 θ

α1 0.44378 0.22655 0.34817 0.36062 0.3584
α2 0.25625 0.41595 0.40505 0.42836 0.4096
β1 0.26824 0.41349 0.43763 0.41775 0.412
β2 0.617 0.95285 0.93667 0.98897 0.9682
β3 0.6001 1.1282 1.2154 1.1805 1.2195
β4 0.55817 1.1881 1.1659 1.1512 1.1767
β5 0.28193 0.93775 1.0333 1.0178 1.0547
β6 0.11996 0.72378 0.82649 0.86716 0.85696
β7 0.30649 0.43419 0.4812 0.45952 0.52736
β8 0.31898 0.045062 0.102407 0.16193 0.15821
δ 0.11556 0.012301 0.00199 0.0012626

δa 0.73837 0.079035 0.012789 0.0081123
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measured values of output are sampled. Note that this involves only 50 measured
values of y(kqT ). Fig. 3 illustrates another simulation run for q = 20, where the
output estimation error has essentially been eliminated after time 3900T . For
all these simulation runs θ̂(0) = 0 and the parameter estimates converge to the
true parameters of the equivalent model (2). Fig.4 shows the δns with different
λ respectively.
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Fig. 2. Output estimation (q=4) Fig. 3. Output estimation(q=20)
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Fig. 4. δns with different λ

6 Conclusions

A recursive DR-FG algorithm of identifying dual-rate systems is presented when
the output is sampled q times slower than the input; the algorithm uses only
dual-rate measurement data. Convergence performance of the proposed estima-
tion algorithms is analyzed in detail in the stochastic framework. Based on the
estimated models, intersample output estimation is also studied. It was shown
that, the intersample output estimation error is bounded and converges to nearly
zero. This formulation and proof provides a basis for multirate sampling applica-
tions in inferential, time-delay, and adaptive control. Although the analysis in the
paper is done for dual-rate equation-error models with an additive white noise,
the methods developed can be easily extended to dual-rate stochastic systems
with colored noise.
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Abstract. The development of automatic techniques for oil slick identification
on the sea surface, captured through remote sensing images, cause a positive
impact to a complete monitoring of the oceans and seas. C-band SAR (ERS-1,
ERS-2, Radarsat and Envisat projects) is well adapted to detect ocean pollution
because the backscatter is reduced by oil slick. This work propose a system for
segmentation and feature extraction of oil slicks candidates based on techniques
of digital image processing (filters, gradients, mathematical morphology) and ar-
tificial neural network (ANN). Different algorithms of speckle filtering are tested
and a comparison for the considered system is presented. The process is thought
to possess a level of automatization that minimizes the intervention of a human
operator, being possible the processing of larger amount data. The focus of the
work is to present a study detailed for feature extraction block proposed (archi-
tecture used and computational tools).

1 Introduction

Oil spills on the sea surface damage the marine ecosystem, specially when they occur
next to coast. With regular passing over the seas and oceans, the imagery satellites
furnish data which may be used on the extraction of statistical information about spots
of many specific regions on the Earth. The actual techniques of oil slick identification
use SAR (Synthetic Aperture Radar) images.

The presence of oil film on the sea surface damps the small waves due to the in-
creased viscosity of the top layer and drastically reduces the measured backscattering
energy, resulting in darker areas in SAR imagery. However, careful interpretation is re-
quired because dark areas in SAR images might also be caused by locally low winds,
by natural sea slicks or internal waves , all of them called “look-alikes” [1].

Some approaches exist for oil slick analysis from satellite images [1][2][3], however
automatic analysis of SAR images is not applied routinely yet. The main research is
on classifier algorithm, but a consistent block for feature extraction is not encoutered
in literature. The systems that use spot’s feature for the classification, basically, fol-
low the same structure, however none of them describes the algorithms used in feature
extraction block, as well as the robustness of the process.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 729–736, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The focus of the work is to present a detailed study for feature extraction block
(architecture used and computational tools). The section 2 presents the process of oil
slick detection. In this section, both, the tool of digital image processing and the features
of interest are presented in feature extractor block. In section 3 an experimental result
is showed whith a SAR image. Section 4 summarizes the conclusions and the future
work.

2 Feature Extraction

The process for oil slick detection is showed in figure 1, the arrows indicate the infor-
mation flux. A human operator, who selects the interest area (dark spot) to be submitted
to the system, carries through the analysis of the image. The next stage computes the
features for the classifier, that estimate the probability of the spot to be a slick.

Some of the describers which can be extracted from sensors SAR images, in the
characterization of spots on the sea surface for varied satellites, are detailed by Solberg
et al. [4][5] and Del Frate et al. [1][6].

The features in this work are of three different types. Some of them contain infor-
mation of the backscattering intensity gradient along the border of the analysed dark
spot: Maximum Gradient (Gmax), Mean Gradient (Gme), Gradient Standard Devia-
tion (GSd), all in dB; others focus on the backscattering in dark spots and/or in the
background: Object Standard Deviation (OSd), Background Standard Deviation (BSd),
Maximum Contrast (ConMax), Mean Contrast (ConMe), also in dB; a third category
takes into account the geometry and the shape of the dark spots: Area (A) in km2,
Perimeter (P) in km, shape Complexity (C), Spreading (S) [1][7].

2.1 Speckle Filtering

A good filtering of the noise speckle must preserve the backscatter average values,
besides keeping well definite edges between adjacent fields, and still preserving the
space variability (textural information) related to the scene.

The median filter considers each pixel in the image in turn and looks at its nearby
neighbors to decide whether or not it is representative of its surroundings. The median
is calculated by replacing the pixel being considered with the middle pixel value. This
filter possesses the trend of better preserving the texture information, however does not
preserve the signature of prompt targets [8].

– Lee. It adopts a multiplicative model for the noise and obeys to the criterion of
“local linear minimum mean square error”. It minimizes the quadratic average error
through the Wiener filter. The Lee filter is a adaptive and general filter [9].

– Frost. It is a linear convolutional filter, derivative of the minimization of mean
square error on the multiplicative model of the noise. It is an adaptive filter that
preserves the structure of edges [9].

– Kuan. It adopts the multiplicative model. The procedure is similar to that one of
Lee. It is also an adaptive and general filter [9].
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Fig. 1. System for oil slick detection. Feature extractor block detailed.

Lopes et al. [10] propose to divide an image into areas of three classes. The first class
correponds to the homogeneous areas in which the speckles may be eliminated simply
applying a Low Pass filter. The second class corresponds to the heterogeneous areas
in which speckles are to be reduced while preserving texture. And the third class, are
areas containing isolated point targets, which, in this case, the filter should preserve the
observed value.

Based on the above considerations, Lopes et al. [10] modified the Lee, and the Frost
filters, labeled here as Enhanced Lee filter and Enhanced Frost filter, respectively. The
input data for this block is a fragment of SAR image selected.

2.2 Gradient Filter

The presence of a tone difference between background and object turn possible to gra-
dient operator:
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– To measure this difference, variation of tone. This information is important because
in case of look-alikes the values of backscattering either in the object or in the
surroundings are more dispersed. Also, oil spills show mean value of the gradient
along the border higher than look-alikes.

– To label the pixels which belong the edge of the object in study.

The input data for this two blocks are the output images of speckle filter and math-
ematical morphology blocks. The output data are the features: Maximum Gradient
(Gmax), Mean Gradient (Gme), Gradient Standard Deviation (GSd) and Perimeter (P).

2.3 Log Filter

The realce of the image by logarithmic function has as property a mapping close to
the linear for small values of input. This is interesting therefore our object of study is
composed of dark tonalities. Therefore for high values of input the logarithmic function
tends to map the output for high values, however also close.

This condition preserves the grey levels whose values are similars to the spot’s value,
thus minimizing the creation of spurious regions in the processed image. Moreover it
makes possible the reduction of the time in artificial neural network block, speeding the
process.

2.4 Artificial Neural Network – ANN

In the unsupervised neural network the learning process is given to carry through a
measure, independent of the task, the quality of the representation that the net must
learn, and the free parameters of the net are optimized in relation to this measure. A time
that the net it’s self-adjusted to the statistical regularity of the input data, it develops the
ability to form internal representations to codify the characteristics of the input and, in
this way, to create new classes automatically [11].

To carry through the not supervised learning, we use the competitive learning rule,
implementing a ANN with two layers, one of input and one competitive. The input layer
receives the data available. The competitive layer is composed for neurons which the
units compete for the exclusive right to respond to a particular input pattern. The neural
network, operates a strategy of the type “the winner takes all” [11].

In a “winner takes all” strategy, the output unit k receiving the largest induced local
field vk, for a specified input pattern x, is assigned a full value 1, whereas all other units
are suppressed to a 0 value.

yk =

{
1 if vk > vj for all j, j �= k
0 otherwise

(1)

In accordance with the standard rule of the competitive learning, the variation Δwkj

applied to the synaptic weight wkj is defined by the equation (2).

Δwkj =

{
η (xj − wkj) if the k neuron wins

0 if the k neuron loses
(2)
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where, η is the learning rate . This rule has the global effect that it moves the synaptic
weight vector wk from winning neuron k to the input pattern x, into the region where
the actual stimuli lie.

The input parameters of this block are the output image from log filter block and the
number of neurons or classes in the competitive layer.

2.5 Thresholding

The thresholding is extremely quick, and generally carried out in one step only, respect-
ing the following rule, in the case of a binary partition [8]:{

if f (x, y) > t −→ f (x, y) ∈ background
else −→ f (x, y) ∈ spot

(3)

where t is a key parameter, because it determines the excellent partition of the classes.
The choice of the parameter t in equation (3) considers the only known priori informa-
tion: the spot is composed for dark tones. Then, the value of t can be gotten automati-
cally through the comment of the lesser value of synaptic weight of the neurons of the
unsupervised net , in the previous process step. The input parameter for this block is the
output image of the ANN block.

2.6 Mathematical Morphology

The Mathematical Morphology stage completes the process of spot segmentation. The
base of the mathematical morphology is the theory of sets, which represents the forms
of objects in an image. The objective consists of: to extract from an unknown set (im-
age) morphologic information from the use of another completely definite set, called
structuring element.

The choice of the structuring element can be carried through some forms. In many
cases, literature suggests forms known for specific applications. The use of the mor-
phologic opening operator has the objective to eliminate “islands”. The morphologic
opening is composed for the erosion operation followed by the dilation operation, al-
ways with the same structuring element.

The input parameter for this block is the binary image from thresholding block.
The output data of this block are the characteristics: Object Standard Deviation (OSd),
Background Standard Deviation (BSd), Maximum Contrast (ConMax), Mean Contrast
(ConMe), Area (A) and jointly with the calculated Perimeter previously we get the
Complexity (C).

2.7 Hotelling Transform

The objective of the transform is the representation of the original data set, in a set of
plans of main components, where the information is organized by the relevance degree
that it brings of the original data set [8].

The visualized object is treated as a bidimensional set. Each pixel in the object is
a bidimensional vector p, where p1 and p2 are the coordinates corresponding to axes
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of image. These vectors are used to compute an average vector, mp, and a covariance
matrix, Cp, of the set.

A transformation matrix A whose rows are formed from the eigenvectors of Cp,
arranged that its first row is the eigenvector corresponding to the eigenvalue greater,
and its last row is the eigenvector corresponding to the eigenvalue minor. The matrix A
mapping vectors p in vectors q, as follows:

q = A (p−mp) (4)

The equation (4) is called Hotelling Transform. A covariance matrix Cq can be ex-
tracted of the vectors q.

Cq =
[
λ1 0
0 λ2

]
(5)

The elements out of the Cq diagonal possess value 0, which show that the components
of q vectors are not correlated [8]. The eigenvalues of Cq are used to get the last spot’s
feature, the Spreading (S). This measure is a rate between the variance from main axis
and the secondary axis of the spot.

3 Experimental Results

We propose to analyse two images from different imagery satelites. The first is a frag-
ment of Radarsat-1 SAR image, from May, 21th, 1999, 08:10:33 UTM (orbit 0018490),
showed in figure 2(a). The second is a fragment of ERS-2 SAR image, February, 04th,
2002, 11:03:41 GM (orbit 35519 frame 2885), showed in figure 3(a).

It was applied the algorithms presented in section 2. The mask’s size of each filter
tested was defined as 3×3. The number of neurons on the competitive layer was chosen
for a clean sea area, an oil area and an intermediate one between these two first classes,
the emulsion, with 3 specialysed neurons. For gradient block, the Sobel operator has
been implemented and, initially, we opt by structuring element known as “cross” for
mathematical morphology block.

In the presented results for Radarsat-1 image, the adaptive filters (Frost, Lee, Kuan,
Enhanced Frost and Enhanced Lee) had behaved in very similar way, however they had

(a) Fragment of Radarsat-1 SAR imagem. All  Filters

Only  Median  Filter

Only  Median  and  Frost  filters

All  except  Frost  filter

All  except  Median  filter

Only  frost  filter

All  except  Median  and  Frost  filters

(b) Spot segmented.

Fig. 2. Study area 1
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Table 1. Features and its statistics for the scene of image 2(a)

Features
Speckle filter

μ σ
Median Frost Lee Kuan Lee Enhc. Frost Enhc.

A 7.7841 6.5403 5.8833 5.8833 5.8833 5.8833 6.3096 0.3437
P 187.83 142.35 114.48 114.48 114.48 114.48 131.35 13.3407
C 18.99 15.70 13.31 13.31 13.31 13.31 14.655 1.041
S 2.3634857 0.9604389 0.5548226 0.5548226 0.5548226 0.5548226 0.923869 0.323642

OSd -2.6113989 -1.4395848 -1.064637 -1.064637 -1.064637 -1.064637 -1.38492 0.276952
BSd 14.465359 14.325734 14.275665 14.275665 14.275665 14.275665 14.31562 0.34005

ConMax 17.65205 17.660125 17.666537 17.666537 17.666537 17.666537 17.66305 0.0026
ConMe 17.640732 17.62996 17.634743 17.634743 17.634743 17.634743 17.63494 0.001529
GMax 27.824726 26.774471 24.972369 24.972369 24.972369 24.972369 25.74811 0.557596
GMe 20.501584 18.760858 17.483807 17.483807 17.483807 17.483807 18.19961 0.553663
GSd 19.459883 18.139937 16.709639 16.709639 16.709639 16.709639 17.40639 0.517562

(a) Fragment of ERS-2 SAR image.

Only  Frost  filter

Only  Median  filter

All  except  Lee  filter

All  execpt  Median  and  Frost  filters

All  except  Median  filter

All  filters

(b) Spot segmented.

Fig. 3. Study area 2

enclosed a minor spurius area than the Median filter. This is important for the correct
attainment of some desired features. In the same way, the Median filter provided the
segmentation of areas not observed for the adaptive filters, mainly in the edge regions.
However all the desired extracted characteristics were obtained. The table 1 shows a
comparation among all speckle filters tested, which (μ) is the average and (σ) is the
standard deviation. The similar values presented for features show that the proposed
system is robust.

For ERS-2 image the presented results seem to be good, same that a small part of the
spot (where the threshold of decision between background and object is very similar)
has not been correctly labeled. This was expected, because for a human operator, this
task is even considered difficult. The two analysed scenes posses a high complexity
degree for the segmentation stage because of the strong speckle noise.

4 Conclusions and Future Improvements

A segmentation and features extraction process of oil slicks in SAR images was pre-
sented. The results for two scenes were satisfactory, providing the computation of all
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the desired features. The system presented has a high automation level, speeding the
process as a whole.

The spekle filters applied in the process of speckle noise filtering present good re-
sults. The similarity gotten in the segmentation of the spot for the diverse speckle filters
tested shows that the proposed system is robust. It had been observed by the features
values obtained. Further, model tests must be completed with more image analysis, also
with Envisat image.

With respect to the other parts of the system, the construction of automatic and in-
telligent tools to spots’ selection scene instead of a human operator would become the
process totally automatic.

In the classfier block, the research on neural classifiers, as proposed by [1][6][7],
already had shown good results. However, other types of learning machines can be
tested, providing an automatized system composed of more intelligent tools.
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Abstract. Artificial neural networks have been an interesting alternative to use
instead of classic statistical techniques, however, artificial neural networks have
some disadvantages, as for example: the training process is long, the choice of
topology and input variables (attributes) are difficult. This work uses three mod-
els of binomial regression (each model has a different link function) for selecting
statistical significant variables for being used as input nodes on each neural net-
work. Hybrid models were constructed, in this paper, in two steps.

Keywords: Link function, hybrid model, binomial regression model, artificial
neural network, heart disease, frogs data.

1 Introduction

The use of regression models is far common in practical situations. Through them, we
can verify the statistical situation between a response variable (dependent) and one or
more predictor variables. The binomial regression model is a special case of the Gen-
eralized Linear Models (GLM). In general, this model is used for solving binary clas-
sification problems. The structure of a GLM, basically, consist in three parts: (1) one
random component made by a variable y with n independent observations, one average
vector and one exponential distribution; (2) one systematic component composed by
p variables x1, . . . , xp, that produce a linear predictor η = Xβ; and (3) one differen-
tiable monotonic function, known as the link function, that relates both the random and
systematic components. More details about these components may be obtained in [7].

The link function must be according to the distribution proposed for the data, and the
choice must be done with aims to ease the interpretation of the model. That function
relates the linear predictor to the desired value. The more used link functions, in the
binomial model, are the logistic, the probit and the log-log complement.

ANN’s have been an interesting alternative to the use of classic statistical techniques,
for example, the logistic regression, mainly in situations where are complex dependent
and independent variables with non-linear relations between them [6]. The backpropa-
gation algorithm often performs the learning of these networks. However, the learning
process is lengthy for obtaining the optimal topology of the network, due to the diffi-
culty of identifying the potentially important variables that serves as input nodes for the
network. It is known that ANNs using backpropagation do not have a satisfactory per-
formance when the learning process uses examples with many variables. Even under a

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 737–745, 2006.
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statistical point of view, examples with noise and many irrelevant variables provide little
information. In general, the algorithms remain confused when there are many variables
and builds classifiers with low utility [3].

The objective of this paper is to develop a hybrid model using ANN and the binomial
regression model, in other words, assembling a neural network model with variables se-
lected from a binomial regression model. Three different models of binomial regression
models are used. Each model has a different link function, for selecting statistically sig-
nificant variables for being used as input nodes for the artificial neural network. The
idea of the hybrid model in two stages is based on the paper of Lee and Chen [10], but
they used the multivariate adaptative regression splines model (MARS) for selecting
variables statistically different. In experiments, to validate the method, are performed
two classification problems: (1) heart diseases found [9] and (2) the distribution of the
Southern Corroboree frog [2].

The present paper is organized as follows. In Section 2, it is present the binomial
regression model and its link functions. The hybrid model in two stages is presented
in Section 3. In Section 5 is presented the performed experiments and discussion. The
methodology of the experiments is presented in Section 4. Section 6 contains the final
remarks.

2 Binomial Regression Model

It is defined a regression model where the dependent variable (Y ∗) is the proportion of
successes in n independent essays, each one with the probability of occurrence π. Thus,
it is assumed that nY ∗ assumes binomial distribution with index n and parameter π, i.e,
nY ∗ ∼ B(n, π). The density of Y ∗ is expressed in f(y∗, π) =

(
n

ny∗
)
πny∗

(1−π)n−ny∗
,

where 0 < π, y∗ < 1.
The model is obtained assuming that the average of the Y ∗

t may be given by g(πt) =
xt β is the linear predictor, β = (β0, . . . , βp) is a vector of unknown regression
parameters to be estimated; xt1, . . . , xtp represent the values of the p co-variables
(p < n), which are assumed fixed and known; and g(·) is a monotonic and differ-
entiable function that lifts from the interval (0, 1) to IR, denominated link function.For

a binomial distribution, in this work it is used three link functions η1 = ln
(

π
1−π

)
,

η2 = Φ−1(π) and η3 = ln[−ln(1 − π)] are link functions logit, probit and comple-
mentary log-log, respectively. The Φ(· ) is the accumulated distribution of the standard
normal.

3 Hybrid Model

A neural network Multilayer Perceptron (MLP) with an only hidden layer using the
training algorithm backpropagation will be adapted to construct the hybrid model in two
stages. The input layer of the hybrid model has the significant independent variables
obtained from the binomial model. To construct the hybrid model it is followed the
next steps: (1) One binomial regression model is adjusted with some determined link
function; (2) The statistically significant variables of the model are selected; (3) An
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artificial neural network model is constructed where its input nodes are the selected
variables from the binomial regression model.

4 Methodology

The data described in this section will be used as training and testing sets of the binomial
regression, MARS, the neural network models and hybrid models.

The MARS model [5] was used only to feature selection and thus to construct the
model hib_MARS with intention to compare with the new hybrid models proposed.

Table 1. Description of the 14 variables used in the model

Variable Description
1. Age age in years;
2. Sex 0 = male, 1 = female;
3. Chest pain type 0 = asymptomatic, 1 = typical angina, 2 = atypical angina, 3 = non-anginal pain;
4. Resting blood pressure in mm Hg;
5. Serum cholestoral in mg/dl;
6. Fasting blood sugar > 120 mg/dl 0 = no, 1 = yes;
7. Electrocardiographic 0 = normal, 1 = having ST-T wave abnormality, 2 = left ventricular hypertrophy;
8. Maximum heart achieved rate achieved;
9. Exercise induced angina 0 = no, 1 = yes;
10. ST depression induced by exercise;
11. Slope ST segment 0 = upsloping, 1 = flat, 2 = downsloping;
12. Vessels colored by flourosopy 0 = none, 1 = one colored vessel, 2 = two colored vessels, 3 = three colored vessels;
13. Thallium 0 = normal, 1 = fixed defect, 2 = reversable defect;
14. Diagnosis 0 = < 50% diameter narrowing, 1 = > 50% diameter narrowing.

The heart data are part of a methodology of experiments called Proben1, created
for the studying of artificial neural networks [4]. These data were used in the training
and testing of the binomial regression and the neural network models, with the intention
of predicting heart diseases, based on the reduction of at least one of the four arteries in
50% of the normal, fact that increases the possibility of having and cardiac attack.

Table 2. Description of the 10 variables the frogs data

Variable Description Variable Description
1. Class 0(frogs were absent), 1(frogs were present); 6. NoOfPools number of potential breeding pools;
2. Northing reference point; 7. NoOfSites number of potential breeding sites

within a 2 km radius;
3. Easting reference point; 8. Avrain mean rainfall for Spring period;
4. Altitude altitude, in meters1; 9. Meanmin mean minimum Spring temperature;
5. Distance distance in meters to nearest extant population; 10. Meanmax mean maximum Spring temperature.

The dataset consist of 76 variables, but, in this work, just 14 variables were con-
sidered as relevant information for predicting diseases in the coronary artery. Table 1
shows the description of the 14 variables, the 14th corresponds to the response variable
designated as the diagnostic of the patient. The dataset has 278 patients (patterns), af-
ter removing the missing. These data were divided in two sets, having the training set
208 patients and the test set 70 patients. Five different random samples were done to
evaluate each model.
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The frogs data frame has 212 rows and 10 columns. The data are on the distribution
of the Southern Corroboree frog, which occurs in the Snowy Mountains area of New
South Wales, Australia. Table 2 presents the description of the 10 variables that we
use for modelling the problem. The response variable corresponds to number 1 and
the variables from to 2 to 10 correspond to the independent variables. The data set
was divided in two sets, 75% of the set for training and 25% for testing. Five different
random samples had been made to evaluate each model.

In this article, use a network MLP with 3 layers, the number of hidden nodes is via
experiments or trial and error. We, therefore, will also use the trial and error approach
with 2, 6, 12 and 18 neurons to determine the appropriate number of hidden nodes for
the desired networks. The training of a network is implemented with various learning
rates ranging from 0.1 and the 0.0005 and training lengths ranging from 100 to 1,000
iterations until the network converges. The learning of the ANN if gave through the
algorithm backpropagation. The function of adopted transference was the logistic sig-
moid. The single-layer MLP model will again be adopted in building the hybrid model.

For better understanding of the text it is necessary some definitions, to know, the
binomial regression model with link function logit will be called logit; the binomial
regression model with link function probit will be called probit; the binomial regres-
sion model with link function complementary log-log will be called cloglog; the hybrid
model whose input nodes had been selected through the logit model will be called
hyb_log; the hybrid model whose input nodes had been selected through the probit
model will be called hyb_prob; the hybrid model whose input nodes had been selected
through the cloglog model will be called hyb_clog and the hybrid model whose input
nodes had been selected through the MARS model will be called hyb_MARS.

5 Results

In this Section, the relevant information related to database used is presented. After-
wards the results found in the modeling of the binomial regression, in the learning of
the ANNs and the learning of the hybrid model are described.

5.1 Heart Data

The Table 3 shows the results for the selection of the variables through the binomial
regression model. For logit model, it can be observed that the statistically significant
independent variables at the level of 10% were: sex, chest pain type (angina1, angina2
and angina3), blood pressure (pressure), maximum heart rate achieved, ST segment
downsloping (sloping1), colored vessels by fluoroscopy (vessels1, vessels2 and ves-
sels3) and thallium with reversable defect (thallium2).

For cloglog model, the statistically significant independent variables to the level of
10% are the same than the found in the logit model, with the exception of maximum
cardiac beating rate, that showed a p-value equals to 0.4352. The results for the feature
selection through the probit model not are shown, because the statistically significant
independent variables to the level of 10% were the same selected by the logit model.
(Table 3)
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Table 3. Results for the selection of variables through the binomial regression model

LOGIT MODEL
Variables Estimate SE p-value Variables Estimate SE p-value Variables Estimate SE p-value
(Intercept) −0.34 1.55 0.8221 cholestoral 2.30 1.92 0.2316 sloping1 1.73 0.55 0.0018
age −1.31 1.30 0.3135 sugar −0.57 0.62 0.3582 sloping2 0.72 0.95 0.4513
sex −1.98 0.59 0.0009 electro1 0.85 2.56 0.7392 vessels1 2.30 0.55 0.0000
angina1 −2.37 0.79 0.0027 electro2 0.39 0.42 0.3506 vessels2 3.63 0.84 0.0000
angina2 −1.03 0.60 0.0888 achieved −3.30 1.78 0.0640 vessels3 2.04 0.98 0.0382
angina3 −2.27 0.56 0.0001 exercise 0.51 0.49 0.2921 thallium1 −0.49 0.88 0.5774
pressure 2.94 1.29 0.0235 depression 1.83 1.54 0.2338 thallium2 1.31 0.47 0.0056

CLOGLOG MODEL
Variables Estimate SE p-value Variables Estimate SE p-value Variables Estimate SE p-value
(Intercept) −1.66 0.88 0.0600 cholestoral 1.01 1.25 0.4155 sloping1 1.01 0.32 0.0019
age −0.72 0.78 0.3538 sugar −0.19 0.36 0.5864 sloping2 0.30 0.59 0.6098
sex −0.97 0.36 0.0070 electro1 0.57 1.33 0.6668 vessels1 1.31 0.31 0.0000
angina1 −1.60 0.52 0.0020 electro2 0.36 0.26 0.1681 vessels2 2.20 0.50 0.0000
angina2 −0.72 0.41 0.0819 achieved −0.72 0.92 0.4352 vessels3 1.26 0.51 0.0150
angina3 −1.39 0.35 0.0001 exercise 0.25 0.30 0.3901 thallium1 0.10 0.50 0.8353
pressure 1.66 0.81 0.0415 depression 1.53 0.96 0.1102 thallium2 0.94 0.29 0.0011
SE = Standard Error

Table 4. Feature selection results and basis functions of MARS heart data

Variable Relative importance (%) Basis function
angina3 100.00 BF1 = max(0, thallium2+2.40E-08)
vessels1 79.57 BF3 = max(0, angina3 +8.07E-10)
vessels2 68.82 BF4 = max(0, depression +5.90E-09)
sloping1 61.36 BF5 = max(0, vessels1 +3.92E-09)
thallium2 59.78 BF6 = max(0, vessels2 +6.26E-10)
angina2 56.37 BF7 = max(0, vessels3 -6.73E-09)
angina1 54.48 BF8 = max(0, sloping1 +2.20E-08)
sex 54.08 BF9 = max(0, sex -1.72E-08)
vessels3 43.14 BF10 = max(0, angina2 -5.85E-10)
depression 25.76 BF11 = max(0, angina1 +5.49E-09)
pressure 8.00 BF12 = max(0, pressure +7.31E-09)

MARS prediction function:
Y = 0.722 − 0.195×BF1+0.321×BF3 −0.315×BF4−0.268×BF5−0.295×BF6

−0.279×BF7−0.185×BF8+0.178×BF9 +0.252×BF10+0.318×BF11−0.262×BF12

The Table 4 presents the results for feature selection for the heart data with the
MARS model, as well as its basic functions for the model. The relative importance
of the remaining variable is equal the zero.

In this article, with the purpose to classify the patients in accordance with heart
disease, use a network MLP with 3 layers. As input nodes consider the 13 first variables
contained in the Table 1, in the output layer consider the last variable of this same table.
The presented results to follow come from models of ANN with 6 nodes in the hidden
layer and learning rate of the 0.1.

The hybrid models, it is used a MLP network with three layers. As input nodes,
the statistically significant independent variables obtained by the binomial regression
models were considered; for the output layer, the last variable of Table 1 was chosen.
The result presented are from the ANN model with six nodes in the input layer and a
learning rate of 0.1.

Through the Table 5, we can observe that, in mean, the model hyb_logit presents the
proportion greater of classification (with lesser standard deviation) then candidates to
have problems of heart, followed of the hyb_clog model and hyb_MARS, respectively.
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For the non-candidates, the hybrid models also are higher to all the other models. We
can also observe that the Hyb_MARS model presents greater variability when compar-
ing with the other hybrid models.

Table 5. Results for the test performed by the models for classification patients, candidates or
not, to heart disease

Sample Model (candidate)
Logit Probit Cloglog ANN Hyb_logit Hyb_clog Hyb_MARS

1 88.5% 88.5% 80.0% 82.8% 91.4% 91.4% 82.8%
2 71.4% 71.4% 71.4% 71.4% 85.7% 82.8% 82.8%
3 88.5% 88.5% 82.8% 88.5% 94.2% 94.2% 94.2%
4 82.8% 88.5% 82.8% 88.5% 94.2% 94.2% 94.2%
5 88.5% 88.5% 82.8% 94.2% 91.4% 91.4% 88.5%

Mean 84.0% 85.1% 80.0% 85.1% 91.4% 90.8% 88.5%
SD 7.4 % 7.6% 4.9% 8.6% 3.5% 4.6% 5.7%

Sample Model (non-candidate)
Logit Probit Cloglog ANN Hyb_logit Hyb_clog Hyb_MARS

1 85.7% 85.7% 88.5% 91.4% 91.4% 88.5% 91.4%
2 80.0% 80.0% 82.8% 82.8% 85.7% 85.7% 80.0%
3 85.7% 85.7% 85.7% 82.8% 85.7% 88.5% 88.5%
4 85.7% 85.7% 85.7% 82.8% 85.7% 88.5% 88.5%
5 82.8% 82.8% 88.5% 80.0% 85.7% 82.8% 82.8%

Mean 84.0% 84.0% 86.2% 84.0% 86.8% 86.8% 86.2%
SD 2.5% 2.5% 2.3% 4.3% 2.5% 2.5% 4.6%

SD = Standard Deviation

Table 6 presents the results for the error measures that were used to evaluate the
performance of each studied model. The measures found were the sum of the square
of errors (SSE) and the mean square error (MSE). The performance for the hybrid and
complete ANN models was superior than any other binomial regression model, and the
performance of the hybrid model are slightly better than the complete ANN model.

Table 6. Performance results of every evaluated model

Train Test
Model SSE MSE SSE MSE

Mean SD Mean SD Mean SD Mean SD
Logit 16.2689 1.7887 0.0783 0.0085 1105.3645 631.7957 15.7852 9.0133
Probit 16.4158 1.7801 0.0789 0.0086 272.3322 176.9368 3.8914 2.5295
Cloglog 15.5135 1.9075 0.0746 0.0092 489.6037 330.9076 6.9886 4.7145
ANN 6.2980 1.2229 0.0303 0.0059 10.6471 2.6537 0.1521 0.0379
Hyb_logit 11.4595 1.7670 0.0551 0.0085 8.7983 2.4129 0.1257 0.0345
Hyb_clog 12.2313 1.6325 0.0588 0.0078 8.7259 2.0840 0.1246 0.0298
Hyb_MARS 11.5792 1.4700 0.0557 0.0070 8.6664 1.8129 0.1238 0.0259
SD = Standard Deviation

5.2 Frogs Data

The results for the feature selection through the probit model not are shown. The sta-
tistically significant independent variables to the level of 5% were the same selected
by the logit model. This also happens with the results for the selection of the variables
through the cloglog model. Table 7 shows the results for the selection of the variables
through the logit model. The statistically significant independent variables at the level
of 5% were: Distance, NoOfPools and Meanmin.
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The Table 8 presents the results for selection of variable of the frogs data through
model MARS, as well as its basic functions for the model. The relative importance of
the remaining variable is equal the zero.

Table 7. Result for feature selection through of logit model

Variables Estimate SE z value p-value
(Intercept) 110.49 138.76 0.79 0.4258
Altitude −55.54 73.36 −0.75 0.4490
Distance −8.63 3.69 −2.33 0.0194
NoOfPools 6.92 2.15 3.21 0.0012
NoOfSites 0.43 1.06 0.41 0.6807
Avrain −2.26 11.88 −0.19 0.8492
Meanmin 21.22 6.77 3.13 0.0017
Meanmax −90.37 80.61 −1.12 0.2622
SE = Standard Error

Table 8. Variable selection results and basis functions of MARS frogs data

Variable Relative importance (%) Basis function
meanmin 100.00 BF1 = max(0, distance - 0.944);
altitude 60.43 BF3 = max(0, meanmin - 0.177);
noofpool 46.88 BF4 = max(0, 0.177 - meanmin );
distance 46.58 BF5 = max(0, altitude - 0.189);
meanmax 44.49 BF7 = max(0, noofpool + 0.23e-07);
easting 36.12 BF9 = max(0, 0.100 - meanmax );
northing 20.81 BF11 = max(0, 0.115 - easting );

BF12 = max(0, northing - 0.657);

MARS prediction function:
Y = 1.251 + 7.023×BF1−1.665×BF3 +17.277×BF4−124.066×BF5−0.838×BF7

+90.919×BF9−7.510×BF11+5.248×BF12

To classify frogs in accordance with its absence or presence in the south of Corro-
boree, it is used a three layer MLP network. As input nodes, it is considered the seven
last variables in Table 2, for the output layer it is considered the first variable of the
same table, one hidden layer with two nodes in the hidden layer and a learning rate of
0.0005.

The hybrid models, it is used a MLP network with three layers. As input nodes,
the statistically significant independent variables obtained by the binomial regression
models were considered; for the output layer, the first variable of Table 2 was chosen.
The result presented are from the ANN model with two nodes in the input layer and a
learning rate of 0.0005.

Table 9. Result of test by binomial regression model for that classification of absent or present
the frogs

Sample Model (absent) Model (present)
Logit Probit Cloglog ANN Hyb_logit Hyb_MARS Logit Probit Cloglog ANN Hyb_logit Hyb_MARS

1 78.6% 78.6% 78.6% 85.7% 85.7% 71.4% 79.2% 79.2% 79.2% 75.0% 70.8% 62.5%
2 71.4% 65.7% 77.1% 74.3% 80.0% 62.9% 82.4% 82.4% 76.5% 82.4% 82.4% 76.5%
3 70.6% 67.6% 70.6% 76.5% 73.5% 70.6% 77.8% 77.8% 77.8% 88.9% 94.4% 94.4%
4 75.8% 75.8% 78.8% 87.9% 93.9% 78.8% 68.4% 68.4% 57.9% 47.4% 73.7% 57.9%
5 80.0% 77.1% 82.9% 82.9% 88.6% 82.9% 76.5% 76.5% 76.5% 70.6% 76.5% 58.8%

Mean 75.2% 72.7% 77.6% 81.2% 84.2% 73.3% 76.8% 76.8% 73.7% 72.6% 78.9% 70.0%
SD 4.2% 5.9% 4.4% 5.9% 7.9% 7.8% 5.2% 5.2% 8.8% 15.9% 9.4% 15.6%

SD = Standard Deviation
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The Table 9 presents the results of the classification how much the absence or pres-
ence of the frogs. For the absence of sapos, we observe that the ANN model is superior
to all the binomial regression models, however, this does not happen in the classification
of the presence of the frogs. The hybrid model, however, is presented more consistent
of the one than the ANN model, or either, the hybrid model is superior to all the other
models, as much for absence as for presence of the frogs.

In the case of the of the frogs data, we observe that the Hyb_MARS model presents,
with only one exception, the worst results.

Table 10 presents the results for the error measures that were useful to evaluate the
performance of each studied model. The measures found were the sum of the square
of errors (SSE) and the mean square error (MSE). The performance for the hybrid and
complete ANN models was superior than any other binomial regression model, and the
performance of the hybrid model, hyb_logit, are slightly better than the complete ANN
model.

Table 10. Results of the SSE and MSE values for models

Train Test
Model SSE MSE SSE MSE

Mean SD Mean SD Mean SD Mean SD
Logit 23.7992 0.4774 0.1487 0.0030 360.7654 44.5752 6.9379 0.8571
Probit 24.1740 0.3749 0.1511 0.0024 153.3099 16.8466 2.9484 0.3239
Cloglog 23.2167 0.4953 0.1451 0.0031 343.7045 51.0351 6.6095 0.9816
ANN 20.2046 1.0392 0.1262 0.0065 23.0628 1.1270 0.4436 0.0216
Hyb_logit 21.6654 0.5100 0.1354 0.0032 22.0316 0.8181 0.4238 0.0158
Hyb_MARS 9.3521 3.1144 0.0584 0.0195 26.5231 1.8827 0.5102 0.0362
SD = Standard Deviation

6 Conclusion

Through the achieved results it can be noticed that among the binomial regression mod-
els, the one that presented a greater average for the correct classification was the model
with logit link function, surpassing also the complete ANN model.

In a general, the hybrid model presented the better results. Therefore, to construct
a neural network using input feature selection is important and necessary, therefore it
improves the results in terms of classification.

The hybrid models whose feature selection was from the binomial regression models
had not presented much difference in relation to the model hyb_MARS considered by
Lee and Chen (2005) [10]. Therefore, feature selection through the binomial regression
model is easier than to construct hybrid models from MARS models because binomial
regression models are easier to implement and/or to use.

Moreover, the performance of the hybrid models is superior to the performance of
the RNA model whose input nodes have all input variables.
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Abstract. A support vector machine (SVM) provides an optimal sep-
arating hyperplane between two classes to be separated. However, the
SVM gives only recognition results such as a neural network in a black-
box structure. As an alternative, support vector machine decision tree
(SVDT) provides useful information on key attributes while taking a
number of advantages of the SVM. we propose an automated parameter
selection scheme in SVDT to improve efficiency and accuracy in classi-
fication problems. Two practical applications confirm that the proposed
methods has a potential in improving generalization and classification
error in SVDT.

1 Introduction

Pattern recognition has its applications in various fields of practice such as auto-
matic analysis of medical images, quality inspection for automatic manufacturing
system, prediction of geological changes, etc. A support vector machine (SVM),
which was firstly proposed by Vapnik [4], is based on theoretical structure and
it has provided excellent pattern-recognizing achievement in a number of real
applications.

In classification problem as an exemplary area of pattern recognition , SVM
provides a separating hyperplane between two classes to be separated. Since
the separating hyperplane can be applied to various problems, e.g., nonlinear
pattern-recognition, function regression, HCI, data mining, web mining, com-
puter vision, artificial intelligence, and medical diagnosis, more active researches
on SVM have been done recently.

However, the SVM gives only recognition results such as a neural network in
a black-box structure. It hardly provides useful information concerning which
attributes affect the results. Accordingly, a support vector machine decision tree
(SVDT) was suggested in order to provide information on key attributes while
taking a number of advantages of the SVM [2]. The SVDT establishes a math-
ematical model for each decision nodes and forms a separating hyperplane by
solving the model. Determining appropriate parameter values is key issue in the
modeling because the separating hyperplane changes according to the parameter
values at each decision node, consequently it affects global SVDT performance.
� Corresponding author.
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Bennett [2] searched for proper parameter value by sequently changing the pa-
rameters and testing them with a validation set converted from a part of training
data. However, it takes much time and efforts to analyze the results and to con-
duct the test at each decision node. In this paper, we propose an automated
scheme for parameter selection in SVDT to resolve such problems.

The paper is organized as follows. In Section 2, we briefly review mathematical
models for SVM and SVDT. In Section 3 an automated scheme is proposed to
select the parameter in SVDT. In Section 4, we provide two examples to illustrate
our procedure. Some concluding remarks are presented in Section 5.

2 Support Vector Machine Decision Tree

2.1 Support Vector Machine

As a tool of pattern recognition, support vector machine (SVM) presents high
performance for recognizing a variety of patterns. The SVM like a radial-basis
function network linearly projects nonlinear patterns in input space into high-
dimensional feature space, and finally linearly analyzes them in the feature space.
Via the linear feature space, SVM produces optimal separating hyperplane to
resolve classification problems.

For a given dataset {(xi, ti), i = 1, . . . ,m}, where xi is ith training data
included in one of two classes, and ti ∈ {−1, 1} is an indicator representing
corresponding class, the SVM searches an optimal separating hyperplane so that
it minimizes the distance from the closest support vector to classify every class.
For highly overlapped patterns inseparable by linear separating hyperplane, an
optimal linear separating hyperplane can be obtained by solving the following
optimization problem:

min
1
2
ωT ω + λ

m∑
i=1

ηi

subject to ti(ωTxi + b) ≥ 1− ηi, (1)

where ω denotes a vector of distances between separating hyperplanes and the
closest support vector, ηi(≥ 0) denotes ith slack variable, and λ denotes a penalty
parameter for i = 1, . . . ,m. Note that all of patterns are perfectly separable when
ηi = 0. The eq. (1) can be solved easily using a Lagrangian dual.

However, it is impossible to discriminate all of patterns with only linear sep-
arating hyperplane, thus we need nonlinear separating hyperplane for classify-
ing linearly inseparable patterns. To separate the nonlinear patterns, the SVM
nonlinearly projects nonlinear patterns in input space into high-dimensional fea-
ture space, and linearly interprets in the feature space. Using a kernel function
K(xi,xj) = φ(xi)·φ(xj) for an arbitrary function φ(·), we can solve classification
problem for nonlinear patterns. See [5] for details.
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2.2 L1-Norm Support Vector Machine

Given training data {(xi, ti), i = 1, . . . ,m} for xi ∈ R
n, a robust linear program-

ming (RLP) model [1] is defined as

min
m∑

i=1

δiηi

subject to ti(ωTxi + b) ≥ 1− ηi, (2)

for ηi ≥ 0, i = 1, . . . ,m. Here, m is the number of training data and δi(> 0),
representing a misclassification cost for xi, is defined by

δi =

{
1

|c1| , if xi ∈ c1
1

|c2| , if xi ∈ c2. (3)

The above form of δi guarantees existence of nontrivial solutions [1]. The ob-
jective function

∑m
i=1 δiηi is the degree of permission for xi to be closer to an

optimal separating hyperplane than a support vector or to be located in the
other side of a half space. A separating hyperplane that minimizes classification
error is generated by minimizing the objective function.

To introduce a concept of structural risk minimization into the objective func-
tion in the RLP, we add L1-norm ‖ω‖1, then L1-norm SVM is formulated as

min λ‖ω‖1 + (1 − λ)
m∑

i=1

δiηi

subject to ti(ωTxi + b) ≥ 1− ηi, (4)

where λ is a parameter considering trade-off between the margin and error of
classification and satisfies 0 ≤ λ ≤ 1 [3]. By using L1-norm ‖ω‖1 instead of
L2-norm ‖ω‖2 as in general SVM, the L1-norm SVM has two advantages:

1. The L1-norm reduces data dimension more effectively by taking more zero
components in ω than the L2-norm. The less attributes are, the higher in-
terpretability is .

2. The L1-norm SVM can use a linear programming instead of a quadratic pro-
gramming. Widely used linear programming packages such as LINDOTM

and CPLEXTM is more efficient and more stable than quadratic program-
ming solvers for large-scale problems, in particular when training data are
sparse.

2.3 Support Vector Decision Tree

Nonlinear separating hyperplane is mandatory to solve a variety of pattern clas-
sification problems. However, SVM provides only classification results as a black-
box structure, and it fails to support information about key attributes. As an
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alternative, since a support vector decision tree (SVDT) creates more inter-
pretable rule with fewer attributes, it has a potential in saving costs for data
collection by ignoring irrelevant attributes in the analysis later.

In reviewing L1-norm SVM to generate the SVDT, the L1-norm SVM gener-
ates a linear separating hyperplane that creates two half spaces. L1-norm SVM is
repeatedly applied to each half space, generating two sub-half spaces. We repeat
these procedures till some criteria are met, then finally decision trees with non-
linear separating hyperplane. These procedure is called “support vector decision
tree (SVDT)” [2].

Unlike a classification and regression trees (CART) and a C4.5, which is classi-
fied as a univariate decision tree where a dataset is divided into several meaning-
ful clusters by one attribute, the SVDT is considered as a multivariate decision
tree where a dataset is divided into several meaningful clusters by more than
one attributes. Potentially, the SVDT achieves better dimension reduction and
generates models with low-depth trees in large-scaled dataset, thus it can reduce
chances of overfitting and provide more interpretable rules with fewer attributes.

3 Automated Scheme for Parameter Selection in SVDT

Selecting the value of parameter λ in eq. (4) is crucial to execute a decision in
SVDT since the global SVDT model is affected by the value. Appropriate value of
λ must be selected while considering the trade-off between model generalization
and classification accuracy. Bennett [2] used about 1/7 of training data as a
validation set and determined the value of λ by testing the generated separating
hyperplane with the validation set.

Introducing penalty variable c instead of λ in this paper, the eq. (4) is trans-
formed as

min ‖ω‖1 + c

m∑
i=1

δiηi

subject to ti(ωTxi + b) ≥ 1− ηi, (5)

and the optimization problem (5) can also be dualized as follows. First, we can
define an equivalent problem:

min
n∑

j=1

sj + c

m∑
i=1

δiηi

subject to ti(ωTxi + b) ≥ 1− ηi ∀ i
ηi ≥ 0 ∀ i

−sj ≤ ωj ≤ sj ∀ j

Then, Lagrangian function of the equivalent problem can be defined, moreover
the 1st order optimality condition of the Lagrangian function should lead to the
following dual problem:
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max Q(α) =
m∑

i=1

αi

subject to −e ≤
m∑

i=1

αitixi ≤ e

m∑
i=1

tiαi = 0 0 ≤ αi ≤ c, (6)

where e is (n × 1) vector in which all of its components are 1. Here,
∑m

i=1 δiηi

is the degree of permission for xi to approach a separating hyperplane or to be
located in the other side of half-space by passing over the separating hyperplane.

In automated selection for value of the penalty parameter c, as c decreases
in eq. (5), which means decrease of penalty on

∑m
i=1 δiηi, ‖ω‖1(≡

∑n
j=1 ωj) in

objective function tends to decreases even if any xi is permitted to approach
a separating hyperplane or to be included in the other side of half-space (that
is, ηi > 0). As a result, 2/‖ω‖2, margin of separation, increases since ‖ω‖2(≡∑n

j=1 ω2
j ) increases, and model generalization improves.

On the contrary, as c increases,
∑m

i=1 δiηi in objective function tends to min-
imize and xi of training data is more likely not to overpass the separating hy-
perplane. Note that as ‖ω‖1 (related to the margin) and

∑m
i=1 δiηi (related to

classification error) decreases, the margin broadens and classification error mini-
mizes, thus appropriate value of cmust be selected by simultaneously considering
both margin and classification error.

To deal with in the same scale,
∑n

i=1 ωi and
∑m

i=1 δiηi are normalized with
corresponding standard deviations as

α =
∑n

i=1 ωi

σ∑n
i=1 ωi

, β =
∑m

i=1 δiηi

σ∑m
i=1 δiηi

,

and we search for the c value to minimize α and β simultaneously, equivalently
minimize α+ β.

4 Practical Applications

We applied the automated SVDT procedure to Credit Screening Database and
Census Income Database and investigated classification results from the auto-
mated scheme for parameter selection. We used SUN Ultra 10 workstation (333
MHz CPU, 512MB Memory) as hardware and AMPL/CPLEX as software to
execute the procedure.

4.1 Credit Screening Database

Credit screening database, built up by a Japan credit card company, records 653
customers’ information including credit approval results (Granted (+1) or Not
Granted (−1)). The customer records consist of 15 attributes; 5 continuous-typed
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D0

L1 L2

Class  +1
Resp Rate : 4.30%
Targ Class : 4.45%
Total Pop : 46.44%
Instance : 209
+1 : 9
-1 : 200

Class  –1
Resp Rate : 80.08%
Targ Class : 95.54%
Total Pop : 53.55%
Instance : 241
+1 : 193
-1 : 48

(a) training data

D0

L1 L2

Class -1
Resp Rate : 9.47%
Targ Class : 9.57%
Total Pop : 46.79%
Instance : 95
+1 : 9
-1 : 86

Class +1
Resp Rate : 78.70%
Targ Class : 90.42%
Total Pop : 53.20%
Instance : 108
+1 : 85
-1 : 23

(b) test data

Fig. 1. Applicative results of the automated SVDT to credit screening example

and 9 nominal-typed attributes. The database is sourced from UCI Machine
Learning Repository. We divided the total data set into 450 (+1: 202, −1: 248)
customer records as training data and 203 (+1: 94, −1: 109) as test data. We
allocated 1, . . . , n integer values respectively when there are n categories for
nominal attributes. Every attribute is normalized with corresponding standard
deviation. The objective is to compare classification results from the automated
SVDT with real credit approval records.

The applicative results of the automated SVDT to credit screening database
is shown in Figure 1-(a). Here, the response rate, defined as the ratio of the
number of class +1 at node to the total number of data at corresponding node,
is 9/209 = 4.30%. The target class is defined as the ratio of the number of
class +1 at node to the total number of class +1 in population and its result is
9/202 = 4.45% for L1. The total population is defined as the number of instants
at corresponding node divided by the number of instants in population.

Finally, the value of c was obtained from the automated procedure as 1.0.
As shown in Figure 1-(a), a separating hyperplane to well classify the training
data is obtained through only one branching-off. All the attributes except 8th
attribute (weight ω8 = −0.998582 with bias b = 3.00001) have zero-weighted
values in the analysis, which implies that credit screening data is separable with
only one attribute. In confirming performance results for model generalization of
the automate SVDT, test result using testing data is given in Figure 1-(b). The
proposed method classifies the test data well, connoting better generalization
capability.

4.2 Census Income Database

Census income database, established by U.S. census bureau, includes 45,222
demographical information, e.g., age, sex, job, income level, etc. The income level
is classified into two groups: less than $ 50,000 (+1) or larger than $ 50,000 (+1).
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D0

L1

Class -1
Resp Rate : 5.52%
Targ Class : 8.75%
Total Pop : 39.39%
Instance : 11883
+1 : 657
-1 : 11226

1 attr

D1

(a) First branching-off result

D1

D2 D3

L2 D4 L3 L4

Class -1
Resp Rate : 4.08%
Targ Class : 1.09%
Total Pop : 6.64%
Instance : 2005
+1 : 85
-1 : 1923

1 attr

2 attr 2 attr

Class -1
Resp Rate : 23.2%
Targ Class : 3.80%
Total Pop : 4.04%
Instance : 1221
+1 : 286
-1 : 935

Class +1
Resp Rate : 67.3%
Targ Class : 47.64%
Total Pop : 17.62%
Instance : 5315
+1 : 3577
-1 : 1738

(b) Branching-off result from D1

D4

L5 D5

L6 L7

3 attr

Class -1
Resp Rate : 11.43%
Targ Class : 1.95%
Total Pop : 4.26%
Instance : 1286
+1 : 147
-1 : 1139 Class -1

Resp Rate : 27.1%
Targ Class : 18%
Total Pop : 17.27%
Instance : 5209
+1 : 1412
-1 : 3797

Class +1
Resp Rate : 41.53%
Targ Class : 17.94%
Total Pop : 10.75%
Instance : 3243
+1 : 1347
-1 : 1896

1 attr

(c) Branching-off result from D4

Fig. 2. Branching-off results in the automated SVDT: Census income screening training
data

The dataset consist of 13 attributes; 6 continuous-typed and 7 nominal-typed
attributes. The database is also sourced from UCI Machine Learning Repository.
We divided the total data set into 32,561 (+1: 7,508,−1: 22,654) as training data
and 15,060 (+1: 3,700, −1: 11,360) as test data. We allocated 1, . . . , n integer
values respectively when there are n categories for nominal attributes. Every
attribute is normalized with corresponding standard deviation. Similarly, the
objective is to compare classification results from the automated SVDT with
real census income data.

The applicative results of the automated SVDT to census income database
is shown in Figure 2. Figure 2-(a) represents the result from first branching-off.
The value of c was obtained from the automated procedure as 1.5. Only one
attribute (ω6 = −0.780588 with bias b = 1.66667) has non-zero value and the
other weight values are found as zeros. The results show that the automated
SVDT classifies 40% out of total data as instances having class −1.
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The result of branching-off from L1 leaf node is given in Figure 2-(b), and
branching-off result from onlyD4 leaf node is shown in Figure 2-(c), respectively.

5 Summary and Conclusions

The support vector machine decision tree establishes a mathematical model for
each decision nodes and forms a separating hyperplane by solving the model.
Determining appropriate parameter values is essential in SVDT. The existing
methods suffers from loss of time and efforts to determine the parameter, hence
we propose an automated scheme for parameter selection in SVDT. We showed
that the proposed method provides efficient classification results with two illus-
trative examples.

When we select the smaller value than resulting value from the automated
scheme, it is likely to generate overfitting and SVDT with high-depth trees. On
the contrary, if we select the larger value than resulting value from the automated
scheme, it is more likely to generate overfitting as we concentrate on improving
classification rate of training data.

In conclusion, parameter value selected from the automated system has a
potential in providing more accurate results in the classification problems.
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Abstract. The inference and optimization in sparse graphs with real
variables is studied using methods of statistical mechanics. Efficient dis-
tributed algorithms for the resource allocation problem are devised. Nu-
merical simulations show excellent performance and full agreement with
the theoretical results.

1 Introduction

Many inference and optimization problems make use of the graphical structures
that describe the dependencies between random variables [1]. In contrast to
models with extensive inter-dependencies among the variables, the graph-based
models can be solved by passing messages between neighbouring variables on
the graphs. This message-passing approach has gained recent success in areas
such as error-correctig codes [2] and probabilistic inference [3].

Most studies so far have focused on graphs of discrete variables. However,
many typical problems involve continuous variables. The main obstacle comes
from the need to pass much more complicated messages among the nodes of the
graphs, whereas in cases of discrete variables, the messages are countable sets of
conditional probability estimates of discrete values. There have been attempts to
simplify the messages for continuous variables, for example, to parametrize them
using eigenfunction decomposition for special cases, but the general feasibility
remains an open question [4].

In this paper we study inference and optimization problems on sparse graphs.
Based on the analysis, we propose novel message-passing algorithms generally
applicable to problems of continuous variables. The method is efficient since the
messages consist of only the first and second derivatives of the message functions.
The key to the successful simplification is that the messages to a target node are
accompanied by information-provision messages from the target node, to first
determine the state at which the derivatives should be calculated.

We first consider the general formulation on a sparse graph, and then examine
the resource allocation problem, as a vehicle to study the principles and ingre-
dients in message-passing. The problem is interesting for the following reasons.
First, it is a well known problem in the area of distributed computing [5] to which
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significant effort has been dedicated within the computer science community. It
is representative of a large class of problems in many other areas where a large
number of nodes are required to balance their resources and redistribute tasks,
such as reducing internet traffic congestion and streamlining network flows of
commodities [6]. Many attempts were made in the computer science community,
to find practical heuristic solutions to the distribution of computational load
between computers connected by networks.

Second, the problem illustrates the advantages of the message-passing tech-
niques in comparison with the much more computationally demanding global
optimization techniques traditionally adopted in this family of problems, such
as linear or quadratic programming [7]. For example, the computational com-
plexity of quadratic programming for the load balancing task typically scales as
the cube of the system size, whereas capitalizing on the network topology under-
lying the connectivity of the variables, message-passing scales linearly with the
system size. An even more important advantage of message-passing techniques,
relevant to practical implementation, is their distributive nature. Since they do
not require a global optimizer, they are particularly suitable for distributive
control in large or evolving networks.

Third, making use of the conservation of resources on graphs, the problem
can be easily transformed to its dual which is exactly solvable using the price
iteration scheme. This provides a benchmark for the message-passing method.

In Section 2, we analyze the problem using the Bethe approximation of sta-
tistical mechanics. We then present numerical results in Section 3, and derive
the new message-passing algorithm on the basis of the analysis in Section 4. The
price iteration algorithm is presented in Section 5 for comparison. The study
is extended to the unsatisfiable case in Section 6. We conclude the paper in
Section 7. Early and partial work in this direction was presented in [8].

2 The Theoretical Framework

We consider a sparse graph with N nodes, labelled i = 1, . . . , N . Each node
i is randomly connected to c other nodes. The connectivity matrix is given by
Aij = 1, 0 for connected and unconnected node pairs respectively. A link variable
yij is defined on each connected link from j to i. We consider a cost function
E =

∑
(ij) Aijφ(yij)+

∑
i ψ(λi, {yij|Aij = 1}), where λi is a quenched variable

defined on node i. In the context of probabilistic inference, yij may represent the
correlation between observables in nodes j and i, φ(yij) may correspond to the
logarithm of the prior distribution of yij , and ψ(λi, {yij |Aij =1}) the logarithm
of the likelihood of the observables λi. In the context of resource allocation,
yij≡−yji may represent the current from node j to i, φ(yij) the transportation
cost, and ψ(λi, {yij |Aij =1}) the performance cost of the allocation task on node
i, dependent on the node capacity λi.

We address a generic version of the resource allocation problem, in which N
is very large, the capacity λi is randomly drawn from a distribution ρ(λi), and
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the currents yij satisfy the link bandwidth constraints −W ≤ yij ≤W . For load
balancing tasks, φ(y) is typically a convex function, which will be assumed in
our study.

For sufficiently large W and capacity distributions with non-negative average
λ, there exist solutions which satisfy the capacity constraints

∑
j Aijyij +λi ≥ 0.

Hence we consider ψ(λi, {yij|Aij =1})= ln[Θ(
∑

j Aijyij +λi)+ε], where ε → 0,
and the Θ function returns 1 for a non-negative argument and 0 otherwise.
The problem reduces to the load balancing task of minimizing the cost E =∑

(ij)Aijφ(yij), subject to the capacity constraints. We call this the satisfiable
case, which will be considered in Sections 3 to 5 for unconstrained links (W =∞)
and 〈λ〉 > 0. The unsatisfiable case will be considered in Section 6.

The analysis of the network is done by introducing the free energy F =
−T lnZy for a temperature T ≡ β−1, where Zy is the partition function

Zy =
∏
(ij)

∫ W

−W

dyij

∏
i

Θ

⎛⎝∑
j

Aijyij + λi

⎞⎠ exp

⎡⎣−β∑
(ij)

Aijφ(yij)

⎤⎦ . (1)

When the connectivity c is low, the probability of finding a loop of finite length
on the graph is low, and the Bethe approximation well describes the local envi-
ronment of a node. In the approximation, a node is connected to c branches in a
tree structure, and the correlations among the branches of the tree are neglected.
In each branch, nodes are arranged in generations. A node is connected to an
ancestor node of the previous generation, and another c − 1 descendent nodes
of the next generation. Thus, the node is the vertex of the tree structure formed
by its descendents.

Consider a vertex V (T) of a tree T having a capacity λV (T), and a current
y is drawn from the vertex by its ancestor. One can write an expression for the
free energy F (y|T) as a function of the free energies F (yk|Tk) of its descendants,
that branch out from this vertex, where Tk represents the tree terminated at
the kth descendent of the vertex. The free energy can be considered as the sum
of two parts, F (y|T) =NTFav+FV (y|T), where NT is the number of nodes in
the tree T, Fav is the average free energy per node, and FV (y|T) is referred to
as the vertex free energy. Note that when a vertex is added to a tree, there is a
change in the free energy due to the added vertex. Since the number of nodes
increases by 1, the vertex free energy is obtained by subtracting the free energy
change by the average free energy. This allows us to obtain the recursion relation

FV (y|T) = −T ln

{
c−1∏
k=1

(∫ W

−W

dyk

)
Θ

(
c−1∑
k=1

yk − y + λV (T)

)

× exp

[
−β

c−1∑
k=1

(FV (yk|Tk) + φ(yk))

]}
− Fav. (2)
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For optimization, we take the zero temperature limit of Eq. (2), in which the
free energy reduces to the minimum cost, yielding

FV (y|T) = min
{yk|

∑ c−1
k=1 yk−y+λV (T)≥0}

[
c−1∑
k=1

(FV (yk|Tk) + φ(yk))

]
− Fav. (3)

These iterative equations can be directly linked to those obtained from a prin-
cipled Bayesian approximation, where the logarithms of the messages passed
between nodes are proportional to the vertex free energies.

The current distribution and the average cost per link can be derived by
integrating the current y′ in a link from one vertex to another, fed by the trees
T1 and T2, respectively; the obtained expressions are P (y) = 〈δ(y − y′)〉� and
〈φ〉=〈φ(y′)〉� where

〈•〉� =
〈∫

dy′ exp [−β (FV (y′|T1) + FV (−y′|T2) + φ(y′))] (•)∫
dy′ exp [−β (FV (y′|T1) + FV (−y′|T2) + φ(y′))]

〉
λ

. (4)

Before closing this section, we mention the alternative analysis of the problem
using the replica method [9], which was successfully applied in the physics of
disordered systems. The derivation is rather involved (details will be provided
elsewhere), but gives rise to the same recursive equation Eq. (2) as in the Bethe
approximation.

3 Numerical Solution

The Bethe approximation provides a theoretical tool to analyze the properties
of optimized networks. The solution of Eq. (3) is free from finite size effects in-
herent in Monte Carlo simulations, and can be obtained numerically. Since the
vertex free energy of a node depends on its own capacity and the disordered con-
figuration of its descendants, we generate 1000 nodes at each iteration of Eq. (3),
with capacities randomly drawn from the distribution ρ(λ), each being fed by
c−1 nodes randomly drawn from the previous iteration. We have discretized the
vertex free energies FV (y|T) function into a vector, whose ith component takes
the value FV (yi|T).

To compute the average cost, we randomly draw 2 nodes, compute the opti-
mal current flowing between them, and repeat the process 1000 times to obtain
the average. Figure 1(a) shows the results as a function of iteration step t, for a
Gaussian capacity distribution ρ(λ) with variance 1 and average 〈λ〉. Each itera-
tion corresponds to adding one extra generation to the tree structure, such that
the iterative process corresponds to approximating the network by an increas-
ingly extensive tree. We observe that after an initial rise with iteration steps,
the average energies converge to steady-state values, at a rate which increases
with the average capacity.

To study the convergence rate of the iterations, we fit the average cost at
iteration step t using 〈E(t)−E(∞)〉 ∼ exp(−γt) in the asymptotic regime.
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As shown in the inset of Fig. 1(a), the relaxation rate γ increases with the average
capacity. It is interesting to note that a cusp exists at the average capacity of
about 0.45. Below that value, convergence of the iteration is slow, since the
average cost curve starts to develop a plateau before the final convergence. On the
other hand, the plateau disappears and the convergence is fast above the cusp.
The slowdown of convergence below the cusp is probably due to the appearance
of increasingly large clusters of saturated nodes on the network, since clusters of
nodes with negative capacities become increasingly extensive, and need to draw
currents from increasingly extensive regions of nodes with excess capacities to
satisfy the demand.
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Fig. 1. Results for N =1000, φ(y) = y2/2 and W = ∞. (a) 〈φ〉 obtained by iterating
Eq. (2) as a function of t for 〈λ〉=0.1, 0.2, 0.4, 0.6, 0.8 (top to bottom), c=3 and 200-
800 samples. Dashed line: the asymptotic 〈φ〉 for 〈λ〉 = 0.1. Inset: γ as a function of
〈λ〉. (b) K2〈φ〉 as a function of 〈λ〉 for c = 3 (©), 4 (�), 5 (♦) and 1000 samples. Line:
large K. Inset: K2〈φ〉 as a function of time for random sequential update of Eqs. (5-6).
Symbols: as in (b) for 〈λ〉 = 0.02, 0.1, 0.5 (top to bottom).

4 The Message-Passing Algorithm

The local nature of the recursion relation Eq. (3) points to the possibility that the
network optimization can be solved by local iterative approaches. However, in
contrast to other message-passing algorithms which pass conditional probability
estimates of discrete variables to neighboring nodes, the messages in the present
context are more complex, since they are functions FV (y|T) of the current y. We
simplify the message to 2 parameters, namely, the first and second derivatives of
the vertex free energies. For the quadratic load balancing task, it can be shown
that a self-consistent solution of the recursion relation, Eq. (3), consists of vertex
free energies which are piecewise quadratic with continuous slopes. This makes
the 2-parameter message a very precise approximation.
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Let (Aij ,Bij)≡(∂FV (yij |Tj)/∂yij, ∂
2FV (yij |Tj)/∂y2

ij) be the message passed
from node j to i; using Eq.(3), the recursion relation of the messages become

Aij ← −μij , Bij ← Θ(−μij)

⎡⎣∑
k �=i

Ajk(φ′′
jk + Bjk)−1

⎤⎦−1

,

μij = min

[∑
k �=iAjk[yjk − (φ′

jk + Ajk)(φ′′
jk + Bjk)−1]− yij + λj∑

k �=iAjk(φ′′
jk + Bjk)−1 , 0

]
, (5)

with φ′
jk and φ′′

jk representing the first and second derivatives of φ(y) at y = yjk

respectively. The forward passing of the message from node j to i is followed by
a backward message from node j to k for updating the currents yjk according to

yjk ← yjk −
φ′

jk + Ajk + μij

φ′′
jk + Bjk

. (6)

We note that Eqs. (5-6) differ from conventional message-passing algorithms
in that backward messages of the currents are present. As a consequence of repre-
senting the messages by the first and second derivatives, the backward messages
serve to inform the descendent nodes of the particular arguments they should use
in calculating the derivatives for sending the next messages. Furthermore, the
criterion that yij =−yji provides a check for the convergence of the algorithm.

The message-passing equations further enable us to study the properties
of the optimized networks in the limit of large K ≡ c− 1, and hence con-
sider the convergence to this limit when the connectivity increases. Given an
arbitrary cost function φ with nonvanishing second derivatives for all argu-
ments, Eq. (3) converges in the large K limit to the steady-state results Aij =
max([

∑
k �=iAjkAjk−λj ]/K, 0), Bij ∼ K−1. Then,

∑
k �=iAjkAjk becomes self-

averaging and equal to KmA, where mA∼K−1 is the mean of the messages Aij

given by KmA = 〈Θ(x−λ)(x−λ)〉λ. Thus, yij∼μi∼K−1. The physical picture
of this scaling behavior is that the current drawn by a node is shared among the
K descendent nodes. After rescaling, quantities such as K2〈φ〉, P (Ky)/K and
P (Kμ)/K become purely dependent on the capacity distribution ρ(λ).

For increasing finite values of K, Fig. 1(b) shows the common trend of K2〈φ〉
decreasing with 〈λ〉 exponentially, and gradually approaching the large K limit.
The scaling property extends to the optimization dynamics (Fig. 1(b) inset). As
shown in Fig. 2(a), the current distribution P (Ky)/K consists of a delta function
component at y=0 and a continuous component, whose breadth decreases with
〈λ〉. Remarkably, the distributions for different connectivities collapse almost
perfectly after the currents are rescaled by K−1, with a very mild dependence
on K and gradually approaching the large K limit. As shown in the inset of
Fig. 2(a), the fraction of idle links increases with 〈λ〉. The fraction has a weak
dependence on the connectivity, confirming the almost universal distributions
rescaled for different K.

Since the current on a link scales as K−1, the allocated resource of a node
should have a weak dependence on the connectivity. Defining the resource at
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Fig. 2. Results for N = 1000, φ(y) = y2/2, W = ∞ and 1000 samples. (a) The current
distribution P (Ky)/K for 〈Λ〉 = 0.02, 0.5, 1, and c = 3 (solid lines), 4 (dotted lines),
5 (dot-dashed lines), large K (long dashed lines). Inset: P (y = 0) as a function of 〈λ〉
for c = 3 (©), 4 (�), 5 (♦), large K (line). (b) The resource distribution P (r) for
〈λ〉 = 0.02, 0.1, 0.5, large K. Symbols: as in (a). Inset: P (r > 0) as a function of 〈λ〉.
Symbols: as in the inset of (a).

node i by ri≡
∑

j Aijyij + λi, the resource distribution P (r) shown in Fig. 2(b)
confirms this behavior even at low connectivities. The fraction of nodes with un-
saturated capacity constraints increases with the average capacity, and is weakly
dependent on the connectivity (Fig. 2(b) inset). Hence the saturated nodes form
a percolating cluster at a low average capacity, and breaks into isolated clusters
at a high average capacity. It is interesting to note that at the average capacity
of 0.45, below which a plateau starts to develop in the relaxation rate of the
recursion relation, Eq. (3), the fraction of saturated nodes is about 0.47, close
to the theoretical percolation threshold of 0.5 for c=3.

5 The Price Iteration Algorithm

An alternative distributed algorithm can be obtained by iterating the chemi-
cal potentials of the node. Introducing Lagrange multipliers μi for the capacity
constraints we get, for links with unlimited bandwidths, L =

∑
(ij Aijφ(yij) +∑

i(
∑

j Aijyij +λi). The extremum condition yields yij = φ′−1(μj−μi), and us-
ing the Kühn-Tucker condition, μi can be solved in terms of μj of its neighbours,
namely,

μi = min(g−1
i (0), 0); gi(x) =

∑
j

Aijφ
′−1(μj − x) + λi. (7)

This provides a local iterative method for the optimization problem. We may in-
terpret this algorithm as a price iteration scheme, by noting that the Lagrangian
can be written as L =

∑
(ij)AijLij +constant, where Lij = φ(yij)+(μi−μj)yij .
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Therefore, the problem can be decomposed into independent optimization sub-
problems, each for a current on a link. μi is the storage price at node i, and
each subproblem involves balancing the transportation cost on the link, and the
storage cost at node i less that at node j, yielding the optimal solution. This
provides a pricing scheme for the individual links to optimize, which simulta-
neously optimize the global performance [10]. Simulations show that it yields
excellent agreement with the theory Eq. (3) and message-passing Eqs. (5-6).

6 The Unsatisfiable Case

For links with small bandwidth W , or nodes with negative average capacity,
there exist nodes which violate the capacity constraint. In these unsatisfiable
cases, it is expedient to relax the constraints and search for optimal solutions
which limit the violations. Hence we consider the cost ψ(λi, {yij|Aij = 1}) =
Θ(−∑j Aijyij − λi)(

∑
j Aijyij + λi)2/2. The message-passing algorithm now

becomes

Aij ← −μij ,

Bij ←
⎧⎨⎩1 +

∑
k �=i

Ajk(φ′′
jk + Bjk)−1Θ

[
W −

∣∣∣∣∣yjk −
φ′

jk + Ajk + μij

φ′′
jk + Bjk

∣∣∣∣∣
]⎫⎬⎭

−1

,(8)

where μij = min(g−1
ij (0), 0), with

gij(x) =
∑
k �=i

Ajk max
{−W,min

[
W,φ′−1(μjk − x)

]}− yij + λj − x, (9)

The backward message is given by

yjk ← max

[
−W,min

(
W, yjk −

φ′
jk + Ajk + μij

φ′′
jk + Bjk

)]
. (10)

The price iteration algorithm now uses μi = min(g−1
i (0), 0), where

gi(x) =
∑

j

Aij max
{−W,min

[
W,φ′−1(μj − x)

]}
+ λi − x, (11)

As shown in Fig. 3(a), the average cost per node 〈E〉/N increases rapidly when
〈λ〉 enters the unsatisfiable regime, and the results obtained by the theory, the
message-passing and price iteration algorithms show excellent agreement. There
are 3 types of links in the network: idle (|yij | = 0), unsaturated (|yij | < W ) and
saturated (|yij | = W ). When 〈λ〉 enters the unsatisfiable regime, the fraction
of idle links vanishes rapidly, while that of saturated links increases to a steady
level, implying that more resources are transported in the links in response to
the networkwide demand on resources (Fig. 3(a) inset).



762 K.Y.M. Wong, C.H. Yeung, and D. Saad

Figure 3(b) shows the simulation results when W varies. For large values
of W , the average cost is effectively constant, since the link bandwidth con-
straints become irrelevant. On the other hand, when W decreases, the average
cost increases rapidly, since the links become increasingly ineffective in allocating
resources in the network.

As shown in Fig. 3(b) inset, the fraction of saturated links increases when
W decreases. It is interesting to note that the fraction of idle links increases
when W decreases, contrary to the expectation that more links are involved in
resource provision. This can be attributed to what we call a relay effect. If the
links in the network were unconstrained, nodes with sufficiently large violations
would have drawn currents from distant neighbours, causing currents to flow
through many intermediate nodes, which act as relays for resource transmission.
However, when W is small, the currents drawn by nodes with violations from
their nearest neighbours may have already saturated the links, and there is no
use to draw currents from further neighbours. In the limit of vanishing W , the
links are exclusively either idle or saturated. In this limit, a link is idle only
when both nodes at its ends have positive λ. Hence the fraction of idle links
is fidle = 1 − fsat = [P (λ > 0)]2. Since the transportation cost is negligible in
this limit, the contribution to the average cost only comes from the violated
nodes, given by 〈E〉/N = 〈Θ(−λ)λ2/2〉λ. These predictions are consistent with
the simulation results in Fig. 3(b).

−1 −0.5 0 0.5
< λ>

0

0.2

0.4

0.6

<
E

>
/N

−1 −0.5 0
<λ>

0

0.5

F
ra

ct
io

n

Saturated

Unsaturated

Idle

(a)

0 0.5 1
W

0

0.1

0.2

0.3

<
E

>
/N

0 0.5
W

0

0.5

F
ra

ct
io

n

(b)

Idle

Saturated

Unsaturated

Fig. 3. Results for N = 1000, c = 3, φ = 0.05y2 and 100 samples. (a) 〈E〉/N as a
function of 〈λ〉 for W = 1. Symbols: Bethe approximation (+), message-passing (),
price iteration (©). Inset: the fraction of idle, unsaturated and saturated links as a
function of 〈λ〉 for W = 1; the vertical height of each region for a given 〈λ〉 corresponds
to the respective fraction. (b) 〈E〉/N as a function of W for 〈λ〉 = 0. Symbols: message-
passing (), price iteration (©), W → 0 theoretical limit (•). Line: exponential fit for
small values of W . Inset: the fraction of idle, unsaturated and saturated links as a
function of W for 〈λ〉. Symbol: W → 0 theoretical limit of the fraction of idle links (•).
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7 Conclusion

We have studied a prototype problem of resource allocation on sparsely
connected graphs. The resultant recursion relation leads to a message-passing
algorithm for optimizing the average cost, which significantly reduces the compu-
tational complexity of the existing method of global optimization, and is suitable
for online distributive control. The suggested 2-parameter approximation pro-
duces results with excellent agreement with the original recursion relation and
the price iteration algorithm. The Bethe approximation also reveals the scaling
properties of this model, showing that the resource distribution on the nodes de-
pends principally on the networkwide availability of resources, and depends only
weakly on the connectivity. Links share the task of resource provision, leading
to current distributions that are almost universally dependent on the resource
availability after rescaling.

While the analysis focused on fixed connectivity and zero temperature for
optimization, it can accommodate any connectivity profile and temperature pa-
rameter. For instance, we have considered the effects of adding anharmonic terms
and frictional terms to the quadratic cost function. The message-passing algo-
rithm can be adapted to these variations, and the results will be presented else-
where. Besides, it can be used for analyzing a range of inference problems with
continuous variables other than optimization. These advances open up a rich
area for further investigations with many potential applications in optimization
and inference.
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Abstract. In many large applications a large number of input variables
is initially available, and a subset selection step is needed to select the
best few to be be used in the subsequent classification or regression step.
The designer initially screens the inputs for the ones that have good
predictive ability and that are not too much correlated with the other
selected inputs. In this paper, we study how the predictive ability of the
inputs, viewed individually, reflect on the performance of the group (i.e.
what are the chances that as a group they perform well). We also study
the effect of “irrelevant” inputs. We develop a formula for the distribution
of the change in error due to adding an irrelevant input. This can be a
useful reference. We also study the role of correlations and their effect on
group performance. To study these issues, we first perform a theoretical
analysis for the case of linear regression problems. We then follow with an
empirical study for nonlinear regression models such as neural networks.

1 Introduction

Variable selection is an important first step in the majority of the machine learn-
ing approaches. There are two major approaches for subset selection [3], [5], [8].
In the first one, the so-called filter approach, one tests the input variables without
considering which classification or regression method is going to be used. This is
typically done using general criteria that measure the performance potential of
the input variables. The other approach is called the wrapper approach [6], and
considers testing the inputs in conjunction with the classification or regression
method that will be used. Because of the combinatoric nature of the needed
search, approximate methods such as the forward sequential selection method
or the backward sequential selection method are typically used. In the majority
of large scale applications typically a combination of filter/wrapper approaches
is performed. The user initially screens the typically numerous available input
variables and removes irrelevant and correlated inputs. This step often includes
judgement from the application domain, and is based on looking at a num-
ber of performance measures such as the individual prediction or classification
performance of the input. and the correlation coefficients between the inputs.
Once the bad inputs are screened out, a more quantitative wrapper method is
implemented to select the best few.

The goal of this paper is to consider this first screening step, and develop
insights into the several measures used. An important measure considered is the

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 764–775, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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individual prediction performance of the input. Given that the considered inputs,
viewed individually, are by themselves pedictive, what are the chances that as
a group they will perform well. This question will be addressed in this research.
The other issue is how to determine whether an input is an irrelevant input (or a
“noise” input). We develop a formula for the distribution and the expectation of
the change in performance by adding an irrelevant input, as this can be a useful
reference or a benchmark. It has been a common wisdom that two inputs that are
highly correlated should not be selected together. The reason is that the second
input does not provide much extra information. We will develop some insights
into the role of correlations in predicting how good a subset of inputs works.
In all the analysis we consider linear regression problems to develop theoretical
results. Generalization of this study to nonlinear regression is the second step of
our study and a large scale empirical study is performed for that case. In this
paper we do not consider here finite-sample or overfitting effects. We assume
that the training set is large enough to have accurate measures of the error.

2 Mathematical Preliminaries

Let N and M denote the number of input variables and training data points
respectively. Assume N ≤ M . Let x(m) ∈ R1×N and y(m) ∈ R represent
respectively the mth training set input vector and corresponding target output.
Let us arrange the input vectors in a matrix X ∈ RM×N with the rows being
x(m), and let us also arrange the target outputs y(m) in a column vector y.
Also, let the columns of X be denoted as xn.

In the linear regression problem, the goal is to find the weight vector (vector of
regression coefficients) that minimizes the sum of square error:

E = ‖Xw − y‖2 (1)

The solution is given by
w =

(
XTX

)−1
XT y (2)

and the resulting minimum error is given by

E = yTP⊥
Xy ≡ yT

(
I −X(XTX)−1XT

)
y (3)

where the matrix P⊥
X represents the projection on the null space of X . Another

useful quantity is the projection onto the range of X :

PXy = X(XTX)−1XTy (4)

Maximizing the length of this projection vector is equivalent to minimizing the
error, as we have the fundamental formula (see [7])

‖y‖2 = ‖PXy‖2 + ‖P⊥
Xy‖2 (5)

(see Figure 1 for an illustration). In many cases in this research it is easier to
consider the projection onto the range of X rather than on the null-space of X .
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3 Some Insight

To appreciate the complexity of the studied issues of how individual prediction
performance and correlations factor in, we cite the following example that shows
how often unintuitive conclusions can sometimes be. The problem is given in
Figure 1. The vector x1 is a column vector of X . It represents input no. 1,
where the elements of the vector are the values of the specific input for the
different training patterns. Similarly x2 represents input no. 2. The vector y is,
as defined last section, the target outputs of the different training data points.
For simplicity, we took x1 and x2 to lie in the x-y plane, while the vector y is
slightly tilted above the x-y plane. The angle between x1 and y is close to 90
degrees and so input no. 1 has very little individual predictivity. (The reason is
that the projection of y on x1 is a very small vector.) Similarly, x2 has very little
individual predictivity. In addition, x1 and x2 are highly correlated as the angle
between them is small. It would seem that both inputs would be quite useless:
they are not very predictive, and they are highly correlated. The surprising
outcome, however, is that using both inputs together leads to very small error.
The reason, as one can see graphically, is that the projection vector PXy of y
onto the x-y plane (the plane containing x1 and x2) has a large magnitude. Of
course the result in unintuitive, and this prompts us to attempt further analysis
and study of these relationships.

Fig. 1. An illustration of some of the unexpected behavior for the variable selection
problem. Inputs x1 and x2, viewed individually perform poorly in terms of predicting
y, but togther they perform very well.

4 A Study on Irrelevant Inputs

The other issue is how to determine whether an input is an irrelevant input (or
a “noise” input). In this section we derive a formula for the probability density
of the change in error due to adding an irrelevant input, such as a completely
random input. This experiment can yield a useful reference or null hypothesis.
If for example in some application an added input does not improve the perfor-
mance beyond what is expected of a random input, then that considered input
is a suspect input. The following is the result.
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Theorem: Assume the N input vectors xn (columns of X) are distributed ac-
cording to a spherical distribution, i.e. p(xn) = fn(‖xn‖). Also, assume y is
distributed according to any spherical distribution, and let y, x1, . . . , xN be in-
dependent. Then, the distribution of E ≡ E/‖y‖2 (normalized error) is given
by

p(E) = Beta

(
M −N

2
,
N

2

)
≡ Γ

(
M
2

)
Γ
(

M−N
2

)
Γ
(

N
2

)E M−N
2 −1(1− E)N

2 −1 (6)

and the expectation is given by

Ē = 1− N

M
(7)

Proof: Because, what matters is the direction, not the length, of the vector y,
we can normalize the length of each y, so that it lies on a hypersphere, and the
density of y is uniform on the hypersphere (because of the spherical distribution
assumption). Alternatively, we could assume any arbitrary spherical distribution
and work with the unnormalized y. All spherical distributions will give precisely
the same result because they are equivalent to the normalized hypersphere case.
For that purpose, we assume that y is multivariate Gaussian with mean zero
and covariance matrix the identity matrix.

Let L be the linear subspace spanned by x1, . . . , xN . Let us rotate the (M-
dimensional) space of x1, . . . , xN , y such that the first N components coincide
on L. Then, PXy, i.e. the projection of y on L, is given by

PXy = (y1, y2, . . . yN , 0, 0, . . . 0)T (8)

The normalized error is given by

E =
‖P⊥

Xy‖2
‖y‖2 =

‖y‖2 − ‖PXy‖2
‖y‖2 = 1−

∑N
i=1y

2
i∑M

i=1y
2
i

(9)

From [1], we know that the ratio of (9) in the RHS for the case of independent
Gaussian variables yi is a beta distribution. Specifically, the normalized error is
given by the formula in (6)

It is interesting to see that random inputs reduce the error in a linear fashion. So
one should generally be wary if any new input added just a small improvement
in performance.

5 The Effect of Individual Prediction Performance

We have seen in Section 3 that a poor individual prediction performance might
not make the input useless. However, the converse of the above argument is
not valid. An input with good individual prediction performance will guarantee
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at least that amount of performance for the group. This is a well-known fact
because

‖PXS‖ ≤ ‖PX‖ (10)

where XS is the matrix of a subset S of columns of X . But what is average case
performance? How would the input’s individual prediction performance reflect
on the group’s performance?
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Fig. 2. Input group performance given specific individual input performance. All in-
puts have the same individual normalized error as given in the legend: 0.2, 0.4, 0.6, or
0.8. Also shown is the case when the inputs are random. The normalized error for the
group of inputs is graphed as a function of the number of selected inputs.

We performed the following experiment. We generated the columns xn of X
as well as y from a spherical distribution. For simplicity, we normalize y such
that ‖y‖ = 1. We generate the points subject to the condition that ‖Pxny‖2 = q
(guaranteeing that the error E on each individual input is exactly 1− q). Then,
we measure the mean of the group performance (performance of the number
of inputs together). It was hard to derive the expression for the distribution
analytically, so we performed a simulation. Figure 2 shows the expectation of
the error E against N for various values of q for M = 20. In the same graph we
have plotted the expected error curve for random vector case as developed last
section. As we can see from the plot, the performance improves as we add more
inputs. The outperformance over the random input case is always preserved,
thus attesting to the importance of looking at the individual performance of the
inputs. There is some saturation effect when N gets larger, but this is expected
because it is the early few inputs that bring in most of the information.
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6 The Role of Correlations

The role of correlations is more studied in the statistics literature (see [4]), but
we will add here some insights. It is well-known that any nonsingular linear
transformation of the input vectors will not change the prediction performance
of the subsequently designed regression model. Since the linear transformation
can arbitrarily adjust the correlation structure among the variables, one could
imagine that the existence of high or low correlations among two input variables
might not affect the performance of the group of inputs. We have proved the
following interesting theorem that supports that argument:

Theorem: Assume the N input vectors xn (columns of X) are distributed ac-
cording to a spherical distribution, i.e. p(xn) = fn(‖xn‖). Also, assume that y
is distributed according to any spherical distribution. Then, the distribution of
the normalized error E ≡ E/‖y‖2 is independent of the correlation coefficient of
any two given inputs i and j.

Proof: Without loss of generality, let x1 = (1, 0, 0, . . . , 0). Let S1 be the set
of points x2 for which corr(x1, x2) = ρ1. It is given by the following formulas

x21 = ρ1 (11)

N∑
i=2

x2
2i = 1− ρ2

1 (12)

where xni denotes the ith component of vector xn. Similarly, let S2 be the set
of points x2 for which corr(x1, x2) = ρ2, where ρ2 < ρ1. It will obey similar
equations as above with ρ2 replacing ρ1.

Consider the following transformation that maps S1 into S2:

x′2 = βx1 + γ(x2 − x1) (13)

x′n = xn, for n �= 2 (14)

where

β = ρ2 +

√
(1 − ρ2

2)(1− ρ1)
(1 + ρ1)

(15)

γ =

√
1− ρ2

2

1− ρ2
1

(16)

It can be shown that with this choice of γ and β, x′21 = ρ2 and
∑N

i=2 x
′
2i

2 =
1− ρ2

2.

So essentially, S1 and S2 are two spheres with common center and with S2 larger
and enclosing S1. The mapping is performed through a ray that is based at the
center of the spheres and that projects each point in S1 to its closest point on
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S2. It can be seen that after the new transformation, the normalized error E
does not change, i.e.

E
(
x(1), x(2), . . . , x(m)

)
= E

(
x(1), x′(2), . . . , x(m)

)
(17)

The reason is that x′2 is linearly related with x1 and x2, and hence the projec-
tion space (i.e. the linear space spanned by the x′n’s) is the same (as that of
x1, x2, . . . , xN ). Therefore

p
(E , corr(x1, x2) = ρ2

)
= p

(E , corr(x1, x2) = ρ1
)
γM−1 (18)

where γM−1 is the determinant of the Jacobian of the transformation. Also

p
(
corr(x1, x2) = ρ2

)
= p

(
corr(x1, x2) = ρ1

)
γM−1 (19)

where γM−1 here represents also the ratio of the two spheres’ surface areas.
Hence

p
(E|corr(x1, x2) = ρ2

)
= p

(E|corr(x1, x2) = ρ1
)

(20)

Hence the density of E is independent of the correlation between x1 and x2.
The harm that highly correlated inputs bring, however, is (see [4]) the possible

numerical problems encountered due to having very large weight vector values,
and the extra degrees of freedom in the model that increase the complexity of
the model without buying us a better performance.

7 Extension to Nonlinear Models

All the previous analysis considers linear problems. The question is whether the
same findings apply to nonlinear regression models such as neural networks. It
is very hard to derive an analysis similar to the above for nonlinear models. We
therefore perform here only an empirical study. For this purpose we have run a
large scale experimental simulation.

Like in the case of linear regression models, we do not consider here the
overfitting or data insufficiency issue, as this is out of the scope of the paper.
Performance in the presence of large enough training set is only considered.
This does not mean that the study is not useful to cases of small training sets.
Having good performance in the presence of presumably sufficient training data
is a baseline performance that has to be secured at first. Once this is achieved the
overfitting issue could then be addressed, for example by limiting the complexity
of the model.

We consider multilayer networks, and used four the real-world regression prob-
lems:

– The CPU data set of the DELVE data repository [2].
– The HOUSE16H data set of the DELVE data repository [2].
– The end-to-end packet loss rate prediction problem of [9].
– The packet round trip time prediction problem of [9].
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Fig. 3. The relationship between the group performance (NMSEGROUP) and the
average individual variable performance (NMSEAVG), for the case of selections of
three variables. Each point represents a selection of variables selected at random from
among the four benchmark problems considered. Also shown is the regression line for
the points.

These are large scale data sets with many input variables: (21, 16 ,51 and
51 in respectively the four data sets). We used 5000 training patterns for all
the problems, and considered a ten-hidden node network. We used Levenberg-
Marcquardt’s training algorithm, and trained every network for 1000 iterations
using a learning rate of 0.1.

In the first experiment, we are exploring the effect of individual variable per-
formance on group performance. We trained a multilayer network with each
variable as the single only one input, and observed the error. The error measure
we used is the normalized mean square error (NMSE), which is defined as the
mean square error (MSE) divided by the mean of the square of the target values.
So it is a normalized measure of error that generally (but not always) varies from
0 to 1. After we have observed the individual variable performance, we group the
variables into groups with approximately similar NMSE. We have three groups,
variables with NMSE in the range from 0.7 to 0.8, those with NMSE in the range
from 0.8 to 0.9, and those with NMSE in the range from 0.9 to 1. From each
group three variables are selected at random. The reason we limit the choice to
variables from only one group at a time is to have the selected three variables
almost uniform in individual performance (somewhat similar to the experiment
in Section 5).
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Fig. 4. The relationship between the group performance (NMSEGROUP) and the
average individual variable performance (NMSEAVG), for the case of selections of
four variables. Each point represents a selection of variables selected at random from
among the four benchmark problems considered. Also shown is the regression line for
the points.

The average of the individual performances (measured by NMSE) for the
selected three variables is computed (call it AVGNMSE). Also, we compute
the average pairwise correlation coefficients among the three variables (call it
AVGCORR). For example, assume we targeted the group with NMSE from
0.8 to 0.9. We selected three variables at random from this group, and their
individual NMSE’s turned out to be 0.82, 0.86, and 0.88. Assume that the three
inputs’ correlation matrix turned out to be:

C =

⎛⎝ 1 0.2 −0.3
0.2 1 0.5
−0.3 0.5 1

⎞⎠ (21)

Then, AVGNMSE=(0.82+0.86+0.88)/3 and AVGCORR=(0.2+0.3+0.5)/3.
Note that we took the absolute value of the correlation coefficient, because
negating one variable (which does not really alter the information content of
the variable) will flip the sign of the correlation coefficient. After the three vari-
ables are selected, we use these as inputs to a multilayer network. The network
is trained and the performance (NMSEGROUP) is observed. The next step is to
plot a scatter diagram of the group performance NMSEGROUP against the av-
erage individual performance (NMSEAVG). Each point in the scatter diagram
represents a selected subset of three variables for any of the four considered
benchmarks. Thus all random selections, groups, and benchmark problems are
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Fig. 5. The relationship between the group performance improvement and the aver-
age correlation coefficient among the variables in the selected group, for the case of
selections of three variables. Each point represents a selection of variables selected at
random from among the four benchmark problems considered. The performance im-
provement is measured in terms of the percent change in the mean square error. Also
shown is the regression line for the points.

represented in this plot. The reason is to get an idea of the general behavior for
different classes of problems. Each point in the scatter diagram depicts the group
performance NMSEGROUP against NMSEAVG for the considered random se-
lection of three variables. The idea is to see how individual performance carries
through to affect group performance. Figure 3 shows this scatter diagram. One
can see that there is a strong positive effect between individual performance and
group performance. To display such effect, the figure also shows a regression
line that approximates such a relationship. It is seen that the regression line is
far from flat. We repeated that experiment with everything similar as before
except that the selected subset now has four input variables instead of three.
Figure 4 shows the scatter diagram for for the four-input case. We see a similar
phenomenon as the case of three variables.

In the next experiment we explore the relationship between the average corre-
lation of the inputs within a selection with group performance. We plotted scatter
diagrams showing group performance (NMSEGROUP) improvement against the
average intra-group correlation (AVGCORR), using the points obtained in the
last experiments. The group performance improvement is defined as:

Percent improvement = 100(NMSEAVG−NMSEGROUP )/NMSEAVG
(22)
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Fig. 6. The relationship between the group performance improvement and the average
correlation coefficient among the variables in the selected group, for the case of selec-
tions of four variables. Each point represents a selection of variables selected at random
from among the four benchmark problems considered. The performance improvement
is measured in terms of the percent change in the mean square error. Also shown is
the regression line for the points.

Figure 5 shows the case of selections of three input variables, while Figure 6 shows
the case of selections of four input variables. The results obviously show the
importance of correlation as a factor affecting group performance. This does not
agree with the analysis performed last section for the linear regression case. For
the neural network case, theroretically speaking, one can transform the variables
linearly in a way to make the variables uncorrelated. This transformation matrix
can be incorporated into first layer weights. Based on this argument, it should
therefore be expected that correlations should not affect group performance.
Since the simulation results clearly show the contrary, one might hypothesize
that this is perhaps due to training having an easier time with less correlated
input variables. Why this could be the case remains yet to be investigated.

8 Conclusions

In this research we have studied the role of individual input performance and
correlations in predicting the performance of the selected group of inputs. First
we considered the linear regression problem, and discovered through a simple
example that individual performance is not a prerequisite for good group per-
formance. However, good individual performance generally carries through to
the group’s performance. Also, we have proved that adding random or irrelevant
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inputs improves the performance in a linear fashion. We briefly also considered
the correlation issue and proved that correlations do not tilt the expected per-
formance one way or the other, even though high correlations can cause other
problems in some other aspects. We have also observed through an empirical
simulation study for multilayer networks that individual input performance does
indeed affect group performance significantly. We have also shown that low cor-
relation affects positively group performance, indicating the deviation from the
linear regression case.
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Abstract. Protein mass spectrometry (MS) pattern recognition has recently 
emerged as a new method for cancer diagnosis. Unfortunately, classification 
performance may degrade owing to the enormously high dimensionality of the 
data. This paper investigates the use of Random Projection in protein MS data 
dimensionality reduction. The effectiveness of Random Projection (RP) is ana-
lyzed and compared against Principal Component Analysis (PCA) by using 
three classification algorithms, namely Support Vector Machine, Feed-forward 
Neural Networks and K-Nearest Neighbour. Three real-world cancer data sets 
are employed to evaluate the performances of RP and PCA. Through the inves-
tigations, RP method demonstrated better or at least comparable classification 
performance as PCA if the dimensionality of the projection matrix is suffi-
ciently large. This paper also explores the use of RP as a pre-processing step 
prior to PCA. The results show that without sacrificing classification accuracy, 
performing RP prior to PCA significantly improves the computational time. 

1   Introduction 

For many types of cancer, the sooner the cancer is diagnosed and treated, the higher 
the survival rate is. Tumor markers such as cancer antigen 125 (CA125) and prostate-
specific antigen (PSA) have been used widely as an early indicator of cancer. Tumor 
markers, however, may not have sufficient accuracy to reliably detect early stage 
cancer. A marker test that registers normal does not prove that a patient are cancer-
free, nor does an elevated test prove that the patient have presence, progression or 
recurrence of cancer. Consequently, there is a critical need on new methods that are 
more reliable for early cancer detection [1]. 

Some researchers believe that cancer may affect the proteins or peptides concentra-
tion in human blood serum even in the early stages. The earliest attempt to prove this 
concept was carried out by Petricon et al. in 2002 [2]. They employed genetic algo-
rithm combined with self-organizing maps to analyze the protein mass spectrometry 
(MS) pattern and was successful in discriminating ovarian cancer patients from unaf-
fected individuals with an accuracy of 97.41%. Since then, the field of protein MS 
pattern recognition has been intensively researched, particularly focusing on early 
cancer detection.  
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The following is a typical work flow in protein MS pattern recognition process. 
Given an unknown sample of human blood serum, by using protein MS technology, a 
population of proteins in this sample is profiled based on the molecular mass-to-
charge (m/z) identities of individual proteins. The output is a raw spectral that con-
tains relative amplitudes of intensity at each m/z identity. By using pattern recognition 
techniques, researchers attempt to identify the pathological state of the unknown sam-
ple. Supervised pattern recognition techniques must learn from a set of training sam-
ples with known pathological states before it can generate prediction. 

A critical challenge in MS pattern recognition is the extraction of concrete infor-
mation from the MS data that can accurately reflect the pathological state. The diffi-
culty lies in the fact that the MS data is usually characterized with small amount of 
samples and high-dimensional features. The typical ratio of samples to features is at 
the order of thousands. Learning in high dimensions causes problems that are either 
non-existent or less severe compared to lower-dimensional cases. Firstly, applying all 
the features introduces enormous computational overhead to the processing unit. Sec-
ondly, having relatively small amounts of training samples may lead to data over-
fitting, i.e. the predictor parameters are well optimized for the training samples but 
generalize poorly on new samples.  

Generally, there are two approaches to overcome the problems, namely feature se-
lection and dimensionality reduction. Feature selection is concerned with selecting a 
set of optimum discriminatory features that can reflect the actual biological classes 
represented in the data. In contrast to feature selection methods, dimensionality reduc-
tion techniques exploit the information from complete protein spectrum. The main 
idea of dimensionality reduction is to project the input onto a lower-dimensional 
space by preserving essential properties of the data. Common methods for dimension-
ality reduction include Principal Component Analysis (PCA), Singular Value Decom-
position (SVD), Partial Least Squares (PLS), Independent Component Analysis 
(ICA), and etc. Random Projection (RP) has lately emerged as an alternative method 
for dimensionality reduction. In fact, this technique has been tested on hand-written 
digit data set [3], image, and textual data [3] with fairly good results. In addition, RP 
was reported to be computationally less demanding compared with conventional di-
mensionality reduction techniques. 

The objective of this study is to examine the effectiveness of RP in dimensionality 
reduction, particularly on protein MS data. Three real-world cancer data sets are used 
to achieve this. The performance of RP is compared with PCA using three classifica-
tion methods, namely K-nearest Neighbour (KNN), Feed-forward Neural Networks 
(FFNN), and Support Vector Machine (SVM). Apart from that, experiments are also 
conducted to measure the distortion induced by RP and PCA. This study also investi-
gates the use of RP as a pre-processing step prior to PCA.  

The organization of this paper is as follows. A review of previous works is pro-
vided in Part 2. Part 3 gives an overview on PCA. The proposed RP method is then 
explained in detail. In Part 4, the data sets used in this paper are described. The results 
are reported and discussed in Part 5. Finally, the paper concludes with some sugges-
tions for further investigation in Part 6. 
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2   Previous Works 

Several dimensionality reduction strategies and classification methods have been 
proposed to analyze protein MS pattern from human blood serum. This section high-
lights some previous works that are using dimensionality reduction techniques on 
protein MS pattern. Other methods such as feature selection and peak detection are 
not covered here; interested readers can refer to [5] for further details. 

