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Abstract. Intelligent interactive systems have begun to adopt knowl-
edge and software engineering technologies in an attempt to effective
development. Feature models have been widely used in knowledge and
software engineering for the reuse purpose. However, due to the lack of
a formal semantics of feature models, it is rather difficult to perform rig-
orous consistency reasoning on them. Without guaranteed consistency
of feature models, the quality of interactive systems based on them, can
not be guaranteed. In this paper, how to formalize feature models with
Description Logics is investigated. Following the proposed translation
principles, each feature model is formalized into an ALCQI knowledge
base. Hence the consistency reasoning on the feature model turns into
the consistency reasoning on the corresponding ALCQI knowledge base.
Especially, the latter reasoning can be automatically performed via the
description logic reasoner RACER.

1 Introduction

There is growing awareness of the importance of the development processes for
intelligent interactive systems through knowledge engineering and software en-
gineering approaches [7,10]. Domain engineering is a software reuse approach,
which aims to develop reusable software assets focusing on a particular appli-
cation domain. The most important result of domain engineering is the feature
model [6]. The prominent and distinctive user requirements are denoted by com-
mon and variant features, which are in turn captured into a graphical feature
model. So far quite a number of feature-centered domain engineering methods
have been proposed, such as FODA [8], ODM [11] and KAPTUR [2].

By capturing user requirements of a particular application domain, feature
models act as the start-point of software development. The quality of the inter-
active systems is strongly affected by the consistency of the feature models. Any
system, based on an inconsistent feature model, is quite prone to be inconsistent.
Therefore, the consistency reasoning becomes a critical problem. However, due
to the lack of a formal semantics, there is no automated tool to perform consis-
tency checking of a feature model. It is neither efficient nor reliable to validate
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it by hand. Especially it becomes infeasible to accomplish the reasoning when
there are a great deal of features and constraints between them.

Description Logics(DLs) is a formalism for representing knowledge and rea-
soning about it [1]. DL languages have formal model-theoretic semantics, and
their main strength lies in the support of powerful reasoning mechanisms. Much
attention has been paid on the application of DLs [1].

We believe that there is a strong similarity between description logics systems
and feature models, both of which represent concepts in a particular domain
and define how various properties relate among them. Hence, in this paper we
propose feature models based on description logics. We present how to formalize
a feature model with the DL ALCQI. Thus the feature model is provided with
the DLs formal semantics, and the consistency of feature models is translated
to the consistency of the knowledge base consequently. Then the automated
reasoning on the DL representation of the feature model can be performed using
the DL reasoner–RACER. Thus the consistency of the feature model is checked
automatically with high efficiency and reliability.

The remainder of the paper is organized as follows. Section 2 gives a brief
overview of feature models and DLs. Section 3 presents our proposal of feature
models based on DLs. A case study is given in section 4 to demonstrate our
approach. In section 5, related works are compared and distinguished. Section 6
concludes the paper and indicates the future work.

2 Background

2.1 Graphic Feature Model

A feature model consists of a feature diagram and some additional information,
such as rationale, constraints and dependency rules. A feature diagram provides
a graphical tree-like notation that shows the hierarchical organization of features.
It consists of a set of nodes, a set of directed edges, and a set of edge decorations.
The root of the tree represents a concept node. All other nodes represent features.

Here we take the graphical notation introduced in [6]. Assuming a feature is
selected, we have the following definitions on its child features:

– Mandatory feature: The feature must be included into the description of a
concept instance, pointed to by a simple edge ending with a filled circle.

– Optional feature: The feature may or may not be included into a concept
instance, pointed to by a simple edge ending with an empty circle.

– Alternative feature: Exactly one feature from a set of features can be included
into a concept instance. The nodes of a set of alternative features are pointed
to by edges connected by an arc.

– Or feature: One or more features from a set of features can be included into
a concept instance. The nodes of a set of or features are pointed to by edges
connected by a filled arc.

