
B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part II, LNAI 4252, pp. 220 – 226, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Toward a Universal Platform for Integrating Embodied
Conversational Agent Components

Hung-Hsuan Huang1, Tsuyoshi Masuda1, Aleksandra Cerekovic2,
Kateryna Tarasenko1, Igor S. Pandzic2, Yukiko Nakano3, and Toyoaki Nishida1

1 Department of Intelligence Science and Technology, Graduate School of Informatics,
Kyoto University, Japan

{huang, masuda, ktarasenko, nishida}@ii.ist.i.kyoto-u.ac.jp
2 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

{aleksandra.cerekovic, Igor.Pandzic}@fer.hr
3 Department of Computer, Information and Communication Sciences,

Tokyo University of Agriculture & Technology, Japan
nakano@cc.tuat.ac.jp

Abstract. Embodied Conversational Agents (ECAs) are computer generated
life-like characters that interact with human users in face-to-face conversations.
To achieve natural multi-modal conversations, ECA systems are very sophisti-
cated and require many building assemblies and thus are difficult for individual
research groups to develop. This paper proposes a generic architecture, the Uni-
versal ECA Framework, which is currently under development and includes a
blackboard-based platform, a high-level protocol to integrate general purpose
ECA components and ease ECA system prototyping.

1 The Essential Components of Embodied Conversational Agents
and the Issues to Integrate Them

Embodied Conversational Agents (ECAs) are computer generated life-like characters
that interact with human users in face-to-face conversations. To achieve natural com-
munications with human users, many software or hardware assemblies are required in
an ECA system. By their functionalities in the information flow of the interactions
with human users, they can be divided into four categories:

ECA Assemblies in the Input Phase. Non-verbal behaviors are the indispensable coun-
terpart of verbal information in human conversations and thus embodied agents have
to possess the capabilities of both of them. In addition to capturing natural language
speech, non-verbal behaviors such as head movements, gaze directions, hand ges-
tures, facial expressions, and emotional conditions are acquired by various types of
sensors or visual methods in ECA researches. Further, input understanding tasks such
as speech and gesture recognition are also required to be done in this phase.

ECA Assemblies in the Deliberate Phase. This is the central part of an intelligent
agent to determine its behaviors in responding to the inputs from the outside environ-
ment. An inference engine with a background knowledge base and a dialogue

 Toward a Universal Platform for Integrating ECA Components 221

manager are required for conducting a discourse plan to achieve the ECA’s conversa-
tional goal according to the agent’s internal mental state. Talking to a conversational
agent without emotions and facial expressions is weird and will be easily satiated
while being like a human in the real world, personality, emotion, culture, and social
role models are incorporated into ECAs to improve their believability.

ECA Assemblies in the Output Phase. Verbal output or natural language synthesis is
generally done by a Text-To-Speech (TTS) engine to speak out the text output from
the dialogue manager. Spontaneous non-verbal behavior outputs such as facial expres-
sions, eye blinks, spontaneous hand gestures, and body vibrations are generated ran-
domly or depending on the syntactical information of accompanied utterance by using
the result of statistical analysis like CAST [5]. At last, a 2D/3D character animation
player that renders the virtual character body and probably the virtual environment
where the character resides on the screen is necessary.

A Platform for Integrating ECA Components. To integrate all the various assemblies
of an ECA system described above, a platform or framework that seamlessly inte-
grates them is a critical part. This platform has to transport all the sensor data streams,
decisions, and command messages between all the components. It has been proposed
that there are four essential requirements in the ECA component integration issue [4,
6]. First, the platform has to keep all of output modalities to be consistent with the
agent’s internal mental state. Second, all the verbal and non-verbal outputs are re-
quired to be synchronized. Third, ECAs have to be able to response to their human
users in real-time. Fourth, the support for two ways of the information flow, “pull data
from a component” and “push data to a component” are required in ECAs.

2 Universal Embodied Conversational Agent Framework

ECA systems are so sophisticated and their functions actually involve multiple re-
search disciplines in very broad range such that virtually no single research group can
cover all aspects of a full ECA system. Moreover, the software developed from indi-
vidual research result is usually not meant to cooperate with others. There is a number
of outstanding ECA systems that have been proposed previously, however, their archi-
tectures are ad hoc designed [2] and are not for a general purpose use.

