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Abstract.  Super-resolution image reconstruction estimates a high-resolution 
image from a sequence of low-resolution, aliased images. The estimation is an 
inverse problem and is known to be ill-conditioned, in the sense that small      
errors in the observed images can cause large changes in the reconstruction. The 
paper discusses application of existing regularization techniques to super-
resolution as an intelligent means of stabilizing the reconstruction process. 
Some most common approaches are reviewed and experimental results for      
iterative reconstruction are presented. 

1   Introduction 

Under sampling of images occurs in many imaging sensors. It results in aliased       
imagery and, consequently, in partial loss of scene information. Super-resolution     
image reconstruction refers to image processing technique that attempts to reconstruct 
high quality, high-resolution images by utilising incomplete and degraded scene      
information contained in a sequence of aliased, low-resolution images. Super-
resolution makes use of the fact that due to relative motion between the sensor and the 
scene each low-resolution image carries slightly different information about the scene. 
By fusing the partial information from many frames it is possible to reconstruct an 
image of higher spatial resolution [1, 2]. 

The problem of image reconstruction from noisy, aliased or otherwise degraded 
imagery occurs in a wide variety of scientific and engineering areas including civilian 
and military applications. Examples of these applications include: medical imaging, 
computer vision, target detection and recognition, radar imaging as well as             
surveillance applications. Many of these applications may also involve a related    
technique of image restoration. This technique, in contrast to super-resolution, does 
not   attempt to increase pixel resolution but produces improved image from a         
degraded image at the same resolution scale. 

In this paper we consider the problem of reconstructing a single high-resolution 
image X from N number of low-resolution, observed images Yk (k = 1….N) of the 
same scene.  It is convenient to represent the images as vectors (as shown by an      
underscore) that are ordered column-wise lexicographically. Each observed image is 
the result of sampling, camera and atmosphere blur, motion effects, geometric     
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warping and decimation performed on the ideal high-resolution real scene. It is      
usually assumed that this imaging process can be represented by a linear operator Hk :  

K KY H X E= +            for  1 ≤ k ≤ N  . (1) 

where E is the additive noise present in any imaging system. The process of super-
resolution is an inverse problem of estimating a high-resolution image from a          
sequence of observed, low-resolution images and it is now widely known to be intrin-
sically unstable or “ill-conditioned”. The common feature of such ill-conditioned   
problems is that small variations in the observed images Yk can cause (arbitrary) large 
changes in the reconstruction. This sensitivity of the reconstruction process on the   
input data errors may lead to the restoration errors that are practically unbounded.  

The important part of super-resolution process is thus to modify the original     
problem in such a way that the solution is a meaningful and close approximation of 
the true scene but, at the same time, it is less sensitive to errors in the observed       
images. The procedure of achieving this goal and to stabilize the reconstruction   
process is known as Regularization. The field of regularization has grown extensively 
[3-6] since the seminal paper by Tikhonov [7, 8] in 1963. 

This paper is aimed at giving an overview of some most common regularization 
techniques and parameter estimations and their significance and application to the 
problem of super-resolution image reconstruction. We also show reconstruction       
results from a test sequence of images to illustrate our regularization procedure based 
on iterative approach. The paper is organized as follows: Section 2 describes the     
differences between well-posed and ill-posed problems and how regularization solves 
the problem of ill-conditioning. A few of the most common approaches to regulariza-
tion parameter estimation and techniques are reviewed in section 3 and 4 respectively. 
Finally, we give our concluding remarks in section 5 along with our results. 

2   Regularization 

There are many ways of explaining well-posed and ill-posed problems. For example,  

 H x  = y . (2) 

where H is known. If y is determined by x, this is a well-posed problem whereas if x 
has to be determined from y, it’s an inverse or ill-posed problem. The latter relates to 
super-resolution as explained in the introduction.  

A problem whose solution exists, is unique and depends on the data continuously is 
known as a well-posed problem as defined by Hadamard [9] in 1902. On the contrary, 
the ill-posed problem is the one which disobeys the above given rules by Hadamard. 
In addition, as the solution of the ill-posed problem depends in a discontinuous     
fashion on the data, small errors such as round-off and measurement errors, may lead 
to a highly erroneous solution. The solution for an ill-posed problem is unstable and      
extremely sensitive to fluctuations in the data and other parameters. The classical        
example of an inverse and ill-posed problem is the Fredholm integral equation of the 
first kind, where, k is the kernel and g is the right-hand side.   