However not all arbitrary feature configurations have practical meaning. We
identify three kinds of inter-dependencies among features, i.e. feature constraints:
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– Require constraint: The presence of some feature in a concept instance re-
quires the presence of some other feature.

– Exclude constraint: The presence of some feature excludes the presence of
some other feature.

– Cardinality constraint: The cardinality constraint represents the quantity
relation between features.

An instance of a feature model consists of an actual choice of features matching
the constraints imposed by the diagram.

Definition 1. Given a feature model, if its extension is not empty, i.e. there
exists an instance satisfying the feature diagram and feature constraints, the
feature model is said to be consistent.

2.2 Description Logic ALCQI
In ALCQI, concepts and roles are built inductively from atomic concepts and
atomic roles with constructors. The syntax and semantics of ALCQI is summa-
rized in Table 1, where A and P denote atomic concepts and atomic roles, C and
D denote concepts, R denotes roles, n denotes a strict positive integer. Then we
can define ⊥ as ¬�, ∀R.C as ¬(∃R.¬C), and (∃≤nR.C) as ¬(∃≥n+1R.C). The
semantics is specified through the notion of interpretation I that consists of a
non-empty set ΔI and an interpretation function ·I .

Table 1. The syntax and semantics of ALCQI

Constructor Syntax Semantics

universal concept � ΔI

atomic concept A AI

concept negation ¬C ΔI − CI

intersection C � D CI ∩ DI

existential restriction ∃R.C {x ∈ ΔI |∃y ∈ ΔI , (x, y) ∈ rI ∧ y ∈ CI}
qualified number restriction ∃≥nR.C {x ∈ ΔI |#{y|(x, y) ∈ rI ∧ y ∈ CI} ≥ n}
reverse role P− {(o, o′ ) ∈ ΔI × ΔI |(o′, o) ∈ P I}

A DLs knowledge base(KB) K comprises two components, the TBox and the
ABox. TBox (denoted as T ) is a finite set of terminological axioms. A concept
C is satisfiable with respect to T if there is an interpretation I such that CI is
nonempty. A TBox T is consistent if there is an interpretation I such that all
concepts are satisfiable. Then the interpretation I is named a model of T .

3 Formalization of Feature Models with ALCQI
In order to automatically perform consistency checking on feature models, here
we present the formalization of feature models into the ALCQI KB. Then the
consistency checking of feature models will be translated into the consistency
reasoning about the ALCQI KB.
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3.1 Translation Rules

Given a feature model FM including a feature diagram FD and feature con-
straints, the corresponding KB K=ϕ(FM) can be gained by the following
rules:

V

V1 V2

V

V1 V2

V

V1 V2

V

V1 V2

V

V1 V2

(1) (2) (5)(3) (4) (6)V

V1 V2

Fig. 1. Basic structures in feature diagrams

Step 1. Every node V in FD is formalized into an ALCQI concept C;
Step 2. Suppose node V and its child nodes Vi(i ≥ 1) are formalized into

ALCQI concept C and Ci respectively. Then each edge connecting the node
V and its child nodes Vi is translated into an ALCQI role Ri, which repre-
sents the relation between the concept C and Ci;

Step 3. The edge decorations can be translated into ALCQI terminological
axioms. For each basic structure1, as shown in Fig.1, we have:
(1) For structure (1), i.e. mandatory(V1, V2), denoting V1 and V2 are manda-

tory features of V , we use the following terminology axiom to model it:

C � ∀R1.C1 � ∀R2.C2

(2) Structure (2), i.e. alternative(V1, V2), represents that V1 and V2 are
alternative features of V . We introduce the following terminology
axioms:

C � C1 	 C2, C1 � C, C2 � C � ¬C1

The first axiom expresses the covering of subconcepts, and the latter two
axioms ensure that the concept C1 and C2 are disjoint.