In 2002, Lilien and co-workers developed a supervised classification method called 
Q5 for protein MS pattern recognition [6]. Q5 employed PCA and linear discriminant 
analysis followed by probabilistic classification. Q5 was tested against three ovarian 
cancer data sets and one prostate cancer data set. Replicate experiments of different 
training/testing partitions were carried out. The authors claimed that their algorithm 
achieved sensitivity, specificity, and accuracy above 97%. 

In 2003, Purohit and Rocke conducted a comparative study of unsupervised 
method and supervised method on protein MS pattern of 41 patients [7]. Prior to the 
experiments, the authors progressively binned the data by averaging adjacent features 
within a uniform moving window. Square root transformation was then applied on the 
data. In the study of unsupervised classification, PCA combined with hierarchical 
clustering gave classification accuracy of 68%. Whereas in the study of supervised 
classification, PLS was used for dimensionality reduction. Two classification meth-
ods, namely linear discriminant analysis and logistic regression were proposed. En-
couraging results were obtained and both of the suggested classification methods were 
claimed to have classification accuracy of 100% respectively. Leave-one-out cross 
validation was performed through out the experiments. 

Similar experiments were undertaken by Shen and Tan in 2005 [8]. The authors 
also applied PLS for dimensionality reduction. Penalized logistic regression was pro-
posed for classification. 30 random training/testing partitions were conducted to ver-
ify the classification results. By using the same ovarian cancer data set used in [6], the 
authors claimed that their approach have an accuracy of 99.92%. Sensitivity and 
specificity were not reported in their paper. 

3   Dimensionality Reduction Techniques  

3.1   Principal Component Analysis 

One of the most widely used dimensionality reduction techniques is PCA. PCA aims 
at reducing the data dimensionality while determining orthogonal axes of maximal 
variance from the data. For PCA to work properly, the mean has to be subtracted from 
each dimension. Next, eigen decomposition of the covariance matrix is computed. 
Eigenvalues and eigenvectors are then sorted in descending order. Components with 
higher eigenvalues explain more of the total data variances. Normally, most of the 
variances are captured in the first few components. A new dimensionality-reduced 
data set can be derived by projecting the original data set onto these principal  
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components. The projection matrix comprising these principal components is referred 
as “PCA basis” in this paper. 

The main drawback of PCA is the computational complexity, which is known to be 
O(d2n) + O(d3), where d is data dimensionality and n is the number of cases. PCA is 
computationally costly because it performs the eigen decomposition of the covariance 
matrix. Although PCA may be carried out more efficiently by using SVD decomposi-
tion and by omitting zero eigenvalues in calculation, the computational overhead is 
still too high for high-dimensional data sets like protein MS data. 

3.2   Random Projection 

The main idea of RP originates from the Johnson-Lindenstrauss lemma. The theorem 
states that a set of n points in high-dimensional Euclidean space d can be projected 
onto a randomly chosen lower-dimensional Euclidean space k (k < d) without dis-
torting the pairwise distances by more than a factor of (1 ± ). More precisely, accord-
ing to the following Johnson-Lindenstrauss lemma [9]:  

For any  such that 0 <  < ½, and any set of points S in n, with |S| = m, upon 
projection to a uniform random k-dimensional subspace, k  [9 ln m / ( 2 – 2 3/3)] + 
1, the following property holds: with probability at least ½, for every pair u, u' ∈  S, 
and f(u), f(u') are the projections of u, u'. 

222
)1()'()()1( 'uuufuf'uu −+≤−≤−− εε  (1) 

The computational complexity of RP is lower than PCA, which may be expressed 
as O(nkd). This is because of the steps to perform RP are mathematically simpler than 
PCA. To carry out the projection, a high-dimensional data matrix Xd×n is multiplied 
with a projection matrix Rk×d. The projection matrix is a random orthogonal matrix 
where the Euclidean length of each column is normalized to unity. The resulting k-
dimensional matrix Yk×n can be expressed as: 

nddknk ××× = XRY  (2) 

In most cases, the projection matrix is not completely orthogonal. However, by us-
ing a Gaussian distributed random matrix, whose entries is independent and identi-
cally distributed, with mean = 0 and variance = 1, the matrix would be very close to 
being orthogonal in a high-dimensional space. Therefore, a high-dimensional Gaus-
sian distributed random matrix can be viewed as an approximation to an orthogonal 
matrix, in which the property can be expressed in the following equation: 

IRRT ≈  (3) 

In fact, there are simpler random distributions that have similar properties and yet 
computationally more efficient, such as sparse random matrices introduced by Ach-
lioptas [10]. The entries in a sparse random matrix are either uniformly chosen from 
{-1, 1}, or from {± , 0}, by selecting ±  with probability 1/6 each and 0 with 
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probability 2/3. This paper will focus on the use of Gaussian distributed random  
matrix. 

4   Data Sets 

Three real-world cancer data sets, i.e. two ovarian cancer data sets (OC-WCX2a and 
OC-WCX2b) and one prostate cancer data set (PC-H4) were used to investigate the 
applicability of RP in reducing dimensionality of protein MS data. These data sets are 
obtained from Clinical Proteomics Program Databank, National Cancer Institute [11]. 
The data sets were named by using the cancer type screened and the SELDI affinity 
chip technology, i.e. Weak Cation Exchange (WCX2) and Hydrophobic (H4). OC-
WCX2a and PC-H4 were manually prepared; OC-WCX2b was prepared by robotic 
instrument [11]. The data was generated by using surface-enhanced laser desorp-
tion/ionization time of flight (SELDI-TOF) mass spectrometer [2]. Each of these data 
sets consists of samples from cancer patients and control patients. Each sample is 
composed of 15154 features, which are defined by the corresponding molecular mass-
to-charge (m/z) identities. All features were baseline subtracted and were rescaled so 
that they fall within the range of 0 and 1. The details of the data sets are summarized 
in Table 1. 

Table 1. Details of cancer data sets 

Data Set Control Cancer Number of Features 
OC-WCX2a 100 100 15154 
OC-WCX2b 91 162 15154 

PC-H4 63 69 15154 

5   Results and Discussion 

5.1   Distortion Analysis 

Prior to the classification experiments, it is important to compare the distortion intro-
duced by PCA and RP to the original data space. In order to compute the distortion, 
Equation (1) was rearranged, and the distortion distf(u, u') may be expressed as: 

( ) ( ) ( )
2

2

,
uu

ufuf
uuf −

−
=dist  (4) 

Distortion induced by PCA and RP is depicted in Fig. 1. The results were averaged 
over 100 pairs of random samples of OC-WCX2a data set. Unity distf(u, u') implies 
that there is no distortion induced. The lower the distf(u, u') is, the greater the distor-
tion induced. As can be seen from Fig. 1, there is no significant difference between 
the distortion induced by PCA and RP within projection dimensionality from 10 to 
140. This suggests that RP may perform as well as PCA by retaining a significant 
degree of data information. 
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Fig. 1. This figure shows the results averaged over 100 pairs of random samples along with 
95% confidence intervals 

5.2   Classification Performance 

A series of experiments have been conducted to compare the performance of RP with 
PCA by using three classification methods, namely KNN, FFNN, and SVM. The 
three learning algorithms were chosen so that they represent a diverse set of learning 
biases. The primary focus is not to compare the performance of these classification 
methods, but the differences in their performance while using PCA and RP for dimen-
sionality reduction. Common performance metrics for medical diagnosis are used 
here, namely accuracy, sensitivity, and specificity. Positive case is referred to the 
presence of particular disease while a negative case means the absence of the disease. 
These metrics are calculated as follows: 

• Accuracy – the ratio of the number of correctly diagnosed cases to the total num-
ber of cases. 

• Sensitivity – the ratio of the number of positive cases correctly diagnosed to the 
total number of positive cases. 

• Specificity – the ratio of the number of positive cases correctly diagnosed to the 
total number of positive cases. 

Split-sample cross-validation was employed to validate the results. Using this vali-
dation method, a data set was randomly divided into training set and testing set. In 
this study, the samples for each data set were randomly partitioned into 75%/25% of 
training/testing set. The same process mentioned above was repeated to generate 30 
random training/test partitions. 

Following these partitions, dimensionality reduction was performed on each train-
ing set. For RP method, the original high-dimensional training samples were projected 
onto a lower-dimensional space by using a random matrix R. Consequently, the di-
mensionality-reduced training samples were used to train the classifiers. In the testing 
stage, the same random matrix R was again used to project the original testing sam-
ples onto a lower-dimensional space. Similar procedures were repeated in the PCA 
experiments. After partitioning the training/testing samples, a PCA basis was com-
puted from the training samples. The training samples were then projected onto the 
PCA-space representation via the PCA basis. In the testing stage, the testing samples 
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were projected onto the PCA-space representation by using the same PCA basis. Each 
classifier’s performance was measured based on the predictions of the dimensionality-
reduced testing samples. Note that all testing sets were not involved in the prediction 
model building process in order to avoid biased results.  

For both RP and PCA experiments, the dimensionality of projection matrix, i.e. 
random matrix R and PCA basis was changed from low value (10) to a high value 
(140) in order to examine the effect of this parameter on the results. For each of these 
different dimensionalities, 30 random training/test partitions were tested and the final 
results were estimated using 1000 bootstrap samples at 95% confidence intervals. The 
results are given in Fig. 2. Sensitivity, specificity, and confidence intervals are not 
shown in Fig. 2 so as to maintain clarity and readability. However, exceptional cases 
will be reported and discussed in the paper. 

Prior to the KNN experiment, some experiments were carried out to find the opti-
mum number of neighbours K. It turned out that K = 5 gave the best performance, so 
this value was used here. As can be observed from Fig. 2, the performance of PCA 
generally outperformed RP in the lower dimensions. Nevertheless, performance of 
PCA showed a drastic decline when the dimensionality increased. The performance of 
KNN appeared to be less affected by RP. The results may be expected since the un-
derlying operation of KNN is based on Euclidean distance computations, while RP 
tends to preserve the inter-point distances. Thus, one would expect to obtain better 
results by using RP as compared with PCA. 

For the FFNN experiment, the number of hidden units was fixed to five. In contrast 
to KNN, performance of PCA remained constant throughout the experiment. RP per-
formed slightly poorer as compared with PCA, but its performance improved noticea-
bly as the dimensionality of projections increased. Performance of PCA was better in 
lower dimensions, but RP was able to match the performance of PCA in higher di-
mensions. 

Apart from KNN and FFNN, SVM with Gaussian radial basis kernel was also em-
ployed in this study. From Fig. 2, it can be observed that performance of PCA was 
generally better than RP in lower dimensions, but the performance of RP was better 
than PCA or at least comparable with PCA when the dimensionality increased. RP 
yielded the best results when it was combined with SVM, and the dimensionality of 
projection matrix was set to 100. The details of the results are summarized in Table 2 
along with the 95% confidence intervals in parentheses. 

Table 2. Classification performance of RP combined with SVM 

Data Set Accuracy (%) Sensitivity (%) Specificity (%) 
OC-WCX2a 94.00 (94.00 - 94.00) 95.87 (95.60 - 96.00) 92.13 (92.00 - 92.40) 
OC-WCX2b 99.89 (99.68 - 100) 100.00 (100 - 100) 99.71 (99.13 - 100) 

PC-H4 99.90 (99.70 - 100) 99.81 (99.41 - 100) 100.00 (100 - 100) 

 
On the whole, the performance of PCA remained approximately stable and outper-

formed RP results in the lower dimensions, but its performance decreases in higher 
dimensions. Although the performance of RP was inferior to the performance of PCA 
in lower dimensions, the performance improved as dimensionality increased. The 
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drop of PCA average accuracies in higher dimensions may be caused by the inclusion 
of less important components that leads to worse rather than better performance. 

5.3   Combination of PCA and RP 

Due to the ability of keeping the subspace that has largest variance, PCA seemed to 
be better in eliminating the impact of noise in a data set to some extent. This advan-
tage, however, comes at the price of greater computational requirement, especially for 
high-dimensional data sets. On the other hand, RP is computationally more efficient 
for high-dimensional data set but it may not be able to filter out redundant informa-
tion. The main purpose of this experiment is to investigate the performance of com-
bining PCA and RP with the intention to complement the strength of both techniques. 
In this experiment, RP was performed prior to PCA to reduce the original data dimen-
sionality from 15154 to 140. Then, PCA was carried out in the lower-dimensional 
space to eliminate the redundant information.  

As can be seen from Fig. 2, in most cases, accuracies of PCA + RP were compara-
ble to PCA results and RP results in low dimensions. Table 3 summarizes the average 
processing time taken for PCA, RP and their combination. The amount of time to 
perform RP and PCA+RP is clearly shorter than using PCA alone. RP considerably 
speeds up PCA algorithms whose run-time is largely governed by the dimension of 
the working space. The results suggested that RP could be used as pre-processing step 
before PCA in order to reduce the computational load without introducing great dis-
tortions to the original data. 

Table 3. Average Processing Time Over 30 Runs Using OC-WCX2a Data Set 

Method Processing Time (sec)  
PCA 16.571 ± 0.213 
RP 3.945 ± 0.044 

PCA + RP 4.016 ± 0.048 

6   Conclusions and Further Works 

Protein MS technology allows medical practitioners to characterize and determine the 
patterns of tens of thousands of proteins simultaneously. Unfortunately, conventional 
dimensionality reduction methods and pattern recognition techniques may fail be-
cause of the high dimensionality of the data. The work presented in this paper investi-
gates the efficacy of using RP as a dimensionality reduction tool for protein MS data. 
A series of experiments have been systematically conducted to compare the perform-
ance of RP with PCA. Performances of PCA and RP were tested against three cancer 
data sets by using KNN, FFNN, and SVM. From the results, performance of RP gen-
erally improves as the dimensionality increases. Although PCA slightly outperformed 
RP in low dimensions, RP was able to achieve comparable performance in high-
dimensional space, and yet with less computational overhead.  

Another focus of this paper is to explore the use of RP as a pre-processing step 
prior to PCA. As a result of performing RP beforehand, PCA took advantage of the 
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speedup produced by working over fewer dimensions. In most cases, the accuracies 
obtained were comparable to PCA results and RP results in low dimensions. 

The work presented in this paper has revealed the potential of RP as an efficient 
dimensionality reduction method for protein MS data.  Nonetheless, there are still a 
number of areas that can be enhanced and pursued as further work. Firstly, experi-
ments can be carried out to investigate the use of sparse random matrices [10]. Apart 
from that, another issue that needs to be addressed is the drifts in SELDI-TOF ma-
chines [15]. Protein MS data generated by SELDI-TOF machines may vary time-to-
time and machine-to-machine. Current experiments are based on low-resolution MS 
data. Motivated by the need for greater precision, more experiments are undergoing to 
further vindicate the proposed RP method by using high-resolution MS data [15]. But 
then again, higher data resolution propagates the “curse of dimensionality” and in-
creases the computational overhead. Intuitively, one would expect the computational 
requirement of PCA to increase exponentially. Again, RP may play an important role 
in reducing the dimensionality of high-resolution MS data.  

Protein MS pattern analysis has great potential for use as part of standard cancer 
diagnosis tests. Nevertheless, in terms of practicality, there are a number of challenges 
that have to be resolved before MS pattern recognition can be fully applied in medical 
screening test or treatment monitoring. The results shown in this paper revealed that 
RP may be an alternative to conventional dimensionality reduction techniques for 
high-dimensional protein MS data. Nonetheless, RP is not restricted for protein MS 
data, but also other high-dimensional data such as textual data and microarray data. 
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Appendix. Classification Performance  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. This figure shows the accuracies (Y-axis) of KNN, FFNN, and SVM when three differ-
ent dimensionality reduction techniques are used, namely PCA ( ), RP ( ), and PCA+RP 
( ). X-axis represents the dimensionality of projection matrix. Results are averaged over 30 
training/testing partitions and are estimated using bootstrapping method at 95% confidence 
intervals. 
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Abstract. The learning vector quantization(LVQ) is a model of neu-
ral networks, and it is used for complex pattern classifications in which
typical feedforward networks don’t give a good performance. Fault toler-
ance is an important feature in the neural networks, when they are used
for critical application. Many methods for enhancing the fault tolerance
of neural networks have been proposed, but most of them are for feed-
forward networks. There is scarcely any methods for fault tolerance of
LVQ neural networks. In this paper, I proposed a dependability measure
for the LVQ neural networks, and then I presented two idea, the border
emphasis and the encouragement of coupling, to improve the learning al-
gorithm for increasing dependability. The experiment result shows that
the proposed algorithm trains networks so that they can achieve high
dependability.

1 Introduction

Nowadays, artificial neural networks are studied and used in various applica-
tions, for example, in pattern and speech recognition, in classification, in signal
and image processing and so on[1]. Advanced VLSI technologies allows the hard-
ware implementation of such systems at reasonable costs and with respectable
performance. Since defects at the end of production nor faults during life time
are not avoidable in hardware, fault tolerance is an important feature when they
are used in mission-critical applications.

It is often claimed that neural networks are inherently fault tolerant, be-
cause neural networks are distributed computing systems, and are insensitive
to partial internal faults. However, without a special design, it is difficult to
guarantee the degree of fault tolerance. Martin and Damper[2] shows that an
increase in the number of nodes will not ensure improvement in fault tolerance.
Some mechanisms to enhance the fault tolerance should be incorporated into the
implementation.

Neural networks are categorized into the three models: signal-transfer net-
works, state-transfer networks and competitive-learning networks. In the signal-
transfer networks, the output signal values depend uniquely on input signal.
Typical representatives of this model are layered feed forward networks in which
the error-back-propagation algorithm is used for learning. In the state-transfer

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 786–795, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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networks, the feedbacks from the output signal values change the state of net-
works, and it converges to one of its stable states. Typical representatives of
this model are the Hopfield networks[3] and the Boltzmann machine[4]. In the
competitive-learning networks, the neurons receive identical input information,
and they compete in their activities. Typical representatives of this model are
the self-organizing maps(SOM)[5] and the learning vector quantization(LVQ)[5].
The SOM and LVQ are used for complex pattern classifications[6] in which feed
forward networks don’t give a good performance because of the difficulty of con-
vergence with error-back-propagation. The schemes to increase fault-tolerance
of neural networks have been proposed in literature[7][8][9], but most of them
are focused only on the feedforward networks, i.e. fault tolerance in competitive-
learning networks is out of work.

In this paper, after a brief review of the LVQ, I discuss the effects of faults and
dependability measure in the LVQ. In section 4, I propose a training algorithm
for improving the fault-tolerant capabilities of the LVQ. In section 5, I present
experimental results of proposed methodology.

2 Brief Review of Learning Vector Quantization

Learning Vector Quantization(LVQ) is a method of a statistical classification
or recognition, and its purpose is to define class region in the input space Rn.
Figure 1 shows a configuration of the LVQ neural network system. Each neuron
Ni has a codebook vector mi = [μi1, μi2, · · · , μin]T ∈ Rn, and is assigned to one
of the classes into which input vector x = [x1, x2, · · · , xn]T ∈ Rn is classified. An
input vector x is given to all neurons in parallel, and each neuron calculates the
distances between x and its codebook vectors mi. Thereafter, x is determined
to belong to the same class to which the nearest mi belongs.
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The value of mi is obtained by the following learning process. Let c be the
index of the nearest mi to x :

c = arg min
i
{d(x,mi)} (1)

where d(x,mi) is a Euclidean distance ||x − mi||. And let x(t) be an input
sample, and let mi(t) represent sequential values of the mi in the discrete-time
domain, t = 0, 1, 2, · · ·. The following equations define the LVQ process.

mc(t+ 1) = mc(t) + αc(t)[x(t) −mc(t)]
if x and mc belong to the same class (2)

mc(t+ 1) = mc(t)− αc(t)[x(t) −mc(t)]
if x and mc belong to different classes (3)

mi(t+ 1) = mi(t)
for i �= c (4)

Here 0 < αi(t) < 1, and αi(t) (learning rate) is decreased monotonically with
time (in LVQ1 algorithm) or optimized by the following recursion (in OLVQ1
algorithm)

αc(t) =
αc(t− 1)

1 + s(t)αc(t− 1)
(5)

where s(t) = 1 if the classification is correct, and s(t) = −1 otherwise.
In LVQ1 and OLVQ1 learning algorithm, only one codebook vector which

is the closest to the input vector(i.e. the winner’s codebook) is updated. The
improved learning algorithms have been proposed in which not only the winner’s
codebook but also the runner-up’s codebook is updated. Here we introduce one
of them that is called LVQ3. Suppose mi and mj are the two closest codebook
vectors to the input vector x. They are updated as follows if x and mi belong
to the same class, while x and mj belong to the different classes.

mi(t+ 1) = mi(t) + α(t)[x(t) −mi(t)]
mj(t+ 1) = mj(t)− α(t)[x(t) −mj(t)] (6)

If all of three vector x, mi and mi belong to the same class, both codebook
vector are updated toward the input vector x with learning factor ε.

mi(t+ 1) = mi(t) + εα(t)[x(t) −mi(t)]
mj(t+ 1) = mj(t) + εα(t)[x(t) −mj(t)] (7)

3 Fault Model and Effects of the Faults in LVQ

Due to a wide variety of hardware implementation of neural networks, it is
difficult to find a general representation of faults in the lower level of system
architecture. In this paper, I consider the behavior of neural network system in
the functional level, and assume the following fault model.
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– I assume fault occur on neurons. The faulty neuron loses its functionality
and never be selected as the nearest codebook vector.

– I assume no fault occurs on competition mechanism. The input vector is clas-
sified into the class to which the nearest fault-free neuron(codebook vector)
belongs.

Because of the competitive nature of LVQ neural networks, only the neuron
which is the nearest to the input vector concerns output. Therefore, it depends
on the input vectors whether a fault causes erroneous classification or not. I need
a fault tolerance metric related to input vectors.

Under the fault models above, a fault is activated only when the faulty neu-
ron is the nearest to the input vector, and belongs to the class different from
the runner-up neuron. Let P (Fi) be the a priori probability of fault Fi, where
Fi denote the fault on the neuron Ni, and let p(x) be the probability density
function of the input vector x. Then, the expected error rate E is given by

E =
∑

i

∫
s(Fi,x)P (Fi)p(x)dx (8)

where s(Fi,x) is the activity of the fault by the input vector;

s(Fi,x) = 1 if Ni is the nearest to x, and
class(Ni) �= class(the runner-up neuron) (9)

s(Fi,x) = 0 otherwise (10)

Unfortunately, in most application, It is rarely obtained that the knowledge
about the probability density function of the input vector p(x). In a typical case
there is only a number of samples or training data. Supposing that sample data
set X consists of m samples x1, · · · ,xm, and they are drawn independently and
identically distributed according to the probability law p(x), I introduce E(X),
the expected error for sample data set X , as follows.

E(X) =
∑

i

m∑
j=1

s(Fi,xj)P (Fi) (11)

Assume that the probabilities of fault P (Fi) are identical for all neurons, then
E(X) is given by;

E(X)|P (Fi)=λ = λ
∑

i

m∑
j=1

s(Fi,xj) (12)

I define the coefficient of error for sample data set X as;

CE(X) =
∑

i

m∑
j=1

s(Fi,xj) (13)

In order to evaluate the fault tolerance of LVQ neural networks, I have calcu-
lated CE(X) for the networks trained by OLVQ1 algorithm in the programming
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Table 1. Fault tolerance of the networks trained by the Iris plants database

# of Neurons 8 9 10 11 12 13
Running Length

of Training 400 600 800 1,000 1,200 1,400
Total Accuracy (mean) 96.73 96.73 97.13 96.80 97.47 97.33
w/o Faults(%) (s.d.) 0.36 0.38 0.35 0.42 0.24 0.23
CE(X) (mean) 25.5 19.9 19.5 20.2 14.2 17.4

(s.d) 1.78 1.79 1.16 1.88 1.49 1.72

Table 2. Fault tolerance of the networks trained by the speech signal database

# of Neurons 150 200 250 300 350 400
Running Length

of Training 6,000 8,000 10,000 12,000 14,000 16,000
Total Accuracy (mean) 92.88 93.73 94.32 94.81 95.10 95.31
w/o Faults(%) (s.d.) 0.10 0.14 0.08 0.10 0.03 0.05
CE(X) (mean) 201.1 183.9 181.0 175.9 168.6 162.3

(s.d.) 4.92 2.34 2.85 4.80 2.12 3.44

package “LVQ PAK”[5][10]. The training data sets I used are the iris plants
database[11] and the speech signal database[10]. The former has 150 instances
with 4 attributes and categorized in 3 classes, and the latter has 1,962 instances
with 20 attributes and categorized in 20 classes. Table 1 and 2 show the results
of calculation. As shown in these tables, the CE(X)s of the networks doesn’t
decrease very much even if the number of neurons increased, and the redundant
neurons seem not to contribute to the improvement of fault tolerance.

4 Fault Tolerant Training of LVQ

With my fault models, the fault causes a failure only when the faulty neuron
is the nearest to the input vector, and it belongs to the class different from the
runner-up neuron. Thus the influence of the faults around the class border is
more serious than the one in the center of the class. On the other hand, the
influence of the faults becomes smaller as the density of the codebook vectors
which belongs to same class is higher, because the function of the faulty neuron
may be covered by the neuron of the same class. In extreme case, A single fault
is masked by the duplication of neurons.

4.1 Border Emphasis

As mentioned above, form the point of view of fault tolerance, the density of
the codebook vector should be high around the class border. However, the LVQ
learns a codebook vector so that it approximates the probability density function
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of the input data space. If the probability density of the target problem is high
in the center of the decision area, and low around the borders, the fault tolerance
of LVQ neural networks couldn’t be expected.

The purpose of LVQ is to define class regions in the input data space, only the
codebook vectors that is closest to the class borders are important to the decision,
a good approximation of the probability density function is not necessary. I
propose the “border emphasis” learning to increase the fault tolerance of LVQ
neural networks. I change the distribution of the original input data, so that the
network learns the input vectors which are close to the borders repeatedly, and
the density of the codebook vector becomes higher around the borders.

Unfortunately, I can’t know which input vectors are close to borders, in ad-
vance. Instead, I assume that an input vector is near to the borders if the class of
the winner’s codebook vector is different from the class of the runner-up vector.
Vectors which meet my assumption propose are marked, and the network learns
the marked vectors again.

4.2 Encouragement of Coupling

The single fault in the neurons will be masked by the duplication, and the
duplicated network can be composed as follows;

1. Make each two neuron a pair.
2. Give the same initial value to each of the neuron pair.
3. Update simultaneously each of the neuron pair.

However the duplication requires twice as much hardware as original one
without improving the accuracy of classification. It is not necessary to duplicate
all neurons because there exists the neurons which aren’t sensitive to the faults.

In the LVQ3 algorithm, as shown in equation (7), the both of the winner and
the runner-up update their codebook vectors towards the input vector when they
belong to the same class. It has the effect which collects two codebook vectors
in one place. I noticed this effect and propose the improvement of the LVQ3
algorithm which encourage the coupling of two codebook vectors.

I encourage the coupling by enlarging the ε in (7) when the input vector is
close to the border of the classes. Again, I have no knowledge about the position
of the border before learning. I suppose the input vector is close to the border,
if the third place of the codebook vector belongs to the class different from the
winner and the runner-up.

5 Experimental Result

I implement the proposed learning algorithm as the improvement of the LVQ3
algorithm. I call them FTLVQ3.1, FTLVQ3.2 and FTLVQ3.3 respectively as
follows:
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FTLVQ3.1 LVQ3 + Border emphasis
FTLVQ3.2 LVQ3 + Encourage of coupling
FTLVQ3.3 LVQ3 + Border emphasis + Encourage of coupling

As an example, The detail of FTLVQ3.3 is shown in the appendix.
I evaluate these algorithms on classification problems. The training sets are

the same as what are used in section 3. Every neuron is labeled so that each
class has the same number of codebook vectors, and the codebook vectors are
initialized with the training data set. As training parameter, I setup initial value
learning-rate α = 0.05, and ε = 0.1. In FTLVQ3.2 and FTLVQ3.3, ε is enlarged
to 1.0 when the coupling is encouraged.

Table 3. Coefficient of error and accuracy(%) of the classification for the iris plants
database

# of Neurons 8 9 10 11 12 13
OLVQ1 CE(X) (mean) 25.5 19.9 19.5 20.2 14.2 17.4

(s.d) 1.78 1.79 1.16 1.88 1.49 1.72
accuracy (mean) 96.73 96.73 97.13 96.80 97.47 97.33

(s.d.) 0.36 0.38 0.35 0.43 0.25 0.23
LVQ3 CE(X) (mean) 13.2 12.3 9.3 8.5 3.4 4.8

(s.d) 0.83 0.55 1.07 1.12 0.53 0.80
accuracy (mean) 97.67 97.73 97.47 97.80 97.60 97.80

(s.d.) 0.11 0.14 0.13 0.16 0.10 0.17
FTLVQ3.1 CE(X) (mean) 9.2 9.3 8.3 6.9 4.6 6.7

(s.d) 0.61 0.40 0.58 0.73 0.38 0.93
accuracy (mean) 97.53 98.00 98.00 98.00 98.07 98.20

(s.d.) 0.19 0.00 0.00 0.19 0.15 0.10
FTLVQ3.2 CE(X) (mean) 1.6 2.6 1.9 0.9 0.8 0.6

(s.d) 0.32 0.45 0.50 0.30 0.19 0.25
accuracy (mean) 94.60 97.67 97.60 97.07 97.93 97.53

(s.d.) 0.93 0.11 0.34 0.30 0.06 0.10
FTLVQ3.3 CE(X) (mean) 4.1 3.3 3.5 2.9 1.0 1.1

(s.d) 0.52 0.60 0.75 1.17 0.64 0.50
accuracy (mean) 97.20 97.93 98.00 97.47 97.87 98.00

(s.d.) 0.53 0.06 0.94 0.32 0.25 0.13

Table 3 and Table 4 shows the results of my experiments on the accuracy
of the classification and the calculated value of CE(X) for the training data
sets. For both data sets, the encourage of coupling(FTLVQ3.2) shows good per-
formance with relatively small number of neurons are employed. Although the
Border emphasis(FTLVQ3.1) is not good for the iris plants database, It has got
the best performance for the speech signal database with relatively large num-
ber of neurons. The both methods works complementarily in the FTLVQ3.3,
improvements of CE(X) are observed for every case of my experiments.
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Table 4. Coefficient of error and accuracy of the classification for the speech signal
database

# of Neurons 150 200 250 300 350 400
OLVQ1 CE(X) (mean) 201.1 183.9 181.0 175.9 168.6 162.3

(s.d.) 4.92 2.34 2.85 4.80 2.12 3.44
accuracy (mean) 92.88 93.73 94.32 94.81 95.10 95.10

(s.d.) 0.10 0.14 0.08 0.10 0.03 0.05
LVQ3 CE(X) (mean) 88.0 61.5 47.9 42.4 32.7 31.0

(s.d.) 4.28 2.41 2.71 2.40 0.65 1.85
accuracy (mean) 94.63 94.99 95.14 95.30 95.30 95.39

(s.d.) 0.12 0.11 0.10 0.10 0.09 0.08
FTLVQ3.1 CE(X) (mean) 107.9 61.0 40.4 26.3 16.8 11.3

(s.d.) 5.19 3.53 4.04 2.92 1.46 0.92
accuracy (mean) 95.85 96.12 96.12 96.06 96.04 96.02

(s.d.) 0.06 0.06 0.12 0.10 0.11 0.08
FTLVQ3.2 CE(X) (mean) 61.6 49.2 44.9 46.1 39.5 36.9

(s.d) 2.02 2.93 1.66 2.61 2.66 1.93
accuracy (mean) 93.92 94.62 95.06 95.51 95.57 95.78

(s.d.) 0.14 0.08 0.05 0.08 0.09 0.08
FTLVQ3.3 CE(X) (mean) 63.2 45.2 30.9 26.1 17.1 13.9

(s.d) 4.87 5.09 2.72 2.68 2.63 1.07
accuracy (mean) 95.47 96.02 96.22 96.57 96.41 96.42

(s.d.) 0.15 0.16 0.14 0.10 0.11 0.05

6 Conclusion

In this paper I proposed the coefficient of error(CE(X)) as a dependability
measure for the LVQ neural networks, and also presented two idea, the border
emphasis and the encouragement of coupling, to improve the learning algorithm
for increasing dependability. The experiment result shows that the former idea
is effective with large number of neurons, while the latter one shows good per-
formance with small number of neurons, and they work complementarily for
training networks so that they can achieve high dependability. I excluded the
faults in the competition mechanism from the fault model of this paper, it re-
mains as a future subject.
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Appendix. FTLVQ3.3 Algorithm

mode⇐ “normal′′ ; j ⇐ 1 ; k ⇐ 0 ; l ⇐ 1
while ( l ≤ lrunlength )
loop: /* The selection of the input vector */

if ( mode = “normal”)
if (j <= Nsampledata )

x = xj

else
mode⇐ “additional′′

goto loop
else

if (k >= 1 )
x = yk

else
mode⇐ “normal′′

j = 1
goto loop

/* Calculate the distance between codebook vectors and the input vector */
for (i⇐ 1; j ≤ Nneuron; i⇐ i+ 1)

di ⇐ ||mi − x||
/* Search for codebook vectors which are the closest to the input,
the runner-up, and the third place. */

if ( d1 < d2 )
if ( d2 < d3 )

c⇐ 1; r ⇐ 2 ; t⇐ 3
else if ( d1 < d3 )

c⇐ 1; r ⇐ 3 ; t⇐ 2
else
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c⇐ 3; r ⇐ 1 ; t⇐ 2
else if ( d1 < d3 )

c⇐ 2; r ⇐ 1 ; t⇐ 3
else if ( d2 < d3 )

c⇐ 2; r ⇐ 3 ; t⇐ 1
else

c⇐ 3; r ⇐ 2 ; t⇐ 1
for (i⇐ 4; i ≤ Nneuron; i⇐ i+ 1)

if ( di < dc )
t⇐ r ; r ⇐ c ; c⇐ i

else if ( di < dr )
t⇐ r ; r ⇐ i

else if ( di < dt )
t⇐ i

/* The update of the codebook vectors */
if ( class(mc) �= class(mr) )

if ( mode = “normal”)
yk ⇐ x ; k ⇐ k + 1

if ( class(mc) = class(x) )
mc ⇐mc + α(l)(x −mc)
mr ⇐mr − α(l)(x −mr)

if ( class(mr) = class(x) )
mc ⇐mc + α(l)(x −mc)
mr ⇐mr − α(l)(x −mr)

else if ( class(mc) = class(x) )
if ( class(mt) �= class(x) )

mc ⇐mc + α(l)(x −mc)
mr ⇐mr + α(l)(x −mr)

else
mc ⇐mc + ε · α(l)(x−mc)
mr ⇐mr + ε · α(l)(x−mr)

l ⇐ l + 1
if ( mode = “normal”)

j ⇐ j + 1
else

k⇐ k − 1
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Abstract. Considering data processing problems from a geometric
point of view, previous work has shown that the intrinsic dimension of
the data could have some semantics. In this paper, we start from the
consideration of this inherent topology property and propose the usage
of such a semantic criterion for clustering. The corresponding learning
algorithms are provided. Theoretical justification and analysis of the al-
gorithms are shown. Promising results are reported by the experiments
that generally fail with conventional clustering algorithms.

1 Introduction

Clustering [5][6] is a classical unsupervised technique. It tries to organize objects
into groups whose members are similar in some way and is used to discover the
natural groups in the data and to identify the hidden structures that might
reside inside. It is widely used in different tasks such as data mining, computer
vision, VLSI design, web page clustering and gene expression analysis, etc.

Unfortunately, clustering is not a well-defined problem. How to decide what
constitutes a good clustering? Although many efforts have been devoted[5], to
a large extent the problem remains ”elusive”. It can be shown that there is no
absolutely ”best” way which suits all problems. There is still a desired need for
new criteria and methods to cope with new problems.

In this paper, we consider the problem from a topology point of view, and
propose the usage of the manifold dimension (or, intrinsic dimension) as a se-
mantic criterion for clustering. The ”semantics” comes from the facts recently
discovered by the researches in nonlinear dimensionality reduction[12][10][1][4].
The primary aim of these techiques is to seek a lower dimensional embedding of
a set of points, which are originally expressed in a higher dimensional space. It
was discovered that the manifold dimension obtained in such a way is often asso-
ciated with some semantics, which are typically correlated with highly nonlinear
features of the original space.

The paper is organized as follows. In section two, we formulate the basic idea
and discuss the estimation of ”local” dimensions. In section three, based on a
property of ”local” dimensions, we give an algorithm to divide the data into a
pre-assigned number (K) of clusters. An extension is further given to cope with

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 796–805, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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an unknown K. After showing experiment results in section four, we summarize
the paper in the final section.

2 Background

2.1 Basic Idea

In data processing, we represent an object as a collection of numbers, i.e. a vector,
which specifies the different attributes’ values of this object. Furthermore, the
”collection of numbers also specifies the Cartesian coordinate of a point with
respect to a set of axes”[11]. Therefore, any object can be identified as a point
in an abstract space.

In this paper, we study the topology formed by all the points. With a hypoth-
esis that different clusters will form different topologies, the topology properties
can be used as a clustering criterion. Specifically, we consider the manifold di-
mension, which is an inherent topology property, as a criterion to group different
clusters. A formal statement of the idea is the following.

Given n independently identically distributed observations x1, x2, ..., xn of a
cluster in Rp. For each xi, let’s assume xi = g (yi), where each yi is sampled
from a smooth density f in Rm (m ≤ p) and g is an unknown function. The
cluster is regarded as dominated by these m independent hidden factors. The
function g is continuous and sufficiently smooth, and the neighborhood relation-
ship is kept when mapping Rm to Rp. Then we can expect the cluster shows
the topology property of an m-dimensional manifold. For different clusters that
are dominated by different number of hidden factors, the analysis of manifold
dimensions can be used to separate them.

2.2 Estimation of Dimension

To use the manifold dimension as a separation criterion, the intial step is to
evaluate the ”local” dimension1 around each point. In literature, there have
been several researches[9][13] on this problem. Here we use a method presented
in [7], which gives a maximum likelihood estimator of the manifold dimension of
the data and reaches the intrinsic dimension asymptotically.

Given a dataset X = {x1, x2, ..., xn}, we hope to estimate the ”local” dimen-
sion around each point. The basic idea of the method is to regard the density
of the data, f (x) ≈ const in a small sphere Sx (R) of radius R around data
point x. The method utilizes the relationship between the ”local” dimension dx

and the volume of the sphere Sx (R). By treating the observations as a homoge-
neous Poisson process in Sx (R), it reaches a maximum-likelihood estimator of
the intrinsic dimension m:

m̂ =
1
n

n∑
i=1

di (1)

1 Throughout this paper, we use this informal term, ”local” dimension, to represent
the dimension calculated using formula (2) or (3) around each point.
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where

di =

⎡⎣ 1
N (R, xi)

N(R,xi)∑
j=1

log
R

Tij

⎤⎦−1

(2)

and N (R, xi) =
∑n

j=1 1 {xj ∈ Sxi (R)} is the number of points within distance
R from xi. Here, di may be regarded as the ”local” dimension of a small fraction
around xi, and Tij is the distance between point xi and its j-th nearest neighbor.

When fixing the number of neighbors k for studying the Poisson process rather
than using the radius of the sphere R for convenience, we get

di =

⎡⎣ 1
k − 1

k−1∑
j=1

ln
Tik

Tij

⎤⎦−1

(3)

3 Algorithms

With the method presented in previous section, we give an algorithm of merging
the points into different clusters according to their respective ”local” dimensions.

3.1 Basic Algorithm

First, we formulate the problem.
Problem. Given a mixture of data points X = {x1, x2, ..., xn} from a known
number2 (K) clusters. The ”local” dimension around each point within the same
cluster is similar, while it differs for inter-cluster points. We are to use this
criterion to separate the points into K clusters.

Here we give the following algorithm:

Algorithm (Basic)
Input: a dataset X = {x1, x2, ..., xn}, the number of clusters K.
Output: a set of K clusters C = {X1, X2, ..., XK}, with ∪K

i=1Xi = X and
Xi ∩Xj = Φ, 1 ≤ i < j ≤ K.

Step 1, For each point xi, determine its k-nearest neighbors and use formula
(3) to estimate the local dimension di. And let D = {d1, d2, ..., dn}.

Step 2, Model D as a Gaussian mixture. And use EM algorithm to separate
D into K clusters D1, D2, ..., DK . Each di is classified into Dj according to

di ∈ Dj ⇐⇒ j = argl max p (di|wl, θl) , 1 ≤ l ≤ K. (4)

where p (d|wl, θl) is the probability that the point d comes from the cluster rep-
resented by wl. Here θl represent the necessary parameters for the distribution,
such as the variance.
2 We use a capital K to represent the number of clusters; while a lowercase k is used

to represent the number of neighbors when studying the ”local” dimensions.
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Fig. 1. Gamma distribution (solid line) and Gaussian distribution (dotted line)

Step 3, Separate X into K clusters X1, X2, ..., XK according to D1, D2, ...,
DK :

∀1 ≤ i ≤ n, 1 ≤ j ≤ K,xi ∈ Xj ⇐⇒ di ∈ Dj (5)

In the second step of the algorithm, we use the expectation maximization
(EM) algorithm[3][2] to separate the data into different clusters. It first assigns
data points to ”clusters” or density models using a ”soft assignment”[8] method.
Then it re-estimate the clusters or density models based on the current assign-
ment.

3.2 Justification

For the algorithm presented above, we model D as a Gaussian mixture and use
the EM algorithm to separate it, which means we have implicitly admitted the
distribution of the ”local” dimensions to be Gaussian or similar-type. In fact,
this assumption can be justified by the following fact which is observed in [7]:

For each point xi, m−1∑k
j=1 log Tik

Tij
has a Gamma (k, 1) distribution, where

m is the intrinsic dimension.
Generally, we require3 k ≥ 10. As shown in figure 1, Gamma (k, 1) will be

very similar to a Gaussian distribution under such circumstances. This is also
verified in our experiments.

3.3 Extended Algorithm

To cope with the situation where K is not known beforehand, we give an ex-
tended version of the algorithm.

The algorithm is based on a competitive learning approach, the rival penalized
competitive learning (RPCL) [14]. When applied to clustering problems, the
RPCL first requires a rough estimation of an upper bound (K ′) of K as an input.
An estimation of K ′ is generally trivial and could be made from the previous
experiences. We randomly generate these K ′ units, with each unit representing

3 This is to ensure the validity of modeling the problem as a Poisson process.
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the centroid of a virtual cluster. Then competition mechanisms are introduced
among these units during the training. With the incoming of each data point,
the values of the first winner unit are modified by a small step to adapt to the
input, while the values of its rival (the second winner unit) are delearned by a
smaller learning rate.

During the learning, the RPCL algorithm tries to push each winner’s rival a
step away from the cluster towards which the winner is moving, thus implicitly
producing a force which attempts to make sure that each cluster is learned by
only one weight vector. Gradually, the abundant units are eliminated.

For our problem, we propose the following algorithm which combines RPCL
learning with EM algorithm.

Algorithm (RPCL EM Clustering)
Input: a dataset X = {x1, x2, ..., xn}, an upper bound of the number of clus-

ters K
′
.

Output: the actual number of the clusters K, a set of clusters C = {X1, X2,
..., XK}.

Step 1, For each point xi, determine its k-nearest neighbors and use formula
(3) to estimate the local dimension di. And we get D = {d1, d2, ..., dn}.

Step 2, Randomly generate K
′
units w1,w2, ...,wK′ ;

Step 3, Model D as a Gaussian mixture. Iterate the following steps for a
pre-defined number of steps:

Step 3.1, Randomly pick up a sample d from the dataset D, and for i =
1, ...,K

′
, let

ui =

⎧⎨⎩
1, if i = c, where c = argj max γj · p (d|wj , θj) ,
−1, if i = r, where r = argj �=c max γj · p (d|wj , θj) ,
0, otherwise.

(6)

where γj = nj∑
K

′
i=1 ni

and ni is the cumulative number of the occurrences of

ui = 1.
Step 3.2, Update the weight vector wi by

Δwi =

⎧⎨⎩
αc (x− wi) , if ui = 1,
−αr (x− wi) , if ui = −1,
0, otherwise.

(7)

where 0 ≤ αc, αr ≤ 1 are the learning rates for the winner and rival unit,
respectively. In practice, they are problem dependent and may also depend on
the iteration step t. And it also holds αc � αr.

Step 3.3, Re-estimate the values of the parameters θ1, θ2, ..., θK′ using EM
algorithm.

Step 4, Separate D into K
′
clusters D1, D2, ..., DK′ according to

di ∈ Dj ⇐⇒ j = argl max p (di|wl, θl) , 1 ≤ l ≤ K ′. (8)

Eliminate those Dl if Dl = Φ and re-arrange D1, D2, ..., DK′ into D1, D2, ...,
DK , where K is the number of clusters in D which are not empty.
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(a) A two-cluster mixture
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(b) K−means results

Fig. 2. A mixture of two overlapped clusters: one is sampled from five 1-d circles; the
other is from a 2-d rectangle. The mixture caused complete failure to to the K−means
algorithm. (The results are represented by different shades.)

Step 5, Separate X into K clusters X1, X2, ..., XK according to D1, D2, ...,
DK :

∀1 ≤ i ≤ n, 1 ≤ j ≤ K,xi ∈ Xj ⇐⇒ di ∈ Dj . (9)

The first and the last step are essentially the same as those of the basic
algorithm presented in the previous section. Besides, the second and the third
steps are used for the competive learning and rival penalty. In step 3.1, a new
parameter γj is introduced for each unit wj , and this parameter is used to ensure
that all the units will have the chances to be the first winner.

4 Experiments

In this section, we show some experiment results of the algorithms presented
above. The first two experiments cope with the cases when the clusters overlap
each other. Such problems will generally fail with traditional clustering algo-
rithms. For the third experiment, the two clusters do not overlap. Although we
can use other clustering methods, here we use our algorithm to show its potential
to cope with clustering problems by the semantic criterion.

4.1 Experiment I

An experiment is shown in figure 2. Two clusters are completely overlapped, and
we hope to recover the two clusters by their semantic meaning (five circles and
one rectangle).

The results are shown in figure 3. After dimensionality analysis, most of the
points are correctly clustered. Although there are several points evidently mis-
classified, they can be eliminated by some simple post-processings, for which we
omit the discussion. However, for traditional approaches such as K-means, it
fails completely.
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(a) cluster 1
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(b) cluster 2

Fig. 3. The clustering results after dimensionality analysis

4.2 Experiment II

The second experiment uses an example with which the number of clusters is
supposed to be unknown. We artificially generate three clusters4 overlapped in a
5-d space: the first is sampled from a 1-d curve, the second is from a 3-d manifold
and the third is from a 5-d manifold. Then we run the RPCL EM algorithm.
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Fig. 4. The ”local” dimensions of a mixture of three clusters: each sampled from a 1-d
(300 points), 3-d (500 points) and 5-d (1000 points) manifold respectively (k = 15)

During the experiment, we start from K
′
(= 6) units, i.e. w1 to w6. And αc

and αr are set to be 0.02 and 0.002 respectively. During the training process,
w1, w4 and w6 are gradually pushed away, while w2, w3 and w5 get stabilized
and converge to the correct centroids finally. The results are shown in figure
4 and table 1. Table 2 gives the ratio of the points correctly identified within
each cluster. From the table, we can see that most of the points are correctly
clustered.

4 The 1st cluster is generated by: x = sin (t1) , y = z = r = s = t1. The 2nd:
x = sin (t1) , y = sin (t2) , z = sin (t3) , r = s = t3. The 3rd: x = sin (t1) , y =
sin (t2) , z = sin (t3) , r = sin (t4) , s = sin (t5). The free parameters t1, t2, ..., t5 are
randomly selected within (0, 10).
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Table 1. Changes of the units

Initial Value Stabilized Value

w1 −4.0 −7.5
w2 −0.2 3.10
w3 6.0 4.92
w4 12.0 17.5
w5 11.7 1.24
w6 0.9 20.5

Table 2. The number of points correctly clustered

#Correct Ratio

1-dimension (300 points) 292 97.3%
3-dimension (500 points) 430 86%
5-dimension (1000 points) 920 92%

4.3 Experiment III

In the third experiment, two image datasets are mixed (figure 5). The first is a
collection of images5 of a face, rendered with different poses and lightings; the
second is a collection of images6 of a hand, rendered with different directions.

Considering the semantics of the images, it is expected that the face images
would form an abstract space with a higher intrinsic dimension than that of the
space formed by the hand images. The experiment results verified our guess.
After running the basic algorithm, two clusters are recovered. Table 3 shows the
number of images correctly identified for each cluster under different parameter
settings (also see figure 6). From the table, we can see, when the number of
neighbors is appropriately chosen, all the images are correctly identified.

Table 3. Clustering results

k = 15 k = 20 k = 25 k = 30 k = 35 k = 40

Faces (698 images) 698 698 698 698 698 698
Hands (481 images) 219 393 403 479 481 481

Fig. 5. Two image datasets

5 http://isomap.stanford.edu/datasets.html
6 http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html
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(b) k = 35

Fig. 6. The ”local” dimensions around each point with different parameter settings.
The first 698 points represent the face images. The rest 478 points represent the hand
images.

5 Summary

In this paper, we start from the topology point of view, discuss the usage of
manifold dimension as a semantic criterion for data clustering, and give the
corresponding clustering algorithms. Promising results are reported on some
problems that cause failures to conventional clustering algorithms. On the other
hand, we still need more explorations on real datasets and test its applicability.
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Abstract. In the formulation of radial basis function (RBF) network, there are 
three factors mainly considered, i.e., centers, widths, and weights, which sig-
nificantly affect the performance of the network. Within thus three factors, the 
placement of centers is proved theoretically and practically to be critical. In or-
der to obtain a compact network, this paper presents an improved clustering 
(IC) scheme to obtain the location of the centers. What is more, since the loca-
tion of the corresponding widths does affect the performance of the networks, a 
learning algorithms referred to as anisotropic gradient descent (AGD) method 
for designing the widths is presented as well. In the context of this paper, the 
conventional gradient descent method for learning the weights of the networks 
is combined with that of the widths to form an array of couple recursive equa-
tions. The implementation of the proposed algorithm shows that it is as efficient 
and practical as GGAP-RBF. 

1   Introduction 

Radial Basis Function (RBF) networks, due to their simple topological structures 
while retaining outstanding ability of approximation, are being used widely in func-
tion approximation, pattern recognition, and time series prediction. 

Generally there are several crucial factors which seriously affect the performance 
of the RBF networks, i.e., the number of the hidden neurons, the center and the width 
for each neuron, and the weights. The original RBF networks [1] require that there be 
as many neurons as the observations (inputs).Thus they bring on high computational 
cost particularly for the case of bulky observations. In order to reduce the number of 
the hidden neurons, some compact RBF networks have been proposed [2]-[5]. 

However, among the above mentioned factors, the choice of the centers has the 
most critical effect on the performance of the network and plenty of study has been 
done on the choice of centers [2]-[7]. 

The algorithms proposed by S.Chen [2], [5] obtain a more compact network by or-
thogonal least square (OLS) method. The scheme has educed the contribution to the 
output variance from each neuron. 

                                                           
*  The work is supported by the National Natural Science Foundation of China for Excellent 

Youth (Grant 60325310), the Guangdong Province Science Foundation for Program of Re-
search Team (Grant 04205783), the Specialized Prophasic Basic Research Projects of Minis-
try of Science and Technology, China (Grant 2005CCA04100). 
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Integrated with forward subset selection and 0th-order regularization, Orr [3] pre-
sented a regularized forward selection (RFS) algorithm for RBF networks. The algo-
rithm used only one preset parameter, the basis function width. 

To further study on the influence on the error by the locations of centers, Pancha-
pakesan [6] proposed a new result on the bounds for the gradient and Hessian of the 
error considered as a function the centers, the widths, and the weights, for justification 
of moving the centers. 

G. Huang [4] proposed a generalized growing and pruning RBF (GGAP-RBF) net-
work. In their paper, a definition of “significance” is provided to judge the signifi-
cance of the hidden neurons. Using this definition to grow or prune the hidden  
neurons one can establish a parsimonious RBF network with most significant ones. It 
functions well and it seems the GGAP-RBF is a great theoretical breakthrough on 
establishing a compact RBF network. 

This paper looks into the problem of learning the centers with an improved cluster-
ing (IC) scheme and the widths with an anisotropic gradient descent (AGD) method. 

2   RBF Network 

The validity of RBF network is guaranteed by the theory of Reproducing Kernel Hil-
bert Space (RKHS), in which the dot product is computed by the kernels. In the field 
of RBF network one use series of RBFs to play the role of kernels as in RKHS. 

Let 1, 2,{ , }NX x x x= , where 1 2( , , ) l
i i i ilx x x x R= ∈ , be the observations, 

and 1, 2,{ , }NY y y y=  be the corresponding desired outputs. Without loss of gen-

erality, the Gaussian 
2

2

|| ||
( ) exp( )

2
g

σ
⋅⋅ = −   is usually chosen to take the role of RBF. 

Then output of the system is: 

2

2

|| ||
( , , , ) exp( )

2
i j

j
j j

x c
f X C W wσ

σ
−

= − , (1) 

where 1 2{ , , , }MC c c c= and 1 2{ , , , }Mσ σ σ σ=  are centers and widths of 

the hidden neurons, respectively, || ||⋅ is the Euclidean norm, and 

1 2( , , )MW w w w=  are the weights connecting the hidden neurons with the out-

put. 

3   Proposed IC-AGD Algorithm 

Besides learning the centers, we study how to design the corresponding widths as well 
since they do affect the performance of the RBF networks either and can not be  
neglected. 
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In the section, an improved clustering (IC) scheme for locating the centers is de-
scribed first, followed by the anisotropic gradient descent (AGD) method to decide 
the relative widths. 

3.1   An Improved Clustering Scheme 

Given a set of distinct observations 1{ }N
i ix = , where ( 1, )l

ix R i N∈ = , we need 

to cluster the observations into some categories without any a priori information of 
the number of category. A proposed scheme for efficiently clustering the observations 
is formulated as follows: 

A. Compute the mean position point x  for all the observations as follows: 

1 N

i
i

x x
N

= . (2) 

B. Compute the distance id  between each of the observations 1{ }N
i ix =  and the 

mean position point x , i.e., 2 2|| ||i id x x= − . Then rank 1{ }N
i id =  from small to large 

by quit sort scheme. Without loss of generality, they are still denoted by 

1 2 Nd d d≤ ≤ ≤ . 

C. Define 

min 1min{ , 1, , }id d i N d= = , (3) 

and 

max 2 max{ , 1, , } 2i Nd d i N d= = . (4) 

Let 

min max 1(1 ) 2(1 ) Nd d d d dλ λ λ λ⋅ + − ⋅ = ⋅ + − ⋅ , (5) 

where [0,1]λ ∈  is a preset parameter. 

D. Set a relationship matrix , , 1{ }N
i j i jr = , which intends to indicate the cluster mem-

bership of each point from the observations, namely a Cluster Indication Matrix 
(CIM). And initialize the CIM as a zero matrix. 

E. In order not to calculate all of the distances between every two points, we firstly 
intend to find a coarse CIM for the observations. 

For each observation 1{ }N
i i ix X x =∈ = , do the following steps from 1i =  to N : 

a.  Denote ( )iO x  the neighborhood centered at ix  and with radius d . 

b. Compute the distance between ix and jx , if jx satisfies that 0ijr = and  

1 { | | | }j j j ix X x d d d and i j X∈ = − < ≠ ⊂  (Fig.1). The way that we 
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1d id Nd
d

 

Fig. 1. Search the points in every neighborhood 

search the points within the subset 1X of X would greatly lower the computation 

complexity. 

c. Then judge whether the observation jx is in ( )iO x , and let  

| | , ( )

1 ,
i j j i

ij ji

x x if x O x
r r

else

− ∈
= =

−
 (6) 

where jx  is a suspicious neighborhood point of ix  when 1ijr = − . 

F. For the partition obtained from step E will end up with intersections between 
some coarse clusters, It is necessary to refine the CIM to make sure the rule is guar-
anteed, which i and k  should belong to the same cluster, if i and j , j and k belong to 

the same cluster respectively. Thus the suspicion for membership of certain points is 
eliminated .To tackle this, we refine the CIM in the following way: 

If

0

0

0
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r
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>
>
=

 or 

0

0
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ij

jk

ik

r

r
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>
>

= −
   , then set 1ki ikr r= = . (7) 

From the refined CIM, we know the observations 1{ }N
i ix =  can be partition into M  

clusters, namely 1 2{ , , , }MQ Q Q  and it is obvious that the lower bound for the 

distance of any two clusters is d . 

3.2   Center Locating and Coarse Width Setting 

Let 

| |

1

1

| |

iQ

i j
ji

c x
Q =

= , and 
| |

2 2

1

1
|| ||

| |

iQ

i j i
ji
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Q

σ
=

= −  (8) 

where j ix Q∈  and 1, ,i M= . 

3.3   Widths and Weights Learning 

Many papers have focused on locating the centers as well as the weights, while it is 
noted that the designing of the widths is still important. In this part, we formulate an 
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anisotropic gradient descent (AGD) method. According to the distribution of the ob-

servations in lR , the change of the observations mainly processed by those RBFs may 
vary between directions. Our AGD method is to update the widths of the kernels with 
a width scaling factor for the above coarse widths. 

Let us define the refined widths of the RBF: 

2 2 2 2
* 1 1 2 2( , , , )M Ms s sσ σ σ σ= , (9) 

where 1 2( , , , )MS s s s=  is a scaling vector and each of its components is positive. 

Then the mean square error (MSE) of the system is switched to a function of S and 
W, i.e.: 

2
* *

1

1
( , ) || ( , , , ) ||

N

i

E W Y f X C W
N

σ σ
=

= −  

        2

1

1
( , ) ( ( , , , ))

N

i
i

E S W y f X C S W
N =

= −  . (10) 

Replace f with Gaussian radial function, and differentiate the equation (10) with 

respect to jw and js , 1,j M= , respectively, then we have: 

( , ) ( , )
2 ( , ) 2 ( , ) ( , )T T

j
j j

E S W S W
S W G X s S W

w w
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where 1( , ) ( ( , ))N
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Apply the gradient descent for ( , )E S W  with respect to S and W respectively, we 

obtain the coupled recursive equations for S and W as follows: 

1

2

( 1) ( ) 2 ( , ( )) ( ( ), ( ))

( , ( ))
( 1) ( ) 2 ( ) ( ( ), ( ))

T
j j j

j T
j j j

j

w n w n G X s n S n W n

G X s n
s n s n w n S n W n

s

η γ

η γ

+ = +
∂

+ = +
∂

  , (13) 
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where 1η , 2η are two different learning steps with non-negative value 

and 1,j M= . 

4   Implementation 

In this section, an implementation of our algorithm is applied to a time series prob-
lems in function approximation area. 

The chaotic Markey-Glass time series prediction is a well known benchmark pre-
diction problem which is generated from the following delay differential equation: 

10

( ) 0.2 ( 17)
0.1 ( )

1 ( 17)

( 17) 0.3

du t u t
u t

dt u t

u t

−= − +
+ −

− =
   . (14) 

Table 1. Performance Comparisons between IC-AGD and GGAP-RBF 

Algorithms CPU Time 
(s) 

Training 
RMSE 

Testing 
RMSE 

Number of neu-
rons 

GGAP(2-norm) 9.432 0.031342 0.058692 10 
IC-AGD  8.198 0.011465 0.062481 9 
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Fig. 2. The predicted with the IC-AGD and actual time series 
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Resample 1000N =  points from the above equation according to 1 sample pe-

riod. With 20 sample steps ahead, we aim to predict the value of ( 20)u t +  by the 

values{ (1), (2), , ( )}u u u t . Let 1000
20 20 6, 20 12, 20 18 1{ ( , ) }T

i i i i i ix u u u u− − − − − − − == be the 

multiple inputs for the RBF network, while 1000
1{ }i iy =  be the corresponding outputs, 

where the first 800 pairs are for training, and the last 200 pairs are for testing. We 
have the following results: 

Table 1 gives an comparison of the performance between the proposed algorithm 

and GGAP-RBF algorithm[4], where the parameters of GGAP is min 0.01,e =  

0.85,κ =  max 0.7,ε = min 0.07ε = , and the parameter in the proposed algorithms 

is 0.5λ = . Fig.2 shows the performance for the approximation ability of the pro-
posed algorithm for the above time series prediction problems, where the red points 
denote the predicted time series, and the black curve denotes the actual time series. 

The simulations show that the proposed algorithm performs as efficient as the 
GGAP-RBF, and will be practical in function approximation area either. 

5   Conclusions 

In this paper, an efficient algorithm IC-AGD for establishing a compact RBF network 
is presented. This algorithm consists of an improved clustering (IC) scheme for plac-
ing the centers, and an anisotropic gradient descent (AGD) method for learning the 
widths combined with learning the weights by conventional gradient descent. In the 
IC scheme, we take advantage of the relation between the observations and the mean 
position point to lower the computational complexity. And in the AGD method, we 
quote a scaling vector for the widths since the clusters may vary between directions. 

Note that in the process of IC scheme for locating centers, the value of λ  for 

threshold d will be much more favorable when it is optimized from maximizing the 
distance between clusters. 

In conclusion, implementation shows that the proposed IC-AGD algorithm is as ef-
ficient and practical as the newly presented GGAP-RBF [4]. What is more, the pro-
posed IC scheme can be utilized for other clustering problem. 
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Abstract. This paper presents an algorithm based on the Growing Self 
Organizing Map (GSOM) called the High Dimensional Growing Self 
Organizing Map with Randomness (HDGSOMr) that can cluster massive high 
dimensional data efficiently. The original GSOM algorithm is altered to 
accommodate for the issues related to massive high dimensional data. These 
modifications are presented in detail with experimental results of a massive 
real-world dataset. 

1   Introduction 

The Self Organizing Map (SOM) [1] was developed in the early 80s by Professor 
Teuvo Kohonen. The ability of the SOM algorithm to present the data in a 
topologically ordered map has made it popular in many data mining applications [2]. 
The basic SOM algorithm just like any other new algorithm had many flaws in it. 
Addressing these flaws emerged into the whole range of algorithms commonly known 
as feature map algorithms. These algorithms address issues such as the initialization 
of the SOM [3], determination of the ideal height and width of the map [4-8], faster 
convergence [9, 10] and application to large datasets [11]. 

Many growing variants of the SOM were introduced to address the issue of 
determining the ideal height and width of the SOM. One such algorithm was the 
Growing Self Organizing Map (GSOM) [4]. This paper presents several modifications 
to the GSOM algorithm to overcome some difficulties faced by the GSOM when 
applied to massive, very high dimensional datasets such as text and web document 
collections. The modifications are presented as a new algorithm called the High 
Dimensional Growing Self Organizing Map with Randomness (HDGSOMr) [12, 13]. 
This paper gives prominence to the details of the modifications as these have not been 
published earlier. The paper also presents results of the largest real-world dataset 
processed with the algorithm that exceeds over one million records. 
The paper is organized as follows: Section 2 of the paper presents the GSOM 
algorithm in brief. The issues addressed by the HDGSOMr algorithm are presented in 
Section 3 and the HDGSOMr algorithm is described in Section 4. Experimental 
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results obtained by the HDGSOMr on a massive real-world dataset are presented in 
Section 5. The conclusions and some future work are highlighted in Section 6. 

2   The Growing Self Organizing Map 

The Growing Self Organizing Map (GSOM) [4] was developed as a solution to the 
problem of identifying a suitable height and width for the SOM for a given dataset. It 
starts with a minimal number of nodes (usually 4) and grows from the boundary to 
accommodate for the clusters in a given dataset. New nodes are grown when the 
accumulated error in a boundary node exceeds a pre-defined threshold called the 
Growth Threshold (GT). The GT is calculated based on the dimension of the dataset 
and a parameter called the Spread Factor (SF) that can be used to control the spread of 
the map. Due to space limitations the readers are encouraged to read [4] for further 
details of the GSOM algorithm. 

The GSOM had mainly been used with data that was having dimensions less than 
about 100 and less than about 1000 inputs. It was interesting to see if the GSOM 
could be used for massive datasets with very large dimensions (>1000). An attempt 
was made to apply the GSOM in clustering web page content of a large collection.  

When this dataset was presented to the GSOM it failed to generate any new nodes 
even at very large SF values as the GT calculated was much larger than the 
accumulated errors that are generated over the whole life cycle of the GSOM. In order 
to facilitate the growth of nodes, the GT calculation was modified as 

)ln()ln( SFDGT ×−=  which reduced the GT significantly. This modification 

enabled the clustering of text and other large dimensional data using the GSOM. 
Although the clustering was possible, the growth of the network was not perfect. 

The main problems that were identified were: 

1. The growing of new nodes was only from one initial node although the nodes were 
spread around the other initial nodes in a spiral effect. 

2. Some of the branches that had grown merged with other branches when forming 
the clusters as the map had actually grown like a spiral. 

3. Excessive amounts of non-hit nodes (nodes that did not have any inputs mapped on 
to them) spread in many parts of the map. 

These abnormalities were identified to be caused by several reasons. The root of all 
these problems was the noticeably large errors due to the large dimensions. The 
maximum possible error in distance calculations is equal to the dimension of the input 
vectors (D) if the weight vector of the node consists of all 0 and the input vector 
consists of all 1s or vice versa. When D becomes very large, the maximum and 
therefore the average errors recorded increase extensively. 

3   Addressing the Issues of High Dimensions and Massive Data 

To address the abovementioned issues several modifications were proposed and 
evaluated. These include: 
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1. Preceding the growing phase by a calibration phase and initializing the first nodes 
based on the calibration. 

2. Multi-node initialization where the initial map contains more than 4 nodes. 
3. A modified growing phase that starts with a high GT value and then gradually 

reducing to a value decided by the calibration phase or otherwise. 
4. Preventing new node growth from immature nodes until they have had sufficient 

time to adapt to a good weight vector. 
5. Introduction of smoothing phases in between growing. 
6. Higher learning rates during interleaved smoothing. 
7. A low neighborhood kernel during the growing phase. 
8. Breaking of the neighborhood effect based on a distance metric. 
9. Growth Thresholds calculated based on sparse dimensions. 

10. Modification of the weight updation with Random noise to exit from local 
minima. 

Out of these proposed modifications only methods 3, 4, 5, 6, 7, 9 and 10 were 
recommended as the others had negative impacts. These modifications are briefly 
discussed in this Section. 

3.1   A Modified Growing Phase That Starts with a High GT Value 

One of the reasons for the original GSOM to grow only from one initial node and 
spiral around was because the modified GT was too low. The unordered state of the 
map caused very large errors to be accumulated in the nodes. The reduced number of 
nodes in the initial stages means that the total errors are distributed among a few 
nodes causing the GT to be exceeded within a few inputs. 

In order to control the growth of new nodes it was proposed to have a higher GT 
value initially and gradually reduce it as the map grows. This allows time for the 
existing nodes to get stabilized before growing new nodes. In order to keep the 
algorithm simple a uniform stepwise reduction of the GT was proposed. 

Two GT values were calculated based on the dimension of the dataset as the initial 
GT value (GT1) and the final GT value (GT2). GT1 was a higher value and was 
calculated as )ln(1 SFDGT ×−= which was the GT calculation for the original 

GSOM. The lower value was calculated as )ln()ln(2 SFDGT ×−= which was the 

modified GT value used in the initial experiments. 

3.2   Preventing the Growth of New Nodes from Immature Nodes 

This modification was proposed to further stabilize the map from growing unwanted 
nodes. In the original GSOM algorithm, new nodes are generated as soon as the 
accumulated error in a boundary node exceeds the GT value. But since many of the 
boundary nodes have not been in the map for a longer time, they may not have had 
sufficient time to adapt their weights. When new nodes are grown from such unstable 
nodes, the newer nodes become unstable causing the entire map also to be unstable. 

To prevent this it was proposed to allow the new nodes to be aged using a 
constraint before they could start growing new nodes. Each new node had to wait till 
an entire round of the input dataset was presented to the map so that it would have 
adapted itself to suit the entire dataset rather than a fraction of it. 
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3.3   Interleaved Growing and Smoothing Phases 

In order to further stabilize the newly grown nodes it was proposed to allow them 
more time to self organize. This was achieved by introducing several smoothing 
rounds in between each growing round. The smoothing rounds had the same 
neighborhood kernels as the preceding growing round, but did not allow new node 
growth. 

The extra time given for the nodes to self organize decreased the number of 
unwanted nodes as the accumulated errors in the new nodes were much less than 
when they were initialized with weight vectors calculated from unstable boundary 
nodes. 

3.4   Higher Learning Rates During Interleaved Smoothing Phases 

To give the interleaved smoothing a boost in putting the existing nodes in place, the 
learning rate over the interleaved smoothing phases in the growing phase was 
increased. The increased learning rate enabled the nodes to quickly move into position 
and reduce the time needed for better positioning. The increased learning meant that 
there would be excessive movements in the nodes during this time that might 
introduce higher errors to the map, but the lower learning rate during the growing 
phases allowed the nodes to settle down and the final smoothing phases took away the 
remaining creases in the map. 

The increased learning rates during the interleaved smoothing phases allowed 
bringing the number of interleaved smoothing iterations down to two. Even one 
interleaved iteration was sufficient to produce a reasonably smooth map, but it was 
decided to have two interleaved smoothing iterations to ensure better quality. The 
second interleaved smoothing phase had a slightly lower learning rate than the first 
one that ensured convergence. 

3.5   Low Neighborhood Size During Growing Phase 

The neighborhood of the Self Organizing Map (SOM) algorithm is the heart of 
producing a properly organized feature map. Typically the SOM involves a very large 
neighborhood kernel during its initial stages. The recommended neighborhood kernel 
size is about half of the map width [2]. However, the computational intensity of a very 
large neighborhood kernel is very high. This is because for each weight adaptation of 
a winner node, a large number of its neighbors also get their weights adapted. 

The larger neighborhood kernel is used in order to eliminate twists in the map and 
ensure proper organizing of the map. When the map size is smaller, the required 
neighborhood kernel is also smaller as the recommended size is half the map size. It 
has also been noted that maps smaller than 5 x 5 are more robust to twisting than 
larger maps. In these maps the neighborhood kernel can be as low as 2 during the 
initial stages [2]. 

The Growing Self Organizing Map (GSOM) had been using lower neighborhood 
kernels during its growing phase because of its smaller initial map size of 2 x 2. 
However, the typical neighborhood size of the GSOM’s growing phase was typically 
around 2-3. With the extended smoothing phases introduced into the proposed 
algorithm, it was identified that the map is more organized from the initial stages and 
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a larger neighborhood kernel was not that important. If the neighborhood kernel could 
be reduced, it would add value to the algorithm as it was intended for use on massive 
datasets. The reduction of the neighborhood kernel by even 1 would payoff 
significantly with the massive dataset size. 

Experiments were carried out with smaller neighborhood kernels and it was noted 
that even a neighborhood kernel of 1 during the growing and interleaved smoothing 
phases was sufficient to produce a map that could be smoothed easily with a 
neighborhood kernel of 2 and 1 in the final smoothing phases. 

3.6   Growth Thresholds Based on Sparse Dimensions 

The modified algorithm of the GSOM was to be used mainly on text data. One of the 
important characteristics of textual data was that although the final dimension of the 
data set was very large, the records were very sparse due to the distribution of words 
in the text corpus. In many of the records the actual non-zero dimensions was less 
than 10% of the full dimension of the data set. Since the GSOM was using the 
dimension of the dataset in the calculation of the growth thresholds, the use of the 
total dimension was an over kill. A more representative measure of the dimension was 
much more suitable. 

Two options were selected as the more representative dimensionality parameter. 
These were the maximum non-zero dimension and the average plus two standard 
deviations of the non-zero dimensions. Since the value for the dimensions is now 
lower, the resulting growth threshold value was a bit lower. In order to have a 
sufficiently higher growth threshold to get back the control of the growing, the growth 
threshold values were multiplied by a constant. 

The new growth threshold calculation formulas are: kSFDGT ××−= )ln(1  and 

kSFDGT ××−= )ln()ln(2  where k is a constant called the multiplication factor. After 

several experiments over the 75 datasets, the value for k was decided to be 50 for a SF 
of 0.1. Over the experiments it was noted that k had a much more subtle control over 
the spread of the map than SF. Larger k values resulted in smaller maps while smaller 
values resulted in larger maps. 

3.7   Modification of the Weight Updation with Random Noise 

Randomness [14] is a phenomenon very frequently used in many algorithms including 
the Self Organizing Map (SOM). It has been very successfully used in Genetic 
Algorithms (GA) [15], simulated annealing [16] and neural networks. 

Random numbers are used in initializing the codebook vectors of the SOM. The 
inputs to the SOM are presented in a random order to prevent the order of the inputs 
influencing the convergence of the map [2]. This process requires a heavy 
input/output load on the system when very large datasets are processed as the inputs 
will be selected in random from different parts of the dataset. If the data could still be 
presented in the same natural order they are stored in the storage, but some effects can 
be introduced to simulate the random presentation of the inputs, it would payback in 
reducing the processing overhead of the algorithm. 
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A novel mechanism of updating the weight vectors of the winner nodes using some 
random values was tested for this purpose. This had never been done before on any 
feature map algorithm. The proposed new weight updation formula is: 

( )[ ]( )old
ii

old
i

new
i wxrww −××−++= 25.0 αα  where new

iw is the updated weight of the 

ith component of the weight vector of the node, old
iw  is the weight of the ith 

component of the weight vector before updation, 
ix is the value of the ith 

component of the input, α is the learning rate and r is a random number in the 
range of 0 and 1. The equation modifies the learning rate α by increasing or 
decreasing it by a fraction of itself. 

The modified weight updation formula replaces all weight updation formulae 
in the algorithm. This will enable the smaller learning rates in the final smoothing 
phases to take away any unwanted changes introduced by the random weight 
adjustments. 

4   The High Dimensional Growing Self Organizing Map with 
Randomness (HDGSOMr) 

The algorithm incorporating all of the proposed modifications to the GSOM was 
named the High Dimensional Growing Self Organizing Map with Randomness 
(HDGSOMr). 

The HDGSOM algorithm consists of three phases: 

1. An Initialization Phase 
2. A growing phase that has interleaved smoothing phases and 
3. Two smoothing phases 

As the HDGSOMr is based on the GSOM, it is created with 4 nodes connected to 
each other in a rectangular shape and initialized with random weight vectors. The 
initialization phase of the HDGSOMr is different from the GSOM in the calculations 
of the Growth Thresholds.  

The initialization phase of the HDGSOM is as follows: 

Initialize the 4 initial nodes with random weight 
vectors. 

Calculate the average and standard deviation of 
non-zero dimensions. 

 Calculate the Growth Thresholds. 

The growing phase of the HDGOSM is different from the GSOM in many ways. 
To start with, it has varying growth thresholds in each epoch. The growth thresholds 
are decreased from GT1 to GT2 in equal steps as described in Section 3.1. Each 
growing epoch is interleaved with multiple smoothing epochs as indicated in 
Section 3.3. 

The growing phase can be summarized as follows: 
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Calculate the step value of the Growth Thresholds 

For each growing round 

 For each input 

  Present input and find winner node 

  Calculate error and accumulate error 

If error exceeds GT and winner is a boundary 
node and winner is mature 

   Grow new nodes from winner 

  End If 

  Adapt Weights of winner and neighbors 

 End For 

 For number of interleaved rounds 

  For each input 

   Present input and find the winner j  

   Adapt Weights of j and neighbors 

 End For 

Increment GT 

End For 

The growing phase is followed by two smoothing phases that are almost similar to 
the smoothing phases of the SOM. These two phases have diminishing learning rates 
that smooth out the map to produce crispier clusters. 

The smoothing phases can be summarized as follows: 

For each smoothing round 

 For each input 

  Present input to network and find winner node 

  Adapt Weights of winner and neighbors 

 End For 

End For 

Typically the number of rounds is set to be 10 and 5 for smoothing phase 1 and 2 
respectively. 

The weight adaptation rules of the HDGSOMr are differing from that of the Self 
Organizing Map because of the random noise component. 

( )[ ] ( )old
ii

old
i

new
i wxrww −××××−++= ηαα 25.0  where new

iw is the updated 

weight of the ith component of the weight vector of the node, old
iw  is the weight 
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of the ith component of the weight vector before updation, ix is the value of the ith 

component of the input, α is the learning rate and r is a random number in the 
range of 0 and 1. η  is the neighborhood kernel contribution to the weight. 

5   Experimental Results 

The HDGSOMr algorithm was tested with many benchmark text and web datasets as 
well as several real-world datasets. All of these different sized datasets were possible 
to be clustered within 45 iterations of the HDGSOMr compared to several hundred 
iterations in the SOM. The incremental growing and smoothing of the map allows it 
to be organized from the early stages and achieve a well-organized map within this 
short time period. 

Several experimental results from clustering benchmark datasets are presented in 
[12, 13]. An online analytical tool developed based on the HDGSOMr algorithm and 
the results of clustering the autopsy reports of all deaths from 1995-2004 in the state 
of Victoria in Australia is presented in [17]. Due to space limitations only the details 
of the largest dataset processed up to date is presented in this paper. 

The largest datasets that was clustered using the HDGSOMr was a collection of 
clinical notes and associated tests with the pathology requests in Australia. The 
dataset consisted of over 1,200,000 records with a dimension of over 800 words and 
over 900 tests. Both the tests and the clinical notes were clustered independently. 
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Fig. 1. A section of the map produced from the test codes in the pathology dataset 
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The resulting map from the clinical notes had 220 nodes and the map from the test 
codes had 218 nodes. A subset of the online map produced from the test codes dataset 
is illustrated in Fig.1. Two of the nodes content are highlighted. The first number in 
boldface is the node number. The next line contains the number of inputs mapped to 
that node and the average quantization error for that node is given in the third line. 
The next 5 lines contain the most dominant tests within that node with their respective 
percentages. In the clinical notes data set the last 5 lines contained the most dominant 
words within the node. 

6   Conclusions and Future Work 

The paper presented several modifications that were proposed to overcome the 
problems faced by the GSOM when applied to massive very high dimensional 
datasets. The resulting algorithm named HDGSOMr was capable of clustering all the 
benchmark and real-world datasets presented to it within a fixed 45 iterations. The 
random weight updation proposed in Section 3.7 has enabled the algorithm to cluster 
these datasets efficiently within such a short time frame while having the inputs 
presented to it in sequential order. 

The proposed reduction in neighborhood size has further reduced the processing 
time required in processing massive datasets. The clustering of a massive dataset of 
over 1 million records has proven the ability of the algorithm. 

Currently the HDGSOMr algorithm is being applied as a single level map. Work is 
being carried out to implement the algorithm as a hierarchical map generation tool 
where nodes with very large number of inputs mapped will be automatically 
generated into a detailed map. 

A batch version of the HDGSOMr is also being evaluated to enable the algorithm 
to utilize the power of grid and parallel computers. Although a batch version of the 
SOM [10] is available, the growing of the map in the GSOM and the HDGSOMr 
causing the map size to change over subsequent rounds does not allow the algorithm 
to utilize this method. The results of these experiments will be available in future 
publications. 
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Abstract. We use techniques from Kleinberg’s Hubs and Authorities and kernel 
functions as in Support Vector Machines to define a new form of clustering.  
The increase in the degree of non linearity of the kernels leads to an increase in 
the granularity of the data space and to a natural evolution of clusters into 
subclusters. The algorithm proposed to construct zoomed clusters has been 
designed to run on very large data sets as found in web directories and 
bioinformatics. 

1   Preliminaries 

We consider the standard model word/document where a document is represented as a 
vector in ℜ n whose coefficients represent a measure of the frequency of occurrence 
of the words in a dictionary of size n [1],[2]. Consequently we assume here that the 
vectors are of length 1 and in the positive quadrant. This restriction is made because 
of the applications we have in mind, but it can be removed or overcome easily if 
needed. We further assume that we have m documents, and that we use the dot 
product of vectors, that is the cosine of the angle formed by two vectors, to define a 
notion of similarity between vectors, 1 if the two vectors are identical, 0 if they are 
orthogonal. 

A standard technique in the query process of search engines is to assume that two 
vectors close to each other represent two semantically related documents. In a first 
instance, one can use the similarity to the centroid of a set of related documents to 
determine if  this set should be retrieved by a given document (the query). This will 
work well when the set of documents is tightly and  evenly distributed around its 
centroid. So if a new document is found to be close to the centroid, it should also be 
found to be related to the whole set.  Consider the following analogy: the sphere 
represents the earth, to a vector we associate its elevation, that is the measure of 
similarity to the centroid, the cosine of the angle formed by the two vectors. The set 
of documents then defines a simple volcano like conical shape. A threshold used to 
determine if a document should be retrieved defines a circular contour line above 
which are the documents to be retrieved. The elevation determines the degree of 
relevance. It seems clear that a more flexible model should allow contour lines 
ellipsoidal instead of circular, or even two disconnected circular contour lines. That 
would be the case if the data naturally formed two subclusters instead of one as 
assumed. Pursuing the analogy we would like to “zoom” on the volcano and refine the 
initially crude structure into a more complex one, realizing that a peak may in fact 
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consist of several subpeaks. One could implement this idea using  the k-means 
algorithm or its derivatives and using a notion of distance to the mean to represent 
elevations. However we will do it differently, in a way that is (arguably) more natural, 
but will also avoid two main  pitfalls: 

One is the uncertainty concerning the quality of the output (several are possible 
depending on the starting conditions). The other is the computational cost. 

In a first step we consider the problem of outliers.  
Let {Di} be a set of m documents written out of a dictionary of n words, the 

centroid C1 of that set is therefore: 

C1= 1/m
=

=

mi

i

D
1

i 

Note that since we are working with vectors of length 1, we will assume that all  
computed vectors are appropriately normalized by the function N . Now we want to 
“recenter” the centroid by penalizing outliers. Recursively, the vectors are weighted 
by their proximity to the current centroid:    

Cn= 1/m i

mi

i

D
=

=1

, N(Cn-1) Di                                            (1) 

We iterate the process and show that it converges: 

Let M be the matrix whose rows are the vectors  Di, and whose columns  Wi  
represent word frequencies,  

Proposition  

Cn= 1/m i

mi

i

D
=

=1

, N(Cn-1) Di converges for n → ∞  towards the principal 

eigenvector  C ∞  of the matrix MTM, called the iterated centroid. 

Proof  
A little computation shows  that  Cn= MTMCn-1  up to a scalar. One first represents 
MCn-1  as a vector of vector products between the  Di’s and Cn-1  and then shows that 
the multiplication by  MT can be written as the appropriate linear combination of the  
Di’s. 

We are then in a situation similar to [8]. The matrix MTM is  symmetric positive, by a 
variant of Perron Frobenius we know that it has a principal eigenvector which can be 
computed iteratively by successive powers of MTM applied to any vector not 
orthogonal to the principal eigenvector.  

Consider the hyperplane whose normal vector is the principal eigenvector, we can 
always find a vector in the first quadrant which is not in that hyperplane, and 
therefore not orthogonal to the eigenvector. As the matrix has only non negative 
entries, all the vectors generated by the matrix products will be in the first quadrant, 
including the principal eigenvector. We can assume that C1 has non zero coefficients 
(otherwise all the Di’s would also have one in the same position and we could reduce  
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all the vectors by one dimension). C1 having no coefficient equal to zero will not be 
orthogonal to any vector in the first quadrant, including the principal eigenvector. 

We have therefore two methods for computing the iterated centroid, the iteration 
[1], and the matrix products. 

We know from [8] that the computation by repeated matrix multiplication is very 
efficient even for the gigantic matrices that are found in search engines applications. 
We also know that we are less likely to have serious problems with round off errors 
because essentially all vectors will ultimately converge to the same limit. The iterated 
centroid can also of course be computed by the previously described process. 

In this set up we have a variant of technique used in search engines to retrieve a 
single cluster of documents, those that are sufficiently close to a centroid [1]. It fits 
the single volcano analogy. We will now introduce the techniques that will allow us to 
“zoom” and reveal subclusters.    

2   Mapping to Higher Dimensions 

In the previous model, if the data in fact consists of two clearly separated subclusters, 
an isolated  new vector in between these two subclusters will be closer to the centroid 
than the other vectors, and consequently it will be more eagerly retrieved than the 
initial vectors, even though it may be either an outlier or may have no relevance. 
Entering the query “simplex” in a standard search engine, returned over 300 first sites 
devoted to venereal diseases, before getting sites related to the algorithm. In this 
previous model, the documents with a highest rating would be those “in the middle” 
that is, for instance, documents applying operation research techniques to the spread 
of venereal diseases. But even though the user might find the documents relevant, it is 
unlikely that she/he would like those returned first. Now entering the word “bat” as a 
query would lead to the retrieval of documents on baseball and documents on 
nocturnal flying mammals. These two subclusters have little in common, but an 
hypothetical document on Batman playing baseball would receive the highest 
evaluation, while its relevance is clearly arguable. So there is indeed a need to 
separate into subclusters and appropriately assess the relevance of each document. 
And of course when we deal with enormous amounts of data, we do not know a priori  
how many times we should separate subclusters into further subclusters. The analogy 
with zooming on a mountain range which reveals increasingly separate peaks is one 
that seems to reflect our clustering needs most appropriately.  

Once we have found a cluster of related documents we can use machine learning 
techniques to determine if a new document is relevant to these documents. Among the 
various techniques, Support Vector Machines have been particularly successful see, 
for instance to filter spam [5,6,10]. But a key aspect of SVM’s is the generation of 
non linear surfaces to separate complex configurations of data points. We will use the 
same motivations as those used in Support Vector Machines theory and the same 
techniques of mapping to higher dimensions in order to achieve greater clustering 
flexibility while preserving computational efficiency. The reader is referred to [3, 4, 
7] for a more thorough presentation of this issue and applications of SVM’s. Let us 
just summarize here a few necessary basic facts. 
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Mapping in a higher dimension while preserving computational efficiency is 
achieved by functions Φfrom the initial space into a higher dimensional space such 
that there exists a so-called kernel function K with the following property: 

K(Di, Dj)= ΦΦ )(),( ji DD  

An example of such functions is: 

Φr1,r2,…,rdx)= !!...!/! 21 drrrp x1
r1 x2

r2….. xd
rd 

                                                            with   k(x,y)=(<x,y>)
p =  <Φ(X),Φ(Y)> 

                                                                                       

=

=

=
di

i

i pr
1

 

What is quite significant here is that we can compute the vector products in the high 
dimensional space by simply applying a function to the initial vectors. 

In other words even though the dimension of the higher dimensional space may be 
of exponential size, we can still compute efficiently vector products. 

In fact, for mere computational purposes we do not even need to know the function 
�once we know its associated kernel K.  

For instance the following kernel corresponds to a mapping into a space of infinite 
dimension: 

K(x, y)= e//x-y//22σ22
 

It is known as the Gaussian Radial Basis Function. A brilliant achievement of 
SVM’s is that they can compute non linear separating surfaces for essentially the 
same cost as computing a linear separation. This is done by finding a formulation 
(Wolfe’s dual formulation of a quadratic optimization problem) where the data 
appears only as vector products. By using the function K we are able to eliminate all 
occurrences of the function � Indeed one can then simply replace <x,y> by K(x,y) 
and we have transformed a linear separation problem into a non linear one. 

We remark here that the various kernels used in SVM’s [3, 4] correspond to 
mappings Φ that map a sphere into a sphere, because K(x,x) is a constant for  vectors 
x of norm 1. Therefore we can map our data in a space of higher dimension with a 
function Φthat has an associated kernel and, at least in principle, compute an iterated 
centroid in that space. 

Unfortunately the two methods proposed to compute the iterated centroid do not 
allow us to use kernels. The iteration (1) becomes after the mapping by Φ: 

                      Fn= 1/m 
=

=

mi

i 1

(< ΦDi),N(Fn-1)>) ΦDi)                                 (2) 

And because Fn-1 is in the higher dimension space, we cannot easily replace Φby K. 
The matrix M has now rows made of the vectors ΦDi), which are in a space of 

unmanageable dimension (eventually infinite), so we cannot compute practically 
iteratively the powers of the matrix MTM. In other words in these approaches we 
cannot eliminate the computational use of the function Φ. We will solve this problem 
by allowing Φto remain, but only in a purely symbolic manner. 
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Instead of computing Fn at each step, we will only compute the coefficients of  
Fnso the iterated centroid will be computed as a linear combination ofΦDi)’s. From 

Fn= 1/m 
=

=

mi

i 1

(< ΦDi),N(Fn-1)>) ΦDi) 

and up to  scaling, we can see easily that the coefficient Φi
n of ΦDi)  at iteration n can 

be computed from the coefficients Φj
n-1 from the previous iteration. Indeed: 

Φi
n=< ΦDi),Fn-1> =< ΦDi), 

=

=

mj

j 1

(< ΦDj),Fn-2>)ΦDj)>) = < ΦDi), 
=

=

mj

j 1

Φj
n-1ΦDj)> 

we have removed the scaling for sake of notational clarity, it is not a problem as all 
Φ’s are uniformly affected 

Finally we have : 

Φi
n= 

=

=

mj

j 1

Φj
n-1k(Di, Dj)                                                     (3) 

We choose  αi
1= < Φ(Di),F0> with F0= Φ(N( 

=

=

mi

i 1

Di)) 

That is : 

αi
1=K(Di, N( 

=

=

mi

i 1

Di)) 

Because the centroid of the Di’s has no zero coefficient and because of the 
properties of the  Φ’s we consider, F0 also has no zero coefficients. 

We are now in a position to apply the proposition in the preliminaries to the 
present situation in a higher dimensional space, and we conclude that the iterated 
centroid is obtained as: 

Theorem 

F ∞ =
=

=

mi

i 1

 αi
*Φ(Di) 

where 

 αi
*= lim {αi

n=(1/m) 
=

=

mj

j 1

αj
n-1k(Di , Dj)}  for n → ∞  

and  the elevations Φi
*  are, up to scaling, the coordinates of the principal eigenvector 

of the matrix [K(Di , Dj)]. 
Now we can compute the elevation El of a vector D using only the function K. 

El(D)=
=

=
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i 1
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*<ΦDi), ΦD)>=

=

=
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Which gives us a non linear evaluation of the likelihood of D to belong to the same 
group as the Di’s. Contour lines are non linear and may even be disconnected, 
revealing the presence of multiple peaks. We can split the data into several clusters as 
we now show.  

3   Zoomed Clusters 

If we extend the tip of the vectors by a quantity proportional to their elevations, that is 
by a number that reflects how close a vector is from the given vectors, we obtain a 
picture similar to mountain ranges. A linear kernel gives us a volcano like 
symmetrical conical peak, that is we have one cluster, and the elevation of a point 
tells us about how much it belongs to this cluster. With increasing non linearity we 
see several peaks appear, that is the points are now grouped into several clusters. 
Elevation by itself does not tell us which peak, or cluster, a point belongs to.  For a 
fixed value of the elevation function we have contour lines, a point at a given 
elevation may be at the lower level of a high peak, or at the summit of a low peak. So 
the concept on which the clustering algorithm is based is that a point in a mountain 
range is associated to the “highest peak in its vicinity”. As a consequence the 
algorithm aims at telling us which cluster a point belongs to, but also how strongly it 
does belong to this cluster as well as how strongly it is related to the other clusters. 

3.1   The Zoomed Cluster Algorithm 

As input we have a set {Di} of documents, a kernel K, and an elevation function  

El(D)=
=

=

mi

i 1

 Φi
*

 K(Di, D). 

We construct a directed graph Γ whose nodes are the documents, from which we 
will derive clusters as being specific subgraphs. 

We have an edge (edges) from document Dj to the document(s) 
{Dk} which is (are) the highest in Dj’s vicinity, that is the document(s) maximizing 

the product  αi 
*<Di, Dj>

s.  Where s is a parameter which can be used to smoothe the 
notion of vicinity when > 1, or sharpen it when < 1. A local maximum is a document 
which is the highest in its vicinity, we will call it a peak. 

A cluster is defined as the set of documents from which we can reach a   given 
peak by following edges.  Of course we can use any kernel instead of <Di, Dj>

s , the 
default being the same kernel as for the elevation function. For implementation 
purposes one can remark that the document with the highest elevation is a peak and 
therefore defines a cluster. The second highest document can either be part of this first 
cluster or it forms one itself, and so on. We see that the worst case will be achieved 
when all documents are peaks, so scattered that each forms a cluster by itself. 

 Apart from the exceptional cases where there are more than one highest peak in 
the vicinity of a document, we will construct clusters with an empty intersection. 
To obtain clusters with non empty intersection we can simply modify the 
algorithm by creating links to all documents that are higher in the vicinity of the 
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document under consideration, and not just to the highest. Following the 
mountain analogy, a cluster will be a set of paths leading to a peak, and several 
peaks may share subpaths. 

 Implied clusters: Let D be a new and arbitrary document, and Di be the highest 
document in D’s vicinity, among the set of given documents. Add D to the 
clusters that Di belongs to. The resulting clusters are called implied clusters. This 
notion can used for unsupervised classification purposes. Alternatively when we 
have data that we know does not belong a particular cluster , one can use the 
elevation function with a estimated threshold to act as a supervised classifier.  

4   Summary and Future Work 

We have presented a novel form of clustering which is very easy to implement, 
computationally efficient, and most importantly whose “zooming” capabilities seem 
more flexible and useful than having to guess an a priori number of clusters. Its real 
value however will be ascertained through experimentations with the large amounts of 
data as found on the web and in genomics. Some of these experimentations are near 
conclusion and their results are to be reported. 
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Abstract. This paper discusses the use of a recent boosting algorithm for 
recurrent neural networks as a tool to model nonlinear dynamical systems. It 
combines a large number of RNNs, each of which is generated by training on a 
different set of examples. This algorithm is based on the boosting algorithm 
where difficult examples are concentrated on during the learning process. 
However, unlike the original algorithm, all examples available are taken into 
account. The ability of the method to internally encode useful information on 
the underlying process is illustrated by several experiments on well known 
chaotic processes. Our model is able to find an appropriate internal 
representation of the underlying process from the observation of a subset of the 
states variables. We obtain improved prediction performances. 

Keywords: Boosting, Time series forecasting, Recurrent neural networks, 
Chaotic time series. 

1   Introduction 

Predicting the future evolution of dynamical systems has been a main goal of 
scientific modeling for centuries. Chaotic phenomena frequently appear in economics, 
meteorology, chemical processes, biology, hydrodynamics and many other situations. 
In order to predict and/or control the underlying systems, mathematical models are 
generally investigated analyzing the evolution properties of the corresponding 
equations of motion, and integrating them in order to predict the future state of the 
system. But in the absence of prior knowledge concerning the problem to solve, one 
must build models of time series out of available data. A common approach to 
modeling is to consider a fixed number of the past values of one or several time series 
(a time window) and look for a function which provides the next value of the target 
series or the class membership of the input sequence.  

Multilayer perceptrons or MLPs are well adapted to this approach. Universal 
approximation results show that very general nonlinear autoregressive (NAR) 
functions can be obtained. But the use of an MLP for time series prediction has 
inherent limitations, since one cannot find an appropriate finite NAR model for every 
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dynamical system. Also, the size of the time window is difficult to choose; an optimal 
value may depend on the context.  

Recurrent neural networks (RNNs) possess an internal memory and do no longer 
need a time window to take into account the past values of the time series. RNNs are 
computationally more powerful than feed-forward networks [1], and valuable 
approximation results were obtained for dynamical systems [2]. To improve upon the 
obtained performance, we can adapt general procedures that were found to enhance 
the accuracy of various basic models. One such procedure is known under the name 
of boosting and was introduced in [3]. The gain a learner bring with respect to random 
guessing is boosted by the sequential construction of several such learners, 
progressively focused on difficult examples of the original training set.  

This paper deals with boosting of RNNs for improving forecasting of chaotic time 
series. In section 2, we review existing approaches for nonlinear modeling and the 
corresponding neural architectures before turning in section 3 to a presentation of our 
algorithm. The experimental results obtained on different benchmarks, showing an 
improvement in performance, are described in section 4. 

2   Nonlinear Modeling Using RNN 

The problem of designing a neural model of an unknown process based on observed 
data, without any physical insight in the underlying dynamics, has attracted much 
attention during the past years [4] [5] [6]. Most of the literature is concerned with 
black-box modeling usually performed using input-output models. This paragraph 
provides an understanding of their limitations. We show that state-space models such 
as RNN constitute a broader class of nonlinear dynamical models capable of 
remedying these limitations.  

2.1   The NARMA Approach  

We briefly review the cornerstone of black-box modeling in order to highlight the role 
of neural networks in approximating the optimal predictors of nonlinear dynamical 
systems [7].  Before taking a closer look at the existing approaches we must introduce 
some notation. Consider ( )tx , for Tt ≤≤0 , the time series data one can employ for 

building a model. Given ( ) ( ) ( ) ( ){ }1,,,2,1 xntxtxtx −−−  one is looking for a good 

estimate ( )tx̂  of ( )tx . 

The most common approach in dealing with a prediction problem consists in using 
a fixed number p of past values (a fixed-length time window sliding over the time 
series) when building the prediction: 

( ) ( ) ( ) ( )( )ptxtxtxftx −−−= ,,2,1ˆ  (1) 

where f  is an unknown function. If f  is a linear function, we obtain an 

autoregressive model. Most of the current work relies on a result in [8] showing that 
under several assumptions (among which the absence of noise) it is possible to obtain 
a perfect estimate of ( )tx  according to (1) if 12 +≥ dp , where d  is the dimension of 

the stationary attractor generating the time series.  
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Another model of the class which appeared to offer plausible description of a wide 
range of different types of time series is the nonlinear extension of the autoregressive 
moving average model termed NARMA(p,q) in the literature:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )teqteteteptxtxtxftx +−−−−−−= ,,2,1,,2,1  (2) 

Suppose that the NARMA is invertible; there exists a function g such that  

( ) ( ) ( )( ) ( )tetxtxgtx +−−= ,2,1  (3) 

then given the infinite past observations, one can in principle use the above equation 
to compute the e(t-j) in (2) as a function of the past observations x(t-1), x(t-2), … such 
that (2) becomes  

( ) ( ) ( ) ( ) ( )( )qteteptxtxftx −−−−= ,,1,,1ˆ  (4) 

where the e(t-j) are specified by ( ) ( ) ( )( ),2,1 −−− txtxgtx . Since in practice one has 

only access to a finite observation record, e(t-j) cannot be computed exactly; it seems 
reasonable, as for the linear ARMA process, to approximate (4) by: 

( ) ( ) ( ) ( ) ( )( )qteteptxtxftx −−−−= ˆ,,1ˆ,,1ˆ  (5) 

where ( ) ( ) ( )itxitxite −−−=− ˆˆ . The optimal predictor is thus given by (5) provided 

that the effect of arbitrary initial conditions will die away depending on the unknown 
function f. Such NARMA models have an advantage over NAR models in much the 
same way that linear ARMA models have advantages over AR for some types of 
series. However, p and q values must be chosen carefully. Moreover, in contradiction 
to the linear case, there is no simple equivalence between nonlinear input-ouput and 
state-space models. Therefore, a natural step is to resort to state-space models.  