Therefore, if there is a common and generic backbone framework that connects a
set of general-purpose reusable and modulized ECA components which communicate
with each other in a well-defined and common protocol, the rapid building and proto-
typing of ECA systems become possible, and the redundant efforts and resource uses
of ECA researches can be prevented. This work proposes such an architecture that
eases the development of ECA systems for general purposes. In our current design, it
contains the following three parts, a general purpose platform (Universal ECA Plat-
form) which is composed by a set of server programs for mediating and transporting
data stream and command messages among stand-alone ECA software modules, a
specification of a high-level protocol based on XML messages (UECAML) that are
used in the communication between a standardized set of ECA components, and an
application programming interface (UECA API) for easy development of the wrap-
pers for the ECA software modules. These basic concepts are shown in Fig. 1.

222 H.-H. Huang et al.

Fig. 1. The conceptual diagram of our Universal ECA Framework that includes the Universal
ECA Platform server, UECA API, and a high-level protocol, UECAML

We use blackboard model as the backbone platform and OpenAIR [6] as the low-
level routing and message passing protocol for the following reasons:

− Distributed architecture and XML absorb the differences of operating systems and
programming languages of components and distribute the computation complexity.

− Unlike a long pipelined architecture, the single-layer topology provides the possi-
bility to support reflexive behaviors that bypass the deliberation of the agent.

− The weak inter-connectivity of the components allows the online switching of
components and thus makes online upgrading and maintaining of components.

− Components with different levels of complexity can be integrated into the ECA
system as long as they understand and generate the same message types and the
system can still work even some components are absent.

− Logically isolated multiple blackboards can distribute information traffic that is
concentrated on only one blackboard in traditional systems.

Based on this framework, we are specifying an XML based high-level protocol for
the communications between ECA components. Every XML message belongs to a
message type, for example, “input.speech.text”, “output.body.gesture”, etc. Each
message type has a specified set of elements and attributes, for example, “intensity”,
“time_interval”, “start_time”, etc. Each component subscribes its interested mes-
sage type(s), read them from the blackboard when they are published by another
component, generates its output and publishes messages in other types to the black-
board. In the current stage, we are focusing on the specification on input and output
phases and categorized the message types in the procedure of the I/O phases into an
abstract hierarchy having three layers in the blackboard according to their abstract-
ness. This basic idea is depicted in Fig. 2(a) and described below.

Low-level Parameter Layer in Input Phase: To absorb the possible variance even
for the same modality in the lowest-level raw sensors’ data, the sensor data handling
components interpret raw data into low-level parameterized representations, and then
write them into the blackboard. For example, rather than the raw wave data from the
voice capture subsystem, the user’s voice is interpreted into a recognized text stream
by a speech recognition component, rather than the absolute current positions and
angles of a sensor of the motion capture system, the numbers are transformed into

Black
Board 1

Black
Board 2

CNS ConfigAIRCentral

Motion Capture
Device

Data Acquire
Routine (C#)

Visage Player

Wrapper
(C++)

OpenAIR

ECA Specialized AIR Server

C# AIR Plug + UECA API Java AIR Plug + UECA API

CAST
(Java)

Wrapper
(Java)

UECAML

AIML
(Java)

Wrapper
(Java)

Speech
Recognition

Wrapper
(C#)

C++ AIR Plug +
UECA API

Universal ECA Platform

Black
Board 1

Black
Board 2

CNS ConfigAIRCentral CNS ConfigAIRCentral

Motion Capture
Device

Data Acquire
Routine (C#)

Motion Capture
Device

Data Acquire
Routine (C#)

Visage Player

Wrapper
(C++)

Visage Player

Wrapper
(C++)

OpenAIR

ECA Specialized AIR Server

C# AIR Plug + UECA API Java AIR Plug + UECA API

CAST
(Java)

Wrapper
(Java)

CAST
(Java)

Wrapper
(Java)

UECAML

AIML
(Java)

