
B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part III, LNAI 4253, pp. 76 – 83, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Context-Aware Application System for Music Playing
Services*

Jae-Woo Chang and Yong-Ki Kim

Dept. of Computer Engineering
Center for Advanced Image and Information Technology

Chonbuk National University, Chonju, Chonbuk 561-756, South Korea
jwchang@chonbuk.ac.kr, ykkim@dblab.chonbuk.ac.kr

Abstract. Context-awareness is a technology to facilitate information acquisi-
tion and execution by supporting interoperability between users and devices
based on users' context. In this paper, we design a middleware and a context
server for dealing with context-aware application system in ubiquitous comput-
ing. The middleware plays an important role in recognizing a moving node with
mobility as well as in executing an appropriate execution module according to
context. In addition, the context server functions as a manager that efficiently
stores context information, such as user's current status, physical environment,
and resources of a computing system. Using them, we implement our applica-
tion system which provides a music playing service based on context. It is
shown to take below two seconds that our application system can detect a user’s
context and start playing music according to the context.

1 Introduction

Mark Wieser at Xerox Palo Alto Research Center described ubiquitous computing as
being about interconnected hardware and software that are so ubiquitous that no one
notices their presence [1]. An effective software infrastructure for running ubiquitous
applications must be capable of finding, adapting, and delivering the appropriate ap-
plications to the user’s computing environment based on the user’s context [2]. Thus,
context-aware application systems determine which user tasks are most relevant to a
user in a particular context. They may be determined based on history, preferences, or
other knowledge of the user’s behavior, as well as the environmental conditions. The
context-awareness can facilitate information acquisition and execution by supporting
interoperability between users and devices based on users' context, in a variety of
applications including location-based services and Telematics. In this paper, we de-
sign middleware and context server components for context-aware application sys-
tems. The middleware plays an important role in recognizing a moving node with
mobility as well as in executing an appropriate execution module according to con-
text. In addition, the context server functions as a manager that efficiently stores

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment (MOE), the Ministry of Commerce, Industry and Energy (MOCIE) and the Minis-
try of Labor (MOLAB) though the fostering project of the Lab of Excellency.

 Context-Aware Application System for Music Playing Services 77

context information, such as user's current status, physical environment and resources
of a computing system. Using them, we implement our application system which
provides a music playing service based on context.

2 Related Work

Context-aware application systems determine which user tasks are most relevant to a
user in a particular context. They may be determined based on history, on preferences,
or other knowledge of the user’s behavior, as well as the environmental conditions. In
this section, we discuss the typical context-aware application systems. First, INRIA in
France [3] proposed a general infrastructure based on contextual objects to design
adaptive distributed information systems in order to keep the level of the delivered
service despite environmental variations. The contextual objects (COs) were mainly
motivated by the inadequacy of current paradigms for context-aware systems. The use
of COs does not complicate a lot of development of an application, which may be
developed as a collection of COs. The value of a particular object used in a context-
dependent application is automatically updated by the adaptive framework, independ-
ently from the application. Secondly, AT&T Laboratories Cambridge in U.K [4]
presented a platform for context-aware computing which enables applications to fol-
low mobile users as they move around a building. The platform is particularly suitable
for richly equipped, networked environments. Users are required to carry a small
sensor tag, which identifies them to the system and locates them accurately in three
dimensions. Thirdly, Arizona State Univ. [5] presented Reconfigurable Context-
Sensitive Middleware (RCSM), which made use of the contextual data of a device and its
surrounding environment to initiate and manage ad hoc communication with other de-
vices. The RCSM provided core middleware services by using dedicated reconfigur-
able FPGA (Field Programmable Gate Arrays), a context-based reflection and adapta-
tion triggering mechanism, and an object request broker that are context-sensitive and
invokes remote objects based on contextual and environmental factors, thereby facilitating
autonomous exchange of information. Finally, Lancaster Univ. in U.K [6] presented a
comprehensive description of the GUIDE project which has been developed to pro-
vide city visitors with a hand-held context-aware tourist guide. The development of
GUIDE has involved: capturing a real set of application requirements, investigating
the properties of a cell-based wireless communications technology in a built-up envi-
ronment and deploying a network based on this technology around the city, designing
and populating an information model to represent attractions and key buildings within
the city, prototyping the development of a distributed application running across port-
able GUIDE units and stationary cell-servers.