2.2   The State Space Approach  

Whereas it is always possible to rewrite a nonlinear input-output model in a 
state-space representation, conversely, an input-output model equivalent to a given 
state-space model might not exist [9], and if it does, it is surely of higher order [4]. 
Consider the following deterministic state-space model:  

( ) ( ) ( )( )
( ) ( )( )=

=+
tgty

tutft

x

xx ,1
 

(6) 

where u(t) is a scalar external input, y(t) is the scalar output, and ( )tx  is the n-state 

vector of the model at time t. Under general conditions on the observability of the 
system, an equivalent input-output number of past model does exist, and is given by:  

( ) ( ) ( ) ( ) ( )( )rtuturtytyhty −−−−= ,,1,,,1  (7) 

with 12 +≤≤ nrn  [4]. Therefore, state-space models are likely to have lower order 
and require a smaller number of past inputs, and hopefully a smaller number of 
parameters. State-space models can be used as black-box models with additional 
outputs dedicated to modeling the state variables of the process. This gives to the 
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neural predictor more flexibility while still taking advantage of the feed-forward 
structure. Consider the stochastic state-space model given by: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )=

=+
ttgty

ttutft

2

1

,

,,1

x

xx
 

(8) 

where ( )t1 and ( )t2  are sequences of zero mean i.i.d. random independent vectors. 

If f  and g  are known, the extended Kalman predictor gives a sub-optimal solution 

using a linearization of the model around the current state estimate. In practice 
however, these functions are partially or completely unknown, there is thus no reason 
to stick to this structure. Such time-invariant associated predictor can be put in 
general form:  

( ) ( ) ( )( )
( ) ( )( )+=+

=+
1ˆ1ˆ

,ˆ1ˆ

2

1

tNty

tytNt

x

xx
 

(9) 

where jN ; j = 1; 2 may be implemented by feed-forward networks for instance. This  

state-space based model can be modeled by two cascaded MLPs. However, a MLP in 
which the output is fed back to the input is a special case of the somewhat more 
general class of fully interconnected networks [10] [11]. For such recurrent networks, 
there is no need to present the ( )jte −ˆ  and the state variables jt−x ,  j >1, to the input 

since specific non trainable recurrent links from a hidden layer towards itself results 
in the same functional input-output mapping.  

3   Boosting Recurrent Neural Networks 

To improve the obtained results, we may use a combination of models to obtain a 
more precise estimate than the one obtained by a single model. In the boosting 
algorithm, the possible small gain a “weak” model can bring compared to random 
estimate is boosted by the sequential construction of several such models, which 
concentrate progressively on the difficult examples of the original training set. The 
boosting [3] [12] [13] works by sequentially applying a classification algorithm to re-
weighted versions of the training data, and then taking a weighted majority vote of the 
sequence of classifiers thus produced. Freund and Schapire in [12] outline their ideas 
for applying the Adaboost algorithm to regression problems; they presented the 
Adaboost.R algorithm that attacks the regression problem by reducing it to a 
classification problem.  

Recently, a new approach to regressor boosting as residual-fitting was developed 
[14] [15]. Instead of being trained on a different sample of the same training set, as in 
previous boosting algorithms, a regressor is trained on a new training set having 
different target values (e.g. the residual error of the sum of the previous regressors). 
Before presenting our algorithm, let us mention the few existing applications of 
boosting to time series modelling. In [16] a boosting method belonging to the family 
of boosting algorithms presented in [3] is applied to the classification of phonemes. 
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The learners employed are RNNs, and the authors are the first to notice the 
implications the internal memory of the RNNs has on the boosting algorithm. A 
similar type of boosting algorithm is used in [17] for the prediction of a benchmark 
time series, but with MLPs as regressors.  

Table 1. The boosting algorithm proposed for regression with recurrent neural networks          

1. Initialize the weights for the examples: ( ) QqD 11 = , and Q , the number of 

training examples. Put the iteration counter at 0: 0=n   
2. Iterate 
        (a) increment n . Learn with BPTT [18] a RNN nh  by using the entire 

               training set and by weighting the squared error computed for example q    

               with ( )qDn , the weight of example q  for the iteration n ; 

        (b) update the weights of the examples: 
            (i) compute ( )qLn  for every Qq ,,1= according to the loss function :      

                ( ) ( )( ) nqq
n

q
linear
n SyxyqL −= , ( ) ( )( ) 22

nqq
n

q
quadratic
n SyxyqL −=    

                ( ) ( )( )( )nqq
n

q
lexponentia

n SyxyqL −−−= exp1 , with    

                ( ) ( ) qq
n

q
q

n yxyS −= sup  ; 

            (ii) compute ( ) ( )
=

=
Q

q
nnn qLqD

1

ε  and ( ) nnn εεα −= 1  ; 

            (iii) the weights of the examples become ( nZ  is a normalizing constant) 

                 ( ) ( )
kQ

qpk
qD n

n +
⋅+

= +
+

1
1

1
 with ( ) ( ) ( )( )

n

qL
nn

n Z

qD
qp

n 1

1

−

+ =
α

 until 5.0<nε . 

3. Combine RNNs by using the weighted median. 

 
Our new boosting algorithm should comply with the restrictions imposed by the 

general context of application. In our case, it must be able to work well when a 
limited amount of data is available and accept RNNs as regressors. We followed the 
generic algorithm of [19]. We had to decide which loss function to use for the 
regressors, how to update the distribution on the training set and how to combine the 
resulting regressors. Our updates are based on the suggestion in [20], but we apply a 
linear transformation to the weights before employing them (see the definition of 

( )qDn 1+  in the Table 1) in order to prevent the RNNs from simply ignoring the easier 
examples for problems similar to the sunspots dataset. Then, instead of sampling with 
replacement according to the updated distribution, we prefer to weight the error 
computed for each example (thus using all the data points) at the output of the RNN 
with the distribution value corresponding to the example.            
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4   Experiments 

In this section, we report on extensive investigations of the performance of the 
boosted RNNs as an anticipative model for the behavior of the well known time series 
generated by chaotic processes. Our main goals were to assess the predictive ability of 
our method against other forecasting techniques, especially when no past information 
x(t-1), x(t-2), … is directly supplied to the network for the prediction of ( )1+tx , and 

to force the dynamical network to encode as much information of the past as possible 
to infer some form of embedding dimension regarding the underlying process. In a 
previous paper [21], we gave some basic results on our algorithm. 

We will now come back to a more detailed study, focusing on chaotic time series, 
providing results after 5 trial runs for each configuration: (linear, squared or 
exponential loss functions; value of the parameter k ). The error criterion used was 
the normalized mean squared error (NMSE), a standard measure of fit, which is the 
ratio between the MSE and the variance. A NMSE value of 1 corresponds to the 
prediction, for all time steps, of the mean of a time series. To obtain the best mean 
results in following tables, we take the normalised mean results of the 5 trials of each 
set of parameters, and then we choose the best results. 

The employed architectures had a single input neuron, a single linear output 
neuron, a bias unit and a fully recurrent hidden layer composed of neurons with tanh 
activation functions. The numbers of neurons correspond to the best results obtained 
by BPTT without boosting. We set the maximal number n of RNNs at 50 for each 
experiment and for each one the weights in [ ]3.0,3.0−  are randomly initialized. We 

compared the results given by our algorithm to other results in the literature (see [11] 
for more details).  

4.1   Mackey-Glass Datasets 

The Mackey-Glass time series [22], well-known for the evaluation of forecasting 
methods [23], are generated by the following non-linear differential equation: 

( ) ( ) ( )
( )τ

τ
−+

−+−=
tx

tx
tx

dt

tdx
101

2.0
1.0  (10) 

Depending on the value of τ , the time-series generated can asymptotically 
converge to a fixed point, to a periodic behavior or to deterministic chaos for 

8,16>τ . The results in the literature usually concern 17=τ  (known as MG17) and 

30=τ  (MG30). The data generated with ( ) 9.0=tx  for τ≤≤ t0  is then sampled 

with a period of 6, according to the common practice (see e.g. [24]). We use the first 
500 values for the learning set and the next 100 values for the test set. We tested 
RNNs having 7 neurons in the hidden layer. Tables 2 and 3 show the strong 
improvements obtained on several models applied to this benchmark (see [11] for a 
presentation). Our boosting algorithm significantly improves upon the mean results 
and is close to the best results reported in the literature for the two datasets. For most 
of the simulations, 50 networks have been obtained, which is the maximal number of 
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Table 2. Best results (NMSE*103) 

Model MG17 MG30 
Linear 269 324 
Polynomial 11.2 39.8 
RBF 10.7 25.1 
MLP 10 31.6 
FIR MLP 4.9 16.2 
TDFFN  0.8 _ 
DRNN 4.7 7.6 
RNN/BPTT 0.23 0.89 
EBPTT 0.13 0.05 
CBPTT 0.14 0.73 
Boosting (linear, 150)  0.13 0.45 
Boosting (squared, 100) 0.15 0.41  

Table 3. Best mean results (NMSE*103) 

Model MG17 MG30 
RNN/BPTT 4.4 13 
EBPTT 0.62 1.84 
CBPTT  1.6 2.5 
Boosting (squared, 100)  0.16 0.45 
Boosting (squared, 200)  0.18 0.45  

   

Fig. 1. The Mackey-Glass time series and attractor for 17=τ (learning and test set) 

networks that has been allowed. The MG17 attractor is reconstructed without default 
(Fig. 1). Several additional models applied to this last time series can be found in 
[25], some of them with better results than the mentioned models but obtained from a 
different dataset (number of data, sampling, …).  

4.2   Hénon Dataset 

The Hénon attractor is defined by the bi-dimensional system: 

( ) ( ) ( ) ( )
( ) ( )−=

−+−−==
1

23,014,10,1 2

txty

txtxtxtx
 (11) 

The phase plot, shown in Fig. 2, reveals a remarkable structure called a strange 
attractor of dimension D = 1.26 [26]. It is the region in which the trajectory of states is 
confined to. Increased magnification of the attractor would reveal ever finer detail in a 
fractal like geometry. A RNN with 5 hidden neurons was trained on a learning set of 
5000 values ([10], [27]). Validation and test set contain 1500 values. As it can be seen 
in Fig. 2 and tables 4 and 5, the boosted RNN prediction are remarkably accurate. The 
average numbers of networks generated by boosting are 11, 10, and 26 respectively 
for the linear, squared and exponential loss functions. 
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Fig. 2. The Hénon time series and attractor (test set) 

Table 4. Best results (NMSE*103) 

Model Henon 
Linear 874 
FIR MLP 1.7 
DRNN 1.2 
BPTT 0.2 
EBPTT 0.012 
CBPTT 0.030 
CBPTT si 0.062 
CBPTT 20 it. 0.023 
Boosting (linear, 20)  0.011 
Boosting (squared, 150) 0.010 
Boosting (exponential, 100) 0.015  

Table 5. Best mean results (NMSE*105) 

Model Henon 
BPTT 58.6 
EBPTT 25.0 
CBPTT 64.1 
CBPTT si 39.4 
CBPTT 20 it. 26.3 
Boosting (linear, 100)  2.82 
Boosting (squared, 150) 3.02 
Boosting (exponential, 100) 2.26  

4.3   Laser Dataset (Lorenz Equations) 

These data (Fig. 3) were recorded from a Far-Infrared-Laser in a chaotic state and was 
one of the datasets employed in the Santa Fe Institute time series prediction and 
analysis competition in 1991. The data is a cross-cut through periodic to chaotic 
intensity pulsations of the laser. Chaotic pulsations more or less follow the theoretical 
Lorenz model. 

0

50

100

150

200

250

0 200 400 600 800 1000  

Fig. 3. The laser time series 
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Table 6. Best results (NMSE*103) on test set 

Model Laser 
FIR MLP 23 
BPTT 7.92 
EBPTT 5.37 
CBPTT 5.60 
Boosting (linear, 20)  3.77 
Boosting (squared, 5) 4.31 

In accordance with the instructions given to the competitors back in 1991, we used 
the first 1000 values for the learning set and the next 100 values for the test set. We 
limited our experiments to single step predictions. 

Table 6 compares the results obtained by our method to those from literature. One 
more time, we obtain improved results (table 6) with respectively 14 and 19 networks 
developed by our method. 

5   Conclusion 

In this paper, we have shown that boosted recurrent neural networks are valuable for 
modeling general nonlinear dynamical systems. A number of experiments on  
deterministic chaotic processes were carried out to confirm and to illustrate the ability 
of boosted RNN models to infer an internal representation of the nonlinear processes 
from the observation of a subset of the state variables. Our algorithm increases 
prediction performances and overcomes various results reported in the literature. 

The evaluation on chaotic time series multi-step-ahead prediction problems is one 
of our further works on this algorithm.  
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Abstract. This paper presents an approach to the prediction of min-
eral prospectivity that provides an assessment of uncertainty. Two feed-
forward backpropagation neural networks are used for the prediction.
One network is used to predict degrees of favourability for deposit and
another one is used to predict degrees of likelihood for barren, which is
opposite to deposit. These two types of values are represented in the form
of truth-membership and false-membership, respectively. Uncertainties
of type error in the prediction of these two memberships are estimated
using multidimensional interpolation. These two memberships and their
uncertainties are combined to predict mineral deposit locations. The de-
gree of uncertainty of type vagueness for each cell location is estimated
and represented in the form of indeterminacy-membership value. The
three memberships are then constituted into an interval neutrosophic
set. Our approach improves classification performance compared to an
existing technique applied only to the truth-membership value.

1 Introduction

The prediction of new mineral deposit location is a crucial task in mining in-
dustry. In recent years, Geographic Information System (GIS) and neural net-
works have been applied in many applications for mineral prospectivity predic-
tion [1,2,3]. Several sources of data such as geology, geochemistry, and geophysics
are involved in the prediction. Data collected from these sources always contains
uncertainty. Hence, the predicted mineral deposit locations also contain some
degrees of uncertainty. There are several types of uncertainty such as error, in-
accuracy, imprecision, vagueness, and ambiguity [4,5]. This paper deals with
two types of uncertainty, which are uncertainty of type error and uncertainty
of type vagueness. Error can happen from several aspects such as measurement,
data entry, processing, lacking of knowledge about data, or lacking of ability
in measurement [5]. This study deals with error occurred in the process of pre-
diction. Vagueness refers to boundaries that cannot be defined precisely [5]. In
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this study, the locations are known, but uncertain existence of favourability for
deposit. Some locations have one hundred percent of favourability for deposits.
Some locations have zero percent of favourability for mineral deposits. These
cells are determined as non-deposit or barren cells. Most locations have degrees
of favourability between these two extremes. For each location, we cannot predict
the exact boundary between favourability for deposit and likelihood for barren.
Vagueness or indeterminable information always occurs in the boundary zone.

This paper presents a method using GIS data and neural networks for pre-
dicting the degree of favourability for mineral deposit, degree of likelihood for
barren, and degree of indeterminable information in the mineral prospectivity
prediction. Instead of considering only uncertainty in the boundary between both
degrees of favourability for deposit and barren, we also consider uncertainty of
type error in the prediction of both degrees. A multidimensional interpolation
method is used to estimate these errors. In order to represent the three degrees
for each location, an interval neutrosophic set [6] is used to express them. The
basic theory of an interval neutrosophic set is described in the next section.

The rest of this paper is organized as follows. Section 2 presents the basic
theory of interval neutrosophic sets. Section 3 explains proposed methods for
mineral prospectivity prediction and quantification of uncertainties using GIS
data, neural networks, interval neutrosophic sets, and a multidimensional inter-
polation. Section 4 describes the GIS data set and the results of our experiments.
Conclusions and future work are presented in Section 5.

2 Interval Neutrosophic Set

The membership of an element to the interval neutrosophic set is expressed by
three values: t, i, and f . These values represent truth-membership, indeterminacy-
membership, and false-membership, respectively. The three memberships are in-
dependent. In some special cases, they can be dependent. These memberships can
be any real sub-unitary subsets and can represent imprecise, incomplete, incon-
sistent, and uncertain information [7]. In this paper, the three memberships are
considered to be dependent. They are used to represent uncertainty information.
This research follows the definition of interval neutrosophic sets that is defined
in [7]. This definition is described below.

Let X be a space of points (objects). An interval neutrosophic set in X is
defined as:

A = {x(TA(x), IA(x),FA(x))|x ∈ X ∧
TA : X −→ [0, 1] ∧
IA : X −→ [0, 1] ∧
FA : X −→ [0, 1]}

(1)

where
TA is the truth-membership function,
IA is the indeterminacy-membership function, and
FA is the false-membership function.
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3 Mineral Prospectivity Prediction and Quantification of
Uncertainty

In this study, gridded map layers in a GIS database are used to predict mineral
prospectivity. Fig.1 shows our proposed model that consists of GIS input layers,
two neural networks, and a process of indeterminacy calculation. The output of
this model is an interval neutrosophic set in which each cell in the output consists
of three values: deposit output, indeterminacy output, and non-deposit output
which are truth-membership, indeterminacy-membership, and false-membership
values, respectively.

 

Truth NN

Falsity NN
GIS input data layers

Indeterminacy
calculation

 

 

deposit output

non-deposit output

 

indeterminacy output

 

output

Fig. 1. Uncertainty model based on the integration of interval neutrosophic sets (INS)
and neural networks (NN)

In the proposed model, the truth NN is a feed-forward backpropagation neural
network. This network is trained to predict the degree of favourability for de-
posit, which is the truth-membership value. The falsity NN is also a feed-forward
backpropagation neural network in which its architecture and all properties are
the same as the architecture and all properties used for the truth NN. The only
difference is that the falsity NN is trained to predict degree of likelihood for bar-
ren using the complement of target outputs used for training data in the truth
NN. For example, if the target output used to train the truth neural network
is 0.9, its complement is 0.1. Fig.2 shows our training model. It consists of two
neural networks: truth NN and falsity NN. Errors produced from both neural
networks will be used to estimate uncertainties in the prediction for the new
input data.

Fig.3 shows uncertainty estimation in the prediction of truth-membership for
the new data set or unknown data. The errors produced from the truth NN
are plotted in the multidimensional feature space of the training input patterns.
Thus, uncertainties of the new input patterns can be estimated using multidi-
mensional interpolation. Estimated uncertainty in the barren prediction are also
calculated in the same way as the estimated uncertainty for deposit. The errors
produced from the falsity NN are plotted in the multidimensional feature space of
the training input patterns. A multidimensional interpolation is then used to es-
timate uncertainty for the prediction of false-membership or degree of likelihood
for barren. These two estimated uncertainties will be used in the dynamically
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training deposit error

 

training barren error

Fig. 2. Two neural networks used for training

 

Unknown data

Uncertainty
estimation

 

training deposit error

 

estimated uncertainty
for deposit

 

Training data

Fig. 3. Uncertainty estimation for mineral deposit prediction

weighted combination between truth-membership and false-membership for the
binary classification later.

If the degree of favourability for deposit or truth-membership value is high
then the degree of likelihood for barren or false-membership value should be
low, and the other way around. For example, if the degree of favourability for
deposit is 1 and the degree of likelihood for barren is 0, then the boundary
between these two values is sharp and the uncertainty of type vagueness is 0.
However, the values predicted from both neural networks are not necessary to
have a sharp boundary. For instance, if both degrees predicted from the truth NN
and the falsity NN for the same cell is equal, then this cell contains the highest
uncertainty value, which is 1. Therefore, uncertainty in the boundary zone can be
calculated as the difference between these two values. If the difference between
these two values is high then the uncertainty is low. If the difference is low then
the uncertainty is high. In this paper, uncertainty in the boundary between these
two values is represented by the indeterminacy-membership value. Let C be an
output GIS layer. C = {c1, c2, ..., cn} where ci is a cell at location i. Let T (ci) be
a truth-membership value at cell ci. Let I(ci) be an indeterminacy-membership
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value at cell ci. Let F (ci) be a false-membership value at cell ci. For each cell,
the indeterminacy membership value (I(ci)) can be defined as follows:

I(ci) = 1− |T (ci)− F (ci)| (2)

After three membership values are created for each cell, the next step is to
classify the cell into either deposit or barren. Both truth-membership and false-
membership are used in the classification. The estimated uncertainty of type
error in the prediction of truth- and false-memberships are also integrated into
the truth- and the false-membership values to support certainty of the classifi-
cation. The less uncertainty in the prediction, the more certainty in the classi-
fication. Let et(ci) be an estimated uncertainty of type error in the prediction
of the truth-membership at cell ci. Let ef (ci) be an estimated uncertainty of
type error in the prediction of the false-membership at cell ci. We determine the
weights dynamically based on these estimated uncertainties. The weights for the
truth- and false-membership values are calculated as the complement of the er-
rors estimated for the truth- and false-membership, respectively. These weights
are considered as the degrees of certainty in the prediction. In this paper, the cer-
tainty in the prediction of the false-membership value is considered to be equal
to the certainty in the prediction of non-false-membership value, which is the
complement of the false-membership value. Let wt(ci) and wf (ci) be the weights
of the truth- and false-membership values, respectively. The output O(ci) of the
dynamic combination among the truth-memberships, the false-memberships, and
their uncertainties of type error can be calculated using equations below.

O(ci) = (wt(ci)× T (ci)) + (wf (ci)× (1− F (ci))) (3)

wt(ci) =
1− et(ci)

(1 − et(ci)) + (1 − ef(ci))
(4)

wf (ci) =
1− ef (ci)

(1− et(ci)) + (1 − ef(ci))
(5)

In order to classify the cell into either deposit or barren, we compare the
output to the threshold value. A range of threshold values are determined and
compared to the output for each cell. The best threshold value that can produce
the best accuracy in the classification will be selected for the mineral prospec-
tivity prediction.

4 Experiments

4.1 GIS Data Set

The data set used in this study contains ten GIS layers in raster format. Each
layer represents different variables which are collected and preprocessed from
various sources such as geology, geochemistry, and geophysics in the Kalgoorlie
region of Western Australia. An approximately 100× 100km area is divided into
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a grid of square cells of 100 m side. Each layer contains 1,254,000 cells. Each
grid cell represents a single attribute value which is scaled to the range [0, 1]. For
example, a cell in a layer representing the distance to the nearest fault contains
a value of distance scaled to the range [0, 1]. Each single grid cell is classified into
deposit or barren cell. The cells containing greater than 1,000 kg total contained
gold are labeled as deposits. All other cells are classified as non-deposits or barren
cells. In this study, the co-registered cells in the GIS input layers are used to
constitute the input feature vector for our neural network model. We use only
268 cells in this experiment in which 187 cells are used for training and 81 cells
are used for testing. For training data, we have 85 deposit cells and 102 barren
cells. For testing data, we have 35 deposit cells and 46 barren cells.

4.2 Experimental Methodology and Results

Two feed-forward backpropagation neural networks are created in this exper-
iment. The first neural network is used as the truth NN to predict degree of
favourability for deposit and another network is used as the falsity NN to pre-
dict degree of likelihood for barren. Both networks contain ten input-nodes, one
output node, and one hidden layer constituting of 20 neurons. The same param-
eter values are applied to the two networks and both networks are initialized
with the same random weights. The only difference is that the target values for
the falsity NN are equal to the complement of the target values used to train
the truth NN.

In order to estimate uncertainty of type error for the test data set, errors
produced from the truth NN are plotted in the input feature space. In this study,
only 60 patterns from the input training data are plotted in the input feature
space because of memory limitations of the computer used in the experiment. A
multidimensional interpolation [8] is then used to estimate uncertainty of type
error for the test data set in the prediction of degree of favourability for deposit.
We use multidimensional nearest neighbour interpolation function in Matlab
to interpolate these errors. The estimation of uncertainty of type error for the
prediction of degree of likelihood for barren is also calculated using the same
technique as the error estimation for the deposit prediction.

In order to calculate uncertainty of type vagueness, which is the indeterminacy-
membership value, equation 2 is used to compute this kind of uncertainty for each
pattern in the test data set. After we created the three memberships: truth-
membership, indeterminacy-membership, and false-membership for each pattern,
these three memberships are then constituted into an interval neutrosophic set.

After the three memberships are determined for each pattern in the test data
sets, the next step is to classify each pattern into deposit or barren cells. The
truth-memberships, the false-memberships, and their uncertainties of type error
are combined into a single output used for the binary classification. The dynamic
combination can be computed using equation 3. After that, the classification is
done by comparing each dynamic combination output to a threshold value. In
this paper, threshold values are ranged from 0.1 to 0.9 in steps of 0.1. These
threshold values are tested with each output to seek for the best threshold value
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Table 1. Classification accuracy for the test data set obtained by applying a range
of threshold values to the output of dynamic weighted combination among truth-
membership, false-membership, and uncertainties of type error. (Right: graphical rep-
resentation of data in this table)

Threshold Deposit Barren Total
value %correct %correct %correct
0.1 100.00 13.04 50.62
0.2 100.00 39.13 65.43
0.3 91.43 52.17 69.14
0.4 88.57 65.22 75.31
0.5 88.57 76.09 81.48
0.6 74.29 82.61 79.01
0.7 42.86 91.30 70.37
0.8 11.43 97.83 60.49
0.9 0.00 100.00 56.79 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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that produces the best accuracy in the classification. For each cell ci in the
classification, if the truth-membership value is greater than the threshold value
then the cell is classified as a deposit. Otherwise, it is classified as barren. Table 1
shows classification accuracy for the test data set obtained by applying a range
of threshold values to the output of dynamic combination. We found that the
maximum of the total correct cell in the classification is 81.48 percent. Hence,
the optimal threshold value used in this classification is determined to be 0.5.

In this paper, we do not consider the optimization of the prediction, but our
purpose is to test a new approach that provides an estimate of uncertainty in
the prediction. We compare our classification results with those obtained using
the traditional method for binary classification. In the traditional approach, only
truth-membership values are used in the comparison. If the cell has the truth-
membership value greater than the threshold value then the cell is classified as
deposit. Otherwise, the cell is classified as barren. Table 2 shows classification
accuracy for the test data set obtained by applying a range of threshold values
to the only truth-membership values. The maximum of the total correct cell in
the traditional classifications is 80.25 percent. Therefore, the optimal threshold
value used in this traditional classification is determined to be 0.5.

The results from our proposed classification using the dynamic combination
represent 1.23 percent improvement over those obtained using the traditional
classification applied only the truth-membership values. Table 3 shows samples of
individual predicted cell types and their uncertainties of type error and vagueness
resulted from our proposed model for the test data set. The individual predicted
cell types for the traditional approach are also shown in this table in the last
column. These samples are shown that our proposed model has an advantage of
quantification of uncertainty in the prediction. For example, the actual cell type
for the cell in the first row of this table is a deposit cell, but it is predicted to
be a barren cell. The traditional approach cannot explain about uncertainty in
this prediction, but our approach can explain that the cell is predicted to be a
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Table 2. Classification accuracy for the test data set obtained by applying a range of
threshold values to the truth-membership values. (Right: graphical representation of
data in this table)

Threshold Deposit Barren Total
value %correct %correct %correct
0.1 100.00 30.43 60.49
0.2 94.29 47.83 67.90
0.3 91.43 56.52 71.61
0.4 91.43 63.04 75.31
0.5 88.57 73.91 80.25
0.6 77.14 80.43 79.01
0.7 54.29 89.13 74.07
0.8 22.86 95.65 64.19
0.9 2.86 100.00 58.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Table 3. Sample outputs from the proposed model for the test data set (columns 2-7)
together with classifications based on dynamic combination (column 8) and traditional
classifications based on truth-membership values (column 9)

Actual Dynamic Predicted Predicted
Cell T (ci) et(ci) F (ci) ef (ci) I(ci) Combination Cell Type Cell Type
Type O(ci) O(ci) > 0.5 T (ci) > 0.5

Deposit 0.40 0.04 0.70 0.16 0.70 0.35 Barren Barren
Deposit 0.87 0.15 0.26 0.24 0.39 0.81 Deposit Deposit
Deposit 0.69 0.14 0.65 0.14 0.95 0.53 Deposit Deposit
Deposit 0.84 0.51 0.23 0.70 0.39 0.81 Deposit Deposit
Barren 0.07 0.09 0.70 0.04 0.37 0.19 Barren Barren
Barren 0.57 0.28 0.54 0.23 0.97 0.51 Deposit Deposit
Barren 0.43 0.28 0.46 0.23 0.97 0.49 Barren Barren
Barren 0.51 0.13 0.57 0.53 0.94 0.48 Barren Deposit

barren cell with the uncertainty of 70 percent. Hence, the decision-maker can
use this information to support the confidence in decision making.

Considering the last row of this table, the actual cell type for this cell is barren.
Using the traditional approach, this cell is classified as a deposit which is a wrong
prediction and there is no explanation of uncertainty in the prediction for this
cell. Using our approach, this cell is classified as a barren, which is correct. We
also know that the cell is barren with the uncertainty of 94 percent. We can see
that uncertainty of type error in the prediction can enhance the classification.
Therefore, the combination among the truth-membership, false-membership, and
their uncertainties of type error gives the more accuracy in prediction.

5 Conclusions and Future Works

This paper represents a novel approach for mineral deposit prediction. The pre-
diction involves ten GIS input data layers, two neural networks, an interval
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neutrosophic set, and a multidimensional interpolation. The co-register cells
from GIS data are applied into two neural networks to produce the degrees
of favourability for deposits (truth-membership) and the degrees of likelihood
for barrens (false-membership). Two types of uncertainty in the prediction are
estimated. These two kinds of uncertainty are error and vagueness. Estimated
errors are computed using a multidimensional interpolation. Vagueness is calcu-
lated as the different between the truth- and false-membership values for each
cell. This paper represents vagueness as the indeterminacy-membership. These
three memberships are formed into an interval neutrosophic set. The goal of this
paper is to quantify uncertainty in mineral prospectivity prediction. The more
we know uncertainty information, the more certainty in decision making. In the
future, we will apply this model to bagging and boosting neural networks.
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Abstract. Thermal deformation is a nonlinear dynamic phenomenon and is one 
of the significant factors for the accuracy of machine tools. In this study, a 
dynamic feed-forward neural network model is built to predict the thermal 
deformation of machine tool. The temperatures and thermal deformations data 
at present and past sampling time interval are used train the proposed neural 
model. Thus, it can model dynamic and the nonlinear relationship between 
input and output data pairs. According to the comparison results, the proposed 
neural model can obtain better predictive accuracy than that of some other 
neural model. 

Keywords: Feed-forward neural network, Thermal deformation, Neural 
Prediction model. 

1   Introduction 

Thermal deformation is one of the major error sources of cutting working piece, that 
due to the temperature variation and non-uniform distribution characteristic. It will 
cause 40-70% error during cutting process in the machine tools [1]. The improvement 
of the finishing accuracy with error compensation by software method is very useful 
and efficient. The thermal deformation error can be compensated by this way without 
changing the design of original structure and mechanism. 

The software method utilizes a mathematical model based on the measurement of 
temperatures to predict thermal deformations. There are some basic papers have been 
proposed. Donmez et al. [2] and Chen et al.[3] have applied multiple regression 
analysis (MRA) to predict thermal deformations for turning lathe and horizontal 
machine center. The MRA prediction model can be built without difficult algorithms, 
but it is a linear and static model. This model cannot obtain the nonlinear and 
dynamic relationship between the measurement temperatures and thermal 
deformations. The feed-forward neural network (FNN) can map the nonlinear 
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relationship by the training with back-propagation algorithm [4]. It is the reasonable 
to use a neural network to build the thermal deformation prediction model. Hattori et 
al. [5] used neural network with back-propagation algorithm to modify the error 
prediction method for a vertical milling machine. Chen [6] and Baker et al. [7] 
compared the prediction errors of neural network and MRA model for a three-axis 
horizontal machining center and CNC machine tool. In both studies, their results 
show that neural network can obtain more accurate prediction than MRA method. 
However, these models only consider static relationship between inputs and outputs 
data. Thus, Yang and Ni [8] used a dynamic model to predict thermal deformation for 
a horizontal machining center, and obtain the better prediction result than the 
conventional neural prediction models. 

In order to obtain the nonlinear and dynamic mapping with neural network, this study 
proposed a dynamic neural network model, which consists of a multiple time interval at 
the present and past time. This model can obtain the static, dynamic and nonlinear 
relationship between inputs and output data with different sampling interval. Thus, the 
prediction accuracy can be improved. The accuracy of an actual grinding machine with 
the proposed method is compared with that with conventional neural network, and the 
feasibility and the improvement of prediction accuracy is investigated. 

2   Dynamic Neural Network Modeling 

The conventional three layers of feed-forward neural network as shown in Fig. 1, this 
model is trained with the thermal deformations and measured temperatures at the 
same time interval. Therefore, it works as a static model. However, thermal 
deformations do not only influence by the temperatures at the present time but also by 
the temperatures and thermal deformations at the past time. Thus, the conventional 
neural network model is not sufficient for nonlinear dynamic mapping. The dynamic 
neural network shown in Fig. 2 can describe the dynamic relationship between the 
inputs and outputs data. At the nth sampling time interval, the inputs of dynamic 
neural network are the measured temperatures 

jX  from the (n-q)th to nth sampling 

time and the neural network outputs Ŷ  from the (n-p)th to (n-1)th sampling time.  
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Fig. 1. Conventional neural network 
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Fig. 2. Dynamic neural network 

The training structure of neural network prediction model is shown in Fig. 3. In the 
training phase, a constant 1K  is appropriately determined to normalize the input data 

between 0.1 and 0.9.  The connective weights between the output and hidden layer and 
between hidden and input layer are update by back-propagation algorithm. At the nth 
sampling time interval, the neural network inputs of temperatures are normalized by  

)ab)(
XX

X)n(X
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i −
−
−

+=  LLi ,1,,2,1 −=                      (1) 

where )n(X i  is the ith  measured value of temperatures at the nth sampling time 

interval and the maximum and minimum values expressed by suffix symbol of 
max and min , respectively.  

Machine
Tools

Neural
Network

K1

Z-1

Z-p

Z-1

Error

Z-q

T(n)

T(n-1)

T(n-p)

Y(n-1)

Y(n-q)

Y(n)

Temperatures
Thermal

deformation

)n(Ŷ

 

Fig. 3. Training structure 
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After normalization by equation (1), the inputs of ith node in the input layer can be 
defined by 

)qn(Ŷ,),2n(Ŷ),1n(Ŷ),pn(T,),1n(T),n(T)n(Net iiii −−−−−=           (2) 

where )n(Ti , )1n(Ti −  and )pn(Ti −  are the ith measured temperatures at the nth, (n-

1)th and (n-p)th sampling time intervals. )1n(Ŷ − , )2n(Ŷ −  and )qn(Ŷ −   are the 

measured thermal deformation at the (n-1)th, (n-2)th and (n-q)th sampling time 
interval. The initial values are 

≤
=−

otherwise,etemperatur

pn,0
)pn(T  
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=−

otherwise,valuepredicted

qn,0
)qn(Ŷ  

The output of the ith node in the input layer is 

( ) ))n(Nettanh()n(Netf)n(O iii γ==                                       (3) 

The net input of the jth node in the hidden layer is 

θ+= )()()( nOnWnNet ijij   J 1,J , 2, 1,j −=                               (4) 

where )n(Wji  are the weights between the input and hidden layers, and θ  is the bias.  

The jth neuron output of the hidden layer is 

( ) ))n(Nettanh()n(Netf)n(O jjj γ==                                       (5) 

where γ >0. The net input and output of the kth node in the output layer are 

=

=
J

1j
jkjk )n(O)n(W)n(Net                                                      (6) 

and 

( ) ))n(Nettanh()n(Netf)n(Ŷ kkk γ==                                          (7) 

At the nth sampling time interval, the error energy function is defined as 

( )2

)n(Ŷ)n(Y
2

1
)n(E −=                                                     (8) 

where )n(Y  is the actual deformation, which is obtained by the measurement of 

thermal deformation and then multiplied by a constant K1, )n(Ŷ  is the prediction 

value of neural network. In training phase, the neural network weights are updated 
during the sampling time interval from the nth to the (n+1)th according to: 
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)n(W)1n(W)n(W −+=Δ
)n(W

)n(E

∂
∂−= η                                    (9) 

where η  is denoted as learning rate. 

The weights update quantities between the output and hidden layer and between 
hidden and input layer can be determined by following iterative: 
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                                 (11) 

where (n))(Netf(n)(n)W(n) jkjkj
′=  and ( ) (n))(Netf(n)ŶY(n)(n) kk

′−−= . 

As the error energy E is less than a specified value, then the training iteration is 
finished. The prediction model will be built consequently. 

3   Experimental Setup 

A machine tool has been used to experiment with 1645×2140×2181 mm of size 
specification and 152×355×305mm of working space. The worktable motion in the 
X-axis is driven by hydraulic mechanism and controlled by a directional control 
valve. Therefore, this working axis cannot be precisely controlled by servo command. 
The worktable motions in Y axis and Z axis are driven by AC servomotors. Thus, the 
prediction of the thermal deformations will be used in the Y- and Z-axis. 

The measurement system in experiments for this study is shown in Fig. 4. The 
thermal sensors and non-contact displacement sensors are used to measure the 
temperature and thermal deformations, respectively. The measurement data is process 
by the professional small signal amplifier and the data acquisition (DAQ) of NI PCI 
6024E. These data are analyzed by the soft pachage Labview with an AMD Duron 
800, PC system. 

There are thirteen locations for the temperature measurement as shown in Fig. 5 is 
chosen by trial and error empirically. Which locate at spindle shield, the column, and 
slideways of Y- and Z-axis, hydraulic oil tank, respectively, and a sensor is located 
nearby from this machine for the measurement of environment temperatures. 

The displacement sensors are capacitance type with accuracy of 0.1 mμ and 
mounted on two precise vises as shown in Fig. 6, which are used to measure the 
relative displacements the spindle end in directions of Y- and Z-axis. 

During the experiment phase, the spindle runs at constants speed of 3600 rpm for 
eight hours. The spindle end is fixed at –75mm from the mechanical origin. The 
worktable mores moves in X- and Z-axis with constant speed of 1000 mm/min 
repeatedly from the mechanical origin to –360mm and –120mm, respectively. One 
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Fig. 4. Measurement system 

minute is selected to be sampling time for temperature and deformation data. The 
experiment runs for two times. The measurement of the ambient temperature shows 
that the variation is from 3 C°  to 10 C°  during experiment times, the spindle 
temperature increases from 5 C°  to 10 C° , the temperature of hydraulic tank increases 
from 15 C°  to 25 C° , the slideway temperature of Z axis increases from 3 C°  to 5 

C° , and the temperatures of ball screw in Y and Z axes increases from 4 C°  to 6 C° . 
The thermal deformations of the spindle end are measured from –8 mμ  to 0 mμ  in the 

Y axis and from –13 mμ  and 5 mμ  in the Z axis. The measurement results of thermal 

deformation for the first experimental in Y- and Z- axes are shown in Fig. 7. 
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Fig. 5. Locations of temperature measurements 
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Fig. 6. Displacement measurements of thermal deformation 
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Fig. 7. Thermal deformation of measurement results (Y axis: ; Z axis: ) 

4   Case Study 

The measurement data of the first experiment are used to train the prediction model. 
The hidden layer of neural network has 30 nodes. The normalization range is between 
0.1 and 0.9, this range is the same as the ranges of coefficients a and b of equation (1). 
The initial weights of neural network are randomly generated between –0.5 and +0.5. 
The modified model for prediction of thermal deformations is built by training 5,000 
epoch. 

In this study, the temperature measurement data and previous neural network 
outputs are used as inputs of neural network, which are p=1, q=3, respectively. The 
neural network utilizes one output neuron, its outputs utilize as the prediction values 
of thermal deformations for Y axis or Z axis. In the prediction phase, the thermal 
deformation prediction values at the past sampling time interval are the neural 
network inputs, it is different of training phase. 
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Both the maximum and root mean square (RMS) prediction errors are used to 
denote the prediction accuracies. Both of the training and prediction phases use the 
same data of first experiment, the RMS errors in Y and Z axes are 0.15 mμ  and 0.11 

mμ , respectively. The maximum errors in Y and Z axes are 0.38 mμ  and 0.34 mμ , 

respectively. The training results for both axes are shown in Fig. 8. The maximum 
training error can be less than 0.4 mμ in both axes. 

The prediction results of time history in second experiment are shown in Fig. 9. 
The RMS and maximum errors of prediction results for these methods are listed in 
Table 1. All values of errors of the dynamic model are smaller than static model. The 
RMS errors in Y and Z axes are 1.37 mμ  and 0.57 mμ , respectively. The maximum 

errors in Y and Z axes are 2.98 mμ  and 1.09 mμ , respectively. The dynamic neural 

network can improve the accuracy, and be more accurate than conventional neural 
network model. 

Table 1. Prediction error ( mμ ) 

 
Conventional 

NN 
Dynamic NN 

RMS error 1.83 1.37 
Y axis  

Maximum 
error 

5.30 2.98 

RMS error 1.33 0.57 
Z axis  

Maximum 
error 

2.54 1.08 
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Fig. 8. Prediction model of training results for Y-and Z-axis (experimental measurement: 
; dynamic neural network: ; and prediction error: ) 
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Fig. 9. Thermal deformation of prediction results for Y-and Z-axis (experimental measurement: 
; dynamic neural network: ; and conventional neural network: ) 

5   Conclusion 

This study develops a dynamic neural network model to predict thermal deformation 
in machine tools. The dynamic and nonlinear relationship based on the input and 
output data pairs of different sampling time interval can be emulated by the 
performance of neural network. The experimental results show that the dynamic 
neural network model is more accurate than the conventional neural network. The 
maximum prediction errors can be less than 3 mμ and 2 mμ  for Y-and Z-axis, 

respectively. Thus, the dynamic neural network model is proven to be useful for 
industrial applications. 
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Abstract. One of the frequently used forecasting methods is the time series 
analysis. Time series analysis is based on the idea that past data can be used to 
predict the future data. Past data may contain imprecise and incomplete 
information coming from rapidly changing environment. Also the decisions 
made by the experts are subjective and rest on their individual competence. 
Therefore, it is more appropriate for the data to be presented by fuzzy numbers 
instead of crisp numbers. A weakness of traditional crisp time series forecasting 
methods is that they process only measurement based numerical information 
and cannot deal with the perception-based historical data represented by fuzzy 
numbers. Application of a fuzzy time series whose values are linguistic values, 
can overcome the mentioned weakness of traditional forecasting methods. In 
this paper we propose a fuzzy recurrent neural network (FRNN) based fuzzy 
time series forecasting method using genetic algorithm. The effectiveness of the 
proposed fuzzy time series forecasting method is tested on benchmark 
examples. 

1   Introduction 

Forecasting activities on the basis of prediction from time series play an important 
role in different areas of human activity, including weather forecasting, economic and 
business planning, inventory and production control, etc. Many available data in such 
real-world systems, where a human plays the basic decision maker role, are linguistic 
values or words with fuzzy meaning. The main advantage of using fuzzy approach is 
to apply human expertise throughout the forecasting procedure. This type of time 
series significantly differs from traditional time series and the methods of the latter 
are not applicable in this case. So we deal with a new class of time series, a fuzzy 
time series, whose values are linguistic values. There are several approaches to 
modeling fuzzy time series.  

In [20-23], fuzzy time series models are proposed and their applications to 
forecasting problems are considered. Some extension of fuzzy relational model based 
time series is analyzed in [26]. Applications of fuzzy time series are considered in 
[9,25]. Modification of fuzzy time series models for forecasting of university 
enrollments is discussed in [10]. In [4] a fuzzy fractal method for forecasting financial 
and economic time series is described. 
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All the works on fuzzy time series mentioned above are based on fuzzy relational 
equations [29]. The forecasting methods based on fuzzy relational equations suffer 
from a number of shortcomings among which the main ones are computational 
complexity, difficulty of choosing an optimal or near-optimal fuzzy implication, 
difficulty of training and adaptation of the rule base (relational matrices) and its 
parameters and others. These drawbacks lead to difficulties in reaching the desirable 
degree of forecasting accuracy. Application of fuzzy neural network for time series 
forecasting can overcome these weaknesses [1]. Note also that recurrent neural 
networks are found to be very effective and efficient technique to use in many 
dynamic or time series related applications. Paper [12], for example, proposes a 
recurrent fuzzy neural network for identification and control of dynamic systems.  

In this paper we propose a FRNN based fuzzy time series forecasting method 
which allows application of human expertise throughout the forecasting procedure 
effectively. This method is characterized by the less computational complexity, 
learning by experiments, and adaptability. 

The rest of this paper is organized as follows. Section 2 gives the statement of the 
time series forecasting problem using Fuzzy Recurrent Neural Networks (FRNN). 
Section 3 describes the suggested forecasting system’s structure and operation 
principles. Section 4 contains description of computational experiments with the 
FRNN based time series forecasting system. Various benchmark problems are used 
for system performance validation purposes and comparisons with other systems are 
provided. Section 5 is the conclusion of the paper. The references used are listed 
following section 5. 

2   Statement of the Problem 

Suppose that at various time instant t we are presented with perception based 
information ty  described by fuzzy sets. Formally, the fuzzy n-order time series 

problem can be represented as:  

),...,,( 111 +−−+ = ntttt yyyFy , (1) 

where F is fuzzy set valued mapping of values n
nttt yyy ε∈+−− 11,...,,  from nε  into 

1
1 ε∈+ty  to be estimated, nε  and 1ε  are spaces of fuzzy sets, ty  is fuzzy valued 

data at time interval t, 1+ty  is fuzzy valued forecasted value for time interval t+1. 
As it was stated in [1,13] fuzzy neural networks are universal approximators, and 

hence can be used to construct fuzzy set valued mapping F in (1). In a simple case, we 
need a FNN with one hidden layer, n input and one output nodes which can express 
the relationships: 

),...,,(ˆˆ 111 +−−+ = ntttNNt yyyFy , (2) 

where an estimate NNF̂  for F is constructed from a large class of fuzzy neural 

network based mappings. In its turn NNF̂  is determined by fuzzy weights of neuron 
connections, fuzzy biases, and neuron activation functions. The problem is in 
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adjusting the weights to minimize a cost function E(F, NNF̂ ) (for instance, as fuzzy 
hamming distance), defined on the basis of (1) and (2) and representing distance 
measure between the fuzzy neural network output and the desired output pattern.  

The system may use also some additional time-dependent factors if it influences 
the value of the forecasted variable:  

),,...,,,...,,(ˆˆ 11111 +−−+−−+ = mtttntttNNt uuuyyyFy , (3) 

where tu  is the value of an additional (second) factor at time interval t.  
Using benchmark tests, it will be shown that the forecasting error of this method is 

significantly smaller than that of existing fuzzy time series approaches [6,10,20-
22,26]. 

3   The FRNN Based Forecasting System and Its Operation 

The structure of the forecasting system on the basis of fuzzy recurrent neural network 
for the realization of (2)-(3) is presented in figure 1. For multi-lag forecasting the 
FRNN output signal is fed-back to the network input each time producing the forecast 
for a next time. For example, the output signal 1ˆ +ty , produced for an actual time 

series ttnt yyy ,,..., 11 −+− , applied back to the input would produce an output 2ˆ +ty  

giving an approximation for 2+ty . 
The neurons in the layers 1 to layer L are dynamic and compute their output signals 

as follows: 

−++=
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i vtzwtxFtz )1()()( θ , (4) 

where )(txl
j  is j-th fuzzy input to the neuron i at layer l at the time step t, )(tz l

i  is the 

computed output signal of the neuron at the time step t, ijw  is the fuzzy weight of the 

connection to neuron i from neuron j located at the previous layer, iθ  is the fuzzy bias 

of neuron i, and )1( −tz l
j  is the activation of neuron j at the time step (t-1), ijv  is the 

recurrent connection weight to neuron i from neuron j at the same layer.  
In general, the network may have virtually any number of layers. We number the 

layers successively from 0 (the first or input layer) to L (last or output layer). The 
neurons in the first (layer 0) layer are only distributing the input signal without 
modifying the values: 

)()( 00 txtz ii = , (5) 

The network may have one input or more (if exogenous inputs are used or several 
historical data series are fed in parallel as in case of non-recurrent networks). For 
instance, in a time series forecasting system with only one forecasted variable input 
and one exogenous input (both fed by consecutive historical data), the FRNN input 
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)(0
0 tx  will represent the time series element ty , input )(0

1 tx  will represent the 

additional factor input tu , and the FRNN output )(tz L  will represent the forecasted 

time series element 1+ty . 

 
Fig. 1. The structure of a simple FRNN 

The activation F for a total input to the neuron s is calculated as  
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= , (6) 

So, the output of neuron i at layer l is calculated as follows: 
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(7) 

All fuzzy signals and connection weights and biases are general fuzzy numbers that 
with any required precision can be represented as 

),...,,,,...,,( 021110 RRRLLLT nnn −−−   

In case of n=2 (used in experiments) a fuzzy number T(L0, L1, L2, R2, R1, R0) is 
a fuzzy set of three intervals (α-cuts): [L0,R0] (α=0), [L1,R1] (α=0.5), and [L2,R2] 
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(α=1). n is set to a larger value to increase the accuracy of fuzzy operations. The 
details of arithmetic operations with the used fuzzy number representation can be 
found in [1] and [3]. 

The problem now is adjusting the weight matrices to minimize a cost function (the 

FRNN error performance index) ),( des
pptot yyE  defined by (8) and representing a 

distance measure between the neural network output and the desired output pattern:  

=
p

des
pptot yyDE ),( , (8) 

where totE  is the total error performance index for all learning data entries p. 
We shall assume Y is a finite universe Y ={y1,y2,...,yn}; D is an error function such 

as the distance measure between two fuzzy sets, the desired des
py  and the computed 

py  outputs. The efficient strategy is to consider the difference of all the points of the 

used general fuzzy number. The considered distance metrics is based on Hamming 
distance  

−=

=

−=

=
−+−=
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21
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21 ||||)2,1(
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iTiTi

ni

i
iTiTi RRkLLkTTD , (9) 

where )2,1( TTD  is the distance measure between two fuzzy numbers 1T ( des
py ) and 

2T ( py ); 0≤k0≤k1... ≤kn-2≤kn-1 are some scaling coefficients. For example, for n=2, an 

effective distance metrics could be: 

D(T1,T2) = k0|LT10-LT20| + k1|LT11-LT21| + k2|LT12-LT22| + 
+ k0|RT10-RT20| + k1|RT11-RT21| + k2|RT12-RT22|, 

 

where k0=1/7; k1=2/7; k2=4/7. 
In this paper we use genetic algorithm-based learning algorithm for FRNN with 

fuzzy inputs, fuzzy weights and biases, and fuzzy outputs suggested in [2,3]. The 
fitness function of a genome (or chromosome) is calculated on the basis of the total 
error performance index (for a particular combination of FRNN weights and 
thresholds) as follows: 

totE
f

+
=

1

1
   (10)   

The learning may be stopped once we see the process does not show any 
significant change in fitness value during many succeeding regenerations. In this case 
we can specify new mutation (and maybe crossover) probability and continue the 
process. If the obtained total error performance index or the behavior of the obtained 
network is not desired, we can restructure the network by adding new hidden neurons, 
or do better sampling (fuzzification) of the learning patterns. 

The genomes in the current population undergo specific genetic operators, which 
leads to a change in population: new child genomes (offsprings) are produced. To 
rank these genomes, their fitness values are calculated. To do this, first they are 
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converted into the network representation and the network error is calculated, and 
then formula (10) is applied to calculate the fitness.  

During the selection processes low fitness genomes have low probability to survive 
and be saved into a new population for participation in future reproduction. The 
process is repeated iteratively. At every generation we have a solution that 
corresponds to a genome with the highest fitness function. The farther we go with 
generations the higher is the chance to find a better solution. 

The detail of the used GA based fuzzy network training procedure is considered in 
[2,3].  

4   Computational Experiments 

To test the suggested FRNN based fuzzy time series forecasting method several 
benchmark problems are considered in this paper. Frequently time series data base 
and perception based information is characterized by uncertainty and imprecision. It 
is possible to model uncertain information, linguistic terms, and not ill-defined or 
imprecise data by means of fuzzy sets. In general, a fuzzy pre-processing is required 
to transform the measurement values extracted from the given signals into a linguistic 
distribution (e.g. fuzzification) [2,3]. It should be noted that fuzzy sets are used in this 
work for the treatment and management of imprecision and uncertainty at the various 
levels of the prediction system, i.e. from the measurement to the inference levels 
[2,3]. In all our experiments all connection weights and biases are coded as 64 bits 
long genes. In simulation experiments we used fuzzy numbers of type: T(L0, L1, L2, R2, 
R1, R0). We used 12 bits for coding L2 and R2, 12 bits for coding L1 and R1 and 8 bits 
for coding L0 and R0. Thus, for example, if we have in total 54 adjustable parameters 
in the network, the genome length would be 54×64=1088 bits.  

For better learning we use 100 genomes. All 100 genomes undergo the multi-point 
crossover and mutation operations [1-3]. 

Then every 90 best offspring genomes plus 10 best parent genomes make a new 
population of 100 genomes (we preserve best 10 parent genomes in every next 
generation). The selection of 100 best genomes is done on the basis of the genome 
fitness value. 

4.1   Prediction of Electricity Consumption 

We tested the suggested FRNN based approach on the electricity consumption 
forecasting problem considered in [8]. The FRNN constructed for this problem had 1 
input, 7 hidden neurons (with recurrent links), and 1 output neuron (with recurrent 
link). Of all available data 80% were used for training and the rest were used for 
testing.  

Table 1 shows the comparison of performance results given by different methods 
for unknown data (years 1999 to 2002). Absolute percentage errors for electricity 
consumption values computed for different years and the MAPE (Mean Absolute 
Percentage Error) on these data by three different methods are shown: by the method 
based on Back Propagation Feed Forward (BP) neural network, by the method based 
on Radial Basis (RB) neural network, and by the method based on FRNN. 
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Table 1. Comparison of different forecasting methods 

Years BP Network RB Network Our approach 
(FRNN) 

1999 1.09 4.21 4.37 
2000 0.44 5.83 0.37 
2001 6.49 0.76 0.84 
2002 5.69 0.28 4.75 

MAPE 3.42 2.77 2.58 

As can be seen the results shown by FRNN is better than the results shown by non-
recurrent network based forecasting systems. 

4.2   Temperature Prediction 

Table 2 shows a fragment of historical data of the daily average temperature in Taipei 
[6]. 85% of the daily average temperature values in June, July, and September, 
fuzzified in advance as shown in Table 2, were used for training of FRNN.  

Table 2. Average temperature in Taipei ( C° ) in June 1996 

Linguistic value of Temperature 

Day 
Crisp 

value of 
Temp. 

Very-
Very 
Low 

Very 
Low 

Low More 
or less 
Low. 

Avera-
ge 

More 
or less 
High 

High Very 
High 

Very-
Very 
High 

1 26.1 0 0 0 0.933 0.067 0 0 0 0 
2 27.6 0 0 0 0 0.933 0.067 0 0 0 
3 29.0 0 0 0 0 0 1 0 0 0 
... ... ... ... ... ... ... ... ... ... ... 
31 26.1 0 0 0 0.933 0.067 0 0 0 0 

As can be seen from Table 3 the data were fuzzified by 9 linguistic terms: “Very-
Very Low”, “Very Low”, “Low”, “More of Less Low”, “Average”, “More or Less 
High”, “High”, “Very High”, and “Very-Very High”. 

The mean absolute percentage error achieved by our approach was 2.61%, 
RMSE=0.90. This error value is lower than the error values (ranging from 2.75% to 
3.49% produced by different algorithms) obtained by the methods suggested in [6]. 

4.3   Forecasting Enrollments in University of Alabama 

The problem of forecasting enrolments in University of Alabama is discussed in [11]. 
Data for this problem were taken from [11]. Various forecasting systems have been 
tested on this problem [5,11,20,23]. We used the suggested FRNN based approach on 
this problem too. The system predicts the number of enrolled students for the next 
year given the actual number of enrolled students in the previous year. The network 
had 3 layers, with one neuron in the input layer, 10 neurons in the hidden layer, and 
one neuron in the output layer. Of the all available historical data 70% were used for 
learning the system and the remaining 30% to calculate the forecasting accuracy.  
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The offered approach’s root mean square error (RMSE=194) is smaller than the 
Chen’s method (630.86) [5], the Song-Chissom method (421.32) [20], and the Tsai 
and Wu method using high order fuzzy time series (199.32) [27].  

Table 3 shows forecasting error produced by different methods in mean absolute 
percentage error (MAPE): 

Table 3. Comparison of different forecasting methods for enrollments forecasting problem 

Song-Chissom [20] Hwang-Chen-Lee [11] Markov [23] Our approach (FRNN) 
3.15% 2.79% 2.6% 0.9% 

The feasibility of the use of suggested FRNN based method to forecast time series 
is evident from the test. 

4.4   Sunspot Prediction 

The performance of FRNN was also tested on a well-known problem of sun-spot 
prediction [19]. The historical data for this problem were taken from the Internet. 
Several data sets were prepared as in [19]. The data used for training were sun-spot 
data from years 1700 to 1920. Two unknown prediction sets used for testing were 
from 1921 to 1955 (PR1) and from 1956 to 1979.  

The comparison of performance of the FRNN approach with other existing 
methods for the datasets PR1 and PR2 is presented in Table 4 (NMSE i.e. the 
Normalized Mean Square Error measure is used in these experiments). The last two 
rows in Table 2 were obtained by networks trained on the same data sets by two 
different persons independently. 

Table 4. Comparison of different forecasting methods for sun-spot prediction problem 

Author (Method) Number of inputs PR1 PR2 
Rementeria (AR) [18] 12 0.126 0.36 

Tong (TAR) [24] 12 0.099 0.28 
Subba Rao (Bilinear) [17] 9 0.079 - 

DeGroot (ANN)[7] 4 0.092 - 
Nowland (ANN) [14] 12 0.077 - 

Rementeria (ANN) [18] 12 0.079 0.34 
Waterhouse (HME) [28] 12 0.089 0.27 

(FRNN-1) 1 0.066 0.22 
(FRNN-2) 1 0.074 0.21 

The results of the suggested FRNN approach are very good, taking into 
consideration the simple structure of network having only 1 input neuron. 

5   Conclusions 

We have proposed a fuzzy recurrent neural network based fuzzy time series 
forecasting method which can deal with both historical numerical and perception type 
data. The distinguishing features of the proposed forecasting method are: the ability to 
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apply human expertise throughout the used forecasting information; the ability of 
FRNN to update the forecasting rules extracted from a dynamic data mining 
procedure; less computational complexity in comparison to existing fuzzy time series 
models due to parallel processing of perceptions and data and fast fuzzy inference 
based on FRNN; significantly high degree of forecasting accuracy in comparison with 
fuzzy time series models based on fuzzy relational equation; universal approximation 
and learning from time series data base. 

The proposed method for forecasting fuzzy time series demonstrated a very high 
efficiency and performance. The developed fuzzy time series forecasting method was 
tested on four data sets: an electricity consumption prediction problem (obtained 
accuracy was 2.58%, reduced from 2.77% by an ordinary neural network), the 
benchmark problem of forecasting of enrolments to the University of Alabama 
(obtained accuracy was 0.9%, reduced from 2.6% by the best other method), a 
temperature prediction system (obtained accuracy was 2.61%, reduced from 2.75% by 
the best other method), and the well-known sun-spot forecasting problem (the 
obtained accuracy exceeds the accuracy by other methods).  
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Abstract. As the development of the electrical power market, the maintenance 
automation has become an intrinsic need to increase the overall economic 
efficiency of hydropower plants. A Multi-Agent System (MAS) based model 
for the predictive maintenance system of hydropower plant within the 
framework of Intelligent Control-Maintenance-Management System (ICMMS) 
is proposed. All maintenance activities, form data collection through the 
recommendation of specific maintenance actions, are integrated into the system. 
In this model, the predictive maintenance system composed of four layers: 
Signal Collection, Data Processing, Diagnosis and Prognosis, and Maintenance 
Decision-Making. Using this model a prototype of predictive maintenance for 
hydropower plant is established. Artificial Neural-Network (NN) is successfully 
applied to monitor, identify and diagnosis the dynamic performance of the 
prototype system online. 

1   Introduction 

The valid method that raises the economic performance of hydropower plants is using 
predict maintenance system, and taking the request of the hydropower plants control, 
maintenance and the technocracy comprehensive into account, using the thought of 
the intelligence control-maintenance-management (the Intelligent Control 
Maintenance System, ICMMS), carries out the integration of the hydropower plants 
control, maintenance and the technocracy functions[1-3]. 

The distribution of space and logical is inherent in the water electricity production, 
the process, from get data to the maintenance decision, is a complicated system that is 
constitute by many statures processes, so the establishment and realization of support 
the predict system in the water power station is a kind of solution, which can solve the 
complicated distribution problem[4-6]. The Multi-Agent System (MAS) Theory is a 
kind of intelligent integration method based on the distribute type foundations, 
provide the new understanding angle of view and the theories frame for resolve the 
problem of handed over with each other under the complications, distribution 
environment, provide a new path to set up the model of the complicated system, to 
analysis, design and realize to the complicated system[7-10]. 
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There are many resemblances between the information change process, which 
happened between the agent of multi-agents under the complication[11], dynamic 
environment, and the issue and object[12], to which the predictive maintenance system 
of hydropower plant relate with the framework of ICMM[12-15], so, the predictive 
maintenance system of hydropower plant under the framework of ICMM also can be 
established by dint of the thought of agent. In the same time, the embed 
microprocessor abroad apply at the scene, and computer network and software 
technique are maturity, which make it’s highly possibility that the predictive 
maintenance system of hydropower plant based on the thought of agent[16-18]. 

Under the framework of ICMMS, the predictive maintenance system of 
hydropower plant function is divided to four layers: Signal Collection, Data 
Processing, Diagnosis, and Maintenance Decision-Making, and so, according to the 
predictive maintenance function bed model and multi-agent theory, the multi-agent 
model of predictive maintenance system of hydropower plant is established[19-21]. And 
identify and diagnosis model based on NN is proposed, which to achieve the ante-
type system of multi-agent model. 

2   Multi-agent System Model of the Predictive Maintenance 
System of Hydropower Plant 

2.1   Layer Model for the Predictive Maintenance System of Hydropower Plant 

The function of the predictive maintenance system of hydropower plant included all 
kinds of aspect from Signal Collection to the Maintenance Decision-Making 
establishment. For the better comprehension to predictive maintenance and its 
implemented in the engineering, the predictive maintenance system can be divided 
into some layers, these currently function layers can be use to show an integrity of 
predictive maintenance system, but the contents of each layer need to confirm, 
according to practice apply. 

Function layers of the predictive maintenance system of hydropower plant are 
divided into four layers: Signal Collection, Data Processing, Diagnosis, and 
Maintenance Decision-Making. Moreover, in order to realize the commutation 
between person and machine, it also can add one layer-denotation layer. Each layer 
has the ability of request and sends out data to any other function layer, it said that the 
information could spread from bottom layer to upper layer, also could spread from 
upper layer to bottom layer. The fluxion of the data usually takes place between draw 
near function layer, but in the actual application, considering the efficiency of the 
information processing, the data may probably cross mesosphere, transfer to a 
purpose layer directly. Moreover, each layer’s data can transfer directly to denotation 
layer using to the change between person and machine. 

2.2   Maintenance-Agent 

The Maintenance Agent is a structure of an BDI agent, In the meantime, it has a 
characteristic of thing deeply and respond agent, and has a ability of affairs drive 
(respond to the abrupt affairs of the environment in time) and a ability of target drive 
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(take action to the environment), under the frame work of Intelligent Control 
Maintenance Management System (ICMMS), establish the model of predictive 
maintenance system. 

The maintenance agent: A maintenance agent can be figured by four buck 
group<Beliefs, Events, Goals, Plans>. 

The maintenance agent::=<Beliefs, Events, Goals, Plans> 
The Beliefs that in the formula is world knowledge, including the cognition of 

oneself and environment, the knowledge is an essential element of maintenance agent; 
Events is a variety collect which needs maintenance agent make respond to; The 
Goals is a target collect of maintenance agent, these targets is coming from oneself or 
outside environment, and may be caused by the request of other maintenance agent, 
the result of event or the variety of belief; Plans are the programming collect that the 
description the maintenance agent how to respond to the environment variety (Events) 
and achieve goals. 

Fig. 1 is the result of sketch map that supports the maintenance agent, it is 
composed of sensor, knowledge database, programming, controller, desire, intent, 
executer and user interface. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Structure of Maintenance-Agent 

Maintenance agents take change with world by oneself database, sense the variety 
of the world by sensor module, acquire information and deposit it in knowledge 
database, execute by executer module, achieve intention, realize target. Maintenance 
agents work on outside environment by information or behavior. User can query and 
renewal knowledge database of maintenance agent by user interface. 

Maintenance agent can not only keep responding to the urgent circumstance, but 
also can make use of certain strategy to make a programming for the behavior of short 
term, then using analysis model of world and other maintenance agent build up to 
predict future state, and using the communication language to cooperate and consulate 
with other maintenance agent. Then, on the one hand, they can satisfy the request of 
real time and deal with the outburst hitch in time, on the other hand, they can also 
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apply various high-level arithmetic and ratiocinate ways to make predictive 
maintenance system validity from overall. 

2.3   Multi-agent Based Model for Predictive Maintenance of Hydropower Plant 

Predictive maintenance of hydropower plant has characteristic of space and logic. It 
can be thought that the predictive maintenance system is a multi-agent system which 
is composed of several interaction maintenance agents, these maintenance agents 
achieve function of each layer of predictive maintenance system, and by cooperating 
they achieve maintenance system function. 

Multi-agent based model for predictive maintenance of hydropower plant by fig 2, 
include Data collection agent, Data process agent, Diagnosis and Prognosis, and 
Maintenance Decision-Making agent. They achieve a series of function from signal 
collection to maintenance decision-making of predictive maintenance. Each agent has 
different work, the range of function also different. In addition, for predictive 
maintenance purpose, the cooperation agent mainly takes place between homology 
and border layer. The both direction arrowhead of fig 2 is mutual relation of agent, 
multi-agent system and production process. 

Agent needs to communicate to change information, correspond or cooperate, 
achieve mission. The implement of Agent message depends on the concrete 
equipments and exploiter language of agent, for example, we can use assemble 
language for agent which is on line. Other layers can use C, C++ or other higher 
languages. This kind of message model of communication shields the detail of 
communication protocol of bottom, computer network technique and software bus 
technique(CORBA DCOM OPC etc.) have already made the application of 
different equipments, applied procedure of equipments can correspond each other. 

3   Application of NN in Multi-agent Model a Prototype of 
Predictive Maintenance System 

3.1   Prototype Model of Multi-agent Predictive Maintenance System 

The terrace of ICMMS with turbo-generator as object, research the integration of the 
control function, maintenance function and technocracy function of timing system. In 
the terrace of ICMMS, multi-agent model of sub-predictive-maintenance system is an 
importance part; it is a prototype model of multi-agent predictive maintenance system 
(fig. 3). For the terrace of ICMMS, data collect agent have machine frequency 
measure unit net frequency measure unit, intelligent guide leaf electricity fluid 
servomechanism intelligent oar leaf electricity servomechanism, data process agent 
is a function module based on NN, achieve state identify and track to electricity fluid 
servomechanism, Diagnosis and Prognosis agent is established to electricity fluid 
servomechanism, accomplish health monitor, hitch diagnosis, demotion diagnosis and 
track function, Maintenance Decision-Making agent is according to diagnosis and 
prognosis agent result, combine practice circulate estate, then make maintenance 
decision-making. Predictive maintenance system in the ICMMS, data process agent, 
diagnosis and prognosis, maintenance decision-making is achieved in the same 
computer, data mutual though Profibus-FMS+OPC between data collection agent. 
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Fig. 2. Multi-agent based model for predictive maintenance of hydropower plant 

3.2   Identify and Diagnosis Model Based on NN 

Fig. 4 gives that we make use of serial-parallel identify model to carry out dynamic 
identify of electro-hydraulic servomechanism in ICMMS, at the same time, we use 
parallel identify model to carry out some hitch process. The adopted NN is a structure 
of 4*7*1 three layers feed forward NN, four input of NN is: U(K) U(k-1) Y(K) 
and Y(K-1) U is the control capacity, Y is host relay ware, K is the sample time; 
The output Y*(K-1) is host relay ware of NN predictive. 

For obtaining initial weight of NN model, we train the NN off-line by using the 
acquired physical model, it is said that experiment the form. 

Fig. 5 is the identification and prognosis model based on NN. To monitor electro-
hydraulic servomechanism state on online, we adopt Serials-parallel identification 
model to carry out dynamic state of electro-hydraulic servomechanism, the history 
value of output of NN is actual history value of electro-hydraulic servomechanism. In 
the each sample time, we compare the output of NN with electro-hydraulic 
servomechanism; there are three possibilities: 

                                      The dif  e 1,     e1=0.001%                                                 (1) 

e1<dif<e2,          e2=0.05%                                                (2) 

The dif  e 2                                                                       (3) 

The dif: the dispatch value of the output of NN and output of electro-hydraulic 
servomechanism; e1: the demotion valve value of electro-hydraulic Servomechanism; 
e2: the conk manages value of electro-hydraulic servomechanism. 

Pattern 1 means the dynamic state consistent of NN and electro-hydraulic 
servomechanism, the weight of NN needn't adjust; Pattern 2 means that the dynamic 
state has a warp of NN and electro-hydraulic servomechanism, we should discipline 
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to NN for running after dynamic state alter of electro-hydraulic servomechanism, so 
when the system has a variety of parameter evocable the variety of system 
characteristic, NN can reflect this change, pattern 3 means the parameter or structure 
happens acuity variety of electro-hydraulic servomechanism, it has a hitch occur, need 
adopt relevant an emergency measures. 
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Fig. 3. Prototype system of MAS-based model for predictive maintenance 
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Fig. 4. Parallel/Serials-parallel identification modelbased on NN 
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Fig. 5. Identification and prognosis model based on NN 

3.3   Diagnosis and Prognosis Model Based on NN 

The abnormity state of electro-hydraulic servomechanism is divided into serious hitch 
and demotion, they can reflect the change of inside characteristic of electro-hydraulic 
servomechanism, according to over discussion, and these hitch and demotion can be 
identified by NN. 

When we choose the time of diagnosis and prognosis, we cut input signal of NN 
system, but add the inspirit signal of choosing to its input, so, NN adopts parallel 
connection identify model, it needs the history value of output adopt the history value 
of oneself. When we calculate the output of NN, and basic input and output, we can 
distill character measure that efficiency of reflect some hitch, then the value of 
character measure and change direction carry out diagnosis and prognosis to this hitch 
circs. The research surveying this way is very efficiency to electro-hydraulic 
servomechanism demotion process. 

For example, though calculation of analysis and imitate, we discover that, when the 
feedback hitches, the obvious affect is warp of electro-hydraulic servomechanism. 
When feedback breaks off, the output of steady state rivet max is one, when feedback 
departs, the warp of the steady state output and the excursion extent is a function 
relation that is concatenation and barren, when the breadth value of input signal is 0.5, 
the relation between the steady state error and feedback excursion extent is fig. 6. So, 
we can choose the signal of step regards as special inspirit signal, the characteristic of 
between steady-state error and feedback coefficient of output. In the ICMM, we enact 
the feedback coefficient of electro-hydraulic servomechanism is 0.003/s, the 0.5 value 
of input is invariableness unaltered, adjust 54 hypo in the 180s of NN, it achieves 
track of electro-hydraulic servomechanism characteristic. More making use of 
multinomial exponent flatness predictive and so on, we can predictive excursion of 
any time in the future, according to history and value of nonce. So, we also can 
diagnose and prognosis to all kinds of feedback hitch and demotion of electro-
hydraulic servomechanism. 
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Fig. 6. Relationship between steady-state error and feedback coefficient 

3.4   Maintenance Decision-Making Based on NN 

If the parameter of electro-hydraulic servomechanism or the result changes acutely in 
the running process, the output of electro-hydraulic servomechanism and output of 
NN warp is satisfied formula (3), so the system adopts an emergency measures, and 
calls off adjusting to the parameter of NN, NN didn't track equipment state, 
meantime, the identification model of NN changed serials-parallel into parallel-
serials, the system entry hitch insulate and maintenance state. So the preservative 
information of NN reflects that system can be acceptable before hitch happen, 
according to error carry out hitch diagnosis, until hitch eliminate, then resume the 
parameter adjust of NN. 

4   Conclusions 

(1) The result of the predictive maintenance system of hydropower plant  within the 
framework of Intelligent Control-Maintenance-Management System (ICMMS) being 
compose of data collection, data processing, Diagnosis and Prognosis, and Maintenance 
Decision-Making is proposed. It has been proved that through the application instance 
above, on the basis of optimization neural network design method of IMSE, with 
combining evolved intergrowth algorithm and density of immune principle suppress 
regulation mechanism together, system have shortened the individual's length of code 
and lightened the calculating amount by solving the evolution of the colony to the 
neuron part. Meanwhile, system adopted the improved immune adjustment algorithm, 
which improved the variety of the colony effectively. The neuron that produced in the 
colony in this way can quickly get and realize the network, which is controlled by the 
thick and shape of the board. 

(2)A Multi-Agent System (MAS) based mix model of the predictive maintenance 
system of hydropower plant within the framework of Intelligent Control-
Maintenance-Management System (ICMMS) is proposed, and the multi agent model 
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is established of hydropower plant. Using this model, a prototype of predictive 
maintenance for hydropower plant is established. 

(3)The multi-agent model of predictive maintenance system of hydropower plant 
also is applied to control system in two hydropower plants strobe. The two set of 
hydropower plant control system have carry for more than two years. 
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Abstract. As long leading-time hydrological forecast is a complex non-linear 
procedure, traditional methods are easy to get slow convergence and low effi-
ciency. The basic relevance vector machine (BRVM) and the developed se-
quential relevance vector machine (SRVM) are employed to forecast multi-step 
ahead hydrological time series. The relevance vector machine is a sparse ap-
proximate Bayesian kernel method, and it provides full probabilistic forecasting 
results, which is helpful for hydrological engineering decision. BRVM and 
SRVM are respectively applied to the annual coming runoff forecast of Three 
Gorges hydropower station as case study. When compared with auto regression 
moving average models, BRVM exhibits high model efficiency and provides 
satisfying forecasting precision. SRVM is potential for its increased freedom 
and adaptive model selection mechanism. Comparison is also made within di-
rect forecast and iterative one-step ahead forecasting for multi-step ahead fore-
casting, and the latter shows the ability of highlighting the model performance. 

1   Introduction 

Hydrological forecast is a very complex procedure with highly nonlinear characteris-
tics in spatio-temporal changes of hydrological time series. If such forecast modeling 
is based on linear or approximately linear methods, the inherent limitations are inevi-
table. As its importance in exploring and optimizing water resources management, 
long leading- time stream flow forecast with high accuracy gives more scientific and 
efficient instructions to flood prevention, reservoir regulation and drainage basin 
management. Due to the complex non-linear process, such forecast is generally built 
on qualitative analysis, since the corresponding quantitative analysis has greater errors 
especially for extreme values of runoff.  

Methods have been adopted to solve this problem. Statistics forecast is used most 
[1]. Its basic principle is to seek and analyze the change rules of hydrology ingredi-
ents and the relations with other factors by statistics. Regression is one of the most 
common methods in hydrological time series forecast, and has gained great improve-
ments and broad application in other area. Although pure regression-based forecasts 
often achieve high skill when preforecast conditions are within the range of past  
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observations, they can perform poorly in conditions outside or near the limits of the 
data used to estimate the regression coefficients [2] and they also have the disadvan-
tage of amplifying frequency noise in the data when differencing. Recent researches 
reveal that artificial neural networks (ANNs) have been widely used for water re-
sources variables modeling [3, 4]. As ANNs are nonlinear data-driven methods, they 
suit well to nonlinear input-output mapping techniques. However, there inevitably 
exists low convergence and local optimum problems when hydrological forecasting. 
Fuzzy theory have obtained more concern in hydrology for its convenient transition 
between natural language and mechanical inference [5], but the transition measure-
ment is still an obstacle. Since hydrological time series are multidimensional, nonlin-
ear, and noised, it is hypothesized to be chaotic in ref. [6] and analysed by combining 
the macroscopic and microcosmic spatio-temporal scales, whereas the presupposition 
that the series are chaotic needs deep research and discussion.  

As the aforementioned content, there are many computation tools for time series 
regression which can predict well regular series, but the opened problem is how to 
design tools that have ability to model well and fast also drifting and non-stationary 
data [7]. In 2001, Tipping [8] explicated the concept and algorithm of relevance vec-
tor machine (RVM). RVM is a nonlinear sparse machine learning algorithm, and with 
Bayesian inference, it has better generalization. RVM employs the identical function 
form to support vector machine (SVM), but compared with SVM, RVM has the supe-
riorities of supplying probabilistic output information, fixed hyperparameters and   
easy realization. Some improved RVM algorithm was presented to meliorate its ap-
plication [9]. Ref. [10] describes a highly accelerated algorithm for marginal likeli-
hood maximization in RVM, and the sequential training of RVM is presented in [7] 
for the purpose of perform simultaneous optimization of important parameters.   

The remainder of this paper is arranged as follows. Section 2 provides a brief in-
troduction to relevance vector machine with particular reference to the time series 
regression. Section 3 introduces the learning algorithms of basic relevance vector 
machine and the sequential relevance vector machine. In Section 4, the hydrological 
time series multi-step forecast of Three Gorges hydropower station using relevance 
vector regression is employed as case study, together with describing the data sets and 
considering error indices. Results are reported and discussed between different algo-
rithms in the end of this part. Finally, conclusions and recommendations for further 
work are provided in Section 5. 

2   Relevance Vector Regression  

Ref. [11] defines the traditional nonlinear model as: 

ε+= )(xyt  (1) 

where x  is a D -dimension column input vector , t is a single output, )(⋅y is a nonlin-

ear function , and ),0(~ 2
εσε N  is additive i.i.d Gaussian noise with variance 2

εσ . 

Suppose that the training data set is N
nnn txD 1)},{( == , where N  is the number of 
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training samples and nt is the real value set. The aim of regression is to find the ap-

proximate function ŷ with the given D . 

The relevance vector regression, introduced by Tipping [8], is a probabilistic 
sparse kernel model identical in function form to the support vector machine (SVM), 
and the basic prediction function form of SVM is given in [12]:  

0
1

),()( wxxKwxy
M

m
mm +⋅=

=

 
(2) 

where Mmwm 1},{ = are the model weights and ),( ⋅⋅K  is a kernel function.  Al-

though this model is linear in the parameters, it may still be very flexible as the size of 
the basis set, M , may be very large. 

Generally, )|( xtp is assumed as Gaussian )),(|( 2σxytN , and the likelihood of 

the data set is written as [8]:  

)}2/(exp{)2(),|( 222/22 σπσσ wtwtp N Φ−−= −  (3) 

where ),,(),,( 01 NN wwwttt == , ),( mnnm xxK=Φ . As training such regression 

model with many parameters (weights), the maximum likelihood will lead to over-
fitting. In RVM, a Bayesian framework is employed to pursue generalization capabil-
ity. A prior distribution with hyperparameters over the weights is taken to comple-
ment the likelihood function as: 
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here, M is the number of independent hyperparameters, },{ 1 Mααα = , which 

individually controls the strength of the prior over its associated weight [10]. It is this 
prior distribution with hyperparameters that is ultimately responsible for the sparsity 
properties of the model [13]. 

As a combination a Gaussian prior and linear model within a Gaussian likelihood, 
the posterior is also conveniently Gaussian and can be applied analytically in [14]: 
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where the posterior covariance and mean are respectively:  

tA TT ΣΦ=+ΦΦ=Σ −−− 212 ,)( σμσ  (6) 

with ),,,( 10 MdiagA ααα= . 

During the Bayesian inference over the parameters, we can see that it is crucial to 

calculate the values of iα and 2σ . Although such estimations are not in close form, 

the iterative optimization will be introduced hereafter in Section 3. Now, suppose that 
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we have found the optima opα  and 2
opσ , and given a new input vector *x , then the 

approximation to the predictive distribution of corresponding output *t is [13]: 

dwtwpwtpttp opopop ),,|(),|()|( 22
** σασ≈  (7) 

which has the Gaussian form: ),(~)|( 2
*** σμNttp , with  

FFF T
op Σ+== 22

** , σσμμ  (8) 

where T
M xxF )](,),([ **1 ΦΦ= . Eq. (8) shows that, the mean *μ is the average 

value of *t over the evaluated weights, and 2
*σ illustrates the uncertainty of predic-

tions about the optimal values of weights. 

3   Relevance Vector Learning Algorithms 

3.1   Problem Description  

The time series forecasting problem we concern is mainly about multi-step ahead 
forecasting, which can be done as direct forecast or as iterative one-step ahead fore-
casting [15]. As direct forecast provides consecutive values with calculating the time 
series only once, it takes less computation but more complexities during the nonlinear 
mapping procedure. In iterative one-step ahead forecasting, such complexity is much 
lower than that in direct case, while the calculating error is increasing during each 
iteration, which inevitably adds more uncertainties in the forecasting. To get a deli-
cate trade-off, we restrict this work to iterative forecasting with tuning calculation 
errors in algorithm. The direct forecast is also carried out in the section hereafter to 
obtain integrality for the case study. 

Suppose that the nonlinear hydrological time series is described as T
tty 1}{ = , where 

T is the number of observed runoff at discrete time, and ],,,[ 21 ltttt yyyx −−−=  is 

the model input with l time delay, then the forecasting density is obtained as 

))(),((~)|( 1
2

111 ++++ TTTT xxNxyp σμ . The following relevance vector learning 

algorithms are employed to give the final multi-step forecasting results. 

3.2   Basic Relevance Vector Learning Algorithm 

The learning algorithm for approximated Bayesian inference in basic relevance vector 
regression model (BRVM) is given [16]: 

1) Initialization: Initialize 2σ  and { }tα defined in Eq. (3) and (4) respectively. 

2) Computation: Compute weight posterior sufficient statistics μ and Σ with Eq. (6). 

3) Updating strategy: Update the { }tα  and 2σ with the equations: 
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4) Convergence: Repeat Computation until convergence. Generally, if the maxi-

mum iteration is reached or the gradient of the outputs are less than 30.1 −e , it con-
verges. 

5) Selection: Delete weights and basis function for which maxαα ≥i , and select the 

other examples as relevance vectors. Here maxα is supposed to be infinite and taken as 
5

max 0.1 e=α in this work.  

6) Prediction: Make predictions via new data in the time series. 

The noise variance 2σ  may be a special variable in the algorithm. In order to 
achieve stable performance, it can be kept fixed during Initialization and Updating, 
and if necessary, it changes with iterations. The convergence requirements with 

maxα are also very important, since they might cause overfitting in the training proce-

dure or redundant relevance vectors when predicting with improper values.  

3.3   Sequential Relevance Vector Learning Algorithm 

As the run time for the basic relevance vector training algorithm scales approximately 
in the cube of the number of the basis functions, Tipping presented an accelerated 
training algorithms for sparse Bayesian models in [10] and proposed a sequential 
learning algorithm based on the particular strategy that the effectiveness of the mar-
ginal likelihood maximization is dependent on certain basis properties. Due to the 
large additional cost associated with the extra repeated re-evaluation of the basis func-
tion and the concern of dealing well with “greedy”, Nikolaev [7] developed an im-
proved sequential approach to relevance vector regression suitable for Bayesian learn-
ing from time series. In our research, Nikolaev’s algorithm is employed to get direct 
and iterative forecasting results of nonlinear hydrological time series.  

The sequential relevance vector regression model (SRVM) [7] is mainly composed 
of two parts, the weights regularization and hyperparametes training. By considering 
the newly arrived data point and optimizing two parts simultaneously, SRVM is sup-
posed to show better performance than off-line BRVM, and the particular information 
will be discussed henceforward.  

SRVM is learned online based on the calculation of dynamic learning rate, and at 
the i-th iteration, each covariance entry )(ittΣ  is accordingly regarded as a function of 

certain meta-prameter )(ipt , which is drawn from partial derivative of the regularized 

log-likelihood of the posterior mean weights. For each element t  in the series, the 
corresponding )(itΦ  is updated with the gain of output error and the gradual adapta-

tion of )(ittΣ . The hyperparameters }{α  are obtained by the gradient-decent renew-

ing rule. Formulas for the training process are discussed in detail in [7]. SRVM does 
not deal with the changing noise variance in view of the same model stability prob-
lem. With the added three constants, namely rate change constant, stabilization  
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constant and learning rate constant in SRVM, the computation freedom is increased 
which can describe the forecasting model from more aspects, but along with the un-
certainty problem, and we will confer on it hereafter.  

4   Case Study  

4.1   Study Area and Data 

Hydrological forecast is the key of the cascade hydropower stations in flood control 
and optimal regulation, and long leading time with high precision forecasting results 
is the primary problem to be settled for hydrologists. As an important factor that in-
fluences the decision in hydropower station management, hydrological forecast af-
fects the generating schedules and benefits directly. Three Gorges drainage basin is 
located up Yangzi River, covering four provinces, 59756 square kilometres areas. 
Three Gorges cascade hydropower stations are large-scale water hinging project, and 
act as flood prevention, generating, and navigation for the whole drainage area. The 
proper hydrological forecast helps the operators well prepare for the future river situa-
tions and make right decisions.  

In this part, BRVM and SRVM are verified by the real data: annual runoff time se-
ries recorded in Yichang station from 1981 to 2003, as is shown in Fig,1 with solid 
line. Data in the time series are normalized to avoid exceeding calculation ranges 

according to the equation, stdtt QQQQ /)(' −= , where tQ  and  Q  are the observed and 

mean of runoff, and stdQ  is the standard deviation of runoff time series. One of Yi-

chang hydrological station’s functions is to measure the coming runoff for Three 
Gorges hydropower station.  The annual runoff is time dependant and shows signifi-
cant linkage in frequency domain, which leads to the nonstationary condition. Data of 
1981~ 1998 are chosen to train algorithm, and the others from 1999~ 2003 for test.  

4.2   Initialization and Error Indices 

The initialization is crucial to the learning algorithms based on relevance vector ma-
chine, especially for the sequential one, which may lead to no convergence and obtain 
totally different results. For the hydrological times series, the regression delay time 

is 3=d . The width of the Gaussian kernel is equal to 8.02 =r , and the fixed noise 

variance is 1.0*)var(2 y=σ . These two variables are regarded as const during the 

whole procedures to reach stable convergence and robotic performance, while they 
may be changed adaptively in a sense according to potential problems and special 
requirements [17]. The maximum iterations and pruning threshold are set to 

50max =iter and 51max e=α respectively. As the common settings mentioned above, 

the initial value for hyperparameters { }iα are dissimilar for BRVM and SRVM. For 

BRVM, 2).^2/1(*)1,1()0( += Nonesα , which produces the vector of same val-

ues   for all basis at beginning. What is more, the basis function of BRVM has bias 
T)1,,1,1( . While in SRVM )0(/0.1)0( i

N
i e Φ= −α  , with )0(iΦ affording the larg-

est initial likelihood by projecting the largest normalization onto the target vector. 
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Take notice of the N in )0(iα , and here we did not mean the length of series. In fact, 

when the multi-step forecasting is executed by iterative calculation, N is referred to 
the actual training number. The exclusive parameters SRVM has resemble that in [7].   

Forecasting accuracy is estimated using the following dimensionless error meas-
ures: the Mean Absolute Error (MAE) and the Coefficient of Efficiency (CE). The 
Standard Error of the Estimate (SE) was also adopted to furnish an indication of the 
spread of errors produced by a model. The three error measures are defined according 
to the subsequent equations:   
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in which, tQ  , tQ̂  are the observed and forecasted runoff respectively. Q is the mean 

of the observed runoff. T is the number of data for modeling. For SE, E  is the error 

index e.g. tt QQ ˆ− and E  is the mean of the error.  

MAE is one common measure of forecast accuracy for continuous predictands. We 
favored the use of MAE because of the relatively small number of forecasts in case 
study. CE provides some indication of how good a model is at predicting values away 
from the mean. In this context, CE exhibits how well the models perform when meet-
ing either particularly low or high runoff event magnitudes. In general, a CE value of 
0.9 or above suggests ‘perfect’, above 0.8 is ‘good’, and the model is ‘unsatisfactory’ 
if below 0.8. 

4.3   Results  

To further assess the presented models, we employ the traditional auto regression 
moving average (ARMA) model. Forecasting with long-leading time is important for 
economic management of hydropower stations, and whether to forecast multi-step 
iteratively or give direct results for multi-step is also worth investigation. In our study, 
the BRVM and SRVM with iterative and direct (substituted by ‘I’ and ‘D’ respec-
tively for convenience) multi-step ahead forecasting results are shown in Fig.1. The 
corresponding part of ARMA is not drawn in view of the clearance of curve effect, 
but its error indices are listed in Tab. 1.  

In Fig.1, training data are on the left of the dash line, and on the other side are the 
forecasting results. BRVM fits well during training, and as alluded above, SRVM 
seems to obtain better performance in itself, but it gets the contrary results from over-
view. Ref. [7] points out that SRVM is not perfect on the training data, but it tends to 
show very good generalization performance on unseen data for time series regression 
tasks. It is positively true when we apply it to this case study by adjusting the initial 
parameters. The forecasting results are fairly good, but the relevant fitting procedure 
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is quite bad (not painted here). Although it does work in some cases, the additional 
regularization may limit the application of SRVM and reduce its reliability with in-
creased uncertainty. Now pay attention to the iterative and direct multi-step forecast-
ing cases, and it is obvious that the iterative one-step ahead forecasting algorithms, 
whether for BRVM and SRVM, have better values and depict the curve trend during 
the whole procedure. The most important is the similarities for iterative and direct 
approaches respectively. The direct multi-step forecasting results of BRVM resemble 
that of SRVM, and especially in the test process, they are almost overlap in the year 
1999~2001. The two iterative ones receive data alike as well. 

 

Fig. 1. Forecasting results of different algorithms for annual runoff multi-step forecasting 

Error indices listed in Tab.1, including fitting and forecasting errors, are the gen-
eral evaluation of presented approaches for the case study. BRVM (I) has the best 
values for all error indices, and with CE greater than 0.9, it is considered as a perfect 
model for regression, which indicates its flexibility in forecasting extreme events such 
as the year of very abundant runoff. On the contrary, the SRVM (D) seems to be un-
satisfied with the least CE. The error indices are inquired and deemed to supplement 
each other quite well, which accounts for the worst of SE for SRVM (D). ARMA (I) 
holds the middle values of MAE and CE within their ranges, and therefore the spread 
of errors produced by ARMA (I) is also in the medium. Owing to the least relevance 
vectors, BRVM (D) learns the sparse model; however, it is not considered as a prom-
ising algorithm here with poor error indices. Although the least RVs numbers are 
favored, only by adopting right error indices can the forecasting model be evaluated 
rightly.  
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Table 1. Error Indices of algorithms for forecasting multi-step time series iteratively (I) and 
directly (D) 

 MAE CE SE RVs Number 
ARMA (I) 0.4835 0.6521 0.5979 - 
BRVM (I) 0.1594 0.9655 0.1887 10 
SRVM (I) 0.5563 0.5043 0.6768 14 

ARMA (D) 0.7069 0.4238 0.7524 - 
BRVM (D) 0.4221 0.7238 0.5305 7 
SRVM (D) 0.7218 0.3192 0.7953 17 

5   Conclusion and Suggestion 

The relevance vector regression learning algorithms based on sparse Bayesian model 
are presented and applied to hydrological time series forecasting in this study. The 
relevance vector machine offers essential advantages as liberal use of arbitrary ker-
nels, no requiring estimating the error/margin parameters in advance, and the most 
compelling feather is that, the model is built directly within a sparse Bayesian frame-
work with probabilistic forecast, which fits hydrological events well. The hydrologi-
cal time series are stochastic, periodic and influenced by many factors. As its com-
plexity, traditional statistics approaches are difficult to reflect its nonlinear character-
istics, and BRVM is proved to be superior in our research and shows its effectiveness 
in convergence and efficiency to ARMA and SRVM. With regard to the discussion of 
multi-step forecasting problem, the iterative one-step algorithms display more reliable 
results than direct ones in the case study.  

It should be noted that while SRVM has poor error indices, as an improvement of 
BRVM, it is potential for time series forecasting with the increased model freedom 
and good initialization. Whereas this study demonstrates the feasibility of using rele-
vance vector regression to model hydrological time series forecasting for large hydro-
power station, there are still a number of areas of further work. First, it would be use-
ful to investigate different ways of data pretreatment, such as the elimination of dis-
turbance by denoising. Second, the delay of times series could be analyzed by imbed-
ded dimension methods. Third, the adaptive tuning of noise variance and kernel width 
with persistent consistency and stability would also be expected to enhance model 
performance. Finally, the improved relevance vectors machine with developed initial 
approaches and efficient learning algorithms is preferred for its wide applications in 
hydrological science.  
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Abstract. How to exploit current information techniques for rapidly and 
accurately building a fittest neural network becomes increasingly significant for 
flood peak forecasting. This paper firstly designs a distributed computing 
architecture and builds a computing environment based on Grid technologies. 
Then a distributed computing service for neural networks based on a genetic 
algorithm and a modified BP algorithm is designed and developed to rapidly 
and accurately building a fittest neural network for flood peak forecasting. 
Finally, a distributed computing prototype system is developed and 
implemented on a case study of the flood prevention in Shenzhen city, China.  
The experiment result shows that the scheme addressed in the paper is efficient 
and feasible. 

1   Introduction 

Each drainage area has its own water information monitoring networks, and these 
measured data could hide the gradual progress law of the river flood. Artificial neural 
network (ANN) is an efficient way of modeling the flood process in situations where 
explicit knowledge of the internal hydrologic processes is not available. In the field of 
water resources engineering and hydrology, ANN techniques are being used 
increasingly to predict and forecast water resources variables [1], and more than 43 
papers have dealt with the use of ANN for the prediction of water resources variables 
[2]. From these research works, we can know that conventional neural networks 
suffered from some limitations, which may affect its application to flood forecasting. 
For example, the number of hidden layers and hidden neurons of the network 
architecture is usually determined by experiment or by trial and error; a large number of 
parameters are frequently required to fit a good network structure, compared to the 
smaller number of parameters generally required in conventional hydrological models. 

In order to efficiently deal with the above situations, many experts and scholars 
paid attention to optimization algorithms and parallel or distributed computing 
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techniques, and meantime implemented a lot of works [3]. The Java Object Oriented 
Neural Network (JOONE) is an open source project that offers a free neural network 
framework to create, train and test artificial neural networks. Its aim is to create a 
powerful environment for both enthusiastic and professional users, based on the 
newest Java technologies [4]. JOONE supports many features such as multithreading 
and distributed processing, which can take advantage of multiprocessor computers 
and multiple computers to distribute the processing load. Meantime its framework is 
also expandable with more components to easily implement new learning algorithms 
(i.e. new flood forecasting model). By means of JOONE technology, we can simplify 
much of this complexity of ANN algorithms involved in flood forecasting.  

However, JOONE mainly implements its parallel or distributed computing on LAN 
connected by several machines, so its computing resources are limited. In addition, 
professionals in flood prevention, especially non-computer workers, are difficult to 
deploy its distributed environment. Fortunately, the development of Grid technology 
endows us with a promising future. Grid aims to share all the resources on the Internet 
to form a big, high-performance computing network. Its concept is coordinated 
resource sharing and problem solving in dynamic, multi-institutional virtual 
organizations. Grid Computing has a more advanced model considering resource 
sharing, data transfer, network security and network computing. A characteristic of 
Grid Computing is that it combines the merits of both parallel computing and 
distributed computing in network computing [5], and it provides a good mechanism of 
global resources sharing such as computing resources. The core of the Open Grid 
Services Architecture (OGSA) is the services idea, and OGSA can integrate services 
across distributed, heterogeneous, dynamic “virtual organizations” formed from the 
disparate resources within a single enterprise and/or from external resource sharing 
and service provider relationships [6]. 

The rest of this paper is organized as follows. In section 2, a modified back 
propagation (BP) with peak recognition theory, which can improve the accuracy of 
the peak value forecasting, is introduced. Moreover, we designed a global 
optimization model based on the genetic algorithm, which aims to avoid the network 
training falling into a local minimum. Section 3 describes a distributed computing 
environment based on Grid technology, which aims to effectively integrate more 
computing resources and offer more convenient and rapid computing service, which 
can help us rapidly and accurately obtain a fittest neural network for flood 
forecasting. In section 4, we designed and developed a simple prototype system, and 
meantime an application experiment was also implemented. Finally, we drew the 
conclusions with a discussion of our future research directions shown in section 5. 

2   Forecasting Model 

2.1   A Modified BP Algorithm 

The network training in the standard BP algorithm corrects networks weight value 
according to the overall error, which hardly controls the training precision of the flood 
peak water level. In order to improve the forecasting precision of the flood peak water 
level, we introduce the peak value recognition theory [8] to build own flood 
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forecasting model based on the standard BP algorithm. Compared with the standard 
BP algorithm correcting the network weight according to gradient descent of overall 
error, by this algorithm the error correction of flood peak value is mainly depending 
on the modification of weight according to the error of the big values. So we mainly 
focus on how to adapt to suitably modified coefficient of network error in training 
samples and modify network weight to decrease peak mapping error. We can define 

the network error modified coefficient ξ  as )(/)( )(
max

)( tdtd LL
i  ( )()(

max td L  is the biggest 

expectation output value of samples training). In addition, we can also modify the 
error’s magnifying coefficient μ  in order to improve the training speed of the neural 

network model and the precision of the peak value recognition. 

2.2   Neural Network Computing Model 

A key problem is that the training usually falls into a local minimum. So we must use 
“global optimization” techniques to explore globally the entire space of the solutions 
in order to find the best one network. Based on the modified BP algorithm, the genetic 
algorithm in this paper is used to implement global optimization. In fact, the genetic 
algorithm can be easily implemented by a parallel or distributed environment. We can 
design a network computing model and easily implement it into our distributed 
computing service. Figure 1 illustrates the overall process of network computing 
model. In this scheme, we can use the modified BP algorithm to train the neural 
network and the genetic algorithm to create next generation neural network for 
training. From figure 1 we can know that the whole process is a cycle, which will 
continue until at least one neural network reaches a predefined stop condition (i.e. the 
desired RMSE value or max cycles).  
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Fig. 1. Flowchart of Network Model Computing 

Because some individuals in next generation of the genetic algorithm are directly 
duplicated from the previous generation, thus the same network structure may be 
repeatedly trained and a lot of computing resources and time will be wasted. In order 
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to avoid this situation, we will create a temporary database to store all trained network 
structure. Before training new network, we will firstly check the temporary database 
form and judge if the network has been trained. If the answer is yes, we will not train 
it and can directly get the result from the temporary database form. 

3   Distributed Computing Service  

In order to try different solutions and find a good neural network structure for flood 
peak forecast within an acceptable time, this section will focus on how to efficiently 
use some idle computing resources on Internet and build a neural network distributed 
computing service. 

3.1   Distributed Computing Architecture 

Based on Grid and Jini technologies, we design a distributed computing framework 
shown in Figure 2. Grid server manages computing resources and deals with task 
request. Grid services aim to effectively integrate more computing resources and offer 
more convenient and powerful computing service. Resources (i.e., computing 
resources) providers can register their resources to Grid server and these computing 
resources will be packed into computing resources pool. Meantime, some application 
services such as the neural network distributed computing service can be developed 
and deployed in Grid server. For an ordinary user, he/she only knows how to accesses 
to a given web portal for using the distributed neural network computing service. In 
fact, Grid mechanism can help us automatically download, install and deploy a 
distributed computing environment (i.e. Jini and Computefarm computing 
framework). 

