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Abstract. We consider the problem of partitioning a data set of n data
objects into c homogeneous subsets (that is, data objects in the same
subset should be similar to each other), such that each subset is of ap-
proximately the same size. This problem has applications wherever a
population has to be distributed among a limited number of resources
and the workload for each resource shall be balanced. We modify an ex-
isting clustering algorithm in this respect, present some empirical evalu-
ation and discuss the results.

1 Introduction

Cluster analysis is a widely used technique that seeks for groups in data. The
result of such an analysis is a set of groups or clusters where data in the same
group are similar (homogeneous) and data from distinct groups are different
(heterogeneous) [1]. In this paper, we consider a variation of the clustering prob-
lem, namely the problem of subdividing a set X of n objects into c homogeneous
groups of equal size. In contrast to the clustering problem, we abandon the het-
erogeneity between groups and introduce the requirement of having equi-sized
groups.

Applications for this kind of uniform clustering include for instance: (a) The
distribution of n students into c groups of equal strength to obtain fair class
sizes and with homogeneous abilities and skills to allow for teaching methods
tailored to the specific needs of each group. (b) The distribution of n jobs to c
machines or workers such that every machine has an identical workload and as
similar jobs as possible to reduce the configuration time. (c) The placement of
c sites such that goods from n locations can be transported to the c sites, while
the total covered distance is minimized and queuing at the sites is avoided, that
is, approximately the same number of goods should arrive at each site.

Due to the similarity of our problem with traditional clustering problems, we
are going to modify an existing clustering algorithm, which will be reviewed in
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section 2. This objective function-based clustering algorithm – a variant of k-
means – transforms the discrete, combinatorial problem into a continuous one,
such that numerical problem solving methods can be applied. We modify the
objective function such that the equi-sized clusters are considered in section 3
and discuss the results in section 4.

2 The FCM Algorithm

The fuzzy c-means (FCM) clustering algorithm partitions a data set X :=
{x1, ..., xn} ⊂ Rd into c clusters. A cluster is represented by a prototype pi ∈ Rd,
1 ≤ i ≤ c. The data-prototype relation is not binary, but a membership degree
uij ∈ [0, 1] indicates the degree of belongingness of data object xj to proto-
type pi or cluster number i. All membership degrees form a membership matrix
U ∈ Rc×n. We can interpret the membership degrees as “probabilistic member-
ships”, since we require

∀1 ≤ j ≤ n :
c∑

i=1

uij = 1 . (1)

The clustering process is carried out by minimizing the objective function

Jm =
n∑

j=1

c∑

i=1

um
ij dij with dij = ‖xj − pi‖2 . (2)

under constraint (1). If the Euclidean distance between datum xj and prototype
pi is high, Jm is minimized by choosing a low membership degree near 0. If
the distance is small, the membership degree approaches 1. Jm is effectively
minimized by alternating optimisation, that is, we alternatingly minimize (2)
with respect to the prototypes (assuming memberships to be constant) and then
with respect to the membership degrees (assuming prototypes to be constant).
In both minimization steps, we obtain closed form solutions, for the prototypes:

∀1 ≤ i ≤ c : pi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

(3)

and for the membership degrees:

uij =

⎧
⎪⎪⎨

⎪⎪⎩

1

∑
c
l=1

(
‖xj−pi‖2

‖xj−pl‖2

) 1
m−1

in case Ij = ∅

1
|Ij | in case Ij �= ∅, i ∈ Ij

0 in case Ij �= ∅, i �∈ Ij

(4)

where Ij = {k ∈ N≤c |xj = pk}. The FCM algorithm is depicted in Fig. 1. For
a more detailed discussion of FCM and examples we refer for instance to [2,3].
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choose m > 1 (typically m = 2)
choose termination threshold ε > 0
initialize prototypes pi (randomly)
repeat

update memberships using (4)
update prototypes using (3)

until change in memberships drops below ε

Fig. 1. The FCM algorithm

3 Equi-sized Clusters

It is often said that the k-means (as well as the FCM) algorithm seeks for clusters
of approximately the same size, but this is only true if the data density is uniform.
As soon as the data density varies, a single prototype may very well cover a
high-density cluster and thereby gains many more data objects than the other
clusters. This leads to large differences in the size of the clusters. Examples for
this phenomenon are shown in Fig. 2 for two data sets: On the left image, there is
a very high density cluster in the top left corner, on the right image, the density
decreases from left to right, so the rightmost cluster has only some data.