3 Middleware and Context Server for Context-Awareness

Context is any information that can be used to characterize the situation of any entity
[7]. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves. We
design an overall architecture of context-adaptive computing system for supporting
various context-aware application services by combining the advantage of the INRIA

78 J.-W. Chang and Y.-K. Kim

work [3] with that of the AT&T work [4]. The system is divided into three compo-
nents, context server, fixed node (middleware), and moving node (client). First, the
context server functions as inserting remote object and context information into object
and context database, respectively, and retrieving them from the databases. Secondly,
a fixed node functions as a middleware, which can find, insert, and execute a remote
object for context awareness. Finally, a moving object communicates with a fixed
node and executes a predefined built-in program according to the context information
acquired from a middleware. The context server communicates with a fixed node by
using a network based on TCP/IP, while a moving object communicates with a fixed
node using Bluetooth wireless communication [8]. The proposed context-aware com-
puting system has a couple of powerful features. First, our middleware can define
context objects describing context information as well as can keep track of a user’s
current location. Secondly, our context server can store context objects and their val-
ues depending on a variety of contexts as well as can manage users’ current locations
being acquired from a set of fixed nodes by using spatial indexing. Finally, our client
can provide users with adaptive application services based on the context objects.
Figure 1 shows the overall architecture for supporting various context-aware ap-
plication services.

Fig. 1. Overall architecture for supporting context-aware application services

Our middleware for context-aware application services consists of three layers,
such as detection/monitoring layer, context-awareness layer, and application layer.
First, the detection/monitoring layer serves to monitor the locations of remote objects,
network status, and computing resources, i.e., CPU usage, memory usage, bandwidth,
and event information related with devices. Secondly, the context-awareness layer
serves as a middleware which is an essential part for handling context-aware applica-
tion services. It can be divided into five managers, such as script processor, remote
object manager, context manager, context selection manager, communication proxy
manager. The script processor analyzes the content of context-aware definition script
and executes its specified action. The remote object manager manages a data structure

Fixed Node 1
(Middleware)

Context Server

Fixed Node 2
(Middleware)

Fixed Node n
(Middleware)

Moving Node 2
(Client)

Moving Node 1
(Client)

Moving Node m
(Client)

TCP/IP

TCP/IP

TCP/IP

Bluetooth

BluetoothBluetooth

context DB

 Context-Aware Application System for Music Playing Services 79

for all the context objects used in application programs. The context manager man-
ages context and environmental information including user preference, user location,
etc. The context selection manager chooses the most appropriate context information
under the current situation. The communication proxy manager serves to communi-
cate with the context server and temporarily reserve data for retransmission in case of
failure. Finally, the application layer provides functions to develop various context-
aware applications using the application programming interface (API) of the middle-
ware while it is executed independently of the middleware.

The procedure to execute proper services based on context using our middleware
has three steps. First, a moving node broadcasts a connection request signal so as to
connect with a fixed node by using Bluetooth. The fixed node covering an interesting
area analyzes the signal and accepts the connection with the corresponding fixed
node. When the connection between them is established, the moving node delivers its
own information to the fixed node. Secondly, when remote objects are found, the
fixed node delivers their information to the context server through a network using
TCP/IP. The sever stores into the context database the information delivered from the
fixed node. Finally, the server searches the fixed node’s context which is the most
suitable with current situation from the context database. The fixed node executes
predefined programs based on the context information and notifies a moving node of
services being executed. Then, the moving node executes the service being requested
by the fixed node.�Because a moving node maintains all the addresses of fixed nodes
and makes a connection to a fixed node, a moving node communicates with the fixed
node periodically once a connection between them is established, and determines
whether or not the connection between them should hold.�

Because a context server is required to store and retrieve remote objects and context
information extracted from them, we design a context server to efficiently manage both
the remote object and the context information using a commercial DBMS. The context
server analyzes and executes the content of packets delivered from the middleware. It
is divided into four managers, such as communication manager (CM), packet analysis
manager (PAM), context/object manager (COM), and SQL query manager(SQM). The
CM serves as communicate between the server and the middleware. The CM delivers
to PAM packets transferred from the middleware so as to parse them, and it delivers to
the middleware result packets made from the server. The PAM parses the packets from
the CM and determines what action wants to be done currently. Based on the parsing,
the PAM calls the most proper functions in the COM. The COM translates into SQL
statements the content delivered from the PAM and delivers the SQL statements to
SQM to execute them. The application programming interface (API) for the COM is
ContextDefine, ContextDestroy, ContextInsertTuple, ContextDeleteTuple, Con-
textSearch, ContextSearchTuples, and ContextCustom. The SQM executes the SQL
statements from the COM by using the DBMS and delivers the result to the middle-
ware via the CM. The API for the SQM is sql-Reader and sql-NonQuery.

4 Context-Aware Music Playing Application System

Using the middleware and the context server, we develop our context-aware music
playing application system under Redhat Linux 7.3(kernel version 2.4.20) with 866

80 J.-W. Chang and Y.-K. Kim

MHz Pentium-III CPU and 64 MB main memory. We make use of GCC 2.95.4 as a
compiler and affix 2.0.2 as a Bluetooth device driver. The Bluetooth device follows
the specification of Version1.1/Class1 and makes a connection to PCs using USB
interfaces [9]. We also use MySQL DBMS as a commercial DBMS because we can
reduce the developing time, compared with using a storage system, and we can in-
crease the reliability of developed systems. In our music playing application system,
when a user belonging to a moving node approaches to a fixed node, the fixed node
plays a music with the user‘s preference according to the user’s location. In general,
each user has a list of his music with his(her) preference and moreover has different
lists of popular music depending on time, i.e., morning time, noon time, and night
time. Thus, when a user, which is listing to his popular music in the area of the fixed
node 1, moves to the area of the fixed node 2 (Figure 1), the music stops playing in
the area of the fixed node 1 while it starts playing in the area of the fixed node 2. The
fixed node differentiates a user from another user and plays his(her) preferred music
depending on the current time by considering the time when a user enters into the area
of the fixed node. The record of a database in context server for our music playing
application has six attributes, such as User_ID, User_Name, Location, Music_M,
Music_A, and Music_E.�The User_ID serves as a primary key to identify a user
uniquely. The User_Name means a user name and the Location means a user’s cur-
rent location which can be changed whenever a fixed node finds the location of a
moving object. Finally the Music_M, the Music_A, and the Music_E represent
his(her) popular music file in the morning time, the noon time, and the night time,
respectively.

Fig. 2. Testing environment for our application system

To determine whether or not our application system works well, we test it by
adopting the scenario used in Cricket [10], one of the MIT Oxygen project. We test its
execution in the following three cases; the first is when a user covered by a moving
node approaches to a fixed node or move apart from it, the second is when two differ-
ent users approaches to a fixed node, and final case is when a user approaches to a
fixed node at different times. Among them, because the fist case is the most general
case, we will explain the first case in more detail. For our testing environment, we
locate two fixed nodes in Database laboratory (DB Lab) and Media communication
laboratory (Media Lab) of Chonbuk National University, as shown in Figure 2, where

Corridor Media Lab

DB Lab

Fixed Node

Fixed Node

Moving Node

 Context-Aware Application System for Music Playing Services 81

the fixed node can detect a moving node by using Bluetooth wireless communication.
There is a corridor between DB Lab and Media Lab and its distance is about 60 meter.
We test its execution in case when a user having a moving node moves from DB Lab
to Media Lab or in a reverse direction.

Figure 3 shows testing in case when a user having a moving node is approaching to
a fixed node. First, the fixed node receives a user name from the moving node as the
moving node is approaching to it (○1). Secondly, we determine whether the information
of the user has already been stored into a server or not. If does, we search the music file
belonging to the user in a given time and downloads the music file from the server (○2).
Finally, we play the downloaded music file by using a MP3 music player. On the con-
trary, testing in case when a user having a moving node is moving apart from to a fixed
node is so little different. First, when the middleware detect that a user is too far from
the fixed node to communicate with it, we output an error message and stop the proc-
ess playing the music. Finally, we remove the music player process. In a short, when a
user is approaching to a fixed node, the music belonging to the user is playing while
when a user is moving apart from the fixed node, the music stops playing.