 Registry service

 Service analysis

Service matching

Service binding

 Task request 

 Computing resources pool 

 Jini Services 
 Workers 

 Computefarm 

Deploying Services 

 

Fig. 2. Grid-Service Based Distributed Computing Mechanism 

3.2   Computing Function Architecture 

In this paper, the basic distributed training function framework based on Master- 
Worker model of Jini technology [7] is shown in Figure 3. Both the Workers and the  
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Fig. 3. Distributed Computing Function Architecture 

Master use the Lookup Service to discover the JavaSpaces and the Transaction 
Manager services, and register themselves as listeners of the JavaSpaces in order to be 
notified when a neural network is available on it to be elaborated. The Master 
generates all the tasks and sent to the JavaSpaces. Workers are notified and take that 
neural network, train it, and send back the results to the JavaSpaces. When a trained 
network is available on the JavaSpaces, the Master is notified, so it can take that 
network from the JavaSpaces and store it in a temporary database. 

4   Application Experiment 

Our application case is the flood forecasting of Shenzhen city in Guangdong province, 
China.  Bsed on Buji river water level station (No.5) and several upriver level stations 
including Nigang village water level station (No.36), Sungang brake water level 
station (No.7), Wenjindu water level station (No.16), we aim to build the water level 
forecasting model of No.5 station. Training samples data is organized by measured 
data from 1995 to 2004, and the datum of next year is used to testing. In addition, we 
considered flood spread time in these stations. We scale the training data to lie within 
a smaller range (0, 1) to avoid the saturation when the output approaches the limits of 
the transfer function, which is logistic (sigmoid) tangent. 
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Fig. 4. Initial Network Structure of Buji Station Flood Forecasting 
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Fig. 5. The Compare of Water Level Forecasting Results with Measure Value 

Based on the above scheme, we build a distributed computing prototype system 
using JDK 1.4, Globus toolkit 3.2, and JOONE [8], Jini2.1, Ccomputefarm 0.7. 
Meantime a neural network distributed computing service is implemented. We build 
an initial network shown in Figure 4. Some initial parameters are set as follow: w
(-1,1), μ =2.0, RMSE 0.0001, α =0.9, η =0.0005, P=100, sp =0.05, cp =0.1

mp =0.05 (α  is momentum parameter value , η  is learning rate ). In addition, the 

evolution algebra is 1000, and circles of BPPR algorithm are 10000.  Figure 5 shows 
a result of the compare water level forecasting results with real measure data and its 
absolute average error is less than 0.02m, which is very high precision. 

Table 1 shows the time comparison of our distributed system with a stand-alone 
computer. From the system running effect we can see that the distributed training 
results are similar to stand-alone computer. In Table 1 we can see that when the 
network training is completed only by a node, the average response time of our 
system is a little longer than the stand-alone computer, because there must consume 
some time for data to be transferred to worker node and task dispensing. However, 
when nodes are added, the processing speed is accelerated and the efficiency is 
improved. From Table 1 we can also know that it is necessary to apply the distributed 
computing environment for those “global optimization” algorithms, because there are 
many factors that affect the processing speed of our system, such as the different input 
samples data, different parameters selection and so on. 

Table 1. Time Comparison of Our Distributed System with Single Computer 

Number of computing nodes      Test conditions  
Performance 

Single 
machine 1 2 4 6 8 

Processing time (s) 494 634 314 233 188 151 
Acceleration ratio 1 0.78 1.57 2.12 2.62 3.27 
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5   Conclusions 

Using Grid technology, this paper built a distributed computing environment. 
Meantime a neural network distributed computing service based on a modified BP 
algorithm and genetic algorithm, is also designed and deployed. All efforts aim to 
integrate idle computing resources and improve computing efficiency in order to more 
conveniently and rapidly build a fittest neural network structure for flood peak 
forecasting. The experiment results demonstrate our scheme can save training time of 
neural network and effectively forecast flood water level. In fact, there have too many 
complicated factors resulting in uncertainty of ANN model in the field of flood 
prevention especially in city. So future research efforts should be directed toward how 
to use or develop new techniques for deal with uncertainty for ANN model building 
in rapid and accurate efficiency.  
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Abstract. In this paper, we demonstrate that cabinet approval ratings
can automatically be inferred with good performance by a neural network
technique, that is, information-theoretic competitive learning. Because
cabinet approval rating estimation is an extremely complex process with
much non-linearity, neural networks may give much better performance
than conventional statistical methods. Though an attempt to infer public
opinions seem to be a challenging topic for machine learning, little at-
tempts have been made to infer approval ratings to our best knowledge.
In this context, we try to apply information-theoretic competitive learn-
ing to the problem of cabinet approval ratings. Information-theoretic
competitive learning has been developed so as to simulate competitive
processes of neurons. One of the main characteristics of the method is
that it is a very soft-type of competitive learning in which conventional
competitive learning is only a special case. Though the method seems to
be promising due to its general property, we have had a few experimen-
tal results to show better performance. Experimental results show that
without any teacher information neural networks can appropriately infer
the rise and fall of approval ratings through a process of information
maximization. This experiment result surely opens up new perspectives
for neural networks as well as mass communication studies.

1 Introduction

In this paper, we try to estimate cabinet approval ratings by information-theo-
retic learning. In the field of mass communication study, there are a sizable
number of studies that predict various types of public opinions from computer-
generated data sets on mass media reports [1], [2], [3], [4], [5], [6]. Partly because
of an absence of appropriate software for analyzing Japanese until recently, how-
ever, there have not been such studies in Japan with an exception of [7]. In
addition, little attempts have been made to use machine learning techniques
in the mass communication study. Because data in the study seem to be ex-
tremely complex with a property of non-linearity, machine-learning techniques,

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 897–908, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in particular, neural networks are expected to be successfully applied to the mass
communication study.

In this context, we introduce information-theoretic learning, because its gen-
eralized property may improve substantially basic performance. For information-
theoretic approach, there have been many attempts to use information-theoretic
methods in neural networks [8], [9], [10], [11]. We have so far found similarity
between competition and information maximization and proposed a new infor-
mation theoretic method for competitive learning [12], [13], [14], [15], [16], [17],
[18]. The new approach is a soft-type competitive learning and can solve the
serious problem of dead neurons in conventional competitive learning [19], [20],
[21], [22], [23], [24], [25].

In this paper, we apply the method to the inference of approval ratings of
Japan’s Koizumi cabinet by examining newspaper editorials. We have intuitively
known that the editorials of newspapers have much influence on public opinions,
in this case, the cabinet support rating. However, little formal attempts have
been made to clarify this relation. Thus, we try to infer the rise and fall of
cabinet support ratings by examining the editorials of Japanese newspapers.
Experimental results discussed in this paper show a good potentiality of neural
networks for automatic inference of public opinion.

2 Theory and Computational Methods

We have defined information content as mutual information between input pat-
terns and competitive units [16]. As shown in Figure 1, a network is composed of
input units xs

k and competitive units vs
j . We used as the output function the in-

verse of the Euclidean distance between connections weights and input patterns.
Thus, an output from the jth competitive unit can be computed by

L input units

M competitive
units

s

Wjk

x
k

s
v

j p(j|s)

Fig. 1. A network architecture for information maximization
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vs
j =

1∑L
k=1(x

s
k − wjk)2

, (1)

where L is the number of input units, and wjk denote connections from the kth
input unit to the jth competitive unit. The output is increased as connection
weights are closer to input patterns.

The conditional probability of firing of the jth unit, given the sth input pat-
tern p(j | s) is computed by

p(j | s) =
vs

j∑M
m=1 v

s
m

, (2)

where M denotes the number of competitive units. Since input patterns are sup-
posed to be uniformly given to networks, the probability of the jth competitive
unit is computed by

p(j) =
1
S

S∑
s=1

p(j | s). (3)

By using these probabilities, information I is computed by

I = −
M∑

j=1

p(j) log p(j) +
1
S

S∑
s=1

M∑
j=1

p(j | s) log p(j | s), (4)

where S is the number of input patterns. Differentiating information with respect
to input-competitive connections wjk, we have final update rules to increase
information ([16]).

3 Results and Discussion

In the first experiment, we try to show that a process of information maximiza-
tion accompanies a process of competition and that an artificial data can appro-
priately be classified into two groups as a result of competition. The artificial
data was composed of patterns drawn from two normal distributions with two
different means as shown in Figure 2(f). The number of input and competitive
units are two, respectively. Figure 2(a) shows information as a function of the
number of epochs by competitive learning and information-theoretic competi-
tive learning. Information by information-theoretic and competitive learning are
increased rapidly and reaches final stable points with about 50 epochs. No signif-
icant difference between competitive learning and information-theoretic learning
can be seen in this case. Figure 2(b) to (f) show that connection weights repre-
sented in small circles are gradually expanded and located finally in the middles
of two clusters. This result shows that information maximization can realize
competitive processes not by the winner-take-all algorithm of conventional com-
petitive learning but by a process of information maximization.



900 R. Kamimura and F. Yoshida

0 50 100
0

0.5

1

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

(a)  Information

Number of epochs

In
fo

rm
ati

on

(b)  Information=0.1

(c)  0.2 (d)  0.3

(e)  0.5 (f)  Final(0.73)

Competitive learning
Connection weights

Final weights

Information-Theoretic

Fig. 2. Information and connection weights for five different values of information
content. In Figure (a), a solid and dotted line represent information by information-
theoretic and simple competitive learning.
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In the second place, we apply the method to the inference of cabinet ap-
proval ratings. Most major mass-media companies in Japan independently and
periodically conduct public opinion polls asking whether or not to approve the
incumbent cabinet. Thus, there exist ten or more time-series data sets on ap-
proval ratings for the incumbent Koizumi cabinet. After considering consistency
of survey method, frequency of polls, and availability, the one conducted by
Asahi Shimbun, a major Japanese paper, was selected for this study. During the
period from May 26, 2001 through September 27, 2004, Asahi conducted forty-
six opinion polls basically with the once-a-month pace. On certain unexpected
occasions such as an abrupt resignation of a highly popular cabinet member,
however, Asahi conducted ”an emergency poll” even shortly after its previous
regular poll. It should be noted, thus, that intervals between two polls are not
equal.

In this study, cabinet approval ratings were estimated using a data set gen-
erated by a computer software TeX-Ray from 2371 newspaper editorials of four
major newspapers – Asahi Shimbun, Mainichi Shimbun, Nihon Keizai Shimbun,
and Yomiuri Shimbun. These editorials cover the period through April 27, 2001,
the day of inauguration of the Koizumi cabinet, through September 26, 2004,
and include at least one sentence that refer to the Koizumi cabinet. From these
editorials 8585 sentences that referred to the Koizumi cabinet were extracted
and subsequently analyzed by TeX-Ray.

TeX-Ray, which was developed by the second author, is a computer soft-
ware for analyzing Japanese sentences. It performs the following analyses for
each sentence: (1) morphological analysis, (2) syntax analysis, (3) concept us-
age analysis, (4) positive and negative words recognition, (5) modality recog-
nition, (6) actor-action-target triplet extraction. This study mainly used the
first, fourth, and the fifth functions of TeX-Ray. Employing multiple-regression
analysis, Yoshida(2006) shows that a TeX-Ray-generated data set successfully
postdicted support ratings for Koizumi cabinet with exceptionally high accuracy.
In this sense, it is quite reasonable to assume that the TeX-Ray-generated data
set is reliable as well as valid.

Using TeX-Ray’s modality recognition function and its word count function
on a good-bad scale, each sentence was assessed in terms of forty variables. Of
these variables, two of them assess number of positive words and negative words
appearing within the last two phrases of each sentence. Here, ”positive word”
means a Japanese word which with no doubt most Japanese speakers regard as a
word with ”good” connotation. ”Negative word” means, of course, the one most
Japanese speakers regard as a word with ”bad” connotation.

The remaining thirty-eight variables assess modality pattern of each sentence,
with each variable corresponding to one of thirty-eight modality patterns. Since
TeX-Ray only examines modality pattern of the last phrase of a Japanese sen-
tence, only one matching patter is found in one sentence, at best. If a certain
modality pattern is recognized, then one variable corresponding to that pattern
is given a value 1, and the remaining thirty-seven variables are given a value 0.
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The approval ratings for the Koizumi cabinet consist of forty-six data points.
Accordingly, the data set of editorial contents was aggregated in each of forty-
six periods beginning at the date of a poll and ending at the previous day of
the next poll. The first period was set to start at the inauguration day and to
end at the previous day of the first poll. Since the length (days) of the forty-six
periods are not even, the value of each variable in each time period was divided
by the intervals in that period so as to make it comparable with one in other
time periods. With this data transformation, a variable belonging to thirty-eight
variables that correspond to each of thirty-eight modality patterns measures an
average daily frequency of a given modality pattern during a given time period.

The two variables which measure frequency of positive and negative words in
a given sentence were also aggregated in each time period and were divided by
the number of days in each period, thereby, transforming them into an average
daily frequency of positive as well as negative words in a given time period. In
each time period, these two variables were further transformed into two indices,
by dividing them respectively by the average daily frequency of positive words
during the entire time periods as well as by the average daily frequency of neg-
ative words during the same all periods. As a result, if in a given time period
average daily frequency of positive words is greater than that of the entire pe-
riods, the value of this index is greater than 1.0, and if it is less than that of
the entire periods, the value of this index is less than 1.0. By the same way,
a daily frequency index for negative words was also created. Further analysis
was performed using the data set of the above-mentioned opinion polls and the
thirty-eight variables on modality patterns as well as two indices regarding daily
frequencies of positive and negative words.

For estimating cabinet support ratings, it is necessary to match aggregated
and transformed data on editorial contents in a given time period with a cabinet
approval rating at a given time period. In this study, they were matched by the
following way. That is, throughout the entire periods, all variables concerning
with editorial contents in a given period were matched with a cabinet support
rating that was surveyed at the beginning of the next time period. In other words,
a cabinet approval rating at the beginning of a given time period was estimated
by values of variables on editorial contents assessed during the precedent time
period.

Using the above-mentioned data, we tried to infer cabinet approval ratings
by neural networks. The data was so complex that we did not obtain good per-
formance by the original data. To solve this problem, we tried to reduce the
complexity of the input data as much as possible. In the first place, we used
only modality variables (38 variables) as the first approximation. Among them,
three variables have all zero values to be deleted in the new data seta. In ad-
dition, the last three periods have given instability in learning, and we deleted
them in the new data set. Thus, we have just 36 variables (35 modality variables
and a previous rating) with only 43 input patterns. Figure 3 shows two archi-
tectures for the problem. In Figure 3(a), all thirty-six variables are given into
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the network. Because instability in learning occurred several times, we reduced
the number of variables by using the principal component analysis (minimum
fraction variance component to keep=0.02). Figure 3(b) shows a situation where
thirty-six variables are reduced to 15 by the principal component analysis. By
these reduced variables, relatively good performance in terms of training and
generalization errors could be obtained.

Competitive
units

 Down

 Up

 Down

 Up

 36 input units

 (a)  Orginal network

 (b)  Trainsforming the network by the PCA

wjk

p(j|s)

Competitive
units

 15 input units

 36 input units

wjk

p(j|s)

Fig. 3. A network architecture for the approval-rating problem. Figure (a) and (b)
show an network architecture for the original and reduced data.

Figure 4(a) and (b) show information and errors by competitive learning and
information-theoretic learning with original thirty-six variables. As shown in
Figure 4(a1), information is rapidly increased to a stable point with just fifty
epochs. However, Figure 4(a2) shows training and generalization errors as a
function of the number of epochs. Both errors are decreased, and then increased
to relatively large levels. Figure 4(b1) shows information as a function of the
number of epochs by information-theoretic learning. Information increases more
slowly but more smoothly to a stable point. However, as shown in Figure 4(b2),
training errors are almost flat and generalization errors inversely increase at the
end. Thus, it seems to be impossible to infer approval ratings by the neural
networks, because the problem seems to be too complex for the networks.

We thought that the impossibility of the inference was due to redundant and
unnecessary information contained in the data. Thus, we tried to condense infor-
mation in input patterns as much as possible by using the principal component
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Fig. 4. Information and errors as a function of the number of epochs for the approval
rating problem with original data. Figure (a) and (b) show results by simple competitive
learning and the information-theoretic method.

analysis. By experiments, we could reduce the number of variables from thirty-six
to fifteen variables. Figure 5(a) shows information and errors by simple compet-
itive learning. Information increases with some fluctuations and approches a
level of 0.2, which is lower than the level obtained by the previous model (Fig-
ure 4). Figure 5(b1) shows information as a function of the number of epochs
by information-theoretic learning. As shown in the figure, information increases
much more rapidly to a stable point than by simple competitive learning. Figure
5(b2) shows training (solid) and generalization (dotted) errors by information-
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Fig. 5. Information and errors as a function of the number of epochs for the approval
rating problem. Figure (a) and (b) shows results by simple competitive learning and
the information-theoretic method.

theoretic learning. As the training error is decreased, the generalization error
is more rapidly decreased. Table 1 shows generalization comparison by three
methods. We repeated experiments ten times with different initial conditions,
and averaged the results for all the methods. By the conventional k-means, we
had the worst performance of 0.2775. By using simple competitive learning,
errors are slightly decreased to 0.2650. Finally, by using information-theoretic
learning, the best result of 0.1600 could be obtained. These results show that
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Table 1. Comparison of generalization errors by three methods. In the table, CL, ITCL
denote standard competitive learning and information-theoretic competitive learning.

k-means CL ITCL
Average 0.2775 0.2650 0.1600
Std Dev 0.1186 0.0503 0.0944

though careful preprocessing is needed, we have a high possibility that better
generalization can be obtained by information-theoretic learning.

4 Conclusion

In this paper, we have demonstrated that better performance in terms of gener-
alization can be obtained by information-theoretic competitive learning for the
complex problem of the approval rating estimation of Japan’s Koizumi cabinet.
Information-theoretic competitive learning has been developed so as to simu-
late competitive processes of neurons. As information in competitive neurons
is increased, a smaller number of neurons tend to be activated. When informa-
tion is completely maximized, winner-take-all processes can be realized. Thus,
information-theoretic learning is a very soft-type of competitive learning in which
conventional competitive learning is only a special case. Though the method
seems to be promising due to the general property of the method, we have had
a few experimental results to show the better performance. We have applied our
method to cabinet approval ratings. Because the problem is so complex and the
number of variable is so large, careful consideration on the property of variables
is needed. However, the experimental results in this paper have certainly shown
that information-theoretic learning can be applied with better performance to ac-
tual complex problems such as the approval rating estimation. For more practical
applications, we need to explore more exactly how and why better generaliza-
tion performance can be improved by information-theoretic learning. However,
experimental results shown in this paper certainly open up new perspectives for
neural computing as well as mass communication studies.

References

1. M. M. Miller and B. Denham, “Horserace, issue coverage in prestige newspapers
during 1988, 1992 elections,” Newspaper Research Journal, vol. 15, no. 4, pp. 20–28,
1994.

2. M. M. Miller, J. L. Andsager, and B. P. Riechert, “Framing the candidates in
presidential primaries: issues and images in press releases and news coverage,”
Journalism and Mass communication quarterly, vol. 75, no. 2, pp. 312–324, 1998.

3. D. Domke, D. P. Fan, S. Michael, D. V. S. Smith, and M. D. Watts, “News me-
dia, candidates and issues, and public opinion in the 1996 presidential campaign,”
Journalism and Mass Communication Quaterly, vol. 74, no. 4, pp. 718–737, 1996.



Automatic Inference of Cabinet Approval Ratings 907

4. D. Fan, “Computer content analysis of press coverage and prediction of public
opinion for the 1995 sovereignty referendum in quebec,” Journalism and Mass
Communication Quaterly, vol. 74, no. 4, pp. 351–366, 1996.

5. M. D. Watts, D. Domke, D. V. Shah, and D. P. Fan, “Elite cues and media bias
in presidential campaigns,” Communication Research, vol. 26, no. 2, pp. 144–175,
1999.

6. J. A. Danowski and A. Rebecca, Linking gender language in news about presidential
candidates to gender gaps in polls: a time-series analysis of the 1996 campaign.
Westport: Ablex Publishing, 1996.

7. F. Yoshida, “Main features of tex-ray, a software for analyzing japanese sentences,
and its applications: an attempt to predict poll support ratings for koizumi cabinet
from editorial content of four major newspapers (in japanese),” Journal of mass
communication studies, vol. 68, pp. 80–96, 2006.

8. R. Linsker, “How to generate ordered maps by maximizing the mutual information
between input and output,” Neural Computation, vol. 1, pp. 402–411, 1989.

9. J. J. Atick and A. N. Redlich, “Toward a theory of early visual processing,” Neural
Computation, vol. 2, pp. 308–320, 1990.

10. S. Becker, “Mutual information maximization: models of cortical self-
organization,” Network: Computation in Neural Systems, vol. 7, pp. 7–31, 1996.

11. S. Becker and G. E. Hinton, “Learning mixture models of spatial coherence,” Neural
Computation, vol. 5, pp. 267–277, 1993.

12. R. Kamimura, T. Kamimura, and T. R. Shultz, “Information theoretic competitive
learning and linguistic rule acquistion,” Transactions of the Japanese Society for
Artificial Intelligence, vol. 16, no. 2, pp. 287–298, 2001.

13. R. Kamimura, T. Kamimura, and O. Uchida, “Flexible feature discovery and struc-
tural information,” Connection Science, vol. 13, no. 4, pp. 323–347, 2001.

14. R. Kamimura, “Information theoretic competitive learning in self-adaptive multi-
layered networks,” Connection Science, vol. 13, no. 4, pp. 323–347, 2003.

15. R. Kamimura, “Teacher-directed learning: information-theoretic competitive learn-
ing in supervised multi-layered networks,” Connection Science, vol. 15, pp. 117–
140, 2003.

16. R. Kamimura, “Information-theoretic competitive learning with inverse euclidean
distance,” Neural Processing Letters, vol. 18, pp. 163–184, 2003.

17. R. Kamimura, “Unifying cost and information in information-theoretic competitive
learning,” Neural Networks, vol. 18, pp. 711–718, 2006.

18. R. Kamimura, “Improving information-theoretic competitive learning by accentu-
ated information maximization,” International Journal of General Systems, vol. 34,
no. 3, pp. 219–233, 2006.

19. D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” in
Parallel Distributed Processing (D. E. Rumelhart and G. E. H. et al., eds.), vol. 1,
pp. 151–193, Cambridge: MIT Press, 1986.

20. S. Grossberg, “Competitive learning: from interactive activation to adaptive reso-
nance,” Cognitive Science, vol. 11, pp. 23–63, 1987.

21. D. DeSieno, “Adding a conscience to competitive learning,” in Proceedings of IEEE
International Conference on Neural Networks, (San Diego), pp. 117–124, IEEE,
1988.

22. S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Competitive
learning algorithms for vector quantization,” Neural Networks, vol. 3, pp. 277–290,
1990.



908 R. Kamimura and F. Yoshida

23. L. Xu, “Rival penalized competitive learning for clustering analysis, RBF net, and
curve detection,” IEEE Transaction on Neural Networks, vol. 4, no. 4, pp. 636–649,
1993.

24. A. Luk and S. Lien, “Properties of the generalized lotto-type competitive learning,”
in Proceedings of International conference on neural information processing, (San
Mateo: CA), pp. 1180–1185, Morgan Kaufmann Publishers, 2000.

25. M. M. V. Hulle, “The formation of topographic maps that maximize the average
mutual information of the output responses to noiseless input signals,” Neural
Computation, vol. 9, no. 3, pp. 595–606, 1997.



Radial Basis Function Neural Networks to
Foresee Aftershocks in Seismic Sequences

Related to Large Earthquakes

Vincenzo Barrile1, Matteo Cacciola1, Sebastiano D’Amico2, Antonino Greco1,
Francesco Carlo Morabito1, and Francesco Parrillo3

1 University ”Mediterranea” of Reggio Calabria, Faculty of Engineering, Department
of Informatics, Mathematics, Electronics and Transportation (DIMET),

89100 Reggio Calabria, Italy
barrile@ing.unirc.it, {matteo.cacciola, antonino.greco,

morabito}@unirc.it
http://www.ing.unirc.it

2 Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy
damico@ingv.it

http://www.ingv.it
3 University of Messina, Department of Earth Science

98166 Messina-Sant’Agata, Italy
francescoparrillo@yahoo.it

http://www.unime.it

Abstract. Radial Basis Function Neural Network are known in scien-
tific literature for their abilities in function approximation. Above all,
this particular kind of Artificial Neural Network is applied to time series
forecasting in non-linear problems, where estimation of future samples
starting from already detected quantities is very hardly. In this paper Ra-
dial Basis Function Neural Network was implemented in order to predict
the trend of n(t) for aftershocks temporal series, that is the numerical se-
ries of daily-earthquake’s number occurred after a great earthquake with
magnitude M > 7.0 Richter. In particular we implemented the RBF-NN
for the Colfiorito seismic sequence. The seismic sequences considered in
this work are obtained following criteria already known in scientific lit-
erature [1], [2]. Results of proposed approach are very encouraging.

1 Introduction

Earthquakes tend to involve in cluster [3]. After the occurrence of an earthquake
it is possible to observe many other ones in its proximity. In fact, about a third of
them, detected all over the world, are aftershocks, the distinguishing feature of
which is clustering in space and time. Their temporal distribution often follows
a regular trend, as first observed by Omori in 1894. In a time series of seismic
events, a mainshock is defined as an earthquake marked by greatest magnitude,
while it can be possible to consider aftershocks all the earthquakes happened af-
ter a mainshock, located in a certain time interval and in a certain space from the
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occurrence of the first one [4], [5], [6]. In this paper Radial Basis Function Neural
Network (RBF-NN) has been implemented in order to predict the trend of n(t)
for aftershocks temporal series, that is the numerical series of daily-earthquake’s
number occurred after a great earthquake with magnitude M > 7.0 Richter.
In particular RBF-NN has been trained on California, USA (October 10, 1999)
and Taiwan (September 09, 1999) sequences, and has been evaluated using the
Colfiorito, ITA (September 26, 1997), seismic sequence. Structure of paper is
described as follows: in section 2 the temporal rate decay of seismic aftershocks
is described; section 3 depicts a theory overview about RBF-NN; section 4 de-
scribes the implementation of data set and finally in section 5 conclusions and
perspectives are drawn up.

2 About the Temporal Decay Rate

The employment of statistics is useful to estimate the probability of future earth-
quakes. These probabilities are very interesting from the point of view of earth-
quake physics, and crucial for attempts to forecast the hazards due to large,
damaging earthquakes. Actually a theoretical model that successfully describes
earthquake recurrence is unknown, so it is necessary to adapt probability dis-
tribution based on earthquake history. Aftershocks typically occur immediately
after a mainshock and are distributed through the source volume. Usually the
frequency of occurrence of aftershocks decays rapidly according to the Omori’s
law:

n(t) =
k

(c+ t)−p
. (1)

where n(t) is the frequency of aftershocks at time t after the mainshock; k, c and
p are constants that depend on the size of earthquake. The distribution in space
of aftershocks is often related to the fault area or its length. There are a lot of
empirical relations to estimate the fault area or the length fault [4] developing
the empirical formula related to the fault area:

log(A) = 1.02Ms + 6.0. (2)

Regarding to the fractured fault segment length L related to the seismic event
magnitude Utsu [5] found the empirical relation:

log(L) = 0.5Ms − 1.8. (3)

An important formula is the Gutenberg-Richter’s relation [6] which connect
the size and the frequency occurrence. They first proposed that the frequency
of aftershocks occurrence can be represented by the formula:

log(N) = a− bM. (4)

in a given period of time and in a given region. In the previous formula N is the
number of earthquakes with a fixed magnitude M, a and b are constants charac-
teristic for the given area. Concerning the occurrence of large aftershocks, in the
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first ten days, after a mainshock with magnitude greater than 7.0, 153 sequences
all over the world from 1973 to 2004 have been analyzed , from the NEIC-USGS
database (http://neic.usgs.gov/neis/epic/). It has been noticed that in the first
ten days there is a probability about 81% to have a large aftershock (with mag-
nitude M ≥ 5.5) how is shown in Figure 1.

Fig. 1. The figure shows the number of aftershocks with magnitude M > 5.5 in the
first 10 days (y axis) related to the 153 earthquakes having the magnitude of mainshock
greater then 7.0 all over the word (x axis). The period is ranged from 1973 to 2004.

In the following, general criteria used by the authors to define a seismic se-
quence are reported. Firstly, it has been calculated the dimensions of the involved
area using the Utsu [5] empirical relation (3) and so we acquired data in a square
with sides at a distance 3L from the mainshock epicenter, where L represents the
fault length of the mainshock. The data set is related to the events with magni-
tude M ≥ 1 recorded in the computed square in one year after the mainshock.
The evaluation of the completeness threshold, Mc, of a dataset is made using
the Gutenberg-Richter relation by using the approach in detail described in [1].
It is computed with data related to the events with magnitude M ≥ 1 reported
by web site of NEIC-USGS databank (http://neic.usgs.gov/neis/epic/), in the
first 10 days after the mainshock and in a square centered on the mainshock.
Using the data concerning the first ten days of the sequence, the ”barycenter”
[7] of the aftershocks sequence has been calculated by means of:

Blat =
∑n

i=1 Lati
n

Blon =
∑n

i=1 Loni

n
. (5)

where Lati and Loni are, respectively, the latitude and the longitude of the i-
th aftershock epicenter, and n is the number of aftershocks with a magnitude
M ≥Mc. The final rectangular sector is centered on the sequence ”barycenter”
and has its sides at a distance from this point, in terms of latitude and longitude,
equals to 1.5L. For the temporal duration d of the seismic sequence, d = n1+n2,
where n1 is the number of days equals to the number of aftershocks in the 24
hours starting from the occurrence of the mainshock, and n2 is the number of
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days, after n1, that reach and include 10 days in which there are no earthquake
[1], [2].

3 About RBF Neural Networks

The Neural Networks derive from the idea to give the computer a sort of in-
telligence and ability to take, in general, some decisions. Principally they are
systems that ”learn” something to carry out correctly, for example, complicated
relations, non-linear and multi-variable relations. A Neural Network is formed of
some number of neurons and connections that simulate the behavior of biological
activity and in this work we used the RBF Neural Networks. RBF Neural Net-
works (RBF-NNs) have capabilities to solve function approximation problems.
RBF-NNs consist of three layers of nodes: more than input and output layers,
RBF-NNs have a hidden layer, where Radial Basis Functions are applied on the
input data [8]. A schematic representation of RBF-NN is described by Fig. 2,
where R represents the number of elements in input vector, S1 the number of
neurons in layer 1 and S2 represents the number of neurons in layer 2.

Fig. 2. Schematic representation of a Radial Basis Function Neural Network

The ‖dist‖ box in this figure accepts the input vector p and the input weight
matrix IW 1,1, and produces a vector having S1 elements. The elements are the
distances between the input vector and vectors iIW

1,1 formed from the rows
of the input weight matrix. We can understand how this network behaves by
following an input vector p through the network to the output a2. If we present
an input vector to such a network, each neuron in the radial basis layer will
output a value according to how close the input vector is to each neuron’s weight
vector. Thus, radial basis neurons with weight vectors quite different from the
input vector p have outputs near zero. These small outputs have only a negligible
effect on the linear output neurons. In contrast, a radial basis neuron with a
weight vector close to the input vector p produces a value near 1. If a neuron has
an output of 1 its output weights in the second layer pass their values to the linear
neurons in the second layer. In fact, if only one radial basis neuron had an output
of 1, and all others had outputs of 0’s (or very close to 0), the output of the linear
layer would be the active neuron’s output weights. This would, however, be an
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extreme case. Typically several neurons are always firing, to varying degrees. Now
let us look in detail at how the first layer operates. Each neuron’s weighted input
is the distance between the input vector and its weight vector. Each neuron’s
net input is the element-by-element product of its weighted input with its bias.
Each neuron’s output is its net input passed through radial basis function. If
a neuron’s weight vector is equal to the input vector (transposed), its weighted
input is 0, its net input is 0, and its output is 1. This work born from the idea
to predict large aftershocks subsequently a strong earthquake with magnitude
M ≥ 7.0 using the RBF-NN and basing on the Delta/Sigma method [1], [2].
This method highlight some methodological aspect related to the observation
of possible seismic anomalies in the temporal decay of aftershocks sequences
that could be considered as precursors of a large aftershock. So RBF-NNs help
us to predict the seismic temporal series after a training phase, in which an
RBF-NN learns the trend of analyzed function by means of empirical data [9].
Therefore, it needs to build a training database (DBTrain), collecting input and
output data, in order to carry out the training phase. The RBF-NN capabilities
are then evaluated by a testing phase, in which a testing database (DBTest)
is used to compare RBF-NN simulations with actual data. In next section, the
implementation of both DBTrain and DBTest is described.

4 The Training and Testing Databases

In-Out relationship, i.e. the transfer function of the net, is obtained by a training
process with empirical data. In practice the neural network learns the connec-
tion function through output and input by real examples of pairs In/Out. In
fact, for every input presented to the net during the training process, the same
provides an output that moves away of a certain quantity δ from the desired
output. During the training phase, some parameters are modified to converge to
the optimal solution. The mentioned parameters are the ”weights” or the ”con-
nection factors” between the neurons composing the net. As described in the
previous section, RBF-NN needs DBTrain in order to learn how to approximate
the trend of n(t). In this paper we considered the seismic sequences happened
in California, Taiwan region and Colfiorito (Italy). Using the above mentioned
criteria, it has been obtained for California sequence a completeness magnitude
equal to 4.0, the magnitude of mainshock is equal 7.4 (lat 34.59N, -116.27E);
for Taiwan sequence a completeness magnitude equal to 4.2, the magnitude of
mainshock is equal 7.7 (lat 23.77N, 120.98E); for Colfiorito seismic sequence a
completeness magnitude equal to 4.0, the magnitude of mainshock is equal 6.4
(lat 43.08N, 12.81E); the duration of the seismic sequences are respectively 40,
80, 39 days. Therefore, DBTrain has been implemented by n(t) series concerning
the earthquake occurred in California (USA) at October 16th 1999 (magnitude
7.4) and by n(t) series concerning the earthquake occurred in Taiwan region [10]
on September 20th 1999 (M = 7.7) (Fig. 3).

Using the California and Taiwan seismic sequences, trainDB has been imple-
mented according to the following algorithm. Given: R inputs, Q outputs, D days
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Fig. 3. a) Temporal trend of n(t) for the California seismic sequence occurred on
October 16th 1999. b) Temporal trend of n(t) for the Taiwan seismic sequence occurred
on September 20th 1999. It is possible to note that the two sequences are stopped after
ten days without seismicity.

of useful ”time prediction window”, the discrete time serie n(k) which represents
the considered statistics of daily aftershock (k=1, , K), then the set I = n(i),
n(i+1), , n(i+R-1) represents the RBF-NN input database and O = n(i+R+D-1),
n(i+R+D), , n(i+R+D+Q-2) is the RBF-NN outputs (i=1, , K-(R+D+Q-2)).
With the specific application described in this paper, it has been considered
3 inputs, 1 output and a time prediction window equal to 3 days. Therefore,
the triplet n(i), n(i+1), n(i+2) has been used in order to foresee n(i+5), with
i=1, , K-6 and K is the summation of California and Taiwan sequence lengths
(K=120). In a similar way, testDB has been implemented using only n(t) of af-
tershock temporal series occurred in Colfiorito (Italy) on September 26th, 1997,
having a mainshock’s magnitude equal to 6.4 (K=39).

5 Results and Conclusions

In this work a Radial Basis Function Neural Network has been implemented in
order to predict the trend of n(t) for aftershocks temporal series, that is the
numerical series of daily-earthquake’s number occurred after a great earthquake
with magnitude M > 7.0 Richter. According to the statistical method described
in [1], aftershocks are foreseen 5 days after the possible occurrence. By adding
a RBFNN model, it is possible to evaluate the n(t) trend in an heuristic way,
so estimating the behavior of the seismic sequence with a three day prediction.
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Fig. 4. Comparison between observed data trend (squares) and the simulated RBF-NN
data trend (circles) for the Colfiorito seismic sequence

Fig. 5. Error trend from the comparison between observed data and RBF-NN’s simu-
lated data trends

The conjunction of proposed approach with the Delta/Sigma method allows
to extended the prediction window up to 8 days before a possible aftershock
occurrence. In particular, a RBF-NN has been implemented for the Colfiorito
seismic sequence. Results of our experimentation are fairly satisfactory. The Root
Mean Square Error amounts in percentage at 3.47%. Fig. 4 shows the results
retrieved by RBF-NN simulation for the Colfiorito seismic sequence.

It is possible to obtain the errors trend from the comparison between observed
data trend and the simulated RBF data trend as shown in Fig. 5. It is possible
to denote how the error frequency decreases with days, since an aftershock event
is day-by-day less probable.

Let us denote that depicted RBF-NN simulations starts from the fourth day
of seismic sequence, that is the first output of RBF-NN. From the previously
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proposed figures, it is possible to note that the mean absolute error’s value
between real and simulated data of Colfiorito seismic sequence is equal to 1. It
appears only one absolute error’s value equal to 2 on the 15th day, but it could
reenter in the norm because Fig. 4 shows that on the considered day there is an
increment of the seismicity with respect to the theoretical trend. Therefore, it is
possible to consider a good performance of RBF-NN prediction for n(t).
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Abstract. We propose a search region prediction method using a Fre-
quency Sensitive Competitive Learning(FSCL) algorithm for the adap-
tive vector quantization of the motion vector. We train the motion vector
codebook using the first two successive images of a sequence of images
and utilize it for search region prediction. The proposed method can
reduce computation time by using a smaller number of search points
compared to other methods, and also decreases the bits required to rep-
resent motion vectors. The experimental results show that it provides
competitive PSNR values compared to other block matching algorithms.

1 Introduction

We propose a new method for estimating motion vectors in an image sequence.
The proposed method predicts the search region by using Frequency Sensitive
Competitive Learning Vector Quantization(FSCL-VQ) and evaluates distortion
for the predicted points. The motion estimation and compensation techniques
have been widely used in video compression due to its capability of reducing
the temporal redundancies between frames. One of the algorithms developed
for motion estimation is block-based technique, also known as Block-Matching
Algorithm(BMA). In this technique, the current frame is divided into fixed size
of blocks, then each block is compared with candidate blocks in reference frame
within search area. System performance depends on how accurate the motion
vectors are estimated. The full search method that matches all points in the
search area must be used to detect the motion vectors more accurately; however,
it requires much computation and hardware complexity.

The accuracy of the prediction can usually be improved by compensating for
motion between the reference frame and the current frame[1]. Since the temporal
correlation as well as the spatial correlation is very high in moving pictures, a
high compression ratio can be achieved by using the Motion Compensated Cod-
ing(MCC) technology. MCC consists of a motion compensating by the precise
motion estimation and prediction error encoding part[2]. In motion compensated
prediction coding method with BMA, the amount of information for motion vec-
tors and prediction error must be as small as possible. The size of search area may
be adjusted depending on the displaced block results and the block classification
information in the successive frames of the block[3].
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2 Search Region Prediction Using Vector Quantization

The simplest method of temporal prediction is to use the previous frame as
the predictor for the current frame. Block matching algorithms are utilized to
estimate motion at a block of pixels. This block of pixels is compared with a
corresponding block within a search region in the previous frame. The process of
BMA divides an image into fixed size sub-images, and then finds one dominant
match for the previous frame by maximizing cross correlation. In a typical BMA,
the current frame of a video sequence is divided into non-overlapping square
blocks of pixels such as of size N × N . For each reference block in the current
frame, BMA searches for the best matched block within a search window of size
(2W +N)× (2W +N) in the previous frame, where W represents the maximum
allowed displacement. Then the relative position between the reference and its
best matched block is acquired as the motion vector of the reference block. A
non-negative matching error function Dp(i, j) with metric dimension p is defined
over all the positions to be searched, i.e.,

Dp(i, j) =
N∑

m=1

N∑
n=1

|It(l +m, k + n)− It−1(l +m+ i, k + n+ j)|p,

−W ≤ i, j ≤W, p = 1 or 2 (1)

where It(l, k) is the reference block of its upper left pixel at the coordinate (l, k)
in the current frame, and It−1(l + i, k + j) is a candidate block of its upper left
pixel at the coordinate (l + i, k + j) in the previous frame. The value (i, j) is
displacement which minimizes the Dp(i, j). Even though motion vector detection
schemes using BMA have been widely utilized, they have many drawbacks. For
instance, they assume that all the pixels within the block have uniform motion
because they detect motion vectors on a block-by-block basis. This assumption
is acceptable for small block sizes (8×8 or 16×16). However, having a smaller
block-size increases the number of blocks and requires higher transmission rate
because of an increase in the amount of motion vectors to be transmitted[4,5].
Therefore, there is a tradeoff in image quality associated with faster motion
compensation schemes; longer processing time is required to find the vector field
for providing higher image quality.

For Vector Quantization(VQ), the space of vectors to be quantized is divided
into a number of regions. A reproduction vector is calculated for each region.
Given any data vector to be quantized, the region in which it lies is determined
and the vector is represented by the reproduction vector for that region. More
formally, vector quantization is defined as the mapping of arbitrary data vec-
tors to an index m. Thus, the VQ is mapping of k-dimensional vector space
x = (x1, x1, . . . , xk) to a finite set of symbols m ∈ {M}. Assuming a noiseless
transmission or storage channel, m is decoded as x. The collection of all possible
production vectors is called the codebook. In general, this requires knowing the
probability distribution of the input data. Typically, however, this distribution
is unknown, and the codebook is constructed through process called training.



Motion Vector Prediction Using Frequency Sensitive Competitive Learning 919

During the training, a set of data vectors that is representative of the data that
will be encountered in practice is used to determine an optimal codebook[6].

The training and encoding processes are computationally expensive. More-
over, most of the algorithms currently used for VQ design are batch mode algo-
rithms, and need to have access to the entire training data set during the training
process. Also, in many communication applications, changes in the communica-
tion channel mean that a codebook designed under one condition is inappropriate
for use in another condition. Under these circumstances, it is much more appro-
priate to work with adaptive VQ design methods, even if they are suboptimal in
a theoretical sense. Another benefit of formulating VQ using a neural network
is that a number of neural network training algorithms such as Competitive
Learning(CL) and FSCL can be applied to VQ. FSCL is particularly effective
for adaptive VQ in image compression systems[7].

3 Motion Vector Estimation by Search Region Prediction

The performance of motion vector detection can be increased because motion
vectors conventionally have high a spatiotemporal correlation. We propose a new
motion vector estimation technique utilizing this correlation. Assume that the
neural network VQ is to be trained on a large set of training data. Furthermore
assume that the weight vectors Wi(n) are initialized with random values. The
algorithm for updating the weight vectors is as follows. The input vector is pre-
sented to all of the neural units and each unit computes the distortion between
its weight and the input vector. The unit with the smallest distortion is desig-
nated as the winner and its weight vector is adjusted towards the input vector.
Let Wi(n) be the weight vector of ith neural unit at the ith iteration, then the
basic CL algorithm can be summarized as follows:

zi =
{

1 if d(x,Wi(n)) = min1≤j≤M d(x,Wj)
0 otherwise (2)

where d(x,Wi(n)) is the distance in the L2 metric between the input vector x
and the coupling weight vector Wi(n), and zi is its output. Under-utilization
problem may occur in CL which means some of the neurones are left out of
the learning process and never win the competition. The new weight vectors
Wi(n+ 1) are computed as:

Wi(n+ 1) = Wi(n) + α(x−Wi(n))zi (3)

where the parameter α is the learning rate, and is typically reduced monotoni-
cally to zero as the learning progresses. A problem with this kind training proce-
dure is that it occasionally leads to under-utilized neural units. FSCL algorithm
has been suggested to overcome a drawback of CL. FSCL algorithm addresses
the problem by keeping a record of how frequent each neurone is the winner to
maintain that all neurones in the network are updated an approximately equal
number of times. In the FSCL network, each unit incorporates a count of the
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Fig. 1. The architecture of FSCL algorithm

number of times it has been the winner. A modified distortion measure for the
training process is defined as follows:

d∗(x,W(n)i) = d(x,Wi(n))ui(n) (4)

where ui(n) is the total number of times for neurone i up to the ith training cycle.
Hence, the more the ith neurone wins the competition, the greater its distance
from the next input vector. Therefore, the chance of winning the competition
diminishes. This way of tackling the under-utilization problem does not provide
interactive solutions in optimizing the codebook. The winning neural unit at each
step of the training process is the unit with the minimum d∗. Fig. 1 illustrates
the architecture of FSCL algorithm.

Fig. 2 describes the block diagram of the proposed motion vector estimation
method using a neural networks vector quantizer with BMA. We find the motion
vectors using the full search block matching algorithm from two successive frame
images and train a codebook. The codebook is used as the predicted search
region. First, we find motion vectors using the full search method from the
training images and then, train the neural network vector quantizer codebook
using these motion vectors. Second, a motion vector can be estimated using the
codebook as a motion prediction region. Codebook retraining procedure may
be needed if the distortion measure is higher than a certain threshold value.
Fig. 3 represents examples of the initial codebook and the output codebook
that has 25 codewords. The codewords in the codebook represent the motion
vectors for the input image sequences. Since the codebook is used as the search
region for estimating the motion vectors, the search points and computation can
be reduced compared with the full search BMA. In addition, the information
required to transmit the motion vectors can be reduced. The computational cost
is also improved because the number of search point is reduced. Based on the
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Fig. 3. Examples of (a) initial value of codebook and (b) trained value of codebook

above motion vectors as the training input data, the codebook is designed with
the FSCL algorithm.

4 Experimental Results

The SIF version of Salesman and Flower garden image sequences were used for
the experiment. The size of an SIF sequence is half of its CCIR 601 version in
both dimensions. The block size for BMA was set to 8×8. Since the recommended
search region by MPEG is 15 pixels in both horizontal and vertical directions,
we choose a search region of ±7 pixels in both spatial directions. We also set a
codebook size of 64 motion vectors for this particular experiments.

In this research, we used Peak Signal to Noise Ratio(PSNR) as objective qual-
ity measure. Fig. 4 shows examples of motion vector map for the 16th frame of
Salesman image sequence using full search, TSS, and the proposed methods. We
set the block size to be 4, the search area to be ±7 pixels, and exaggerating mo-
tion vectors to make the effect more visible. It demonstrates that the smoothing
effect of the proposed methods is superior to other methods. Using the smooth-
ing effect, we can eliminate errors which may be caused by quantization process
of motion vectors and can also reduce the number of bits required to represent
motion vectors. Fig. 5 represents the PSNR values of the first and the last 30
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Fig. 4. Examples of motion vector map(8 × 8 blocks) for the 16th frame of Salesman
image sequence: (a) the 16th frame with motion vector map, (b) full search, (c) TSS,
and (d) the proposed method

frames of which the smoothing effect of motion vectors have been calculated
using three different methods. We can also find an improvement with codebook
retraining compared to no retraining at the frame 7 where a big movement has
occurred as shown in Fig. 5.

Table 1 presents the number of search points and the average PSNR of the
first (1st∼30th) and last (201st∼230th) 30 frames. We compare the performance
of the proposed method with that of BMA with full search(the search region is 15
pixels in both horizontal and vertical directions) and Three Step Search(TSS).
Note that the PSNR(1) value for the first 30 frames are after codebook retraining.
As shown in Table 1, the number of possible motion vectors for BMA with full
search is 225, which requires about 8 bits per a motion vector for fixed length
encoding. Therefore, we have compressed the number of motion vectors from 225
to 25 or from 8 bits to 5 bits per vector. The number of search points requires
for the proposed method is smaller than that of full search method while having
almost the same average PSNR values. The number of matches for the proposed
method is a bit lower compared to TSS method and the average PSNR values
are mostly higher than that of TSS method.
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Fig. 5. Performance comparison for Salesman image sequence: (a) frames from 1 to 30,
(b) frames from 201 to 230, and (c) codebook retraining at the frame 7

Table 1. Performance comparison for two sets of 30 frames of Salesman(1) and Flower
garden(2) image sequence

Method Frames Search Pt. Bits/MV PSNR(1)(dB) PSNR(2)(dB)
Full search(±7) 1 ∼ 30 225 8 35.75 34.40

201 ∼230 225 8 35.61 34.81
TSS 1 ∼ 30 27 5 35.42 33.52

201 ∼230 27 5 35.22 33.86
Proposed 1 ∼ 30 25 5 35.47 34.21

201 ∼230 25 5 35.30 34.13

5 Conclusions

We proposed a new search region prediction method for motion estimation. We
found motion vectors using the full search Block Matching Algorithm(BMA)
from the initial image sequences, and trained Frequency Sensitive Competitive
Learning(FSCL) to design a codebook. We then utilized that codebook for the
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motion estimation. The proposed method uses the spatial correlation of motion
vectors in image sequences, therefore reducing search area, decreasing bits re-
quired to transmit motion vectors, and increasing the compression rate. The
proposed method achieves almost the same PSNR value as full search method,
and also requires the least number of search points and bits for motion vectors.
The computer simulations show that the proposed method is competitive to the
full search and the Three Step Search(TSS) methods. Codebook retraining pro-
cedure may be needed if there is a big movement and therefore the distortion
measure is higher than a certain threshold value. In real communication appli-
cations, a codebook designed under one condition is inappropriate for use in
another condition. Thus, it is appropriate to work with adaptive Vector Quan-
tization(VQ) methods, even if they are suboptimal in a theoretical sense. When
we encounter an unexpected sudden movement, an additional effort is necessi-
tated to retrain the codebook. The foremost reason for big movement during
this experiment was because we only used the first two frames for the initial
training. Therefore, enlarging training set will possibly eradicate the retraining
process. Enhancing the initial training performance is our most current project.
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Abstract. Forecast of the flow of data packets between client and server for a 
website traffic analysis is viewed as a part of web analytics. Thousands of web-
smart businesses depend on web analytics to improve website conversions, re-
duce marketing costs, website optimization, website monitoring and provide a 
higher level of service to their customers and partners. This paper particularly 
intends to develop a high-accuracy prediction approach as the need for a web-
site traffic analysis. The proposed composite model (ASVR-ANFIS/NGARCH) 
is schemed to build a systematic structure such that it is not only to improve the 
predictive accuracy because of resolving the problems of the overshoot and 
volatility clustering simultaneously, but also to boost website tracking capacity 
helping each webmaster to optimize their website, maximize online marketing 
conversions and lead campaign tracking. 

1   Introduction 

Webmaster in fact does not want to spend money or time on a website that sits idle 
not yielding an enquiry or a sale. In other words, webmaster want apply website ana-
lytics (or free counter) to design websites that are integrated with effective search 
engine marketing strategies to generate traffic and convert that traffic to sales [1]. 
What we need is to seek the website analytics that provides detailed return-on-
investment analysis for an unlimited number of search engine advertising, banner 
advertising, affiliate marketing or email marketing campaigns and click in- and out 
tracking, combined with website statistics [2]. Therefore, website traffic analysis has 
become the trusted standard task in website statistics for various internet companies 
such as travel, dating sites and online shops. This is because website tracking capacity 
                                                           
* Corresponding author. 
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will help each webmaster to optimize their website, maximize online marketing 
conversions and lead campaign tracking. However, the website tracking or traffic 
analysis is related to the flow of data packets between hosts. In particularly, a look-
ahead prediction of the flow of data packets is considered as a measure to guess the 
possibility of big or small fluctuation over data flow instantly, in such a way that 
webmaster or website analytics software can in-time adjust the current website 
resources dynamically because of a prior-sign of changes in data-packet flow to-
ward webmaster or website analytics software. That is, the forecast of the flow of 
data packets among hosts would make a great help to analyze the website traffic 
and in the mean time facilitate the website tracking operation. The forecast of in-
flow and outflow of data packets among hosts can be realized by employing a non-
periodic short-term predictor and such type of predictor samples the most recent 
data to generate informative signal, namely, a prior-sign of changes in data-packet 
flow. 

Several well-known forecast models have challenged a few crucial problems. For 
example, grey model (GM) [3] has encountered the overshoot problem such that it 
will induce big residual errors around turning-point region in time series during the 
forecast. Moreover, autoregressive moving-average (ARMA) [4], artificial neural 
network (ANN) [5], or adaptive neuro-fuzzy inference system (ANFIS) [6] model can 
not avoid the volatility clustering [7] and thus this effect deteriorates the predictive 
accuracy a lot for the non-periodic short-term forecast. Therefore, in this paper, incor-
porating a nonlinear generalized autoregressive conditional heteroscedasticity 
(NGARCH) [8] model into ANFIS system is schemed to tackle the overshoot and 
volatility clustering effects at the same time during single-step-look-ahead prediction. 
The proposed composite model ANFIS/NAGRCH is tuned optimally by adaptive 
support vector regression (ASVR) [9] to form a linear combination of both models in 
such a way that it is not only simplify the complex system practically, but also im-
prove the predictive accuracy significantly because of resolving the problems of the 
overshoot and volatility clustering simultaneously. In short, in order to manage the 
web resources effectiveness and efficiency, a higher accurate prediction is required to 
forecast the in-flow and out-flow data packets applied for website traffic analysis. 
Web traffic analysis provides valuable information for web site administrators to 
customize the information that is hosted on their web servers so as to reach a larger 
audience. 

2   ARMAX/NGARCH Composite Model 

ARMAX/NGARCH composite model allows you to deal with the presence of condi-
tional heteroscedasticity for time series prediction, especially in financial time series 
applications like asset return problem. The ARMAX [10] encompass autoregressive 
(AR), moving-average (MA), and regression (X) models, in any combinations as 
expressed below. 
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The NGARCH(p,q) [11] consists of nonlinear time-varying conditional variances 
and Gaussian innovations. Its mathematical formula is shown as follows.  
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3   Adaptive Support Vector Regression 

We consider approximating functions )(⋅f  solved by support vector regression (SVR) 
[12] with the form of 
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where )(⋅φ , iw , and b denote a nonlinear mapping, a weighted value, and a bias, re-

spectively. Furthermore, Vapnik introduced a general type of loss function, namely 
the linear loss function with ε -insensitivity zone [12], as 
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According to the learning theory of SVMs [13], this can be expressed by maximiz-
ing dual variables Lagrangian ),( *

dL  where l , ix , iy , and ),( ⋅⋅K  denote the number 

of vectors, an input vector, an output vector, and the kernel function, respectively. 

 ,)()(),())((
2

1
),(

1

*

1

*

1,

**

===

−−+−−−−=
l

i

ii

l

i

ii

l

ji

jjiid KL iji
* yxx ααααεαααα  (5) 

subject to the constraints 

 
==

=
l

i

i

l

i

i

1

*

1

αα , liCi ,...,1,0 =≤≤ α , liCi ,...,1,0 * =≤≤ α . (6) 

After obtaining the Lagrange multipliers iα  and *
iα , we find the optimal weights of 

regression 0w and an optimal bias 0b  
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A fast algorithm applied to constraint optimization for support vector regression 
(SVR) is called adaptive support vector regression (ASVR) [9]. It is designed for 
exploring three free parameters C, ε  and rbkfσ  [9] such that the computation time of 

quadratic programming (QP) is significantly reduced and achieved rapid convergence 
to the near-optimal solution. An order n , see [9], is also predetermined and used in 
computing the free parameter C in Eq. (9) and Eq. (10). In this manner, a straightfor-
ward parameter-seeking is done rather than using a heuristic method with a long time 
for searching. Note that Eq. (9) and Eq. (10) are based on the modified Bessel func-
tion of second kind with the order n  [14] as follows: 
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(11) determines a free parameter rbkfσ  of radial basis kernel function for quadratic 

programming in SVR. 
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4   ASVR Adaptation to Composite Model ANFIS/NGARCH 

A single-step-look-ahead prediction can be implemented by adding a variation to the 
current observed datum [15], and the variation is defined as backward–difference as 
follows. 

)1(ˆ)()1(ˆ ++=+ kokoko δ                                         (12) 
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where )1(ˆ +ko , )(ko , )1(ˆ +koδ , and )(koδ  stand for the predicted output at next period, 
the current true observed datum, the predicted variation at next period, and the current 
variation, respectively.  

we formulate a function of ANFIS output )1(ˆ +koanfisδ  and square-root of nonlinear 

conditional heteroscedasticity )1(ˆ +kσ .  
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For the simplicity, a linear weighted-average [16] is used to combine ANFIS output 
)1(ˆ +koanfisδ  and NGARCH output )1(ˆ +kngarchσ  as an approximation, )1(ˆ / +ko ngarchanfisδ . 

We denote this composite model as ANFIS/NGARCH. 

)1(ˆ)1(ˆ)1(ˆ / +⋅++⋅=+ kwkowko ngarchngarchanfisanfisngarchanfis σδδ                     (16) 

ASVR is hence employed to tune both weights, anfisw  and ngarchw , in 

ANFIS/NGARCH. This proposed approach is called ASVR-tuned ANFIS/NGARCH 
as shown in Fig. 1. 

 

Fig. 1. Diagram of ASVR-tuned ANFIS/NGARCH outputs 

5   Experimental Results and Discussions on Website Tracking 

As shown in Fig. 2 to Fig. 5, six models, which are grey model (GM), auto-regression 
moving-average (ARMA), radial basis function neural network (RBFNN), general-
ized autoregressive conditional heteroscedasticity (GARCH), adaptive neuro-fuzzy 
inference system (ANFIS), and ANFIS with nonlinear conditional heteroscedasticity 
tuned by adaptive support vector regression (ASVR-ANFIS/NGARCH), are applied 
to forecasting (a) inflow data packets and (b) outflow data packets. Two experiments 
implemented at computer center of National Taitung University (NTTU) and Shu-Te 
University (STU), where NTTU is located in Taitung (eastern Taiwan) and STU in 
Kaohsiung (western Taiwan). Both inflow and outflow data packets are designed to 
measure the average bits per second in every 5 minutes for 280 sampling points at 
NTTU and STU [17][18], stared at 16:30 Aug. 5, 2004. First, we used the first 123 
samples out of data set to train ANFIS, NGARCH, and ASVR concurrently so that 
the requisite parameters anfisw and chw  in Eq. (16) can be determined to build a predic-
tion model. Next, the prediction is made for the rest sampling points (157 points) to 
forecast the inflow and outflow data packets. The inflow-data-packet and outflow-
data-packet prediction at NTTU and STU implemented as shown in Figs. 2 and 3 as 
well as Figs. 4 and 5, respectively. The performance comparisons at NTTU and STU 
among six methods for the inflow-data-packet and outflow-data-packet predictions 
are listed in Tables 1 and 2 as well as Tables 3 and 4, respectively. The goodness of 
fit for the proposed approach on the inflow-data-packet and outflow-data-packet pre-
dictions at NTTU and STU are also tested successfully by Q-test [19] due to p-value 
(0.1572 and 0.2348 for NTTU) and (0.1692 and 0.3045 for STU) greater than level of 
significance (0.05). Next, we have checked the criteria [20] of (a) mean-square-error 
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(MSE) and (b) mean-absolute-percent-error (MAPE) as the performance evaluation 
among six methods for the experiments. As listed in Tables 1, 2,3, and 4, the pro-
posed ASVR-tuned ANFIS/NGARCH approach achieves the best accuracy of predic-
tion as well as  obtain the satisfactory results due to no more big residual errors in 
prediction as shown in Figs. 2, 3, 4, and 5. 

This study gives us the insight into the problem of forecasting the flow of data 
packets for website traffic analysis. First, the number of enrolled students at NTTU 
and STU are 3026 and 10325, respectively. According to the enrolled students, the 
use of internet at STU will be three times as many as that of internet at NTTU. How-
ever, we have checked the use of internet on both institutes and concluded a fact that 
the use of internet at STU is just about two times higher than NTTU. This is because 
one-third of STU students got the class at night, that is, actually they have enrolled for 
the extension education. Those students do not have much time to use internet at com-
puter center or lab sufficiently because they stay with a short period of time in campus 
during class. In contrast, the graduate students are around 30% of total enrolled stu-
dents at NTTU. Those people prefer staying in campus longer, and thus got much 
time to use internet at computer center or lab for their works. This fact implies that 
utilizing much more available internet bandwidth at STU can be exploited to extend 
website services such as money reports about pageviews, visitors, navigation, web site 
statistics, e-commerce tracking and online marketing campaigns that are supervised 
by webmaster or website analytics software. Instead, managing limited available 
internet bandwidth at NTTU is guided to help with optimizing your search engine 
marketing as well as SEO (Search Engine Optimizer) and PPC (Pay Per Click) mar-
keting campaigns. 

Table 1. The mean-square-error (MSE) and mean-absolute-percent-error (MAPE) between the 
desired values and the predicted results for inflow-data-packet at computer center of NTTU 

Methods Average MSE (unit: 103) Average MAPE 
GM 1.0022 0.0527 

ARMA 14.672 0.6579 
RBFNN 0.7451 0.0356 
GARCH 1.2404 0.0485 
ANFIS 1.0285 0.0458 

ASVR-ANFIS/NGARCH 0.6875 0.0336 

Table 2. The mean-square-error (MSE) and mean-absolute-percent-error (MAPE) between the 
desired values and the predicted results for outflow-data-packet at computer center of NTTU 

Methods Average MSE (unit: 103) Average MAPE 
GM 1.1172 0.0741 

ARMA 2.8091 0.0985 
RBFNN 1.1474 0.0402 
GARCH 1.2599 0.0453 
ANFIS 1.0705 0.0438 

ASVR-ANFIS/NGARCH 0.6737 0.0302 
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Table 3. The mean-square-error (MSE) and mean-absolute-percent-error (MAPE) between the 
desired values and the predicted results for inflow-data-packet at computer center of STU 

Methods Average MSE (unit: 103) Average MAPE 
GM 0.8818 0.0454 

ARMA 12.199 0.7618 
RBFNN 0.9306 0.0386 
GARCH 1.2471 0.0412 
ANFIS 1.5456 0.0436 

ASVR-ANFIS/NGARCH 0.6875 0.0327 

Table 4. The mean-square-error (MSE) and mean-absolute-percent-error (MAPE) between the 
desired values and the predicted results for outflow-data-packet at computer center of STU 

Methods Average MSE (unit: 103) Average MAPE 
GM 0.9673 0.0625 

ARMA 7.0605 0.3878 
RBFNN 0.8231 0.0489 
GARCH 1.2647 0.0562 
ANFIS 1.7288 0.0436 

ASVR-ANFIS/NGARCH 0.5339 0.0293 
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Fig. 3. Forecast of the outflow-data-packet at 
computer center of NTTU 
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computer center of STU 
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6   Conclusions 

Web traffic analysis provides valuable information for website administrators to cus-
tomize the information that is hosted on their web servers so as to reach a larger audi-
ence. Thus, in order to manage the web resources effectiveness and efficiency, a 
higher accurate prediction is required to forecast the inflow and outflow data packets 
applied for website traffic analysis. In this paper, the proposed composite model 
(ASVR-ANFIS/NGARCH) is schemed to build a systematic structure such that it is 
not only to improve the predictive accuracy because of resolving the problems of the 
overshoot and volatility clustering simultaneously, but also to boost website tracking 
capacity helping each webmaster to optimize their website, maximize online market-
ing conversions and lead campaign tracking. We conclude that the proposed method 
can get the satisfactory results on the inflow and outflow prediction of data packets 
between server and clients. 
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Abstract. This paper presents two approaches to symbolic interval time
series forecasting. The first approach is based on the autoregressive mov-
ing average (ARMA) model and the second is based on a hybrid method-
ology that combines both ARMA and artificial neural network (ANN)
models. In the proposed approaches, two models are respectively fitted
to the mid-point and range of the interval values assumed by the sym-
bolic interval time series in the learning set. The forecast of the lower
and upper bounds of the interval value of the time series is accomplished
through the combination of forecasts from the mid-point and range of
the interval values. The evaluation of the proposed models is based on
the estimation of the average behaviour of the mean absolute error and
mean square error in the framework of a Monte Carlo experiment.

1 Introduction

For decades, a number of authors have used different statistical methods for
modeling and forecasting time series. Such methods vary from a moving average
and exponential smoothing to linear and nonlinear regressions. Box and Jenk-
ins [2] developed autoregressive moving average (ARMA) models for time series
forecasting. ARMA models are used under linearity presuppositions, that is, the
future value of a variable is assumed to be a linear function of several past obser-
vations and random errors. However, there are many series for which the linearity
supposition is not satisfied. Consequently, ARMA models cannot provide satis-
factory results when used to capture the nonlinear structure of data. This leads
to an increase in forecasting errors. Various alternative methods have been de-
veloped to improve the forecasting of time series with nonlinear patterns, such as
the autoregressive conditional heteroscedastic (ARCH) model [6]. Despite such
methods demonstrating significant improvements over linear models, they tend
to be specific to particular applications.

In classical data analysis, items are usually represented as a vector of quanti-
tative or qualitative measurements for which each column represents a variable.
To put it more accurately, each individual takes a single value for each variable.
In practice, however, this model is too restrictive to represent complex data.
In order to take into account the variability and/or uncertainty inherent to the

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 934–941, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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data, variables must assume sets of categories or intervals, possibly even with
frequencies or weights. The aim of Symbolic Data Analysis (SDA) [3] is to ex-
tend classical data analysis techniques (regression models, clustering, factorial
techniques, decision trees, etc.) to what is known as symbolic data [4]. Such data
are usually collected in a symbolic data table, where individuals are represented
in the rows and variables in the columns. The cells may contain sets of cate-
gories, intervals or weight (probability) distributions. In this paper, we address
symbolic interval data, i.e., symbolic variables that take an interval as a value.

In the present paper, we first present an extension of the ARMA model estima-
tion methodology for the analysis of symbolic interval data. Next, we introduce a
new methodology based on a hybrid of the ARMA and artificial neural networks
(ANN), based on a proposal by Zhang [9]. A number of issues led us to con-
sider a hybrid model. Firstly, it is very difficult in practice to determine when a
time series is generated by a linear or non-linear process or when one particular
method is more efficient than another for forecasting the series. Models are gen-
erally adjusted and the one that provides the most accurate results is selected
to forecast the series. Nonetheless, due to the influence of other factors (sample
variations, uncertainty of the model and changes in the structure of the series),
the selected model is not necessarily the best model for predicting the future.
Secondly, real time series are rarely purely linear or non-linear processes, and
often contain both patterns. Thirdly, in the literature on time series forecasting,
there is no single method that is best in all situations. Through the combination
of the ARMA and ANN models, complex autocorrelation structures in the data
can be modeled so as to obtain greater forecasting accuracy.

In the section 2, we present a brief review of the ARMA and ANN models
for time series forecasting. The hybrid model is introduced in the section 3. In
the section 4, we demonstrate how we extend these models to handle interval
time series. The section 5 describes the framework of Monte Carlo simulations
and presents experiments with synthetic interval data sets. Finally, the 6 section
offers concluding remarks.

2 Time Series Forecasting Models

The main objectives of a time series analysis include the description of the be-
haviour of the series, investigation of a plausible mechanism that had generated
it and the obtaining of forecasts for its future values [2]. In this section, we intro-
duce the traditional ARMA time series model and multilayer perceptron ANN
models for time series.

2.1 The ARMA Model

An often-used methodology in handling and predicting time series is known as
the Box-Jenkins method, or simply ARIMA. This is method is based on the
synthesis of patterns using historical data, transforming knowledge into equa-
tions (model) through the estimation of associated parameters. ARMA models
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are created from a finite, linear combination of past values of the series and/or a
finite, linear combination of past errors, for which such errors are the differences
between the values predicted by the ARMA model and the real values of the
time series. The particular model that will be used in the present paper, known
as ARMA(p, q), is represented by the following:

yt = θ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q,

where yt represents the current value of the time series and εt is the random error
at time t; φi (i = 1, 2, . . . , p) e θj (j = 0, 1, 2, . . . , q) are the model parameters to
be estimated; p and q refer to the order of the model; the random errors εt are
assumed to be independent and identically distributed with a zero average and
σ2 constant variance. Stationarity is a necessary condition in the construction
of an ARMA model that is useful for forecasting. The Box-Jenkins methodology
includes three iterative steps: model identification, parameter estimation and
model diagnosis.

2.2 ANN Model for Time Series

When the linearity restriction regarding model form is relaxed, the number of
possible models that can be used in time series forecasting for capturing nonlin-
ear structures is very large. For example, ANN models are able to approximate
various forms of non-linearity in the data and, differently from ARMA models,
do not require any presupposition regarding the form of the model. The main
advantage over other nonlinear models is that ANNs are universal function ap-
proximators with a high degree of accuracy [7]. Networks with three layers (one
input, one hidden and one output node) connected acyclically are frequently
used for modeling and forecasting time series. In the model we use here, the
relation between the output, yt, and inputs, yt−1, yt−2,. . ., yt−p, is as follows:

yt = α0 +
q∑

j=1

αj · g
(
β0j +

p∑
i=1

βijyt−i

)
+ εt,

where αj and βij are the model parameters; p is the number of input nodes; and
q is the number of hidden nodes. Thus, the ANN model performs a nonlinear
functional mapping from past observations to the future value in a manner that
is equivalent to a nonlinear, autoregressive model. The logistic function is often
used as a transference function in the hidden layer [8].

3 The Hybrid Model

ARMA and ANN models have had considerable success in their linear and non-
linear domains, respectively. However, the use of ARMA models for complex
non-linear problems may not be adequate. Similarly, using ANNs to model lin-
ear problems has produced conflicting results in the literature [9]. Through a



A Hybrid Model for Symbolic Interval Time Series Forecasting 937

combination of different models, different series patterns can be captured. Thus,
a hybrid methodology that can simulataneously model linear and nonlinear pro-
cesses may be a good strategy for practical use. Zhang [9] states that a time series
is composed of a linear autocorrelation structure and a nonlinear component,

yt = Lt +Nt, (1)

where Lt and Nt respectively denote the linear and nonlinear components. The
hybrid model Zhang proposes [9] consists of two steps. First, ARMA is used to
model the linear component of the equation (1). The residuals of the ARMA
model will contain information on the non-linearity of the series,

et = yt − L̂t. (2)

After adjusting the ARMA model, the residuals are modeled through ANN in
order to capture the nonlinear relation of the series using p input nodes.

et = f(et−1, et−2, . . . , et−p) + εt.

The prediction of the residual, et, is denoted through the ANN model as N̂t.
Thus, the combined forecast provided by the hybrid model will be given by

ŷt = L̂t + N̂t.

Note that this methodology does not require any presupposition regarding the
correlation structure of the time series. For further details on the methodology
used, see Zhang [9].

4 Constructing Models for Symbolic Interval Time Series
Forecasting

In classical data analysis, each input variable represents a single possible value
at an instant in time. The need to consider data that contain information that
cannot be represented by classical models has led to the development of SDA.
Interval data are those data in which the values of the variables are intervals
in IR. Different methodologies have been developed to analyze symbolic interval
data. One way to represent this type of data is through the mid-point and
range of interval [5]. When symbolic interval data are collected in a chronological
sequence, we say that we have a time series of symbolic interval data. At each
instant in time, t = 1, 2, . . . , n, we have XUt e XLt , with XLt ≤ XUt as the upper
and lower bounds of the interval, respectively,

[XL1 , XU1 ], [XL2 , XU2 ], . . . , [XLn , XUn ]. (3)

In the method we propose, two time series are considered: (i), the interval
mid-point series, Xc; and (ii), the half-range interval series, Xr. Consider the
time series (3), we can respectively represent the mid-point and the half-range
interval series by (for t = 1, 2, . . . , n)

Xc
t =

XUt +XLt

2
e Xr

t =
XUt −XLt

2
,
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4.1 Fitting an ARMA Model for Forecasting Symbolic Interval
Time Series Data

The ARMA models for the mid-point series and the half-range interval series
that will be used to predict future values of the upper and lower bounds of the
intervals are respectively as follows:

Xc
t = α0 + α1X

c
t−1 + · · ·+ αpX

c
t−p + εt − β1εt−1 − · · · − βqεt−q,

Xr
t = δ0 + δ1X

r
t−1 + · · ·+ δpX

r
t−p + ut − ψ1ut−1 − · · · − ψqut−q.

Note that the parameters of the models are distinct. The values predicted by
the ARMA model for the lower and upper bounds of the interval, L̂Ut and L̂Lt ,
are respectively given by

L̂Ut = X̂c
t + X̂r

t e L̂Lt = X̂c
t − X̂r

t ,

where X̂c
t and X̂r

t represent the values predicted by the linear adjustment for
the mid-point and the half-range interval series.

4.2 Fitting a Hybrid Model for Forecasting Symbolic Interval Time
Series Data

The idea here is to use a methodology based on the hybrid system Zhang pro-
poses [9] for modeling the mid-point series and the half-range interval series.
According to the equation of the residuals from the linear model (equation 2),
we can denote the residuals of the mid-point and half-range adjustments, respec-
tively, as

eXc
t

= Xc
t − X̂c

t e eXr
t

= Xr
t − X̂r

t ,

where X̂c
t and X̂r

t are the values predicted by the linear adjustment for the
mid-point and half-range inteval series; and Xc

t and Xr
t are the corresponding

observed values. Thus, after the linear adjustment of the interval series, we have
two new series: one from the nonlinear residuals of the adjustment of the in-
terval mid-point series, eXc

t
; and the other from the nonlinear residuals of the

adjustment of the half-range interval series, eXr
t
.

It should be pointed out that in this proposal there is no need for strict
pressupositions regarding the model (linearity, same correlation structure for
the interval bounds of the series, etc.). Thus, the final forecast of the interval
time series bounds is given by

ŷUt = L̂Ut + N̂Ut e ŷLt = L̂Lt + N̂Lt ,

where N̂Ut and N̂Lt are the errors predicted by ANN for the upper and lower
bounds of the interval, respectively, obtained from the following:

N̂Ut = êXc
t

+ êXr
t

e N̂Lt = êXc
t
− êXr

t
,

where êXc
t

and êXr
t

respectively represent the error for the mid-point series and
the error for the half-range interval series at time t.
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5 Empirical Results

In this section, we will demonstrate the efficiency of the proposed models through
experiments with symbolic interval time series data simulated with different
degrees of difficulties.

In order to assess the performance of the ARMA model and the hybrid model
in terms of accuracy in the adjustment and forecasting of interval time series,
we have simulated some series with 200 observations. The simulations of the
interval time series were executed as follows:

1. Let time series Xc
t (t = 1, 2, . . . , n), which represents the interval mid-point

series Xt = [XLt , XUt ] (t = 1, 2, . . . , n), be a process generated with a known
structure, such as an AR(1) process;

2. After obtaining the mid-point series, we construct the half-range interval se-
ries. Suppose time seriesXr

t (t = 1, 2, . . . , n), which represents the half-range
interval series Xt = [XLt , XUt ] (t = 1, 2, . . . , n), is uniformly distributed in
the interval [a, b], for example, Xr

t ∼ U [10, 20];
3. In the generation of the interval time series, we know that the series Xt =

[XLt , XUt ] presents a relation to Xc
t e Xr

t as follows: XLt = Xc
t − Xr

t e
XUt = Xc

t +Xr
t ;

4. At each iteration, the simulated symbolic interval time series is partitioned
in a learning set (188 observations) and test set (12 observations).

Table 1 shows four different configurations for the generation of the interval
time series that were used to compare the performances of the ARMA and hybrid
models in distinct situations. These configurations consist of a combination of
the mid-point and range series generated. The first two configurations, C1 and
C2, present a linear relation between the future value and past value of the
mid-point series plus a random error term, εt, normally distributed with a zero
average and constant variance, εt ∼ N(0, 1). The nonlinear configurations C3
and C4 are examples that present complex, chaotic behaviour. It is expected
that the use of the ARMA models for complex nonlinear problems does not
lead to satisfactory forecasting results, and therefore, the hybrid model provides
greater forecasting accuracy.

Table 1. Simulated symbolic interval time series configurations

Configuration Xc process Xr process

C1 Xc
t = 10 + 0.7Xc

t−1 + εt U [10, 12]

C2 Xc
t = 1 + Xc

t−1 + εt U [8, 10]

C3 Xc
t = 4Xc

t−1(1 − Xc
t−1) U [2, 5]

C4 Xc
t = 0.2

Xc
t−17

1+(Xc
t−17)10

− 0.1Xc
t−1 U [2, 4]
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5.1 Experimental Evaluation

The performance evaluation of the proposed interval time series forecasting mod-
els, ARMA and a hybrid model, was accomplished through the following mea-
sures: upper bound mean absolute error (MADU ), lower bound mean absolute
error (MADL), upper bound mean square error (MSEU ) and lower bound mean
square error (MSEL). The values of the error measures were obtained from the
observed values Xt = [XLt , XUt ] (t = 1, 2, . . . , n) and corresponding predictive
values X̂t = [X̂Lt , X̂Ut ].

The forecasting error measures were calculated for the ARMA model and the
hybrid model in the framework of a Monte Carlo experiment with 100 iterations
in the test set (12 observations). At the end of the experiments, the average and
standard deviation were calculated for the MADU , MADL, MSEU and MSEL

measures in the 100 Monte Carlo iterations.
The selection of the best ARMA model for adjusting the mid-point and range

of interval series was accomplished through the minimization procedure of the
Akaike Information Criterion (AIC) (ser Akaike [1]). The parameters were esti-
mated for maximum likelihood. Multilayer perceptron networks with three lay-
ers of units (one input, one hidden and one output units) connected acyclically
trained with the backpropagation algorithm are used in the hybrid model.

Table 2 displays the results of the Monte Carlo experiments for the four config-
urations. The standard deviations for the error measures considered are in paren-
theses. We can see that the hybrid model presented a higher average performance
than the ARMA model in forecasting interval time series for all the situations con-
sidered. Even for the series with a linear correlation structure, (C1 and C2), the
hybrid model increased the accuracy of the predictions. This superiority is better

Table 2. Average and standard deviation of the mean square errors and mean ab-
solute errors calculated from the 100 replications in the framework of a Monte Carlo
experiment for the test set

Configuration C1
MAD MSE

Model XU XL XU XL

ARMA 0.881 (0.082) 0.901 (0.081) 1.249 (0.191) 1.290 (0.191)
Hybrid 0.742 (0.081) 0.775 (0.088) 0.983 (0.187) 1.047 (0.197)

Configuration C2
MAD MSE

Model XU XL XU XL

ARMA 0.870 (0.079) 0.868 (0.081) 1.048 (0.178) 1.047 (0.181)
Hybrid 0.737 (0.093) 0.748 (0.111) 0.757 (0.167) 0.757 (0.194)

Configuration C3
MAD MSE

Model XU XL XU XL

ARMA 0.444 (0.089) 0.451 (0.089) 0.289 (0.099) 0.298 (0.098)
Hybrid 0.354 (0.070) 0.362 (0.066) 0.189 (0.063) 0.192 (0.058)

Configuration C4
MAD MSE

Model XU XL XU XL

ARMA 0.291 (0.057) 0.289 (0.061) 0.125 (0.041) 0.122 (0.042)
Hybrid 0.226 (0.034) 0.224 (0.035) 0.074 (0.020) 0.073 (0.018)
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observed in the nonlinear configurations(C3 and C4). No substantial differences
were observed between the two methods regarding standard deviations.

6 Concluding Remarks
In the present paper, we present two new methods for modeling and forecasting
symbolic interval time series. The first is based on the autoregressive moving
average model (ARMA), and the second is a hybrid model using both ARMA
and artificial neural networks. In the proposed methods, we adjusted the models
in the mid-point and interval range series of the training set. The prediction of
the future values of the lower and upper bounds of the intervals was accomplished
through the combination of the mid-point and interval range forecasts.

The evaluation of the proposed methods was accomplished through the av-
erage behaviour of the mean absolute error and the mean square error of the
forecasts in the framework of a Monte Carlo experiment. The Monte Carlo sim-
ulations demonstrated that both methods present a satisfactory performance in
forecasting interval series with either a linear or nonlinear behaviour. However,
the hybrid model that uses ARMA to model the linear component of the series
and artificial neural networks to capture the nonlinear relation presented a bet-
ter average performance with regard to the error measures considered. We noted
that the hybrid model outperformed the ARMA model even in situations where
the series had a linear behaviour. When the series presented chaotic behaviour,
the hybrid model was far superior to the ARMA model.
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Abstract. With the Peak Ground Velocity 283 records in three dimensions, the 
velocity attenuation relationship with distance was discussed by neural network 
in this paper. The earthquake magnitude, epicenter distance, site intensity and 
site condition were considered as basic input element for the network. By using 
Bayesian Regularization Back Propagation Neural Networks (BRBPNN), the 
over-fitting phenomenon was reduced to some extent. The horizontal velocity 
was discussed. The PGV predicted by neural networks can simulate the detail 
difference with distance, while the PGV given by other traditional attenuation 
relationship only give a reduction relation with distance. The importance of 
each input factor was compared by the square weight of the input layer of the 
network. The order may be earthquake magnitude, epicenter distance and soil 
condition. 

1   Introduction 

The seismic parameters attenuation relationship is very important for engineers, since 
it was always used to predict the ground movement of a scenario earthquake. Tradi-
tionally, there are two ways to get this special relationship. One is make a theoretical 
attenuation model and analyze its influence coefficients and parameters; the other is 
statistical way from the stations seismic records. Since the complicated nature of the 
problem, the predicted results of most relationships can not accord with the stations 
records nice. 

As we know, Artificial Neural Networks (ANN) are highly parametric functions of 
the input variables through processing units, whose high connectivity makes them 
suitable for describing complex input-output mappings without resorting to a physical 
description of the phenomenon. Some studies in this problem have been reported. 
Zheng Guanfen discussed the earthquake intensity attenuation using Back Propagation 
Neural Networks (BPNN) [1]. Wang Hushuang constructed a NN model to simulate 
the peak seismic parameters attenuation relation and a NN to relate the intensity with 
peak seismic parameters [2]. By using the peak horizontal acceleration records ac-
quired in Lancang-Gengma Earthquake in 1988, Cui Jianwen constructed a NN model 
to predict the peak ground acceleration attention relationship in Yunnan region [3].  
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Unfortunately, most work on attenuation relationship just discussed on Peak 
Ground Acceleration. Theoretically speaking, the velocity can be integrated from 
acceleration. Since the complex nature of this problem, the result from this way can-
not provide a reasonable solution. Based on the data records, the horizontal peak 
ground velocity was discussed by the neural networks. 

2   Experimental Statistical Model  

The experimental models were simply regressed from the strong earthquakes records. 
As for the records in West America, the following models were famous.  

1978, McGuire [4] (West America, 0=sj  is rock, 1=sj  is soil) 

      64.0   ,07.0ln96.007.100.1ln ln =−−+−= vsjRMv σ . (1) 

1981, Joyner-Boore [5] (West America, 0=sj  is rock, 1=sj  is soil) 

      51.0   ,39.00059.0ln13.1542.1ln ln =+−−+−= vsjRRMv σ . (2) 

      22 4+= DR . (3) 

1979, Espninosa [4] (West America, 2.7~0.4=M ) 

      35.13.241017.6 −− Δ×= Mev . (4) 

This model did not include the magnitude saturation which is proved in many 
strong earthquakes. Huo Junrong [6] (West America, rock) revised this model in order 
to consider the mag-nitude saturation, as following,  

      2582.0   ),3268.0lg(794.18241.0148.1lg lg
6135.0 =+−+−= v

MeDMv σ . (5) 

Where v  is peak ground velocity, R is the distance from the observation site to the 
focal, D is the direct distance from the observation site to the striking fault and M is 
the Richter Magnitude of the earthquake.  

The standard error of Huo’s is similar with other formulae. Because 3026.210ln = , 
thus the 2582.0 lg =vσ  is relevant to vv lgln 10ln σσ ×=  5945.0= . 

3   Neural Network Model for Peak Ground Velocity Attenuation 

The main characteristics of neural networks are their ability to learn nonlinear func-
tional relationships from examples and to discover patterns or regularities in data 
through self-organization. The neural network learning process primarily involves the 
iterative modification of the connection weights until the error between the predicted 
and expected output values is minimized. It is through the presentation of examples, 
or training cases, and application of the learning rule that the neural network obtains 
the relationship embedded in the data. 
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3.1   Back Propagation Neural Networks Design 

It is nature that the neural network designed for this problem should be accordance 
with the sample data. Thus, the input vector of the network contains 4 components. 
While for the output vector, it includes only one component. 

As for back propagation neural network, it has been proved the only two layers can 
achieve arbitrary nonlinear mapping if the neurons in the hidden layers are not lim-
ited. Thus, a two layers neural network is constructed for the problem. 

Thus, the parameters in Figure 1 can be decided as R =4, 1S =20, 2S =1. 

b1 

IW1 

S1 1 
R

S1 R 

1

p 

R 1 

S1 1

n1

Input Hidden Layer

b2

LW2

S2 1

S2 S1

1

a1

S1 1

S2 1

n2

Output Layer

a2=t 

a1=logsig(IW1p1+b1) a2=logsig(LW2a1+b2)

 
Fig. 1. Two layers neural works for soil liquefaction prediction 

3.2   Theory on the Bayesian Regularization Back Propagation Neural Networks 

We divided the datasets into two parts: training and testing. In using multiply layer 
propagation network, the problem of over-fitting on noise data is of major concern in 
network design strategy. The initial results of using a standard BP algorithm showed 
poor generalization performance and slow speed of training. To overcome these short-
comings, we incorporated Bayesian learning to this work. In the Bayesian framework, 
a weight decay term is introduced to the cost function (or performance index) given 
by 

     ( ) DW EEwF βα += . (6) 

where WE  is the sum square of the networks weights, DE  is the sum square of the 
error between network outputs and targets, α and β are hyper-parameters for the 
target function. The relative value of α and β determined the emphasis on the net-
work training on minimization of the output errors or the volume of the network. As 
shown in Equation (6), the main problem with implementing regularization is to 
set/learn the correct values for the parameters in the cost function. Ref. [7-9] has pre-
sented extensive works on the application of Bayesian rule to neural network training 
and to optimizing regularization.  
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In the Bayesian framework, the weights of the network are considered the random 
variables. The weights in the network are adjusted to the most probable weight pa-
rameter, wMP, given the data D{(xm, tm)}, network configuration (Mi), and hyper-
parameters, i.e., α and β .  

Set the α and β as stochastic variables, the Bayesian rule is used for evaluating 

the posterior probability ofα and β . This is given by 

     ( ) ( ) ( )( ) ( )iiii MDPMPMDPMDP |/|,,,|,|, βαβαβα = . (7) 

where ( )iMP |, βα  represents the prior probability of the hyper-parameters and are 

generally chosen to be uniformly distributed. Since ( )iMDP |  is independent 

ofα and β , maximum posterior values for hyper-parameters can be found by maxi-

mizing the likelihood term ( )iMDP ,,| βα .  

Using Bayesian rule, the posterior probability of the weight parameters is:   

     ( ) ( ) ( )( )
( )i

ii
i MDP

MawPMwDP
MDwP

,,|

,|,,|
,,,|

βα
ββα = . (8) 

Assume the error and the weight is distributed in Gaussian form,   

     ( ) ( ) ( )βββ DDi ZEMwDP /exp,,| −= . (9) 

    ( ) ( ) ( )ααα WWi ZEMwP /exp,| −= . (10) 

If the ( )iMDP ,,| βα in Equation (8) is regularized factor, 

then ( )iMDwP ,,,| βα must equal to ( )( ) ( )βα ,/exp FZwF− . Take them into Equation 

(7), 

   ( ) ( ) ( ) ( )( )βαβαβα DWFi ZZZMDP /,,,| = . (11) 

where  

( ) ( ) 2//2 N
WZ απα = . (12) 

       ( ) ( ) 2//2 N
DZ βπβ = . (13) 

( ) ( )( )( ) 2/12/2exp,
−−≈ AwFZ N

MPF πβα
. (14) 

where WD EEA 22 ∇+∇= αβ is the Hessian matrix of the target function F. Further, 

the log the Equation (12), then differentiating it with respect toα and β , and setting it 

to zero, the optimal values of α and β can be obtained by 
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( )( )MPWMP wE2/γα = . (15) 

( ) ( )( )MPDMP wEn 2/γβ −= . (16) 

( )MPMP AN -1traceαγ −= . (17) 

where n is the number of sample, N is the number of parameter in the network, γ is 

the number of effective parameters which may reduce the error function for the net-
work in training process. 

3.3   Training and Testing for BRBPNN Model 

For the earthquake movement records in west America region, four elements were 
considered as the factors for seismic movement attenuation relationship. They are 
earthquake magnitude, epicenter distance, site intensity and site condition. The re-
cords were in three directions, two records were in horizontal direction and one was 
vertical direction. 236 USGS stations were found PGV records in 69 earthquakes. Part 
of data is listed in Table 1. 

Table 1. Parts of training and testing records samples [4] 

USGS 
No.  

Magnitude 
Distance  
  km  

Intensity Site  Direction PGV(cm/s) 

117 7.1  9.3  8 S S00E 33.45  
117 7.1  9.3  8 S S90W 36.92  
117 7.1  9.3  8 S VERT 10.84  
1023 6.0  53.0  5 S S44W 4.81  
1023 6.0  53.0  5 S N46W 7.39  
1023 6.0  53.0  5 S VERT 2.21  
475 7.7  109.0  7 S S00E 6.23  
475 7.7  109.0  7 S S90W 9.07  
475 7.7  109.0  7 S VERT 4.53  
1095 7.7  43.0  7 S N21E 15.72  
1095 7.7  43.0  7 S S69E 17.71  
1095 7.7  43.0  7 S VERT 6.67  

Taking the horizontal records out from these data, thus 472 records were found in 
two horizontal directions. Four fifth of the records was taken as the training samples, 
and the others as testing samples. 

The relevant errors of the result of the neural network with the original observed 
data were showed in Figure 2. In order to demonstrated the efficiency of the neural 
networks, the errors predicted by Joyner [5] was showed in Figure 3 too. 
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Fig. 2. The errors of observed PGV with that of neural networks 
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Fig. 3. The errors of observed PGV with that of Joyner-Boore [5] 

It is easy to see that errors of neural networks were centered on the baseline; while 
errors of Joyner [5] were centered on 1. The detail of errors statistic listed in Table 
2.It can be see in Table 2 that the neural network model can simulate the records with 
rather good satisfaction. 
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Table 2. Errors statistic of neural network model with Joyner Boore model 

 0<error<1 1<error<2 2<error<3 error>3 SUM 
Neural work 444 15 7 6 472 
 94.1% 3.1% 1.5% 1.3% 100% 
Joyner Boore 195 248 15 14 472 
 41.3% 52.5% 3.2% 3.0% 100% 

3.4   Peak Ground Velocity Prediction 

The model can be used to predict the peak ground velocity at certain magnitude and 
certain distance. Since the data in the west America were abundant in M6.6 and M6.9, 
these two magnitudes were discussed. In order to demonstrate the character of neural 
network, the model of Joyner-Boore is drawn in Figure 4 with the distance change 
from 5 to 200 kilometers.  

 

Fig. 4. The attenuation relationship of peak ground velocity predicted by Joyner-Boore, with 
the site condition of soft soil and rock base. The records of west America on M5.4, M5.9, M6.6 
and M6.9 were also pointed. 

The relationships predicted by neural network with the original data were showed 
in Figure 5. It can easily by found that the relationship predicted by traditional regres-
sion method such as Joyner-Boore just give a relative smooth line; while the relation-
ship of neural networks can give a up and down line to describe the complicate nature 
of the PGV attenuation problem. 
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Fig. 5.  The attenuation relationship of peak ground velocity predicted by Neural Network, with 
the site condition of soft soil and rock base. The records of west America on M5.4, M5.9, M6.6 
and M6.9 were also pointed. 

The importance of each input factor was determined by the square weight of 
the input layer of the network. Two networks were calculated. The M4 include all 
the parameters such as magnitude, epicenter distance, site intensity and soil con-
dition. The M3 model just delete the site intensity, for which may indicate the 
ground movement to some extent. The percent of each input factor was listed in 
Table 3. 

Table 3. The percent of the square of weight for the input layer for each factor 

Model Magnitude Distance (km) Intensity Site condition 

M4 35.6437 6.657 20.119 37.5802 
M3 50.338 35.6095  14.0526 

From the square of the weight in the first layer, the importance order of these fac-
tors is magnitude, epicenter distance and soil condition. The percent of the square of 
weight for the input layer for each factor were showed in Figure 6. 
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Fig. 6. The percent of the square of weight for the input layer for each factor for M4 and M3 

4   Conclusions and Suggestions 

From the point of spastics, this paper presented a Bayesian Regularization Back 
Propagation Neural Networks model to predict the peak ground velocity based on the 
horizontal records of the West America. The errors trained and tested by neural net-
work model were center on 0; while the errors of Joyner-Boore were centered on 1. 
This indicated that the neural network model can simulate the observed data with 
rather good satisfaction. For the certain magnitude 6.6 and 6.9, the neural network 
model showed an up and down lines for soil and rock condition, which demonstrated 
the character of neural network model.  

The PGV predicted by neural networks can simulate the detail difference with dis-
tance, while the PGV given by other traditional attenuation relationship only give a 
reduction relation with distance. The importance of each input factor was compared 
by the square weight of the input layer of the network. The order may be earthquake 
magnitude, epicenter distance and soil condition. 

The Neural Networks can be used as a good substitution in engineering application 
with the accumulation of ground earthquake records. 
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Abstract. This paper proposes a hybrid machine learning model for electricity 
demand forecasting, based on Bayesian Clustering by Dynamics (BCD) and 
Support Vector Machine (SVM). In the proposed model, a BCD classifier is 
firstly applied to cluster the input data set into several subsets by the dynamics 
of load series in an unsupervised manner, and then, groups of 24 SVMs for the 
next day’s electricity demand curve are used to fit the training data of each 
subset. In the numerical experiment, the proposed model has been trained and 
tested on the data of the historical load from New York City. 

1   Introduction 

Load forecasting has always been an essential instrument in power system planning 
and operation. Many operating decisions are based on load forecasts, such as unit 
commitment, dispatch scheduling of generating capacity and reliability analysis, etc. 
However, the electric load is increasingly becoming difficult to forecast because of 
the variability and non-stationarity of load series that result from the dynamic bidding 
strategies of market players and price-dependent loads as well as time-varying prices. 
Therefore, more sophisticated forecasting tools with a higher accuracy are necessary 
for modern power system.  

A wide variety of techniques have been tried for load forecasting during the past 
years [1], most of which are based on time series analysis. Statistical models are 
firstly adopted for the load forecasting problem, which include linear regression 
models, data mining approach, autoregressive and moving averages (ARMA) models 
and Box-Jenkins methods [2]-[4]. Basically, most of the statistical methods are based 
on linear analysis. However, the load series are usually nonlinear functions of the 
exogenous variables. Therefore, to incorporate the nonlinearity, the artificial neural 
networks (ANNs) have received much more attentions recently [1], [5]-[8]. ANNs 
based methods report a fairly good performances in load forecasting. Recently, a new 
approach based on machine learning techniques and Support Vector Machines (SVM) 
has also been used for load forecasting or classification and achieved good 
performances [9], [10]. 
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The purpose of this paper is to apply the new advances in machine learning 
technique to develop a novel and effective load forecasting model. The proposed 
model adopts a hybrid architecture based on an integration of two machine learning 
techniques: Bayesian Clustering by Dynamics (BCD) and SVM (or exactly SVR 
(Support Vector Regression)). Its working procedure can be stated as follows: firstly, 
a BCD classifier is used to identify the switching or piece-wise stationary dynamics 
for the load series and to partition the input dataset into several subsets, so that the 
dynamics in each subset are similar; then groups of 24 SVRs are applied to 
respectively fit the hourly electricity load data in each partitioned subset by taking 
advantage of all past information and similar dynamic properties (e.g. piece-wise 
stationarity). After being trained, the forecasting model can predict the next-day 
electricity load with an high level of accuracy on the specific subset in a ‘first past the 
post’ voting manner among the BCD and SVRs, where the output of only one SVR 
model is used for the final forecast. 

Benefited from the application of the hybrid architecture, the proposed model has 
the following characteristics or advantages: 

1) It can handle the non-stationarity of load series well. The hybrid architecture is 
well suited to capture the dynamics of electricity load time series. The BCD classifier 
models the process generating each load series as an autoregressive model of order p, 
say AR(p), and then clusters those load time series with a high posterior probability of 
being generated by the same AR(p) model [11], [12]. BCD is based on unsupervised 
learning, which has the ability to partition the space of input training data set into 
many subsets without prior knowledge about the classifying criteria. 

2) It can fit the data well due to multiple local models. Previous works have shown 
that, the characteristics of load series between regular workdays and anomalous days 
are quite different [7], [8]. To achieve good forecasting results, the regular workdays 
and anomalous days should be treated with different schemes. Therefore, we use 
different feeders of SVRs for the regular weekdays and anomalous days, which means 
the network can adapt to different models automatically and improve the forecasting 
accuracy for the anomalous days. 

In the experiment, we adopt the load data of New York City to verify the 
effectiveness of the learning and forecasting for model. For comparative study, we 
also examine the model only with SVRs. 

2   Task Descriptions and Load Data Analysis 

This paper uses the hourly electrical demand series of New York City as a test 
example of our method by comparing with the prediction of New York Independent 
System Operator (ISO) [13]. In this section, we examine the main characteristics of 
the hourly load series. Firstly, according to the electricity demand series of New York 
City from January, 2001 to December, 2003, it can be concluded that there exist 
different regimes in the load time series due to market and season effects, which 
generally give rise to piece wise stationary dynamics. 
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It is well known that temperature information is very important for load 
forecasting. So it is necessary to analyze the inherent correlation between load and 
temperature for a specific system. The correlation between the load and temperature 
can be shown in Fig.1. According to Fig.1, there exists approximately a piecewise 
linear relationship of correlations between load and temperature with about 50’s 
degree difference of their tangents. The correlation in each segment can be computed 
using the following expression. 

dt
dt

dtCov

σσ
ρ ),(

, =     (1) 

where Cov(t,d) is the covariance of temperature t and load d, and t and d are the 
standard deviations for t and d. 
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Fig. 1. Correlation between demand and temperature from Jan.1, 2001 to Dec.31, 2003 

The dotted line in Fig.1 indicates the separate point between the two piecewise 
segments, which is obtained by maximizing the absolute values of the two correlation 
coefficients on both segments. According to our computation, the separating point is 
approximately 54.5 degrees, and t,d  on the two segments is -0.20 and 0.68 
respectively. This information will be used in the modeling of the load series in the 
next section. 

3   Method and the Learning Algorithm 

3.1   The Architecture of the Forecasting System 

In this paper, a time series based nonlinear discrete-time dynamical model, is 
represented by (2) for the load forecasting, 

));1(),...,(()1( Tmtytyfty +−=+        (2) 

where y(t) is a vector representing the daily electricity load profile at time t, and m is 
the orders of the dynamical system, which is a predetermined constant. T is a vector 
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representing the control parameters of the dynamical system, such as temperature, 
humidity and day types. 

An integrated machine learning model is proposed to reconstruct the dynamics of 
electric load using the time series of its observables. The forecasting system is shown 
in Fig. 2. 

In Fig. 2, the input variables are different for the BCD and SVR networks, which 
are given in Tables 1, 2 and 3, respectively.  

Table 1. List of input data of the BCD classifier 

Input Variable  Detail description 
1-10 Load series L0 Average daily load series of previous ten days  

11 Calendar info C Distinguish anomalous days  

T: Temperature sensitivity coefficient 
12-13 

Variables to 
determine prior 

probability H: Forecasted next day’s maximal humidity 

 
 
 

Fig. 2. Integrated machine learning model for the electricity load forecasting 
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In Table 1, the temperature sensitivity coefficient represents the different 
correlation between load and temperature. If the forecasted next day’s maximal 
temperature is larger than 54.5 degrees, this coefficient is set as 1, otherwise 0. 

For the SVR, in addition to the forecasted and actual temperature, the input 
variables are the hourly load values of the last day available and the similar hours in 
the previous days or weeks. As mentioned above, it is necessary to use different 
feeders for the regular days and anomalous days. The input data of the SVR network 
for regular days is shown in Table 2. 