38 V. Bannore 

( , ) ( ) ( )
b

a
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Both of these parameters are known,  while f is the unknown function to be computed 
[10]. The theory on ill-posed problems is quite extensive and well developed. Engl 
[11] conducted a survey on a number of practical inverse problems in various          
applications such as computerised tomography, heat conduction, inverse scattering 
problems. Inverse problems are seen in various different fields, for example, medical 
imaging, astronomy, tomography, and many more. Ill-conditioning of inverse      
problems has always attracted a great deal of interest and research.  

For many decades, it has been known that the best way to analyse a scientific   
problem is through its mathematical analysis. The most common analytical tool used 
in the case of ill-posed problems is Singular Value Decomposition (SVD). This tool 
helps in diagnosing whether or not the singular values of a matrix are zero or           
decaying slowly towards zero (a number is so numerically small that due to the round 
off error it is rounded to zero).  The SVD for a matrix A of dimension m by n where        
m ≥ n, is given by: 

A = U S VT  = > 
1

n
T

i i i
i

A u s v
=

= ∑  . (4) 

For the above decomposition, U (u1…..un) is an m by m and VT is the transpose of  
matrix V (v1…..vn) which is n by n. The matrix S is a diagonal matrix containing the 
non-negative singular values of A arranged in descending order. The matrix U and V 
are orthogonal and their columns are orthonormal. The columns ui and vi of U and V 
are known as the left and right singular vectors. Also, for certain applications, as the 
dimension of matrix A increases, the numerical value of the singular values in S 
gradually decreases to zero which causes more oscillations in the left and right       
singular vectors. The greater the number of singular values in S tending to zero, the 
more singular is matrix A making it more ill-conditioned. Thus, SVD gives a good 
approximation on the ill-conditioning of the system.  

Another easier way of testing a system for ill-conditioning is by computing the 
condition number of the matrix.  The condition number can be defined as a ratio of 
the maximum and minimum singular values of the matrix in consideration, in our 
case, H (2). A high condition number points to an ill-posed problem, whereas a low 
condition number points to a well-posed problem. If H is an m by n matrix:  

             m ax

m in

( )
( )

( )
euclidean norm

H
cond ition H

H

σ
σ

−

=  . (5) 

where, maxσ  and minσ  represent the maximum and minimum singular values of   

matrix H. With ill-posed problems, the challenge is not of computing a solution, but 
computing a unique and stabilized solution. Thus, an ill-conditioned system requires 
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an intelligent method of mathematical computation to generate a meaningful solution, 
rather than the usual computational methods. 

Referring to (1), the minimum norm solution for the estimation of high-resolution 
image would be: 

                                     
2

2
min k kY H X−      for  1 ≤ k ≤ N . 

(6) 

The matrix H is singular in nature and highly ill-conditioned. There is no uniqueness 
and stability in the solution for (6). Thus, to make the solution unique and stable,     
i.e. to make the above equation well-conditioned (as per Hadamard criteria), another 
term is added to (6) known as the Regularization Term. Most of the inverse problems 
(like super-resolution) are ill-posed and the solution is tremendously sensitive to the 
data. The solution can vary tremendously in an arbitrary manner with very small 
changes in the data. The solution to (6) would be highly sensitive and noise           
contaminated. The regularization term takes control of the ill-conditioned nature of 
the problem. The aim of this term is to make the solution more stable and less noise    
contaminated. The term also tries to converge the approximate solution as close as      
possible to the true solution. The modified version of (6) is:  

                              
2 2

2 2
min k kY H X LXλ− +     for  1 ≤ k ≤ N . 

(7) 

In (7), the parameter λ > 0, is known as the regularization parameter and L is a     
regularization / stabilization matrix. In [12], the stabilization matrix is referred to as 
the regularization operator. The regularization operator if given by an identity matrix 
(L = I), the regularization term is of standard form whereas when L ≠ I, the term is in 
the general form. When treating problems numerically, it is easier to use the standard 
form rather than the general form as only one matrix, H, needs to be handled. In   
practical applications, however, it is recommended that the general form of the    
regularization term should be used. 