Wrapper
(Java)

AIML
(Java)

Wrapper
(Java)

Speech
Recognition

Wrapper
(C#)

Speech
Recognition

Wrapper
(C#)

C++ AIR Plug +
UECA API

Universal ECA Platform

 Toward a Universal Platform for Integrating ECA Components 223

Deliberate Phase

Input Phase Output Phase
Low-level
Parameter

Semantic
Interpretation

Primitive
Action

Primitive
Action

Low-level
Parameter

Semantic
Interpretation

Deliberate Phase

Input Phase Output Phase
Low-level
Parameter

Semantic
Interpretation

Primitive
Action

Primitive
Action

Low-level
Parameter

Semantic
Interpretation

User is saying “Hello” and
waving his right hand

<U>Hello</U>,

<r_shoulder_twisting/>,

<r_shoulder_flexion/>

<Wave hand=“right”>

<U>Hello</U>

</Wave>

<Greet> <Greet>

<Wave hand=“right”><Smile>

<U>Good Morning</U>

</Smile></Wave>

<U>Good Morning</U>,

<r_shoulder_twisting/>, <mouth_corner_up/>,

<r_shoulder_flexion/>, <mouth_open/>

deliberate

The agent says “Good
Morning” and wave its right
hand with a smile

User is saying “Hello” and
waving his right hand

<U>Hello</U>,

<r_shoulder_twisting/>,

<r_shoulder_flexion/>

<Wave hand=“right”>

<U>Hello</U>

</Wave>

<Greet> <Greet>

<Wave hand=“right”><Smile>

<U>Good Morning</U>

</Smile></Wave>

<U>Good Morning</U>,

<r_shoulder_twisting/>, <mouth_corner_up/>,

<r_shoulder_flexion/>, <mouth_open/>

deliberate

The agent says “Good
Morning” and wave its right
hand with a smile

(a) (b)

Fig. 2. (a)The hierarchy of the high-level protocol, UECAML, notes that reflex action links are
shown in blue arrows (b) Example messages for a greeting response of the conversational to a
human user’s greeting behavior

angles of the joints of a human body. As a result, the total output of the components in
this stage is a parameterized text representation of movements of human users in-
cludes the angles of body joints, eye gaze directions, facial expression primitives,
speech in text, physiological parameters and so on. Because the parameters in this
stage must be specified in great detail with specific expert knowledge, we are going to
specify the protocol of this layer based on appropriate and popular existing standards
such as MPEG-4 FBA.

Primitive Action Layer in Input Phase: The task of this layer is to read the low-
level parameters from the last layer and to interpret them into messages expressing
abstract primitive actions. For example, from the change of the head orientation in
horizontal and vertical directions to higher level primitive actions like “head-
shaking” or “head-nodding”, from the change of bending angles of the joints of
shoulder, elbow, and wrist to recognize an user action like “waving-right-hand” or
“raising-left-hand”, from the angles of the joints of arms and fingers to recognize the
action, “pointing (X, Y, Z).” Because there is virtually no limit in the range of body
actions, we are going to specify just a generally useful set for specifying primitive
body actions. At the same time, the message format should be flexible enough to
allow new primitive actions to be included in the messages and that action will be
interpreted as long as the specified component dealing with messages in this layer can
recognize and understand it. A recognized primitive action is then propagated through
the platform as an event in the instant when it is recognized with a timestamp and
probably additional attributes such as intensity and time interval.

Semantic Interpretation Layer: The messages belong to this layer are semantic
meaningful events and are interpreted by components from the primitive actions, for
example, a user behavior recognizing component may interpret the primitive actions
“smiling” and “waving-right-hand” done by the users to a “greeting” semantic
explanation.

224 H.-H. Huang et al.

Deliberate Phase Layer: We plan to specify the messages in this layer to include the
inference, knowledge representation, dialogue management, personality model, emo-
tion model, and social role model functionalities as future works. Currently, we as-
sume that the inputs of this black box are text streams recognized from human users’
utterances which are annotated with semantic events or primitive action markups. The
outputs are then utterances of the conversational agents that are going to be spoken by
a TTS engine and annotated with markups to specify facial expressions, body move-
ments, gestures, and other non-verbal behaviors.