Table 2. List of input data of the SVR network for regular days 

Input Variable name Lagged value (hours) 
1-9 Hourly load (L1) 24,25,26,48,72,96,120, 144,168 

10-19 Hourly temperature (T1) 0,1,2,24,48,72,96,120, 144,168 
   Assuming that the hour of load predication is at 0, the lag 0 represents the target instant. 

According to the historical load data, the same type of holiday showed a similar 
trend of load profile as in previous years. For instance, several studies conclude that 
the load diagram of holiday has strong connection with that of the two Saturdays 
before that day and the most recent diagram available, and holidays’ forecasts should 
be assessed as a function of weekend behavior. Based on this analysis, the input data 
of the SVR network for anomalous days are selected and shown in Table 3. 

Table 3. List of input data of the SVR network for anomalous days 

Input Variable name Lagged hours 
Hourly load 24,25,26,48,72 

Hourly load of the previous Saturday h,h-1* 1-9 
Hourly load of the previous Sunday 

L2 
h,h-1* 

Hourly temperature 0,1,2,24,48,72 
Hourly load of the previous Saturday h,h-1* 10-19 
Hourly load of the previous Sunday 

T2 
h,h-1* 

* h stand for the same clock with the target hour. 

3.2   Learning Algorithm: The BCD Classifier 

The clustering method implemented in BCD is based on a novel concept of similarity 
for time series: two time series are similar when they are generated by the same 
stochastic process. Therefore, the components of BCD are a model describing the 
dynamics of time series, a metric to decide when two time series are generated by the 
same stochastic process, and a search procedure to efficiently explore the space of 
possible clustering models. 

BCD models time series by autoregressive equations [12]. Let Sj = {xj1, . . . , xjt, 
 . . . , xjn} denote a stationary time series of continuous values. The series follows an 
autoregressive model of order p, say AR(p), if the value of the series at time t > p is a 
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linear function of the values observed in the previous p steps. We can describe the 
model in a matrix form as 

jjjj Xx εβ +=     (3) 

where xj is the vector (xj(p+1), . . . , xjn)
T , Xj is the (n−p)×(p+1) regression matrix whose 

tth row is (1, xj(t−1), . . . , xj(t−p)) for t >p, j is the vector of autoregressive coefficients 
and j is the vector of uncorrelated errors that are assumed normally distributed with 
expected value E( jt) = 0 and variance V( jt) = j

2, for any time point t. Given the data, 
the model parameters can be estimated using standard Bayesian procedures, and 
details are described in [12]. 

To select the set of clusters, BCD uses a novel model-based Bayesian clustering 
procedure. A set of clusters C1, . , Ck., . ,Cc, each consisting of mk time series, is 
represented as a model MC.  

The time series assigned to each cluster are treated as independent realizations of 
the dynamic process represented by the cluster, which is described by an 
autoregressive equation. Each cluster Ck can be jointly modeled as 

kkkk Xx εβ +=  

where the vector xk and the matrix Xk are defined by stacking the mk vectors xkj and 
regression matrices Xkj, one for each time series, as follows 
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Given a set of possible clustering models, the task is to rank them according to 
their posterior probability. The posterior probability of the model MC is computed by 
Bayes Theorem as 

)|()()|( CCC MxfMPxMP ∝                        (4) 

where P(MC) is the prior probability of MC and f (x| MC) is the marginal likelihood. 
Assuming independent uniform prior distributions on the model parameters and a 
symmetric Dirichlet distribution on the cluster probability pk, the marginal likelihood 
of each cluster model MC can be easily computed in a closed form by solving the 
integral: 

= CCCC dfxfMxf θθθ )()|()|(    (5) 

where C is the vector of parameters that describe the likelihood function, conditional 
on a clustering model MC, and f( C) is the prior density. In this way, each clustering 
model has an explicit probabilistic score and the model with maximum score can be 
found. In particular,  f (x| MC) can be computed as 
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where nk is the dimension of the vector xk, and k
T
kk

T
kkn

T
kk xXXXXIxRSS ))(( 1−−=  

is the residual sum of squares in cluster Ck. When all clustering models are a priori 
equally likely, the posterior probability P(MC| x) is proportional to the marginal 
likelihood f(x|MC), which becomes our probabilistic scoring metric. 

As the number of clusters or subsets grows exponentially with the number of time 
series, BCD uses an agglomerative search strategy, which iteratively merges time 
series into clusters. The procedure starts by assuming that each of the m electricity 
load time series is generated by a different process. Thus, the initial model Mm 
consists of m clusters, one for each time series, with score f(x|Mm). The next step is 
the computation of the marginal likelihood of the m(m−1) models in which two of the 
m profiles are merged into one cluster. The model Mm−1 with maximal marginal 
likelihood is chosen and the merging is rejected if )|()|( 1−≥ mm MxfMxf  and the 

procedure stops. If )|()|( 1−< mm MxfMxf , the merging is accepted and a cluster Ck 

merging the two time series is created. In such a way, the procedure is repeated on the 
new set of m−1 time series that consist of the remaining m−2 time series and the 
cluster profile. 

Although the agglomerative strategy makes the search process feasible, the 
computational effort can be extremely demanding when the number of time series is 
large. To further reduce this effort, we use a heuristic strategy based on a measure of 
similarity between time series. The intuition behind this strategy is that the merging of 
two similar time series has better chances of increasing the marginal likelihood. The 
heuristic search starts by computing the m(m−1) pair-wise similarity measures of the 
time series and selects the model Mm−1 in which the two closest time series are 
merged into one cluster. If )|()|( 1−< mm MxfMxf , the two time series are merged 

into a single cluster, a profile of this cluster is computed by averaging the two 
observed time series, and the procedure is repeated on the new set of m−1 time series. 
If this merging is rejected, the procedure is repeated on the two time series with the 
second highest similarity until an acceptable merging is found. If no acceptable 
merging is found, the procedure stops. Note that the clustering procedure is actually 
performed on the posterior probability of the model and the similarity measure is only 
used to increase the speed of the search process and to limit the risk of falling into 
local maxima. 

Similarity measures of two time series implemented in BCD include Euclidean 
distance, correlation and Kullback–Leiber distance. In the numerical experiments, we 
have tried different distances and finally adopted the Euclidean distance of two time 
series. 
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3.3   Learning Algorithm: The SVR Network 

SVR (or SVM) is a new and powerful machine learning technique for data 
classification and regression based on recent advances in statistical learning theory 
[14], [15]. Supposing that we are given training data (x1,y1),…( xi,yi),...( xn,yn) where xi 
are input patterns and yi are the associated output value of xi, the support vector 
regression solves an optimization problem 
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                        ,0, * ≥ii ξξ  i=1,…,n 

where xi is mapped to a higher dimensional space by the function , and i* is slack 
variables of the upper training error ( i is the lower) subject to the -insensitive tube 

εφω ≤−+ ii
T ybx ))(( . The constant C>0 determines the trade off between the 

flatness and losses. The parameters which control regression quality are the cost of 
error C, the width of the tube , and the mapping function . 

The constraints of (7) imply that we put most data xi in the tube . If xi is not in the 
tube, there is an error i or i* which we tend to minimize in the objective function. 
SVR avoids under-fitting and over-fitting of the training data by minimizing the 

training error 
=

+
n

i
iiC

1

* )( ξξ  as well as the regularization term 2/ωωT . For 

traditional least-square regression,  is always zero and data are not mapped into 
higher dimensional spaces. Hence, SVR is a more general and flexible treatment on 
regression problems. 

Since  might map xi to a high or infinite dimensional space, instead of solving  
for (7) in a high dimension, we deal with its dual problem, which can be derived using 
the Lagrange theory. 
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where )()( j
T

iij xxQ φφ= , i and i* are the Lagrange multipliers. However, this inner 

product may be expensive to compute because )(xφ  has too many elements. Hence, 

we apply “kernel trick” to do the mapping implicitly. That is, to employ some special 
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forms, inner products in a higher space yet can be calculated in the original space. 
Typical examples for the kernel functions are polynomial kernel 

dT
j

T
i cxxxx )()()( 021 += γφφ  and RBF kernel

2
21 )()()( xx

j
T

i exx −−= γφφ . They are 

inner products in a very high dimensional space (or infinite dimensional space) but 
can be computed efficiently by the kernel trick even without knowing )(xφ . 

As each data subset classified from the BCD is considered to be approximately 
stationary, 24 SVRs are applied to respectively fit the hourly electricity load profile 
data by taking advantage of all past information and similar dynamic properties (e.g. 
piece-wise stationarity). The next-day electricity load forecasting is conducted by the 
trained network with an acceptable level of accuracy in a voting manner in the BCD 
and SVRs. For numerical experiments in this paper, we use the software LIBSVM 
[16], which is a library for support vector machines, including the efficient 
implementation of solving (8). 

4   Numerical Experiments 

4.1   Data Collection and Preprocess 

The daily electricity load in New York City and weather data observed at Central 
Park have been considered for the study. Two testing sets have been selected to 
forecast and validate the performance of the proposed model. The first one 
corresponds to January and February and the second one corresponds to July and 
August. These months are all typical months with high demand. The hourly data used 
to forecast the two testing sets are from January 1, 2001 to December 31, 2003 and 
July 1, 2001 to June 30, 2004. The test sets are completely separate from the training 
sets and are not used during the learning procedure. 

4.2    Numerical Results 

The criteria to compare the performance are the mean absolute error (MAE) and mean 
absolute percentage error (MAPE) in this paper. For comparative study, we calculate 
the MAE and MAPE of the forecasting published by New York ISO in the same 
period. Moreover, a model using SVR network without the gating stage of BCD is 
also built and studied. 

Numerical results with the proposed model are presented. For simplicity, we call 
the proposed model MLF. The hourly MAE and MAPE for the two test sets with the 
three different methods are shown in Tables 4, 5 and 6. From the three tables, clearly 
the proposed model outperforms all others in almost all the situations. 

Figs. 3-4 show the forecasting and the actual load curves. To illustrate the variety 
of load more clearly, we respectively plot different parts of the load curves in the first 
testing set for presentation. It can be seen that the proposed model well predicts the 
trend of the price curve generally. 
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Table 4. Results for all days of each testing set 

First testing set Second testing set  
MAE MAPE MAE MAPE 

ISO 135.71 2.42 214.40 3.16 
Single SVR 125.22 2.15 226.87 3.27 

MLF 79.15 1.39 178.21 2.51 

Table 5. Results for the normal days (work days) 

First testing set Second testing set 
 

MAE MAPE MAE MAPE 
ISO 119.93 2.04 208.93 2.94 

Single SVR 120.49 1.96 215.66 2.91 
MLF 69.79 1.16 170.57 2.31 

Table 6. Results for anomalous days (including weekend and holidays) 

First testing set Second testing set  
MAE MAPE MAE MAPE 

ISO 165.02 3.12 226.77 3.65 
Single SVR 134.01 2.50 252.24 4.08 

MLF 96.54 1.80 195.49 2.97 

3500

4500

5500

6500

7500

8500

0 100 200 300 400

MLF
ISO
Actual

Hour

Lo
ad

 (
M

W
)

 

Fig. 3. Forecasting results for regular days in January 2004 
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Fig. 4. Forecasting results for weekend and holidays in January 2004 

5   Conclusion 

In this paper, an integrated machine learning forecasting model, based on BCD and 
SVR has been developed to predict next day electricity load curve. The proposed 
method was applied to the prediction of the load curves in New York City, which 
demonstrates its effectiveness and efficiency of the learning and prediction in contrast 
to others. 

Although many efforts have been make to the forecasting of electricity load in the 
past years. This problem is still such a difficult task that a comprehensive and general 
solution is far from easy. For a specific system, the best performances can be 
achieved only if a deep investigation of the inherent characteristics for the system has 
been carried out. In the future, we will further study to incorporate operational and 
market factors in our model to improve the prediction accuracy. 
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Abstract. In this paper, a short-term load forecasting model using a
Multiscale BiLinear Recurrent Neural Network with an adaptive learning
algorithm (M-BLRNN(AL)) is proposed. The proposed M-BLRNN(AL)
model is based on a wavelet-based neural network architecture formu-
lated by a combination of several individual BLRNN models. The wavelet
transform adopted in the M-BLRNN(AL) is employed to decompose the
load curve into a mutiresolution representation. Each individual BLRNN
model is used to forecast the load signal at each resolution level obtained
by the wavelet transform. The learning process is further improved by
applying an adaptive learning algorithm at each resolution level. Experi-
ments and results on load data from the North-American Electric Utility
(NAEU) show that the proposed M-BLRNN(AL) model converges faster
and archives better forecasting performance in comparison with other
conventional models.

1 Introduction

Electric load forecasting has received considerable attention from many
researchers in recent years. Forecasting of electricity load can be performed by
approximating an unknown nonlinear function of load data and other exogenous
variables such as weather variables. Traditionally, statistical models such as the
autoregressive model [1], the linear regression model [2], and the autoregres-
sive moving average (ARMA) [3] have been widely used in practice because of
their simplicity. However, these statistical models are based on linear analysis
techniques. As such, they may not be suitable for load forecasting since models
based on a linear analysis for approximating a nonlinear function often lead to
inaccurate forecasting.

In recent years, various nonlinear-based models have been proposed for load
forecasting. Among these models, neural network (NN)-based models are the fa-
vored choice for load forecasting because of their universal approximation abil-
ities. Neural networks have the capacity not only to model time series load
curves but also to model an unspecified nonlinear relationship between a load
series and weather variables[4,5,6,7]. Comprehensive reviews of the application
of neural networks to load forecasting in most recent studies show that neural

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 964–973, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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network-based models give usable results and have been well accepted in practice
by many utilities [8]. However, due to the very high cost associated with errors
in practice, the development of more efficient load forecasting models continues
to attract much attention.

In this paper, a short-term load forecasting model based on a Multiscale
BiLinear Recurrent Neural Network with an adaptive learning algorithm (M-
BLRNN(AL)) is proposed. The proposed M-BLRNN(AL) model is based on a
wavelet-based neural network architecture formulated by a combination of sev-
eral individual BLRNN models [9]. Each individual BLRNN model is used to
forecast the load signal at a certain level obtained by a wavelet transform [10].
By employing the wavelet transform to decompose a load curve into multireso-
lution representations, a complex load curve can be simplified by several simpler
sub-curves at each resolution level. By doing so, difficult forecasting tasks asso-
ciated with the original load curve can be simplified by forecasting decomposed
sub-curves at each resolution level. The learning speed and forecasting perfor-
mance are further improved by applying an adaptive learning algorithm at each
resolution level. The adaptive learning algorithm adopted in the M-BLRNN(AL)
employs an adjustable activation function at each resolution level. By iteratively
adapting the shape of the activation function to the range of load curves at each
resolution level, the learning process can learn the underlying relationship be-
tween the input and output at each resolution level more efficiently. Thus, the
M-BLRNN(AL) converges faster and archives better forecasting performance in
comparison with other conventional models.

The remainder of this paper is organized as follows: Section 2 presents a review
of the multiresolution analysis with the wavelet transform. A brief review of
the BLRNN is given in Section 3. The M-BLRNN(AL) model and its adaptive
learning algorithm are presented in Section 4. Section 5 presents experiments
and results on a short-term load forecasting problem using the M-BLRNN(AL)
model, including a performance comparison with other conventional models.
Conclusions and additional remarks are given in Section 6.

2 Multiresolution Wavelet Analysis

The wavelet transform [10], a novel technology developed in the signal process-
ing community, has received much attention from neural network researchers
in recent years. Several NN models based on a multiresolution analysis using a
wavelet transform have been proposed for time series prediction [11] and signal
filtering [12]. In order to conduct a time series analysis, use of the discrete wavelet
transform has been proposed [13]. More recently, the so-called à trous wavelet
transform has been proposed. This approach produces a “smooth” approxima-
tion by filling the “gap” caused by decimation, using redundant information
from the original signal [14].

The calculation of the à trous wavelet transform can be described as follows:
First, a low-pass filter is used to suppress the high frequency components of a
signal while allowing the low frequency components to pass through. A scaling
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Fig. 1. Example of wavelet and scaling coefficients for a electric load data

function associated with the low-pass filter is then used to calculate the average
of elements, which results in a smoother signal.

The smoothed data cj(t) at given resolution j can be obtained by performing
successive convolutions with the discrete low-pass filter h,

cj(t) =
∑

k

h(k)cj−1(t+ 2j−1k) (1)

where h is a discrete low-pass filter associated with the scaling function and c0(t)
is the original signal. In order to deal with time series forecasting, a nonsym-
metric filter defined as (1

2 ,
1
2 ) is employed for wavelet calculation.

From the sequence of the smoothing of the signal, the wavelet coefficients are
obtained by calculating the difference between successive smoothed versions:

wj(t) = cj−1(t)− cj(t) (2)

By consequently expanding the original signal from the coarsest resolution
level to the finest resolution level, the original signal can be expressed in terms
of the wavelet coefficients and the scaling coefficients as follow:

c0(t) = cJ (t) +
J∑

j=1

wj(t) (3)

where J is the number of resolutions and cJ(t) is the finest version of the signal.
Eq.(3) also provides a reconstruction formula for the original signal.

Fig. 1 shows an example of the wavelet coefficients and the scaling coefficients
for two levels of resolution for the hourly electric load data of the North American
Electric Utility (NAEU) from May 1, 1985 to May 10, 1985. From the top to
the bottom are the original signal, two levels of the wavelet coefficients, and the
finest scaling coefficients, respectively.
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Fig. 2. Simple BLRNN with structure 3-1-1 and 2 recursion lines

3 BiLinear Recurrent Neural Networks

The BLRNN was first introduced by Park and Zhu [9]. It has been success-
fully applied in modeling time-series data [9,15]. Fig. 2 illustrates a simple 3-1-1
BLRNN with 2 feedback taps.

Assume that the input signal and the nonlinear integration of the input signal
to hidden neurons are defined as:

X[n] = [x[n], x[n− 1], ..., x[n−K]]T

O[n] = [o1[n], o2[n], ..., oM [n]]T

where T denotes the transpose of a vector or matrix and the recurrent term is a
M ×K matrix defined as:

Zp[n] = [op[n− 1], op[n− 2], ..., op[n−K]]

The output value of a bilinear recurrent neuron is computed by the following
equation:

sp[n] = wp +
N−1∑
k1=0

apk1op[n− k1] (4)

+
N−1∑
k1=0

N−1∑
k2=0

bpk1k2op[n− k1]x[n− k2]

+
N−1∑
k2=0

cpk2x[n− k2]

= wp + AT
p ZT

p [n] + Zp[n]BT
p X[n] + CT

p X[n]

where wp is the weight of the bias neuron. Ap is the weight vector for the
recurrent portion, Bp is the weight matrix for the bilinear recurrent portion,
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Fig. 3. Example of Multiscale BiLinear Recurrent Neural Network with 3 resolution
levels

and Cp is the weight vector for the feedforward portion, and p = 1, 2...,M . Let
φ be the activation function of the hidden neuron; the output of the pth hidden
neuron is then:

op[n] = φ(sp[n]) (5)

From the hidden layer to the output layer, the output value is the same as that
of a traditional feedforward-type neuron network:

sl[n] = vl +
Nh−1∑
p=0

wlpop[n] (6)

where vl is the weight of the bias neuron, wlp is the weight between the hidden
and the output neurons, and Nh is the number of hidden neurons. The final
output is obtained by applying the activation function

yl[n] = φ(sl[n]) (7)

More detailed information on the BLRNN and its learning algorithm can be
found in [9,15].

4 Multiscale BiLinear Recurrent Neural Network with
an Adaptive Learning Algorithm

The M-BLRNN(AL) is based on a wavelet-based neural network architecture for-
mulated by a combination of several individual BLRNN models. Each BLRNN
model is used to forecast a signal at each resolution level obtained by the wavelet
transform. Fig. 3 illustrates an example of a M-BLRNN(AL) with three resolu-
tion levels.

As shown in Fig. 3, the load forecasting can be performed based on three
separate stages. In the first stage, the original load is decomposed into the wavelet
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coefficients and the scaling coefficients. In the second stage, coefficients at each
resolution level are forecasted by an individual BLRNN model. In the final stage,
all of the forecasting results from individual BLRNNs are combined using the
reconstruction formula of Eq.(3):

x̂(t) = ĉJ (t) +
J∑

j=1

ŵj(t) (8)

where ĉJ(t), ŵj(t), and x̂(t) represent the predicted values of the finest scaling
coefficients, the predicted values of the wavelet coefficients at level j, and the
predicted values of the original time series signal, respectively.

To further improve the convergence speed and forecasting performance, an
adaptive learning algorithm is employed for training the M-BLRNN(AL) model.
The adaptive learning algorithm adopted in the M-BLRNN(AL) uses an ad-
justable activation function at each resolution level. Typically, the activation
function used in Eq.(5) and Eq.(7) is a logistic function defined as φ(x) =
1/(1+exp(−λx)). The slope parameter λ used in the adaptive learning algorithm
is iteratively adapted at each training step using the gradient-descent method
with respect to the characteristic of the input data.

Assume that the cost function is defined as

E =
1
2

∑
l

(tl − yl)
2 (9)

At the output layer, the slope parameter λl at each output neuron l can be
iteratively updated by

λl(n+ 1) = λl(n)− μλ
∂E
∂λl

= λl(n) + μλ(tl − yl) sle
−λlsl

(1+e−λlsl )2
(10)

Similarly, at the hidden layer, the slope parameter λp at each hidden neuron
p can be iteratively updated by

λp(n+ 1) = λp(n)− μλ
∂E
∂λp

= λp(n) +
(∑

l

(tl − yl) λle
−λlsl

(1+e−λlsl )2 wlp

)
spe−λpsp

(1+e−λpsp )2
(11)

The adaptation of the slope parameter adjusts the shape of the activation
function to the range of the input and output values. As can be seen from
Fig. 1, the characteristics of coefficients at each resolution level are different.
Thus, by using the adaptive learning algorithm at each resolution level, the
individual BLRNN model at each resolution level can learn the characteristics of
the coefficients more efficiently. This implies that the proposed M-BLRNN(AL)
model can yield better generalization performance and faster convergence than
other conventional models.
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Table 1. List of input variables for load forecasting models

Input Variable name Lagged value
1-5 Hourly load 1,2,3,24,168
6-10 Hourly temperature 1,2,3,24,168
11 Calendar variable sin(2πt/24)
12 Calendar variable cos(2πt/24)

5 Experiments and Results

The performance of the proposed M-BLRNN(AL) load forecasting model is eval-
uated and compared with other conventional models on the North-American
Electric Utility (NAEU) data set. The NAEU data set consists of load and tem-
perature data provided by the University of Washington at the following website:

http://www.ee.washington.edu/class/559/2002spr.
The temperature and load data were recorded at every hour of the day from

January 1, 1985 to October 12, 1992, rendering 2,834 days of load and tem-
perature data. Fig. 4 shows the hourly load demands from January 1, 1985 to
December 31, 1985.

One of the most important steps in designing a neural network is choosing
the input variables. The selection of appropriate input variables for a neural
network can be performed based on an analysis of input data. As can be seen
from Fig. 4, the load demand has multiple seasonal patterns such as daily and
weekly periodicity: high demand in daytime and low demand at night time or
high demand on weekdays and low demand on weekends. The load demand also
has a strong correlation with the temperature. Low temperature results in high
demand and high temperature results in low demand. Based on these seasonal
patterns and the correlation analysis, the input variables for load forecasting
models are selected as shown in Table 1.

The load forecasting for 1-24 hours ahead is performed using the recursive
forecasting method. The forecasted output is fed back as the input for the next
time-unit forecasting and all other network inputs are shifted back one time unit.

Fig. 4. Hourly load from January 1, 1985 to December 31, 1985
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Fig. 5. 1-24 steps ahead of hourly forecasting performance in terms of MAPE

However, the future temperature is not available in practice when the recursive
forecasting is performed. Therefore, it is necessary to estimate the temperature.
In our experiments, the temperature was estimated from an average of the past
temperature data.

(a)

(b)

Fig. 6. (a) Forecasting and real hourly load demand from January 15, 2002 to January
25, 2002 (b) Corresponding errors of forecasting results
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The conventional MultiLayer Perceptron Type Neural Network (MLPNN)
and the BLRNN were also employed in order to provide a comparison of the
performance. All the above models utilized the input variables, as shown in Table
1. The MLPNN and the BLRNN were trained with 3,000 iterations, while the
M-BLRNN(AL) was trained with 2,000 iterations. All the models were retrained
at the end of each day to incorporate the most recent load information. All of
the data used in our experiments were treated as normal working days. Holidays
and anomalous days were not considered in this paper. The performance of the
load forecasting models was evaluated in terms of the Mean Absolute Percentage
Error (MAPE).

Fig. 5 shows the performance over 1-24 hours ahead for the short-term load
forecasting using different models during the month of January 2002. As can
been seen from Fig. 5, the proposed M-BLRNN(AL) model achieves significant
improvement while requiring fewer iterations for training when compared with
the conventional MLPNN and the BLRNN models. This implies that the M-
BLRNN employing the wavelet-based neural architecture has robust capacity
for load forecasting problems. Furthermore, by applying the adaptive learning
algorithm, the M-BLRNN(AL) model converges faster than the MLPNN and
the BLRNN models. This is an advantageous feature when addressing load fore-
casting problems in which load forecasting models are retrained regularly.

Figs. 6(a) shows the forecasting results at each hour from January 15, 2002
to January 25, 2002, which has a typical winter load profile. Fig. 6(b) plots the
corresponding errors of forecasting results.

6 Conclusion

A short-term load forecasting model using a Multiscale BiLinear Recurrent Neu-
ral Network with an adaptive learning algorithm (M-BLRNN(AL)) is proposed
in this paper. The proposed M-BLRNN(AL) model is formulated by a combi-
nation of several individual BLRNN models. The wavelet transform adopted
in the proposed M-BLRNN(AL) is used to decompose the load profile into a
multiresolution representation. Each individual BLRNN model is used to fore-
cast the sub-profiles at each resolution level obtained by the wavelet transform.
The convergence speed and forecasting performance of the M-BLRNN(AL) are
further improved by applying an adaptive learning algorithm. When applied to
load data from the NAEU, the proposed M-BLRNN(AL) model shows signif-
icant improvement in performance and faster convergence in comparison with
the conventional MLPNN and the BLRNN. Thus, the M-BLRNN(AL) model
can be used as an efficient tool for practical load forecasting problems.
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Abstract. A new approach to electrical load forecasting is investigated.
The method is based on the semi-parametric spectral estimation method
that is used to decompose a signal into a harmonic linear signal model
and a non-linear part. A neural network is then used to predict the non-
linear part. The final predicted signal is then found by adding the neural
network predicted non-linear part and the linear part. The performance
of the proposed method seems to be more robust than using only the
raw load data.

1 Introduction

Load forecasting is used to estimate the electrical power demand. In the last few
years, several techniques for short- and long- term load forecasting have been
discussed, such as Kalman filters, regression algorithms and artificial neural net-
works [1]. A neural network is a system composed of many simple processing
elements operating in parallel whose function is determined by network struc-
ture, connection strengths and the processing performed at computing elements
or nodes. Artificial neural networks generally consist of three layers: input, hid-
den and output. Each layer consists of one or more nodes. The inputs to each
node in input and hidden layers are multiplied with proper weights and summed
together. The weighted composite sum is passed through a proper transfer func-
tion whose output is the network output. Typical transfer functions are Sigmoid
and Hyperbolic Tangent. For an example of a neural network, see Fig. 1.

The layout of the paper is as follows: in section 2 we introduce the proposed
method of treating the load prediction problem, section 3 shows the numerical
results obtained, and the paper ends with a conclusion.

2 Semi-parametric Method

When we want to fit a model to data from a power system, we many time have
components in the data that are not directly part of the process we want to
describe. If a model is fit to the data as it is, then the model parameters will
be biased. We would have better estimates of the model parameters if we first
remove the unwanted components (nuisance, bias, or non-linear components).

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 974–983, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Artificial Neural Network

This method has been used successfully in the field of spectral estimation in
power systems when we analyse the measured signals on power transmission
lines [2].

The new method we propose for load forecasting is based on a similar argu-
ment to separate the load data into linear and non-linear components. We name
this method the Semi-Parametric method for harmonic content identification.
We assume that there is an underlying linear part of the load data that could
be represented with a sum of n damped exponential functions

yL(k) =
n∑

i=1

Aie
jθie(j2πfi+di)Tk , (1)

where yL(k) is the k − th sample of the linear part of the load signal, Ai is
the amplitude, θi is the phase angle, fi is the frequency, di is the damping and
T is the sampling period. Since we work only with real signals, the complex
exponential functions come in complex conjugate pairs. The equivalent Auto
Regressive (AR) model of (1) is given by

yL (k) = −
n∑

i=1

xiyL (k − i) , k = n + 1 . . .N , (2)

with model parameters xi, model order n, and N = n+m number of samples in
the data set. The model parameters xi and model order n has to be estimated
from the data.

We propose the following model to separate the linear and non-linear parts
[2,3]:

yL (k) = y (k) + Δy (k) , (3)

where y (k) is the measured signal sample, Δy (k) = E [Δy (k)] + ε (k) is the
residual component consisting of a non-zero time varying mean E [Δy (k)] (nui-
sance or bias component) and noise ε (k). The mean of the residual component is
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represented by a Local Polynomial Approximation (LPA) model [4]. yL is then
the required linear signal that can be represented with a sum of damped expo-
nentials (1). The LPA model is a moving window approach where a number of
samples in the window are used to approximate (filter) one of the samples in the
window (usually the first, last or middle sample). The LPA filtering of data was
made popular by Savitsky and Golay [5,6].

By substituting eq. (3) in (2) we obtain

y (k) + Δy (k) = −
n∑

i=1

xi [y (k − i) + Δy (k − i)] . (4)

For n + m samples we have:⎡⎢⎢⎢⎣
y (n + 1) + Δy (n + 1)
y (n + 2) + Δy (n + 2)

...
y (n + m) + Δy (n + m)

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
y (n) + Δy (n) · · ·

y (n + 1) + Δy (n + 1) · · ·
... · · ·

y (n + m− 1) + Δy (n + m− 1) · · ·
y (n− 1) + Δy (n− 1)

y (n) + Δy (n)
...

y (n + m− 2) + Δy (n + m− 2)

· · · y (1) + Δy (1)
· · · y (2) + Δy (2)
. . .

...
· · · y (m) + Δy (m)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1
x2
...

xn

⎤⎥⎥⎥⎦ . (5)

In matrix form the model is

b + Δb = −Ax−ΔAx, (6)

where

b =

⎡⎢⎢⎢⎣
y (n + 1)
y (n + 2)

...
y (n + m)

⎤⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
y (n) y (n− 1) · · · y (1)

y (n + 1) y (n) · · · y (2)
...

...
. . .

...
y (n + m− 1) y (n + m− 2) · · · y (m)

⎤⎥⎥⎥⎦ , (7)

Δb =

⎡⎢⎢⎢⎣
Δy (n + 1)
Δy (n + 2)

...
Δy (n + m)

⎤⎥⎥⎥⎦ , ΔA =

⎡⎢⎢⎢⎣
Δy (n) Δy (n− 1) · · · Δy (1)

Δy (n + 1) Δy (n) · · · Δy (2)
...

...
. . .

...
Δy (n + m− 1) Δy (n + m− 2) · · · Δy (m)

⎤⎥⎥⎥⎦ .
(8)

The matrix signal model (6) can be rewritten in a different form and represented
as

Ax + b + [ΔbΔA]
[

1
x

]
= 0, (9)
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or
Ax + b + D (x) Δy = 0, (10)

where the following transformation has been used:

[ΔbΔA]
[

1
x

]
= D (x) Δy (11)

or ⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

Δy (n + 1)
Δy (n + 2)

...
Δy (n + m)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δy (n) Δy (n− 1) · · · Δy (1)
Δy (n + 1) Δy (n) · · · Δy (2)

...
...

. . .
...

Δy (n + m− 1) Δy (n + m− 2) · · · Δy (m)

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
x1
x2
...

xn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
xn · · · x1 1 0 · · · 0

0 xn · · · x1 1
. . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 xn · · · x1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δy (1)
Δy (2)

...
Δy (n + m)

⎤⎥⎥⎥⎦ . (12)

If the number of parameters in vector x, (model order n) is not known in ad-
vance, the removal of the nuisance component and noise from the signal y (k)
is equivalent to estimating the residual Δy (k) and the model order n while ful-
filling constraints (10). To solve the semi-parametric model, the second norm
of the noise, plus a penalty term which puts a limit on the size of vector x is
minimised. The following optimisation problem should be solved:

min
x,Δy

{
1
2
‖ε‖22 +

μ

2
xTx

}
= min

x,Δy

{
1
2

(Δy − E [Δy])T (Δy − E [Δy]) +
μ

2
xT x

}
= min

x,Δy

{
1
2
ΔyT WΔy +

μ

2
xT x

}
(13)

subject to the equality constraints Ax + b + D (x) Δy = 0,

where
W = (I− S)T (I− S) , (14)

I is the identity matrix, S is the LPA smoothing matrix used to estimate
E [Δy (k)] as SΔy, and μ is the Ridge regression factor used to control the
size of vector x [7,8].

2.1 Estimation of the Harmonic Components

The next step is then to calculate the parameters of the harmonic components
in eq. (1). We do this as follows [9,10]:



978 A. Ukil and J. Jordaan

1. The coefficients xi are those of the polynomial

H (z) = 1 +
n∑

i=1

xiz
−i, (15)

where z is a complex number

z = e(j2πf+d)T . (16)

By determining the n roots, zi, i = 1, 2, . . . , n , of eq. (15), and using eq.
(16) for z, we can calculate the values of the n frequencies and dampings
of the harmonic components. It should be noted that we are using com-
plex harmonic exponentials to estimate the input signal’s linear component.
However, the signals we measure in practice are real signals of the form

y (k) =
n/2∑
i=1

2Aie
diTkcos (2πfiTk + θi) , (17)

where Ai, θi, fi and di are the same as defined for the complex harmonics
in eq. (1). Therefore if we expect to have n

2 components in our real signal,
there will be n complex harmonic exponentials, and thus will the AR model
order be n. The complex harmonic exponentials will then always come in n

2
complex conjugate pairs.

2. To determine the n amplitudes Ai and phase angles θi, we substitute the
linear component y (k)+Δy (k), and the estimated frequencies and dampings
into eq. (1). We obtain an overdetermined system of linear equations of N×n
that can be solved using the least squares method:

y (k) + Δy (k) =
n∑

i=1

Aie
jθie(j2πfi+di)Tk, k = 1, 2, . . . , N. (18)

2.2 Non-linear Part

The non-linear part (plus the noise), which could represent trends or other non-
linearities in the power system, is then given by

yN(k) = y(k)− yL(k) , (19)

where yN (k) is the k− th non-linear signal sample and y(k) is the measured load
sample. This non-linear part is then used to train a neural network. After the
training is complete, the neural network could be used to predict the non-linear
part. The linear part is calculated from the signal model (1), which is then added
to the non-linear part to obtain the final predicted load values.
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3 Numerical Results

For this experiment we used three types of neural networks, namely linear, Back-
propagation Multi-layer Perceptron, and a Generalized Regression network [11].
The last network is a kind of Radial Basis network which is often used for function
approximation and pattern matching. MATLAB Neural Network toolbox [12]
was used for implementation.

Before the neural network is trained with the load data, some pre-processing
is done on the data. First the data is scaled by the median of the data. Therefore,
after prediction, the signal must be descaled by multiplying it again with the
median. Then the scaled data is separated into a linear and a non-linear part.

The test data, shown in Fig. 2, contained 29 days of load values taken from a
town at one hour intervals. This gives a total number of 696 data samples. We

Fig. 2. Load of a Town

removed the last 120 data samples from the training set. These samples would
then be used as testing data. Each sample is also classified according to the hour
of the day that it was taken, and according to which day. The hours of the day
are from one to 24, and the days from one (Monday) to seven (Sunday).

The data fed into the network could be constructed as follows: to predict
the load of the next hour, load values of the previous hours are used. We can
additionally also use the day and hour information. For example, this means
that as inputs to the network, we could have k consecutive samples, and two
additional input values representing the hour and day of the predicted k+1− th
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sample. The network will then predict the output of the k + 1− th sample. We
can also call the value of k : a delay of k samples.

To evaluate the performance of the different networks, we define a performance
index, the Mean Absolute Prediction Error (MAPE):

MAPE =
1
N

N∑
i=1

|ti − pi|
ti

× 100 , (20)

where ti is the i− th sample of the true (measured) value of the load, pi is the
predicted load value of the network, and N is the total number of predicted
samples. For this experiment, the last 24 hours of the 120 removed samples in
the load set was used to test the different networks. Different values of delay was
used, from five until 96.

Fig. 3. Bad Performance of Method without Separating Data

We also tested the prediction method without splitting the data into linear
and non-linear parts, and compared it to the proposed new method. The results
of the performance index for each of the networks are shown in Tables 1, 2 and 3.
It seems that the method without separating the data into different components
performs slightly better than separating the data. In general the method with
splitting the data performed well. There were a few occasions where the method
without splitting the data had very bad performance, eg. Multi-Layer Perceptron
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Fig. 4. Performance of Best Network

Table 1. MAPE for Linear Network

Separated into Linear / Non-Linear Non-Separated
Delay Without day/hour With day/hour Without day/hour With day/hour

5 11.1816 10.8449 6.5760 6.5667
10 9.9194 9.5566 5.9930 5.8607
16 9.0737 8.8913 6.4952 6.5134
96 2.0096 2.0749 2.0441 2.0046

Table 2. MAPE for Multi-layer Perceptron

Separated into Linear / Non-Linear Non-Separated
Delay Without day/hour With day/hour Without day/hour With day/hour

5 10.0207 6.3053 6.1400 6.7438
10 8.7914 5.6225 5.7735 5.1611
16 8.5937 6.6710 5.8434 30.5284

with delay 16, as can be seen in Fig. 3. The best network was without splitting
the data, delay of 96. This is shown in Fig. 4. The best results for splitting the
data is the linear network without day and hour information, delay of 96. This
is shown in Fig. 5.



982 A. Ukil and J. Jordaan

Fig. 5. Performance of Best Network for Splitting the Data

Table 3. MAPE for Generalized Regression Network

Separated into Linear / Non-Linear Non-Separated
Delay Without day/hour With day/hour Without day/hour With day/hour

5 13.3721 5.1269 11.1726 4.6823
10 13.2500 5.1501 11.4758 4.5819
16 13.0706 4.7016 11.8720 4.2966
96 8.3921 6.5287 7.6266 5.7553

4 Conclusion

The Semi-Parametric method for separating the electric load into a linear and
non-linear part was introduced. A neural network was then used to do load fore-
casting based only on the non-linear part of the load. Afterwards the linear part
was added to the predicted non-linear part of the neural network. We compared
this method to the usual method without splitting the data. On average the
method without splitting the data gave slightly better results, but there were
occasions where this method produced very bad networks, whereas the newly
introduced method generally performed well.
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Abstract. To predict short-term power load in an effective and fast way, the 
forecasting model of least square support vector machine (LSSVM) based on 
chaotic time series is established. According to A. Wolf method, Lyapunov ex-
ponents are worked out, and then the embedding dimension and time delay are 
also determined. And then the continuous power load data are transformed into 
data matrix by using the theory of phase-space reconstruction. Finally, LSSVM 
is used to train and predict the power load data. In order to prove the rationality 
of chosen dimension, another two random dimensions are selected to compare 
with the calculated dimension. And to prove the effectiveness and fast operating 
speed of the model, standard SVM algorithm and BP are used to compare with 
the model of LSSVM. The results show that the model is highly accurate and 
faster operating speed in short-term power load forecasting.  

Keywords: Short-term power load, Lyapunov exponents, LSSVM, SVM, BP. 

1   Introduction 

The short-term power load forecasting is very significant to the electric network’s 
reliable and economic running. With the development of electric market, people have 
been paying more and more attention to load prediction. How to make the prediction 
on the short-term power load exactly becomes a hot point [1]. 

Many scholars have studied more on the short-term power load forecasting, and 
they have raised many methods which can be classified into two sorts: one is a con-
ventional method which takes advantage of time series, the other is the new artificial 
intelligence method which make use of Artificial Neural Network. 

In the last twenty years, chaotic theory and statistic learning theory have become 
mature frequently and the usage of load prediction has become more and more ma-
ture. Least Square Support Vector Machines (LSSVM) is based on the statistic theory 
which is the improved algorithm of Support Vector Machines (SVM).  

According to the characters of chaotic time series, the LSSVM prediction model 
based on chaotic time series is established. Then it is used in short-term power load 
forecasting of some electric networks to verify its effectiveness. As a result, the model 
with the embedding dimension, which is got through Lyapunov method, shows this 
model is more accurate than LSSVM with random embedding dimension and BP 
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neural network, and the model also shows it expends less time than BP neural net-
work and standard SVM. 

2   Chaotic Time Series and Lyapunov Exponents  

Base on Chaos theory, the drive factors have influenced each other in chaotic sys-
tem. Therefore the digital points which are got according to time are relative. At 
present, people are employing the phase space delay coordinate reconstruction 
method in general to analyze the factors of serial dynamics. In fact, the phase space 
delay coordinate reconstruction method can expand the given time series 

1, 2 1, , , ,n nx x x x−  to three-dimensional and even higher dimensional space and the 
information which exposed sufficiently from time series can be classified and ex-
tracted [2], [3], [4], [5].  

2.1   Reconstruction of Phase Space 

In electric power system, actual loading series of single argument { ( )jx t  =1, 2, 3… n} 

can be got with the gap tΔ . The structural character of system attractors is contained in 
this time series. The specific method, which can estimate the information of phase 
space reconstruction in single argument time series, is: 

1( )x t       2( )x t       ( )jx t      ( ( 1) )nx t m τ− −  

1( )x t τ+     2( )x t τ+    ( )jx t τ+   ( ( 2) )nx t m τ− −  

1( 2 )x t τ+     2( 2 )x t τ+  ( 2 )jx t τ+   ( ( 3) )nx t m τ− −  

                                    

1( ( 1))x t m+ −  2( ( 1))x t m+ − ( ( 1))jx t m+ − ( )nx t  

    1( )y t             2( )y t        ( )jy t     ( ( 1) )ny t m τ− − . 

In this method, the time series can be continuatied to m -dimensional phase space. 
The time delay is τ = k tΔ  ( k =1, 2….). In previous permutation, every column 
makes up a phase point of m -dimensional phase space. And each phase point has m  
components. These ( 1)pn n m τ= − −  phase points { ( )jx t , j =1, 2… pn } make up a 

facies pattern in m -dimensional phase space. and the continuation of these phase 
points describes the evolutionary trace of system in the phase space. 

2.2   Calculation of Lyapunov Exponents 

A. Wolf submitted a method which is to extract maximal Lyapunov exponents in 
single argument time series. The process is: 

(1) Reconstructing m-dimensional phase space with time series. 
(2) Choosing minimalτ which marks the correlation among phase space. 
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(3) In the continuation m-dimensional phase space, the initial phase point 1( )A t is 

chosen as a reference point. There are m components in the phase space, they are: 

1 1 1 1( ), ( ), ( 2 ), ( ( 1))x t x t x t x t mτ τ+ + + − . According to the following formula,   

nbt i jL Min Y Y= −      i j≠ , (1) 

1( )B t which is the nearest neighborhood point to 1( )A t can be impetrated. 

nbtL which is assumed 1( )L t means the distance between 1( )A t  and its nearest 

neighborhood point in Euclidean meaning. Suppose 2 1t t k t= + Δ with k tΔ  as the step 

length and 1( )A t  evolves into 2( )A t , meanwhile 1( )B t  evolves into 2( )B t , then the 

distance 2 2 2( ) ( ) ( )A t B t l t=  is got. Let 1λ  represent the rate of exponential growth and 
2

2 1( ) ( )2l t L t λ= , then the following equation can be got. 

                        1 2 2 1
2 1

1
log ( ( ) / ( ))

( )
l t L t

k t t
λ =

−
    ( 1)tΔ = ,   (2) 

λ  is the Lyapunov exponent.  
(4) Search a small neighborhood point 2( )C t  which subjects to the angle 1θ  in the 

nearest neighborhood points to 2( )A t (If it can’t meet the two conditions: small 1θ and 

neighborhood, it should still choose 1( )B t ). Suppose 3 2t t k t= + Δ , 2( )A t  evolves 

into 3( )A t  and 2( )C t  evolves into 3( )C t  2 2 2( ) ( ) ( )A t C t L t= and 2 2 2( ) ( ) ( )A t B t l t= ,  

then 

2 2 3 2

1
log ( ( ) / ( ))l t L t

k
λ = . (3) 

It can not stop carrying out the previous steps until it reaches the end of point-

group { }( ), 1,2, ,j pX t j n= . Then choose the average of the calculated rates  

of exponential growth as the maximal estimated value of Lyapunov exponent. 
That is 

1 2
1

( 1)1 1
( ) log

( 1)

N
i

i i

l t
LE m

N k L t=

−
=

−
 .   (4) 

/pN n k=  means total steps of step length. 

(5) It can not stop increasing embedding dimension m  in turn and carrying out the 
steps(3)-(4) until the estimated value 1( )LE m of the exponent keeps stable and  

1 0 1 0 1 0 1( ) ( 1) ( 2)LE m LE m LE m LE= + + + = = . 1LE  is just the maximal Lyapunov 

exponent. 
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3   Least Square Support Vector Machine  

Least square support vector machine is the improved algorithm of support vector 
machine [6], [7], [8], [9]. The following is the algorithm of linear case. Suppose l 

training samples 1 1( , ), ( , ) n
l lx y x y R R∈ × . 

Suppose the linear regression function is 

( ) Tf x w x b= + . (5) 

The structural risk function is introduced in and the regression problem is con-
verted into the following quadratic programming. 

2 2

1

1 1
min

2 2

l

i
i

w
=

+ γ ξ  ,  (6) 

s.t.  T
i iy w x b= + + ξ ,       1, ,i l=  .    (7) 

Lagrange function is defined as  

2 2 2

1 1

1 1
( )

2 2

l l
T

i i i i i
i i

L w w x b y
= =

= + γ ξ − α + + ξ − .   (8) 

According to KTT condition, there are 

1

0
l

i i
i

L
w x

w =

∂ = → α
∂

, (9) 

1

0 0
l

i
i

L
w

b =

∂ = → α =
∂

, (10) 

0 i i
i

L∂ = → α = γξ
∂ξ

,    1, ,i l= , (11) 

0 0T
i i i

i

L
w x B y

∂ = → + + ξ − =
∂α

. (12) 

 
Function (5) to (8) can be described by the following linear equation, 

0 0 0

0 0 0 1 0

0 0 0

1 0

T

T

I x w

b

I I

yx I

−

−
=

γ − ξ
α

, 
 

(13) 
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Here, [ ]1, , lx x x= , [ ]1, , ly y y= , [ ]1 1, ,1= , [ ]1, , lξ = ξ ξ , [ ]1, , lα = α α . 

The final solution is  

1

0 1 0

1

T

T

b

yx x I−

−
=

α+ γ
 . (14) 

Here, i i
i

w x= α , /i iξ = α γ . 

As to the nonlinear regression problem, a nonlinear mapping φ  is used to map the 

data to a high dimensional feature space. And then make linear regression in the fea-
ture space. The important problem is the choice of the kernel function ( , )K x y , which 

makes ( , ) ( ) ( )T
i i i jK x y x x= φ φ [10], [11], [12]. The nonlinear regression is  

1

( ) ( , )
l

i i
i

f x K x x b
=

= α +  .   (15) 

4   LSSVM Based on Chaotic Time Series  

The theories of time series and LSSVM are shown as follows. 

4.1   LSSVM Based on Time Series 

If time series { }1 2, Nx x x is given and the previous actual values of t  time which 

are (1)x (2)x ( )x t are known. Then the forecasting value of 1t +  time point can 

be got through the following map.  

: mf →R R  (16) 

Satisfy the following equation  

ˆ( 1) ( ( ), ( 1), ( ( 1)))x t f x t x t x t m+ = − − − . (17) 

ˆ( 1)x t + is the predicted value of the 1t + time point and m  is the embedding dimen-

sion. Then we use LSSVM to make prediction.  

4.2   Determination of Embedding Dimension 

Lyapunov exponents attribute average speed of neighborhoods in system. A positive 
Lyapunov exponent is to attribute the segregation degree of average index number 
about two adjacent tracks while a negative Lyapunov exponent is to attribute the close 
degree. If a discrete nonlinear system is dissipative, relative stable and positive, 
Lyapunov exponent can be computed to judge whether the time series is chaotic or 
not [13], [14], [15]. The dimensional value is determined when Lyapunov exponents 
drive to be stationary. Then we can establish the model by combining embedding 
dimension with time series theory [16].  
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4.3   LSSVM Prediction Model 

The given time series{ }1 2, Nx x x is separated into two parts. The previous trn data 

are used as training sample and the rest data as testing sample. The one-dimensional 
time series is converted into poly-dimensional matrix by reconstructing phase-space. 
Time delay is 1. The m-dimensional matrix is established as the following.  

1 2

2 3 1

1 1tr tr tr

m

m

n m n m n

x x x

x x x

x x x

+

− − + −

=X  

1

2

tr

m

m

n

x

x

x

+

+=Y . 

X is input matrix andY is output matrix. X and Y satisfy (16). The predicted re-
gression equation is 

1

( , )
trn m

t i i
i

y a K x x b
−

=
= + 1, 2

rt
t m m n= + + . (18) 

The prediction model of the next time point is 

1 1
1

( , )
tr

tr tr

n m

n i i n m
i

y k x x b
−

+ − +
=

= +α .   (19) 

and { }1 1 2, ,
tr tr tr trn m n m n m nX x x x− − − + − += . 

5   Application and Analysis 

The whole process is shown as the following steps. 

5.1   Samples Collection 

Power load data in Hebei province is used to prove the effectiveness of the model. 
The power load data from 01:00 at 6/9/2005 to 24:00 at 7/18/2005 are as training 
sample and used to establish the single-variable time series 1 2 960{ ( ), ( ), ( )}x t x t x t . 
And the power load data from 01:00 to 24:00 at 7/19/2005 as testing sample. 

5.2   Chaos Analysis 

For the training sample, τ =1 is chosen and Wolf method is used to compute Lyapunov 
exponents and embedding dimension. According to the theory 4.2, Lyapunov expo-
nents λ begin to show stationary trend when the embedding dimension is 13. The 
power load time series shows chaotic character because λ >0. The embedding dimen-
sion is 13 and the number of phase points is 948. The above parameters are used to 
reconstruct the phase-space. The results are shown in Figure 1. 
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m  

Fig. 1. λ (Lyapunov exponent) changes with m (embedding dimension). When embedding 
dimension is 13, Lyapunov exponents begin to show stable tendency. 

5.3   Prediction Process 

LSSVM is used after the samples are normalized. Matlab is used to compute the re-
sults. The computer with Pentium 4 1.7GHz CPU and 256MB inner memory is used 
in this experiment. Gauss kernel function is chosen as the kernel function [17].  

2

2

,
( , ) exp( )

2

x x
K x x

′
′ = −

σ
.   (20) 

The parameters are chosen as the following: m =13, γ =1.2, σ =10. The other  

12-dimensional matrix and 14-dimensional matrix are used as comparison.  
BP algorithm is used to make prediction with sigmoid function. The network struc-

ture is 12-9-1. The system error is 0.001 and the maximal interactive time is 5000.  
Standard SVM is also used to make prediction. Gauss kernel function is  

chosen as the kernel function. The parameters are chosen as the following:  
m =13, C=81.25, ε =0.045, 2σ =2.23. The results are shown in Table 1. 

5.4   Predicted Values and Evaluating Indicator 

Relative error and root-mean-square relative error are used as evaluating indicators. 

100%t t
r

t

x y
E

x

−
= ×  ,  

2
1

tr

n
t t

t ntr t

x y
RMSRE

N n x=

−
=

−
. (21) 
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Table  1. Comparison of the predicted values and evaluating indicators 

Time 
point 

Original 
data 

  LSSVM 
(12) Er 

LSSVM 
(13) Er 

LSSVM 
(14) Er 

  SVM 
(13) Er 

BP 
(13) Er 

01:00 417.29 2.97% -2.54% 3.04% -2.48% 3.68% 
02:00 298.90 -2.69% 1.49% 2.25% 1.57% 2.97% 
03:00 328.21 2.54% -3.01% 4.57% 3.23% -4.28% 
04:00 328.21 3.09% 2.08% -3.08% 2.00% 2.98% 
05:00 398.53 2.67% 1.04% 1.79% 0.65% 2.58% 
06:00 363.37 0.94% -1.08% 2.39% 1.23% -3.13% 
07:00 345.79 -2.98% 0.98% 3.04% 0.46% 2.78% 
08:00 310.62 3.69% -1.78% 2.97% -1.84% 2.52% 
09:00 1057.29 5.61% -3.67% 4.89% 2.49% 5.63% 
10:00 1386.67 -2.79% 1.01% 2.54% 0.25% -2.56% 
11:00 1363.22 2.28% 2.12% -3.44% 1.09% 0.21% 
12:00 1439.41 -3.19% 4.79% -6.85% 2.91% -1.78% 
13:00 940.07 -0.97% -0.14% 1.78% -0.98% 1.45% 
14:00 904.91 3.04% -2.36% -2.26% 1.11% 6.58% 
15:00 934.21 -2.17% 1.25% -2.22% 1.36% -3.25% 
16:00 899.05 2.28% -3.99% 4.02% -2.24% 4.23% 
17:00 963.52 -4.08% 2.12% -3.02% 1.02% 3.48% 
18:00 1339.78 2.29% -1.24% -2.88% -0.21% 2.31% 
19:00 1615.24 3.44% 2.34% -3.65% 2.21% 3.67% 
20:00 1727.77 2.30% -4.59% 5.17% -3.09% -2.20% 
21:00 1768.79 3.22% 0.11% -3.03% 3.54% 6.87% 
22:00 1398.39 4.56% -2.23% 2.21% -0.12% 2.28% 
23:00 945.93 1.29% -1.79% 3.22% -1.21% 2.48% 
24:00 287.18 3.82% -2.75% 4.21% -2.02% -2.91% 

RMSRE  0.0305 0.0243 0.0347 0.0191 0.0352 

The results show: 

(1) To see if the approach of embedding dimension chosen is reasonable or not, 
three cases are chosen as follows: 13-dimension, less than 13-dimension and larger 
than 13-dimension. If the results are measured by the standard which is less than or 
equal to 3%, the acceptable results in the condition of 13-dimension are 19 while 12-
dimension are 14 and 14-dimension are 10. If the results are measured by root-mean-
square relative error, RMSRE of 13-dimension is less than the other two dimensions. 
It can be seen from the above analysis that the predicting effectiveness of 13-
dimension is better than other dimensions when LSSVM is used to make prediction.  

(2) The comparison between LSSVM and BP is shown as the following. The rela-
tive error of predicted results by LSSVM has small rangeability. The maximal relative 
error is 4.79  and the value from the maximal relative error to the minimal relative 
error is 8.78 . On the contrary, the relative error of predicted results by BP has large 
rangeability. The maximal relative error is 6.87  and the value from the maximal 
relative error to the minimal relative error is 11.15 . If the results are measured by 
the standard which is less than or equal to 3%, the acceptable results of LSSVM are 
19 while BP are 14. If the results are measured by root-mean-square relative error, 
RMSRE of LSSVM is less than BP. It can be seen from the above analysis that the 
predicting effectiveness of LSSVM is better than BP when the embedding dimension 
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is determined. As to operating time, LSSVM expends 98 seconds and BP expends 206 
seconds. LSSVM needs less time than BP in computing so much data. 

(3) The comparison between LSSVM and standard SVM is shown as the follow-
ing. If the results are measured by the standard which is less than or equal to 3%, the 
acceptable results of LSSVM are 19 while standard SVM are 21. If the results are 
measured by root-mean-square relative error, RMSRE of LSSVM is larger than stan-
dard SVM. It shows that the predicting effectiveness of LSSVM is worse than stan-
dard SVM when the embedding dimension is determined. As to operating time, 
LSSVM expends 98 seconds and standard SVM expends 164 seconds. LSSVM needs 
less time than standard SVM in working out the data. 

6   Conclusions 

The results show that LSSVM based on chaotic time series has great effectiveness for 
short-term power load forecasting. And the conclusions are shown as the following: 

(1) The power load data show apparent chaotic character. Chaotic time series is es-
tablished and chaotic parameters are computed, then LSSVM prediction model is 
established to make prediction. The real load data prediction shows that the model is 
effective in short-term power load forecasting.  

(2) The embedding dimension is chosen through Lyapunov method. The predicted 
results with chosen dimension and other random dimension are compared. The com-
parison shows that the approach is scientific and rational. The results show there is a 
suitable embedding dimension which is used to predict the power load effectively. 
The predicted values by the model with chosen dimension are highly accurate.  

(3) In the condition of the same dimension, LSSVM is much higher than BP in ac-
curacy. And LSSVM is less than standard SVM, but not so much missdistance in 
accuracy when the embedding dimension is determined. 

(4) As to operating time, LSSVM is less than SVM and SVM is less than BP. 
Shorter operating time determines LSSVM is more fit for practice than SVM and BP. 

Because the data of weather and temperature are hard to be acquired while the data 
of power load are easy to be acquired in fact and the shorter operating time, the model 
of LSSVM based on chaotic time series is more significant in the application than the 
models which need more power load data or the models which need the data of 
weather or temperature.  
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Abstract. Extended linear programming (ELP) is an extension of clas-
sic linear programming in which the decision vector varies within a set.
In previous studies in the neural network community, such a set is often
assumed to be a box set. In the paper, the ELP problem with a general
polyhedral set is investigated, and three recurrent neural networks are
proposed for solving the problem with different types of constraints clas-
sified by the presence of bound constraints and equality constraints. The
neural networks are proved stable in the Lyapunov sense and globally
convergent to the solution sets of corresponding ELP problems. Numer-
ical simulations are provided to demonstrate the results.

1 Introduction

Extended linear programming (ELP) problems represent a class of linear pro-
gramming problems in which the decision vector is not fixed, but varies in a
set [1]. Such a situation may be encountered in many economic and social appli-
cations where the standard linear programming are employed. However, many
effective methods for solving linear programming problems such as the simplex
method and Karmarkar’s method cannot be used to solve ELP problems. Re-
searchers have to resort to other techniques. For example, by formulating the
ELP problem, in which the decision vector of the conventional linear program-
ming problem is allowed to vary within a box set, into a general linear variational
inequality, He proposed an effective method to solve the problem [6].

In the past two decades, recurrent neural networks for solving optimization
problems have attracted much attention. The theory, methodology, and applica-
tions of these neural networks have been widely investigated (e.g., see [2, 3,4, 5]
and references therein). The impetus is two-fold. On one hand, the neural net-
works can be implemented in hardware and thus can solve problems in real-time.
On the other hand, the dynamics of the neural networks may cast light to the
development of new numerical algorithms. In 1997, Xia took an initiative to
study ELP problems by using neural networks [7], focusing on solving a similar
problem to that considered in [6]. After years, another recurrent neural network
capable of solving the problems considered in [6] and [7] was developed by Gao
in [8]. In this paper, we are concerned with solving the ELP problems using
neural networks where the decision vector is allowed to vary within a general

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 994–1003, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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polyhedral set rather than a box set. Several neural networks will be developed
for this purpose with much effort in reducing the network complexity.

2 Problem Formulation and Preliminaries

Consider the following extended linear programming (ELP) problem:

min
x
{max

y
yTx}, subject to x ∈ X, y ∈ Y,Ax ∈ Ω1,By ∈ Ω2. (1)

where x, y ∈ Rn,A ∈ Rh×n,B ∈ Rr×n, and X , Y , Ω1, Ω2 are box sets defined
as

X = {x ∈ Rn|x ≤ x ≤ x}, Y = {y ∈ Rn|y ≤ y ≤ y},
Ω1 = {ξ ∈ Rh|ξ ≤ ξ ≤ ξ}, Ω2 = {η ∈ Rr|η ≤ η ≤ η}.

In above, x, x, y, y, ξ, ξ, η, η are constants of appropriate dimensions. Without
loss of generality, any component of x, ξ, y, η can be −∞, and any component of
x, ξ, y, η can be∞. Clearly, when the decision vector y in (1) is a constant instead
of a variable and x = 0, x = ∞, ξ = ξ = contant, the ELP problem reduces to
the classic linear programming problem. In (1), x ∈ X, y ∈ Y are termed bound
constraints and Ax ∈ Ω1,By ∈ Ω2 are termed general constraints in the paper.
Though the bound constraints can be unified into general constraints, they are
distinguished here because they can be handled with different techniques, which
may lead to more efficient computational schemes. Throughout the paper, it
is assumed that there always exists at least one solution (x∗, y∗) to the ELP
problem.

In [7], a neural network for solving the ELP problem (1) with X = Rn,B =
I, Y = Ω2 is proposed. The neural network is proved to be global convergent to
its equilibrium points which correspond to the solutions of the ELP problems.
Another ELP problem (1) with B = I, Y = Ω2 is formulated into a general
linear variational inequality (GLVI) problem [6], which is solved by a neural
network proposed later in [8]. In aforementioned studies [7, 6, 8], the decision
vector y in the ELP problem is allowed to vary within a box set. In the paper,
we consider the case in which the decision vector is allowed to vary within a
general polyhedral set— this situation happens whenever B �= I in (1).

Before we move on to the next section, it is necessary to introduce the notion
of GLVI and the corresponding neural network for solving it as they will play
important roles in subsequent sections. Assume that M,N ∈ Rm×n, a, b ∈ Rm

and K ⊂ Rm is a nonempty closed convex set. The GLVI problem is to find
z∗ ∈ Rn such that it satisfies Nz∗ + b ∈ K and

(Mz∗ + a)T (z −Nz∗ − b) ≥ 0 ∀z ∈ K. (2)

For solving the above GLVI problem, the following neural network is presented
in [8]

dz

dt
= Λ(N +M)T (PK((N −M)z + b − a)−Nz − b), (3)
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where Λ is a symmetric and positive definite matrix used to scaling the conver-
gence rate of the neural network. The stability and convergence results, tailored
from Theorems 3 and 4 in [8], are presented below.

Lemma 1. The neural network in (3) is stable in the sense of Lyapunov and
globally convergent to an exact solution of (2) when MTN is positive semi-
definite.

The methodology of this study is to formulate the optimality conditions for ELP
problems with different types of constraints into GLVI (2), and then use neural
networks in the form of (3) (with different definitions of M,N, a, b, etc.) to solve
the problems.

3 Neural Network Models for ELP

3.1 ELP Problems with General Constraints

Let’s first consider the ELP problem (1) when all constraints are present. The
following theorem establishes a necessary and sufficient optimality condition for
problem (1) in this case.

Theorem 1. (x∗, y∗) ∈ X × Y is a solution to problem (1) if and only if there
exist s∗ ∈ Rh,w∗ ∈ Rr such that Ax∗ ∈ Ω1,By

∗ ∈ Ω2, and⎧⎪⎪⎨⎪⎪⎩
(y∗ −AT s∗)T (x− x∗) ≥ 0 ∀x ∈ X,
(−x∗ −BT w∗)T (y − y∗) ≥ 0 ∀y ∈ Y,
(s∗)T (s−Ax∗) ≥ 0 ∀s ∈ Ω1,
(w∗)T (w −By∗) ≥ 0 ∀w ∈ Ω2.

(4)

Proof. In view of the fact that the general constraints in problem (1) can be
expressed as

Ax − α = 0,By − β = 0, α ∈ Ω1, β ∈ Ω2,

define the Lagrangian function to problem (1) on X × Y × Ω1 ×Ω2 × Rh ×Rr

as follows

L(x, y, α, β, s,w) = yTx+ sT (α−Ax) − wT (β −By).

According to the well-known saddle point theorem, (x∗, y∗) is a solution to (1)
if and only if there exist α∗ ∈ Ω1, β

∗ ∈ Ω2, s
∗ ∈ Rh,w∗ ∈ Rr such that

L(x∗, y, α∗, β, s,w∗) ≤ L(x∗, y∗, α∗, β∗, s∗,w∗) ≤ L(x, y∗, α, β∗, s∗,w),
∀x ∈ X, y ∈ Y, α ∈ Ω1, β ∈ Ω2, s ∈ Rh,w ∈ Rr.

(5)

The left inequality in (5) implies

− (x∗)T y − sT (α∗ −Ax∗) + (w∗)T (β −By) ≥
− (x∗)T y∗ − (s∗)T (α∗ −Ax∗) + (w∗)T (β∗ −By∗).
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Define a function

φ(y, β, s) = −(x∗)T y − sT (α∗ −Ax∗) + (w∗)T (β −By),

which is linear in y, s and β. Then

φ(y∗, β∗, s∗) ≤ φ(y, β, s), ∀y ∈ Y, β ∈ Ω2, s ∈ Rh.

According to [9], a necessary and sufficient condition for above inequality is as
follows ⎧⎨⎩

(−x∗ −BT w∗)T (y − y∗) ≥ 0, ∀y ∈ Y,
(w∗)T (β − β∗) ≥ 0, ∀β ∈ Ω2,
α∗ −Ax∗ = 0.

(6)

Following a similar procedure as above we can derive the equivalent formulation
of the right inequality in (1) as⎧⎨⎩ (y∗ −AT s∗)T (x− x∗) ≥ 0, ∀x ∈ X,

(s∗)T (α− α∗) ≥ 0, ∀α ∈ Ω1,
β∗ −By∗ = 0.

(7)

By combining (6) and (7), and replacing α and β with notations s and w, re-
spectively, we obtain the equivalent formulation of (5) as (4), which completes
the proof.

Note that the optimality conditions in (4) can be expressed as: find z∗ such that
it satisfies Nz∗ ∈ K and

(Mz∗ + a)T (z −Nz∗) ≥ 0 ∀z ∈ K,
where

M =

⎛⎜⎜⎝
0 I −AT 0
−I 0 0 −BT

0 0 I 0
0 0 0 I

⎞⎟⎟⎠ , a =

⎛⎜⎜⎝
p
q
0
0

⎞⎟⎟⎠ , N =

⎛⎜⎜⎝
I 0 0 0
0 I 0 0
A 0 0 0
0 B 0 0

⎞⎟⎟⎠ ,

z = (xT , yT , sT ,wT )T ,K = X × Y ×Ω1 ×Ω2,

(8)

with I denoting the identity matrices of proper dimensions. The above inequality
is a special case of (2). Therefore, the following neural network, which is tailored
from (3), can be used to solve the ELP problem (1) with parameters defined
in (8)

dz

dt
= Λ(N +M)T (PK((N −M)z − a)−Nz), (9)

with Λ being a symmetric and positive definite matrix. It is easily verified
that MTN is skew-symmetric and of course positive semi-definite. According
to Lemma 1 we have the following stability results of the neural network.

Theorem 2. The neural network in (9) with parameters defined in (8) is sta-
ble in the sense of Lyapunov and globally convergent to a solution of the ELP
problem (1).
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3.2 ELP Problems Without Bound Constraints

Let’s now consider the ELP problem (1) without any bound constraint, i.e.,

min
x
{max

y
yTx}, subject to Ax ∈ Ω1,By ∈ Ω2. (10)

For solving this problem, the neural network in (9) with X = Rn, Y = Rm can
of course be utilized. The dimensionality of the neural network, defined as the
dimensionality of the state of the neural network, is 2n+h+r. However, we argue
that a simplified neural network of (9) which is of h + r dimensions (and as a
result, would have lower hardware complexity) can be designed for this purpose.
Let us first state the optimality conditions for the ELP problems in (10), which
follows from Theorem 1 directly.

Corollary 1. (x∗, y∗) ∈ X×Y is a solution to problem (10) if and only if there
exist s∗ ∈ Rh,w∗ ∈ Rr such that Ax∗ ∈ Ω1,By

∗ ∈ Ω2, and⎧⎪⎪⎨⎪⎪⎩
y∗ −AT s∗ = 0,
−x∗ −BT w∗ = 0,
(s∗)T (s−Ax∗) ≥ 0 ∀s ∈ Ω1,
(w∗)T (w −By∗) ≥ 0 ∀w ∈ Ω2.

(11)

From the first two equations in (11) we have(
x∗

y∗

)
=
(

0 −BT

AT 0

)(
s∗

w∗

)
.

Substituting it into the last two inequalities in (11) yields(
s∗

w∗

)T [(
s
w

)
−
(

0 −ABT

BAT 0

)(
s∗

w∗

)]
≥ 0, ∀s ∈ Ω1,w ∈ Ω2.

The above inequality is in the form of GLVI (2). According to Lemma 1, the
following neural network can be used to solve the problem

dz

dt
= Λ(N + I)T (PK((N − I)z)−Nz), (12)

where

N =
(

0 −ABT

BAT 0

)
, z =

(
s
w

)
,K = Ω1 ×Ω2.

Since N is skew-symmetric, we have the following theorem.

Theorem 3. The neural network in (12) is stable in the sense of Lyapunov and
globally convergent to a solution of the ELP problem (10).

One should notice that the state vector z of (12) consists of only s and w, but
does not contain the variables of ELP, i.e., x and y. The relationship between
the optimum to ELP (x∗, y∗) and the equilibrium point of (12) (s∗,w∗) is as
follows: x∗ = −BT w∗, y∗ = AT s∗.
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3.3 ELP Problems with Equality and Inequality Constraints and
Without Bound Constraints

Consider another special case of (1) where bound constraints are absent but
both equality and inequality constraints are present, i.e.,

min
x
{max

y
yTx}, subject to Ax ∈ Ω1, Cx = c,By ∈ Ω2, Dy = d. (13)

where C ∈ Rp×n, c ∈ Rp, D ∈ Rq×n, d ∈ Rq and the other parameters are
the same as in (1). For a well defined problem, we should have rank(C) =
p, rank(D) = q. It is noticed that the equality constraints in (13) can be con-
verted to inequality constraints as c ≤ Cx ≤ c. Then a neural network in the
form of (12) that is of h+ p+ r+ q dimensions can solve the problem elegantly.
But this is not our concern in this subsection. Actually, what we will do next is
to reduce the dimensions of the neural network in (12) (lower than h+p+ r+ q)
for solving problem (13). Let us first present the optimality conditions for the
problem.

Theorem 4. (x∗, y∗) ∈ X ×Y is a solution to problem (13) if and only if there
exist s∗ ∈ Rh,w∗ ∈ Rr, λ∗ ∈ Rp, μ∗ ∈ Rq such that Ax∗ ∈ Ω1,By

∗ ∈ Ω2, and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y∗ −AT s∗ − CTλ∗ = 0,
−x∗ −BT w∗ −DTμ∗ = 0,
Cx∗ = c,
Dy∗ = d,
(s∗)T (s−Ax∗) ≥ 0 ∀s ∈ Ω1,
(w∗)T (w −By∗) ≥ 0 ∀w ∈ Ω2.

(14)

Proof. Define the Lagrangian function to problem (1) on X × Y × Ω1 × Ω2 ×
Rh ×Rp ×Rr ×Rq as follows

L(x, y, α, β, s, λ,w, μ) = yTx+sT (α−Ax)+λT (c−Cx)−wT (β−By)−μT (d−Dy).

According to the well-known saddle point theorem, (x∗, y∗) is a solution to (1)
if and only if there exist α∗ ∈ Ω1, β

∗ ∈ Ω2, s
∗ ∈ Rh,w∗ ∈ Rr, λ∗ ∈ Rp, μ∗ ∈ Rq

such that

L(x∗, y, α∗, β, s, λ,w∗, μ∗) ≤ L(x∗, y∗, α∗, β∗, s∗, λ∗,w∗, μ∗)
≤ L(x, y∗, α, β∗, s∗, λ∗,w, μ),

∀x ∈ X, y ∈ Y, α ∈ Ω1, β ∈ Ω2, s ∈ Rh,w ∈ Rr, λ ∈ Rp, μ ∈ Rq. The rest of the
proof is similar to that of Theorem 1 and thus omitted.

Suppose that p = q in problem (13). We propose the following neural network
for solving (13)

dz

dt
= Λ(N + I)T (PK((N − I)z + b)−Nz − b), (15)
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where Λ is symmetric and positive definite and

N =
(

0 −ABT + ADT (CDT )−1CBT

BAT −BCT (DCT )−1DAT 0

)
,

b =
(

ADT (CDT )−1c
BCT (DCT )−1d

)
, z =

(
s
w

)
,K = Ω1 ×Ω2.

(16)

Clearly, This neural network is of h+ r dimensions, lower than h+ r+ p+ q.
The properties of the neural network for solving (13) are revealed in Theorem 5.

Theorem 5. If p = q in (13), then the neural network in (15) is stable in the
sense of Lyapunov and globally convergent to a solution of the ELP problem (13).

Proof. The first two equations in (14) yields(
x∗

y∗

)
=
(

0 −BT

AT 0

)(
s∗

w∗

)
+
(

0 −DT

CT 0

)(
λ∗

μ∗

)
. (17)

The middle two equations then yields(
C 0
0 D

)(
x∗

y∗

)
=
(

0 −CBT

DAT 0

)(
s∗

w∗

)
+
(

0 −CDT

DCT 0

)(
λ∗

μ∗

)
=
(
c
d

)
. (18)

Because of the assumption rank(C) = p = rank(D) = q, the matrix DCT is in-

vertible, so is
(

0 −CDT

DCT 0

)
, whose inverse is given by

(
0 (DCT )−1

−(CDT )−1 0

)
.

From (18) we have(
λ∗

μ∗

)
= −

(
(DCT )−1DAT 0

0 −(CDT )−1CBT

)(
s∗

w∗

)
+
(

(DCT )−1d
−(CDT )−1c

)
.

Substituting this equation into (17) yields(
x∗

y∗

)
=
(

0 −BT +DT (CDT )−1CBT

AT − CT (DCT )−1DAT 0

)(
s∗

w∗

)
+
(
DT (CDT )−1c
CT (DCT )−1d

)
.

(19)

Substituting this equation into the last two equations in (14) gives

(z∗)T (z −Nz∗ − b) ≥ 0 ∀z ∈ K,
where the notations are defined in (16). Then the optimality conditions in The-
orem 4 is equivalent to finding z∗ such that it satisfies Nz∗ + b ∈ K and the
above inequality, which is a special case of GLVI (2). Since N defined in (16) is
skew-symmetric, Theorem 5 follows from Lemma 1.

Again, the state vector z of (15) does not contain the variables of ELP (i.e., x
and y). The relationship between the optimum (x∗, y∗) of problem (13) and the
equilibrium point (s∗,w∗) is expressed in (19).
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Remark 1. The assumption p = q in Theorem 5 does not impose any strict
requirement to the ELP problem (13) that can be solved by neural network
(15). For example, if p �= q, one can select min{p, q} equality constraints in
Cx = c and Dy = d, respectively; while putting the rest equality constraints
into inequality constraints as discussed in the beginning of this subsection.

Remark 2. The dimensionality of the neural network in (15) is the same as that
of the neural network in (12), though the ELP problem (13) has additional 2p
equality constraints compared with the ELP problem (10). In other words, the
equality constraints are “absorbed” by the neural network in (15). The premise
is that there exist no bound constraints in the ELP problem. One may wonder if
the equality constraints can still be “absorbed” by some neural network when the
bound constraints are present. The answer is yes, because in this case, the bound
constraints can be expressed as inequality constraints, as we pointed out earlier.

4 Numerical Examples

Example 1. Consider the following ξ-norm minimization problem

min ‖x‖1, s.t. Ax ∈ Ω1,

where x ∈ Rn,A ∈ Rh×n,Ω1 = {ξ ∈ Rh|ξ ≤ ξ ≤ ξ} and ‖x‖1 =
∑n

i=1 |xi|. It is
shown in [7] that this problem is equivalent to the following ELP problem

min
x

{
max yTx

y ∈ C

}
, s.t.Ax ∈ Ω1,

where C = {y ∈ Rn| − e ≤ y ≤ e} and e = (1, 1, ..., 1)T ∈ Rn, which can be
viewed as a special case of (10) with B = I,Ω2 = C. Based on this observation,
the neural network in (12) can be used to solve the problem. Specifically, the
dynamic equation of the neural network becomes

d

dt

(
s
w

)
= Λ

(
I −A

AT I

)(
PΩ1(−s−Aw) + Aw
PΩ2(AT s− w)−AT s

)
. (20)

It is interesting to note that this system shares a similar structure with system
proposed in [7]:

d

dt

(
x
s

)
=
(

AT −I
I A

)(
PΩ1(Ax − s)−Ax
PΩ2(x + AT s)−AT s

)
.

Moreover, both systems are of n+ h dimensions. Let

A =

⎛⎝2 1 1 2 3
5 1 −2 1 4
2 4 −5 6 −3

⎞⎠ , ξ = ξ =

⎛⎝−1
1
1

⎞⎠ ,

and use neural network (20) to solve the problem. All simulations with different
initial points converge to the unique equilibrium point. Fig. 1 illustrates one of
the simulation results with Λ = I. The corresponding solution to the problem is
thus x∗ = (0.048, 0,−0.524,−0.286, 0), the same as that obtained in [7].



1002 X. Hu and J. Wang

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

time

st
at

es

s1(t)

s2(t)

s3(t)w1(t)

w2(t)
w3(t)

w4(t)

w5(t)

Fig. 1. Transient states of the neural network (20) with a random initial point in
Example 1
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Fig. 2. Transient states of the neural network (15) with a random initial point in
Example 2

Example 2. Consider an ELP problem with equality constraints in (13) with

A =
(−2 1 0 4

1 0 −1 2

)
,B =

(
2 0 0 −2

)
, C =

(
0 1 −1 1
2 0 3 3

)
, D =

(
1 −2 1 0
0 0 3 2

)
,

ξ = (0, 0)T , ξ = (∞,∞)T , η = 0, η = ∞, c = d = (5, 5)T .

The exact solution is x∗ = (−2, 4, 1, 2)T , y∗ = (0.5,−1.25, 2,−0.5)T . We use
neural network (15) to solve the problem. The states of the neural network
(s1(t), s2(t),w(t))T always converge to the unique equilibrium point (0, 0, 0)T
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with any initial state, which corresponds to the exact solution of the ELP prob-
lem. Fig. 2 displays the transient behavior of the neural network with a random
initial point and Λ = I. Moreover, by viewing the equality constraints as in-
equality constraints we have examined the performance of neural network (12)
on this problem. Same solution has been obtained; while the neural network in
(12) in this case has 7 states, which is higher in comparison with the neural
network in (15) with only 3 states.

5 Concluding Remarks

In this paper, recurrent neural networks for solving general extended linear pro-
gramming (ELP) problems are investigated. By transforming the optimality con-
ditions for the problem with different types of constraints into different general
linear variational inequalities (GLVI), three recurrent neural networks are devel-
oped for solving the corresponding problems based on a general neural network
for solving GLVI. All of the neural networks are globally convergent to the solu-
tions of the ELP problems under some mild conditions. Finally, two numerical
examples are discussed to illustrate the performance of the neural networks.
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Abstract. In this paper, a recurrent neural network model is proposed
for solving non-smooth convex programming problems, which is a natu-
ral extension of the previous neural networks. By using the non-smooth
analysis and the theory of differential inclusions, the global convergence
of the equilibrium is analyzed and proved. One simulation example shows
the convergence of the presented neural network.

1 Introduction

In this paper, we are concerned with the following nonlinear programming
problem:

(NP )
minimize f(x),
subject to Ax = b, x ∈ Ω,

(1)

where f(x) : Rn → R is convex function but not necessary smooth, A ∈ Rm×n,
b ∈ Rm, and Ω ⊂ Rn is a bounded closed convex set.

Nonlinear programming has many applications in scientific and engineering
problems, such as optimal control, signal and image processing, pattern recogni-
tion. In the past two decades, neural networks for optimization and their engi-
neering applications have been widely investigated [1]-[13]. Tank and Hopfield [1]
first proposed a neural network for solving linear programming problems, which
motivated research and applications of neural networks for scientific and engi-
neering problems. Kennedy and Chua [2] presented a neural network for solving
nonlinear programming problems by utilizing the penalty parameter method.
Zhang and Constantinides [3] proposed the Lagrangian network for solving non-
linear programming problems with equality constraints. Xia et al. [6] proposed
a projection neural network with global convergence for solving nonlinear pro-
gramming problems with convex set constraints. In particular, Forti et al. [10]
proposed a generalized neural network for solving non-smooth nonlinear pro-
gramming problems based on the gradient method and there is a parameter in
that neural network which must be estimated beforehand. Gao [12] presented a
recurrent neural network for solving the nonlinear convex programming problems
by using the projection method. Recently, Li et al. [13] extended the projection
neural network for solving the non-smooth convex optimization. In this paper,

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1004–1013, 2006.
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a recurrent neural network is proposed for solving the non-smooth convex pro-
gramming problems with equality and bound constraints based on the saddle
point theorem and the global convergence of the neural network is analyzed and
proved.

2 Preliminaries

Definition 1 [10]: Supposing that for each point x in a set E ⊂ Rn there
corresponds a nonempty set F (x) ⊂ Rn, x � F (x) is a set-valued map from E
to Rn. A set-valued map F : E � Rn with nonempty values is said to be upper
semicontinuous at x0 ∈ E if for any open set V containing F (x0), there exists
a neighborhood U of x0 such that F (U) ⊂ V . Assume that E is closed, F has
nonempty closed range, and it is bounded in a neighborhood of each point x ∈ E,
then E is upper semicontinuous on E if and only if its graph {(x, y) ∈ E ×Rn :
y ∈ F (x)} is closed.

Definition 2 [14]: Let V (x) be a function from Rn to R. For any x ∈ Rn,

DV (x)(v) = lim
h→0+

V (x+ hv)− V (x)
h

.

We say that DV (x)(v) is the derivative from the right of V at x in the direction
v. If DV (x)(v) exists for all directions, we say that V is differentiable from the
right at x. We say that the closed convex subset (possibly empty)

∂V (x) = {p ∈ Rn : ∀v ∈ Rn, (p, v) ≤ DV (x)(v)}
is the sub-differential of V at x, where (·, ·) denotes the inner product in Rn. The
element p of ∂V (x) is called the sub-gradient of V at x.

The following property holds for the sub-differential of V at x.

Lemma 1 [15]: Suppose that V (x) is a convex function from Rn to R. The
following result holds

∂V (x) = {p ∈ Rn : V (x + y)− V (x) ≥ (p, y), ∀y ∈ Rn}.
In [12], when f(x) in problem (1) is continuously differentiable, the following

neural network is proposed for solving problem (1):{
dx
dt = 2{−x+ PΩ(x−∇f(x) + AT (y −Ax+ b))},
dy
dt = −Ax+ b,

(2)

where PΩ(u) : Rn → Ω is a projection operator defined by

PΩ(u) = arg min
v∈Ω

‖u− v‖.

Lemma 2 [16]: For the Projection operator PΩ(x), the following inequality holds:

(v − PΩ(v))T (PΩ(v)− u) ≥ 0, v ∈ Rn, u ∈ Ω.
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3 Model Description

In problem (1), when f(x) is not smooth, we propose the following neural net-
work described by differential inclusions and differential equations{

dx
dt ∈ 2λ{−x+ PΩ(x − α(∂f(x)−AT (y −Ax+ b)))},
dy
dt = λ(−Ax + b),

(3)

where ∂f(x) is the sub-differential of f(x) at x, λ and α are positive constants.

Definition 3. [x∗, y∗]T is said to be an equilibrium of system (3) if there exists
γ∗ ∈ ∂f(x∗) such that{−x∗ + PΩ(x∗ − α(γ∗ −AT y∗)) = 0,

−Ax∗ + b = 0. (4)

We describe the relationship between the optimal solutions of problem (1)
and the equilibrium points of system (3) as following theorem.

Theorem 1. For any positive constants α and β, Ω∗ = Ωe
x, where Ω∗ is the

optimal solution set of problem (1), Ωe
x = {x : [x, y]T ∈ Ωe} and Ωe is the

equilibrium point set of system (3).

Proof. The Lagrange function of problem (1) is

L(x, y) = f(x)− yT (Ax− b), (5)

where y ∈ Rm is the Lagrange multiply. According to the saddle point theorem
[16], x∗ is an optimal solution of problem (1), if and only if there exists y∗, such
that [x∗, y∗]T is a saddle point of L(x, y) on Ω ×Rm. That is,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ Ω, ∀y ∈ Rm.

If [x∗, y∗]T ∈ Ωe is an equilibrium of system (3), then there exists γ∗ ∈ ∂f(x∗)
such that

PΩ(x∗ − α(γ∗ −AT y∗))− x∗ = 0, (6)

and
Ax∗ − b = 0. (7)

Let v = x∗ − α(γ∗ −AT y∗) and u = x, by Lemma 2, it follows that

[x∗−α(γ∗−AT y∗)−PΩ(x∗−α(γ∗−AT y∗))]T [PΩ(x∗−α(γ∗−AT y∗))−x] ≥ 0.

By equation (6), we get that

(x− x∗)T (γ∗ −AT y∗) ≥ 0, ∀x ∈ Ω. (8)

Since γ∗ ∈ ∂f(x∗), we have γ∗ − AT y∗ ∈ ∂xL(x∗, y∗), where ∂xL(x∗, y∗) is the
sub-gradient of L(x, y) with respect to x at [x∗, y∗]T . By Lemma 1, it follows
that

L(x, y∗)− L(x∗, y∗) ≥ (γ∗ −AT y∗, x− x∗) ≥ 0, for any x ∈ Ω.
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From (7), we get that L(x∗, y∗) − L(x∗, y) = 0. So, [x∗, y∗]T is a saddle point
of the Lagrange function L(x, y) and x∗ is an optimal solution of problem (1).
That is x∗ ∈ Ω∗, then Ωe

x ⊂ Ω∗.
On the other hand, suppose that xo ∈ Ω∗ is an optimal solution of problem

(1), then there exists yo such that [xo, yo]T is a saddle point of Lagrange function
L(x, y), i.e.,

L(xo, y) ≤ L(xo, yo) ≤ L(x, yo), ∀x ∈ Ω, ∀y ∈ Rm. (9)

We show that there exists γo ∈ ∂f(xo) such that for any x ∈ Ω,

(x− xo)T (γo −AT yo) ≥ 0. (10)

Otherwise, for any γ ∈ ∂f(xo), there exists x̂ ∈ Ω such that

(x̂− xo)T (γ −AT yo) < 0.

From Lemma 1, we get that L(xo, yo) − L(x̂, yo) ≥ (γ − AT yo, xo − x̂), then
L(x̂, yo) − L(xo, yo) ≤ (γ − AT yo, x̂ − xo) < 0, which contradicts the right
inequality in (9). Consequently, the inequality in (10) holds.

Let v = xo − α(γo −AT yo) and u = xo, by Lemma 2, we get that

[xo−α(γo−AT yo)−PΩ(xo−α(γo−AT yo))]T [PΩ(xo−α(γo−AT yo))−xo] ≥ 0.

Then

[xo − PΩ(xo − α(γo −AT yo))]T [PΩ(xo − α(γo − AT yo))− xo]
≥ α[γo −AT yo]T [PΩ(xo − α(γo −AT yo))− xo],

i.e.,

−‖xo−PΩ(xo−α(γo−AT yo))‖2 ≥ α[γo−AT yo]T [PΩ(xo−α(γo−AT yo))−xo].

From (10), [γo−ATyo]T [PΩ(xo−α(γo−AT yo))−xo] ≥ 0, then −‖xo−PΩ(xo−
α(γo −AT yo))‖2 ≥ 0, it follows that

−‖xo − PΩ(xo − α(γo − AT yo))‖2 = 0,

then
xo = PΩ(xo − α(γo −AT yo)). (11)

From the left inequality in (9), we get that

(y − yo)T (Axo − b) ≥ 0, ∀y ∈ Rm,

so
Axo − b = 0. (12)

From Definition 3, [xo, yo]T is an equilibrium of system (3), then Ω∗ ⊂ Ωe
x.

From above proof, we get that Ω∗ = Ωe
x. This completes the proof. )*
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4 Global Convergence Analysis

In this section, we analyze and prove the global convergence of the proposed neu-
ral network (3) based on the non-smooth analysis and the theory of differential
inclusions.

Lemma 3. For any γ ∈ ∂f(x), x ∈ Rn, y ∈ Rm, the following inequality holds:

[x− PΩ(x)]T [PΩ(x − α(γ −AT (y −Ax+ b)))− x] ≤ −‖x− PΩ(x)‖2. (13)

Proof.

[x− PΩ(x)]T [PΩ(x− α(γ −AT (y −Ax+ b)))− x]
= [x− PΩ(x)]T [−x+ PΩ(x)− PΩ(x) + PΩ(x− α(γ −AT (y −Ax+ b)))]
= −‖x− PΩ(x)‖2 − [x− PΩ(x)]T [PΩ(x)− PΩ(x− α(γ −AT (y −Ax+ b)))].

From Lemma 2, we have [x−PΩ(x)]T [PΩ(x)−PΩ(x−α(γ−AT (y−Ax+b)))] ≥ 0,
then the inequality in (13) holds. )*
Theorem 2. For system (3), the solution x(t) converges exponentially to the
set Ω when the initial point x0 �∈ Ω. Moreover, x(t) ⊂ Ω when x0 ∈ Ω.

Proof. Let g(x) = ‖x − PΩ(x)‖2, then g(x) is differentiable with respect to t.
We get that

dg(x(t))
dt

=
(
dg(x)
dx

)T (
dx

dt

)
≤ sup

γ∈∂f(x)
4λ[x− PΩ(x)]T [PΩ(x− α(γ −AT (y −Ax+ b)))− x].

By Lemma 3, we have

dg(x(t))
dt

≤ −4λ‖x− PΩ(x)‖2 = −4λg(x).

Hence,
‖x− PΩ(x)‖ ≤ ‖x0 − PΩ(x0)‖ exp(−2λ(t− t0)).

When x0 /∈ Ω, any solution x(t) of system (3) converges exponentially to the
feasible set Ω.

When x0 ∈ Ω, we have x− PΩ(x) = 0, i.e., x(t) ⊂ Ω. )*
Remark. From Theorem 2, we know that Ω × Rm is a positive invariant and
attractive set of system (3).

Theorem 3. The state trajectory of the neural network (3) converges to the
optimal solution set Ω∗ of problem (1).



A Recurrent Neural Network for Non-smooth Convex Programming Subject 1009

Proof. Let x∗ be an optimal solution of problem (1), then, according to
Theorem 1, there exist y∗ ∈ Rm and γ∗ ∈ ∂f(x∗) such that the equations
in (4) hold. Construct an energy function as follows

E(x(t), y(t)) = α{f(x) +
1
2
‖y −Ax+ b‖2 − f(x∗)− 1

2
‖y∗‖2 − (x− x∗)T

·(γ∗ −AT y∗)− (y − y∗)T y∗ +
1
2
‖y − y∗‖2}+

1
2
‖x− x∗‖2.

The sub-gradient of E(x, y) with respect to x is

∂xE(x, y) = α(∂f(x)−AT (y −Ax + b)− γ∗ + AT y∗) + x− x∗.
The gradient of E(x, y) with respect to y is

∇yE(x, y) = 2α(y − y∗)− α(Ax − b).
From the chain rule [17], the derivative of E(x, y) along the solution of system

(3) is

Ė(x(t), y(t)) = [α(γ −AT (y −Ax+ b)− γ∗ + AT y∗) + x− x∗]T ẋ(t)
+[2α(y − y∗)− α(Ax − b)]T ẏ(t), ∀γ ∈ ∂f(x). (14)

Then

Ė(x(t), y(t)) ≤ sup
γ∈∂f(x)

2λ[α(γ −AT (y −Ax+ b)− γ∗ + AT y∗) + x− x∗]T [x̃− x]

+λ[2α(y − y∗)− α(Ax − b)]T [−Ax+ b], (15)

where x̃ = PΩ(x− α(γ −AT (y −Ax + b))).
We first prove the following equality

2[α(γ −AT (y −Ax+ b)− γ∗ + AT y∗) + x− x∗]T [x̃− x]
+[2α(y − y∗)− α(Ax − b)]T [−Ax+ b]

= 2[α(γ −AT (y −Ax+ b)− γ∗ + AT y∗) + x− x∗]T [x̃− x∗]
+2[α(γ −AT (y −Ax+ b)− γ∗ + AT y∗) + x− x∗]T [x∗ − x]
+2α[y − y∗]T [−Ax+ b] + α‖Ax− b‖2

= 2[α(γ −AT (y −Ax+ b)− γ∗ + AT y∗)− x+ x̃]T [x̃− x∗]
+2[x− x̃+ x− x∗]T [x̃− x∗] + 2α[γ − γ∗]T [x∗ − x]
+2[α(−AT (y −Ax+ b) + AT y∗) + x− x∗]T [x∗ − x]
+2α[y − y∗]T [−Ax+ b] + α‖Ax− b‖2

= −2[x− α(γ −AT (y −Ax+ b))− x̃]T [x̃− x∗]− 2α[γ∗ −AT y∗]T [x̃− x∗]
+2[x− x̃+ x− x∗]T [x̃− x∗] + 2α[γ − γ∗]T [x∗ − x]
+2α[−AT (y −Ax+ b) + AT y∗]T [x∗ − x] + 2[x− x∗]T [x∗ − x]
+2α[y − y∗]T [−Ax+ b] + α‖Ax− b‖2

= −2[x− α(γ −AT (y −Ax+ b))− x̃]T [x̃− x∗]− 2α[γ∗ −AT y∗]T [x̃− x∗]
−2‖x− x̃‖2 + 2α[γ − γ∗]T [x∗ − x]− α‖Ax− b‖2. (16)
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From Lemma 2 and inequality (8), we have

[x− α(γ −AT (y −Ax+ b))− x̃]T [x̃− x∗] ≥ 0 (17)

and
(γ∗ −AT y∗)T (x̃− x∗) ≥ 0. (18)

Since f(x) is convex, from Lemma 1, we have

f(x)− f(x∗) ≥ γ∗T (x− x∗),

and
f(x∗)− f(x) ≥ γT (x∗ − x),

then
(γ − γ∗)T (x∗ − x) ≤ 0. (19)

From (15)-(19), we get that

Ė(x(t), y(t)) ≤ λ sup
γ∈∂f(x)

{−2‖x− PΩ(x − α(γ −AT (y −Ax + b)))‖2}

−λα‖Ax− b‖2
= −λ inf

γ∈∂f(x)
{2‖x− PΩ(x − α(γ −AT (y −Ax + b)))‖2}

−λα‖Ax− b‖2. (20)

Let ϕ(x, y) = f(x)+1/2‖y−Ax+ b‖2, then, ϕ(x, y) is also a convex function.
According to Lemma 1, we have

ϕ(x, y)− ϕ(x∗, y∗) ≥ (x− x∗)T (γ∗ −AT y∗) + (y − y∗)T y∗, (21)

thus
E(x, y) ≥ 1

2
‖x− x∗‖2 +

α

2
‖y − y∗‖2. (22)

Let G(x0, y0) = {[x, y]T : E(x, y) ≤ E(x0, y0), [x, y]T ∈ Rn × Rm}, then for
any initial point [x0, y0]T ∈ Rn × Rm, G(x0, y0) is bounded. It follows that
[x(t), y(t)]T is also bounded.

Define D(x, y) = infγ∈∂f(x){2‖x − PΩ(x − α(γ − AT (y − Ax + b)))‖2} +
α‖Ax − b‖2. If [x̂, ŷ]T ∈ Ωe, we have Ė(x̂(t), ŷ(t)) = 0. From (20), we get that
D(x̂, ŷ) = 0. On the other hand, if there exists [x̌, y̌] ∈ Ω × Rm such that
D(x̌, y̌) = 0, since f(x) is a convex function, by convex analysis, ∂f(x) is a
nonempty and compact convex subset on Rn, then there exists γ̌ ∈ ∂f(x̌) such
that

x̌− PΩ(x̌− α(γ̌ −AT (y̌ − Ax̌+ b))) = 0,

and
Ax̌− b = 0.

Therefore, D(x, y) = 0 if and only if [x, y]T ∈ Ωe.
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From the boundedness of [x(t), y(t)]T and Ω, we get that ‖ẋ(t)‖ + ‖ẏ(t)‖ is
also bounded, denoted by M . Then, there exists an increasing sequence {tn}
with limn→∞ tn →∞ and a limit point [x̄, ȳ]T such that limn→∞ x(tn) → x̄ and
limn→∞ y(tn)→ ȳ. Similarly to the proof in [13], we will prove that D(x̄, ȳ) = 0.
If it does not hold, that isD(x̄, ȳ) > 0. SinceD(x, y) is lower semi-continuous and
continuous with respect to x and y respectively, there exist δ > 0 andm > 0, such
that D(x, y) > m for all [x, y]T ∈ B([x̄, ȳ]T , δ), where B([x̄, ȳ]T , δ) = {[x, y]T :
‖x− x̄‖+‖y− ȳ‖ ≤ δ} is the δ neighborhood of [x̄, ȳ]T . Since limn→∞ x(tn)→ x̄
and limn→∞ y(tn) → ȳ, there exists a positive integer N , such that for all n ≥ N ,
‖x(tn) − x̄‖ + ‖y(tn) − ȳ‖ < δ/2. When t ∈ [tn − δ

4M , tn + δ
4M ] and n ≥ N , we

have

‖x(t)− x̄‖+ ‖y(t)− ȳ‖ ≤ ‖x(t)− x(tn)‖ + ‖y(t)− y(tn)‖
+‖x(tn)− x̄‖+ ‖y(tn)− ȳ‖

≤M |t− tn|+ δ

2
≤ δ.

It follows that D(x, y) > m for all t ∈ [tn − δ
4M , tn + δ

4M ]. Since the Lebesgue
measure of the set t ∈ ⋃n≥N [tn − δ

4M , tn + δ
4M ] is infinite, then we have∫ ∞

0
D(x(t), y(t))dt = ∞. (23)

On the other hand, by (20), E(x(t), y(t)) is non-increasing and bounded, then,
there exists a constant E0 such that limt→∞ E(x(t), y(t)) = E0. We have∫ ∞

0
D(x(t), y(t))dt = lim

s→∞

∫ s

0
D(x(t), y(t))dt

≤ − lim
s→∞

1
λ

∫ s

0
Ė(x(t), y(t))dt

= − 1
λ

[
lim

s→∞E(x(s), y(s)) − E(x(0), y(0))
]

= − 1
λ

[E0 − E(x(0), y(0))] , (24)

which contradicts (23). Therefore, we have that D(x̄, ȳ) = 0, and then [x̄, ȳ]T ∈
Ωe. That is the limit point [x̄, ȳ]T being an equilibrium of system (3).

Finally, we will prove that

lim
t→+∞ dist([x(t), y(t)]T ,Ωe) = 0. (25)

Otherwise, there exists a constant ε > 0 such that for any T > 0, there exists a
t̂ ≥ T which satisfies dist([x(t̂), y(t̂)]T ,Ωe) ≥ ε. By the boundedness property of
[x(t), y(t)]T , we can choose a convergent subsequence {[x(t̂m), y(t̂m)]T }, which
satisfies limt̂m→+∞ x(t̂m) = x̂ and limt̂m→+∞ y(t̂m) = ŷ with [x̂, ŷ]T ∈ Ωe, such
that

dist([x(t̂m), y(t̂m)]T ,Ωe) ≥ ε, (m = 1, 2, . . .).
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Letting t̂m → +∞, we have

dist([x̂, ŷ]T ,Ωe) ≥ ε > 0,

which contracts dist([x̂, ŷ]T ,Ωe) = 0 since [x̂, ŷ]T ∈ Ωe. Then (25) holds. That
is, for any initial point [x0, y0]T ∈ Rn × Rm, the trajectory [x(t), y(t)]T corre-
sponding to system (3) converges to the equilibrium point set Ωe, in which x(t)
converges to the optimal solution set Ω∗ of problem (1). )*

5 Simulation Example

Example. Consider the following non-smooth nonlinear programming problem

minimize (x1 − 1)2 + |x1 + x2|+ |x1 − x2|,
subject to x1 + 2x2 = −1, x ∈ Ω = {[x1, x2]T : −5 ≤ xi ≤ 5, i = 1, 2}.