Fig. 2. Results of the FCM algorithm on two data sets

The idea of our modification is to include an additional constraint in the
objective function (2) that forces the clusters to cover the same number of data
objects. The size of cluster i (number of data objects) corresponds to the sum of
the membership values

∑n
j=1 uij . In fact, since we have continuous membership

degrees we may require
n∑

j=1

uij =
n

c
(5)
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for all i ∈ {1, . . . , c} even if n is not a multitude of c. This additional constraint
(5) is – together with the constraint (1) – integrated into the objective function
(2) via Lagrange multipliers. We then solve for the cluster prototypes and La-
grange multipliers by setting the partial derivatives to zero. This turns out to be
a difficult problem for the general case of an arbitrary value of m, therefore we
restrict ourselves to the case of m = 2, which is the most frequently used value
of m in FCM. Given our Lagrange function

L =
c∑

i=1

n∑

j=1

u2
ijdij +

n∑

j=1

αj

(
1 −

c∑

i=1

uij

)
+

c∑

i=1

βi

⎛

⎝n

c
−

n∑

j=1

uij

⎞

⎠ (6)

we obtain as partial derivatives

∂L

∂uij
= 2uijdij − αj − βi = 0 (7)

These equations, together with the constraints (1) and (5), lead to the fol-
lowing system of (c · n + c + n) linear equations for the variable uij , αi and
βj (i ∈ {1, . . . , c}, j ∈ {1, . . . , n}). Empty entries indicate the value zero, RHS
stands for the right hand side of the equation.

u1,1 . . . u1,n . . . uc,1 . . . uc,n α1 . . . αn β1 . . . βc RHS
∂L

∂u1,1
2d1,1 −1 −1

...
. . . . . .

...
∂L

∂u1,n
2d1,n −1 −1

...
. . . . . . . . .

∂L
∂uc,1

2dc,1 −1 −1
...

. . . . . .
...

∂L
∂uc,n

2dc,n −1 −1∑
ui,1 1 . . . 1 1
...

. . .
. . .

...∑
ui,n 1 1 1∑
u1,j 1 . . . 1 n/c
...

. . .
...∑

uc,j 1 . . . 1 n/c

In principle, this system of linear equations could be solved by a suitable numer-
ical algorithm. Even for small data sets with 200 data objects and 5 clusters, this
would mean that we have to solve a system of 1205 equations in each iteration
step of the clustering algorithm, which is not acceptable in terms of computa-
tional costs. However, it is possible to solve this system of equations in a more
efficient way. When multiplying the equations for uk1, . . . , ukn by 1

2dk1
, . . . , 1

2dkn
,
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respectively, and then subtracting the resulting equations from the equation for∑
j ukj , we obtain

n∑

j=1

αj

2dkj
+ βk

n∑

j=1

1
2dkj

=
n

c
. (8)

From equation (7), we obtain

uij =
αj + βi

2dij
. (9)

Taking constraint (1) into account, yields

1 =
c∑

i=1

uij =
αj

2

c∑

i=1

1
dij

+
1
2

c∑

i=1

βi

dij
,

leading to

αj =
2 −∑c

i=1
βi

dij∑c
i=1

1
dij

. (10)

Inserting (10) into (8), we obtain:
n∑

j=1

2 −∑c
i=1

βi

dij

2
∑c

i=1
dkj

dij

+ βk

n∑

j=1

1
2dkj

=
n

c

and thus

−
n∑

j=1

∑c
i=1

βi

dij

2
∑c

i=1
dkj

dij

+ βk

n∑

j=1

1
2dkj

=
n

c
−

n∑

j=1

1
∑c

i=1
dkj

dij

. (11)

This induces a system of c linear equations for the βk with coefficients

ak� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∑n
j=1

∑c
i=1

1
d�j

2
∑ c

i=1
dkj
dij

if k �= �

−∑n
j=1

∑c
i=1

1
d�j

2
∑ c

i=1
dkj
dij

+
∑n

j=1
1

2dkj
if k = �.

(12)

This system of linear equations can be solved by a suitable numerical algorithm.
The computation time is acceptable, since the number of equations is equal
to the number of clusters and therefore independent of the number of data.
Once the βi have been determined, we can compute the αj using equation (10)
and finally obtain the membership degrees based on equation (9). After all, we
arrive at the clustering algorithm depicted in Fig. 3. Note that the boundedness
of the membership degrees uij ∈ [0, 1] represents an additional constraint on
the objective function of FCM as well as the objective function of our new
algorithm. In the original FCM, however, it was not necessary to consider it
explicitly, because one can easily see from the resulting membership degrees (4)
that this condition is satisfied. It is not possible to conclude this boundedness
for the new membership degrees (9). It is clear, however, that the influence
of negative memberships will be rather small: Since the objective function (2)
and (6) uses only positive weights u2

ij , large negative values cannot help in the
minimization. We will comment on this in the following section.
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choose termination threshold ε > 0
initialise prototypes pi