(3) Structure (3), i.e. or(V1, V2), means that V1 and V2 are the or fea-
tures of V . It is obvious that this structure can be expressed by the the
combination of structure (1) and (2). Then making use of the rules (1)
and (2), the following terminology axioms are introduced for structure
(3):

C � C1 	 C2 	 (∀R1.C1 � ∀R2.C2)

C1 � C, C2 � C � ¬C1

(∀R1.C1 � ∀R2.C2) � C � ¬(C1 	 C2)

1 Feature diagrams can be normalized into the basic structures. Without losing the
universality, we discuss the structures including two features in order to keep the
presentation tersely.
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(4) Structure (4), i.e. mandatory(optional(V1), optional(V2)), denotes par-
ent feature V has two optional feature V1 and V2. It means that if V
is included in a concept instance, V1, V2, neither, or both of them are
included in the instance. This structure can also be expressed by the
combination of structures (1) and (2), i.e.

alternative(V1, V2, mandatory(V1, V2), None)
Here None represents the situation that none of the subfeatures of a
parent feature is included in a concept instance. For None, we intro-
duce an ALCQI atomic concept Null. Note that Null is not equal with
the ALCQI concept ⊥, since ⊥I = ∅, while NullI �= ∅. Then corre-
sponding axioms can be introduced by making use of the rules (1) and
(2).

(5) For structure (5) and (6), the translation can be similarly accomplished
as previous.

Step 4. For feature constraints, we have:

(1) V1 require V2, means that if feature V1 is included in a concept instance,
then V2 must be included. To formalize this constraint, we need to find
out the related information of edges between features. The edges from
the nearest common ancestor node2 of V1 and V2 to V1, denoted by
E11 . . . E1i, can be gained by the following algorithm:

// temp as variable and parent(temp) as parent node of temp

//CommonV as the nearest common ancestor node of V1 and V2

temp = V1

while(temp!=CommonV )

{ if it is mandatory structure between temp and its sibling node

then note the directed edge E1i from parent(temp) to temp

else temp=parent(temp)

}
For feature V2, the effective directed edges E21 . . . E2j can be gained
analogously. Then the following terminology axiom can be introduced:

(∀R11...(∀R1i.C1)) � (∀R21...(∀R2j .C2)),

in which R11, ..., R1i are atomic roles corresponding to E11, . . . , E1i, and
R21, ..., R2j corresponding to E21, . . . , E2j .

(2) Constraint V1 exclude V2 means that if feature V1 is included in a con-
cept instance, then V2 must not be included, and vice versa. Then the
corresponding terminology axiom is introduced:

(∀R11...(∀R1i.C1)) � (∀R21...(∀R2j .C2)) � ⊥,

declaring that no concept instance includes both feature V1 and V2.

2 Obviously, there must be a common ancestor node of V1 and V2, because the root is
one of their common ancestor.
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(3) The cardinality constrains between features can be translated into termi-
nology axioms with qualified number restriction constructors in ALCQI.

The translation rules have covered all the elements of feature models. Hence
any feature model can be translated into an ALCQI KB.

The correctness of the translation function ϕ can be proven by building two
mappings, one from the concept instance of FM to the model of ϕ(FM) and
the other from the model of ϕ(FM) to the concept instance of FM . Since the
translation rules proposed here are properly intuitionistic, the proof details are
omitted here due to space limitation. Readers interested in the validity of ϕ
are referred to [5]. Note that the ABox of the KB ϕ(FM) is empty because
no individuals are involved in a feature model FM . Therefore the following
discussion on KB reasoning is limited to the TBox of ϕ(FM).

3.2 Automatic Reasoning Using RACER

Given a feature model FM , each instance of FM corresponds to a model of KB
ϕ(FM). If FM is consistent, then the set of instances of FM is nonempty, i.e.
there must be an instance satisfying FM . Thus there must be a corresponding
model of ϕ(FM), so ϕ(FM) is consistent, and vice versa. Hence we have:

Theorem 1. Given a feature model FM and its corresponding ALCQI KB
ϕ(FM), FM is said to be consistent if and only if ϕ(FM) is consistent.