The regularization term aims at filtering out the noise that contaminates the image 
and also makes it smoother. The regularization term can also include a priori           
information of the true solution which facilitates the minimization process to         
converge as close as possible. The regularization parameter controls the measure of 
smoothness in the final solution of (7). It is critical to choose the regularization       
parameter best suited to the particular application in which it is involved. If the     
regularization parameter is too small, the regularization term will have no effect on 
the solution and the noise will not be filtered out, thus leaving the approximate        
solution far from converging with the true solution. On the other hand, if the           
parameter is too large, the regularization term will have a dominating effect on the  
solution making it too smooth and there is a risk of loosing important information 
from the solution. Hence, there needs to be a proper balance of smoothness and    
preservation of information when regularization is implemented.  

There exist many techniques of regularization and parameter estimation in the     
literature. To discuss each of them is outside the scope of this paper. Thus, only those 
most commonly used will be discussed.  
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3   Estimating λ, the Regularization Parameter 

Being the most critical part of regularization term, one has to carefully choose the   
appropriate technique based on their applications and expected results. The          
regularization parameter also depends on the properties of Y, H, X and noise (7). The 
parameter should balance the regularization and perturbation error in the computed 
solution. Over the years, many techniques have been proposed and discussed in       
relation to estimating the regularization parameter [12-14]. The techniques that will 
be discussed fall into two categories – one which require knowledge of error and the 
ones which do not require knowledge of error. 

3.1   Method Which Require Error Knowledge – The Discrepancy Principle 

In practical scenarios, considering (2) and (6), the right –hand side, Y, is never free 
from errors and contains various types of errors. Thus, Y can be written as                  
Y = Ytrue + e, where e is the errors and Ytrue is the actual unperturbed right-hand side. 
Now, as per the discrepancy principle [15], the regularization parameter is chosen 
such that the residual norm of the regularized solution is equal to the norm of the     
errors.  

2 2

regY H X e− =  . (8) 

If there is a rough estimate of the error norm, the discrepancy principle can be used 
to estimate a good regularization parameter. Unfortunately, in the practical world the 
knowledge about the error norm is not available and can be erroneous. Such data can 
lead to wrong estimations of the regularization parameter, thereby generating an     
unstable final solution. 

3.2   Methods Which Do Not Require Error Knowledge – GCV and L-Curve 

Generalized Cross-Validation (GCV) 
GCV is one of the most popular methods used for estimating the regularization       
parameter [16].  It is based on the statistical cross-validation technique. In GCV, if a 
random element, Yk, is left out of Y, then the estimated regularized solution should be 
able to predict the missing element, Yk. The regularization parameter is chosen as the 
one which minimizes the prediction error and is independent of the orthogonal    
transformation of Y [17]. In this technique, no knowledge of the error norm is          
required. The GCV function is given as: 

2

2

regY HX
GCV

τ
−

=  . (9) 

where, the numerator is the squared residual norm and the denominator is the squared 
effective number of degrees of freedom. For further details on this refer to chapter 7 
from [18]. Although computation of regularization parameter using GCV technique 
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works for many applications, it should also be noted that GCV may have a very flat 
minimum, making it difficult to locate numerically [19].  

L-Curve Criterion 
The L-curve criterion proposed in [20, 21] was inspired from graphical analysis     
discussed in [22]. The L-curve is a plot of term 2 in (7) || L X ||2 or || X ||2 versus term 1 
of (7) || Y – H X ||2 (which is the corresponding residual norm). This curve, when   
plotted on a log-log scale, takes the shape which resembles the alphabet ‘L’ and hence 
the name, L-Curve (see Figure 1. for illustration). This is the most powerful graphical 
tool for analysis as it shows the relationship between both the terms 1 and 2. The 
‘corner’ of L-curve is the optimum point of balance between both the errors (one 
caused by regularization and the other by errors in Y). The value at this point (corner 
of L-curve) is chosen as the optimal regularization parameter. This is the L-curve   
criterion. The curve is continuous when the regularization parameter is continuous, 
but in the case when the parameter is discrete the curve is plotted as a set of points.  

Residual Norm - log || HX – Y ||

S
o

l. 
N

o
rm

 -
lo

g
 ||

 L
X

 ||
 

o
r 

lo
g

 ||
 X

 ||

Less 
Regularization

Over 
Regularization

Residual Norm - log || HX – Y ||

S
o

l. 
N

o
rm

 -
lo

g
 ||

 L
X

 ||
 

o
r 

lo
g

 ||
 X

 ||

Less 
Regularization

Over 
Regularization

 

Fig. 1. A general graph of L-curve and its corner. The corner is the optimum point of balance 
between the regularization errors and errors in the right-hand side data, (Y). This corner can be 
taken as the regularization parameter. 