Output Phase: In output phase, message flows are processed in a reversed order
comparing to input phase, where messages from the deliberate phase are decomposed
to more concrete concepts with lower abstractness by responding components. For
example, when the deliberate phase decided that the agent should greet the user, this
semantic command then may be interpreted by an action catalogue component into
the “utterance (“Good Morning”)”, “smile” and “wave-right-hand” primitive ac-
tions. These two primitive actions are then further interpreted into low-level facial
animation parameters and body animation parameters by a FAP / BAP database com-
ponent to drive the CG character of a MPEG-4 FBA compatible player to smile and
wave its right hand. A sample message flow that follows the framework of a process
for an agent to greet in response to a human user’s greeting behavior is shown in Fig.
2 (b).

The shared blackboard(s) mechanism allows the components to exchange informa-
tion easier between different logical layers; a component can write its outputs arbitrar-
ily into other layers and thus components with different level of sophistication can
work together. Further, reflex action controlling components that bridge input phase
messages directly to output phase messages are also allowed in this architecture.

Generally, blackboard architecture suffers from two major disadvantages. First, due
to the distributed problem-solving methodology, it usually lacks a mechanism to cen-
trally direct how a problem is going to be solved. This problem as well as the multi-
modality consistency issue can be remedied by introducing a centralizing component
to issue action confirming messages in the deliberate phase, that is, the actions sent to
all output modalities will not be executed without confirmation except the reflexive
behaviors. Second, the additional information traffics involving the shared blackboard
cause inefficiency. The performance deterioration can be reduced by the direct infor-
mation exchanges between the components while the message traffic load centralized
on a single blackboard can be reduced by using multiple logically isolated black-
boards at the same time. Besides, we plan to address the ECA component synchroni-
zation issue by the following ways, to require all the machines composing the system
to be synchronized with each other to absolute standard time by NTP and to utilize the
explicit timestamp field in each message as well as incorporating “after the next ac-
tion”, “begin at the same time as the next action” specifiers for primitive actions.

3 Prototype of the Universal ECA Platform

We have implemented a Java prototype of the platform that routes and transports the
communication between the ECA components those have registered in it. In addition
to the reference Java AIR Plug implementation from mindmakers.org, we have

 Toward a Universal Platform for Integrating ECA Components 225

developed a C# version and are developing a C++ AIR Plug library. Based on the
backbone platform, we are defining UECAML, which is currently focused on multi-
modality inputs and CG character animation outputs.

As a premier evaluation, we developed two experimental ECA systems. One is a
campus guide agent, it stands in front of a photo of somewhere in a campus while
human users can ask it what an object in that photo is with natural language, hand
pointing and head movements. As shown in Fig. 3(a), 3(b), the campus guide agent is
composed with seven modules, head movement module utilizes an acceleration sensor
to detect head shakes and nods, pointing module uses data from a magnetic motion
capture device to judge which area the user is pointing at with his (her) right hand, a
wrapped SAPI compatible Japanese recognition engine, a wrapped AIML [1] inter-
preter for dialogue management, gesture selector module is a wrapped CAST engine,
input integrator module integrates all the tree modalities into individual input events,
and a character animator player developed with visage|SDK [7]. The other one ex-
perimental system is an application for experiencing cross-culture differences of ges-
tures and is shown in Fig. 3 (c). In this virtual environment, an avatar replays the
user’s hand gestures such as beckoning, and there are multiple computer controlled
agents that react to those gestures. Their reaction differs depending on which country
they are supposed to come from for example, Japan or Britain.