(26)
For this problem, letting λ = α = 1, the system (3) can be written as⎧⎨⎩

dx1
dt ∈ 2{PΩ(−2x1 − 2x2 −Θ(x1 + x2)−Θ(x1 − x2) + y + 1)− x1},

dx2
dt ∈ 2{PΩ(−2x1 − 3x2 −Θ(x1 + x2) +Θ(x1 − x2) + 2y − 2)− x2},

dy
dt = −x1 − 2x2 − 1,

(27)

where Θ(·) is a bipolar activation function defined as

Θ(ρ) =

⎧⎨⎩
1, ρ > 0,
[−1, 1], ρ = 0,
−1, ρ < 0.

(28)

Figure 1 shows that the simulation result by selecting 20 random initial points.
We can see that all the state trajectories [x1(t), x2(t)]T converge to the optimal
solution [0.5,−0.75]T .
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Fig. 1. Transient behavior of system (27) in Example
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6 Conclusions

In this paper, we present a recurrent neural network model for solving non-
smooth convex programming problems with linear equalities and bound con-
straints. The global convergence of the neural network is proven by using the
non-smooth analysis and the theory of differential inclusions. One simulation
example is given to illustrate the results in this paper.
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Abstract. Hopfield introduced the neural network for linear programming with 
linear constraints. In this paper, Hopfield neural network has been generalized 
to solve the optimization problems including nonlinear constraints. The pro-
posed neural network can solve a nonlinear cost function with nonlinear con-
straints. Also, methods have been discussed to reconcile optimization problems 
with neural networks and implementation of the circuits. Simulation results 
show that the computational energy function converges to stable point by de-
creasing the cost function as the time passes.  

1   Introduction  

Many advantages of neural networks have been published because of their parallel 
processing characteristics and ability to find suitable solutions for various kinds of 
problems. On the other hand, these solutions could be of some disadvantage because 
neural networks sometimes can not find the best solution. Neural networks often trap 
to the local minimum and then it is difficult to escape from there. However, fast better 
decisions are often proved to be more important than slow best decisions in many 
cases of real life. Therefore, still many researchers are interested in neural networks 
even though local minimum problem exists. 

Several papers have been published about neural networks for linear programming 
problems since the time Hopfield presented the simple linear programming neural 
networks. Maa and Shanblant [4] introduced versatile input-output characteristic 
functions of neuron to improve neural network performance, Huertas [1] used many 
different types of sources to implement Neural Networks, Chua and Lin [2] published 
about electronic nonlinear parts needed for neural networks and Kennedy and Chua 
[3] studied in specific when to implement neural networks and explained considera-
tions for using electrical parts.  
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In this paper, neural networks for nonlinear programming have been proposed. 
Kennedy and Chua published the nonlinear programming neural networks, which can 
handle a nonlinear cost function with linear constraint. The proposed neural network 
in this paper can solve a nonlinear cost function with nonlinear constraints. Pspice has 
been used for circuit level simulations. Simulation results show that these neural net-
works converge to stable point by decreasing the cost function.  

2   Hopfield Linear Programming Networks  

Linear programming problem can be defined as a method of minimizing the cost 
function, that is, 

AVV =)(φ  (1) 

Here, V is an n-dimensional variable and A is constant. This function becomes mini-
mized at the same time satisfying m constraints 

BDVVW ≥=)(  (2) 

D represents the coefficients of variables V, B is the constraint area. Fig. 1 shows 
electrical Hopfield model for linear programming problem in case of 2 variables and 4 
constraints. This system converges to minimize cost function as time elapses.  

Fig. 1. Neural Network of 2-variable, 4 constraints linear programming 

In Fig.1, operational amplifiers represent neurons. Two different types of input-
output transfer functions have been used and a linear function for operational ampli-
fier of variables are used as follows,  

kuugV == )(  (3) 
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Here, k is a positive constant; u is an input of operational amplifier. A nonlinear func-
tion is used for operational amplifier of constraints as follows  
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Hopfield introduced the Lyapunov like computational energy function as follows [1].  
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3   Neural Network for Non-linear Constraints  

3.1   Stability for the Proposed Neural Network  

By modifying the first term in equation (5), Kennedy and Chua proposed the nonlin-
ear programming neural networks for nonlinear cost function with linear constraints 
[3]. In this paper, for the nonlinear constraints, we modified the second term in equa-
tion (5) as follows  

=
−−

=

++ v dzzi gGVwHVE i

n

i
i

j
0

)1(1

0

)())(()(π  (6) 

Here, )(Vπ , )(Vw  are nonlinear functions. The first and second terms in equation 

(6) represent cost function and constraint functions respectively. The third term is for 

the system's stable convergence. To write this computational energy function in the 

form of Lyapunov function, the time differential of this function should be negative or 

zero, that is, 

0≤
dt

dE  (7) 

Using chain rule and equation (3), equation (7) can be written as follows  

0≤==
dt

du

dV

dE
k

dt

dV

dV

dE

dt

dE
 (8) 

If the capacitor's outcoming current at neuron's input node is made same as the 
computational energy function's differential, we can write 
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dt

du
C

dV

dE −=  (9) 

And if k is positive, then the time differential of computational energy function is 
always negative or zero. Therefore, this system converges to stable point by decreasing 
the computational energy function. The outcoming current of capacitor is as follows  

Gu
dw

wdH

dV

dw

dV

V

dV

dE

dt

du
C −−−=−= )()(π

 (10) 

3.2   Implementing the Constraint Function  

The implementing method of nonlinear cost function has been showed in Kennedy 
and Chua’s paper [3]. Therefore, in this part, we will show only how to implement the 
nonlinear constraints. 

The computational energy function should be positive when constraints are not sat-
isfied. Further more, this energy function should increase sharply as the system moves 
out of constraint boundary. The computational energy function satisfying all above 
conditions can be described as follows:  

<

≥
===

w

Vwpositive

Vw
dwwhVwHVE

02

0)(,

0)(,0
)())(()(  (11) 

It is required to find function h satisfying equation (11). One of those functions is 
as follows:  

<

≥
=

0,

0,0
)(

xkx

x
xh  (12) 

The integration of this function can be computed as,  

<

≥
==

0,
2

0,0
)(

20
xx

k

x
kxdxzH

x
 (13) 

As in linear programming neural networks, each neuron is needed for each con-
straint, so the incoming current of neuron is as follows:   

( ) , ( ) 0p p pI w V w V= ≥  (14) 
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Incoming current of the constraint neuron should be same as the negative direction 
of differential of energy function, 

dV

dw

dw

dH

dV

dE

dt

du
C −=−=  (15) 

Therefore, time differential of energy function can be negative or zero.  
Using equation (11), equation (15) can be re-written as follows:  

h
dV

dw

dV

dE

dt

du
C −=−=  (16) 

4   Simulation  

The following function is selected for simulation of nonlinear programming problem  

22),( yxyxf +=  (17) 

And next two functions are used for constraints  

02),(

0),(

2

2
1

≥−+=

≥−=

yxyxg

yxyxg
 (18) 

As seen in Fig. 2, these equations present the boundary of constraints in xy plane. 
By mapping x, y variables to the variable neuron outputs V1, V2, the incoming cur-
rents to the constraint neurons can be obtained as follows  

2)(

)(

212

2
2

11

−+=
−=
VVVI

VVVI
 (19) 

Pspice is used for circuit level simulation. Schematic circuit for simulation is 
shown in Fig. 2. Resistors are used for connections (Dji) and resistor values are recip-
rocal of connection values. Also voltage sources and resistors are used for represent-
ing incoming currents (Bj). In this circuit, the voltage source (1V) and the resistor (-
0.5 ) are used for the current source (-2A). This is because the OP-AMP's input can 
be regarded as a virtual ground. By using equation (10), the incoming current to vari-
able neurons' inputs can be obtained as follows  

−+−
−−−

=
−

−−
+

−
−

=
2212

2111

221

211

2

1

2
2

1
1

22

22

2

2

2

2

VhhV

hVhV

Vhh

hVh

V

V

dt

du
c

dt

du
c

 (20) 
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Fig. 2. Schematic diagram of the simulation circuit 

ABM(Analog Behavior Modeling) are used to implement neurons and for multi-
plying variables as seen in Fig. 2. The parasitic resistor and capacitor at variable neu-
rons' input are necessary for the stable system. The convergence speed of system de-
pends on capacitor's size. Parasitic resistors' values should be selected carefully 
because the system's performance is affected by these resistors. 

The contour lines of cost function and satisfying constraints area are shown in Fig. 3. 
The global minimum is located at (0,0), however the constrained minimum is at (1,1) 
as shown in Fig. 3. 

Fig. 3. The contour of cost function and constrained region 
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Fig. 4. Simulation result using Pspice 

The Pspice transient simulation is shown in Fig. 4. The two variables V1 and V2 
converge to the minimum point (1,1) after about 0.5 s.  

5   Conclusion  

Many papers for linear programming problem using neural networks have been pub-
lished since Hopfield mentioned the possibility that his neural networks could be used 
for optimization problem. In this paper, the neural network for optimization problem 
with nonlinear constraint is proposed by extending the concept of a linear program-
ming neural network. Therefore, the proposed neural network can solve linear pro-
gramming problems as well as nonlinear programming problems.  

Lyapunov function like computational energy is regarded as the first consideration 
factor for implementing neural networks for nonlinear programming problem. The 
computational energy function should be converged to stable point by decreasing its 
energy function as time passes. It has been analyzed that the incoming current to neu-
ron is same as the negative direction differential of computational energy in order to 
satisfy the system for Lyapunov condition. The next consideration factor for imple-
menting neural networks is an input-output transfer function of neuron. Two different 
types of neuron transfer functions are used, that is, one for variable neuron and an-
other for constraint neuron. Both transfer functions should be designed to decrease 
computational energy function as the neural networks converge to the constrained 
minimum. 

Pspice simulation program is used for circuit level simulation, resistor is used for 
synapses, and voltage sources and resistors are able to be used for current sources be-
cause neuron inputs can be regarded as virtual grounds. The transient simulation re-
sult shows that the neural network for nonlinear programming problem converges to a 
minimum after about 0.5 s for simple test problems.  
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Abstract. The application of sinusoidal periodic search signals into the general 
extremum seeking algorithm(ESA) results in the “chatter” problem of the 
output and the switching of the control law and incapability of escaping from 
the local minima. A novel chaotic annealing recurrent neural network 
(CARNN) is proposed for ESA to solve those problems in the general ESA and 
improve the capability of global searching. The paper converts ESA into 
seeking the global extreme point where the slope of Cost Function is zero, and 
applies a CARNN to finding the global point and stabilizing the plant at that 
point. ESA combined with CARNN doesn’t make use of search signals such as 
sinusoidal periodic signals, which solves those problems in previous ESA and 
improves the dynamic performance of the ESA system greatly. During the 
process of optimization, chaotic annealing is realized by decaying the amplitude 
of the chaos noise and the probability of accepting continuously. The process of 
optimization was divided into two phases: the coarse search based on chaos and 
the elaborate search based on RNN. At last, CARNN will stabilize the system to 
the global extreme point. At the same time, it can be simplified by the proposed 
method to analyze the stability of ESA. The simulation results of a simplified 
UAV tight formation flight model and a typical testing function proved the 
advantages mentioned above. 

Keywords: Recurrent Neural Network, Extremum Seeking Algorithm, 
Annealing, Chaos, UAV. 

1   Introduction 

Early work on performance improvement by extremum seeking can be found in 
Tsien. In the 1950s and 1960s, ESA was considered as an adaptive control method 
[1]. Until 1990s sliding mode control for extremum seeking has not been utilized 
successfully [2]. Subsequently, a method of adding compensator dynamics in ESA 
was proposed by Krstic, which improved the stability of the system [3]. Although 
those methods improved tremendously the performance of ESA, the “chatter” 
problem of the output and the switching of the control law and incapability of 
escaping from the local minima limit the application of ESA. 

The method of combining a chaotic annealing recurrent neural network with ESA 
is proposed in the paper. First, this paper converts ESA into seeking the global 
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extreme point where the slope of cost function is zero. Second, constructs a CARNN; 
then, applies the CARNN to finding the global extreme point and stabilizing the plant 
at that point. The CARNN proposed in the paper doesn’t make use of search signals 
such as sinusoidal periodic signals, so the method can solve the “chatter” problem of 
the output and the switching of the control law in the general ESA and improve the 
dynamic performance of the ESA system. At the same time, CARNN utilizes the 
randomicity and the property of global searching of chaos system to improve the 
capability of global searching of the system [4,5], During the process of optimization, 
chaotic annealing is realized by decaying the amplitude of the chaos noise and the 
accepting probability continuously. Adjusting the probability of acceptance could 
influence the rate of convergence. The process of optimization was divided into two 
phases: the coarse search based on chaos and the elaborate search based on RNN. At 
last, CARNN will stabilize the system to the global extreme point, which is validated 
by simulating a simplified UAV tight formation flight model and a typical testing 
function. At the same time, it can be simplified by the proposed method to analyze the 
stability of ESA. 

2   Problem Formulation 

Consider a general nonlinear system: 

( ) ( )( )
( )( )

x f x t ,u t

y F x t

=

=
 (1) 

Where n mx R ,u R∈ ∈ and y R∈ are the states, the system inputs and the system 

output, respectively. ( )F x is also defined as the cost function of the system. ( )f x,u  

and ( )F x are smooth functions [3].  

Assumption 1: There is a smooth control law: 

( ) ( )( )u t x t ,α θ=  (2) 

to stabilize the nonlinear system(1), where  [ ]( )1 2 12
T

i p, , , , , i , , ,pθ θ θ θ θ= ∈ is a 

parameter vector of p  dimension which determines a unique equilibrium vector.  

Assumption 2: There is a smooth function p n
ex : R R→  such that: 

( )( ) ( )0 ef x, x, x xα θ θ= ↔ =   

Assumption 3: The static performance map at the equilibrium point ( )ex θ  from θ  

to y  represented by: 
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( )( ) ( )ey F x Fθ θ= =  (3) 

is smooth and has a unique global maximum or minimum vector  

1 2

Tp
pR , , , ,θ θ θ θ θ∗ ∗ ∗ ∗ ∗∈ = such that: 

( ) ( )0 1 2
i

F
, i , , , p

θ
θ

∗∂
= =

∂
 

 

and ( )2

2
0

i

F θ
θ

∗∂
<

∂
 or ( )2

2
0

i

F θ
θ

∗∂
>

∂
 

 

Differentiating (3) with respect to time yields the relation between θ  and ( )y t . 

( )( ) ( ) ( )J t t y tθ θ =  (4) 

where ( )( ) ( ) ( ) ( )
1 2

T

p

F F F
J t , , ,

θ θ θθ
θ θ θ

∂ ∂ ∂
=

∂ ∂ ∂
, ( ) 1 2

T

pt , , ,θ θ θ θ=  and ( ) ( ) ( ) ( )
1 2

T

p

F F F
J , , ,

θ θ θ
θ

θ θ θ
∂ ∂ ∂

=
∂ ∂ ∂

. 

By Assumption 3, if the system converges to a global extreme vectorθ ∗ , at the 
same time ( )J θ  will also converge to zero. A CARNN is applied to ESA to 

minimize ( )J θ  in finite time. Certainly the system is subjected to (4). 

Then, the optimization problem can be written as follows. 

Minimize: Tc ξ  

Subject to: A bξ =  (5) 

where, ( ) ( ) ( ) T
J J tξ θ θ θ= , 1 1 10 1 0

T

p p pc × × ×= , ( ) ( )0
T

b y t y t= ,

( )( )
( )

( )

1 1

1 1

1 1

1 0

0 0

0 0

T
p p

T
p p

T
p p

sign J

A t

J

θ

θ
θ

× ×

× ×

× ×

−

= , and ( )
1 0

sign 0 0

1 0

x

x x

x

>
= =

− <

. 

By the dual theory, the dual program corresponding to the program (5) is 

Maximize: Tb z  

Subject to: TA z c=  (6) 

where, [ ]1 2 3 1 3

Tz z z z ×= . 

Therefore, an extremum seeking problem is converted into the programs defined in 
(5) and (6). 
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3   Chaotic Annealing Recurrent Neural Network Descriptions 

3.1   Energy Function 

In view of the primal and dual programs (5) and (6), define the following energy 
function: 

( ) ( ) ( ) ( ) ( ) ( ) 22 21 1 1
2 2 2

T T TE ,z c b z T t A b T t A z cξ ξ ξ= − + − + −  (7) 

Clearly, the energy function (7) is convex and continuously differentiable. The first 
term in (7) is the squared difference between the objective functions of the programs 
(5) and (6), respectively. The second and the third terms are for the equality 
constraints of (5) and (6).  

In order to gain the global extreme vector or approximate global extreme vector of 
the system, RNN is combined with chaotic annealing to construct a chaotic annealing 
parameter matrix ( ) ( )31 2

1 2 3 3 3

tt tT t diag e , e , e ββ βη η η −− −

×
= , which is described as follow 

( ) ( )( ) ( )1

1 i i
i i i it

t b a a
e σ εη

−
= − +

+
 (8) 

( ) ( ) ( )
3

1,

1i i ij j i
j j i

t k t a t Iσ σ ω η
= ≠

′ + = + +  (9) 

( ) ( ) ( ) ( ) ( )
( )

1
1

1

i i i i

i

i

t t t rand P t
t

t otherwise

σ γ τ
σ

σ

′ + + <
+ =

′ +
 (10) 

( ) ( ) ( )1 1i it tγ κ γ+ = −  (11) 

( ) ( ) ( ) 0
1

0
i i

i

P t P t
P t

otherwise

δ− >
+ =  (12) 

( ) ( ) ( ) ( )( )1 1i i it t t tτ ρ τ τ+ = −  (13) 

where iη  denotes the output of the i th neuron. iσ denotes the interior state of the i th 

neuron. 
iσ ′ is a transitional variable. iε  is a constant. ,i ia b denote the above bound 

and the low bound of iη respectively. ijω denotes the weight from the j th neuron to 

the i th neuron. 
iI  is the threshold value of the i th neuron. a  is a proportion 

parameter. ( )0 1k k< <  is the decaying factor of the neuron. ( ) ( )( )0i it tγ γ >  is the 

chaotic coefficient. ( )0 1κ κ< <  is the decaying factor of ( )i tγ . ( )iP t  denotes the 

accepting probability of the chaotic coefficient ( )i tγ . ( )0 1rand rand< <  is a 
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random number. ( )0 1δ δ< <  is a constant. ( )i tτ  denotes the chaos noise of the i th 

neuron produced by iterated functions of Logistic map. ( )i tτ  will gradually 

converge to the equilibrium points iτ ∗ . If 4.0ρ =  comes into existence, the logistic 

map of (13) will be full of the area[ ]0,1 . The iterated function of Logistic map (13) is 

an invitation to the chaos phenomenon of CARNN. Because of the introduction of 
chaotic annealing parameter matrix ( )T t , the searching process was divided into two 

phases: the coarse search based on chaos and the elaborate search based on RNN. 
Finally, CARNN will drive the system to stabilize at the global extreme point.  

3.2   CARNN Architecture 

With the energy function defined in (7), the dynamics for CARNN solving (5) and (6) 
can be defined by the negative gradient of the energy function as follows: 

( )dv
E v

d t
μ= − ∇  (14) 

where, ( )T
v ,zξ= , ( )E v∇ is the gradient of the energy function ( )E v  defined in 

(7), and μ is a positive scalar constant, which is used to scale the convergence rate of 

the recurrent neural network. 
The dynamical equation (14) can be expressed as: 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1
1 2

2
1 2

1 1

2 2

T T T T T T

T T T T T

du
cc A T t T t A v b v A T t T t b

dt
du

bc v bb T t T t AA v T t T t Ac
dt

v u

v u

μ μ μ

μ μ μ

= − + + +

= − + +

=
=

 
(15) 

where, ( )1 2u ,u  is a column vector of instantaneous net inputs to neurons, ( )1 2v ,v  is 

a column output vector and equals to ( ),zξ . 

CARNN is described as the equation (15), which is determined by the number of 

decision variables such as ( ),zξ . The lateral connection weight matrix is defined 

as
( ) ( )( )

( ) ( )( )
11 12

21 22

T T T T

T T T T

cc A T t T t A bw w

w w bc bb T t T t AA

μ μ

μ μ

− +
=

− +
, the biasing threshold 

vector of the neurons is defined as ( ) ( )
( ) ( )

1

2

T T

T

A T t T t b

T t T t Ac

ϑ μ
ϑ μ

= . By adjusting 

μ and ( )T t , the weight matrix and the biasing threshold vector can be adjusted.  
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4   Convergence Analysis 

We analyze the stability of the proposed CARNN controller in the section. 

Lemma 1[6]: Suppose that nf :D R R⊂ →  is differentiable on a convex set 
0D D⊂ . 

Then f  is convex on 0D  if and only if 

( ) ( ) ( ) ( )T
z y f y f z f y− ∇ ≤ − , 

0y,z D∀ ∈  (16) 

where ( )f y∇  is the gradient of ( )f y . 

Lemma 2: The optimal solution to the programs (5) and (6) are ξ ∗  and z∗ , 

respectively, if and only if ( ) 0E v∗ =  and 

( ) ( ) ( )T
v v E v ,t E v ,t∗ − ∇ ≤ −  (17) 

where ( )TT Tv ,zξ∗ ∗ ∗= and ( )TT Tv ,zξ= . 

Proof: Form the definition of the energy function (7), it can easily find that 

( ) 0E v ∗ =  if and only if v∗  is the optimal solution of (5) and (6). Since for all v , 

the energy function ( ) 0E u ,t ≥ is continuously differentiable and convex. Therefore, 

we have the conclusion of the Lemma 2 from Lemma 1. 

Theorem: CARNN defined in (15) is globally stable and converges to the optimal 
solutions of the program (5) and (6). 

Proof: Without loss of generality, let 1μ = . Consider the following Lyapunov 

function: 

( ) ( ) ( )1
2

T
V v v v v v∗ ∗= − −  (18) 

Where ( )TT Tv ,zξ∗ ∗ ∗= , andξ ∗ , z ∗  are the optimal solutions to the programs (5) 

and (6), respectively. By Lemma 2 and the equation (14), we have 

( ) ( ) ( ) ( ) 0
T TdV dV dv dv

v v v v E v E v
dt dv dt dt

∗ ∗= = − − = − ∇ ≤ − ≤  (19) 

Since ( ) 0E v ≥ , according to the Lyapunov’s theorem, CARNN defined in (15) 

is Lyapunov stable. From Lemma 2, ( ) 0E v ∗ =  if and only if ( ) 0E v ∗∇ = . Hence 

v∗  makes 0v =  and 0V = , and therefore CARNN defined in (15) converges to its 

equilibrium points, and then ( )J θ  converges to its minimum point. Soθ θ ∗= , the 

output y  of the system (1) equals to the optimal solution ( )y F θ∗ ∗= . 
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Since ( )E v ,t  is continuously differentiable and convex for all v , the local 

minimum is equivalent to the global minimum. CARNN defined in (15) is thus 
globally stable and converges to the optimal solutions of the programs (5) and (6). 
The proof is completed. 

5   Simulation Results 

5.1   A Simplified Tight Formation Flight Model Simulation 

Consider a simplified tight formation flight model consisting of two Unmanned Aerial 
Vehicles [7].  

1 1

2 2 1

3 3 2

4 4

0 1 0 0 0 0

20 9 0 0 1 0

0 0 0 1 0 0

0 0 35 15 0 1

x x

x x u

x x u

x x

− −
= +

− −

 
(20) 

with a cost function given by 

( ) ( )( ) ( )( )2 2

1 310 0 5 9 590y t x t x t= − + − + +  (21) 

where 1x  is the vertical separation of two Unmanned Aerial Vehicles, 2x  is the 

differential of 1x , 3x  is the lateral separation of two Unmanned Aerial Vehicles, 4x  

is the differential of 3x  and y  is the upwash  force acting on the wingman. It is clear 

that the global maximum point is 1 0x∗ =  and 3 9x∗ = − , where the cost function 

( )y t  reaches its maximum 590y∗ = . 

A control law based on sliding mode theory is given by: 

( ) ( )
( ) ( )

1 1 1 2 1 1 1 1 1 1 1 2

2 3 2 4 2 2 2 2 2 2 3 4

20 9 ,

35 15 ,

u x s x k sign s s x x

u x s x k sign s s x x

σ θ σ
σ θ σ

= + − − − = +

= + − − − = +
 (22) 

where 
1 2,σ σ  are two sliding mode surfaces, 

1 1 2 2s ,k ,s ,k are positive scalar constants, 

1 2,θ θ  are two extremum seeking parameters, which  a CARNN is used to seek at the 

same time.  

Remark: The control law is given in (22), which is based on sliding mode theory. We 

choose ( ) ( ), 1, 2i i isign s iσ θ− =  so that 1x and 3x  entirely traces 
1θ and

2θ  in the 

sliding mode surfaces respectively, and the system will be stable at 
1θ ∗  and

2θ ∗  finally. 

The initial conditions of the system (20) are given as ( )1 0 2x = − , ( )2 0 0x = , 

( )3 0 4x = − , ( )4 0 0x = , ( )1 0 2θ = − , ( )2 0 4θ = −  . Applying CARNN to system (20), 
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the parameters are given as:
1 0β = , 

2 0β = , 
3 0 01.β = − ,

1 2 15s .= , 

2 3 35s .= ,
1 2 1k k= = , 0.235μ = , 0.15a = , 0.9k = , [ ]0.15,0.15,0.15σ = , 

1 2 3 0a a a= = = ,
1 2 3 1b b b= = = ,

12 21 0.2ω ω= = , 
23 32 0.2ω ω= = , 

31 13 0.1ω ω= = , 

11 22 33 0ω ω ω= = = , 
1 2 3 0.01I I I= = = , [ ]0.1,0.1,0.1ε = , ( ) [ ]0 1,1,1P = , 0.01δ = , 0.01κ = , 

( ) [ ]0 0.1,0.1,0.1γ = , ( )0 4.0ρ = , ( ) [ ]0 0.875,0.875,0.513τ = . Certainly, μ  is a 

main factor of scaling the convergence rate of CARNN, if it is too big, the error of the 
output will be introduced, on the contrary, if it is too small, the convergence rate of 

the system will be slow. The values of iβ  should not be too big, otherwise the system 

will be unstable. In conclusion, the values of those parameters should be verified by 
the system simulation. The simulation results are shown from figure 1 to figure 3. 

In those figures, solid lines are the results applying CARNN to ESA; dash lines are 
the results applying ESA with sliding mode [8]. Comparing those simulation results, 
we know the dynamic performance of the method proposed in the paper is better than 
that of ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in 
figure 2 and 3, which is very harmful in practice. Moreover the convergence rate of 
ESA with CARNN can be scaled by adjusting the chaotic annealing matrix. 

      

              Fig. 1.  The result of the state 1x                       Fig. 2.  The result of the state 3x
 

   

     Fig. 3.  The result of the output y  

1x

y

3x

Learning iterative times n Learning iterative times n  

Learning iterative times n
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5.2   A Testing Function Simulation 

In order to exhibit the capability of global searching of the proposed CARNN, the 
typical testing function (23) is defined as the cost function of system (20). 

( ) ( ) ( )( ) ( ) ( )( )2 2 2 2

1 3 3 10 7 0 6 0 1 0 5 0 4 0 15max y t x . x . . x . x . .= − − + + − − + +  (23) 

The above function have a global maximum point ( )0.7,0.5  and three local 

maximum, which are ( )0.6,0.4 , ( )0.6,0.5  and ( )0.7,0.4  respectively. The 

initial conditions of the system (23) are given as ( )1 0 0 2x .= , ( )2 0 0x = , 

( )3 0 0 7x .= , ( )4 0 0x = , ( )1 0 0 2.θ = , ( )2 0 0 7.θ =  .CARNN is applied to solve the 

problem. By choosing appropriately those parameters of the system, the simulation 
results are shown from figure 4 to figure 6.  

    

             Fig. 4.  The result of the state 1x                    Fig. 5.  The result of the state 3x
 

In those figures, solid lines are the results applying CARNN to ESA; dash lines are the 
results applying ESA with sliding mode [8]. Comparing those simulation results, we 
know that CARNN drives the system to the global extreme point by finite iterative times, 
but ESA with sliding mode traps the system into a local extreme point and results in the 
serious “chatter”. Hence the capability of global searching of CARNN is validated. 

 

   Fig. 6.  The result of the output y  
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6   Conclusion 

The method of combining CARNN with ESA greatly improves the dynamic 
performance and the global searching capability of the system. Two phases of the 
coarse search based on chaos and the elaborate search based on RNN ensure that the 
system could fully carry out the chaos searching and find the global extremum point 
and accordingly converge to that point. At the same time, the disappearance of the 
“chatter” of the system output and the switching of the control law are beneficial to 
engineering applications.  

References 

1. Blackman, B. F.: Extremum-seeking Regulators. An Exposition of Adaptive Control, New 
York: Macmillan (1962) 36-50. 

2. Drakunov, S., Ozguner, U., Dix, P., and Ashrafi, B.: ABS Control Using Optimum Search 
via Sliding Mode., IEEE Transactions on Control Systems Technology, Vol. 3, No. 1 
(1995) 79-85.  

3. Krstic, M.: Toward Faster Adaptation in Extremum Seeking Control. Proc. of the 1999 
IEEE Conference on Decision and Control, Phoenix. AZ (1999) 4766-4771.  

4. Tan, Y., Wang, B.Y., He, Z.Y.: Neural Networks with Transient Chaos and Time-variant 
gain and Its Application to Optimization Computations. ACTA ELECTRONICA SINICA, 
Vol. 26, No. 7 (1998) 123-127. 

5. Wang, L., Zheng, D.Z.: A Kind of Chaotic Neural Network Optimization Algorithm Based 
on Annealing Strategy. Control Theory and Applications, Vol. 17, No. 1 (2000) 139-142. 

6. Tang, W.S. and Wang, J.: A Recurrent Neural Network for Minimum Infinity-Norm 
Kinematic Control of Redundant Manipulators with an Improved Problem Formulation and 
Reduced Architecture Complexity. IEEE Transactions on systems, Man and Cybernetics, 
Vol. 31, No. 1 (2001) 98-105. 

7. Zuo, B. and Hu, Y.A.: Optimizing UAV Close Formation Flight via Extremum Seeking. 
WCICA2004, Vol. 4. 3302-3305. 

8. Pan, Y., Ozguner, U., and Acarman, T.: Stability and Performance Improvement of 
Extremum Seeking Control with Sliding Mode. Control. Vol. 76 (2003) 968-985. 



I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1032 – 1041, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Improved Transiently Chaotic Neural Network and Its 
Application to Optimization 

Yao-qun Xu1,2, Ming Sun1, and Meng-shu Guo2 

1 Institute of System Engineering, Harbin University of Commerce, 150028, Harbin, China 
Xuyq@hrbcu.edu.cn, Snogisun@tom.com 

2 Center for Control Theory and Guidance Technology, Harbin Institute of Technology, 150001 
Harbin, China 

Xyqcx02@yahoo.com.cn 

Abstract. A wavelet function was introduced into the activation function of the 
transiently chaotic neural network in order to solve combinational optimization 
problems more efficiently. The dynamic behaviors of chaotic signal neural units 
were analyzed and the time evolution figures of the maximal Lyapunov 
exponents and chaotic dynamic behavior were given. The improved transiently 
chaotic neural network has the ability to stay in chaotic states longer because the 
wavelet function is non-monotonous and is a kind of basic function. The 
simulation results prove that the improved transiently chaotic neural network is 
superior to the original in solving 10-city traveling salesman problem (TSP). 

1    Introduction 

Neural network is a very complicate nonlinear system, and it contains all kinds of 
dynamic behaviors. Some chaotic behaviors have been observed in human brains and 
animals’ neural systems, so it would improve the intelligent ability in neural network 
and artificial neural network would have much more use in application if chaotic 
dynamics mechanism is introduced into artificial neural network. Chaotic neural 
networks have been proved to be powerful tools for escaping from local minimum. 
Chaotic neural networks with chaotic dynamics have much rich and far-from 
equilibrium dynamics with various coexisting attractors, not only of fixed and periodic 
points but also of strange attractors. By far, many transiently neural network models 
have been presented [1~3]. In this paper, Morlet wavelet functio  was introduced into the 
activation function of the transiently chaotic neural network, and the time evolution 
figures of the maximal Lyapunov exponents and chaotic dynamic behavior of chaotic 
single neural unit were given. The improved transiently chaotic neural network has the 
ability to stay in chaotic states longer because the wavelet function is non-monotonous 
and is a kind of basic function. The simulation results prove that the improved 
transiently chaotic neural network is superior to the original in solving 10-city traveling 
salesman problem (TSP). 

For any function )()( 2 RLxf ∈ and any wavelet Ψ as a kind of basic function, the 

known formula can be described as follows. 
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2   Chaotic Neural Network Models 

In this section, two chaotic neural network models are given. The first is presented by 
Li-jiang Yang, the second is improved model by introducing Morlet wavelet function 
in activation function of Yang’s. 

2.1   Yang’s Transiently Chaotic Neural Network [4] 

Li-jiang Yang, Tian-Lun Chen and Wu-qun Huang’s transiently chaotic neural network 
is described as follows: 
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where )(tix is output of neuron i ; )(tiy denotes internal state of neuron 

i ; ijW describes connection weight from neuron j  to neuron i , jiij WW = ; iI is input 

bias of neuron i ,α a positive scaling parameter for neural inputs, k damping factor of 
nerve membrane, 0 k 1, ε steepness parameter of the activation function, ε >0. 

The chaotic neural network is different from the other chaotic neural network in the 
right of the equation (3), the self-feedback connection weight )]1()([ −− tytyg ii . It is 

just the self-feedback connection weight that makes the chaotic neural network 
embrace the rich chaotic dynamics.  

The self-feedback connection weight should take the non-linear form. The form of 
non-linear function )(xg is chosen under the following consideration [5]: it should not 

change the fixed points of the equation (3) but the stability of the fixed points may be 
changed. This demands that )0(g =0. 

2.2   Improved Transiently Chaotic Neural Network [6] 

The improved transiently chaotic neural network is described as follows: 
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)5cos()( 2/2

xexMorlet x−=                                                  (9) 

)()1()1( tztz ii β−=+                                                   (10) 

where )(txi , )(tyi  , ijW  , α  , k  , iI  are the same with the above. 1ε  and 2ε  are 

respectively the steepness parameters of Sigmoid function and Morlet wavelet 
function. 

The improved transiently chaotic neural network has a non-monotonous activation 
function, which is composed of Sigmoid and Morlet wavelet. Several kinds of chaotic 
neural networks whose activation function is non-monotonous has been proved to be 
more powerful than Chen’s chaotic neural network in solving optimization problems, 
especially in searching global minima of continuous function and traveling salesman 
 

 

Fig. 1. The monotonous figure of sigmoid function 

 

Fig. 2. The non-monotonous figure of the function composed of sigmoid and Morlet wavelet 
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problems [6-8]. The reference [9] has pointed out that the single neural unit can easily 
behave chaotic behavior if its activation function is non-monotonous. And the 
reference [10] has presented that the effective activation function may adopt kinds of 
different forms, and should show non-monotonous behavior. Not only is the activation 
function a non-monotonous function, but also the Morlet wavelet of the activation 
function is a kind of basic function. The figures of Sigmoid function and the function 
composed of Sigmoid and Morlet wavelet are respectively plotted as fig.1 and fig.2. 
Seen from the fig.2, the activation function of the improved model is non-monotonous. 

3   The Dynamic Analyses of Chaotic Neural Networks 

In this section, the chaotic dynamic behaviors of the chaotic neural units are analyzed, 
and the time evolution figures of the maximal Lyapunov exponents and chaotic 
dynamic behavior are given. 

3.1   Yang’s Chaotic Signal Neural Unit 

The signal neural unit model can be described as follows: 

   ε/)(1

1
)(

tye
tx

−+
=                                                     (11) 

   )]1()([)()1( −−+=+ tytygtkyty                                     (12) 

   xxexg 55)( −=                                                     (13) 

   )()1()1( tztz β−=+                                                 (14) 

The parameters are set as follows: 
k =0.5, ε =1/20 ,z=10, y(0)=0.283, 008.0=β . 

The time evolution figures of Lyapunov exponents and chaotic dynamic behavior are 
shown as Fig.3, Fig.4: 

 

Fig. 3. The time evolution figure of Lyapunov exponents 
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Fig. 4. The chaotic dynamic behavior of x 

3.2   Improved Chaotic Signal Neural Unit 

The signal neural unit model can be described as follows: 
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The parameters are set as follows: 
k =0.5, 1ε =1/20 , 2ε =5/4, z=10, y(0)=0.283, 008.0=β . 

The time evolution figures of Lyapunov exponents and chaotic dynamic behavior are 
shown as Fig.5, Fig.6. 

 

Fig. 5. The time evolution figure of Lyapunov exponents 
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Fig. 6. The chaotic dynamic behavior of x 

Seen from the Fig.4-Fig.6, the chaotic dynamic mechanism functions. But the 
equilibrium point’s form of this chaotic search is different from the form of the reversed 
bifurcation. It seems to suddenly reach an equilibrium point after the chaotic search. 

4   Application to Traveling Salesman Problem 

The coordinates of 10-city is as follows: 
(0.4, 0.4439),( 0.2439, 0.1463),( 0.1707, 0.2293),( 0.2293, 0.716),( 0.5171,0.9414),  
(0.8732, 0.6536),  ( 0.6878, 0.5219), ( 0.8488, 0.3609),( 0.6683, 0.2536),( 0.6195, 
0.2634). The shortest distance of the 10-city is 2.6776. 

A solution of TSP with N cities is represented by N N-permutation matrix, where 
each entry corresponds to output of a neuron in a network with N N lattice structure. 
Assume xiv  to be the neuron output which represents city x in visiting order i . A 

computational energy function which is to minimize the total tour length while 
simultaneously satisfying all constrains takes the follow form [11]: 
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Where xNx vv =0  and 11, xNx vv =+ . A  and B  are the coupling parameters 

corresponding to the constrains and the cost function of the tour length, respectively. 

xyd  is the distance between city x  and city y . 

The parameters of the energy function are set as follows: A=2.5, B=1. 
In this paper, the improved chaotic neural network and the original are compared by 

the different steepness parameter of Sigmoid function. So the rest parameters retain 
unchanged. 

The parameters of Yang’s are set as follows: 
         α =0.5, k =1, ε =1/20,z(0)=0.08, 008.0=β . 

The parameters of the improved chaotic neural network are set as follows: 
                α =0.5, k =1, 1ε =1/20, 2ε = 5/4, z(0)=0.08, 008.0=β . 
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200 different initial conditions of ijy are generated randomly in the region [0, 1], as 

is shown in table 1. (VN= valid number; GN= global number; VP= valid percent; 
GP=global percent.) 

Table 1. The 10-city simulation result as ε =1/20 

Model VN GN VP GP Model VN GN VP GP 
175 125 87.5% 62.5% 187 182 93.5% 91% 
179 137 89.5% 68.5% 190 185 95% 92.5% 
173 134 86.5% 67.5% 189 184 94.5% 92% 
179 134 89.5% 67.5% 191 184 95.5% 92% 
179 119 89.5% 59.5% 192 184 96% 92% 
181 122 90.5% 61% 187 174 93.5% 87% 
187 131 93.5% 65.5% 190 181 95% 90.5% 
185 135 92.5% 67.5% 185 179 92.5% 89.5% 
185 122 92.5% 61% 189 187 94.5% 93.5% 

Yang’s 

180 123 90% 61.5%

Improved
Chaotic
Neural 

network

192 186 96% 93% 
 

The parameters of Yang’s are set as follows: 
         α =0.5, k =1, ε =1/10,z(0)=0.08, 008.0=β . 

The parameters of the improved chaotic neural network are set as follows: 
               α =0.5, k =1, 1ε =1/10, 2ε = 5/4, z(0)=0.08, 008.0=β . 

200 different initial conditions of ijy are generated randomly in the region [0, 1], as 

is shown in table 2. (VN= valid number; GN= global number; VP= valid percent; 
GP=global percent.) 

Table 2. The 10-city simulation result as ε =1/10 

Model VN GN VP GP Model VN GN VP GP 
187 151 83.5% 75.5% 193 177 96.5% 88.5% 
188 150 94% 75% 188 174 94% 87% 
188 158 94% 79% 194 188 97% 94% 
182 149 91% 74.5% 190 174 95% 87% 
187 152 93.5% 76% 188 179 94% 89.5% 
180 148 90% 74% 193 179 96.5% 89.5% 
188 152 94% 76% 189 174 94.5% 87% 
184 150 92% 75% 192 180 96% 90% 
180 148 90% 74% 191 181 95.5% 90.5% 

Yang’s 

182 155 91% 75.5%

Improved
Chaotic
Neural 

network

193 188 96.5% 94% 
�

The parameters of Yang’s are set as follows: 
α =0.5, k =1, ε =1/5,z(0)=0.08, 008.0=β . 
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The parameters of the improved chaotic neural network are set as follows: 

   α =0.5, k =1, 1ε =1/5, 2ε = 5/4, z(0)=0.08, 008.0=β . 

200 different initial conditions of ijy are generated randomly in the region [0, 1], as 

is shown in table 3. (VN= valid number; GN= global number; VP= valid percent; 
GP=global percent.) 

Table 3. The10-city simulation result as ε =1/5 

Model VN GN VP GP Model VN GN VP GP 
181 151 90.5% 75.5% 187 169 93.5% 88.5% 
182 152 91% 76% 189 169 94.5% 88.5% 
189 157 94.5% 78.5% 191 179 95.5% 89.5% 
179 147 89.5% 73.5% 180 169 90% 84.5% 
181 162 90.5% 81% 186 179 93% 89.5% 
179 143 89.5% 71.5% 192 178 96% 89% 
180 137 90% 68.5% 184 170 92% 85% 
179 154 89.5% 77% 185 170 92.5% 85% 
185 156 92.5% 78% 186 172 93% 86% 

Yang’s 

184 158 92% 79% 

Improved
Chaotic
Neural 

network

184 168 92% 84%  

Seen from the above tables, the conclusion can be drawn that the improved 
transiently chaotic neural network has the stronger ability to solve TSP when the 
parameters of the two networks are in the above same level. 

The time evolution figures of Energy function are given as follows: 

 

Fig. 7. Time evolution of energy in Yang’s 



1040 Y.-q. Xu, M. Sun, and M.-s. Guo 

 

Fig. 8. Time evolution of energy in the improved 

However, different networks may reach their best performance at different 
parameters. How do these networks make comparison with the same parameters? In 
this paper, the question needs to solve. In this paper, the test only shows that under 
these parameters the improved model is superior to the original model. 

5   Conclusions 

The improved transiently chaotic neural network is superior to the original network 
under the same parameters, and this owe to Morlet wavelet function which is 
non-monotonous. However, sometimes the improved transiently chaotic neural 
network is not superior to the original network, and even inferior to the original 
network. So, the improved transiently chaotic neural network should be made further 
research. 

Acknowledgement 

This work is supported by the Youth Science Foundation of Harbin 2005AFQXJ040. 

References 

1. Chen L., Aihara K.:Chaotic Simulated Annealing by a Neural Network Model with 
Transient Chaos. Vol. 8. Neural Networks. (1995)915-930 

2. Yamada T, Aihara K, Kotani M.: Chaotic Neural Networks and The Travelling Salesman 
Problem. Proceedings of 1993 International Joint Conference on Neural Networks, 1993. 
1549-1552p 

3. Aihara K, Takabe T, Toyada M.: Chaotic Neural Networks. Phys. Letters A, 1990,144(6/7): 
333 - 340. 



 Improved Transiently Chaotic Neural Network and Its Application to Optimization 1041 

4. Yang Lijiang, Chen Tianlun, Huang Wuqun.: Application of Transiently Chaotic Dynamics 
in Neural Computing. Acta Scientiarum Naturalium Universitatis Nankaiensis. 1999, 
99-103 

5. Zhou Chang-song, Chen Tian-lun, Huang Wu-qun.: Chaotic neural network with nonlinear 
self-feedback and its application in optimization 

6. Y.-q. xu, M. Sun, G.-r. Duan.: Wavelet Chaotic Neural Networks and Their Application to 
Optimization problems.ISNN2006, LNCS, Vol. 3791. Springer (2006) 379-384 

7. Y.-q. Xu and M. Sun.: Gauss-Morlet-Sigmoid Chaotic Neural Networks. ICIC 2006,LNCS, 
vol.4113,Springer-Verlag Berlin Heidelberg (2006) 115-125 

8. Y.-q. Xu, M. Sun, and J.-h. Shen.: Gauss Chaotic Neural Networks. PRICAI 2006, LNAI , 
vol.4099,Springer-Verlag Berlin Heidelberg (2006) 319-328 

9. A Potapove, M Kali.: Robust chaos in neural networks. Physics Letters A, vol.277,no.6, 
(2000)310-322 

10. Shuai J W, Chen Z X, Liu R T, et al.: Self-evolution Neural Model. Physics Letters A, 
vol.221,no.5, (1996)311-316 

11. S.-y. Sun, J.-l. Zheng.: A Kind of Improved Algorithm and Theory Testify of Solving TSP 
in Hopfield Neural Network. Vol.1. Journal of Electron. (1995)73-78 



I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1042 – 1050, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Quantum-Behaved Particle Swarm Optimization for 
Integer Programming 

Jing Liu, Jun Sun, and Wenbo Xu 

Center of Intelligent and High Performance Computing, 
School of Information Technology, Southern Yangtze University 

No. 1800, Lihudadao Road, Wuxi, 
214122 Jiangsu, China 

{liujing_novem, sunjun_wx, xwb_sytu}@hotmail.com 

Abstract. Based on our previously proposed Quantum-behaved Particle Swarm 
Optimization (QPSO), this paper discusses the applicability of QPSO to integer 
programming. QPSO is a global convergent search method, while the original 
Particle Swarm (PSO) cannot be guaranteed to find out the optima solution of 
the problem at hand. The application of QPSO to integer programming is the 
first attempt of the new algorithm to discrete optimization problem. After 
introduction of PSO and detailed description of QPSO, we propose a method of 
using QPSO to solve integer programming. Some benchmark problems are 
employed to test QPSO as well as PSO for performance comparison. The 
experiment results show the superiority of QPSO to PSO on the problems. 

1   Introduction 

An Integer programming problem is an optimization problem in which some or all of 
variables are restricted to take on only integer values. Thus the general form of a 
mathematical Integer Programming model can be stated as: 

( )
( ) Xxbxgts

xf
x

∈≤      ,   ..

min

 

where 

{ } [ ]nMMixxX n
i

n ...1   ,,: ⊆∈∀Ζ∈ℜ∈=
 

(1) 

This type of model is called a mixed-integer linear programming model, or simply a 

mixed-integer program (MIP). If [ ]nM ...1= , we have a pure integer linear 
programming model, or integer program (IP). Here we will consider only the simple 
and representative minimization IP case, though maximization IP problems are very 
common in the literature, since a maximization problem can be easily turned to a 
minimization problem. For simplicity, in this paper it will be assumed that all of the 
variables are restricted to be integer valued without any constraints. 

Evolutionary and Swarm Intelligence algorithms are stochastic optimization 
methods that involve algorithmic mechanisms similar to natural evolution and social 
behavior respectively. They can cope with problems that involve discontinuous 
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objective functions and disjoint search spaces [7][8]. Early approaches in the direction 
of Evolutionary Algorithms for Integer Programming are reported in [9][10]. The 
performance of PSO method on Integer Programming problems was investigated in 
[6] and the results show that the solution to truncate the real value to integers seems 
not to affect significantly the performance of the method. 

In this paper, the practicability of QPSO to integer programming is explored. For 
QPSO is global convergent, it can be expected to outperform PSO in this field. To test 
the algorithm, numerical experiment is implemented. The paper is organized as 
follows. In Section 2 we describe the concepts of QPSO. Section 3 presents the 
numerical results of both QPSO and PSO on several benchmark problems. The paper 
is concluded in Section 4. 

2   Quantum-Behaved Particle Swarm Optimization 

In this section, the concept of Quantum-behaved Particle Swarm Optimization is 
described following the introduction of the original Particle Swarm Optimization. 

2.1   Particle Swarm Optimization 

The PSO algorithm is population based stochastic optimization technique proposed by 
Kennedy and Eberhart in 1995[1]. The motivation for the development of this method 
was based on the simulation of simplified animal social behaviors such as fish 
schooling, bird flocking, etc. 

In the original PSO model, each individual is treated as volumeless and defined as 
a potential solution to a problem in D-dimensional space, with the position and 
velocity of particle i represented as ( )iDiii xxxX ,...,, 21=  and ( )iDiii vvvV ,...,, 21= , 
respectively. Each particle maintains a memeory of its previous best positon 

( )iDiii pppP ,...,, 21=  and gdp , designated g, represents the position with best fitness 
in the local neighborhood. The particle will move according to the following 
equation: 

( ) ( ) ( ) ( )
ididid

idgdidididid

vxx

xprandxprandvv

+=

−+−+= **** 21 ϕϕ  (2) 

where 1ϕ and 2ϕ determine the relative influence of the social gp  and cognition ip  
components, which are the embodiment of the spirit of cooperation and competition 
in this algorithm. 

Since the introduction of  PSO method in 1995, considerable work has been done in 
the aspect of improving its convergence, diversity and precision etc. Generally, in 
population-based search optimization methods, proper control of global exploration 
and local exploration is crucial in finding the optimum solution effectively. In[2] 
Eberhart and Shi show that PSO searches wide areas effectively, but tends to lack 
search precision. So they proposed the solution to introduce ω , a linearly varying 
inertia weight, that  dynamically adjusted the velocity over time, gradually focusing 
PSO into a local search: 
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( ) ( ) ( ) −+−+= idxgdprandidxidprandidvidv **2**1* ϕϕω  (3) 

The improved PSO is called Standard PSO algorithm( in this paper PSO-w denoted). 
Then Maurice Clerc introduced a constriction factor[3] , K ,that improved PSO’s 

ability to prevent the particles from exploding outside the desirable range of the 
search space and induce convergence. The coefficient K is calculated as: 

ϕϕϕ 42

2
2 −−−

=K , where 4,21 >+= ϕϕϕϕ  (4) 

and the PSO is then 

( ) ( ) ( ) ( ))****(* 21 idgdidididid xprandxprandvKv −+−+= ϕϕ  (5) 

2.2   Quantum-Behaved Particle Swarm Optimization 

Even though many improvements on PSO methods were emerged, some questions 
around traditional PSO still exist. In traditional PSO system, a linear system, a 
determined trajectory and the bound state is to guarantee collectiveness of the particle 
swarm to converge the optimal solution. However, in such ways, the intelligence of a 
complex social organism is to some extend decreased. Naturally, Quantum theory, 
following the Principle of State Superposition and Uncertainty, was introduced into 
PSO and the Quantum-behaved PSO algorithm was proposed by Jun Sun et al[4]. 

Keeping to the philosophy of PSO, a Delta potential well model of PSO in 
quantum world is presented, which can depict the probability of the particle’s 
appearing in position x  from probability density function ( ) 2

, txψ , not limited to 

determined trajectory, with the center on point p(pbest). The wave function of the 

particle is: 

( ) ( )Lxp
L

x /exp
1 −−=ψ  (6) 

And the probability density function is 

( ) ( ) ( )Lxp
L

xxQ /2exp
12 −−== ψ  (7) 

The parameter ( ) ( )txptL −=+ **21 α depending on energy intension of the 

potential well specifies the search scope of a particle. From the expression of L , we 
can see that it is so unwise to deploy the individual’s center pbest to the swarm that 
unstable and uneven convergence speed of an individual particle will result premature 
of the algorithm when population size is small. Then a conception of Mean Best 
Position (mbest) is introduced as the center-of-gravity position of all the particles [5]. 
That is 

==
====

MpMpMpMpmbest
M
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id
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here M is the population size and ip is the pbest of particle i . Thus the value of L is 
given by ( ) ( )txmbesttL −=+ **21 β . We can see the only parameter in this 

algorithm is β , called Creativity Coefficient, working on individual particle’s 

convergence speed and performance of the algorithm. 
Through the Monte Carlo stochastic simulation method, derived from probability 

density function, the position of a particle that is vital to evaluate the fitness of a 
particle can be given by ( ) ( )u

L
ptx 1ln

2
±= .  Replacing parameter L , the iterative 

equation of Quantum-behaved PSO (denoted QPSO- β ) is: 

( ) ( ) ( )utxmbestptx 1ln**1 −±=+ β  (9) 

3   Experiments 

3.1   Experiment Setting and Benchmark Problems 

The method of Integer Programming by PSO and QPSO algorithm is to truncate each 
particle of the swarm to the closest integer, after evolution according to Eq(2) and 
Eq(9). In our experiments, each algorithm was tested with all of the numerical test 
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Table 2. Dimension,swarm size and maximum numberof iterations for Test Functions F1-F7 

Functi
on 

Dim Swarm Size Max Iteration 

5 20 1000 
10 50 1000 
15 100 1000 
20 200 1000 
25 250 1500 

 
 

F1 

30 300 2000 
F2 5 20 1000 
F3 5 150 1000 
F4 2 20 1000 
F5 2 20 1000 
F6 2 50 1000 
F7 4 40 1000 

problems shown in Table 1[6]. The solution of the equation F(x)=0 except the 
function F3.. In Table 2 exhibit the swarm’s size, the maximum number of iterations 
as well as dimension for all test functions. For all experiments the initial swarm was 

taken uniformly distributed inside [ ]D100,100−  ,where D is the dimension of the 
corresponding problem.  

In QPSO algorithm, the only parameter setting is Creativity Coefficient 
β [5],which was gradually decreased for each of the intervals 

[ ] [ ] [ ]0.4 ,8.0 ,0.4 ,0.1 ,4.0 ,2.1 with the number of iterations. And in PSO algorithm, the 
parameters used for all experiments were 221 == ϕϕ and ω  was gradually decreased 

for each of the intervals [ ] [ ] [ ]0.4 ,8.0 ,0.4 ,0.1 ,4.0 ,2.1 during the maximum allowed number 
of iterations. Each of the experiments was repeated 50 runs and the success rate to 
correct solution as well as the mean number of iterations for each test were recorded. 

3.2   Results 

The results of PSO and QPSO for the test problems 71 ff −  are shown in Table 3 and 
Table 4. Its mean iteration is generated from all tests included incorrect experiments. 
From the point view of success rate, as shown in Table3, to PSO algorithm, PSO-w is 
the best choice when ω  is gradually from 1.0 to 0.4. Also, to QPSO, β  from 1.2 to 
0.4 is better than the other two internals as shown in Table 4. 

But from the point view of mean iterations, based on the 100 percent success rate, 
QPSO mostly can reach the correct solution faster than PSO as shown in Table 5. 
Especially, to test function f1, when dimension is high, the results show that PSO is a 
better choice, which is because Quantum-behaved PSO algorithm is much fit for 
global search, especially for higher dimension, and more particles [5]. 

The convergence graphs for selected test problems are shown in Figure 1, which 
plot test function value with the number of iteration. As we can see the convergence 
speed in QPSO is much faster than PSO algorithm. 



 Quantum-Behaved Particle Swarm Optimization for Integer Programming 1047 

Table 3. Dimension, Success Rate, Mean Iterations for PSO-w for test F1-F7 

PSO-w 
w: [1.2,0.4] w: [1.0,0.4] w:[0.8,0.4] 

 
 

F 

 
 
D 
 

Succ 
Rate 

Mean 
Iter 

Succ 
Rate 

Mean 
Iter 

Succ 
Rate 

Mean Iter 

5 100% 422.27 100% 72.8 100% 20.27 
10 100% 434.53 100% 90.26 100% 24.77 
15 100% 439.1 100% 94.36 100% 25.8 
20 100% 441.67 100% 96.3 100% 28.97 
25 100% 653.33 100% 99.44 100% 31.23 

 
 
 

F1 

30 100% 863.93 100% 103.14 100% 34.2 
F2 5 100% 423.5 100% 77.82 100% 20.22 
F3 5 43.3% 718.63 100% 125.03 78% 246.56 
F4 2 88% 459.44 100% 81.24 83.3% 193.36 
F5 2 100% 209.64 100% 32.9 100% 9.07 
F6 2 80% 520.33 100% 41.4 56.7% 442.77 
F7 4 100% 444.3 100% 79.6 100% 34.8 

Table 4. Dimension, Success Rate, Mean Iterations for QPSO- β   for test F1-F7 

QPSO- β  
β : [1.2,0.4] β : [1.0,0.4] β : [0.8,0.4] 

 
 
F 

 
 
D 
 Succ Rate Mean Iter Succ Rate Mean Iter Succ Rate Mean Iter 

5 100% 27.2 100% 21.62 100% 15.14 
10 100% 48.26 100% 50.52 100% 27.44 
15 100% 64.46 100% 82.26 100% 38.08 
20 100% 72.24 100% 120.02 100% 47.74 
25 100% 83.86 100% 161.56 100% 58.58 

 
 
 

F1 

30 100% 92.56 100% 202.44 100% 67.86 
F2 5 100% 21.2 100% 21.56 100% 15.9 
F3 5 100% 166.9 84% 284.64 48% 543.9 
F4 2 100% 19.35 100% 25.8 100% 16.82 
F5 2 100% 8.95 98% 28.66 98% 28 
F6 2 100% 14.9 94% 88.14 90% 120.8 
F7 4 100% 65.7 100% 43.9 100% 33.6 

Table 5. Success Rate, Mean Iteration for PSO and QPSO 

PSO-w QPSO- β  
w: [1.0,0.4] β :[1.2,0.4] 

 
F 

 
D 

Succ Rate Mean Iter Succ Rate Mean Iter 
5 100% 72.8 100% 27.2 
10 100% 90.26 100% 48.26 
15 100% 94.36 100% 64.46 
20 100% 96.3 100% 72.24 
25 100% 99.44 100% 83.86 

 
 
 

F1 

30 100% 103.14 100% 92.56 
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Table 6.   (Continued) 

F2 5 100% 77.82 100% 21.2 
F3 5 100% 125.03 100% 166.9 
F4 2 100% 81.24 100% 19.35 
F5 2 100% 32.9 100% 8.95 
F6 2 100% 41.4 100% 14.9 
F7 4 100% 79.6 100% 65.7 
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Fig. 1. Test function value with generations. (a) F1 (b) F2 (c) F3 (d) F4 (e) F5 f) F6 (g) F7. 
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Fig. 1. (continued) 

4   Conclusions 

In this paper, we have applied QPSO to integer programming problem. The 
experiment results on benchmark functions show that QPSO with proper intervals of 
parameter β  can search out the global optima more frequently than PSO, for QPSO 
can be guaranteed to converge global optima with probability 1 when iteration 
number ∞→t . Not only QPSO is superior to PSO in this type of problems, but in 
other optimization problem such as constrained nonlinear program also [11]. 

Integer programming (IP) is a very important discrete optimization problem. Many 
of combinatory optimization (CO) can be reduce to IP. Therefore, an efficient 
technique to solving IP problem can be employed to many CO problems. Based on 
the work in this paper, which is our first attempt to use QPSO to solve discrete 
optimization problem, the future work will focus on practicability of QPSO on some 
NP-complete combinatory problems. 
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Abstract. Particle swarm optimization is widely applied for training
neural network. Since in many applications the number of weights of NN
is huge, when PSO algorithms are applied for NN training, the dimension
of search space is so large that PSOs always converge prematurely. In
this paper an improved stochastic PSO (SPSO) is presented, to which a
random velocity is added to improve particles’ exploration ability. Since
SPSO explores much thoroughly to collect information of solution space,
it is able to find the global best solution with high opportunity. Hence
SPSO is suitable for optimization about high dimension problems, espe-
cially for NN training.

1 Introduction

As an attempt to model the processing power of human brain, artificial neural
network is viewed as universal approximation for any non-linear function. Up
to now many algorithms for training neural network have been developed, es-
pecially backpropagation (BP) method. In literatures there are several forms of
backpropagation, in which the conventional backpropagation method is the one
based on the gradient descent algorithm. Therefore BP is strongly dependent
upon the start of learning. That means a bad choice of the starting point may
result in stagnation in a local minimum, so that a suboptimum is found instead
of the best one. Moreover since many evaluation functions in learning problems
are often nondifferentiable or discontinuous in the solution domain, it is difficult
to use traditional methods based on derivatives calculations. To overcome these
drawbacks, another technology, evolutionary computation, is broadly used in NN
training instead of BP.

In evolutionary computation, one well known technology used for NN training
is genetic algorithm (GA), which is viewed as a stochastic search procedure
based on the mechanics of natural selection, genetics, and evolution. At the
same time, since NN training can be viewed as a kind of optimization problem,
recently some evolutionary algorithms inspired by social behavior in the nature
are also developed to solve NN training, such as particle swarm paradigm, which
simulates swarm behavior of ants or birds.

Since particle swarm optimization (PSO) was firstly developed in 1995 [1]
[2], it has been an increasingly hot topic involving optimization issues [3,4,5,6].

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1051–1060, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Roughly speaking, as a recursive algorithm, the PSO algorithm simulates so-
cial behavior among individuals (particles) “flying” through a multidimensional
search space, where each particle represents a point at the intersection of all
search dimensions. The particles evaluate their positions according to certain
fitness functions at every iteration, and particles in a local neighborhood share
memories of their “best” positions, then use those memories to adjust their own
velocities and positions. Due to PSO’s advantages in terms of simple structure
and easy implementation in practice, there are more and more papers referring
training of neural network using PSO. Normally it is accepted that PSO-NN
has the following advantages, which are with respect to the drawbacks of BP
mentioned above:
– Different from BP, which is normally used in optimization problems with

continuous or differentiable evaluation function, PSO algorithm can solve
optimization problems with noncontinuous solution domain. Moreover there
is no constraint for transfer function, so that more transfer functions, even
nondifferentiable ones, can be selected to fulfill different requirements.

– Comparing with BP, the exploration ability embedded in PSO enables NN
training using PSO be more efficient to escape from local minima.

But as a stochastic method, PSO method suffers from the “curse of dimen-
sionality”, which implies that its performance deteriorates as the dimensionality
of the search space increases. To overcome this problem, a cooperative approach
named cooperative PSO (CPSO) is proposed in which the solution space is
split into several subspaces with lower dimension, and several swarms in these
subspaces cooperate with each other to find the global best solution[6] [7]. Co-
operating with a traditional PSO, CPSO-HK can improve performance of PSO
significantly. But due to multiple subspaces, there are several times of updat-
ing at one iteration, so that generally the computation time of CPSO is several
times more than traditional PSO. In fact since in NN training, the dimension of
solution space is determined by the number of weights, normally the dimension
of solution space is large, so that the computation cost using CPSO becomes
large.

We think the reason resulting in “curse of dimensionality” is the fast conver-
gence property of PSO. For a large dimension optimization problem, particles
converge so fast that the exploration ability brought by cognitive and social com-
ponents is weaken too fast to explore solution space thoroughly. Hence instead
of splitting solution space into several subspaces, improving exploration ability
looks as an alternative to overcome the curse. Therefore we propose a stochastic
PSO with high exploration ability to accomplish NN training with relative small
size but high efficiency.

2 Stochastic PSO with High Exploration Ability

2.1 Restricts of the Conventional PSO

Given a multi-layer neural network, all its weights are combined together to
form a vector which is viewed as a solution vector in a solution space of PSO.
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Then a swarm is employed whose members (particles) represent such solution
candidates. According to certain criterions, such as minimal root of mean square
error (RMSE), all particles congregate to a position on which the coordinate
represents the best solution they found.

The conventional PSO updating principle with inertia weight is expressed as
follows:

vid(n+ 1)=wivid(n) + c1r1id(n)(P d
id(n)−Xid(n)) + c2r2id(n)(P g

id(n)−Xid(n))
Xid(n+ 1) = Xid(n) + vid(n+ 1),

(1)
where d = 1, 2, · · · , D, D is the dimension of the solution space, vi represents
current velocity of particle i, Xi = [xi1 xi2 · · · xiD ]T represents current
position of particle i. The second part on the right side of updating of vi(n+ 1)
is named the “cognitive” component, which represents the personal thinking of
each particle. The third part is named the “social” component, which represents
the collaborative behavior of the particles to find the global optimal solution.
Obviously the random exploration ability is determined by P d

i (n) −Xi(n) and
P g

i (n)−Xi(n). This induces a drawback about PSO exploration that the inten-
sion of exploration behavior is totally determined by the rate of decreasing of
P d

i (n)−Xi(n) and P g
i (n)−Xi(n).

Therefore for a high dimensional optimization problem, such as NN training,
when PSO converges quickly, exploration behavior is also weaken so quickly that
particles may not search sufficient information about solution space, and they
may converge to a suboptimal solution. Since such a relatively low exploration
ability is induced by constraints of direction and intension of the cognitive and
the social components, a method to overcome the constrained exploration be-
havior is adding a random exploration velocity to updating principle which is
independent on positions. Based on explicit representation (ER) of PSO [8], we
propose a new stochastic PSO (SPSO) represented by the following definition.

2.2 Definition of Stochastic PSO (SPSO)

A stochastic PSO (SPSO) is described as follows: Given a swarm including M
particles, the position of particle i is defined as Xi = [xi1 xi2 · · · xiD ]T ,
where D represents the dimension of swarm space. The updating principle for
individual particle is defined as

vid(n+ 1) = ε(n)
[
vid(n) + c1r1id(n)(P d

id(n)−Xid(n))
+c2r2id(n)(P g

id(n)−Xid(n)) + ξid(n)]
Xid(n+ 1) = αXid(n) + vid(n+ 1) + 1−α

φid(n) (c1r1id(n)P d
id(n) + c2r2id(n)P g

id(n)),
(2)

where d = 1, 2, · · · , D, c1 and c2 are positive constants; P d
i (n) represents the

best solution found by particle i so far; P g
i (n) represents the best position found

by particle i’s neighborhood; φi(n) = φ1i(n) + φ2i(n), where φ1i(n) = c1r1i(n),
φ2(n) = c2r2i(n).
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If the following assumptions hold,

1. ξi(n) is a random velocity with constant expectation,

2. ε(n)→ 0 with n increasing, and
∞∑

n=0
εn =∞,

3. 0 < α < 1,

4. r1id(n) and r2id(n) are independent variables satisfying continuous uniform
distribution in [0, 1], whose expectations are 0.5,

then the updating principle must converge with probability one. Let P ∗ =
infλ∈(RD) F (λ) represent the unique optimal position in solution space. Then
swarm must converge to P ∗ if limn P

d
i (n) → P ∗ and limn P

g
i (n)→ P ∗.

2.3 Properties of SPSO

Property 1: Inherent Exploration Behavior
There is a threshold denoted by Nk, such that when n < Nk, the individual
updating principle is nonconvergent, so that particle will move away from the
best position recorded by itself and its neighborhood. But during this divergent
process, the particle is still recording its individual best solution and exchanging
information with its neighborhood. Hence this phenomenon can be viewed as a
strong exploration that during a period shortly after the beginning, i.e., n ≤ Nk,
all particles wander in the solution space and record the best solution found so
far. And when n > Nk, the swarm starts to aggregate by interaction among
particles.

Property 2: Controllable Exploration and Convergence
ξ(n) in SPSO is a stochastic component which can be designed freely. Obviously
without the additional stochastic behavior, or ξ(n) = 0, the SPSO behaves
much like the conventional PSO with relatively fast convergence rate, so that
intension of exploration behavior is weaken quickly. To maintain exploration
ability, a nonzero ξ(n) is very useful, which makes particles be more efficient to
escape from local minima. Moreover in applications ξ(n) with zero expectation
is more preferable than nonzero one, because ξ(n) with zero expectation makes
particles have similar exploration behavior in all directions.

In the description of SPSO the only requirement of ξ(n) is that its expecta-
tion is constant. But there is no restriction about its bound! That implies a very
useful improvement that the bound of ξ(n) can be time-varying. If the bound of
ξ(n) is constant, as n increases, ε(n)ξ(n) may be kept relatively strong enough to
overwhelm convergence behavior brought by cognitive and social components, so
that the convergence of SPSO would be delayed significantly. To overcome this
drawback, a time-varying bounded ξ(n) is proposed instead of the constant one,
which is expressed as ξ(n) = w(n)ξ̄(n), where ξ̄(n) represents a stochastic veloc-
ity with zero expectant and constant value range, w(n) represents a time-varying
positive coefficient, whose dynamic strategy can be designed freely. For example
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the following strategy of w(n) looks very reasonable to balance exploration and
convergence behaviors of SPSO.

w(n) =
{

1, n < 3
4Nb;

ηw(n − 1), n ≥ 3
4Nb,

(3)

where Nb represents the maximal number of iterations, and η is a positive con-
stant less than 1. Hence when n < 3

4Nb, a relatively strong velocity is applied
to the particles to increase their exploration ability. And in the last quarter of
iterations, the range of ξ(n) deceases iteration by iteration, so that the stochastic
behavior brought by ξ(n) will become trivial finally. In a sense during the last
part of iterations, such a weakened ξ(n) benefits particles to explore the vicinity
around the best solution carefully.

Since SPSO has strong exploration ability than the conventional PSO, it im-
plies that using SPSO, we can accomplish training of NN with relatively fewer
particles to reduce computational cost.

2.4 Algorithm of SPSO

Comparing with the conventional PSO, the key improvement of SPSO results
from the random exploration velocity ξ(n), which is added to the velocity up-
dating directly. Hence the algorithm of SPSO is very similar to the conventional
PSO, which is expressed as the following pseudocode.

Encode all weights into a particle coordinate, Xi = [xi1 xi2 · · · xid ]
Initialize S-PSO
n=1
do

for i = 1 to the swarm size
Calculate the RMSE, F (Xi(n))
if F (Xi(n)) < F (P d

i )
P d

i = F (Xi(n))
end if

end for
for i = 1 to the swarm size
P g

i = arg
j∈Ωi

(P d
j )

Determine wi(n) using (3)
ξi(n) = wi(n)ξ̄i(n)
Update vi(n+ 1) and Xi(n+ 1) using (2)

end for
n = n+ 1

while n < the maximal iteration

3 Experiment Setup

In order to compare SPSO training with other NN-training algorithms, in this
section we propose two tests with respect to two kinds of neural networks. The
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one is feed-forward version, which is used for a classification problem, the other
is recurrent version designed for temporal sequence generation. Four training
algorithms, including SPSO, GA, CPSO-HK, and BP are employed to train NN
weights. Both tests are repeated 25 runs, and the average results from 25 runs
are accepted as the performance of all algorithms. In Test 1, each algorithm is
processed for 1000 iterations (generations), and 2000 RMSE evaluations will be
executed in Test 2. The details about the setup of these two tests are presented
below.

3.1 Test Setup

Test 1: Feed-Forward NN
A wildly used problem in NN community named as Iris plants problem is em-
ployed for the test. Since iris plants include three species, Setosa, Versicolour, and
Virginica, species of iris can be classified based on plant measurement, including
sepal length, sepal width, petal length, and petal width. A feed-forward neural
network with a hidden layer can be employed to accomplish this classification
problem, whose architecture is chosen as 4 − 3 − 3 full connected feed-forward
neural network (FCFNN), just like Fig. 1 shows. Consequently if we take account
of the bias acting on NN nodes, there are 27 weights needing optimization. A
differentiable sigmoid function is chosen as transfer function in hidden layer and
output layer. A sample set including 150 samples is used as training set. For
the test, the root of mean square error (RMSE) is chosen as function evaluation
principle, and batch version of training is used to update weights.

Setosa

Virginica

Sepal Length

Petal Length

Petal Width
Input layer Hidden layer Output layer

Sepal Width
Versicolour

Fig. 1. The feed-forward NN for iris problem

Test 2: Recurrent NN
In this test a full connected recurrent neural network (FCRNN) is trained to
generate the following temporal trajectory, whose structure is shown in Fig. 2.

yd
1(t) = 0.35sin(0.5t)sin(1.5t).

The discrete-time step is set to Δt = 0.2, so that if the time range of the
trajectories are limited within the interval (0, 10], there are 50 steps within
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Fig. 2. The recurrent NN for temporal sequence generator

the interval. If there is no external input for FCRNN, the architecture of FCRNN
is designed such that 15 nodes in the hidden layer and two output nodes in output
layer are employed. Consequently there are 15×15 weights needing optimization.
The sigmoid function is also chosen as transfer function for all nodes. For the
test, the root of mean square error (RMSE) is chosen as function evaluation
principle.

3.2 Configurations of All Training Algorithms

In addition to SPSO with nonzero ξ(n), three other algorithms are chosen as
comparisons, which are CPSO-HK , GA, and BP, whose configurations are briefly
introduced as follows. The swarm size (with respect to SPSO and CPSO) or the
number of chromosomes (with respect to GA) for Test 1 is chosen as 25, while
that for test 2 is chosen as 100.

– To optimize NN weights using SPSO, all weights are combined to form a
potential solution, which is represented by a particle. Then when all particles
converge to a position, this position is viewed as the best solution found by
SPSO. And the weights picked up from the best solution are the optimized
weights for the NN. The parameters used in SPSO are chosen as: c1 = c2 =
3.5, α = 0.9. The form of ε(n) is of the form ε(n) = 5

(1+n)3.5 .
– CPSO-HK : The details of CPSO can be found in [7]. The updating principle

with decreasing inertia weight is used, where the inertia weight decreases
from 0.9 to 0.4 over the search, c1 = c2 = 1.49.

– GA: A standard GA algorithm with selection, crossover, and mutation oper-
ations is employed to optimize NN weights. The crossover probability is set
to 0.5, while the mutation probability is chosen as 0.1.

– BP: There are some differences between BPs used in FCFNN and FCRNN.
Although both algorithms are based on gradient decent, the BP for FCFNN
employs batch version of training, where the learning rate is set to 0.01,
while the BP for FCRNN is the epochwise BP through time [9], in which
the learning rate is set to 0.3.
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4 Test Results

4.1 Test 1: Classification Test Using Feed-Forward NN

This test is proposed to compare the performance of all algorithms for feed-
forward NN training. Table 1 shows the test results, including the average RMSE
and the standard deviations calculated from 25 runs. RMSE evaluations of all
algorithms over iterations (generations) are displayed in Fig. 3.

Table 1. Comparison results of Test 1

Iris Plants Classification

Algorithm Average Standard Deviation

S-PSO (ξ �= 0) 0.2534 0.04483

CPSO-H5 0.8317 0.4652 × 10−2

GA 0.5875 0.04869

BP 0.3027 0.08052

From Table 1, we observe that the performance of SPSO has two characters:

– After 1000 iterations, the optimal solution found by SPSO has the least
RMSE than other algorithms. Hence SPSO is more efficient to training
FCFNN weights.

– Relative to CPSO-H5, which employs five cooperative swarms, SPSO con-
verges much slowly. This phenomenon implies that the additional random
velocity ξ(n) partly counteracts the convergence behavior brought by the
cognitive and social components. At the same time the exploration ability
of particles in SPSO is enhanced, so that during the optimization, parti-
cles have more opportunities to collect information about the space out of
convergence trajectories.

A strategy of dynamic w(n) in terms of (3) is applied to ξ(n) to make ξ(n)
decrease quickly in the last quarter of iterations. Consequently in the last part
of iterations, SPSO converges much quickly, just as Fig. 3 shows, where the
trajectory of SPSO decreases quickly in the last quarter of iterations.

4.2 Test 2: Temporal Sequence Generation Using Recurrent NN

Relative to Iris plants classification, temporal sequence generator has a more
complex structure about NN, because there are 225 weights to be optimized,
while there are only 27 weights in Test 1. Therefore the dimension of solution
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Table 2. Comparison results of Test 2

Temporal Sequence Generation

Algorithm Average Standard Deviation

S-PSO (ξ �= 0) 0.01854 0.1911 × 10−2

CPSO-H10 0.4861 0.6960 × 10−2

GA 0.2272 0.2708 × 10−2

BP 0.1987 0.5696 × 10−10
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using SPSO (ξ �= 0)

space for PSOs and GA algorithms is 225, while the number of particles (with
respect to SPSO and CPSO) or chromosomes (with respect to GA) is prede-
termined as 100, which is much lower than the solution dimension. To enhance
exploration ability of CPSO, we let 10 cooperative swarms work together.
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The results about Test 2 are shown in Table 2, while the RMSE evolution
processes of all algorithms are shown in Fig. 4. Obviously the strong explo-
ration ability brought by ξ(n) makes SPSO perform better than other algo-
rithms. CPSO-H10 converges too quickly, so that it is premature before particles
approach the global best solution. Finally as an example, the trajectory gener-
ated by the temporal sequence generator is shown in Fig. 5, which is optimized
by SPSO.

5 Conclusion

The paper presents an improved PSO algorithm named SPSO to accomplish NN
training. The main improvement about SPSO is that a stochastic exploration
velocity denoted by ξ(n) is added to updating principle, so that particles in SPSO
have more powerful ability to explore within solution space. Two tests involving
FCFNN and FCRNN are proposed to compare SPSO with other algorithms, from
which it is observed that although SPSO converges slower than other algorithms,
SPSO-NN training performs better than other algorithms.
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Abstract. Training neural networks is a complex task of great importance in
problems of supervised learning. The Particle Swarm Optimization (PSO) con-
sists of a stochastic global search originated from the attempt to graphically sim-
ulate the social behavior of a flock of birds looking for resources. In this work
we analyze the use of the PSO algorithm and two variants with a local search op-
erator for neural network training and investigate the influence of the GL5 stop
criteria in generalization control for swarm optimizers. For evaluating these algo-
rithms we apply them to benchmark classification problems of the medical field.
The results showed that the hybrid GCPSO with local search operator had the best
results among the particle swarm optimizers in two of the three tested problems.

1 Introduction

Artificial Neural Networks (ANNs) exhibit remarkable properties, such as: adaptabil-
ity, capability of learning by examples, and ability to generalize [4]. When applied to
pattern classification problems, ANNs through supervised learning techniques are con-
sidered a general method for constructing mappings between two data sets: the exam-
ple vectors and the corresponding classes. As this mapping is constructed the ANN can
classify unseen data as one of the classes of the training process.

One of the most used ANN models is the well-known Multi-Layer Perceptron (MLP)
[20]. The training process of MLPs for pattern classification problems consists of two
tasks, the first one is the selection of an appropriate architecture for the problem, and
the second is the adjustment of the connection weights of the network. For the latter is
frequently used the Backpropagation (generalized delta rule) algorithm [3], a gradient
descent method which originally showed good performance in some non-linearly sep-
arable problems, but has a very slow convergence and can get stuck in local minima,
such as other gradient-based local methods [12][2]. In this work we focus only on the
second task, the optimization of connection weights of MLPs through the use of Hybrid
PSO methods.

Global search techniques, with the ability to broaden the search space in the attempt
to avoid local minima, has been used for connection weights adjustment or architecture
optimization of MLPs, such as evolutionary algorithms (EA) [5], simulated annealing
(SA) [21], tabu search (TS) [8], ant colony optimization (ACO) [14] and particle swarm
optimization (PSO) [11]. For example: in [4], a genetic algorithm [9] is hybridized with

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1061–1070, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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local search gradient methods for the process of MLP training (weight adjustment); in
[1], ant colony optimization is used for the same purpose; in [18], tabu search is used
for fixed topology neural networks training; in [19] simulated annealing and genetic
algorithms were compared for the training of neural networks with fixed topology, with
the GA performing better; in [16] simulated annealing and the backpropagation vari-
ant Rprop [15] are combined for MLP training with weight decay; in [22] simulated
annealing and tabu search are hybridized to simultaneously optimize the weights and
the number of active connections of MLP neural networks aiming classifiers with good
classification and generalization performance; in [6], particle swarm optimization and
some variants are applied to MLP training without generalization control.

The motivation of this work is to apply the PSO algorithm, its guaranteed conver-
gence variation (GCPSO) and the cooperative PSO (CPSO-Sk) to the process of weight
optimization of MLPs. Additionally, we hybridize the first two techniques with the lo-
cal gradient search algorithm Rprop, combine the cooperative form of the PSO with
the guaranteed convergence variation, and employ the GL5 [13] stop criteria in all
the tested algorithms in order to achieve networks with better generalization power.
For evaluating all of these algorithms we used benchmark classification problems of
the medical field (cancer, diabetes and heart) obtained from the repository
Proben1 [13].

The remainder of the article is organized as follows. Section 2 presents the standard
PSO and two variations: the Guaranteed Convergence PSO (GCPSO) and the Cooper-
ative PSO algorithms. The experimental setup of this work are described in Section 3.
Section 4 presents and analyzes the results obtained from the experiments, and finally,
in Section 5 we summarize our conclusions and future works.

2 Particle Swarm Optimization

The PSO optimization technique was introduced by Kennedy and Eberhart in [11] as a
stochastic search through an n-dimensional problem space aiming the minimization (or
maximization) of the objective function of the problem. The PSO was built through the
attempt to graphically simulate the choreography of a flock of birds flying to resources.
Later, looking for theoretical foundations, studies were realized concerning the way
individuals in groups interact, exchanging information and reviewing personal concepts
improving their adaptation to the environment [10].

In PSO, a swarm of solutions (particles) is kept. Let s be the swarm size, n be the
dimension of the optimization problem and t the current instant, each particle 1 ≤ i ≤ s
has a position xi(t) ∈ �n in the solution space and a velocity vi(t) ∈ �n which controls
the direction and magnitude of its movement. Also, each particle keeps in memory the
best individual position yi(t) ∈ �n visited until the instant t, and the whole swarm
keeps in memory the best position ŷ(t) ∈ �n visited so far by one of its particles.

As the algorithm iterates, the velocity of each particle is determined according to
the two main referential points of the search: the individual best position visited so far
(cognitive term of the optimization yi(t)) and the global best position visited so far
(social term social of the optimization ŷ(t)). The equations eq. (1) and eq. (2) describe,
respectively, how the new velocity and the new position of a particle are determined.
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vij(t + 1) = w vij(t)+c1 r1(yij(t) − xij(t)) + c2 r2(ŷj(t) − xij(t)),

1 ≤ i ≤ s, 1 ≤ j ≤ n.
(1)

xij(t + 1) = xij(t) + vij(t + 1),

1 ≤ i ≤ s, 1 ≤ j ≤ n.
(2)

The scalar w is the inertia weight (momentum term) which multiplies the prior ve-
locity of the particle (instant t) and controls the degree of exploration of the search. For
a more explorative search it has a value near 1 and for a more exploitative search the
value is generally situated near 0.4. The values r1 and r2 are uniform random variables
taken from Uij1(0, 1) and Uij2(0, 1), respectively. Both have the role of setting random
the influences of the two terms of the equation (cognitive and social). The individual
and global acceleration coefficients, 0 < c1, c2 ≤ 2, respectively, have fixed and equal
values, and are responsible for taking control of how far a particle can move in a single
iteration. The best individual position visited so far yi(t) is updated according to eq.
(3), while the best global position visited so far ŷ(t) is updated through eq. (4).

yi(t + 1) =

{
yi(t), if f(xi(t + 1)) ≥ f(yi(t))
xi(t + 1), if f(xi(t + 1)) < f(yi(t))

(3)

ŷ(t + 1) = arg min
yi(t+1)

f(yi(t + 1)), 1 ≤ i ≤ s. (4)

Additionally, the new determined velocity vi(t + 1) is clamped to [−vmax, vmax],
with vmax = xmax to avoid the "explosion" of the swarm, reducing the likelihood of
particles leaving the search space. This does not guarantee that a particle will always
be inside the boundaries of the search space, but reduce the distance that a particle
will move in one iteration. The standard PSO algorithm is presented in Fig. 1. Rapid
convergence in unimodal functions, with good success rate, and premature conver-
gence in multimodal functions are properties frequently attributed to the standard PSO
algorithm [6].

1: randomly initialize population of particles
2: repeat
3: for each particle i of the population do
4: if f(xi(t)) < f(yi(t)) then
5: yi(t) = xi(t)
6: end if
7: if f(yi(t)) < f(ŷ(t)) then
8: ŷ(t) = yi(t)
9: end if

10: end for
11: update velocity and position of each particle accord-

ing to eqs. (1) and (2)
12: until stop criteria being satisfied

Fig. 1. Standard PSO algorithm
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2.1 Guaranteed Convergence PSO

The standard PSO has a property that if xi = yi = ŷ which means that the particle i
is situated on the best point of the search space reached so far, then the velocity update
equation (eq. 1) is entirely dependent on the inertia term w vi(t). If the previous velocity
of that particle is very close to zero then the particle will stop moving, pushing the
particles to that point and causing the premature convergence of the swarm.

A small modification on the standard PSO is made by the guaranteed convergence
algorithm (GCPSO) [6] to deal with this problem. The idea is to modify the velocity
update equation only for the particles that reached the best global point of the search
space to avoid the premature convergence of the swarm and, at the same time, look for
better solutions at the vicinity of the current global best position ŷ. The new equation
used is represented by the expression eq. (5) in which i is the index of a particle that
reached the current best position of the swarm and r(t) is a random uniform number
taken from Uij(0, 1). The other particles of the swarm continue to use the standard
velocity update equation, i.e. the eq. (1).

vij(t+ 1) = −xij(t) + ŷj(t) + w vij(t) + ρ(t)(1 − 2r(t)) (5)

When this expression is summed to the current position of the particle (xij(t)), we
note that the term −xij(t) + ŷj(t) resets the current position of the particle to the best
global position ŷ(t), and the other two terms cause the PSO to perform a random search
in the area surrounding the global best position ŷ(t). The term ρ(t) of the equation is
an adaptive scaling factor that causes this effect on the search performed by the best
particle of the swarm. The next ρ(t) value is determined by the expression eq. (6), in
which #successes and #failures denote the number of consecutive successes and
failures of the search in minimizing the objective function, and sc and fc are threshold
parameters with initial values generally 5. Whenever the #success counter exceeds
the success threshold, this means that the area surrounding the best position may be
enlarged leading to the doubling of the ρ(t) value. Similarly, when the #failures
counter exceeds the failure threshold, it means that the area surrounding the global best
position is too big and need to be reduced as can be seen in eq. (6).

ρ(t + 1) =

⎧⎪⎨⎪⎩
2ρ(t) if #successes > sc

0.5ρ(t) if #failures > fc

ρ(t) otherwise

(6)

Every iteration that the search succeed in minimize the current best position, the
#successes counter is increased and the #failures counter is reset to zero. In the
same way, every iteration that the best global position ŷ(t) is not updated, i.e. an unsuc-
cessful iteration, the #failures counter is increased and the #successes counter is
reset to zero. Every time that the success or failure counters exceed their corresponding
thresholds, sc and fc, respectively, the exceeded threshold is increased.

2.2 Cooperative PSO

Since the creation of PSO, numerous improvements have been proposed, for exam-
ple: the use of a constriction factor [6] on the velocity update equation to help ensure
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convergence of the swarm; the introduction of many topologies of neighborhood other
than the standard global one (one best particle for the hole swarm) [10] to prevent the
premature convergence of the standard algorithm; the inclusion of the inertia weight
(originally not present on the velocity update equation) to control the degree of
exploration-exploitation of the search; the binary PSO for binary-domain optimization
problems [10]; among others.

Another PSO modification that have been considered with evolutionary algorithms is
the use of cooperation between populations. Although competition between individuals
usually results in good performance, better improvements can be obtained by the use of
cooperation between individuals and, additionally, between isolated populations [6].

One of the first forms of cooperation studied was based on evolution islands [5],
where each island corresponds to a geographically isolated subpopulation searching on
a separated area of the solution space. After m iterations, the islands send and receive
1 ≤ z ≤ 5 individuals promoting an information exchange between the islands. The
way islands interact is governed by the topology of the communications. The most used
topologies are ring, star, grid, among others. In star topology, for example, every island
receive and send individuals from/to the central island.

The use of evolution islands with PSO originated the MultiPSO algorithm which is
more appropriated to deal with multimodal problems or unknown-landscape objective
functions, due to its capability to keep more diversity than the original PSO. The draw-
back of the MultiPSO is the additional computational time and memory costs associated
with the parallel execution of the isolated PSOs.

Another way of cooperation that have obtained better results in numerical optimiza-
tion problems is based on the partitioning of the search space, which is applied to prob-
lems of high dimensionality. Thus, the original search space of dimension n is divided
into 1 ≤ k ≤ n partitions of size d, with k × d = n. In PSO this approach was
introduced by the algorithm CPSO-Sk [6,7].

Although the search space of dimension n has been divided into k partitions of di-
mension d in which a sub-search is executed, the problem remains an n-dimensional
one. So, the sub-populations of dimension d need to cooperate offering their best sub-
individuals to complete the information necessary to an evaluation of the objective func-
tion f : �n → �. Formally, the cooperation between sub-populations is made by the
concatenation of the current sub-individual which we want to evaluate and the best sub-
individuals obtained so far by the other partitions, at the corresponding positions. This
composition is represented by the context vector resultant of the function b(j, vec) ex-
pressed on the eq. (7), where vec is the sub-individual of the sub-population j that we
want to evaluate and Pi.ŷ is the best sub-individual of the sub-population i.

b(j, vec) ≡ (P1.ŷ, P2.ŷ, ..., Pj−1.ŷ, vec, Pj+1.ŷ, ..., Pk.ŷ) (7)

Thus, we can describe the CPSO-Sk algorithm as being realized by the cooperation
of PSOs that optimize every one of the k partitions of the search space. The k term is
the partitioning factor of the dimension of the problem. For more partitions and more
diversity of individuals, we choose a bigger value for the k factor leading to additional
computational cost and better results depending on the problem. With k = 1, the CPSO-
Sk algorithm works exactly as the standard PSO. The CPSO-Sk algorithm generally
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Table 1. Parameters of the particle swarm algorithms

Algorithm Description Parameter
PSO swarm size (s) 30

stop criteria 1000 iterations or GL5

quality measure of the MLPs (f(.)) Classif. Error Percentage (CEP)
search space limit (xmax) [−2.0, 2.0]

acceleration factors (c1 and c2) 1.4960
inertia factor (w) 0.7298

GCPSO initial ρ factor (ρ(1)) 1.0
initial success and failure thresholds (sc and fc) 5

CPSO-Sk partitioning factor (k) �1.3 ×√
#weights� [6]

has greater diversity and convergence speed than the standard PSO in a wide variety of
problems including the ones with multi-modality.

3 Experimental Setup

The experiments of this work included the standard PSO [11], the guaranteed conver-
gence PSO (GCPSO) [6], the cooperative PSO (CPSO-Sk) [7] and the resilient back-
propagation (Rprop) [15] for neural network training. Additionally, we combined the
CPSO-Sk algorithm with the guaranteed convergence version of the PSO leading to
the CGCPSO-Sk algorithm and hybridized the standard and guaranteed convergence
PSOs with the local search operator Rprop leading to the algorithms PSO-Rprop and
GCPSO-Rprop. The Rprop local operator was applied with 3 iterations to a particle of
the swarm whenever it failed in improving its current individual best position (yi(t)).

In this work also, all of the algorithms tested for weight adjustment used the GL5
stop criteria [13] for early stopping, in an attempt to increase the generalization power
of the networks tested. In the particle swarm algorithms the GL5 test was evaluated
whenever an improvement on the global best position ŷ(t) was obtained, and in the
Rprop algorithm this test was repeated after m fixed cycles (m = 5).

For evaluating all of these algorithms we used three benchmark classification prob-
lems of the medical field obtained from the Proben1 repository [13]. The cancer data
set (9 features and 699 examples) is related to the diagnosis of breast cancer in benign or
malignant and is the easiest problem among them. The diabetes data set (8 features
and 768 examples) is the hardest problem and is related to the detection of diabetes
from Pima Indians. Finally, the heart data set (35 features) is composed of 920 exam-
ples of heart disease prediction. All the three data sets consist of 2-class discrimination
problems.

The architecture of the networks was fixed in one hidden layer (number of inputs of
the problem - 6 hidden units - 2 output units) as seen on another works on the same
data sets [1,4]. The parameters of the PSO algorithms are described on Table 1. It
should be noted that: the parameters of the standard PSO are inherited by all the other
PSO variants implemented in this work; the GCPSO parameters are inherited by the
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Table 2. Mean and standard deviation of the CEP for each algorithm and each of the 3 data sets.
The best result for each data set among the Particle Swarm algorithms is indicated in bold.

Cancer Diabetes Heart
PSO 3.6800 (1.5842) 24.9688 (3.1705) 21.4174 (2.7177)
GCPSO 3.9543 (1.4129) 25.5000 (3.0100) 20.8435 (2.3979)
CPSO-Sk 4.0000 (1.5376) 26.3646 (3.5872) 19.8957 (2.3261)
CGCPSO-Sk 3.7486 (1.4643) 25.8750 (2.7627) 20.3217 (2.3459)
PSO-Rprop 3.8286 (1.5258) 25.3229 (3.2856) 20.0435 (2.2796)
GCPSO-Rprop 3.6000 (1.2480) 25.9271 (3.1497) 19.6435 (2.4436)
Rprop 3.4857 (1.4736) 23.5625 (3.1502) 18.9304 (2.4054)

CGCPSO-Sk and GCPSO-Rprop algorithms; and the parameters of the CPSO-Sk are
inherited by the CGCPSO-Sk algorithm.

4 Results

In order to compare the Classification Error Percentage (CEP) performance of all the
algorithms, each one was executed 50 independent times for each benchmark data set. In
every execution, the corresponding data set was randomly partitioned into three subsets:
training data set (50%), validation data set (25%) and test data set (25%). The validation
data set was directly used by the GL5 stop criteria in order to avoid the overfitting of
the training data by estimating a generalization error for different data.

The results of the experiments are shown in Table 2 in which we report the mean and
the standard deviation of the CEP for the 7 tested algorithms with the 3 data sets of the
medical field. From the Table 2 it is clear that the Cancer and the Diabetes are the
easiest and the hardest problems, respectively.

For all the tested data sets the local-search specific algorithm Rprop obtained the
best results compared to the particle swarm optimizers but with similar performances
to the GCPSO-Rprop and PSO algorithms considering the 95% confidence interval
of the performed t-tests (Figures 2 and 3). This is an evidence that the GL5 early
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Fig. 2. T-test comparison among the algorithms (CEP) for the data sets Cancer and Diabetes
with 95% confidence interval
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stopping heuristic is not appropriated to global search algorithms such as PSO. Also,
the hybrid algorithms PSO-Rprop and GCPSO-Rprop obtained similar results than their
original counterparts (PSO and GCPSO) as an evidence that the Rprop operator did not
considerably improve the PSO and GCPSO generalization performances.

Additionally, from the Table 2, and from the Figures 2 and 3, we note the worse
behavior of the cooperative PSOs for NN training in contrast with the very good results
obtained for numerical optimization. This is due to the fast convergence caused by the
greater diversity of particles created by feature space partitioning which in this work,
where the particle swarms tried to minimize only the training error, resulted in some
overfitting of the training data. Also, from the t-tests made (Figures 2 and 3), we can
statistically state that: all the algorithms had the same performance for the heart prob-
lem; all the PSO algorithms had the same performance and the Rprop algorithm was
better than the cooperative PSOs for the diabetes problem; and for the heart prob-
lem, all the PSO algorithms performed equally and the Rprop algorithm outperformed
only the standard PSO.
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Fig. 3. T-test comparison among the algorithms (CEP) for the Heart data set with 95% confi-
dence interval

5 Conclusions

In this work we have analyzed the feed-forward neural networks training problem with
the use of particle swarm optimizers (PSO) and hybrids. Additionally, we have tried to
increase the generalization performance of the obtained MLPs by introducing on the
PSO algorithm and its hybrids the GL5 stop criteria [13], guided by the CEP on the
validation data set to cease the execution of the algorithms before the overfitting can
happen.

The performance of the tested algorithms was evaluated with well known bench-
mark classification problems of the medical field (Cancer, Diabetes and Heart)
obtained from the Proben1 [13] repository of machine learning problems. The results
from the performed experiments show that the Rprop specific algorithm had the best
performance for the 3 data sets; the GL5 early stopping criteria, as used here, did not
increase the generalization performance of the swarm based algorithms; and that from
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the particle swarm optimizers, the GCPSO-Rprop obtained the best results for Cancer
and Heart data sets, and the standard PSO for the Diabetes data set.

As the results showed in Section 4 the local search operator Rprop used as a kind
of mutation did not improve very much the performance of the PSO and GCPSO algo-
rithms. Although, we have so far not tested other local algorithms such as Levenberg-
Marquardt and Backpropagation, so we cannot state that the use of local operators in
particle swarm optimizers is always of few use.

As future works, we plan to use other heuristics suited for generalization control
such as weight decay and pruning. Also, we intend to apply some of the algorithms
tested in this work to a more complete neural network optimization methodology based
on the simultaneous adjustment of weights and architectures of multi-layer perceptrons
(MLP).
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Abstract. Clonal selection theory describes selection, proliferation, and
mutation process of immune cells during immune response. In this Ar-
tificial Immune System (AIS), We select not only the highest affinity
antibody, but also other antibodies which have higher affinity than that
of current memory cell during affinity mutation process. Simulation re-
sults for pattern recognition show that the improved model has stronger
noise immunity ability than other models.

1 Introduction

Immune system, one of the most intricate biological systems, is a complex of
cells, molecules and organs that has ability to distinguish between self cells
and nonself cells[1] [2]. Clonal selection theory [3] describes the basic features of
immune response to an antigenic stimulus. It establishes the idea that only those
cells that recognize the antigens proliferate. When a B cell recognizes a nonself
antigen(Ag) with a certain affinity (the degree of the immune cells recognition
with the antigen), it is selected to proliferate and produce antibody(Ab) in high
volumes.

Artificial Immune System (AIS), inspired by natural immune system, has been
applied for solving complex computation or engineering problems. The authors
proposed AIS model to solve multiobjective optimization problems using the
clonal selection theory [4] [5]. Other authors [1] [6] described AIS and illustrated
the potential of AIS on pattern recognition problem. We also have studied the
immune system and proposed different AIS models [7] [8]. In this paper, we
built a novel AIS based on the clonal selection theory and simulation for pattern
recognition is also performed.

2 Artificial Immune System Model

Based on the CLONALG algorithm proposed by Castro L. [9] [10], basic steps of
algorithm proposed in this paper can be described as follows:

1. Generate an initial population of antibody randomly, it includes memory
population ABm and reservoir population ABr.

2. Present an antigen to the system and calculate the affinities between the
antigen and all antibodies, based on affinity function.

I. King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233, pp. 1071–1078, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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3. Select the highest affinity AB∗ and generate a temporary population of
clones ABC .

4. Mutate the clone population. Re-calculate the affinity between mutated
clone population and the antigen. Select the antibodies which have higher affinity
than current memory cell and regenerate a new antibody as a candidate memory
pattern. If its affinity is larger than the current memory pattern, the candidate
memory pattern becomes the new memory pattern.

5. Remove those antibodies with low affinities and replace them by new ran-
domly generated members.

6. Repeat step 2-5 until all antigens have been presented.
One generation of the algorithm is complete when all antigens have been

presented and all the steps have been carried out for each Ag.

Affinity. Mathematically, either an antibody or an antigen, can be represented
by a set of real-valued coordinates AB = (ab1, ab2, ..., abM ) and AG = (ag1, ag2,
..., agM ) respectively. The affinity between antigen and antibody is related to
their distance, e.g. the Euclidean distance or the Hamming distance. Equation
1 depicts the Hamming distance D between antibody and antigen.