Now the consistency checking of a feature model is translated into the consistency
reasoning of the corresponding knowledge base.

To accomplish the automatic consistency reasoning, we adopt the description
logic reasoner RACER(Renamed ABox and Concept Expression Reasoner) [9].
From a KB ϕ(FM), we can define its corresponding RACER script. By adopting
RICE [9] as the reasoning client, we can load the script. Then we can use the
following command to check the consistency of the knowledge base:

(check − tbox − coherence knowledgebasename (tbox(current − tbox)))

If the result is NIL, all the concepts are satisfiable, i.e. the knowledge base is
consistent, which demonstrates that the corresponding feature model is consis-
tent. Otherwise, the corresponding feature model is inconsistent.

4 Case Study

To clarify our approach, we present how to translate a feature model of the
course concept into an ALCQI KB. The example feature diagram is shown in
Fig.2. The constraints between the features include:

(1) “Required” exclude “TA” to ensure the teaching quality of the course.
(2)“Phd” require “Prof ” to ensure the profundity of the course.
(3) Every course can only be taught by one teacher to avoid it to be reopened.
(4) Every teacher teaches at most one course to ensure the fair assignment of
teaching tasks.
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Kind ID

ArbitraryRequired

Teacher

Course

TAProf AssoProf

Orientation

DoctorUnGra Master

Fig. 2. Feature diagram of Course concept

According to the translation rules proposed in this paper, the above feature
model is formalized into the following ALCQI KB, as shown in Table 2. Then
we define the RACER script, and load it to the RACER knowledge base. Using
the consistency checking command, we get the result ‘NIL’, which means that
the current feature model is consistent.

Table 2. The fragment of K corresponding to the feature model of Course

CCourse	 ∀kind.CKind �∀id.CId � ∀taughtby.CTeacher �∀orient.COrient

CKind 	 CRequired �CArbitrary

CRequired 	 CKind CArbitrary 	 CKind �¬CRequired

......

(∀kind. CRequired) �(∀taughtby. CTA) 	 ⊥
∀orient. CPhd 	 ∀taughtby. CProf

CCourse 	 (∃=1taughtby. CTeacher)

CTeacher 	 (∃≤1 taughtby−.CCourse)

If another constraint “every professor should teach two courses” is added, the
corresponding RACER script should be updated by introducing another axiom:
(implies CProf (at-least 2 taught CCourse)). Then the knowledge base will be
checked to be no longer consistent. Through modifying the feather constraints,
it is feasible to maintain the consistency of the feature model.

5 Related Work

With feature models being more and more widely used in the development of
intelligent interactive systems, the formalization of feature models and the con-
sistency reasoning on them have become considerably worthwhile issues. An
adapted form of OCL is proposed in [12] to formally describe feature relations in
feature models. However, the automated consistency checking of feature models
was not further explored. In [13], the first-order logic in Z is used to formalize and
verify feature models. Yet the cardinality constraint between features was not
identified, which is naturally formalized using DLs in this paper. Benavides et
al. present an algorithm to transform an extended feature model into a CSP [3],
and further propose to use constraint programming to reason on feature models
[4]. However, their feature models still lack the support of feature constraints,
which is pointed out in [4] to be one challenge they have to face in the future.
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6 Conclusion

In this paper, we have proposed an approach to formalizing feature models with
description logics. The consistency checking of feature models can be performed
automatically. Moreover, the reasoning is extraordinarily reliable within rigor-
ous logic framework. In fact, through this approach feature models are provided
with formal description logics semantics, which will facilitate the development
of feature-oriented interactive systems in practice. Now we are investigating how
to introduce typical concrete domains, such as numbers and time intervals, into
ALCQI to express more kinds of feature constraints and exploring the experi-
mental evaluation results about the consistency checking.
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