Fig. 3. Testing in case when a user is approaching to a fixed node

For the performance analysis of our application system, we measure the average
times by adopting a boundary detection of beacons used in Cricket [10]. First, as a mov-
ing node is approaching to a fixed node, it takes 1.34 second to make a connection

82 J.-W. Chang and Y.-K. Kim

between them. The time means the one to detect the connection of a moving node by
middleware when a moving node enters into the communication boundary of a fixed
node. The time mainly depends on the specification of Bluetooth wireless communica-
tion. Secondly, it takes 0.5 second to start a corresponding service after making the
connection between them. The time means the one to search the profile of the corre-
sponding user and to call the module playing music by the middleware. Here the search-
ing time for a user’s profile is dependant on the packet transfer time of TCP/IP and on
the DBMS performance of the context server. The calling time for the music playing
module means the one for loading it by an operating system (OS), which is affected by
the available memory of the OS kernel and the speed of a hard disk. Finally, as a mov-
ing node is moving apart from a fixed node, it takes 1.45 second to make a disconnec-
tion between them. The time means the one to detect the disconnection of a moving
node by the middleware. The time is relatively long due to the kernel’s release of socket
resources because the kernel tries to communicate with the moving node even though
the moving node goes out of the communication boundary of a fixed node. When the
kernel is connected or disconnected with the moving object, it can be considered very
reasonable that the middleware sets the time limit to be two seconds. Thus, if it takes
over two seconds for the middleware to make a connection with a moving node and
detect context from it, a user may consider the situation as a fault.

5 Conclusions and Future Work

In this paper, we designed both a middleware and a context server for dealing with
context-aware application system in ubiquitous computing. The designed middleware
played an important role in recognizing a moving node with mobility by using a Blue-
tooth wireless communication as well as in executing an appropriate execution mod-
ule according to the context acquired from a context server. The designed context
server functioned as a manager that efficiently stores into the database server context
information, such as user's current status, physical environment, and resources of a
computing system. Using the middleware and the context server, we implemented our
application system which provides a music playing service based on context. It was
shown to take below 2 seconds that our application system could detect a user’s con-
text and start playing music according to the context. As future works, it is required to
study on an inference system to acquire new context information from the existing
context information.

References

1. M. Weiser, "Some Computer Science Issues in Ubiquitous Computing", Commnunication
of the ACM, Vol 36(7), pp. 75-84, 1993.

2. G. Banavar, A. Bernstein, "Issues and challenges in ubiquitous computing: Software infra-
structure and design challenges for ubiquitous computing applications", Communication of
ACM, Vol 45(12), pp. 92-96, 2002.

3. P. Couderc, A. M. Kermarrec, "Improving Level of Service for Mobile Users Using Con-
text-Awareness", Proc. of 18th IEEE Symposium on Reliable Distributed Systems, pp. 24-
33, 1999.

 Context-Aware Application System for Music Playing Services 83

4. A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, "The anatomy of a Context-aware
application", Wireless Networks Vol. 8, Issue 2/3, pp. 187-197, 2002.

5. S. S. Yau and F. Karim, "Context-sensitive Middleware for Real-time Software in Ubiqui-
tous Computing Environments", Proc. of 4th IEEE Symposium on Object-oriented Real-
time Distributed Computing, pp.163-170, 2001.

6. K. Cheverst, N. Davies, K. Mitchell, A. Friday, "Experiences of developing and deploying
a context-aware tourist guide: the GUIDE project", Proceedings of the sixth annual inter-
national conference on Mobile computing and networking, pp. 20-31, 2000.

7. A. K. Dey, "Understanding and Using Context", Personal and Ubiquitous Computing Jour-
nal, Vol. 5, No. 1, pp. 4-7, 2001.

8. Bluetooth Version 1.1 Profile, http://www.bluetooth.com.
9. Affix: Bluetooth Protocol Stack for Linux, http://affix.sourceforge.net.

10. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Locaion Support Sys-
tem", 6th ACM/IEEE Int'l Conf. on Mobile Computing and Networking(MOBICOM), pp.
32-43, 2000.�

	Introduction
	Related Work
	Middleware and Context Server for Context-Awareness
	Context-Aware Music Playing Application System
	Conclusions and Future Work
	References