D(j) = H(AG,AB(j)) =
M∑
i=1

|agi − abji | j = 1, 2, ..., N (1)

Obviously, the lower the D, the greater that antibody’s affinity with the anti-
gen presented. Hence, we give the affinity A(j) as:

A(j) = M −D(j) j = 1, 2, ..., N (2)

Selection and Proliferation. According to the affinity, we select the highest
affinity AB∗ and add it to the clone population.

AB∗ = argMax{A(1),A(2), ...,A(N)} (3)

We define CS as the clone population size. Then, the clone population can
be indicated as ABC = {AB1

C ,AB2
C , ...,ABCS

C }
Mutation. The mutation of antibody can be implemented in different ways,
such as multi-point mutation, substring regeneration and simple substitution
[6]. In this paper, the algorithm is implemented by using multi-point mutation.
According to the mutation rate MR, we randomly select different points and
mutate them.

Memory Pattern Update. In the paper [9], the author re-select the highest
affinity AB∗ for antigen to be a candidate to enter the memory population. If the
antigenic affinity of this antibody is larger than the current memory antibody,
then mutated AB∗ will replace this memory antibody. Refer to Fig. 1, AG is the
input antigen. MP is the current memory pattern. Then, we select the highest
affinity antibody and generate clones of this antibody and mutate the clone set
(AB1

C ,AB2
C , ...,ABCS

C ). According to the CLONALG rule, the highest affinity
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antibody ABCS
C is selected as a candidate to enter the memory population.

Because the affinity of ABCS
C with antigen is larger than the current memory

pattern, the candidate becomes the new memory pattern. The affinity of new
memory is 7.

     1  0  1  1  1  0  1  1  0  0

     0  1  0  0  1  1  0  1  0  1

     1  0  0  0  1  1  0  0  1  0
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     0  0  1  0  1  1  0  0  1  0

1
CAB

AG

MP

*AB

2
CAB

CS
CAB

'AB

2

.Aff

Fig. 1. Antibody mutation and memory pattern update

However, this method perhaps neglects other antibodies which have larger
affinity than the current memory antibody, such as AB1

C . Therefore, we select
all these antibodies which have larger affinities than current memory antibody
and regenerate a new antibody to enter the memory population. That is, we
collect all useful mutation information (AB1

C ,AB2
C , ...,ABCS

C ) and regenerate a
candidate to enter the memory population. According to the algorithm proposed
by us, we can get a new memory pattern AB′ which has higher affinity.

3 Simulation

In this section, we evaluate the proposed artificial immune model by being ap-
plied to pattern recognition. In order to compare the pattern recognition perfor-
mance of the proposed model with our early works [7] [8], we select the same data
set consists of ten Arabic numberals from website of Carnegie Mellon University
[11]. Each pattern is composed of 19*19 pixels.

3.1 Immune Memory

In the following, we will introduce the immune memory process. According to the
steps of algorithm proposed in Section 2, we generate random initial antibody
population at first. The antibody population includes memory population and
reservoir population. We randomly set the elements as 0 or 1.

In order to clearly explain the clonal selection, proliferation, and mutation
process, we select the input pattern ′0′ as an example to illustrate the immune
clone processes.
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According to Equation (1), (2), we can calculate the affinities of input pattern
′0′ with all antibodies. Table 1 shows the affinities ( Aff. ) between input pattern
and antibodies. We can easily select the highest affinity Antibody AB3

M to be
proliferated.

Table 1. Affinities of the input pattern ′0′ with antibodies

ABr ABm

Ab 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Aff. 187 183 192 185 187 174 181 176 192 183 174 166 193 178 180 178 190 170 179 167

In clonal selection algorithm, clone population size CS and mutation rate MR
are two important parameters. In these papers [9] [12], we find that the authors
usually set population size as the value from 50 to 100 and take a very low
mutation rate. Here, we set population seize as 100 and the mutation rate is
varied between 0.001 and 0.01.

As mentioned in Section 2, the main difference between the proposed algo-
rithm and other models is the update process. CLONALG algorithm selects the
highest mutated antibody as candidate memory cell. However, in our algorithm,
we select all antibodies which have higher affinities than current memory affinity
and regenerate a new antibody as candidate memory cell.

According to the mutation rule, we mutate the elements in clone popula-
tion. Here, a mutation rate of 0.008 is used. The affinity of current memory
cell’s is 260. The affinities of mutated antibodies are A(c5) = 261,A(c6) =
261, ...,A(c34) = 263, ...,A(c93) = 261.
CLONALG selects the highest affinity antibody as candidate memory cell. If

the selected AB′s affinity is greater than the current memory cell, then the
candidate becomes the new memory cell. Obviously, CLONALG selects AB34

C as
candidate memory cell and the candidate memory cell becomes new memory cell
finally. Fig. 2 (a) shows the new memory cell selected by CLONALG. Fig. 2 (b)
illustrates the result of the proposed algorithm. This algorithm synthesizes all
useful mutations and regenerates a new candidate memory cell. It has a higher
affinity than CLONALG and becomes new memory cell certainly. Round corners
rectangle indicates the mutation area in Fig. 2. It is clearly that the proposed
algorithm has higher mutation efficiency than CLONALG.

The former example is performed with the mutation rate of 0.008 and popula-
tion of 100. However, we want to know the exact behaviors of proposed algorithm
with different parameters, such as clone population size and mutation rate. We
use Hamming distance of all patterns to validate algorithm’s performance with
different parameters.

Fig. 3 (a) displays the Hamming distance of all patterns, after sufficient mu-
tation, with different population size from 10 to 5000. Here, sufficient mutation
means that the system reaches a stable state after certain generations. We find
that the system can reach the similar state after sufficient mutation, even if
using different clone population size. The lower Hamming distance, the higher
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Fig. 2. New memory pattern of CLONALG (a) and the proposed algorithm (b)

Fig. 3. Hamming distance with different population size

performance the mutated system possesses. Except for the performance of sys-
tem, the computational cost has to be considered.

Fig. 3 (b) presents the computational time (tick: 1/1000 s) when the system
reaching stable state with different population size. The solid line indicates the
computational time and the dotted line gives the relative error respectively. It
is clearly that the immune system, undergoing different mutation with diverse
clone population size, reaches a similar state.

According to the simulation results shown in Fig. 3 (a) and (b), we can draw
the conclusion about population size as following: If the clone population size is
too low, the system has few possibilities to mutation. On the other hand, if the
population size is too large, the computational cost becomes expensive. Based on
the simulation results, we consider that the best population size is about 80-100.

Mutation is intended to prevent falling of all solutions in the population into
a local optimum of the solved problem. In case of binary encoding we can switch
a few randomly chosen bits from 1 to 0 or vice versa.

Fig. 4 presents the simulation results varying process of system with different
mutation rate. It is obvious that a higher mutation rate dose not adjust the
system to stable state faster than low rate.
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Fig. 5. Mutation process of memory patterns

Based on the former simulation results, we set population size as 100, mutation
rate as 0.003 and the mutation process with different generations is shown in
Fig. 5.

3.2 Noisy Pattern Recognition

Random noise is added into the input patterns by converting the element’s value
from 1 to 0 or vice-versa. If the proposed system can map the noisy pattern
into the correct category, we think the recognition process is successful. We test
different noise number by repeating 1000 times to get a more accurate recognition
results. Fig. 6 presents the recognition results with different generations. We
find that the lower the clone generation, the lower recognition rate. However,
the system seems to reach the stable states when performing about 25 clone
generations.

Fig. 7 shows the recognition results of the proposed algorithm with 30 gener-
ations. We also present the simulation results of the AIS model [7] [8] proposed
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by us previously. Obviously, the proposed algorithm has a less sensitive to the
noise and can recognize the noisy patterns effectively.

4 Conclusions

In this paper, we proposed a clonal selection theory based artificial immune
system. In mutation process, we select all mutated antibodies which have higher
affinities than current memory cell and regenerate a new candidate memory cell.
Simulation results show that the proposed algorithm has an effective mutation
performance than CLONALG. In order to validate the algorithm, a comparison is
performed by applying noisy pattern recognition between the proposed algorithm
and other AIS models. Recognition results show that the proposed algorithm
has stronger noise immunity and can recognize the unseen noisy patterns more
effectively.
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Abstract. A pattern recognition approach, based on shape feature extraction, is 
proposed to infer genetic networks from time course microarray data. The 
proposed algorithm learns patterns from known genetic interactions, such as 
RT-PCR confirmed gene pairs, and tunes the parameters using particle swarm 
optimization algorithm. This work also incorporates a score function to separate 
significant predictions from non-significant ones. The prediction accuracy of 
the proposed method applied to data sets in Spellman et al. (1998) is as high as 
91%, and true-positive rate and false-negative rate are about 61% and 1%, 
respectively. Therefore, the proposed algorithm may be useful for inferring 
genetic interactions.  

Keywords: Particle swarm optimization, snake energy model, microarray data, 
genetic networks. 

1   Introduction 

The importance of genetic interactions, which often occur among functionally related 
genes, lies in the fact that they can predict gene functions (Tong et al., 2004). Gaining 
an understanding of genetic interactions in order to unravel the mechanisms of 
various biological processes in living cells has been a long-term endeavor. With the 
emergence of modern biotechnologies, such as advanced microarray technology, 
inferring genetic interactions among a group of genes has become feasible.  

Recently, there have been a few studies on transcriptional compensation (TC) 
interactions (Lesage et al., 2004; Kafri et al., 2005; Wong and Roth, 2005). Following 
a gene’s loss, its compensatory gene’s expression increases, and this phenomenon is 
known as TC. Reverse transcription (RT)-PCR experiments showed that besides TC, 
in some cases following a gene’s absence, its compensatory gene’s expression 
decreased; we call this phenomenon transcriptional diminishment (TD). Since the 
mechanism of transcriptional compensation is largely unknown, inferring such 
interactions is of interest. In particular, interactions among 51 yeast genes which is 
synthetic sick or lethal (SSL) to SGS1 or RAD27 (Tong et al., 2001; Tong et al., 
2004) is of interest. SGS1 (RAD27) has homologues in human cells include the 
WRN, BLM and RECQ4 (FEN1 and ERCC5) genes. Mutations in these genes lead to 
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cancer-predisposition syndromes, symptoms rSFEMbling premature aging and 
Cockayne syndrome (Tong et al., 2001 and NCBI database). 

With the abundant information produced by microarray technology, various 
approaches have been proposed to infer genetic networks. Most of them may be 
classified into three classes: discrete variable models, continuous variable models and 
graph models. Due to limit of space, our review here is sketchy; for a thorough 
review, we refer to Shieh et al. (2005). Graph models (for example Schäfer and 
Strimmer, 2005) depict genetic interactions through directed graphs or digraphs 
instead of characterizing the interactions quantitatively. Some graph models simply 
reveal structural information, others annotate the directions and signs of the 
regulations among genes. Owning to the simplicity, graph models usually require 
much less data than models in the other two categories. 

The proposed approach is, in fact, was implemented on indirect interactions among 
RT-PCR confirmed TC and TD pairs. For ease of description, in this section we 
henceforth utilize AT and RT, which are direct interactions, to denote TD and TC, 
respectively. Among RT-PCR confirmed gene pairs, when the time course microarray 
gene expression  (Spellman et al., 1998) of a target gene T is plotted lagged-1 in time 
behind that of  A or R  in general, AT gene pairs exhibit similar patterns across time 
as depicted in the blue zone of Figure 1. On the other hand, RT gene pairs have 
complementary patterns across time, as illustrated in Figure 2. These motivated us to 
develop a pattern recognition method that extracts the features of time course 
microarray data from those confirmed gene pairs, then it can predict similar 
interactions among genes of interest. Specifically, we generalize the snake energy 
model (SEM) (Kass et al., 1988) as a shape feature extraction method by 
incorporating the particle swarm optimization (PSO) algorithm to learn the 
parameters from data. Moreover, we integrate a simple windowed correlation to the 
proposed algorithm to improve its discrimination power. We call this method shape 
feature extraction model (SFEM). 

The rest of this paper is organized as follows. Section 2 introduces SFEM and PSO. 
The proposed SFEM is introduced in Section 3. In Section 4, SFEM is applied to 275 
RT-PCR confirmed gene pairs in yeast; the transcriptional compensation interactions 
are inferred from real microarray data (Spellman et al., 1998). We close with 
discussion and future directions in Section 5. 

2   Model and Methods 

2.1   Snake Energy Model 

General description. In the field of digital image processing, extracting an object 
with a designated shape from an image is a major problem needed to be solved. Many 
image segmentation algorithms have been proposed to accomplish such task. Among 
them, SEM is a well-known energy-minimizing approach (Kass et al., 1988) used to 
extract object in an image. In SEM, the model is a manually initialized contour. The 
idea of SEM is to evolve the contour, subject to constraints from a given gradient 
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Fig. 1. The gene expression pattern of 
Activator (POL32) to Target (TOP1) genes 
across time 

Fig. 2. The gene expression pattern of 
Repressor (SWE1) to Target (HST3) genes 
across time 

image, and the goodness of the model is decided by a hybridized objective function. 
For instance, starting with an initial contour around the object to be segmented, the 
contour is attracted toward its interior normal, and achieves the maximal score once 
the shape of the contour is well fitted to the boundary of the desired object. 
Consequently, the contour model dynamically deforms its shape to approximate the 
contour of the desired object.  

The hybridized objective function that drives the shape deformation consists of two 
forces, which are internal force and external force. The internal force is derived from 
the shape of the contour model, and the external force is derived from energy 
distribution of the contour overlap to the image. The function of the internal force is 
to minimize local curvature of the contour, and the external force is to keep the 
contour staying on the ridge formed by the gradient image. By applying the 
hybridized objective function with manual predefined weight factors, SEM can 
segment to either follow the ridge of the gradient image in a global optimal way, a 
exceeding precisely way, or any balanced way in between.  

The element of the SEM contour is composed of several vertexes. The deformation 
process of SEM is performed in a number of separately epochs. In each epoch, the 
goodness regarding to position, velocity, and acceleration of every vertex is 
evaluated, and the evaluation results in an acceleration of each vertex. The 
acceleration changes the velocity of the vertex, and the velocity determines the 
displacement of the vertex in each epoch. After a number of deformation epochs, 
SEM contour will reach in a converged shape, which means that SEM contour is 
already achieved an optimal score in the hybridized objective function, and the 
acceleration and velocity are nearly zero for every vertex in SEM contour. Moreover, 
the deformation is very robust to local optima problem, because SEM contour 
deforms segment by segment of the snake. The local-curve fitting technique can 
capture the finest details of the boundary of interest. 
 
Applying SEM to infer genetic networks: SFEM. In this study, each gene is 
represented by a node in a graphical model, which is denoted by Gi, where i = 1, 
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Fig. 3. The graphical model utilized in the proposed method. Genes are represented by nodes, 
and gene-gene interactions are symbolized by edges between two nodes. 

2, …, N. The edge Si,j represents the gene-gene interaction between Gi and Gj, where 
the enhancer gene Gi plays a key role in activating or repressing the target gene Gj. A 
fundamental graphical model for this work is depicted in Figure 3. Every edge Si,j 
possesses a value called interaction, which indicates the interaction type and 
significance level between Gi and Gj. If Si,j is greater than zero, it indicates that the 
edge is a transcriptional diminishment (TD) interaction, on the other hand, it’s a 
transcriptional compensation (TC) interaction if Si,j is lesser than zero. 
  In this work, we attempt to discover interaction links Si,j across time by the concept 
of SEM using gene expression time course data. A new method, called shape feature 
extraction model (SFEM), is presented to determine the interaction of all possible 
links between gene pairs. The lagged-1 gene expression of the enhancer gene is 
treated as SEM contour, and the gene expression of the target gene is considered as 
the boundary of interest in the SEM technique. We also found that the area 
surrounded by the lagged-1 expression of the enhancer gene and the expression of the 
target gene is an essential feature to infer the gene-gene interactions. Therefore, the 
equations for the SFEM can be formulated as follows: 
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where 1+=′ tt , ( )tGi ′  is the lagged-1 gene expression level of enhancer gene i at 

time point 1+t , ( )tG j  is the gene expression level of target gene j at time point t. 

In the Equation (1), we use the features of slope and curvature (obtained by the 1st- 
and 2nd-order partial differential terms) of the gene expression profiles to determine 
the expression similarity between the lagged-1 expression of the enhancer gene and 
the expression of the target gene. If these two genes share the same expression pattern 
across time, the internal force internal

, jiE  will result in a positive value because the 
shapes of two expression profiles are analogous to each other. On the other hand, the 
internal force internal

, jiE  will be in a negative value if two genes are complementary 
expressed to each other across time.  
    As to the modified external force external

, jiE  in Equation (2), the windowed 
correlation of expression levels between two genes are summed up into the modified 
external force external

, jiE . By cooperating with windowed correlation, we can simply 
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divide the nonlinear curve into smaller components, and the trend between two genes’ 
expression level can be analyzed using Pearson’s correlation. Thus, if the expressions 
between two genes have the same trend, the external force external

, jiE  would appear in 
positive number; on the other hand, if the expression appears to be compensative, 

external
, jiE  would be in negative number. Therefore, the external force plays a positive 

role in increasing the true-positive rate of the proposed SFEM. 
  In this study, because the gene expression profiles are discrete signals, the 1st- and 
2nd-order partial differential terms in Equation (3) can be reformulated as follow: 
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where ( ) ( )( )tGEtVtG itii ,, == . Therefore, the gene expression profile of gene Gi can 
be transformed into a 2-D spatial domain (where the horizontal axis represents the 
time steps, and the vertical axis represents the gene expression levels) to feed to the 
input of the proposed SFEM algorithm. Hence, the interaction Si,j can be determined 
as weighted sum of  internal

, jiE  and external
, jiE  as follow: 
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2.2   Particle Swarm Optimization 

Purpose of utilizing PSO. The main question of most of the existing computational 
algorithm is: How to determine the parameters of the algorithm? In the classical SEM, 
the weighting factors 1, 2, i and i are still been setup empirically. However, gene 
expression data obtained from different experiments on different species usually show 
in different patterns (such as yeast, human, etc). Therefore, to determine a proper set 
of parameters is needed to yield good prediction results on reconstruction of the 
genetic regulatory networks.  
 
Variables and methodology. The particle swarm optimization (PSO) algorithm was 
first introduced by Kennedy and Eberhart (1995). It is a stochastic optimization 
technique that likely to simulate the behavior of a flock of birds, or the sociological 
behavior of a group of people. Therefore, PSO is a population based optimization 
technique. 
    PSO algorithm contains a population called swarm. All individual particles are 
distributed in a solution space, and attempt to search for a global optimal solution by 
sharing the prior experiences obtained at current time. Every time when a particle 
moves toward to a new position, it would be a seesaw struggle between the optimal 
solutions obtained by both of the particle itself and the entire population. Generally, 
all particles will be attracted to the global optimal solution, and in the trending 
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process, other particles will be able to explore new regions, so better solutions can be 
found by the population. 
    Let Pi denotes a particle in the swarm population, where i = 1, 2, …, s, and s is the 
size of the total population. The current position, current velocity, individual optimal 
solution, and global optimal solution are xi,j, vi,j, yi,j and jŷ , respectively. Therefore, 
the new velocity of the i-th particle at j-th dimension can be formulated as follow: 

( ) ( ) ( ) ( )
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ˆ    

i j i j i i j i j

i j i j
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+ = + −
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,                       (6) 

where w represents the inertia weight, which typically chosen between 0 to 1 
empirically. c1 and c2 are weighting factors, which control the dependency of the 
affecting importance of yi,j and jŷ  in determining the new velocity. r1,i and r2,i are 
stochastic random factors in the range of (0, 1). The velocities of all particles are 
usually restricted in the range of (-vmax, vmax) to prevent those particles from moving 
too fast, which might miss passing some regions that contain great solutions. The new 
position of i-th particle is updated by 

( ) ( ) ( )11 ,,, ++=+ tvtxtx jijiji ,                                        (7) 

The individual optimal solution of i-th particle yi,j is renewed using 
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where f denotes the cost function (in this study, f represents the true positive rate 
using the solution carried by the i-th particle) corresponding to the problem needed to 
be solved. Finally, the global best solution jŷ  is found by 

( ) ( )( )1minarg1ˆ ,
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+=+ tyfty ji
y

j
ji

, si ≤≤1 .                             (9) 

Thus, in this work, parameters required to be optimized are weighting factors 1, 
2, i and i in the SFEM algorithm. After several iterations of PSO computation, the 

global best solutions represent the optimal values of weighting factors can be 
produced by PSO. Superior in selection of weighting factors can help the proposed 
SFEM algorithm to learn all essential expression patterns from all dataset of 
microarray gene expression data using the limited knowledge of RT-PCR confirmed 
gene-gene interaction pairs. 

3   Algorithm 

Microarray technology enables scientists to analyze gene-gene interactions on a 
genomic scale. Large amount of data are provided by a single microarray experiment 
in the laboratory. However, unfortunately, under different environment settings and 
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diagnosis subject, microarray gene expression data obtained from separately 
experiments might present in a unique gene expression pattern. Therefore, to 
recognize the important features in the gene expression pattern becomes an essential 
task in inferring of genetic networks. 

In this study, gene-gene interactions are identified using the interactions produced 
by SFEM. Let Si,j denotes the interaction between enhancer gene Gi and target gene 
Gj. The weighting factors 1, 2, i and i play essential roles in calculation of Si,j, 
because each of them controls the importance of individual features containing in the 
expression profile. Therefore, in order to obtain good inferring performance, it is a 
very important task to select good values to weighting factors 1, 2, i and i, and 
the PSO algorithm was applied to automatic discover a set of suitable parameters to 
acquire optimal inferring performance subject to a specific microarray gene 
expression data. A summarized version of the hybrid algorithm of SFEM and PSO is 
shown as below: 

Step 1: initialization A population (swarm) of particles Pi is randomly initialized, 
where i = 1, 2, …, s. Each particle carries a set of solution subject to the weighting 
factors 1, 2, i and i in the SFEM. All properties of the i-th particle, the current 
position xi,j, current velocity vi,j, individual optimal solution yi,j, and global optimal 
solution jŷ are randomly initialized in a limited 4-dimensional solution space.  

Step 2: make displacement The new velocity vi,j of each particle at j-th dimension 
can be calculated, and the new position xi,j can be updated. 

Step 3: evaluation Solutions xi,j carried by each particle in the population are 
applied to the SFEM algorithm for goodness evaluation, and the cost of each particle 
in the population, represented as f(xi,j), is the averaged true-positive rate calculated by 
leave-one-out cross validation.  

Step 4: update individual and global optimal solution  Update individual optimal 
solution yi,j of i-th particle to the current position xi,j if xi,j results in better true-positive 
rate than yi,j. Among all of the individual optimal solution yi,j, if any of them has better 
true-positive rate than global optimal solution jŷ , than update jŷ  by setting yi,j to 

jŷ . 
Step 5: check stop criterion If the max loop hasn’t been reached, then return step 2; 

otherwise, output the optimized solution for all of the weighting factors. 

4   Implementation 

4.1   Gene Expression Data 

Experimental data. Typical indicators of a compensatory relationship genes 
(paralogues) redundant pathways, and synthetic sick or lethal (SSL) interactions 
(Wang and Roth, 2005). Out of 51 yeast genes of interest, we focus on 17 genes, 
which are SSL to SGS1 or RAD27 (Tong et al., 2001), whose TC and TD interactions 
were confirmed by RT-PCR experiments. In this section, SFEM is applied to the 
cDNA microarray data in Spellman et al. (1998) to infer TC and TD interactions. The  
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Fig. 4. Effect of a 1 × 3 mean filter applied to 
the original expression data. Expression 
levels of repressor gene (CSM3) and target 
gene (HST3) are depicted in green and blue 
lines, respectively. Thin lines represent the 
original expression profile of the repressor 
and target genes, and the bold ones represent 
the result after de-noised by the utilized mean 
filter. 

Fig. 5. The PSO evolutionary graph of the cost 
function (number of predicted true-positive 
gene pairs) on Alpha dataset. Thin dash-dot 
lines represent evolutionary progress of each 
particle in the PSO population, and the bold dot 
line represents best performance obtained at 
the corresponding iteration. The results are 
check against 275 gene pairs that are confirmed 
by RT-PCR experiment. 

data used in this paper are results of four experiments. For each experiment, 
experiment and control group were mRNAs extracted from synchronized by alpha 
factor, cdc15, cdc28 and elutriation mutants, respectively. There are 18, 24, 17 and 14 
sampling time points in each of the experiment with no replicates. The red (R) and 
green (G) fluorescence intensities were measured from the mRNA abundance in the 
experiment group and control group, respectively. Log ratios of R to G were used to 
reconstruct the genetic interactions. A full description of experimental protocol and 
complete datasets are available at  ht tp: //cel lcycle-www.stanford.edu.  
    Noises are usually an unavoidable issue in measurement of fluorescence intensities 
in microarray experiments. At the most of times, noise signals might affect the 
precision of an analyzing algorithm, and might mislead it to a wrong conclusion on a 
given dataset. Therefore, in order to suppress noise signals containing in the raw data, 
a mean filter was applied to the dataset to smooth the variation of the whole gene 
expression profile. The effect of a 1 × 3 mean filter applied to the original raw data is 
demonstrated in Figure 4. The original expression profile of repressor gene CSM3 
(thin green line) appears quite noisy. It is very difficult to find any pattern or trend 
interacting with target gene HST3 (thin blue line) by eyes observation. Nevertheless, 
after we applied the mean filter to the expression levels of both genes, both filtered 
gene expression profiles (bold green and bold blue lines) shows a clearly TC pattern 
across time. The proposed SFEM infers the genetic networks by analyzing the shape 
and area formed by each gene pairs, and using a filtered dataset with clearer pattern 
would benefit to the analysis precision of the proposed algorithm. 
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4.2   Experimental Results 

Results of inferring gene-gene interactions. SFEM was applied to infer the genetic 
network using alpha dataset. The gene-gene influences are represented by the edges 
interaction links Si,j in the graph model, as shown in Figure 5. By utilizing the PSO 
algorithm (using PSO parameters w = 0.95, c1 = 1 and c2 = 1, which are commonly 
used empirically), the optimal values for weighting factors of the SFEM can be 
discovered. The evolutionary graph of the PSO algorithm is plotted in Figure 8, and it 
shows that the solutions were very quickly been found in no more than 10 iterations 
using 100 particles in the PSO population, all particles gathered together into 18 local 
best solution groups. Among all groups, the one that carries the best true-positive rate 
is the global best solution listed as follows: 

    1 = 1.01, 2 = 0.89, i = 0.24 and i = 2.90. 

Finally, the SFEM was applied to four datasets (alpha, cdc15, cdc28 and elu) using 
the weighting factors found by PSO. All of the sampling time points in the datasets 
are used in the evaluation process without discarding any sampled data (from the 1st to 
the end time points). And the results yielded by the SFEM using optimized 
parameters are summarized in the Figure 6, where TH is a threshold filter that neutrals 
the 1st- and 2nd-order partial differential terms in Equation (4) to suppress the level of 
disruption caused by noise signals. For the alpha dataset, the proposed SFEM yielded 
63% of true-positive rate with high prediction accuracy (88.4%) when applying an 
optimized cutoff value. Using alpha dataset as training dataset might be the reason of 
causing good prediction result. However, if we look into the results using the other 
three datasets, the true-positive rates are still as high as 64% to 66% with prediction 
accuracies ranging from 72% to 82%. 
 
Results of detecting SSL gene pairs. In this study, the SFEM algorithm was utilized to 
detect synthetic sick or lethal (SSL) interactions (Wong and Roth, 2005). SSL 
interactions are important for understanding how an organism tolerates genetic 

 
Leave-one-out cross validation 

Dataset 
Cutoff

Num. of 
correctly 
predicted 

Prediction 
accuracy 

Total     
predicted 

pairs 

Num. of 
correctly 
detected 

True-
Positive 

rate 

Num. of 
not 

detected 

False-
Negative 

rate 

alpha 2.25 43 88.4% 275 172 63% 2 1% 

cdc15 1.13 36 66.7% 240 156 65% 0 0% 

cdc28 2.94 34 82.4% 240 159 66% 0 0% 

elu 1.52 25 72.0% 240 153 64% 4 2% 

Fig. 6. The prediction results yielded by the proposed SFEM algorithm. The proposed 
algorithm was trained by alpha dataset cooperating with PSO algorithm. The trained SFEM was 
then applied to the other three datasets without further training. The results are check against 
275 gene pairs that are confirmed by RT-PCR experiment. 



1088 C.-L. Chuang, C.-M. Chen, and G.S. Shieh 

mutations. In present time, the task of identifying SSL interaction in any organism is 
still far from completion because mapping these networks is highly labor intensive. If 
the proposed SFEM has the capability of inferring SSL interactions, it could help the 
biological scientists investigating further SSL interaction with higher efficiency. 13 
TC interactions out of 872 SSL interactions were found in Wong and Roth (2005) 
using microarray data from Hughes et al. (2000). The trained SFEM found 177 TC 
interactions out of 872 SSL interactions using alpha dataset. Therefore, we can see 
that the proposed SFEM algorithm has highly ability of detecting SSL interactions. 

5   Discussion 

The proposed SFEM learns gene expression patterns from confirmed genetic 
interactions, confirmed through biological experiments or gathered from databases, 
then SFEM can predict similar genetic interactions using other not yet seen 
microarray data. Prediction accuracies of SFEM applied to the alpha dataset in 
Spellman et al. (1998) are as high as 88.4% with true-positive rate 63%. For the 
cdc15, cdc28 and elu datasets, which are excluded from the SFEM algorithm while it 
was been training. Prediction accuracies yielded by SFEM using cdc15, cdc28 and elu 
datasets are 67%, 82% and 72%, and true-positive rates are 65%, 66% and 64%, 
which are similar and consistent comparing to the result obtained using alpha dataset. 
Thus, SFEM may be useful for inferring gene-gene interactions using microarray 
data. 
    SFEM was also applied to alpha dataset again to detect SSL interactions. Among 
872 known SSL interactions, a trained SFEM successfully detected 142 SSL 
interactions. Because mapping SSL networks is an important task to discover how the 
organisms suffer from gene mutations. Therefore, by applying the proposed SFEM 
algorithm, larger amount of SSL interactions could be predicted in advance as a guide 
for scientists to investigate further SSL interactions. 
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Abstract. In high bit rate optical fiber communication systems, Polarization 
mode dispersion (PMD) is one of the main factors to signal distortion and needs 
to be compensated. Because PMD possesses the time-varying and the statistical 
properties, to establish an effective control algorithm for adaptive or automatic 
PMD compensation is a challenging task. Widely used control algorithms are 
the gradient-based peak search methods, whose main drawbacks are easy being 
locked into local sub-optima for compensation and no ability to resist noise.  In 
this paper, we introduce particle swarm optimization (PSO), which is an evolu-
tionary approach, into automatic PMD compensation as feedback control algo-
rithm. The experiment results showed that PSO-based control algorithm has 
unique features of rapid convergence to the global optimum without being 
trapped in local sub-optima and good robustness to noise in the transmission 
line that had never been achieved in PMD compensation before. 

1   Introduction 

In high bit rate optical fiber communication systems, when bit rate is beyond 10Gb/s, 
polarization mode dispersion (PMD) has become one of the main limiting factors 
preventing capacity increase, because of PMD induced signal distortion. So PMD 
compensation has become one of the hot topics in the field of optical communications 
in recent years [1, 2]. An ordinary feedback type automatic PMD compensator can be 
divided into three subparts: the PMD monitoring unit, the compensation unit, and the 
logic control unit. The details of the three subparts will be discussed in Section 2.1. 
Roughly speaking, the procedure of automatic feedback controlled PMD compensa-
tion can be described as: (1) the PMD monitoring unit detects the PMD correlated 
information as feedback signal. (2) The logic control unit automatically controls the 
compensation unit by an intelligent and rapid control algorithm through analyzing the 
feedback signal, and the compensation completes as result. In [1] and [2] the algo-
rithm used as the control part of a PMD compensator employed gradient based peak 
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search methods. However, we found that as the numbers of control parameters  
increased, the gradient based algorithm often became locked into local sub-optima, 
rather than the global-optimum. Besides, it would be less effective for a system with a 
relatively high noise level in the PMD monitor, because the gradient information 
between neighboring signals would be submerged in noise. We introduced the particle 
swarm optimization (PSO) into logic control unit for the adaptive PMD compensator 
for the first time, and realized a series of compensation experiments. With PSO algo-
rithm we give some of the feasible and effective solutions for some critical problems 
that were headaches in the field of PMD compensation for a long time past.  

2   A Brief Introduction to Polarization Mode Dispersion and PMD 
Compensation 

2.1   Polarization Mode Dispersion 

Polarization mode dispersion has its origins in optical birefringence [3]. In a single 
mode fiber, an optical wave traveling in the fiber can be represented as the linear 
superposition of two orthogonal polarized HE11 modes. In an ideal fiber, with a per-
fect circular symmetric cross-section, the two modes 11HE x  and 11HE y  are indistin-

guishable (degenerate) with the same time group delay. However, real fibers have 
some amount of asymmetry due to imperfections in manufacturing process or me-
chanical stress on the fiber after manufacture as shown in Fig. 1. The asymmetry 
breaks the degeneracy of the 11HE x  and 11HE y  modes, resulting in birefringence with a 

difference in the phase and group velocities of two modes. 
 

 
 
 
 
 
 
 
 

Fig. 1. Asymmetry of a real fiber and degeneracy of two orthogonal HE11 modes 

If a pulsed optical wave that is linearly polarized at 45° to the birefringence axis is 
launched into a birefringent fiber, the pulse will be splitted and separated at output 
end of the fiber due to the different group velocities of two HE11 modes, as shown in 
Fig. 2, resulting in a signal distortion in optical transmission system. The time separa-
tion between two modes is defined as differential group delay (DGD) Δτ. Roughly 
speaking, the fast and slow axis is called principal states of polarization. This phe-
nomenon is called polarization mode dispersion. 
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Fig. 2. Pulse splitting due to birefringence 

2.2   The Configuration of Automatic PMD Compensator 

Polarization mode dispersion can be divided into first-order and high-order PMD 
according to its Taylor-series expansion with frequency deviation Δω from the carrier 
frequency ω0. The first-order and second-order PMD are the two dominant impair-
ment factors to the optical fiber transmission systems. 

    
(a)     (b) 

Fig. 3. The configuration of one-stage and two-stage compensators 

There are two compensation schemes, pre-compensation and post-compensation. 
As mentioned in the section of Introduction, for the scheme of optical feedback post-
compensation, the compensator has three subparts: the PMD motoring unit, the com-
pensation unit, and the logic control unit. It is widely believed that the one-stage  
compensators are able to compensate PMD to the first-order. For the one-stage com-
pensator, the compensation unit is composed of a polarization controller (PC) whose 
function is to transform the state of polarization (SOP) of input optical wave into 
output state, and a differential group delay (DGD) line with the purpose of eliminat-
ing the DGD of the input optical signals (Fig. 3 (a)). One-stage compensator have 3 or 
4 control parameters (or degrees of freedom (DOF)), three for PC and one for DGD 
line, to be controlled depending on whether the DGD line is fixed or varied. The two-
stage compensators, composed of two segments of PC+DGD, can compensate the 
PMD up to the second-order [4]. They have two compensation units and 6 or 7 con-
trol parameters (or DOF) to be controlled depending on whether the second delay line 
is fixed or varied (Fig. 3 (b)). 

The automatic PMD compensation is a process for a control algorithm to find an 
optimal combination of control parameters, in order for the feedback signal (PMD 
motoring signal) to reach a global optimum, in an intelligent, fast, and reliable man-
ner. In our experiment, the degree of polarization (DOP), obtained by an in-line po-
larimeter in the PMD monitoring unit, was used as feedback signal.  The DOP of light 
wave is defined as follows using Stokes parameters S0, S1, S2, S3. 
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The DOP of any light wave varies in the range of 0 to 1. DOP takes value of 1 
when the light wave is completely polarized, 0 for unplolarized light, takes the value 
between 0 and 1 when the light wave is partially polarized. PMD would make a com-
plete polarized light signal in fiber to become partially polarized or even unpolarized. 
The optical pulses at the receiving end have a DOP of 1 when there is no PMD in the 
fiber link, and the DOP value decreases as PMD increases [2]. The polarization con-
troller used in the compensation unit is the electrically controlled whose three cells 
were adjusted by controlling voltages in the experiment. In our experiment, fixed 
delay line was adopted. Therefore the control parameters for the one-stage compensa-
tor were 3 voltages (V1, V2, V3) of PC, and the control parameters for the two-stage 
compensator were 6 voltages (V1, V2, V3, V4, V5, V6) of PC1 and PC2. 

The procedure of the PMD compensation is: the control algorithm in logic control 
unit automatically adjusts 6 voltages (V1, V2, V3, V4, V5, V6) of PC1 and PC2 until the 
feedback signal DOP reaches its maximum. 

3   Automatic PMD Compensation Using PSO Algorithm 

3.1   The Theory of PSO-Based Control Algorithm 

As mentioned in Section 2.2, the DOP value that is taken as the feedback signal de-
creases as PMD in the fiber link increases. In the feedback post-compensator, the task 
of the control algorithm in logic control unit is automatically searching for global 
maximum DOP through adjusting the multi-voltages of the polarization controllers 
(PCs) in the compensation unit, in an intelligent, fast, and reliable manner, which can 
be described mathematically as: 

MAX ( )
parameters

function  (2) 

where the function in bracket represents the DOP value in the fiber link. The parame-
ters here are the voltages for controlling the PCs in the compensation units. There is 
no simple method to predict function (2) in an automatic compensation system. A 
good algorithm is, therefore, required to solve problem (2), which is the problem of 
searching for the global maximum of DOP in a multi-dimensional hyperspace. The 
number of parameters (or degree of freedom) is the number of dimensions of the 
hyperspace, and is 3 for our one-stage compensator and 6 for our two-stage compen-
sator. 

Generally, more degrees of freedom result in more sub-maxima existing, which 
will increase the hard task of the searching algorithm. Unfortunately there exist sev-
eral DOP sub-maxima in the compensation process. Fig. 4 is a typical DOP surface 
map for our PMD compensation system. 

We can see in Fig. 4 that, there are several sub-maxima beside a global maximum 
in the searching space. We can also find that, the DOP surface is not smooth because 
of the noise in the fiber link. 
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Fig. 4. The DOP surface map in the PMD compensation system 

In most of the related literature about PMD compensation, the adopted control al-
gorithms have not been explicitly characterized. In [1] and [2] the algorithm used 
employed gradient based peak search methods. However, with the numbers of control 
parameters increasing, the gradient based algorithm often became locked into local 
sub-maxima, rather than the global-maximum. Besides, it would be less effective for a 
system with a relatively high noise level as shown in Fig.4, because the gradient in-
formation between neighboring signals would be submerged in noise. Therefore find-
ing a practical feedback control algorithm with the desirable features is still a chal-
lenging task. A competitive searching algorithm in PMD compensation should at least 
satisfy following features: (1) rapid convergence to the global optimum rather than 
being trapped in local sub-optima; (2) good robustness to noise. 

The PSO algorithm, proposed by Kennedy and Eberhart, has proved to be very ef-
fective in solving global optimization for multi-dimensional problems in static, noisy, 
and continuously changing environments [5, 6]. We introduced for the first time the 
PSO technique into automatic PMD compensation in a series of experiments [7]. 

At the beginning, the PSO algorithm randomly initializes a population (called 
swarm) of individuals (called particles). Each particle represents a single intersection 
of multi-dimensional hyperspace. The position of the i-th particle is represented by 
the position vector 1 2( , , , )i i i iDX x x x= . In the D-dimensional-DOF PMD compensa-

tion scheme depicted in Fig.3, the components of the i-th particle are represented by 
the combination of D voltages (V1, V2, …, VD). The particles evaluate their position 
relative to a goal at every iteration. In each iteration every particle adjusts its trajec-
tory (by its velocity 1 2( , , , )i i i iDV v v v= ) toward its own previous best position, and 

toward the previous best position attained by any member of its topological neighbor-
hood. If any particle’s position is close enough to the goal function, it is considered as 
having found the global optimum and the recurrence is ended.  

Generally, there are two kinds of topological neighborhood structures: global 
neighborhood structure, corresponding to the global version of PSO (GPSO), and 
local neighborhood structure, corresponding to the local version of PSO (LPSO). For 
the global neighborhood structure the whole swarm is considered as the neighborhood 
(Fig.5 (a)), while for the local neighborhood structure some smaller number of adja-
cent members in sub-swarm is taken as the neighborhood (Fig.5 (b)) [8]. The detail of 
process for implementing the global version of PSO can be found in [9]. In the global 
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neighborhood structure, each particle’s search is influenced by the best position found 
by any member of the entire population. In contrast, each particle in the local 
neighborhood structure is influenced only by parts of the adjacent members. There-
fore, the local version of PSO (LPSO) has fewer opportunities to be trapped in sub-
optima than the global version of PSO (GPSO). 

 
(a)                                             (b) 

Fig. 5. One of two topologic structures for (a) global neighborhood and (b) local neighborhood 

Generally, the larger the number of particles adopted in PSO, the fewer the oppor-
tunities to be trapped in sub-optima, but the greater the time spent searching for the 
global optimum. In our experiment 20 particles are used either in GPSO or LPSO, 
which is a balance between the accuracy required in searching for the global optimum 
and time consumed. For LPSO neighborhood, it is found that having 5 neighbors for 
every particle gives the highest success rate in finding the global optimum (Fig.5 (b)) 
[8]. The relationship for structure of LPSO we adopted is labeled in Table 1. 

Table 1. The neighborhood structure for topologic shown in Fig. 5 (b) 

Particle Neighbors Particle Neighbors 
1 2,3,4,5,6 11 8,12,13,14,15 
2 1,3,4,5,19 12 11,13,14,15,16 
3 1,2,4,5,18 13 11,12,14,15,17 
4 1,2,3,5,14 14 4,11,12,13,15 
5 1,2,3,4,10 15 9,11,12,13,14 
6 1,7,8,9,10 16 12,17,18,19,20 
7 6,8,9,10,20 17 13,16,18,19,20 
8 6,7,9,10,11 18 3,16,17,19,20 
9 6,7,8,10,15 19 2,16,17,18,20 

10 5,6,7,8,9 20 7,16,17,18,19 

3.2   The Results of the Automatic PMD Compensation Using PSO 

In the series of our automatic PMD compensation, we will describe here the results of 
one experiment we have done, the automatic second-order PMD compensation using 
two-stage compensator in 40Gb/s time-division-multiplexing (OTDM) transmission 
system, in order to show the effectiveness by using PSO algorithm. We employed 
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both GPSO and LPSO as the control algorithm respectively, in order to make a com-
parison of effectiveness of them. 

We conducted 18 times of compensation experiments, whose setup is depicted in 
Fig.3 (b), by controlling 6 voltages of PC1 and PC2 through the GPSO and LPSO 
algorithms, respectively. We randomly selected the 18 different initial PMD states of 
the PMD emulator (corresponding to 18 different initial DOP values) for 18 different 
experiments. The function of PMD emulator, which is located in front of the compen-
sator, is to emulate PMD as same as in real fiber. In every process of global DOP 
maximum searching, we recorded the variation of best DOP values in each iteration 
and, with the maximum iteration number set to 50, the results are shown in Fig. 6. 

Because of more local sub-maxima and relative high level noise in 6-DOF system, 
for the GPSO case there are some initial PMD states for which DOP only achieves the 
value of 0.7 (Fig. 6(a)), corresponding to being trapped in local sub-maxima and fail-
ure of compensation. In contrast, for the LPSO case all final searched DOP values 
exceed 0.9, no matter what the initial PMD state is (Fig. 6(b)). Furthermore, if we set 
DOP value of 0.9 as the criterion which is considered to achieve the compensation, all 
the DOP values reach that criterion within about 25 iterations, corresponding to com-
pensation time less than 550 ms. We can draw the conclusion that LPSO can better 
undertake the task of solving multi-dimensional problems, and that it is a better 
searching algorithm for adaptive PMD compensation up to high-order. 

            

 (a)                                                                  (b) 

Fig. 6. The best DOP vs. iteration recorded in 6-DOF second-order PMD compensation using 
LPSO (a) and GPSO algorithm (b) 

Fig. 7 shows the eye diagrams displayed on the screen of the oscilloscope at re-
ceiver end, in the whole procedure of automatic PMD compensation in 40Gb/s 
OTDM optical transmission system. The eye diagrams in left column of Fig. 7 are the 
40Gb/s OTDM signals in situations of back-to-back, before and after PMD compen-
sation. The eye diagrams in right column are the 10Gb/s demultiplexed signals with 
the same meaning. When we adjusted the PMD emulator with the result that the eyes 
were closed, implying severe PMD induced signal distortion with DOP = 0.23. After 
switching on the compensator, the eyes opened and DOP reached close to 1 within 
about 500 milliseconds through optimum searching by LPSO algorithm. 
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Fig. 7. Eye diagrams to show the procedure of automatic PMD compensation in 40Gb/s OTDM 
optical transmission system. (a) Back-to-back 40Gb/s OTDM signal. (b) Back-to-back demulti-
plexed 10Gb/s signal. (c) 40Gb/s signal without PMD compensation. (d) Demultiplexed 10Gb/s 
signal without PMD compensation. (e) 40Gb/s signal with PMD compensation. (f) Four demul-
tiplexed 10Gb/s signals with PMD compensation. 

3.3  The PSO Technique Used in Tracking Process of the Control Algorithm 

Because the PMD in the real fiber link always randomly changes due to changes in 
the environment such as temperature fluctuations etc, the tasks of the PMD compen-
sator are not only to quickly recover the optical fiber communication system from bad 
state when PMD severely distorts the optical transmission signals, but also to end-
lessly maintain this recovered state unchanged in a real-time manner. Therefore, the 
algorithm for real-time adaptive PMD compensation should include two stages. First, 
the searching algorithm finds the global optimum from any initial PMD condition. 
Then the tracking algorithm starts to track the changed optimum. 

From our experiment, when the PMD in the fiber link changes, the global DOP 
maximum just drifts away from the previous location as shown in Fig. 8. A natural 
thought of solution is a tracking method of slight disturbances or dithering around the 
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previous DOP maximum as shown Fig. 9, which was adopted in [2]. This was also 
gradient-based control algorithm which would not adequate for the systems with a 
relatively high noise level in the PMD monitoring unit. Furthermore, for a one-DOF 
control system, there are two directions (positive and negative) for dithering. For a 
two-DOF system, there will be 8 directions (east, west, south, north, southeast, south-
west, northeast, northwest), and for D-DOF, 3D-1 directions. In conclusion, for multi-
DOF systems the amount of calculation will become comparatively large, making it 
unsuitable for real-time tracking. 

 

Fig. 8. Location drifting of global DOP maximum from (a) to (c) indicating the PMD changes 
with time 

 

Fig. 9. The dithering solution for tracking the varied DOP maximum 

Because of its good performance in the presence of noise, and its multi-
dimensional searching capability, we used the PSO searching technique in the smaller 
6-dimensional local space around the previous optimum location to achieve the goal 
of tracking changing optimum. After the global optimum search process is completed, 
the tracking algorithm starts to work according to the DOP values. When the DOP in 
the fiber link is higher than 98% of that obtained for the previous optimum, the algo-
rithm does nothing. Otherwise, as long as the DOP is lower than this criterion, local 
space searching is initiated. The size of the local searching space is adjusted with time 
according to the deviation from the criterion DOP, which is set to 0.9×98%=0.88 for 
the experiment. For the tracking algorithm, 5 particles and GPSO were adopted be-
cause of the faster speed needed for tracking and the smaller space in which to search. 
The flow chart of the control program is shown in Fig. 10. 
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Fig. 10. The flow chart of the control program based on PSO 

In the experiment, the tracking algorithm worked well when the PMD in the fiber 
link varied slowly and smoothly with the environment. The eye diagrams are nearly 
unchanged. Fig.11 shows the tracking results with small vibration of DOP values 
around the criterion (0.88). But if there is a sharp disturbance in the fiber link, the 
tracking algorithm will force the system rapidly to recover to the condition beyond 
criterion. 

 

 

Fig. 11. The performance of the tracking algorithm for tracking the changed optimum DOP. 
(a)In relative long time, there are some sudden disturbances by sudden rotating the PC of emu-
lator. (b)Details of sudden disturbance . 
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4   Conclusions 

For the first time, we have introduced the particle swarm optimization into automatic 
polarization mode dispersion compensation. The experiment showed that PSO exhib-
ited the desirable features for automatic PMD compensation of rapid convergence to 
the global compensation optimum searching without being trapped in local sub-
optima that corresponded to the failure of compensation, and good robustness to noise 
in the transmission line. However, all these problems that PSO can solve were head-
aches in the field of PMD compensation for a long time past. By comparison of global 
version of PSO (GPSO) and local version of PSO (LPSO), it was shown that LPSO is 
better solution for automatic PMD compensation. 
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Abstract. The nature of construction claims is highly complicated and the cost 
involved is high. It will be advantageous if the parties to a dispute may know 
with some certainty how the case would be resolved if it were taken to court. 
The recent advancements in artificial neural networks may render a cost-
effective technique to help to predict the outcome of construction claims, on the 
basis of characteristics of cases and the corresponding past court decisions. In 
this paper, a split-step particle swarm optimization (PSO) model is applied to 
train perceptrons in order to predict the outcome of construction claims in Hong 
Kong. It combines the advantages of global search capability of PSO algorithm 
in the first step and the local convergence of back-propagation algorithm in the 
second step. It is shown that, through a real application case, its performance is 
much better than the benchmark backward propagation algorithm and the 
conventional PSO algorithm. 

1   Introduction 

The nature of construction activities is varying and dynamic, which can be evidenced 
by the fact that no two sites are exactly the same. Thus the preparation of the 
construction contract can be recognized as the formulation of risk allocation amongst 
the involving parties: the client, the contractor, and the engineer. The risks involved 
include the time of completion, the final cost, the quality of the works, inflation, 
inclement weather, shortage of materials, shortage of plants, labor problems, 
unforeseen ground conditions, site instructions, variation orders, client-initiated 
changes, engineer-initiated changes, errors and omissions in drawings, mistakes in 
specifications, defects in works, accidents, supplier delivery failure, delay of schedule 
by subcontractor, poor workmanship, delayed payment, changes in regulations, third-
party interference, professional negligence, and so on. 

Before the actual construction process, the involving parties will attempt to sort out 
the conditions for claims and disputes through the contract documents. However, 
since a project usually involves thousands of separate pieces of work items to be 
integrated together to constitute a complete functioning structure, the potential for 
honest misunderstanding is extremely high. The legislation now in force requires that 
any disputes incurred have to be resolve successively by mediation, arbitration, and 
the courts [1]. 
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By its very nature, the construction industry is prone to litigation since claims are 
normally affected by a large number of complex and interrelated factors. However, 
the consequence of any disagreements between the client and the contractor may be 
far reaching. It may lead to damage to the reputation of both sides, as well as 
inefficient use of resources and higher costs for both parties through settlement. The 
litigation process is usually very expensive since it involves specialized and complex 
issues. Thus, it is the interest of all the involving parties to minimize or even avoid the 
likelihood of litigation through conscientious management procedure and concerted 
effort. It is highly desirable for the parties to a dispute to know with some certainty 
how the case would be resolved if it were taken to court. This would effectively help 
to significantly reduce the number of disputes that would need to be settled by the 
much more expensive litigation process.  

Recently, soft computing (SC) techniques have been gradually becoming a trend. 
The characteristics of these data-driven approaches include built-in dynamism, data-
error tolerance, no need to have exogenous input and so on. Amongst others, artificial 
neural networks (ANN), in particular the feed forward back-propagation (BP) 
perceptrons, have been widely applied in different fields [2-6]. The use of ANN can 
be a cost-effective technique to help to predict the outcome of construction claims, on 
the basis of characteristics of cases and the corresponding past court decisions. It can 
be used to identify the hidden relationships among various interrelated factors and to 
mimic decisions that were made by the court. However, slow training convergence 
speed and easy entrapment in a local minimum are inherent drawbacks of the 
commonly used BP algorithm [7]. Swarm intelligence is another recent SC technique 
that is developing quickly [8]. These SC techniques have been applied successfully to 
different areas [9-12]. 

This paper presents a split-step PSO algorithm which is employed to train multi-
layer perceptrons for prediction of the outcome of construction litigation in Hong 
Kong. It is believed that, by combining the two algorithms, the advantages of global 
search capability of PSO algorithm in the first step and local convergence of BP 
algorithm in the second step can be fully utilized to furnish promising results. This 
paper contributes to the verification of this new algorithm to real prototype 
application. It can be extended and applied to other areas as well. 

2   Split-Step PSO Algorithm 

The combination of two different SC techniques could enhance the performance 
through fully utilization of the strengths of each technique. In this algorithm, the 
training process is divided into two stages. Initially the perceptron is trained with the 
PSO algorithm for a predetermined generation number to exploit the global search 
ability for near-optimal weight matrix. Then, after this stage, the perceptron is trained 
with the BP algorithm to fine tune the local search. This might be able to avoid the 
drawback of either entrapment in local minima in BP algorithm or longer time 
consumption in global search of PSO algorithm. 
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2.1   PSO Algorithm 

When PSO algorithm is initially proposed, it is considered a tool for modeling social 
behavior and for optimization of difficult numerical solutions [8,13]. This 
computational intelligence technique is intimately related to evolutionary algorithms 
and is an optimization paradigm that mimics the ability of human societies to process 
knowledge [14]. Its principle is based on the assumption that potential solutions will 
be flown through hyperspace with acceleration towards more optimum solutions. PSO 
is a populated search method for optimization of continuous nonlinear functions 
resembling the biological movement in a fish school or bird flock. Each particle 
adjusts its flying according to the flying experiences of both itself and its companions. 
During the process, the coordinates in hyperspace associated with its previous best 
fitness solution and the overall best value attained so far by other particles within the 
group are kept track and recorded in the memory.  

One of the more significant advantages is its relatively simple coding and hence 
low computational cost. One of the similarities between PSO and a genetic algorithm 
is the fitness concept and the random population initialization. However, the evolution 
of generations of a population of these individuals in such a system is by cooperation 
and competition among the individuals themselves. The population is responding to 
the quality factors of the previous best individual values and the previous best group 
values. The allocation of responses between the individual and group values ensures a 
diversity of response. The principle of stability is adhered to since the population 
changes its state if and only if the best group value changes. It is adaptive 
corresponding to the change of the best group value. The capability of stochastic PSO 
algorithm, in determining the global optimum with high probability and fast 
convergence rate, has been demonstrated in other cases [13-14].  

2.2   Training of Three-Layered Perceptrons 

PSO can be readily adopted to train the multi-layer perceptrons as an optimization 
technique. In the following section, a three-layered preceptron is considered, although 
the same principle still holds for other number of layers. W[1] and W[2] represent the 
connection weight matrix between the input layer and the hidden layer, and that 
between the hidden layer and the output layer, respectively. During training of the 
preceptron, the i-th particle is denoted by Wi = {W[1], W[2]} whilst the velocity of 
particle i is denoted by Vi. The position representing the previous best fitness value of 
any particle is denoted by Pi whilst the best matrix among all the particles in the 
population is recorded as Pb. Let m and n represent the index of matrix row and 
column, respectively, the following equation represents the computation of the new 
velocity of the particle based on its previous velocity and the distances of its current 
position from the best experiences both in its own and as a group. 
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where j = 1, 2; m = 1, …, Mj; n= 1, …, Nj; Mj and Nj are the row and column sizes of 
the matrices W, P, and V; r and s are positive constants; α and β are random numbers 
in the range from 0 to 1. In the context of social behavior, the cognition part 

)],(),([ ][][ nmWnmPr j
i

j
i −α  denotes the private thinking of the particle itself 

whilst the social part )],(),([ ][][ nmWnmPs j
i

j
b −β  represents the collaboration 

among the particles as a group. The new position is then determined based on the new 
velocity as follows: 
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The fitness of the i-th particle is determined in term of an output mean squared 
error of the neural networks as follows: 
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where f is the fitness value, tkl is the target output; pkl is the predicted output based on 
Wi; S is the number of training set samples; and, O is the number of output neurons. 

3   Application to Construction Litigation 

In this study, the system is applied to predict the outcome of construction claims in 
Hong Kong. The existing data from 1991 to 2000 are pre-processed initially and 
organized case by case in order to correlate the relationship between the dispute 
characteristics and court decisions. Through a sensitivity analysis, 13 case elements 
that seem relevant in courts’ decisions, which are namely, type of contract, contract 
value, parties involved, type of plaintiff, type of defendant, resolution technique 
involved, legal interpretation of contract documents, misrepresentation of site, radical 
changes in scope, directed changes, constructive changes, liquidated damages 
involved, and late payment, are identified.  

As far as possible, the 13 case elements are expressed in binary format; for 
example, the input element ‘liquidated damages involved’ receives a 1 if the claim 
involves liquidated damages or a 0 if it does not. However, some elements are defined 
by several alternatives; for example, ‘type of contract’ could be remeasurement 
contract, lump sum contract, or design and build contract. These elements with 
alternative answers are split into separate input elements, one for each alternative. 
Each alternative is represented in a binary format, such as 1 for remeasurement 
contract and 0 for the others if the type of contract is not remeasurement. In that case, 
only one of these input elements will have a 1 value and all the others will have a 0 
value. In this way, the 13 elements are converted into an input layer of 30 neurons, all 
expressed in binary format. The court decisions are also organized in an output layer 
of 6 neurons expressed in binary format corresponding to the 6 elements: client, 
contractor, engineer, sub-contractor, supplier, and other third parties. Table 1 shows 
examples of the input neurons for cases with different types of contract. 



 Prediction of Construction Litigation Outcome Using a Split-Step PSO Algorithm 1105 

Table 1. Examples of the input neurons for cases with different types of contract 

Cases  
Input neuron 

Remeasurement Lump sum Design and 
build 

Type of contract -
remeasurement 

1 0 0 

Type of contract - lump 
sum 

0 1 0 

Type of contract – design 
and build 

0 0 1 

In this case, 1105 sets of construction-related cases are employed, of which 550 
from years 1991 to 1995 are used for training, 275 from years 1996 to 1997 are used 
for testing, and 280 from years 1998 to 2000 are used to validate the network results 
with the observations. In the PSO-based perceptron, the number of population is set to 
be 40 whilst the maximum and minimum velocity values are 0.25 and -0.25 
respectively. In forming the data series for training and validation, a balanced 
distribution of cases is ensured. In order to determine the best architecture, a 
sensitivity analysis is undertaken to vary in the number of hidden layers and number 
of hidden neurons. After a lot of numerical experiments, the final perceptron is 
determined. Table 2 shows the parameters for the best architecture.  

Table 2. Parameters for the best architecture 

 Parameter 

No. of hidden layer 3 
No. of neuron in input layer 30 
No. of neuron in hidden layer 15 
No. of neuron in output layer 6 

Table 3. Comparison of prediction results for various perceptrons 

Training Validation  
Algorithm Coefficient of 

correlation 
Prediction rate Coefficient of 

correlation 
Prediction rate 

BP-based 0.956 0.69 0.953 0.67 
PSO-based 0.987 0.81 0.984 0.80 
Split-step 0.988 0.83 0.985 0.82 

4   Analysis and Discussions 

In evaluating the performance of the split-step multi-layer ANN, a comparison is 
made with several commonly used existing methods, i.e., the benchmarking standard 
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BP-based network and a PSO-based network. A fair and common initial ground is 
ensured for comparison purpose as far as possible. The training process of the BP-
based perceptron commences from the best initial population of the corresponding 
PSO-based perceptron or split-step network. Table 3 shows comparisons of the results 
of network for various perceptrons. It can be observed that the split-step algorithm 
performs the best in terms of prediction accuracy. It is noted that testing cases of the 
split-step PSO-based network are able to give a successful prediction rate higher than 
80%, which is much higher than by pure chance.  

Table 4 shows the steady-state fitness evaluation times during training for various 
perceptrons. The fitness evaluation time here for the PSO-based perceptron is equal to 
the product of the population with the number of generations. It can be observed that 
the split-step perceptron exhibits much faster convergence than those by the BP-based 
perceptron and the PSO-based network. It is, of course, recognized that there are 
limitations in the assumptions used in this study. Other factors that may have certain 
bearing such as cultural, psychological, social, environmental, and political factors 
have not been considered here. 

Table 4. Steady-state fitness evaluation times during training for various perceptrons 

Algorithm Steady-state fitness valuation time 
BP-based 22,400 
PSO-based 8,300 
Split-step 7,900 

5   Conclusions 

This paper presents the application of a perceptron based on a split-step PSO 
algorithm for prediction of outcomes of construction litigation on the basis of the 
characteristics of the individual dispute and the corresponding past court decisions. It 
is believed that, if the involving parties to a construction dispute become aware with 
some certainty how the case would be resolved if it were taken to court, the number of 
disputes could be reduced significantly. It is shown that the split-step PSO-based 
perceptron performs much better than the other commonly used optimization 
techniques in prediction of outcomes of construction litigation. The rate of prediction 
for the network finally adopted in this study is higher than 80%, which is much higher 
than pure chance. It can be used as a good prediction tool for the parties in dispute. 
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Abstract. A new method based on Hopfield Neural Networks (HNN) for 
solving real-time scheduling problem is adopted in this study. Neural network 
using competitive learning rule provides a highly effective method and deriving 
a sound solution for scheduling problem. Moreover, competitive scheme 
reduces network complexity. However, competitive scheme is a 1-out-of-N 
confine rule and applicable for limited scheduling problems. Restated, the 
processor may not be full utilization for scheduling problems. To facilitate the 
non-fully utilized problem, extra neurons are introduced to the Competitive 
Hopfield Neural Network (CHNN). Slack neurons are imposed on CHNN with 
respected to pseudo processes. Simulation results reveal that the competitive 
neural network imposed on the proposed energy function with slack neurons 
integrated ensures an appropriate approach of solving both full and non-full 
utilization multiprocessor real-time system scheduling problems. 

Keyword: Hopfield neural network, Scheduling, Slack neuron, Competitive 
learning. 

1   Introduction 

A real-time job scheduling problem is a timing constraint problem. Many approaches 
for solving the optimization problems are proposed. Artificial Neural Networks 
(ANN) has been widely used in many applications like operations research, 
production planning, image processing, identification and control, etc. A competitive 
neural network provides a highly effective means of attaining a sound solution and of 
reducing the network complexity. 

In general, job scheduling problems are seen as involving to execute a set of jobs 
satisfying a given type of constraints and optimizing a given criterion. Jobs are 
assigned timing constraints like ready time and deadline, and processing time [1]. Liu 
and Leyland was the pioneering paper about real time scheduling algorithms for 
mono-job or scheduling of independent and periodic tasks [2]. Willems and Rooda 
translated the job-shop scheduling problem onto a linear programming format, and 
then mapped it into an appropriate neural network structure to obtain a solution [3]. 
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Furthermore Foo and Takefuji et al. adopted integer linear programming neural 
networks to solve the scheduling problem by minimizing the total starting times of all 
jobs by a precedence constraint [4]. Yan and Chang developed a neural network 
algorithm derived from linear programming, in which preemptive jobs are scheduled 
according to their priorities and deadline [5]. Silva et al. explored the multi-process 
real-time scheduling with a HNN [6]. Above investigations concentrating on the 
preemptive jobs executed on multiple processors with job transfer by a neural 
network. Moreover, Hanada and Ohnishi [7] presented a parallel algorithm based on a 
neural network for task scheduling problems by permitting task transfer among 
processors. A classical local search heuristic algorithm was embedded into the TSP by 
Park [8]. In real-time applications, failure to meet timing constraints of system may 
lead to a hazardous situation. A modified neural network with slack neurons is 
constructed to solve the scheduling problems. In the HNN [9], the state input 
information from a community of neurons is received to decide neuron output state 
information. These neurons apply this information to cooperatively move the network 
to achieve convergence. The energy function used in the HNN is an appropriate 
Lyapunov function. Dixon et al. applied the HNN with mean field annealing to solve 
the shortest path problem in a communication network [10]. In our previous work also 
solved a multi-constraint schedule problem for a multi-processor or system by the 
HNN [11]. 

A CHNN applies a competitive learning mechanism to update the neuron states in 
the HNN. A competitive learning rule provides a highly effective method of attaining 
a sound solution and is capable of simplifying the network complexity. CHNN has 
been applied in image clustering processes and specific image segmentation [12][13]. 
The winner-take-all rule employed by the competitive learning mechanism ensures 
that only one job is executed on a dedicated machine at a certain time, enforcing the 
1-out-of-N constraint to be held. The maximum output value neuron of the set of 
neurons is activated. The monotonic of the maximum neuron follows the fact that it is 
equivalent to a McCulloch and Pitts neuron with a dynamic threshold [14]. A series of 
studies has been done using HNN and mean field annealing (MFA) techniques are 
utilized to multi-processor scheduling problem [15][16]. Cardeira and Mammeri 
investigated the multi-process and real-time scheduling to meet deadline requirements 
by applying the k-out-of-N rule, which extends slack neurons to a neural network to 
agree with the inequality constraints. They extended the methodology to handle real-
time scheduling with precedence constraints [17][18]. Tagliarini et al. demonstrated a 
weapon-to-target approach for a resource allocation task problem [19]. A slack 
neuron is associated with each weapon. The slack neuron activated represents the 
hypotheses that the associated weapon is not fired. In real-time scheduling problem, 
due to the capacity constraints or availability of resources, the processors may not 
reach full utilization. This work explores the real-time job scheduling problem on a 
non-fully utilized (incomplete usage) system including timing constraints. Extra slack 
neurons are added on to the networks to meet fully utilized conditions. 

The rest of this paper is organized as follows. Section 2 derives the corresponding 
energy function of scheduling problem according to the intrinsic constraints. Section 
3 reviews the competitive algorithm with slack neuron and translates the derived 
energy functions to the proposed algorithm. The simulation examples and 
experimental results are presented in Section 4. The conclusions showed in Section 5. 
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2   Energy Function of the Scheduling Problem 

The scheduling problem in this work is defined as follows. First, a job can be 
segmented with no job precedence relation, and the execution of each segment is 
preemptive. Second, job migration is not allowed between processors. Third, each 
job’s execution time and deadline and no setup time requirement. 

 

Fig. 1. 3-D Hopfield neural network 

 

 

Fig. 2. Neural network with slack neurons and 
corresponding Gantt chart expression 

The state variables Sijk  are displayed in Fig. 1. The “x” axis denotes the “job” 
variable, with i representing a specific job with a range from 1 to N+1, where N is the 
total number of jobs to be scheduled. The (N+1)th job is a pseudo-job. It is a 
supplementary job to fulfill 1-out-of-N rule for each column on a dedicated processor 
as shown in Fig. 2. The additional neurons are analogous to slack variables that are 
sometimes adopted to solve optimization problems in operation research, and are 
therefore called “slack neurons”. Herein, slack neurons are neurons in representing 
the pseudo-job. One processor processes a pseudo-job, indicating that the processor is 
doing nothing at this time as displayed at time 3 and 6 in Fig. 2. The “y” axis 
represents the “processor” variable, and the term j on the axis represents a dedicated 
processor from 1 to M, where M denotes the total number of processors. Finally, the 
“z” axis denotes the “time” variable, with k representing a specific time which should 
be less than or equal to T, where T is the job deadline. Thus, a state variable Sijk is 
defined as representing whether or not job i is executed on processor j at a certain 
time k. The activated neuron Sijk=1 denotes that the job i is run on processor j at time 
k; otherwise, Sijk=0. 

There are five energy terms of energy function to represent the problem. The first 
term is to ensure that processor j can only run one job at a certain time k. If job i is 
processed on processor j at time k (Sijk=1), there is no other job i' can be processed on 
same processor at the same time. This energy term is defined as 
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where N, M, T, i, j, k, i', and Sijk are as defined above, the rest of this study employs 
the same notations. This term has a minimum value of zero when it meets this 
constraint, which arises when Sijk=0 or Si’jk=0. The second term confines job 
migration, indicating that job i runs on processor j or j’. If a job is assigned on a 
dedicated processor, then all of its segments must be executed on the same processor, 
which is the non-migration constraint. However, the (N+1)th job is an exception 
which can be processed on different processors. Accordingly, the energy term is 
defined as follows: 
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This term also has a minimum value of zero when Sijk or Sij’k’ is zero. The third 
energy term is defined to meet the process time constraint as 
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where Pi is the process time of job i. For a feasible solution, the total processing time 
of job i is no more or less than Pi, such that iijk PS = , Eq. (3) becomes zero. The 

processing time of the pseudo-job (the N+1th job) is defined as the total available time 
for all processors subtracts the total processing time required by all N jobs. Moreover, 
the third constraint energy term that to ensure no two or more job being executed on a 
specific processor at a certain time when using the 1-out-of-N rule, is introduced as 
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Therefore, this energy term should also reach a minimum value of zero which 
satisfy 1-out-of-N rule. The following energy term is defined to meet the deadline 
requirement of each job i: 
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where di denotes the deadline of job i and H(Gijk) is the unit step function. Similarly, 
the maximum time limit is set to the deadline of the pseudo-job. The energy term will 
exceed zero when a job is allocated at time k, the run time k is greater than di, i.e., 
when Sijk=1, k-di>0, then H(Gijk)>0. The energy value grows exponentially with the 
associated time lag between di and k, given by k-di. Conversely, this energy term has a 
value of zero if Sijk=1 and k-di ≤ 0, which time job i is processed no more than di. 
Accordingly, the energy function with all constraints can be induced as shown in  
Eq. (6). 
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C1, C2, C3, C4, and C5 are weighting factors, they are assumed to be positive constants. 
Based on the discussion above, the derived energy function has a minimum value of 
zero when all constraints are met. Equation (6) can be proved to be an appropriate 
Lyapunov function for the system. 

3   Competitive Algorithm 

In this section, the defined energy functions are transformed onto the CHNN. In [20] 
and [21], a circuit composed of simple analog amplifiers that implements this type of 
neural networks was proposed. Based on dynamic system theory, the Lyapunov 
function [20] shown in Eq. (7) has verified the existence of stable states of the 
network system. The energy function representing the scheduling problem must be in 
the same format as the Liapunov function and expanded to a three-dimensional model 
as below 
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Sxyz and Sijk denote the neuron states, Wxyzijk represent the synaptic weight among 
neurons, and ijk denotes the threshold value representing the bias input of the neuron. 
The conventional HNN uses the deterministic rule to update the neuron state. The 
deterministic rule is displayed in Eq. (8). 
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Meanwhile, Netijk represents the net value of the neuron (i, j, k) obtained by the Eq. 
(9) as follows: 
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Instead of applying conventional deterministic rules to update the neuron states, this 
study uses competition rule to decide the winning neuron among the set of neurons, 
i.e., the active neuron. As discussed previously, a HNN applying a winner-take-all 
learning mechanism is called a competitive Hopfield neural network, CHNN. The 
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competitive rule is adopted to decide “exactly one neuron among N neurons” and can 
be regarded as a 1-out-of-N confine rule. Hence, the number of activated neurons 
during each time unit is exactly the number of processors. 

Since one processor can only execute one job at certain time in a subject 
scheduling problem. Thus, the C1 and C4 energy terms are omitted from Eq. (6).  
Restated, the first C1 and the fourth C4 energy terms are handled implicitly in 1-out-
of-N competitive rule. The resulting simplified energy function is as follows: 
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This simplified energy function must be an appropriate Lyapunov function. 

The synaptic interconnection strength xyzijkW and the bias input ijkθ  can be 

obtained by comparing Eq. (10) with Eq. (7) where 
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The CHNN imposed a competitive winner-take-all rule to update the neuron states. 
Neurons on the same column of a dedicated processor at a given time compete with 
one another to determine the winning neuron. The neuron that receives the highest net 
value is the winning neuron. Accordingly, the output of the winner neuron is set to 1, 
and the output states of all the other neurons on the same column are set to 0. For 
example, there are four jobs to be processed on two machines (processors) as 
displayed in Fig. 2. If jobs 2 and 3 are assigned to machine 1, then the neuron 
activated (Sijk=1) is shown by a solid node. Therefore, the final neural network state 
has exactly one activated neuron at a time for each machine. Restated, the neural state 
determination is regarded as a 1-out-of-N+1 rule. The winner-take-all update rule of 
the neuron for the ith column is illustrated as follows: 
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where Netxjk denotes the maximum total neuron input which is equivalent to the 
dynamic threshold on a McCulloch and Pitts neuron [14]. 
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4   Experimental simulations 

The simulations involve different sets of scheduling problems with timing constraints 
and use various set of weighting factors. The C2, C3, and C5 weighting factors used 
in the following simulation results were set to 1.35, 0.55 and 1.3 respectively. Table 1 
shows the timing constraints of simulation cases for 10 jobs on three processors 
(machines). Case 1 is the non-full utilization situation. Case 2 is the full utilization 
example. Case 2 is the same simulation example as in [16]. 

Table 1. Timing matrix of simulations 

 

The simulation results were displayed with neural states to graphically represent 
the job schedules. The neural states graph can be transferred into a Gantt chart 
expression as shown in Fig. 2. In our previous work [16], this is a full utilization 
problem. In this investigation, the proposed method solves both non-full utilization 
and full utilization real-time scheduling problems. Figures 3 and 4 illustrate the 
resulting schedules of case 1 and case 2 by the proposed algorithm. The job S as 
displayed in figures indicates slack neurons. Restated, the processor does nothing at 
that time while the slack neuron is activated. To minimize the completion time of a 
processor, the jobs behind the slack neurons can shift forward if there are no other 
constraints violated. 

 

Fig. 3. Job assignment for case 1 

Moreover, different initial neuron states are simulated to better understand the 
response of the neural network to the scheduling problem. Figure 5 is the simulation 
result of case 1 under different initial neuron states. Figure 6 displays the resulting 
schedules correlating with different initial neuron states for case 2. Different initial 
neuron states generate different feasible solutions. Notably, to guarantee convergence 
to a minimum, the neuron state update was performed sequentially with complete 
neuron update each time in the simulation. 
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Fig. 4. Job assignment for case 2 

 

Fig. 5. Job assignment for case 1 with different initial states 

 

Fig. 6. Job assignment for case 2 with different initial states 

This study proposed an approach for solving timing constraint problems with full or 
not full machine usage problems or with different initial states of neurons. From these 
simulations, each job has a process time and deadline which were given in advance. 
The proposed method can solve the real-time job scheduling problem by addressing 
the problem constraint. 

5   Conclusions 

The competitive mechanism eliminated the constraint terms in the energy function, 
simplifying the network by reducing the interconnections among neurons [12], and 
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this is shown in Eq. (10). Hence, the competitive scheme can help overcome the 
scaling problem.  

This investigation illustrated an approach to map the problem constraint into the 
energy function of the competitive neural network containing slack neurons which 
were involved so as to resolve the timing constraints schedule problem for both non-
full utilization and fully-utilization real-time systems. The proposed competitive 
scheme with slack neurons is applicable in solving real-time job scheduling problems, 
even in fully or non-fully utilized scheduling problems. Convergence is initially state 
dependent, as displayed in Fig. 5 and Fig. 6. Distributing the initial states randomly 
can generally produce feasible schedules for the investigated scheduling problem. The 
energy evolution may encounter oscillation behavior during network update. The 
entailed synaptic weight matrix in Eq. (11) has a symmetric (i.e. Wxyzijk = Wijkxyz,) 
property, but nevertheless has a self-feedback interconnection, indicating that 
Wxyzijk 0. Therefore, the network may oscillate when it is updated [20]. Consequently, 
a solution is not guaranteed, causing an inevitable oscillation procedure.  

Various sets of weighting factors were investigated. C2 and C3 were tightly 
coupled since they dominate the synaptic of the network. Different sets of weighting 
factors may produce different neural network revolutions. However, the reduction of 
energy terms in this work also assisted in easing this annoying affair. 

An important feature of a scheduling algorithm is its efficiency or performance, 
i.e., how its execution time grows with the problem size. The parameter most relevant 
to the time a neural network takes to find a solution is the number of iterations needed 
to converge to a solution. According to the simulation results, the proposed algorithm 
required an average of 5 ~ 20 epochs to converge. Consequently, this algorithm 
resulted in a O((N+1)2×M2×T2) upper bound complexity. Restated, the execution 
time was proportional to O(N2×M2×T2) for each epoch. Accordingly, finding the 
solution for a very large-scale system (very large N and/or very large M) is a 
drawback of the proposed model. Future works should examine how to reduce the 
complexities of solving the scheduling problems such as reducing the number of 
neurons and the interconnections among neurons.  

The energy function proposed herein works efficiently and can be applied to 
similar cases of investigated scheduling problems. The competitive scheme combined 
with slack neurons suggests that the way to apply this kind of scheduling has 
inequality constraints. This work concentrated mainly on solving job scheduling 
without ready time consideration or resource constraints. For more practical 
implementations, different and more complicated scheduling problems can be further 
investigated in future researches by applying the proposed algorithm.  
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Abstract. This paper presents a novel distributed Mean field Genetic algorithm 
called MGA for the load balancing problems in MPI environments. The pro-
posed MGA is a hybrid algorithm of Mean Field Annealing (MFA) and Simu-
lated annealing-like Genetic Algorithm (SGA). The proposed MGA combines 
the benefit of rapid convergence property of MFA and the effective genetic op-
erations of SGA. Our experimental results indicate that the composition of heu-
ristic mapping methods improves the performance over the conventional ones 
in terms of communication cost, load imbalance and maximum execution time. 
It is also proved that the proposed distributed algorithm maintains the conver-
gence properties of sequential algorithm while it achieves almost linear speedup 
as the problem size increases. 

Keywords: genetic algorithms, mean field annealing, simulated annealing, par-
allel processing, mapping.  

1   Introduction 

The load balancing mapping problem is assigning tasks to the processors in distrib-
uted memory multiprocessors [1, 2, 3, 4, 5]. Multiple tasks are allocated to the given 
processors in order to minimize the expected execution time of the parallel program. 
Thus, the mapping problem can be modeled as an optimization problem in which the 
interprocessor communication overhead should be minimized and computational load 
should be uniformly distributed among processors in order to minimize processor idle 
time. The load balancing is an importance issue in parallel processing. 

The proposed Mean Field Genetic Algorithm (MGA) is a hybrid algorithm based 
on mean field annealing (MFA) [1, 4] and genetic algorithm (GA) [2, 5, 6]. MFA has 
the characteristics of rapid convergence to the equilibrium state while the simulated 
annealing (SA) [6, 7] takes long time to reach the equilibrium state. In the proposed 
method, the typical genetic algorithm is modified where the evolved new states are 
accepted by the Metropolis criteria as in simulated annealing. The modified Simulate 
annealing-like Genetic Algorithm is called SGA. The simulation results show that the 
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new MGA is better than MFA and GA, as it reduces inter-processor communication 
time, load imbalance among processors and expected maximum execution time of the 
program.  

Proposed MGA algorithm takes long time comparing with other mapping algo-
rithm such as MFA and GA, but it must be solved before the execution of a given 
parallel program in a parallel computer. So the efficient parallel implementation of 
mapping algorithm is essential for developing parallel programs because the mapping 
algorithm can be considered as a sequential preprocessing and can be a bottleneck of 
parallel implementation. We propose two phases of distributed implementation of 
proposed MGA algorithm. The first phase is for MFA and the second one is for SGA. 

2   The Mapping Problem in Multiprocessors 

The multiprocessor mapping problem is a typical load balancing optimization prob-
lem. A mapping problem can be represented with two undirected graphs, called the 
Task Interaction Graph (TIG) and the Processor Communication Graph (PCG). TIG is 
denoted as GT(V, E). |V| = N vertices are labeled as (1, 2, …, i, j, …, N). Vertices of 
GT represent the atomic tasks of the parallel program and its weight, wi, denotes the 
computational cost of task i for 1  i  N. Edge E represents interaction between two 
tasks. Edge weight, eij, denotes the communication cost between tasks i and j that are 
connected by edge Eji ∈),( . The PCG is denoted as GP(P, D). GP is a complete 
graph with |P| = K vertices and |D| = KC2 edges. Vertices of the GP are labeled as (1, 2, 
…, p, q, …, K), representing the processors of the target multicomputers. Edge 
weight, dpq, for 1  p,q  K and p  q, denotes the unit communication cost between 
processor p and q.  

The problem of allocating tasks to a proper processor is to find a many-to-one 
mapping function M: V P. That is, each vertex of GT  is assigned to a unique node of 
GP. Each processor is balanced in computational load (Load) while minimizing the 
total communication cost (Comm) between processors.  
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M(i) denotes the processor to which task i is mapped, i.e. M(i) = p represents that 
task i is mapped to the processor p. In Equation (1), if tasks i and j in GT  are allocated 
to the different processors, i.e. M(i)  M(j) in GP, the communication cost occurs. The 
contribution of this to Comm is the multiplication of the interaction amount of task i 
and j, eij, and the unit communication cost of different processors p and q, dpq , where 
M(i) = p and M(j) = q. Loadp in Equation (2) denotes the summation of computational 
cost of tasks i, wi, which are allocated processor p, M(i) = p.  

Figure 1 shows an example of the mapping problem. Figure 1(a) represents TIG of 
N=6 tasks, and Figure 1(b) is for PCG of 2-dimensional mesh topology consisting of 
K=4 processors. The numbers in circles represent the identifiers of tasks and  



1120 K. Park, S. Kim, and C. Hong 

processor in Figure 1(a) and 1(b) respectively. In Figure 1(a), the weight of vertices 
and edges is for size of tasks and communications respectively. In Figure 1(b), the 
weight of edge represents the number of hops between two processors. Figure 2 
shows the optimal task allocation to processors on the mapping problem of Figure 1. 

 

Fig. 1. The Example of Mapping Problem 

 
i 1 2 3 4 5 6 

M(i) 1 2 4 2 1 3 

Fig. 2. The Optimal Solution of Figure 1 

In MGA, a spin matrix is used to represent the mapping state of tasks to proces-
sors. A spin matrix consists of N task rows and K processor columns representing the 
allocation state. The value of spin element (i, p), sip, is the probability of mapping task 
i to processor p. Therefore, the range of sip is 0  sip  1 and the sum of each row is 1. 
The initial value of sip is 1/K and sip converges 0 or 1 as solution state is reached even-
tually. sip = 1 means that task i is mapped to processor p.  

Figure 3 displays the initial and final optimal solution spin matrix of Figure 1. 

 1 2 3 4    1 2 3 4 

1 0.25 0.25 0.25 0.25   1 1 0 0 0 

2 0.25 0.25 0.25 0.25   2 0 1 0 0 

3 0.25 0.25 0.25 0.25   3 0 0 0 1 

4 0.25 0.25 0.25 0.25   4 0 1 0 0 

5 0.25 0.25 0.25 0.25   5 1 0 0 0 

6 0.25 0.25 0.25 0.25   6 0 0 1 0 

(a) The Initial State                                               (b) The Solution State 

Fig. 3. The Spin Matrix of Figure 1 
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(a) Task Interaction Graph (TIG) 
(b) Processor Communication 

Graph (PCG) 
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The cost function, C(s), is set to minimize the total communication cost of  
Equation (1) and to equally balance the computational load among processors of Equa-
tion (2).  
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eij : The interaction amount of task i and j in TIG 
wi : The computational cost of task i in TIG 
dpq : The unit communication cost of processor p and q in PCG 
sip : The probability of task i mapping to processor p 
r : The ratio of communication to computation cost 

The first term of cost function, Equation (3), represents interprocessor communica-
tion cost (IPC) between two tasks i and j when task i and j are mapped to different 
processor p and q respectively. Therefore the first IPC term minimizes as two tasks 
with large interaction amount are mapped to the same processors. The second term of 
Equation (3) means the multiplication of computational cost of two tasks i and j 
mapped to the same processor p. The second computation term also minimizes when 
the computational costs of each processor are almost the same. It is the sum of 
squares of the amount of tasks in the same processor. The ratio r changes adaptively 
in the optimization process in order to balance the communication and computation 
cost. Changing the ratio r adaptively results in better optimal solution than fixing the 
ratio r. The optimal solution is to find the minimum of the cost function.  

3   Distributed Implementation  

3.1   Distributed Mean Field Annealing (MFA)  

The mean field annealing (MFA) is derived from simulated annealing (SA) based on 
mean field approximation method in physics [1]. While SA changes the states ran-
domly, MFA makes the system reach the equilibrium state very fast using the mean 
value estimated by mean field approximation.  

The N×K spin matrix is partitioned column-wise such that each node is assigned an 
individual or a group of columns in a spin matrix. A node is a computer system that 
solves mapping algorithm, while the processor is defined in a target parallel com-
puter. Since in our experiment, the number of nodes, P, is generally less than that of 
processors, K, the group of columns in a spin matrix is assigned to each node. How-
ever, in real parallel implementation, the number of nodes and that of processors will 
be same. When task-i is selected at random in a particular iteration, each node is re-
sponsible for updating its spin value, sip. The pseudo code for the distributed mean 
field annealing algorithm of each node is as follows.  
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<Distributed Mean Field Annealing> 
while cost change is less than ε for 
   continuous N annealing process begin 
 Select a same task-i at random by using same seed 
 Compute the local mean field 
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 Compute the new spin values at the ith row  
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 Compute the cost change due to spin updates 
  by using global sum operation 
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 Update the spin values at the ith row 

  Kpss new
ipip ≤≤= 1for  

 Perform global collect  
  for a spin value, sip, at the i

th row 
end  

In implementing MFA, the cooling schedule has a great effect on the solution qual-
ity. Therefore the cooling schedule must be chosen carefully according to the charac-
teristics of problem and cost function. Length of the Markov chain at a certain tem-
perature is the number of state transition to reach the equilibrium state. It is set to the 
number of state transitions where the cost change is less than =0.5 for continuous N 
annealing process.  

3.2   Distributed Simulated Annealing-Like Genetic Algorithm (SGA)  

We modified GA such that the new evolved state is accepted with a Metropolis crite-
rion like simulated annealing in order to keep the convergence property of MFA. The 
modified GA is called SGA. In order to keep the thermal equilibrium of MFA, the 
new configurations generated by genetic operations are accepted or rejected by the 
Metropolis Criteria that is used in SA. In the Equation (4), C is the cost change of 
new state from old state that is made by subtracting the cost of new state from that of 
old one. T is the current temperature. 

Δ=Δ
T

C
C exp,1min]acceptedisPr[  (4) 

A string in the order of tasks whose value is allocated processor identification 
represents the individual of Genetic Algorithm. For example, a string, “1,3,4,1,2”, 
means that tasks are allocated to processors such that task 1 to processor 1, task 2 to 
processor 3, task 3 to processor 4, task 4 to processor 1, task 5 to processor 2.  



 A Distributed Hybrid Algorithm for Optimized Resource Allocation Problem 1123 

The individuals are generated randomly with the probability as same as that of spin 
matrix in MFA. For example, if spin values of an arbitrary ith task, which is the ele-
ments of ith row, is 0.2, 0.4, 0.1, 0.1, 0.2, an individual is made such that the ith charac-
ter in a string can be 1 with a probability of 0.2, 2 with that of 0.4, 3 with that of 0.1, 4 
with that of 0.1 and so on.  

In the experiment, the subpopulation size in each node is set to the number of 
tasks, N. Therefore the size of global population is the multiplication of the number of 
tasks and the number of nodes, N×P. The linear cost function is chosen as same as 
that of MFA. The probabilities of crossover and mutation are 0.8 and 0.05  
respectively.  

In our synchronous distributed genetic algorithm, each node generates subpopula-
tion randomly from the MFA’s spin matrix. And then the subpopulation and its fitness 
value are broadcast to all other nodes and they form the global population. Next, the 
individuals are selected as much as the size of subpopulation from the global popula-
tion randomly. Each node executes the sequential genetic algorithm in parallel. Inde-
pendent genetic operation are implemented and evaluated to its subpopulation. The 
duration of isolated evolution is called one epoch and the epoch length is the number 
of predefined generations for a node before synchronizing communication among the 
nodes. The epoch length is set to the N/P, where N is the number of tasks and P is the 
number of nodes. max_epoch is the number of synchronous communications. It is set 
to P.  

The pseudo code for the distributed genetic algorithm of each node is as follows.  

<Distributed SGA> 
Initialize subpopulation(Psub) from MFA spin matrix 
for iteration is less than max_epoch begin  
 Calculate fitness for Psub  
 for generations = 1 until epoch_length begin 
  Select individuals from subpopulation 
  Reproduce next population 
  for select 2 individuals by turns begin 
   Perform crossover with probability of crossover 
   Calculate the cost change ( C) 
   if exp(- C/T)> random[0,1] then  
    Accept new individuals 
  end 
  for all individuals begin 
   Perform mutation with probability of mutation 
   Calculate the cost change ( C) 
   if exp(- C/T)> random[0,1] then  
    Accept new individuals 
  end  
 end 
 broadcast Psub to all other nodes;    
 select new Psub randomly;  
 Keep the best individual 
end 
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3.3   MGA Hybrid Algorithm 

A new hybrid algorithm called MGA combines the merits of mean field annealing 
(MFA) and simulated annealing-like genetic algorithm (SGA). MFA can reach the 
thermal equilibrium faster than simulated annealing and GA has powerful and various 
genetic operations such as selection, crossover and mutation.  

First, MFA is applied on a spin matrix to reach the thermal equilibrium fast. After 
the thermal equilibrium is reached, the population for GA is made according to the 
distribution of task allocation in the spin matrix. Next, GA operations are applied on 
the population while keeping the thermal equilibrium by transiting the new state with 
Metropolis criteria. MFA and GA are applied by turns until the system freeze. The 
followings are the pseudo code for the distributed MGA algorithm of each node.  

<Distributed MGA Hybrid Algorithm> 
Initialize mapping problems /* getting TIG and PCG */ 
Forms the spin matrix, s=[s11, …, sip, …, sNK] 
Set the initial ratio r  
Get the initial temperature T0 , and set T= T0 
while T  Tf begin  
 Executes MFA  
 Forms GA population from a spin matrix of MFA 
 Executes SGA 
 Forms the spin matrix of MFA from GA population 
 Adjusts the ratio r 
 T= ×T   /*decrease the temperature*/ 
end 

Initial temperature, T0, is set such that the probability where the cost change is less 
than (=0.5) is more than 95% for the number of tasks (N) annealing process. Final 
temperature (Tf) is set to the temperature where the value of the cost change is in 
/1,000 for continuous N temperature changes. A fixed decrement ratio, , is set to 0.9 

experimentally. This strategy decreases the temperature proportional to the logarithm 
of the temperature. 

4   Simulation Results 

The proposed MGA hybrid algorithm is compared with MFA and GA. In this simula-
tion, the size of tasks is 200 and 400 (only the results of task size of 400 are shown). 
The multiprocessors are connected with wrap-around mesh topology. The computa-
tional costs of each task are distributed uniformly ranging [1..10]. The communication 
costs between any two tasks ranges [1..5] with uniform distribution. The number of 
communications is set to 1, 2, or 3 times of the number of tasks. The experiment is 
performed 20 times varying the seed of random number generator and TIG represent-
ing the computational and communication cost.  

The coefficient r in the linear cost function is for balancing the computation and 
communication cost between processors. The initial ratio r is computed as in Equation 
(4). As the temperature decreases, the coefficient r varies adaptively according to  
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Equation (5) in order to reflect the changed interprocessor communication cost. rold is 
the ratio used at the previous temperature and rnew is the newly calculated ratio at the 
current temperature. 
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Table 1. The maximum completion times when the initial value of r is fixed or r varies adap-
tively according to Equation (5) 

Problem Size (N = 400) MFA MGA 

|E| K fixed r variable r fixed r variable r 

400 16 627.1 279.05 256.4 222.75 

800 16 1189.95 888.1 617.15 587 

1200 16 1862.8 1557.4 971.9 987.5 

400 36 410.5 152.85 143.85 128.65 

800 36 834.45 617 410.9 385.15 

1200 36 1376.8 1065.5 714.65 692.95 

Table 1 compares the maximum completion times when the initial value of r is 
fixed or r varies adaptively according to Equation (5). The completion time of an 
arbitrary processor is the sum of computation costs of its processor and the communi-
cation cost with other processors. The maximum completion time is defined as the 
maximum value among the completion times of all processors. In Table 1, N is the 
number of tasks, |E| is the total number of interprocessor communications, and K 
represents the number of processors. 

Table 2. Total interprocessor communication cost, Percent computational cost imbalance, and 
Execution Time for Problem size 400 

 Total Comm. Time Comp. Cost. Imbalance Exec. Time (secs.) 

|E| K MFA GA MGA MFA GA MGA MFA GA MGA 

400 16 994.3 2370.5 629.7 47% 37% 32% 26.2 61.7 95.6 

800 16 8089.1 6714.6 4004.2 61% 37% 57% 40.7 70.3 150.9 

1200 16 14677 11743 8348.4 49% 35% 54% 51.7 63.7 190.9 

400 36 1062.7 3539.5 852.4 60% 59% 50% 94.9 77.6 212.4 

800 36 10021 10360 5603 79% 62% 72% 122.9 76.4 260.6 

1200 36 19937 17780 11868 75% 60% 70% 148.1 70.6 317.5 
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Table 2 displays average total interprocessor communication cost of each algo-
rithm. The average performance improvement form MFA to MGA, which is the per-
cent reduction of communication cost normalized by that of MFA, is 33%. It is 45% 
from GA to MGA. It also displays computational cost imbalance, which is defined as 
the difference between maximum and minimum computational cost of processors 
normalized by the maximum cost.  

The computational cost imbalance of each algorithm displays a little difference, 
while total communication costs in Table 2 are much more different. This implies that 
the interprocessor communication cost has a greater effect on the solution quality than 
the computational cost. Finally the last column of Table 2 displays the execution time 
of each algorithm. The averaged execution time of MGA is 1.5 and 1.7 times longer 
than that of MFA and GA respectively. This is a trade-off between the solution qual-
ity and execution time.  

The proposed MGA takes a long time compared with other heuristic algorithm. So 
we proposed the efficient distributed implementation of MGA. Fortunately, the both 
of MFA and GA can be implemented in parallel inherently. The parallel speedup 
generally increases proportional to the problem size due to reducing synchronization 
cost (Figure 4). We can find that the proposed distributed algorithm maintains the 
solution quality of sequential algorithm.  

The simulation is implemented in MPI environments that are made up of 600Mhz 
personal computers running Linux operating system connected via 10Mbps Ethernet. 
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Fig. 4. Speedups of Different Problems 

5   Conclusions  

In this paper, we proposed a new hybrid algorithm called MGA. The proposed ap-
proach combines the merits of MFA and GA on a load balance problem in distributed 
memory multiprocessor systems. The solution quality of MGA is superior to that of 
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MFA and GA while execution time of MGA takes longer than the compared methods. 
There can be the trade off between the solution quality and execution time by modify-
ing the cooling schedule and genetic operations. MGA was also verified by producing 
more promising and useful results as the problem size and complexity increases. The 
proposed algorithm can be easily developed as a distributed algorithm since MFA and 
GA can be parallelized easily. This algorithm also can be applied efficiently to broad 
ranges of NP-Complete problems. 
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Abstract. This paper proposes a swarm optimization model for en-
ergy minimization problem of early vision, which is based on a multi-
colony ant scheme. Swarm optimization is a new artificial intelligence
field, which has been proved suitable to solve various combinatorial op-
timization problems. Compared with general optimization problems, en-
ergy minimization of early vision has its unique characteristics, such as
higher dimensions, more complicate structure of solution space, and dy-
namic constrain conditions. In this paper, the vision energy functions are
optimized by repeatedly minimizing a certain number of sub-problems
according to divide-and-conquer principle, and each colony is allocated
to optimize one sub-problem independently. Then an appropriate infor-
mation exchange strategy between neighboring colonies, and an adaptive
method for dynamic problem are applied to implement global optimiza-
tion. As a typical example, stereo correspondence will be solved using
the proposed swarm optimization model. Experiments show this method
can achieve good results.

1 Introduction

It is well know that many early vision problems are generally required to assign
a label from some finite sets L to each pixel. For motion or stereo, the labels
are disparities. For image restoration they represent intensities. While for edge
detection or image segmentation, the labels are binary variables. These labeling
problems can always be formulated in terms of energy minimization in MAP-
MRF framework. One advantage of using energy functions is many constraints
can be added naturally. The standard energy function can be formulated into a
data term Edata and smoothness term Esmooth, as shown in Eq.(1) [1], [2]

E (f) =
∑

p

Edata (fp) + λ
∑
p,q

Esmooth (fp, fq) (1)

where f = {fp|p ∈ P} is the labeling of image P . Edata(fp) is a data penalty
term for pixel p assigned with label fp, and Esmooth(fp, fq) is a smoothness
term that imposes punishment if neighboring pixels have been assigned different
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labels. Apparently, it is an NP-hard problem to minimize the energy function in
Eq.(1).

In recent years, swarm optimization has become a new artificial intelligence
field inspired by the behavior of insect swarms. These insects exhibit surprising
social behaviors with very simple individuals. Since the behaviors of individuals
are independent, swarm optimization is a good candidate for parallelization.
As a typical technique of the swarm optimization, the ant colony optimization
(ACO) has been proved suitable to solve various complex optimization problems
[3], [4]. In particular, ACO algorithms have been shown to be very efficient to
solve the traveling salesman problem (TSP). However, TSP is static optimization
problem, i.e. the constraint conditions of the problem do not change with time.

Compared with general optimization problems, energy minimization of early
vision has its unique characters, such as higher dimensions, more complicate
structure of solution space, and dynamic constrain conditions. This paper pro-
poses a swarm optimization model for energy minimization problem of early
vision, which is based on multi-colony ant scheme. To solve a complex optimiza-
tion problem, we generally follow the divide-and-conquer principle. Therefore
the energy function in Eq.(1) can be broke up into a number of sub-problems,
each colony is allocated to optimize one sub-problem independently. Then an
appropriate information exchange strategy between neighboring colonies, and
an adaptive method for dynamic problem are applied to implement global opti-
mization. As a typical example, stereo correspondence will be solved using the
proposed swarm optimization model. Experiments show this method can achieve
good results.

2 Ant Colony Optimization

ACO was inspired by the foraging behavior of real ant colony. Dorigo et al. [3],
[4] discovered the key factor of ant foraging behavior is a chemical substance
called pheromone deposited by the ants that found the source of the food, which
can guide other ants to the food source. Moreover, the pheromone evaporates
gradually with time, which means the shorter the path is, the less quantity
of the pheromone evaporates, and the higher probability of this path will be
chosen by subsequent ants. So the pheromone on this path is enhanced. This
indirect communication between the ants via the pheromone trails and positive
feedback allow ants to find the shortest path between their nest and food source
quickly.

2.1 Basic Ant Colony System

Dorigo et al. successfully exploited the foraging behavior of real ant colonies
in artificial ant colonies to solve discrete optimization problems. In general, the
basic ant colony system algorithm can be implemented by iterating the following
two steps:

1) Each ant chooses next solution component according to transition
probabilities.
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The transition probability from the current solution component i to the next
solution component j of ant k is defined as follows.

pk
ij (t) =

⎧⎨⎩
τα

ij(t)·ηβ
ij∑

l∈Nk
i

τα
il(t)·ηβ

il

, if j ∈ Nk
i

0, otherwise
(2)

where ηij is the heuristic information which usually is inversely proportional to
the distance, τ ij is the pheromone trail between the solution component i and
j, Nk

i is a set of feasible solution components, α and β determine the relation
between pheromone and heuristic information.

2) Pheromone trail update
Pheromone trail update includes two elements: evaporation and deposition.

In general, the following pheromone update rule is used,

τij (t) ← (1− ρ) · τij (t) + ρ ·Δτij (t) (3)

where ρ is the local pheromone decay parameter, 0<ρ<1. Δτ ij(t) is the new
amount of pheromone deposited by ants in the current iteration.