4   Regularization Techniques 

Regularization is an intelligent technique for computing a solution for an ill-posed 
problem. The main aim of this term is to make sure that the final solution is smooth 
and regularized with respect to the input data. It also makes sure that the final solution 
is less contaminated with errors and noise components. In the process of achieving 
this, the regularization term filters out the high-frequency components, thereby giving 
a smooth final solution. In the field of image restoration or super-resolution, a smooth 
approximate solution might not solve the purpose of being an appropriate solution. 
The high-frequency components filtered out by the regularization technique relate to 
the edges and discontinuities in the image. These components hold a significant value 
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in image restoration. As seen in section 2, the singular values of the matrix H, are of 
critical significance. These singular values relate to the high-frequency components. 
Thus, if there are too many small singular values (which can decay to zero), then the 
information relating to these is lost and only the information related to the large     
values is recoverable. There are various techniques for computing a regularized       
solution for ill-posed problems. The scope of this paper is limited and hence only the 
most common of these will be discussed. 

4.1   Tikhonov Regularization 

Tikhonov regularization was first introduced in 1963[7, 8]. It is defined as: 

2 2

. 2 2
minregX Y HX LXλ= − +  . (10) 

where, λ > 0, is known as the regularization parameter and L is a regulariza-
tion/stabilization matrix. The regularization matrix can be L = I or L ≠ I where I is an 
identity matrix. It is recommended to consider the regularization matrix as unequal to 
the identity matrix (see [12]). It should be noted that since the regularization matrix 
can also contain a priori knowledge, greater care must be taken in its selection. The 
regularization parameter is also of great importance as it is a trade-off between the 
smoothness and the accuracy of the solution. The above equation (10) can be also 
written as: 

( )T T T
approxH H L L X H Yλ+ =  . (11) 

From (11), it is evident how the regularization term manages to regularize the          
solution. It is also evident how the proper or improper selection of λ and L can lead to 
a good or bad approximation. A high value of λ diverts the solution to be very 
smooth, suppressing the high-frequency components even though the system has been 
regularized. Although Tikhonov regularization seems to be a straight forward       
technique, it has a high-computational cost and requires a lot of storage space when 
used in large-scale problems. Thus, this technique is more suitable to small-scale 
problems as compared to large-scale problems. 

4.2   Maximum Entropy Method 

The Maximum Entropy technique [23] of regularization is often used in astronomical 
image reconstruction. This technique is also known to preserve point edges in the    
estimated image, which makes it promising in the field of astronomical image         
restoration. The maximum entropy regularization term [18] is given as: 

2

1

( ) log( )
n

i i i
i

S X x w xλ
=

= ∑  . (12) 

where, xi are the positive elements of vector X and wi are weights ( w1 ….. wn). The 
above given function is negative of the entropy function Therefore, (10) is given as: 
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2

2
( )Y HX S X− +  . (13) 

The estimated solution from maximum entropy regularization is quite consistent as it 
is not related to the missing information of the right-hand side to a great extent.       
Although solving (12) and (13) is computationally intensive, there exist many           
iterative algorithms which are significantly less computationally intensive. 

4.3   Conjugate Gradients (Iterative Regularization) 

The conjugate gradient is one of the most commonly used numerical algorithms for 
symmetric positive definite systems.  It is also known as the oldest and best known 
non-stationary method. The conjugate gradient can be computed as a direct method 
much like Tikhonov and maximum entropy but it proves to be much more efficient if 
it is used as an iterative method. Direct methods fail to perform when it comes to 
large-scale problems or huge sparse matrices, where only iterative technique comes to 
the rescue. The iterative conjugate gradient method can successfully compute           
solutions for large scale problems. Since the iterative method utilizes the property of 
matrix-vector multiplications between huge sparse matrices and vectors, computa-
tional time decreases and storage requirements for such matrices and vectors           
decreases tremendously. These advantages make iterative conjugate gradient        
regularization technique more favorable when compared with others. The iterative 
method generates successive approximations of the solution and their residuals. The 
conjugate gradient for a set of unregularized normal equations, H X = Y, is given as: 

T TH HX H Y=  . (14) 