repeat
solve linear equation system (11) for β
using β, calculate α using (10), update memberships using (9)
update prototypes using (3)

until change in memberships drops below ε

Fig. 3. The proposed algorithm

4 Examples and Discussion

To illustrate the impact of our modified objective function, we show the results
of the new algorithm for the data sets shown in Fig. 2, where the standard FCM
algorithm yielded a result with high variation in the cluster size. The results
are shown in the left images of Figs. 4 and 6. By comparison to Fig. 2 we see,
that the high-density cluster has been split into two clusters (Fig. 4) and that
the data on the left of Fig. 6 is now distributed among four rather than three
clusters, such that the rightmost cluster gains more data. As expected, the sum
of membership degrees for each individual cluster equals n

c .

Fig. 4. Results of the new algorithm on the data set shown in Fig. 2. Left: Resulting

partition. Right: Points with negative membership degrees (marked in lighter shading).

Regarding the boundedness of the membership degrees uij it turned out that
they actually take negative values. This is, of course, an undesired effect, because
then the interpretation of

∑n
j=1 uij as the size or number of data objects is not

quite correct. As conjectured in the previous section, it turned out on closer
examination that the total sum of negative weights is rather small. In both
data sets, the sum of all negative membership degrees was below 0.5% of the
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total data set size n. We want to illustrate the kind of situation in which negative
membership degrees occur with the help of the data set shown in Fig. 5. Consider
the data set is partitioned into three clusters. Since the leftmost cluster has an
additional data object x in the middle, it is not obvious how to distribute the
data among all clusters in equal shares.

Fig. 5. A ’difficult’ example data set

Regarding the minimization of the sum of weighted distances, it would be
optimal to assign high membership degrees to all five data objects. This would,
however, violate the constraint that all clusters must share the same size. To get
membership degrees as high as possible, the membership of all other data objects
(middle and right cluster) to this cluster are chosen slightly negative. Since the
sum of all membership values is constrained to be one, negative values for the
middle and right data allow us to have slightly higher degrees for the leftmost
data. On the other hand, having a negative membership degrees for some data
object x on the right forces us to increase other membership degrees of x (to
guarantee a sum of 1). This is possible almost at no cost, if x is close to the centre
of another cluster, because then we have a small distance value and increasing
the membership degree to this cluster does no harm in the minimization of (2).
(For a detailed discussion of the influence of the membership weight um

ij see [4].)
To summarise: In a situation where an equi-sized partition is difficult to ob-

tain while minimizing at the same time the sum of weighted distances (2), the
cluster with too many data objects ’borrows’ some membership from data near
the centres of the other clusters. Figs. 4 and 6 show this effect for the two exam-
ple data sets. The data for which negative membership values occur are shown
in a lighter shading. These data objects are all close to the respective cluster
prototype. And there is always one cluster without any negative membership
degrees, which corresponds to the rightmost cluster in our data set in Fig. 5.

In all our experiments, the side effects of this trade off between minimizing (2)
and satisfying (5) were quite small, so we do not consider this as a major draw-
back of our approach. We can even make use of this information: By analysing
which cluster has no negative membership degrees at all, we can find out which
cluster tends to be ’too big’. When breaking ties in the final assignment of data
to clusters, it should be this cluster that gets more data objects than the other.
It should be noted that the assignment of a data object to the cluster with the
highest membership degree does not guarantee that each cluster contains exactly
the number of data. This is anyway impossible, except when n/c is an integer
number. The small deviations from n/c resulting from our algorithm can be eas-
ily balanced by taking the more ambiguous membership degrees into account in
order to re-assign a few data to other clusters.
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Fig. 6. Results on the wine data set shown as projections. Left: Derived partition.

Right: Points with negative membership degrees (marked in lighter shading).

5 Conclusions

In this paper, we have considered the problem of subdividing a data set into
homogeneous groups of equal size. Finding homogeneous groups is a typical task
for clustering algorithms, however, if the data density is not uniform, such algo-
rithms usually tend to deliver clusters of unequal size, which is inappropriate for
some applications. We have proposed an algorithm that outperforms a popular
variant of k-means in that respect. Although we have only discussed the case of
equi-sized clusters, in principle it is also possible to subdivide the data set into
groups of any predefined size, which makes our approach quite useful for a range
of applications where capacity restrictions apply.

Another, slightly weaker approach to the problem of uniform clustering would
be to replace the strict constraints (5) by adding a (weighted) penalty term of
the form

∑c
i=1(

n
c −∑n

j=1 uij)2 to the objective function (2). Due to the limited
space here, we leave this discussion open for a subsequent paper.
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