The two experimental ECA systems themselves are relatively simple; however, this
work is not emphasizing on how strong the built ECAs are but is trying to ease the
development and provide sufficient capabilities for general ECA researches. In the
preliminary evaluation, the campus guide agent proves the platform’s capability to
seamlessly deal with multimodal inputs and sufficient performance for smooth real-
time conversation. In the gesture experiencing application, our three-machine con-
figuration showed satisfying performance to drive an avatar with motion capture de-
vice and ten computer controlled agents in real-time. Besides, both of these two sys-
tems can be built by incorporating software tools which are not specifically designed
for these systems with little efforts, just by wrapping those tools according to the
specification of universal ECA platform, and then an ECA system works. For exam-
ple, the campus guide agent was built in three hours by writing two scenarios in
AIML and the input integrator in addition to the other general purpose modules and
pre-defined gestures. Further, in these two experimental systems, it usually requires
only several dozen lines of code to wrap a software tool.

4 Future Works and Evaluation

This work is yet far from reaching its objectives. We are going to complete the defini-
tion of the standard high-level protocol to allow the integration of common ECA as-
semblies, improve the infrastructure to support the necessary features for the protocol,
a set of client-side libraries supporting easy integration of ECA assemblies developed
in various programming languages on various operating systems as well as a set of
wrapped common ECA tools. The ultimate objective of this work is to pack all of
these as an ECA development toolkit including a workable skeleton ECA.

226 H.-H. Huang et al.

OpenAIR

Blackboard(s)

Head
Movement

(C#)

Pointing
(C#)

Character
Animator

(C++)

Speech
Recognition

(C#)

Gesture
Selector
(Java)

Dialogue
Management

(Java)

Input
Integrator

(C#)

Head
Nod/Shake (X,Y)

What’s that?

Answer Gesture Action
Markuped Answer

QA
Knowledge

UECAML

OpenAIR

Blackboard(s)

Head
Movement

(C#)

Pointing
(C#)

Character
Animator

(C++)

Speech
Recognition

(C#)

Gesture
Selector
(Java)

Dialogue
Management

(Java)

Input
Integrator

(C#)

Head
Nod/Shake (X,Y)

What’s that?

Answer Gesture Action
Markuped Answer

QA
Knowledge

UECAML

(a) (b) (c)

Fig. 3. (a)The campus guide agent’s configuration (b) snapshot of the campus guide agent while it
is performing a pointing gesture (c) An application for experiencing the cross-culture differences
of hand gestures

We plan to produce a preliminary release for a field test in our proposed project at
the eNTERFACE’06 [3] summer workshop on multimodal interfaces. We expect that
several participants will join our team during the workshop; they will be provided
with an initial release of the platform and jointly develop an ECA application during
the relatively short four-week workshop period. During the practical field use of the
platform, we expect to evaluate the platform in the following aspects, expressiveness
of the high-level protocol, the ease of use, and the performance of the platform in the
sense of responsiveness and the consistency of all modalities. We do not expect the
platform to be fully satisfying the requirements in the preliminary release but are
going to update the requirements, gather problem reports and other suggestion during
the workshop. We will then improve the platform based on these experiments and
make a public release.

References

[1] Artificial Intelligence Markup Language (AIML), http://www.alicebot.org/
[2] Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: the Behavior Expression Animation

Toolkit, in The Proceedings of SIGGRAPH '01, pp.477-486, 2001.
[3] The eNTERFACE’06 workshop on multimodal interfaces, http://enterface.tel.fer.hr
[4] Gratch, J., Rickel, J., Andre, E., Cassell, J., Petajan, E., and Badler, N.: Creating Interactive

Virtual Humans: Some Assembly Required. IEEE Intelligent Systems, pp.54-63, 2002.
[5] Nakano, Y., Okamoto, M., Kawahara, D., Li Q., Nishida, T.: Converting Text into Agent

Animations: Assigning Gestures to Text, in The Proceedings of The Human Language
Technology Conference (HLT-NAACL04), 2004.

[6] Thorisson, K., List, T., Pennock, C., and DiPirro, J.: Whiteboards: Scheduling Blackboards
for Semantic Routing of Messages & Streams, AAAI-05 Workshop on Modular Construc-
tion of Human-Like Intelligence, 2005.

[7] visage|SDK, visage technologies, http://www.visagetechnologies.com/index.html

	The Essential Components of Embodied Conversational Agents and the Issues to Integrate Them
	Universal Embodied Conversational Agent Framework
	Prototype of the Universal ECA Platform
	Future Works and Evaluation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