It is seen that for (14), the low-frequency components of the estimated solution     
converge faster than the high-frequency components [12]. The iterative conjugate 
gradient technique generates XK estimated solutions and calculates the residuals for 
each K. The number of iterations assigned is denoted by K. In this iterative technique 
of generating the regularized solution, K acts as the regularization parameter. It is 
very important to generate iterations up to an optimal number because the iterative  
solution can sometimes converge faster and if K is greater than K-optimal, the         
estimated solution might diverge from the true solution. The equation for the Kth      
iterative CG approach is given by: 

( ) ( 1) ( ) ( )K K K KX X pα−= +  . (15) 

where, X(K) is the Kth iterative approximation of X. The conjugate gradient least 
squares is given by: 

2

. 2
m inregX Y HX= −  . (16) 

Equation (16) is similar to (10) – Tikhonov regularization technique only in (16),       
λ = 0, making the regularization term go to zero. Hence, in this technique, like in CG, 
the number of iterations, K, acts as the regularization parameter.  
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Computational cost and storage requirements are certainly the prime factors in 
choosing a particular regularization technique for a particular application. Iterative 
methods for estimating a regularized solution of an ill-posed problem are fast gaining 
popularity due to their low computational cost and low storage requirements as     
compared to direct methods of regularization. 

5   Results and Concluding Remarks 

It is a fact that super-resolution image reconstruction is an inverse problem which is 
highly ill-conditioned.  If such a system (9) is solved, the image constructed would be 
highly sensitive and unstable. Thus, the term of regularization is introduced to make 
the final approximated solution less sensitive and more stable. The choice of        
technique used for regularization and estimation of the regularization parameter      
depends upon the application field and the expected output. In the field of super-
resolution, the images are of band-limited nature, and hence, to restore the image, the 
Nyquist criterion needs to be fulfilled. The current regularization techniques are    
concentrated towards smoothing the final approximated or regularized image. The 
regularization matrix is taken in such a fashion that it blurs the regularized image by 
cutting off a major part of the high-frequency component. 

We conclude with some experimental results of image reconstruction from       
simulated imagery. We have implemented an iterative technique for super-resolution 
that inherently stabilizes the reconstruction process without excessive blurring. In this 
approach the K+1 approximation to the high-resolution image is given by: 

1 0 ( ), 0,1, 2.....K K KX X R Y H X K+ = + − ⋅ → =  . (17) 

where, H is the imaging operator and Y is the set of low-resolution images with X0  
being the first approximation input to the iterations algorithm. R0 in (17) is an          
approximate reconstruction operator. In our approach the essential part of this         
operator is sub-pixel interpolation. In our initial experimentation we used truncated 
Sinc function for interpolation. From our experiments and figure 2, it can be seen that 
R0 acts as a regularizing routine, cutting off the high-frequency components and noise 
and leaving a smooth approximated image. Truncated Sinc acts as an implicit       
regularization on the image. The extent of this regularization on the image can be  
controlled by the extent of the Sinc function. The Sinc function is also known as an 
ideal reconstruction filter, which in the frequency space, has a rectangular function. 
Although a true Sinc function cannot be used for reconstruction purposes, the      
regularization matrix can be chosen such that in frequency space it is like a             
rectangular function. Even if the rectangular function cuts off the high-frequency 
components, it doesn’t blur the image and tries to preserve as much of the high-
frequency components as possible from the band-limited image. 

This paper signifies the role of regularization in the field of super-resolution and 
also reviews the most common regularization techniques. It is also recommended to 
use iterative regularization techniques rather than direct techniques for applications 
where computational cost and storage requirements are constraints. 
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(a) (b)
 

 Fig. 2.  (a) – One of the 10 low-resolution images [42 x 42] simulated on the original image 
[512 x 512] using a sampling ratio of 12. (b) – The 20th final iterative super-resolution image 
generated [504 x 504] by our algorithm using truncated Sinc as the interpolation technique. 

The plan is to take this research to the next step where we would implement the 
regularization technique with the new idea of considering the regularization matrix 
such that in frequency space, its response is more like the rectangular function. Such a 
technique will help to preserve the edges, rather than blurring it, thereby keeping the 
significant information intact. The problem of super-resolution is rewritten to        
combine the linear operator H which represents the imaging process along with the 
regularization term, such that (10) is given as: 

2

2

min
0

H Y
X

Lλ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   ⇒     2
2

ˆ ˆmin || ||X HX Y= −  . (18) 

The above equation is a least squares problem and can be solved using an iterative 
approach so as to tackle huge and sparse matrices.  
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