2.2 Max-Min Ant System

Max-Min Ant System (MMAS) developed by Stutzle and Hoos in 1996 [5], [6]
is one of the best performing ACO algorithms for combinatorial optimization
problems. The MMAS is different from Ant System in three main aspects,

1. To exploit the best solution found during an iteration or during the run of
the algorithm, after each iteration only the iteration-best or the global-best
ant is used for pheromone update.

2. In order to avoid the stagnation of the search, the pheromone value of every
edge is limited in the interval of [τmin, τmax].

3. The pheromone trails are initialized to τmax, which can lead to a higher
exploration of tours at the start of the algorithm.

3 Swarm Optimization Model for Vision Problems

3.1 Energy Minimization of Early Vision Problems

It is usually quite difficult to minimize the energy functions of early vision,
because their solution space is often thousands of dimensions and have thousands
of local minima. According to the divide-and-conquer principle, we need break
up the energy minimization problem into a number of sub-problems that can be
optimized independently. Since the complexity of vision problems and the variety
of constraint conditions, it is impossible to express energy minimization of early
vision problem as the sum of the solutions of many independent sub-problems
without containing any same variables between each other.
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To be specific, let Ei(fi) is the ith sub-function with the set of variables fi,
and Eij(fi, fj) is the interactive term between the ith and jth sub-functions,
then the energy function in Eq.(1) can be formulated as follows.

min
f
{E (f)} =

∑
i

min
fi

{Ei (fi)}+
∑

i

∑
j �=i

min
fi,fj

{Ei,j (fi, fj)} (4)

Since it is very difficult to divide Eq.(4) into independent sub-problems directly,
we use the following continuous approximate formula by introducing state vari-
ables si(t).

min
f
{E (f, t)} ≈

∑
i

min
fi

{E′
i (fi, t)} (5)

where E′
i (fi, t) = min

fi

{Ei (fi) + Ei (fi, sj (t−Δt))} is the ith independent sub-

problem at the instantt, and sj (t−Δt) = min
fj

{
E′

j (fj, t−Δt)
}

is the states of

the jth independent sub-problem at the instant t−Δt, which are the optimization
results of fj at the instant t − Δt, and they can be regarded as constants at
the instant t. Ei (fi, sj (t−Δt)) can be regarded as the constraints of the ith
independent sub-problem at the instantt. Apparently, when Δt→0 and t→∞,
Eq.(5) is equivalent to Eq.(4).

The discrete form of the Eq.(5) can be formulated as follows.

min
f
{E (f, k)} ≈

∑
i

min
fi

{E′
i (fi, k)} (6)

where E′
i (fi, k) = min

fi

{Ei (fi) + Ei (fi, sj (k − 1))},
sj (k − 1) = min

fj

{
E′

j (fj, k − 1)
}
, and k is the number of iteration.

Therefore, we can minimize the energy function in Eq.(1) by an iterative
process of minimizing the sub-problems E′

i (fi, k). Moreover, because of the ex-
istence of interactive terms, the constraints of each sub-problem are different
during each iteration, that is each sub-problem minimization is not a static op-
timization problem.

3.2 Dynamic Multi-colony Ant Model

E′
i (fi, k) is an independent sub-problem during the kth iteration, which can be

optimized by an ant colony system. While the state update in each sub-problem
should be implemented by information exchange between colonies. One of this
paper’s main motives is to present an appropriate pheromone exchange strategies
between the colonies. Middendorf et al. [7] considered the colonies should not
exchange too much information and too often, and proposed four strategies for
information exchange. However, their researches are based on the fact all colonies
find good solutions for the same optimization problem.

In our problems, each colony is allocated to optimize one sub-problem, and
the constraints of each sub-problem are different, i.e., the problems optimized
by each colony are different. Therefore, inspired by the results of Middendorf et
al., we propose the following information exchange strategy.
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1. Information exchange only takes place between the neighboring colonies, and
an information exchange is done every kgenerations. Each colony should hold
relative stable solution before information exchange between each other.

2. During each information exchange step, every colony sends its local best
solution to its neighboring colonies.

3. Since the constraints of problem optimized by each colony are different, the
exchanged information of neighboring colonies is only suggestive. Therefore,
the exchanged information is weighted by a fading parameter γ, 0<γ<1.
According to this viewpoint, “information diffusion” is a more suitable ex-
pression than “information exchange” in this instance.

Furthermore, since the constraints (states value) of sub-problem will be
changed with the information diffusion between neighboring colonies, the prob-
lems optimized by each colony are dynamic rather than static. Fortunately, we
can know when the constraints are changed. D. Angus et al. [8] proposed an adap-
tive method based on pheromone normalization. In their method, the pheromone
value τ i,j between city i and j is replaced by τ i,j/τ imax, where τ imax is the max-
imum pheromone value on any edge of city i. In this paper, we use their method
to normalize pheromone values after information diffusion. But considering the
range of pheromone in MMAS, τmaxis multiplied after pheromone normalization
in our algorithm.

4 Experiments

As a typical instance of the early vision problems, stereo correspondence is used
to prove the performance of the proposed swarm optimization model.

4.1 Stereo Correspondence

Stereo correspondence is one of the key problems of stereo vision, which finds
a unique mapping between the pixels belonging to stereopsis of the same scene.
If the images are rectified, then the corresponding pixels should lie on the same
horizontal scan-line. The difference in the horizontal position of corresponding
pixels is termed as disparity. In this paper, we assume the stereopsis is already
rectified.

In stereo correspondence, label set f in Eq.(1) corresponds to the range of
disparity d. Let li is the pixel set on the ith scan-line, then Eq.(1) can be rewritten
as follows,

E (d) =
∑
i

{∑
p∈li

Edata (dp) + λ1
∑

p,q∈li

Eintra
smooth (dp, dq)

}

+ λ2
∑
i

∑
j, i�=j

{ ∑
m∈li,n∈lj

Einter
smooth (dm, dn)

} (7)
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where Eintra
smooth is the smoothness term between neighboring pixels on the same

scan-line, and Einter
smooth is the smoothness term between two neighboring scan-

lines.
According to Eq.(5) and (6), Eq.(7) can be reformulated as the following

iterative discrete form,

E (d, k) ≈
∑

i

Eli (dp∈li , k) (8)

Eli (dp∈li , k) =
∑
p∈li

Edata (dp) + λ1
∑

p,q∈li

Eintra
smooth (dp, dq)

+ λ2
∑

j, i�=j

{ ∑
m∈li,n∈lj

Einter
smooth (dm, sn (k − 1))

}
(9)

where sn(k-1) is the state of pixel n which is the disparity result of pixel n
during the (k-1)th iteration, and it can be regarded as a constant during the kth
iteration.

In dynamic multi-colony ant model, each colony is allocated to minimize one
sub-problem, which is a 1D optimization problem based on the disparity space
image (DSI). Let directed weighted graph G = 〈V , E〉 represents DSI of the
ith scan-line. All possible disparity values of all pixels on the ith scan-line, the
source s, and the sink t form the vertices set V . Only vertices of the neighboring
pixels are connected by directed edges, and vertices of the same pixels have no
connections between each other. The “directed” is defined as the direction from
left to right on the scan-line of the right image. The costs of edges are derived
from the energy function in Eq.(8). Data term uses the absolute difference of the
luminance of corresponding pixels, and the Potts model is chosen as the smooth
term.

Initially, the pheromone on each edge is set to their maximally possible value
τmax, and the heuristic information of each edge is the reciprocal of the en-
ergy value. Each ant starts from the source s, and chooses the next vertex
according to Eq.(2). In order to restrict the feasible solution components of
subsequent pixels within a narrower range, the ant’s tabu table is updated ac-
cording to uniqueness constraint when it arrives at one vertex. After each iter-
ation, only the local best ant is used for pheromone update. Then information
exchange between the colonies is implemented according to the strategies in
Section 3.2.

4.2 Results Analysis and Conclusions

Test Results of Standard Test Stereo. Four pairs of standard test stereo
images obtained from the Middlebury College’s stereo vision research website
[9] are chosen for the performance experiments. The parameter values in en-
ergy function used in experiments are λ1=λ2=5, and the parameter values in
ant colony system are α=1, β=5, ρ=0.9, γ=1, k=10, the range of pheromone in
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“tsukuba” stereopsis ground truth Result of the proposed method

(a) Test Result of the “tsukuba”stereopsis

“map” stereopsis ground truth Result of the proposed method

(b) Test Result of the “map” stereopsis

“sawtooth” stereopsis ground truth Result of the proposed method

(c) Test Result of the “sawtooth” stereopsis

“venus” stereopsis ground truth Result of the proposed method

(d) Test Result of the “venus” stereopsis

Fig. 1. Results of stereo correspondence using the proposed swarm optimization model
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Table 1. Solution space parameters of each sub-problem of the stereo pairs in Fig.1

stereopsis PixelNum DPMax Edge number

“tsukuba” 388 16 99,088
“map” 284 32 289,824

“sawtooth” 434 32 443,424
“venu” 434 32 443,424

MMAS is from 0.01 to 0.9. The number of ants and iterations are 500 and 300,
respectively.

The images in the left, middle and right columns of Fig.1 are the right im-
ages of the stereo pairs, the ground truth, and results of the proposed method,
respectively.

According to Section 4.1, the edge number of each sub-problem is about (Pix-
elNum-1)×DPMax 2+DPMax, where PixelNum is the number of pixels on a scan-
line, and DPMax is the range of disparity search. And the size of the search space
is about DPMaxPixelNum. The solution space parameters of each sub-problem
of the stereo pairs in Fig.1 are given in Table 1.

Compared with reference [10] where 3000 ants are employed to deal with
100×100 size images, and reference [11] where 1500 ants are used to extract
edge of 512×512 size images, it is obvious only 500 ants is not enough for the
stereo correspondence in this paper. Considering this fact, the results in Fig.1
is acceptable although they are not as good as those of the best method on the
Middlebury College’s stereo vision research website [9].

Analysis Curves of Matching Energy. According to Eq.(8), the matching
energy of the whole image is sum of the minimum solution of each sub-problem.
Fig.2 shows the curve of matching energy versus the number of iterations. These
figures indicate when information diffusion occurs, there is a small fluctuation
on the curve, which can make the matching energy escape from the local min-
imum. And during the other iterations, the matching energy is monotonically
decreasing. So the curve is decreasing as a whole. After 200 iterations, the curve
decreases slowly and approaches flat that means the proposed swarm optimiza-
tion model has better convergence performance.

Conclusions. This paper proposes a swarm optimization model based on a dy-
namic multi-colony ant scheme for energy minimization problem of early vision.
According to divide-and-conquer principle, each colony is allocated to optimize
one sub-problem of vision energy function independently. Then we present an
appropriate information exchange strategy and an adaptive method for dynamic
problem. As a typical example, experiments of stereo correspondence show this
method can achieve good results.
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Fig. 2. Matching energy curves of the standard test stereopsis
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Abstract. The determination for hyper-parameters including kernel parameters 
and the regularization is important to the performance of least squares support 
vector machines (LS-SVMs). In this paper, the problem of model selection for 
LS-SVMs is discussed. The particle swarm optimization (PSO) is introduced to 
select the LS-SVMs hyper-parameters. In the proposed method we do not need 
to consider the analytic property of the generalization performance measure and 
the number of hyper-parameters. The feasibility of this method is evaluated on 
benchmark data sets. Experimental results show that better performance can be 
obtained. Moreover, different kinds of kernel families are investigated by using 
the proposed method. Experimental results also show that the best and good test 
performance could be obtained by using the SRBF and RBF kernel functions, 
respectively. 

Keywords: least squares support vector machines; particle swarm optimization; 
fitness function; parameter selection; classification.  

1   Introduction 

Support vector machines (SVMs) were developed by Vapnik and his colleagues [1]. 
SVMs are based on the structural risk minimization principle (SRM), which has been 
shown to be superior to the traditional empirical risk minimization principle (ERM) 
employed by conventional neural networks. SRM minimizes an upper bound of 
generalization error as opposed to ERM that minimizes the error on training data. 
Therefore, the solution of SVM may be global optimum while other neural network 
models tend to fall into a local optimal solution, and overfitting is unlikely to occur 
with SVM [2, 3, 4]. The classical training algorithm of SVMs is equivalent to solving 
a quadratic programming with linearly constraints. During the last decade, many 
pattern recognitions have been tackled using SVMs. Least Squares Support Vector 

                                                           
* Corresponding author. 
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Machines (LS-SVMs) are introduced by Suykens et. al as reformulations to standard 
SVMs [5] which lead to solving linear Karush-Kuhn-Tucker (KKT) systems for 
classification problems as well as regression. LS-SVM simplifies the solution process 
of standard SVM in a great extent by substituting the inequality constraints by 
equality counterparts. Consequently, the decision function can be obtained by solving 
a group of linear equalities rather than quadratic programming. 

For the standard SVMs and its reformulations, LS-SVM, the regularization 
parameter and kernel parameter(s) are called hyper-parameters, which play a crucial 
role to the performance of the SVMs. There exist different techniques for tuning the 
hyper-parameters related to the regularization constant and the parameter of kernel 
function. These methods can be divided into two classes: one is the analytical and 
algebraic techniques, another is heuristic search algorithm (including grid search). 
The analytical and algebraic techniques are almost based on the gradient of some 
generalized error measure [6-13]. Recently, genetic algorithm, simulated annealing 
algorithm and other evolutionary strategy [14-19] are employed for the hyper-
parameters of SVMs. Iterative gradient-based algorithms, which usually rely on 
smoothed approximations of a function, do not ensure that the search direction points 
exactly to an optimum of the generalization performance measure which is often 
discontinuous. Grid search which needs an exhaustive search over the space of hyper-
parameters is often used to select parameters [20]. This procedure requires a grid 
search over the space of parameter values and needs to locate the interval of feasible 
solution and a suitable sampling step. This is a tricky task since a suitable sampling 
step varies from kernel to kernel and the grid interval may not be easy to locate 
without prior knowledge of the problem. Moreover, when there are more than two 
hyper-parameters, the manual model selection may become intractable. 

In this paper, a new parameters selection algorithm is proposed based on the 
principles of the particle swarm optimization (PSO). The PSO is an evolutionary 
computation technique based on swarm intelligence. It follows a collaborative 
population-based search, which models over the social behavior of bird flocking. The 
PSO system combines experiences form both self and neighboring and attempts to 
balance exploration and exploitation. The PSO has many advantages over other 
heuristic techniques, e.g., it can be used effectively to exploit the distributed and 
parallel computing capabilities, to escape local optima, and to implement in a few 
lines of computer codes. The proposed method is applied to tuning kernels and 
regularization parameters of LS-SVMs. 

2   LS-SVM Classifiers 

Consider a given training set N

ii

n

iii yRxyx 1}}1,1{,|),{( =+−∈∈ , where ix  is input and 

iy  is the binary class label. The discriminant function takes the following form: 

])([sign bxwy T += φ                                                    (1) 

where the nonlinear function )(⋅φ , which is not explicitly constructed, maps the input 

into a higher dimensional feature space (can be infinite dimension). The coefficient 
vector w and bias term b need to be determined. In order to obtain the coefficient 
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vector w and bias term b, the following optimization problem to be solved is as 
follows [5, 20] 
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The Lagrangian corresponding to Eq. (2) can be defined as: 
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Referring to Suykens and Gestel’s work [5, 20], the solution of the optimization 
problem (2) can be obtained by solving the following linear equations:  
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Table 1. Classical common kernel functions 

Name Function Expression 

Linear Kernel yxyx T=) ,(ψ
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For the choice of the kernel function ),( ⋅⋅ψ  one has several alternatives. Some of 

common kernel functions are listed in Table 1., where c , d , , k  and  are 
constants, and for the function with “*” symbol. A suitable choice for k  and  is 
needed to enable the kernel function to satisfy Mercer condition. 

After solving the Eq. (6), the LS-SVM model for classification can be obtained as: 
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=

bxxyy
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),(sign ψα                                            (7)  

3   PSO-Based Hyper-Parameters Selection for LS-SVM 

3.1   Brief Introduction to PSO 

The particle swarm optimization (PSO), originally developed by Kennedy and 
Elberhart [21], is a method for optimizing hard numerical functions on metaphor of 
social behaviors of flocks of birds and schools of fish. It is an evolutionary 
computation technique based on swarm intelligence. A swarm consists of individuals, 
called particles, which change their positions over time. Each particle represents a 
potential solution to the problem. In a PSO system, particles fly around in a multi-
dimensional searching space. During its flight each particle adjusts its position 
according to its own experience and the experience of its neighboring particles, 
making use of the best position encountered by itself and its neighbors. The effect is 
that particles move towards the better solution areas, while still having the ability to 
search a wide area around the better solution areas. The performance of each particle 
is measured according to a pre-defined fitness function, which is related to the 
problem being solved. The PSO has been found to be robust and fast in solving non-
linear, non-differentiable and multi-modal problems [22]. The mathematical 
description and executive steps of the PSO are as follows. 

Let the i th particle in a D-dimensional space be represented as 
),,,,( 1 iDidii xxxx = . The best previous position of the i th particle is recorded and 

represented as ),,,,( 1 iDidii pppp = , which gives the best fitness value and is also 

called pbest . The index of the best pbest  among all the particles is represented by 

the symbol g . The location gP  is also called gbest . The velocity for the i th particle 

is represented as ),,,,( 1 iDidii vvvv = . The concept of the particle swarm 

optimization consists of changing the velocity and location of each particle towards 
its pbest  and gbest  locations according to Eqs. (1) and (2) at each time step: 

)()( 2211 idgdidididid xprcxprcwvv −+−+= ,                                     (8) 

ididid vxx += ,                                                          (9) 

where w  is the inertia coefficient which is a constant in the interval [0, 1] and can be 
adjusted in the direction of linear decrease [23]; c1 and c2 are learning rates which are 
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nonnegative constants; r1 and r2  are generated randomly in the interval [0, 1]; 
],[ maxmax vvvid −∈ , and maxv  is a designated maximum velocity. The termination 

criterion for iterations is determined according to whether the maximum generation or 
a designated value of the fitness is reached. 

3.2   PSO-Based Hyper-Parameters Selection 

There are two key factors to determine the optimized hyper-parameters using particle 
swarm optimization (PSO): one is how to represent the hyper-parameters as the 
particle's position, namely how to encode. Another is how to define the fitness 
function which evaluates the goodness of a particle. The following will give the two 
key factors. 

Encoding Hype-parameters: The optimized hyper-parameters for LS-SVMs include 
kernel parameter(s) (except for linear kernel) and regularization parameter. In solving 
hyper-parameters selection by the PSO, each particle is requested to represent a 
potential solution, namely hyper-parameters combination. So let us denote an m 
hyper-parameters combination as a vector of dimension m. For example, SRBF: 
v=( γ , 1σ , 2σ , ..., ninputσ ), Pol: v=( γ , σ , d). The method of encoding is very 

intuitionistic. In this study, v=( γlog , 1logσ , 2logσ , ..., ninputσlog ) and 

v=( γlog , σlog , logd) is used because this gives a more stable optimization. For 

different kernels the length of the parameters vector is different. 

          No

Stop

Initialization

Parameters selection

Obtain optimal parameters

Calculate fitness

Train LS-SVM

Retrain LS-SVM

Classification

Yes

PSO LS-SVM

 

Fig. 1. Flow chart of PSO-based hyper-parameters algorithm 

Fitness function: The fitness function is the generalization performance measure. For 
the generation performance measure, there are some different descriptions. Therefore 
the corresponding fitness can be determined. In this paper, the employed fitness 
function will be defined in Section 4.2.  

The flow chart of the PSO-based hyper-parameters selection algorithm for the LS-
SVM is shown in Fig. 1.  
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4   Numerical Experiments 

4.1   Data sets and Its Preprocessing 

Experiments are performed to evaluate the performance of PSOLS-SVM for binary 
classification. We selected the Diabetes (DB), Breast-Cancer (BC), Heart (HT), 
Thyroid (TD) and Titanic (TC) data sets from the UCI Machine Learning repository. 
The data sets used in this study are provided by G. Ratsch at http://ida.first.gmd.de/ 
aetsch/data/benchmarks.htm. The detailed description of these data sets is reported in 
Table 2. These data sets have been referred to numerous times in the literature, which 
makes them very suitable for benchmarking purposes. The data are preprocessed and 
partitioned as in [24]: Each component of the input data is normalized to zero mean 
and unit standard deviation. It ensures the larger value input attributes do not 
overwhelm smaller value inputs; hence helps to reduce errors. After normalized to 
zero mean and unit standard deviation, each data set is divided randomly 100 times 
into different pairs of disjoint train and test sets.  

Table 2.  Description of the data sets 

 DB BC HT TD TC 
Ntrain 468 200 170 140 150 
Ntest 300 77 100 75 2051 
N 768 277 270 215 2201 

ninput 8 9 13 5 3 
     Ntrain and Ntest denotes the number of train and test patterns, respectively. N stands for the 

total number of the patterns. ninput is the number of the input. 

4.2   Determination of the Fitness Function 

In PSO, the fitness value is used to evaluate goodness of the particles, namely hyper-
parameter combination. So the determination of fitness function is important to the 
parameters of LS-SVM. The fitness should reflect the generalization performance of 
LS-SVM for different hyper-parameter combination. The fitness function is defined 
as follows: For each particle, five LS-SVMs are built using the training sets of the 
first five data partitions and the average of the classification correct rates on the 
corresponding five test sets determines the fitness value (training performance of LS-
SVM). The particle with the largest fitness is chosen as the optimal parameters 
combination [25]. The test performance of LS-SVM with optimal parameters is 
measured as follows: 100 LS-SVMs are built using the optimal parameters using all 
the training sets and the average of the classification correct rates on the 
corresponding 100 test sets is define as the test performance of LS-SVM. 

4.3   Experiment Results 

All experiments are performed on a PC with Pentium IV 2.6GHz processor and 
512MB memory. The optimal values for the regularization parameter and the kernel 
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parameters with linear, polynomial, RBF and SRBF kernel are shown in Table 3. The 
first column is the parameters used with different kernels. The rest column is the 
optimal parameters values for different data sets. For polynomial kernel, the degree is 
denoted in bracket. The corresponding optimal values are not given because of the 
large number of parameters. In Table 4 and Table 5, the first column lists the 
different kernels and the first row shows the benchmark data sets in our study, 
respectively. Table 4 and Table 5 show the performance of training and test of LS-
SVM on different data sets, respectively. Experimental results in Table 5 show that 
the SRBF kernel yields the best test performance and the polynomial and RBF kernel 
give good test performance. Table 6, in which test error found by PSO-based hyper-
parameters selection of LS-SVM and other methods for different data sets is listed, 
shows that the results obtained from the proposed method for LS-SVM with SRBF 
kernel are better than those in literature [24]. 

Table 3. Optimized hyper-parameter values of the LS-SVM with linear, RBF and polynomial 
kernels for different data sets 

 BC HT TiD DS TC 
Lin: log10( γ ) -0.23 -2.26 0.68 -1.06 -1.67 
Pol: log10( γ ) 1.35 1.36 1.30 1.08 1.69 
Pol: log10(σ ) 1.39 2.16 0.62 1.34 -0.23 
Pol: log10( d ) 0.76 (5) 0.71 (5) 0.83 (6) 0.75 (5) 0.68 (4) 
RBF: log10( γ ) 0.33 1.41 1.27 1.92 4.00 
RBF: log10(σ ) 0.76 1.83 0.26 1.20 0.58 

Table 4. LS-SVM training performance with different kernel functions by using the optimized 
parameters for different data sets 

 BC HT TD DS TC 
Lin 72.99 83.00 84.53 76.73 77.59 
Pol 74.81 83.00 93.33 77.20 78.43 
RBF 74.81 83.00 97.07 77.27 77.60 
SRBF 79.74 86.20 98.40 78.00 77.55 

Table 5. LS-SVM test performance with different kernel functions by using the optimized 
parameters for different data sets 

 BC HT TD DS TC 
Lin 72.98 84.41 85.21 76.63 77.33 
Pol 73.66 84.41 92.01 77.01 77.02 
RBF 73.82 84.42 95.99 77.05 78.10 
SRBF 76.09 84.49 96.59 77.46 78.41 
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Table 6. Test performance found by PSO-based hyper-parameters selection of LS-SVM and 
other methods for different data sets 

 BC HT TD DS TC 
RBF-Network 72.36 82.45 95.48 76.71 76.74 
AdaBoost with RBF-Network 69.64 79.71 95.60 73.53 77.42 
LP_Reg-AdaBoost 73.21 82.51 95.41 75.89 76.02 
QP_Reg-AdaBoost 74.09 82.83 95.65 74.61 77.29 
AdaBoost_Reg 73.49 83.53 95.45 76.21 77.36 
SVM with RBF-Kernel        73.96 84.05 95.20 76.47 77.58 
KFD with RBF-Kernel        75.23 83.86 95.80 76.79 76.75 
LS-SVM with SRBF-Kernel 76.09 84.49 96.59 77.46 78.41 

5   Conclusions 

A promising novel particle swarm optimization-based hyper-parameters selection for 
LS-SVM classifier is proposed. The presented method does not consider the analytic 
property of the generalization performance measure and the number of hyper-
parameters. The feasibility of our presented method is evaluated on benchmark data 
sets. Experimental results show that better performance can be obtained. Experiments 
on SRBF kernel show that the proposed method can tune much more hyper-
parameters. Experimental results also show that the SRBF kernel yields the best test 
performance and the polynomial and RBF kernel gives better test performance. 
Compared with the results of other methods, the proposed PSO-based hyper-
parameters selection for LS-SVM yields higher accurate rate for all data sets tested in 
this paper. 
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Abstract. In this paper, Particle Swarm Optimization (PSO) and improved sub- 
tractive clustering algorithm were proposed for training RBF neural networks. 
PSO was used to feature selection in conjunction with RBF classifiers for 
individual fitness evaluation. During RBF training process, supervised mean 
subtractive clustering algorithm (SMSCA) was used to evolve RBF networks 
dynamically with the selected feature subset based on PSO algorithm. 
Experimental results on four datasets show that RBF networks evolved by our 
proposed algorithm have more simple architecture and stronger generalization 
ability with nearly the same classification performance when compared with the 
networks evolved by other methods. 

Keywords: Particle Swarm Optimization, Subtractive Clustering Algorithm, 
RBF Neural Network, Feature Selection. 

1   Introduction 

Both the dimensionality and the distribution of input patterns affect the number of 
radical basis functions in RBF networks. Reducing the dimensionality and 
representing the distribution of the input patterns are two critical ways to simplify the 
architecture and improve classification accuracy of RBF neural networks. 

In a large number of features measured in pattern recognition applications, there 
are always some irrelevant features. If no preprocessing is carried out before patterns 
are used to train RBF neural networks, the size of RBF neural networks may be too 
large. In order to simplify the architecture of RBF neural networks, dimensionality 
reduction techniques are often useful. Feature selection, a kind of dimensionality 
reduction technique, aims to select the best subset of features out of the original set. 
Feature selection can reduce the computational cost of feature measurement, simplify 
the architecture of classifiers, and increase the classification accuracy [1, 2]. 

Clustering algorithms are able to find cluster centers best representing data 
distribution. Hence clustering algorithms have been successfully used in training RBF 
neural networks. In [3] the optimal partition algorithm (OPA) was used to determine 
the centers and widths of radial basis functions for time series forecasting. In [4] 
clustering algorithm using a mixed possibilistic and fuzzy approach was proposed to 
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evolve the center vector of the hidden layer. In [5] the forward selective clustering 
with cluster sample transform algorithm determined the initial number and center 
vectors of hidden units. The research in [6] compared the performance of the RBF 
neural networks evolved by seven different clustering techniques. In most traditional 
algorithms, such as the K-means, the number of cluster centers need to be 
predetermined, which restricts the real applications of the algorithms. 

In this paper, feature selection was carried out in order to reduce the number of 
attributes as well as the complexity of RBF neural networks. A PSO algorithm was 
used to reduce the number of irrelevant attributes using a RBF classifier as an 
individual’s fitness measure. Supervised mean subtractive clustering algorithm 
(SMSCA) was proposed to evolve RBF networks with the selected feature set. There 
is no need to predetermine the number of cluster centers in SMSCA. The results of 
computational experiments showed SMSCA can improve the performance of RBF 
neural networks and feature selection can reduce feature size and simplify RBF neural 
networks. 

The rest of the paper is organized as follows. Section 2 presents the architecture of 
the RBF networks used. Section 3 describes the PSO learning algorithm for feature 
selection. In Section 4, SMSCA for evolving RBF networks are discussed. Parameter 
selection and experimental results are presented in Section 5. Finally, the conclusions 
are given in Section 6. 

2   Radial Basis Function Neural Network 

Radial Basis Function neural network (RBFNN) is a kind of feed-forward neural 
network. RBFNN has been widely used in many pattern recognition applications 
because of its simple architecture and easily learning ability. 

RBFNN is a three-layer network. The input layer consists of n units which transfer 
the input to the hidden layer. The hidden layer is composed of some basis functions 
that execute non-linear mapping. The output of a neuron in the output layer can be 
achieved by computing the weighted sum of outputs of hidden layer. The RBFNN 
form with linear combination of Gaussian functions is shown in the following. 

2
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( ) exp{ }, 1,2,...,
2
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k

i ik
k k

x c
o x w i m
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−
= − =  . (1) 

where ...  represents Euclidean norm, kc , kσ and ikw are the center, the width of the 
k-th neuron in the hidden layer and the weights in the output layer respectively, m is 
the number of neurons in the output layer. N is the number of neurons in the hidden 
layer.  

One kind of training methods regarding RBF networks is clustering. The centers 
and widths of RBF neural networks are determined based on clustering method. The 
weights between the hidden layer and the output layer are computed by solving linear 
equations. The clustering method is crucial to the performance of RBF neural 
networks. 
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3   Feature Selection with Particle Swarm Optimization 

PSO is a new population-based evolutionary computation technique firstly proposed 
in 1995 [7]. Particle swarms explore the search space through a population of 
particles. The particle evolves by adjusting its position at diverse speed iteratively. 
The position of the i-th particle at t iteration is represented by Xi

(t)=(xi1, xi2,,, xiD), and 
its velocity is represented by Vi

(t)=(vi1, vi2 ,,, viD). The movement of the particle is not 
only influenced by the particle’s own memories but also the memories of its 
neighborhood. The position with the best fitness value visited by the i-th particle is 
donated by Pi and the position with the best fitness found by all particles is donated 
by Pg . The velocity update equation (2) and position update equation (3) are 
described as follows: 

( 1) ( ) ( )
1 2* * ()*( )  * ()*( )+ = + − + −t t t t

i i i i g iV w V c rand P X c rand P X  . (2) 

( 1) ( ) ( )+ = +t t t
i i iX X V  . (3) 

where w is inertia weight which balances the global exploitation and local exploration 
abilities of the particles, c1 and c2 are acceleration constants, rand() are random values 
between 0 and 1. The velocities of the particles are limited in [Vmin, Vmax]D. If 
smaller than Vmin, an element of the velocity is set equal to Vmin, if greater than 
Vmax, and then set equal to Vmax. 

When PSO is used to feature selection, there are two important problems, encoding 
particles and designing fitness function. Each particle is encoded as a combination of 
variables, which represent the relevant information of feature subset that needs to be 
determined. Each particle is a potential solution to the feature selection problem. The 
fitness function gives directions to particle swarm. Through searching in the variable 
space, particle swarm finds the final solution considered to be the solution to the 
problem.  

Encoding Particles. When encoding particles, a principal problem lies in 
representing all possible feature subsets. As shown in Equation 4, each particle is 
encoded into a real-value vector to perform selection of a subset of the features. 

1 2[( , ,..., )]nf f f  . (4) 

where n is the number of features. ( 1, 2,..., )if i n=  represents whether or not the i-th 

feature is selected. If the value for a given feature is negative, the feature is not 
considered for classification. If the corresponding value is positive, the feature is 
included in the classifier. 

Fitness Evaluation. Fitness evaluation function involves the output error of RBF 
network and the size of feature subset selected. The training method of RBF networks 
is introduced in next part 4. To minimize the output error and the size of RBF 
networks, the fitness function was formulated as equation (5). 
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where Nt is the number of training patterns, yn, on are the desired output and network 
output for pattern n respectively, Nf  is the number of features involved in networks, 
λ  is a parameter that balances classification performance and the size of the selected 
feature set. 

Feature Selection Algorithm. The algorithm of feature selection with PSO is 
presented in the following: 

1. Initialize swarm of N particles. Each particle defines the information of a feature 
subset. Set the number of iterations as MaxIteration. Set count=0. 

2. Decode each particle and execute selecting operations on patterns to form new 
patterns. Compute the fitness of each particle with equation (5) based on the new 
patterns. 

3. Update Pi for each particle and Pg for whole swarm. 
4. Update the velocity of each particle according to formula (2). Limit the velocity 

in [Vmin, Vmax]D. 
5. Update the position according to formula (3). 
6. Set count=count+1; if count < MaxIteration, go to 2; otherwise, Terminate the 

algorithm. 

4   SMSCA for Evolving RBF Neural Networks 

RBF neural networks have been widely used for function approximation, pattern 
classification and time series prediction and so on. In this paper, we used RBF 
classifier as fitness evaluating criteria to select the appropriate subset of feature set. 
Based on the feature subset, the RBF neural network with good performance was 
evolved simultaneously. Hence it was important to determine RBF neural network 
quickly. 

4.1   Supervised Mean Subtractive Clustering Algorithm 

Subtractive clustering algorithm (SCA) [8] is an unsupervised learning method based 
only on input training patterns. It obtains cluster centers by selecting the data point 
with the highest potential value iteratively. The basic SCA selects cluster centers only 
from the input patterns, but the cluster centers best representing data distribution are 
not necessarily in the original input patterns. In our proposed SMSCA, mean methods 
were used to derive cluster centers from a high-density area around high potential data 
point. In additional, the classification information was also included to compute the 
potential value of the input pattern. 

Given n input patterns 1 2( , , )nx x x in d-dimensional space, SMSCA can be 
described as follows: 

Step1: set the radii of the high-density area ar  and the number of cluster centers 

k=1. Initialize the potential value 0iP = ( 1,2, ,i n= … ). 
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Step 2: for every input pattern jx , compute the potential of ix  to serve as a cluster 

center as iP  by equation (6) if ix  and jx  are in the same class. 

2

2
exp[ ]

( 2)
i j

i i

a

x x
P P

r

−
= + −   1, 2, ,j n= …  . (6) 

Step3: select the input pattern with the highest potential as kc . Compute the 

location of the cluster center kc  by equation (7) and its potential value kP  by 

equation (6) only substituting ix  with kc . 
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k j
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c x
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where ( ) ( ) ( )
1 2( , , )i i i

mx x x  is the input patterns with the same class of ic that locate in the 

neighborhood of ic  defined by ar . 

Step4: Subtract the potential of each input pattern ix in the same class of kc  by 

equation (8). 
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where br  is a positive radius defining the neighborhood in which the input patterns 

reduce potential value greatly and will unlikely be selected as the next cluster center. 
To avoid obtaining closely spaced cluster centers, 1.5b ar r=  was chosen. 

Step5: if 10.15*kP P< , terminate; else k=k+1 and return step 3. 

4.2   Evolving RBF Neural Networks 

Once the cluster centers have been fixed by SMSCA, each cluster center was taken as 
the center vector of a radial basis function. The width of k-th radial basis function was 
computed by the following equation (9). 
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= −
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 . (9) 

The optimal output weights were determined by pseudo-inverse algorithm without 
having local minima problem.  

The value of ar  influences the number and the locations of cluster centers. The 

larger ar  is, the fewer number of centers is. The expected classification accuracy and 

network size can be obtained by adjusting ar . During training RBF as a fitness 

evaluation function, the larger ar  may be used to reduce the computation cost. When 
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feature selection algorithm terminates, the smaller ar  is set to evolve RBF with the 

selected feature subset over again. 

5.   Experiments 

5.1   Experimental Setup 

The parameters of the PSO algorithm were set as follows: weight w decreasing 
linearly between 0.9 and 0.4, learning rate c1 = c2 = 2 for all cases. The population 
size used by PSO was constant. The algorithm stopped when a predefined number of 
iterations have been reached. Once finished the long set of experiments, values 
selected for parameters were shown in tables 1. 

Table 1. Execution parameters for feature selection algorithm with PSO  

Parameter value 
Population Size 20 
Iterations 1000 
Vmax  2 
λ  4 

Before using SMSCA, input feature values must be normalized over the range  
[0, 1] as follows: 

, ,
1,...,'

,
, ,1,...,1,...,

min ( )

max ( ) min ( )

i j k j
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k j k jk nk n

x x
x

x x
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==

−
=

−
 .   (9) 

Where ,i jx  is the jth feature of the ith pattern, '
,i jx is the corresponding normalized 

feature, and n is the total number of patterns. 

5.2   Experimental Results 

Evaluations of feature selection and clustering techniques on RBF training tasks were 
developed by using four well-known real databases, wine, thyroid, ionosphere and 
wdbc [9]. For comparison, three training schemes were considered. One was SCA for 
RBF training based on full feature set, denoted by SCA-RBF, another was SMSCA 
for RBF training based on full feature set, denoted by SMSCA -RBF and the other 
was SMSCA-RBF algorithm with feature selection used in this paper. ar  was set the 

same value for three training schemes on the same dataset, 0.6, 0.1, 0.28 and 0.36 for 
wine, thyroid, ionosphere and wdbc database respectively. Once the feature subset 
was obtained, the smaller ar  was set to evolve RBF networks once again. 

Each benchmark was tested with 5-fold cross-validation except SMSCA-RBF in 
feature selection was tested with 3-fold cross-validation for fitness evaluation. The 
results were listed in Table 2. Train Accuracy and Test Accuracy referred to mean 
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Table 2. The basic information of datasets, the results achieved by RBF networks evolved by 
three training algorithms respectively 

Dataset wine thyroid ionosphere wdbc  
The basic information of datasets 
Instances  178 215 351 569 
Features 13 5 34 30 
Classes  3 3 2 2 
The results achieved by SCA-RBF 
Train Accuracy 0.9883 0.9667 0.9346 0.9631 
Test Accuracy  0.9743 0.9409 0.9083 0.9581 
Hidden units 16 18 38 17 
The results achieved by SMSCA-RBF 
Train Accuracy 0.9900 0.9731 0.9434 0.9568 
Test Accuracy 0.9789 0.9493 0.9191 0.9527 
Hidden units 13 16 37 11 
The results achieved by SMSCA-RBF with feature selection 
Selected features 5 3 8 9 
Train Accuracy 0.9784 0.9729 0.9399 0.9624 
Test Accuracy 0.9714 0.9619 0.9289 0.9607 
Hidden units 9 13 16 9 

correct classification rate averaged over 10 runs for the training and testing set, 
respectively. The number of selected features and hidden units achieved for each 
dataset were averaged over 10 runs, and then were round off to integer.  

By comparing the results, it can be seen that SMSCA-RBF outperformed SCA-
RBF in both classification accuracy and network size on wine, thyroid and ionosphere 
dataset. This is probably because SMSCA can find cluster centers representing data 
distribution better than SCA does. SMSCA-RBF with feature selection algorithm 
found the small-sized feature sets. And the networks evolved by the proposed 
algorithm based on the found small feature sets have less hidden units than those 
evolved by SMSCA-RBF based on the original feature sets. The generalization ability 
of the RBF neural networks improved on thyroid, ionosphere and wdbc dataset. In our 
proposed method, classification accuracy still remains high in despite of many 
features removed from the original feature set. 

6   Conclusions 

In this paper, supervised mean subtractive clustering algorithm was proposed to 
evolve RBF neural networks and the evolved RBF acts as fitness evaluation function 
of PSO algorithm for feature selection. The method performs feature selection and 
RBF training simultaneously. The appropriate feature subset was selected according 
to the performance of RBF networks, and the RBF network with good performance 
was achieved based on the selected feature subset. Experimental results show that the 
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proposed methods are effective in reducing the feature size, the structural complexity 
of the RBF neural network, and even the classification error rates. 
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Abstract. Radial Basis Function (RBF) networks are widely applied in function 
approximation, system identification, chaotic time series forecasting, etc. To 
use a RBF network, a training algorithm is absolutely necessary for determining 
the network parameters. The existing training algorithms, such as Orthogonal 
Least Squares (OLS) algorithm, clustering and gradient descent algorithm, have 
their own shortcomings. In this paper, we make an attempt to explore the 
applicability of Quantum-behaved Particle Swarm Optimization, a newly 
proposed evolutionary search technique, in training RBF neural network. The 
proposed QPSO-Trained RBF network was test on nonlinear system 
identification problem, and the results show that it can identifying the system 
more quickly and precisely than that trained by Particle Swarm algorithm.  

1   Introduction 

Radial Basis Functions, as a variant of feed-forward artificial neural network, have 
been successfully applied to a large diversity of applications including interpolation 
[2], chaotic time-series modeling [3], system identification [11], etc. In order to use a 
Radial Basis Function network we need to specify the hidden unit activation function, 
the number of processing units, a criterion for modeling a given task and, in turn, a 
training algorithm for finding the parameters of network. Finding the RBF weight is 
called network training. The most widely used training algorithms for RBF network 
include Orthogonal Least Squares (OLS) algorithm, clustering and gradient-based 
algorithm, etc ([2], [4], [7], [15], [11], [18]). These algorithms, however, possess their 
shortcomings. Evolutionary algorithms are a class of population-based search 
techniques, which have strong global search ability and robustness and could be used 
to training RBF and other neural networks, and become promising training algorithms 
for neural networks. 

Recently, a novel evolutionary technique, Quantum-behaved Particle Swarm 
Optimization (QPSO), has been proposed ([12], [13], [14]). It has been shown that 
QPSO outperforms original Particle Swarm Optimization (PSO) considerably on 
several widely known benchmark functions. In this paper, we will explore the 
applicability of QPSO in training RBF neural network. The paper is structured as 
follows. In Section 2, RBF network model and parameter selection problem are 
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introduced. Section 3 describes QPSO algorithm. In Section 4, we propose our QPSO-
Trained RBF network model. Section 5 gives the experiments results of the proposed 
model on system identification problem. Finally, the paper is concluded in Section 6. 

2   Structure and Parameter Selection of RBF Neural Network 

RBF Neural Network is structured by embedding radial basis function a two-layer 
feed-forward neural network. Such a network is characterized by a set of inputs and a 
set of outputs. In between the inputs and outputs there is a layer of processing units 
called hidden units. Each of them implements a radial basis function. Mathematically 
the RBF network can be formulated as  

( )
=

−=
m

k
kkk cxxg

1

)( ϕλ  
(1) 

where m is the neuron number of hidden layer, which is equal to cluster number of 
training set. kcx−  stands for the distance between the data point x and the RBF 

center kc . 
kλ  is the weight related with RBF center 

kc . Therefore, the RBF neural 

networks output is a weighted sum of the hidden layer’s activation functions. In this 
paper, we adopt the most commonly used Gaussian RB functions as basis (activation) 
functions, then in the formula (1),  
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In formula (2), 
kσ  indicates the width of the kth Gaussian RB functions. One of the 

kσ selection methods is shown as follows. 

∈
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M θ
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where 
kθ  is the kth cluster of training set and 

kM  is the number of sample data in the 

kth cluster. 
The neuron number of the hidden layer, i.e., the cluster number of training set, 

must be determined before the parameter selection of RBF neural network. In this 
paper, we adopt an efficient method, Rival Penalized Competitive Learning (RPCL) 
[17], to decide the cluster number. If the neuron numbers of hidden layer has been 
decided, the performance of RBF depends on the selection of the network parameters. 
There are three types of parameters in a RBF neural network model with Gaussian 
basis functions: (1). RBF centers (hidden layer neurons); (2). Widths of RBFs 
(standard deviations in the case of a Gaussian RBF); (3). Output layer weights. 
Different strategies exist for training of RBF neural network models. By means of 
training, the neural network models the underlying function of a certain mapping. In 
order to model such a mapping we have to find the network weights and topology. 
There are two categories of training algorithms: supervised and unsupervised. RBF 
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networks are used mainly in supervised applications. In a supervised application, we 
are provided with a set of data samples called training set for which the corresponding 
network outputs are known. In this case the network parameters are found such that 
they minimize a cost function. In unsupervised training the output assignment is not 
available for the given set.  

3   Quantum-Behaved Particle Swarm 

Particle Swarm Optimization (PSO) algorithm, originally introduced by Kennedy and 
Eberhart in 1995 [9], simulates the knowledge evolvement of a social organism, in 
which each individual is treated as an infinitesimal particle in the n-dimensional 
space, with the position vector and velocity vector of particle i being represented as 

))(,),(),(()( 21 tXtXtXtX iniii =  and ))(,),(),(()( 21 tVtVtVtV iniii = . The particles move 

according to the following equations: 

))()(())()(()()1( 2211 tXtPrctXtPrctVwtV ijgjijijijij ⋅⋅+−⋅⋅+⋅=+  (4) 

)1()()1( ++=+ tVtXtX ijijij
 njMi ,2,1;,2,1 ==  

(5) 

where 1c  and 2c  are called the acceleration coefficients. Vector ),,,( 21 iniii PPPP =  

is the best previous position (the position giving the best fitness value) of particle i 
known as the personal best position (pbest); vector ),,,( 21 gnggg PPPP =  is the position 

of the best particle among all the particles in the population and is known as the 
global best position (gbest).  The parameters 1r  and 

2r  are two random numbers 

distributed uniformly in (0,1). Generally, the value of Vij is restricted in the 
interval ],[ maxmax VV− . Inertia weight w was first introduced by Shi and Eberhart in 

order to accelerate the convergence speed of the algorithm [16]. 
Trajectory analyses in [6] demonstrated the fact that convergence of the PSO 

algorithm may be achieved if each particle converges to its local attractor with 
coordinates 

)(),()1()()( 221111 rcrcrcwheretPtPtp gjijij +=⋅−+⋅= ϕϕϕ  (6) 

In QPSO, each individual quantum-behaved particle moves in a search space with 

each dimension existing a Delta Potential Well, whose center is ijp . We can get the 

following update equation for position of the particle [12]. 
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2
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L
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The value of L and the position are evaluated by )()(2 tXtCL ijj −⋅= α , where 
jC  is 

defined as the mean of the personal best positions among all particles, that is 
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)( . Thus we can get the following iterative equation for QPSO [13]. 
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)/1ln()()()()1( utXtCtptX ijjijij ⋅−⋅±=+ α  
(8) 

where parameterα is called Contraction-Expansion (CE) Coefficient, which can be 

tuned to control the convergence speed of the algorithms. For more detailed 

information of QPSO, one may see literatures such as [12], [13] and [14]. 

4   QPSO-Trained RBF Neural Network 

When training RBF NN by QPSO, a decision vector represents a particular group of 
network parameters including 

kc , 
kλ  and 

kc ),,2,1( mk = . Thus each particle flies in 

a 3m-dimensional search space with ( )mmmi cccX λλλσσσ ,,,,,,,,,,, 212121=  denoting 

its position. Initialization of the population involves generating randomly the position 
vector 

iX ),,2,1( Mi =  and setting the personal best position ),,2,1( MiXP ii == .  

Since a component of the position corresponds to a network parameter, a RBF 
network is structured according the particle’s position vector. Training the 
corresponding network by inputting the training samples, we can obtain an error value 
computed by the following formula. 
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where )(, jjs xy and )(, jjs xg  are the actual response (output) and network’s predicted 

response (output) at output unit s on 
jx , respectively. Q is the number of the training 

sample and c is the number of output units. The particle is evaluated by the obtained 
error value (fitness value), by which it can be determined whether 

iP  and 
gP need to 

be updated. In a word, the error function (9) is adopted as the objective function to be 
minimized in QPSO-based RBF neural network. 

There are two alternatives for stop criterion of the algorithm. One method is that 
the algorithm stops when the objective function value is less than a given threshold 
ε ; the other is that it terminates after executing a pre-specified number of iterations. 
The following is the procedure of QPSO-Trained RBF neural network algorithm: 

(1) Initialize the population by randomly generate the position vector 
iX of each 

particle and set 
iP =

iX ; 

(2)  Structure a RBF neural network by treating the position vector of each particle as 
a group of network parameter; 

(3)  Training each RBF network on the training set; 
(4)  Evaluate the fitness value of each particle by formula (9), update the personal best 

position 
iP  and obtain the global best position gP  across the population; 

(5)   If the stop criterion is met, go to step (7); or else go to step (6); 
(6)   Update the position vector of each particle according to (8); 
(7)   Output the gP  as a group of optimized parameters; 
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5   Experiments of QPSO-Trained RBF on System Identification 

This section presents experiments on the application of QPSO-Trained RBF neural 
network in nonlinear system identification. First, we give a brief introduction of 
system identification model based on RBF NN. Then, the simulation results on a 
nonlinear system are presented. 

Identifying a nonlinear system is the process of determining dynamic behavior of 
the system using observed input and output data. The identification model based on 
RBF NN is shown in Fig.1. 

X k

-

y k

+

QPSO

RBF NN

Non-Linear System

 

Fig. 1. System Identification Model based on RBF NN 

Now consider a nonlinear system S to be identified, given that 
{ }NkXYD kk ,,2,1),( ==  is the observed data set, N is size of data set, and 

kY  is the 

output corresponding to input 
kX . For any input )1( NiX i ≤≤ , we can obtain the 

response )( iXfθ  and compute the square error 2)(( 2
ipi XfY − . Consequently, we can 

get the square error of the identifier on the whole data set. 
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where θ  is the unknown parameter vector of the system. Thus the task of 

identification problem is to find out such a parameter vector Θ∈
∧
θ  that  

),(min),( θθ
θ

DMSEDe RBFRBF Θ∈

∧
=  (11) 

where Θ  is set of feasible parameter vector. 
In our experiments on system identification, we use the following nonlinear system 

as a testing problem. 
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Given that 
tu  is a stochastic sequence uniformly distributed in the interval ]2,2[−  

and T
ttt uyx ],[= is the input of the identification model, the training set 

}800...2,1|),{( == kxyD k
 is used to train the RBF NN identifier. First, we can 

determine the neuron number of hidden layer is 8 using RPCL algorithm. Then, we 
employ PSO and QPSO as training algorithm respectively and compare the 
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performance between them. The experiment configuration is as follows. For PSO, the 
inertial weight w varies linearly from 0.9 to 0.4 over the running of the algorithm and 
the acceleration coefficients 

1c  and 
2c are both set to 2; For QPSO, the CE coefficient 

varies linearly from 0.8 to 0.3 over the running. Both the training algorithms use 50 
particles and execute for 200 iterations. 

To test the results of identification, we use the following inputs 

+
=

)25/2cos(2.0)250/2cos(8.0

);250/2cos(

tt

t
ut ππ

π  
500

500

>
≤

t

t  (13) 

The predicted outputs of the identification model trained by the two algorithms, along 
with the actual output of the system, are shown in Fig. 2. The convergence processes 
of the two algorithms are visualized in Fig. 3. 
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Fig. 2. The actual output and the predicted output of RBF NN identification model trained by 
(a) PSO and (b) QPSO 

It can be seen from Fig.2 that, executing for same number of iteration, RBT NN 
identifier trained by QPSO can identify the nonlinear system with higher precision 
than that trained by PSO. Actually, QPSO can generate mean square error (MSE) 
value 3101.3 −× , while PSO yield MSE value 2100.1 −× . As of convergence speeds, we 
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can see from Fig.3 that QPSO converges to the global optima more quickly than PSO 
at the early stage of the search process. During the middle stage, say about from the 
15th iteration to the 30th iteration, PSO overruns QPSO in convergence. After the 30th 
iteration, QPSO overruns PSO again and could find better solution than PSO, while 
PSO may encounter premature convergence. Thus it can be concluded that QPSO 
outperforms PSO in global search ability. 
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Fig. 3. Convergence process of PSO and QPSO over 200 iterations 

In practice, the QPSO-Trained RBF neural network outperforms that trained by 
PSO not only in system identification, but also in function approximation problem 
and other application. In our preliminary experiments, we also use QPSO-Trained 
RBF neural network to approximate some well functions. The results, which are not 
presented here for space limitation, shows that QPSO-Trained RBF NN can 
approximated more rapidly and precisely than PSO-Trained RBF NN. 

4   Conclusion 

Radial Basis Function neural network have been widely used in many real world 
application. In order to use a RBF network, training algorithm is key to determine the 
network parameters. To overcome the shortcomings of existing training algorithms, in 
this paper, we employ the newly proposed QPSO to train RBF network and test the 
approach on system identification problem. The experiment result of QPSO-Trained 
RBF network on nonlinear system identification show that it can identify the system 
more quickly and precisely than that trained by PSO.  

Although QPSO is also an evolutionary population-based search technique like 
PSO, it is stronger global search ability than PSO. Therefore, QPSO can find out the 
global optima of the optimization problem at more easily and more quickly. Our 
future work will focus on applying QPSO to training other neural network and use 
QPSO-Trained RBF in real world applications. 
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Abstract. This paper presents an improved Naive Bayes algorithm for clustering. 
Many researchers search for parameter values from incomplete data using EM 
(Expectation Maximization) algorithm. It is well-known that EM approach has a 
drawback – local optimal solution, so we propose a novel hybrid algorithm of the 
DPSO (Discrete Particle Swarm Optimization) and the EM approach to improve 
the global search performance. We then apply the approach to 4 real-world data 
sets from UCI repository and compare the performance of clustering by the new 
algorithm with by EM algorithm. In the comparison, the hybrid DPSO+EM 
algorithm exhibits more effectively and outperforms the EM approach.    

Keywords: Naive Bayes; clustering; PSO; EM. 

1   Introduction 

Clustering [1] is the unsupervised classification of patterns into clusters, because unlike 
classification (known as supervised learning), no a priori labeling of some patterns is 
available to use in categorizing others and inferring the cluster structure of the whole 
data. The clustering problem has been addressed in many contexts and by researchers in 
many disciplines; this reflects its broad appeal and usefulness as one of the steps in data 
analysis. Many algorithms have been proposed, such as model-based algorithm, 
distance-based algorithm, density-based algorithm and deviation-based algorithm. In 
this paper, we concentrate on the research of the model-based algorithm. The most 
frequently used approaches include mixture density models (e.g., Gaussian mixture 
models [2]) and bayesian networks (e.g., AutoClass [3]).  

In this paper, a hybrid approach is developed for the parameter estimation of Naive 
Bayes for clustering. We redefine position and velocity of PSO (Particle Swarm 
Optimization), and reinterpret the formula, which are described in details to adapt the 
parameter estimation problem from incomplete data. We have conducted a number of 
experiments and compare DPSO+EM with EM. Simply put, DPSO (Discrete 
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PSO)would take less time for finding the optimal solution. The empirical results 
illustrate that DPSO+EM can generate more effective clustering results than the EM 
algorithm.  

This paper is organized as follows. We present the backgrounds of Naive Bayes 
Clustering, the Expectation maximum algorithm and the Particle Swarm Optimization 
method in Section 2. We derive a novel hybrid DPSO algorithm for clustering in detail 
in section 3 and describe a comparison among this new algorithm and EM algorithm 
with an analytical study in Section 4. We conclude with a discussion of future 
directions in section 5. 

2   Backgrounds 

2.1   Naive Bayes Clustering 

NB (Naive Bayes) can be viewed as a special example of Bayesian Network. It assumes 
that all variables are conditionally independent given the class variable. Independence 
means probabilistic independence, that is, X1 is independent of X2 given C where P(X1| 
X2,C) = P(X1|C) for all possible values of X1, X2 and C, whenever P(C)>0. NB is applied 
in many domains, such as classification [4], clustering etc on account of its efficiency.  

AutoClass is assumed that, in addition to the observed or predictive attributes, there 
is a hidden variable. This unobserved variable reflects the cluster membership for every 
case in the data set. Therefore, the data-clustering problem is also an example of 
supervised learning from incomplete data due to the existence of such a hidden variable 
[5]. Their approach for learning has been called RBMNs (Recursive Bayesian 
Multinets). These two algorithms use the Bayesian approach, starting from a random 
initialization of the parameters, incrementally adjusts them in an attempt to find their 
maximum likelihood estimates. As Friedman points in [6], the computation of the MAP 
(Maximum a Posterior) parameters can be done efficiently using the EM algorithm, 
gradient ascent, Gibbs Sampling or extensions of these methods, such as BC+EM 
algorithm provided in [7] [8]. 

2.2   EM Algorithm 

The well-known EM [9][10] algorithm is an iterative method to compute maximum a 
posteriori and maximum likelihood parameters from incomplete data. The EM 
algorithm finds a local maximum for the parameters. The traditional EM algorithm is a 
process with two steps: 

Estep: ( )( ) ( )( ) { ; ; )}t t

c
Q EΘ Θ Θ Θ  (1) 

Mstep: ( 1) ( )arg max ( , )t tQ+

Θ
Θ = Θ Θ  (2) 

where  is a set, which consists of observed data  and unobserved data . = ( , ) 
and  are called complete data and incomplete data, respectively. Assume that the joint 
probability density of  is parametrically given as p( , ; ), where  denotes 
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parameters of the density to be estimated. The maximum likelihood estimate of  is a 
value of  that maximizes the incomplete data log-likelihood function: 

( ); log ( ; )pΘ Θ log ( , ; )p d= Θ  (3) 

The characteristic of the EM algorithm is to maximize the incomplete data 
log-likelihood function by iteratively maximizing the expectation of the complete data 
log-likelihood function: 

( ); log ( , ; )
c

pΘ Θ  (4) 

Suppose that (t) denotes the estimate of  obtained after the tth iteration of the 
algorithm. Then, at the t+1th iteration, the Estep computes the expected complete data 
log-likelihood function denoted by Q( | (t)) and defined by equation (1). And the 
M-step finds the  maximizing Q( | (t)). The convergence of the EM steps is 
theoretically guaranteed [9]. By these two steps we can get the MLE (maximum 
likelihood estimation) of . It is well-known that the EM algorithm is sensitive to the 
initialization and easy to get into local optima.  

2.3   PSO Algorithm 

PSO is basically developed through simulation of bird flocking in two-dimension space 
[11]. The basic principles in “classical” PSO are very simple. A set of moving particles 
(the swarm) is initially “thrown” inside the search space. Each particle has the 
following features: 

• It has a position and a velocity 
• It knows its position, and the objective function value for this position 
•  It knows its neighbors, best previous position and objective function value (variant: 

current position and objective function value) 
• It remembers its best previous position 
This compromise is formalized by the following equations: 

1

1 1 2 2
( ) ( )

pBest

t t t t t t

gBest
v v c r p x c r p xω+ = + − + −  (5) 

1 1t t tx x v+ += +  (6) 

where 
vt: velocity of particle at iteration t 
xt: position of particle at iteration t 

pBest

tp : best previous position of particle at iteration t 

t
gBestp : best neighbor’s position of particle at iteration t 

: inertia weight 
r1, r2: random coefficient in [0, 1] 
c1, c2: positive constant 
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In PSO, the potential solutions, called particles, fly through the problem space by 
following the current optimum particles, namely only the particle with the best fitness 
function value can transfer information to the others. So these particles could quickly 
converge at the optimal solution. In addition, it performs a globalized search for 
solution whereas most other optimization algorithms perform a localized search. It can 
be used to solve a wide array of different optimization problems. Some example 
application include neural network training [12][13] and function minimization 
[14][15]. 

3   DPSO+EM Parameter Estimation 

In past several years, PSO has been successfully applied in many research and 
application areas. It is demonstrated that PSO gets better results in a faster, cheaper way 
compared with other methods on a continuous definition domain. In addition, some 
binary versions have already been used. Naturally, we try to define a frame for a 
discrete PSO to optimize Naive Bayes parameter estimation for clustering. By means of 
the character of this problem, we need redefine velocity and position, and reinterpret 
the formulas (5) and (6). 

3.1   DPSO Algorithm 

DPSO approach, motivated by swarm behavior, makes use of velocity and position to 
obtain the globally optimal partition of the data. Candidate solutions to the clustering 
problem are encoded as position of particles. The summary of DPSO approach applied 
to clustering is as follows: 

1. Choose a random population of solutions. Each solution here corresponds to a 
valid k-partition of the data. Associate a fitness value with each solution. In terms of 
fitness function, calculate fitness of each particle.  

2. According to fitness of particle, select the best neighbor particle with the smallest 
fitness. Use the DPSO operators to generate the next population of solutions. Evaluate 
the fitness values of these solutions. 

3. Repeat step 2 until some termination condition is satisfied. 

3.1.1   Position and Velocity Redefinition 
In order to apply the DPSO to clustering problem, we redefine the position and velocity 
which are used in PSO as follows. 

A position is defined by x = (x1, …, xi, …, xN)(N is the number of cases), xi {1, …, 

K}(K is the number of clusters), which means the ith case in data set is assigned to the 
xith cluster. 

A velocity is then defined by v = (v1, …,. vN), vi = (vi1, …, vik, …, viK), vik (0,1), 

which means the probability that the ith case is assigned to the xith cluster.  
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3.1.2   Formulas Reinterpretation 
1. position plus velocity 

Let p be a position and v be a velocity. The position ′p = p+ v is found by applying 

the first transposition of v to p, then the second one to the result etc. 

Let ' arg max( )ik
k

k v= and r be a random coefficient in [0, 1] 

If vik > r then ip′  = k ′  

       else ip′  = pi  

2. position minus position 
Let p1 and p2 be two positions. The difference p2-p1 is defined as the velocity v, 

found by a given algorithm, so that applying v to p1 obtains p2.  
v = p2-p1 = (p2

1, …, p2
N) – (p1

1, …., p1
N) = ((v11, …, v1k, …, v1K, ), …, (vi1, …, vik, …, 

viK), …, (vN1, …, vNk, …, vNK)) 

If p2
i = p1

i then ikv = 2×1/N, ijv = 0 (j =1, …, k-1,k+1, …, K) 

else when p2
i =k then ikv = 1/N, ijv = 0.5×1/N (j =1, …, k-1,k+1, …, K) 

3. ×velocity plus r1×velocity1 plus r2×velocity2 
Let v1 and v2 be two velocities and r1 and r2 be two real. We define 

′v  = ×v + r1×v1+ r2×v2 = ( ×v1 + r1×v1
1+ r2×v2

1, …, ×vi + r1×v1
i + r2×v2

i, …, ×vN 
+ r1×v1

N + r2×v2
N) 

iv′  = ×vi+r1×v1
i + r2×v2

i = ( ×vi1 + r1×v1
i1+ r2×v2

i1, …, ×vik +r1×v1
ik+ r2×v2

ik, …, 

×viK +r1×v1
iK+ r2×v2

iK) 
Finally, in order to make sure that the velocity (probability) is normalized, we 

calculate velocity using 
ik ik ikk

v v v′ ′ ′= . 

3.1.3   Fitness Function 
The MDL (Minimal description length) principle casts learning in terms of data 
compression. Roughly speaking, the goal of the learner is to find a model that facilitates 
the shortest description of the original data. The length of this description takes into 
account the description of the model itself and the description of the data using the 
model. In this paper, the model is a NB network. Because of the structure of model is 
known, the main problem is learning parameters of NB network according to the MDL 
principle.  

Let B = <S, > be a NB network, S and  are the structure and parameters of NB 
model, respectively. Let D be an incomplete data set. The MDL score function of a 
network B given a data set D, written MDL(B|D), as stated in [3] is given by: 

1 ( )

( )

log ˆ ˆ( ) ( , ) log ( )
2

i i

j

n

D i j D i j

i x Val X

c Val C

N
MDL B D B N P x c P x c

= ∈
∈

= −  (6) 

Where |B| denotes the number of parameters of NB model, and N , n denote the number 
of the cases in data set and the number of variable, respectively. The first term 
represents the length of describing the NB model B, in that, it counts the bits needed to 
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encode the specific NB model B, where (logN)/2 bits are used for each parameter in . 
The second term is the negation of the log likelihood of B given D, which measures 
how many bits are needed to describe D based on the probability distribution PB. 
Let ˆ ( )DP ⋅  be the empirical distribution defined by frequencies of events in D. 

The MDL principle is widely applied to model selection problems. In this paper, we 
refer to MDL score as fitness function of DPSO algorithm, so the smaller fitness 
function is, the better corresponding to particle is. 

3.1.4   Ascent Criterion 
In order to make information share within these particles in a swarm more effective, we 
propose to unify the positions and velocities of each particle using ascent criterion after 
they are updated by the DPSO algorithm. 

Let D = {d1, …, dN} represent a collection of N objects. Let partition = (C1, …, CK) 
denote a partition of D into K nonempty clusters. Each set Ci consists of ni 1 elements 
of D, with 1

K
i i Nn= = . Without loss of generality it will be assumed that C1, …, CK are 

“sorted in ascending order” which means that: 

1 2
arg min( ) arg min( ) arg min( )

i i i K
i i i

d C d C d C∈ < ∈ < < ∈ . 

3.2   DPSO+EM Algorithm 

The well-known EM algorithm is an iterative approach to compute maximum a 
posteriori and maximum likelihood parameters from incomplete data. The EM 
algorithm finds a local maximum for the parameters because it is sensitive to 
initialization.  

The DPSO method, described above, is an evolutional method to estimate 
conditional probabilities from incomplete data sets. It is obvious that the DPSO method 
has strong global search ability and parallel performance, but the convergence rate of 
the DPSO algorithm is painfully slow in terms of experiments. We present an 
alternative approach to solve NB parameter estimation problem. In the remaining part 
of this paper we refer to this method as DPSO+EM as it alternates between the DPSO 
method and the EM algorithm. The DPSO+EM method overcomes the disadvantages 
of these two approaches by performing a local optimization using the EM method at 
each particle 

The general pseudo code of DPSO+EM algorithm for parameter estimation from 
incomplete data set can be described as appendix. 

4   Experimental Results 

In our experiments, we compared the DPSO+EM clustering algorithm with AutoClass 
over 4 data sets. These 4 real data sets we used are heart_disease (270 cases, 2 classes, 
13 attributes), iris (150 cases, 3 classes, 4 attributes), nursery (resample 389 cases from 
initial data set, 5 classes, 8 attributes) and zoo (101 cases, 7classes, 16 attributes) from 
the UCI repository.  

In all experiments we assume that the class label of each case is not given and all the 
variables are finite discrete variables. Before performing the clustering process, we 
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need pretreatment to data sets. First, we discarded all the entries corresponding to the 
class variable. Second, the observed data were discretized using fixed-sized bins. 
Notice should be taken that in all experiments we assume that the number of clusters is 
unknown, thus, we perform a search step to identify the most probable number of 
clusters in these data sets. We use 8 as maximum of the number of clusters and 
calculate the MDL score for different number. The smaller MDL score is, the better the 
number of partition is. This algorithm favors smaller number of clusters when the MDL 
score is similar (Occam’s razor). In experiments, we choose 20 particles for the DPSO 
algorithm. In the DPSO algorithm, the inertia weight  is initially set as 1 and the 
acceleration coefficient constants c1 and c2 are set as 2. These values are chosen based 
on the experimental results. 

We use two performance criteria to compare the EM with the DPSO+EM 
algorithms. The log likelihood (LL) of the learnt NB model, log p(D| ), is used in our 
comparison. The higher LL is, the closer NB model is to modeling the probability 
distribution in the data set D. Notice should be taken in experiments, we assume that the 
real number of each dataset is the optimal number of each dataset, and then estimate 
parameters of NB model using EM and DPSO+EM algorithms, respectively. Because 
these two algorithms use the same optimal number of clusters, we don’t need to use 
MDL to compare performance between these algorithms, LL can be viewed as a 
performance comparison criterion according to the description of MDL in section 3.  

In addition to this, we consider the optimal number of clusters and the corresponding 
MDL score as valuable comparison information. In section 3, we describe the meaning 
and performance of MDL principle in parameter estimation. 

 
Fig. 1. The mean of MDL score of learnt NB model for 4 data sets 

Figure 1 shows the curves of MDL score changing along with different number of 
clusters over 4 data sets. These curves are single peak, so we can confirm the number of 
clusters according to MDL score. We also find that the MDL score over iris data set is 
minimum using the DPSO+EM algorithm when the number of clusters is 3. It is 
interesting that the real number is also 3. This illustrates that this algorithm is effective 
to find the optimal number of clusters and the number has significance for iris data set. 



 Discrete Particle Swarm Optimization and EM Hybrid Approach 1171 

Table 1 compares the performance of the algorithm for learning NB model for 
clustering when using the EM algorithm as parameter search step and when using the 
DPSO+EM method. It shows that, in most data sets, the DPSO+EM algorithm can 
effectively confirm the number of clusters of data set rather than EM algorithm, and 
corresponding MDL score is smaller than the EM algorithm’s. The primary reason is 
that the EM algorithm can get good result on single pick function, however when the 
distribution is multi-peak function, the solution of optimization is not good. As we can 
see in the 4 data sets, the use of the DPSO+EM method outperforms the use of the EM 
algorithm in terms of log marginal likelihood. 

Table 1. Clustering performance comparison bewteen EM and DPSO+EM 

number of clusters MDL Log likelihood Data Set 

EM DPSO+EM Real EM DPSO+EM EM DPSO+EM 

heart_disease 4 3 2 3709.7 3638.8 -3693.6 -3436.4 

iris 5 3 3 1052.5 1005.8 -844.5 -739.5 

nursery 4 4 5 3534.3 3402.3 -3170.4 -3045.6 

zoo 4 3 7 626.6 644.9 -405.0 -352.1 

We can conclude that the DPSO+EM algorithm is not sensitive to the initial 
solution, and can get better solution than the EM algorithm. 

Due to the above experimental results, the DPSO+EM method exhibits a more 
effective, efficient and robust behavior than the EM algorithm.  

5   Conclusion 

In this paper, we have described how to apply DPSO method to parameter estimation 
for NB clustering effectively. We found that the DPSO algorithm converges much 
slowly than the EM algorithm according to experimental results, but it can get better 
global optimal solution. At the same time, the EM method is sensitive to initial solution 
and easy to get local optima. Because DPSO and EM algorithms have their own 
drawbacks respectively, in order to improve the efficiency of DPSO, local search 
algorithm-EM is introduced into the traditional DPSO method. The EM algorithm 
makes every particle can find the local optimal solution in current space. This local 
search process improves the performance of swarm. 

This hybrid algorithm is tested on 4 dataset to show that it can discover good 
clustering results. We have evaluated and compared the EM and the DPSO+EM 
algorithms for data clustering problems. Our experimental comparison between both 
algorithms has suggested the substantial gain in effectiveness and efficiency of the 
DPSO+EM algorithm over the EM algorithm. 

We are currently extending DPSO+EM to recognize outliers from data set; we hope 
this will improve the performance of outlier detection. 
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Appendix 

k=2 
Repeat:  
  Create and randomly initialize n N-dimension particles 
P1-Pn 
  Repeat:  
    t = 1 
    For i = 1 to n 
      Optimize Pi’s position using EM method until 
convergence or EM iteration’s number > 5 
      Update position and velocity of particle Pi in terms 
of ascent criterion 
      Calculate Pi’s MDL Score as its fitness value  
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    Next 
    Select the particle with the best fitness as gBest1 
    For i=1 to n 
      Update Pi’s velocity and position in terms of 
equations (5),(6)and gBest 
      Update position and velocity of Pi according to ascent 
criterion 
      Calculate current Pi’s MDL Score 
      If MDL(Pi)<MDL(pBest

2)  
        Set current Pi as Pi’s new pBest 
    Next 
    t = t+1 
  Until convergence criterion is satisfied or maximum 
iteration number is attained 
  k = k + 1  
Until maximum of the number of clusters is attained or 
convergence criterion is satisfied.  
End.                         

                                                           
1 best neighbor particle at iteration t. 
2 best previous particle at iteration t. 
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Abstract. First, based on the particle swarm optimization, an extended particle 
swarm optimizer with acceleration coefficients (EPSO_AAC) is presented. The 
personal best particle is replaced by the average of personal best particles in 
swarm at generation, and time-varying acceleration coefficients are applied by 
establishing a nonlinear functional relationship between acceleration coefficients 
and the different of the average fitness of all particles and the fitness of the global 
best particle. The proposed algorithm uses more particles’ information, and 
adjusts adaptively “cognition” component and “social” component by 
time-varying acceleration coefficients, thus improves convergence performance. 
Then, the proposed algorithm is applied to nonlinear blind source separation. The 
demixing system of the nonlinear mixtures is modeled using a multi-input 
multi-output B-spline neural network whose weights are optimized under the 
criterion of independence of its outputs by EPSO_AAC. The experiment results 
demonstrate that the proposed algorithms are effective, and have good 
convergence performance. 

1   Introduction 

The particle swarm optimization (PSO), first introduced by Kennedy and Eberhart[1,2] 
in 1995, is a stochastic optimization technique. They have been used to solve a range of 
optimization problems, including neural network training and function minimization. 
The PSO is a population based optimization algorithm. Similar to other 
population-based optimization methods such as genetic algorithms, the PSO starts with 
the random initialization of a population of individuals (particles) in the search space. It 
works on the social behavior of particles in the swarm.  Therefore, it finds the global 
best solution by simply adjusting the trajectory of each individual toward its own best 

                                                           
*  The work is supported by the Post Doctor Science Foundation of P.R.C. (2003034062), the 

Natural Science Foundation of Guangdong Province, P.R.C. (04300015) , the Program for the 
Development of Science & Technology of Guangzhou, P.R.C.(2004J1-C0323) and the Program 
for the Development of Science & Technology of Guangzhou Colleges and Universities, 
P.R.C.(2055). 
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location and toward the best particle of the entire swarm at generation. The PSO is 
becoming very popular due to its simplicity of implementation and ability to quickly 
converge to a reasonably good solution. Since the introduction of the PSO in 1995,there has 
been a considerable amount of work done in developing the original version of PSO. 
Recently, several investigations have been undertaken to improve the performance of PSO, 
such as  He[3], Ratnaweera[4], Monson[5], van[6], Rodriguez[7], Kennedy[8], Katare[9], Fan[10] 

and Sun[11]. 
In this paper, first, we present an extended particle swarm optimizer with adaptive 

acceleration coefficients (EPSO_AAC) to improve the performance of standard PSO. 
By replacing personal best particle with the average of personal best particles in swarm, 
more information can be transferred among particles of swarm. Then, adaptive 
acceleration coefficients are introduced by establishing a nonlinear functional 
relationship between acceleration coefficients and the different of the average fitness of 
all particles and the fitness of the global best particle. The proposed algorithm uses 
more particles’ information, and adjusts adaptively cognition component and social 
component, thus improves convergence performance. Then, the proposed algorithm is 
applied to nonlinear blind source separation. A multi-input multi-output B-spline 
neural network is used to model the demixing system of the nonlinear mixtures, and its 
weights are optimized under the criterion of independence of its outputs by 
EPSO_AAC. Application of the EPSO_AAC on several benchmark optimization 
problems shows a marked improvement in performance over original particle swarm 
optimization, and is effective to be applied to nonlinear blind source separation. 

2   Particle Swarm Optimization 

In the particle swarm optimization, the trajectory of each particle in search space is 
adjusted by dynamically altering the velocity of each particle, according to its own 
flying experience and the flying experience of the other particles in the search space. 
The position vector and the velocity vector of ith particle in m-dimensional search 

space can be represented as ),,2,1( Nii =x  and ),,2,1( Nii =v  respectively, N is the 

number of particle. In each iteration of PSO, the swarm is updated by the following equations:  

))()(())()(()()1( 2211 ttrcttrctwt igiiii xpxpvv −+−+=+  (1) 

)1()()1( ++=+ ttt iii vxx  (2) 

Where ),,2,1)(( Niti =p  and )(tgp  are given by the following equations, respectively:  
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w is called an inertia weight. 1c and 2c are acceleration coefficients which control how 

far a particle will move in a single iteration. 1r and 2r are elements from two uniform 

random sequences in the range ]1,0[ . )(xf  is the maximum objective function.  

The second part of (1), known as the “cognitive” component, represents the 
personal thinking of each particle. The cognitive component encourages the particles 
to move toward their own best positions found so far. The third part is known as the 
“social” component, which represents the collaborative effect of the particles, in 
finding the global optimal solution. The social component always pulls the particle 
toward the global best particle found so far. 

3   Extended PSO with Adaptive Acceleration Coefficients 
(EPSO_AAC) 

In the traditional particle swarm optimization, the sharing of information among 
conspecifics is achieved by employing the publicly available information )(tgp . There is no 

information sharing among individuals except that )(tgp  broadcasts the information to the 

other particles. Therefore, the swarm may lose diversity and is more likely to confine the 
search around local minima if committed too early in the search to the global best found so 
far. For using more particles’ information, (1) is modified as: 

))()(())()(()()1( 2211 ttrcttrctwt igiaii xpxpvv −+−+=+  (5) 

Where 
=

=
N

i

ia t
N

t
1
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1

)( pp . 

On the other hand, the search toward the optimum solution is guided by the two 
stochastic acceleration coefficients (the cognitive component and the social component 
). Therefore, proper control of these two components is very important to find the 
optimum solution accurately and efficiently. Generally, during the early stages of 
optimization, it is desirable to encourage the particles to wander through the entire 
search space, without clustering around local optima, during the latter stages, it is 
important to enhance convergence toward the global optima, to find the optimum 

solution efficiently. Therefore, we reduce the acceleration coefficient 1c and increase 

the acceleration coefficient 2c by establishing a nonlinear functional relationship 

between acceleration coefficients and different of average fitness and best fitness. The 
mathematical representation of this concept is given as follow: 

( )( )2
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4   Nonlinear Blind Source Separation Based on EPSO_AAC 

A generic nonlinear mixture model for blind source separation[12-13] can be described as  

))(()( tt Asfx =  (8) 

Where A is a mixing matrix, [ ]T21 )()()()( tststst n=s  called the independent source 

vector, [ ]T
21 )()()()( txtxtxt n=x  called vector of observed random variables. 

T
21 )](,),(),([ ⋅⋅⋅= nffff , nitststsftx nii ,,2,1)),(,),(),(()( 21 == . 

The output of the nonlinear separating system can been written as           

))(()( tt xWgy =  (9) 

Substituting (8) into (9), We can obtain  

)))((()( tt AsfWgy =  (10) 

If )()( 1 ⋅=⋅ −fg  and PDWA = , then this means that the components of the outputs 

y are independent. Where P  is a permutation matrix and D is a nonsingular and 

diagonal matrix.  

 

Fig. 1. B-spline neural network 

For the nonlinear mixing transform function f , we assume it has the inverse 

function 1−f . ))(()( tt xWgy =  is a multi-input multi-output system , a B-spline neural 

network[14-15] of Fig.1 is used to approximate the unknown multi-input multi-output 

system.  

Where L,,1),( =ibi x  is B-spline basic function. The outputs of the B-spline 

neural network showed in Fig.1 can been written as 
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nitbwty
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x  (11) 

Where )L,,1,,,1(, == jniw ji
 are B-spline neural network weights, L is the 

number of B-spline neural network basic functions. 
It is possible to recover the source from the nonlinear mixture (8) using only the 

source statistical independence assumption[12]. In order to separate the independent 
sources from their nonlinear mixtures, we expect the outputs of the separation system to 
be mutually statistically independent. For this purpose, we utilize the following 
criterion for nonlinear blind sources separation[16]. 

( ) ( ) ( )[ ]
= ≠

−=
n
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n

ij
jiji yhyhyhyhJ

1

2
2121 )(E)(E)()(E)( W  (12) 

Where W  is weight matrix of the B-spline neural network, )(1 ⋅h  and )(2 ⋅h  are 

nonlinear function. 
The minimization of the criterion in (12) can give the correct separation results for 

nonlinear mixtures. Here, we apply EPSO_AAC to fulfill the search of the optimal 
weighs of the separation system based on the cost functions specified in (12). 

The PSO_AAC-based nonlinear BSS algorithm can be implemented as the following 
iterative procedure: 

1) Initial population N
ii 1}{ =W  and N

ii 1}{ =v .  

2) The fitness for each particle N
ii 1}{ =W  is evaluated using (12), 

3) The best previous position of the ith particle is recorded and represented 

as ),,2,1( Nii =p , and the index of the best particle among all the particles in the 

population is represented as 
gp . 

4) Apply EPSO_ACC to change the velocity and position vector for each particle. 

5) Go to step 2), and repeat until convergence. 

6) Output the particle W  with the best fitness value and compute the separated signals. 

5   Results from Simulations 

In our experimental studies, a set of 5 benchmark functions was employed to evaluate 
the EPSO_AAC algorithm in comparison with PSO. The dimension of each function 
M=20. The population size of all algorithms used in our experiments was set at 100. 
The acceleration coefficients 1c and 2c  for PSO were both 1.0. The inertia weight 
w for PSO and EPSO_AAC was 0.8. All experiments were repeated for 50 runs. A 
fixed number of maximum generations 500 was applied to all algorithms.  
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The experimental results for PSO and EPSO_AAC on each test function are listed 
in Table1 and showed in Fig.2-Fig.6. From Table1, EPSO_AAC outperformed the 
PSO algorithm significantly for 5 benchmark functions. From Fig.2-Fig.6, it can be 
seen that EPSO_AAC has a faster convergence rate than the PSO. 
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Table 1. Comparison between PSO and EPSO_AAC 

Averge Optimum Solution  

function PSO EPSO_AAC 

f1 2.5581E-4   7.7941E-6 

f 2 17.9678 3.5243 

f 3 2.2645E-4 1.9146E-4 

f 4 0.0450 0.0120 

f 5 0.4980 0.0990 

  

Fig. 2. The convergence curves of  f1 Fig. 3. The convergence curves of  f2 
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Fig. 4. The convergence curves of  f3 Fig. 5. The convergence curves of  f4 

 

Fig. 6. The convergence curves of  f5 

 
 
 
 
 
 
 
 

Fig. 7. Source Signals 

A computer simulation was conducted to test the EPSO_AAC based algorithm to blind 
separation of independent sources from their nonlinear mixture. Consider the mixing case 
of two independent random signals. The mixing matrix A was randomly generated, 

nonlinear function 3
1 )( xxf = )5.0tanh()(2 xxf = .  Nonlinear function )(1 ⋅h  and 

)(2 ⋅h  in (11) is selected as 3
1 )( xxh = , )5.0tanh()(2 xxxh −= . Sources signals are shown in 

 



 Extended Particle Swarm Optimiser with Adaptive Acceleration Coefficients 1181 

 

 

 
 

Fig. 8. Separated Signals 

Fig.7, the population size was N=50, inertia weight w was 0.9. The maximum generation 
for EPSO_AAC process to be 1000. Separated signals are shown in Fig.8.  

6   Conclusions 

In this paper, first, we present an extended particle swarm optimization with adaptive 
acceleration coefficients (EPSO_AAC). By replacing personal best particle with the 
average of personal best particles in swarm, more information can be transferred among 
particles of swarm. And adaptive acceleration coefficients are introduced by 
establishing a nonlinear functional relationship between acceleration coefficients and 
different of average fitness and best fitness to avoid premature convergence in the early 
stages of the search and to enhance convergence to the global optimum solution during 
the latter stages of the search. Then, EPSO_AAC algorithm is applied to nonlinear blind 
source separation. A multi-input multi-output B-spline neural network is used to model 
the demixing system of the nonlinear mixtures, and its weights are optimized under the 
criterion of independence of its outputs by EPSO_AAC. A set of 5 benchmark function 
has been used to test EPSO_AAC in comparison with PSO. For most of the benchmark 
functions, EPSO_AAC found better results than those generated by PSO. and 
EPSO_AAC is effective to be applied to nonlinear blind source  separation. 
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Application of a Hybrid Ant Colony Optimization for the 
Multilevel Thresholding in Image Processing 
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Abstract. Our study proposes a hybrid optimization scheme based on an ant 
colony optimization algorithm with the Otsu method to render the optimal 
thresholding technique more applicable and effective.  The properties of 
discriminate analysis in Otsu’s method are to analyze the separability among 
the gray levels in the image.  The ACO-Otsu algorithm, a non-parametric and 
unsupervised method, is the first-known application of ACO to automatic 
threshold selection for image segmentation.  The experimental results show that 
the ACO-Otsu efficiently speed up the Otsu’s method to a great extent at multi-
level thresholding, and that such method can provide better effectiveness at 
population size of 20 for all given image types at multi-level thresholding in 
this study. 

1   Introduction 

Many applications such as document image analysis, map processing, scene 
processing, computer vision, pattern recognition, and quality inspection of materials 
consider the image thresholding technique a crucial operation because further process 
steps have to rely on the segmentation results.   The widely-used technique which 
extracts the objects from the background has both bi-level and multilevel types 
recognized.  For an image with clear objects in the background, the bi-level 
thresholding which divides the object pixels at one gray level while the background 
pixels at another is widely used.  For rather complex images, on the other hand, the 
multilevel thresholding segments the pixels into several distinct groups in which the 
pixels of the same group have gray levels within a specific range.  Although recent 
practices have widely exploited the multilevel thresholding, the complexity of the 
thresholding problem and the computation time to solve such problem still impose 
significant challenges as the number of levels required increases.  For this reason, 
many thresholding techniques have been proposed to solve various images 
segmentation problems and classified by their distinctiveness.  For instance, some 
techniques are identified as either global or local thresholdings based on the role of 
the intensity value [3, 5, 11, 13, 14] while other methods have been classified as either 
optimal or property-based [2, 9, 16, 17].  Moreover, Abutaleb [1] classified them into 
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parametric or non-parametric approaches.  Parametric approaches assume each group 
having the probability density function of a Gaussian distribution and find an estimate 
of the parameters of such distribution which will best fit the given histogram data [12, 
13].  Unfortunately, when the desired number of classes is much lower than the 
number of peaks in the original histogram, the computation time to find the solutions 
of threshold values often becomes expensive.  Different from parametric approaches, 
non-parametric methods which find the threshold level according to some 
discriminating criteria are proven to be more computationally efficient and simpler to 
apply.  Examples of non-parametric approaches are such as the entropy [6], cross 
entropy [8], minimum error [7], and between-class variance [3, 9, 10].   

Despite the fact that the problem of thresholding has been quite extensively studied 
for many years, the automatic determination of an optimum threshold value continues 
to be of great challenge.  Therefore alternative ways to solve multi-level thresholding 
have been to use heuristics in recent years.  Yin [15] proposed a fast scheme for 
optimal thresholding using genetic algorithms.  His method, an optimal thresholding 
technique, has shown better performance than those of some property-based ones.  
Zahara et al. [18, 19] presented a hybrid optimization scheme which applied the 
Otsu’s method with Nelder-Mead simplex search and particle swarm optimization 
(the NM-PSO-Otsu method) and proven to not only expedite the Otsu’s method 
efficiently but also extent its effectiveness to a multi-level thresholding problem. 

In this paper, a fast scheme using ant colony optimization algorithm is proposed to 
render the optimal thresholding technique more applicable and effective.  We 
employed the properties of discriminate analysis using Otsu’s method to analyze the 
separability among the gray levels in the image.  The remainder of the paper covers: 
first, a description of the Otsu’s method using the concept of discriminate analysis in 
detail; then, a description of the ant colony optimization (ACO) algorithm and its key 
features implemented for finding the optimal threshold values; next, a detail of the 
computational experiments and result comparisons performed to evaluate our 
algorithm with other methods published; finally, the conclusions of the present work. 

2   Otsu’s Method for Image Thresholding 

The concept of using discriminate analysis for classification problems was first 
introduced by Fisher [4] and was applied on image thresholding by Otsu [10].  In 
Otsu’s paper, the elementary case of threshold selection where only the gray-level 
histogram suffices without other a priori knowledge is discussed, and their method is 
proposed from the viewpoint of discriminate analysis.  The feasibility of evaluating 
the “goodness” of threshold is done through exhaustive search to maximize the 
between-class variance between dark and bright regions of the image.  Our study uses 
the extended properties of the discriminate criterion to determine the number of 
objects into which the image should be segmented, and describes the concept of an 
automatic multilevel thresholding method as follows. 

For multi-level thresholding, a gray level image ),( yxf  is transformed to a multi-

level image ),( yxg  by a threshold set },,...,,..,,{ 21 kn ttttT =  which is composed of k 
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thresholds.  With a given gray level i, in denote the observed occurrence frequencies 

(histogram) of pixels and the total number of pixels 
LnnnN +++= ...21
 where L is 

the number of gray values in the histogram.  Then the gray-level histogram is 
normalized and regarded as a probability distribution having a given gray level i: 

=

=≥=
L

i
ii

i
i pp

N

n
p

1

1   ,0    ,  (1) 

Suppose we segment these pixels into a suitable number of classes.  With k 
denoting the number of selected thresholds (i.e. 10 −≤≤ Lk ), the image is then 
partitioned into k+1 classes which can be represented by 
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The within-class variance, denoted by 2
WCσ , of all segmented classes of pixels is 

computed as, 
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=
k

n
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0

22 σσ  (3) 

The between-class variance, denoted by 2
BCσ , is used to measure the separability 

among all classes and is expressed as, 
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The total variance 2
Tσ  and the overall mean Tμ  of pixels in a given gray level image 

),( yxf  are computed as, 
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In order to evaluate the “goodness” of the threshold at level k, the following 
discriminate criterion measures are used: 
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Among these measures, the parameter is the simplest one with respect to k, and 

therefore the optimal threshold *k  that maximizes  or equivalently maximizes 2
BCσ  

is also followed as, 
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3   Ant Colony Optimization (ACO) Algorithm 

Just like other meta-heuristics inspired by the natural process, the Ant Colony 
Optimization (ACO) algorithm is imitating the behavior of real ants.  In ACO, a 
colony of simple agents, called artificial ants, search for good solutions at every 
generation.  Every artificial ant of a generation builds up a solution based on a state 
transition probability.  Once all ants have their solutions built up, these solutions will 
be evaluated according to Otsu’s method; then, the algorithm will record the best one 
found so far.  The pheromone trails are then updated, and the following ants of the 
next generation are attracted by the pheromone so that they will likely search nearby 
these areas.  The procedure repeats until the stopping criterion is reached.  The ACO 
algorithm has its general framework like below. 

 
Set all parameters and initialize the pheromone trails 
Loop (no. of iterations, NI) 

Sub-Loop (population size, NA) 
Build solutions based on the state transition probability 

Continue until all ants have been generated 
Evaluate all solutions during the iteration and select the best one 
Apply the pheromone update rule 

Continue until the stopping criterion is reached 
 

For threshold selection, the state transition probability shown below is used in the 
solution construction process.   
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where i denotes the index of the threshold at multi-level (e.g. i = 1 for bi-level, i = 2 
for tri-level, and i = 3 for four-level), j refers to the index for the gray level ranging 
from the pre-specified lower bound and the upper bound of the ith threshold, and the 
lower and upper bound (i.e. LBi and UBi) are defined to be the lower and highest 
value of the gray level index j, respectively.  In addition, enotes the parameter 
controlling the relative weight of pheromone. The pheromone trails, denoted by ijτ  
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are constantly updated according to the pheromone updating rule.  We say, the 
threshold value with larger pheromone intensity has higher chance to be selected.  

After all ants have generated solutions and the best ant so far has been updated, the 
pheromone update rule, formally expressed as ,)1( eold

ij
new
ij τρτρτ Δ⋅−+⋅=  is 

performed, where a parameter ]1,0[∈ρ  controls the pheromone persistence and its 

ρ−1  represents the proportion of the pheromone evaporated.  Also, eτΔ denotes the 

amount of pheromone trail added to ijτ  by the best ant for all combinations (i, j) 

belonging to the best solution found so far, and is determined by 2
,BCe

e Q στ ×=Δ  

where a constant Q controls the magnitude of the pheromone contribution, and 2
,BCeσ  

is the between-class variance of the elitist ant. 

4   Computational Results and Analysis 

In this section, the performance of the proposed ACO-Otsu algorithm has been 
evaluated and compared to the Otsu’s method with exhaustive search and the NM-
PSO-Otsu algorithm [18, 19].  Our test images were taken under natural room lighting 
without the support of any special light source and have been transformed into several 
gray-scale images by thresholding at multi-levels.  These images composed of a 
collection of pixels have been assigned values from 0 to 255, or 1 to 256.  Since we 
began our experiment with the parameter settings of the ACO-Otsu method, we 
implemented three standard images with rectangular objects of uniform gray values 
(see Figure 1-a, Figure 2-a, and Figure 3-a).  As well as, we employed another three 
test images – “Dragon”, “Screws”, and “Blocks” (shown in Figures 4-a, 5-a, and 6-a 
respectively) to analyze and evaluate the performance of our algorithm. All six 
images in this study were assigned with uniform gray values at (0~255) range. 

Our ACO-Otsu method was implemented on a Pentium IV 3.0GHz, 768 MB 
personal computer using C++ programming language while the Otsu method with 
NM-PSO-Otsu methods [18, 19] were implemented on a Athlon XP 2200+ (166×11) 
with 1 GB RAM using MATLAB®.  Both Zahara et al. [18, 19] and our studies 
employed the maximum number of iterations as the termination condition.  Our 
preliminary experiments in Table 1 have shown the following set of all parameters to 
account for both efficiency and effectiveness; therefore, we set up as follows: 1=α , 

01.00 =τ , 9.0=ρ , and 001.0 τ=Q  for all experimental runs.   

Table 1. Settings of different parameters implemented in the ACO-Otsu algorithm 

Parameters Values 
0.5 1 2 
0.1 0.5 0.9 
10-3 10-4 10-5 
10-1 10-2 10-3 
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Fig. 1. Bi-level thresholding test image: (a) original image, (b) ACO-Otsu method, and (c) 
histogram and the optimal threshold of (b) 

  
“Tri-level” image T=110, 145 
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Fig. 2. Tri-level thresholding test image: (a) original image, (b) ACO-Otsu method, and (c) 
histogram and the optimal threshold of (b) 

  
“Four-level” image T=70, 113, 149 0
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Fig. 3. Four-level thresholding test image: (a) original image, (b) ACO-Otsu method, and (c) 
histogram and the optimal threshold of (b) 

Three standard test images (shown in Figures 1-a, 2-a, and 3-a, respectively) are 
rectangular objects of uniform gray values and the resulting images of the bi-level, tri-
level, and four-level (shown in Figures 1-b, 2-b, and 3-b, respectively) verify that 
ACO-Otsu method can provide a quality performance in image segmentation.  
Comparison results (see Table 2) for these three standard test images have revealed 
identical optimal threshold values for both Otsu’s and NM-PSO-Otsu methods in [18, 
19].  However, our ACO-Otsu method shows slightly different optimal threshold 
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values due to different gray-level scales: (1, 256) in [18, 19] while (0, 255) in this 
study.  Likewise, different objective functions have also been employed for both 
studies.  Zahara et al. [18, 19] minimized the within-group variance while our study 
maximized the between-class variance.  As a result, both studies exhibit greatly 
different optimal objective values (shown in Table 2).  

Table 2. Computational results for the three standard test images at the multi-level thresholding  

Optimal Threshold 
Optimal Objective Value 

(over 10 runs) Standard Test 
Images Otsu and NM-

PSO-Otsu 
ACO-Otsu 

Otsu and NM-
PSO-Otsu 

ACO-Otsu 

Bi-level  133 132 29.85 737.89 
Tri-level  111, 146 110, 145 54.11 622.72 
Four-level  71, 114, 150 70, 113, 149 36.93 967.70 

From Table 3, we can generally conclude that the higher levels of thresholding will 
cause increasing population sizes and maximum numbers of iterations.  As well, CPU 
times linearly go up when the levels of thresholding and computational complexity go 
up.  Our CPU times vary from the lowest 0.009 seconds at NA=10 and NI=10 (i.e. 
No. of evaluations = 100) to the highest 0.214 seconds at NA=20 and NI=60 (i.e. No. 
of evaluations = 1200).  When we compare with the Otsu’s method, our ACO-Otsu 
method takes relatively less execution times to achieve 100% optimum.  However, the 
comparison with NM-PSO-Otsu method indicates our ACO-Otsu method performs 
less efficiently.   Such consequence is much expected since our ACO-Otsu method 
takes the simplest version of ACO as the global optimizer; yet, the NM-PSO-Otsu 
method employs the hybridization of the local search procedure of Nelder-Mead 
simplex (NM) and the global optimizer of PSO.   

Table 3. Result comparisons among Otsu’s, NM-PSO-Otsu and ACO-Otsu methods over the 
three standard test images 

CPU Time (sec.) 
Population Size (NA) × Max. 

No. of Iterations (NI) Standard Test 
Images 

Otsu 
NM-PSO-

Otsu 
ACO-
Otsu 

Otsu and NM-
PSO-Otsu 

ACO-Otsu 

Bi-level  0.000 0.000 0.009 4 × 10 10 × 10 
Tri-level  0.281 0.015 0.044 7 × 20 20 × 20 
Four-level  17.828 0.031 0.214 10 × 30 20 × 60 

Further to our evaluation on the ACO-Otsu’s performance, three images (Dragon, 
Screws, and Blocks) are chosen; the threshold selection values and computation times 
for these three tested images are listed in Table 4.  ACO-Otsu is able to find the 
optimal threshold within 0.07 seconds for two-level consideration in all images.  
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Table 4. Computational results for images of Dragon, Screws, and Blocks  

Images 
No. of 
Levels

Optimal 
Threshold 

CPU Time 
(sec.) 

Optimal 
Objective Value

Population Size (NA) 
× Max. No. of 
Iterations (NI) 

Dragon 2 175 0.068 2615.11 20 × 20 
2 209 0.042 338.82 20 × 20 

Screws 
3 194, 226 0.166 393.68 20 × 60 
2 201 0.009 230.36 5 × 20 

Blocks 
3 196, 228 0.106 274.12 20 × 40 
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Fig. 4. Thresholding result of “Dragon” image: (a) original image, (b) ACO-Otsu method, and 
(c) histogram and the optimal threshold of (b) 

  
“Screws” image T=209 
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Fig. 5. Thresholding results of “Screws” image: (a) original image, (b) ACO-Otsu method at bi-
level, (c) histogram of (b), (d) ACO-Otsu method at tri-level, and (e) histogram and the optimal 
threshold of (d) 
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However, the pictures illustrated in Figures 5-b and 6-b cannot fully detail all objects.  
For that reason, we add an extra thresholding level to both “Screws” and “Blocks” 
images.  As shown in Table 4, the objective values at tri-level are larger, and both 
“Screws” and “Blocks” images thresholded at the tri-level exhibit better pictorial 
results (shown in Figures 5-d and 6-d below) than previous ones.   
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Fig. 6. Thresholding result of “Blocks” image: (a) original image, (b) ACO-Otsu method at bi-
level, (c) histogram and the optimal threshold of (b), (d) ACO-Otsu method at tri-level, and (e) 
histogram and the optimal threshold of (d) 

5   Conclusion 

In this study, we can draw several general conclusions at the end of this analysis.  
First of all, according to our literature reviews in this study, the use of the ACO 
algorithm is the first application on multi-level thresholding.  Second of all, from our 
preliminary experiments, we also find that when the level of thresholding increases, 
both NA and NI will increase.  Thirdly, the computational results for most images at 
bi-, tri-, and four-level thresholdings have shown number of iterations (NI) appears to 
be rather effective at population size (NA) of 20, NA regardless the complexity of the 
images.  Lastly, our ACO-Otsu method out beats the Otsu’s method but not the NM-
PSO-Otsu method.    

While the quality of image segmentation does not get compromised, we consider 
the ACO-Otsu method to be a potential method to accelerate the Otsu’s method in 
multi-level thresholding for real-time applications.  However, since our ACO-Otsu 
method takes the simplest version of ACO as the global optimizer, future 
investigation for better solution quality and algorithmic efficiency can be done by 
adding supplementary mechanisms such as local search in ACO algorithm.   
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