Clustering Mixed Data Using Spherical Representaion

Yoshiharu Sato

Hokkaido University, Sapporo, Japan ysato@main.ist.hokudai.ac.jp

Abstract. When the data is given as mixed data, that is, the attributes take the values in mixture of binary and continuous, a clustering method based on *k*-means algorithm has been discussed. The binary part is transformed into the directional data (spherical representation) by a weight transformation which is induced from the consideration of the similarity between binary objects and of the natural definition of descriptive measures. At the same time, the spherical representation of the continuous part is given by the use of multidimensional scaling on the sphere. Combining the binary part and continuous part, like the latitude and longitude, we obtained a spherical representation of mixed data. Using the descriptive measures on a sphere, we obtain the clustering algorithm for mixed data based on k-means method. Finally, the performance of this clustering is evaluated by actual data.

1 Introduction

The mixed data is defined such a data that each object is measured by the binary attributes and the continuous attributes simultaneously. Then the each object o_i is denoted by

$$
oi = (xi, yi) = (xi1, xi2, ..., xip, yi1, yi2, ..., yiq), (i = 1, 2, ..., n)
$$
(1)

where x_{ir} takes binary value 0 or 1, and y_{it} takes the continuous value.

Recently, the size of data goes on increasing by the development of information technology. Then the feasible clustering method seems to be k-means method or its modifications. In k-means method, the concept of mean and variance of the observed data play the essential role. Then the binary data is transromed into directional data in order to get the natural definition of descriptive measures.

When the mixed data is given, traditional cluster analysis has the essential problem in mixture of the distance between binary data and the distance between continuous data. Then a fundamental idea of this paper is that if we get the spherical representation of the binary data and the continuous data simultaneously, we may combine these two spherical data into one spherical data, that is, one is considered to be a latitude and the other to be a longitude. In order to get the spherical representation of q -dimensional continuous data, we use the concept of multidimensional scaling on q -dimensional sphere so as to keep a distance relation between q-dimensional continuous configuration and q-dimensional spherical configuration.

B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part II, LNAI 4252, pp. 94[–101,](#page-7-0) 2006. -c Springer-Verlag Berlin Heidelberg 2006

2 Transformation of Binary Data Into Directional Data

We assume that the following n binary objects with p attributes are given.

$$
\boldsymbol{x}_i = (x_{i1}, x_{i2}, \cdots, x_{ip}), \quad x_{ia} = 1 \text{ or } 2, \ (i = 1, 2, \ldots, n; \ a = 1, 2, \ldots, p)
$$

We suppose that each object x_i is weighted by the sum of the value of attributes, i.e. sum of the component of the vector x_i . When we denote the weighted vector as $\boldsymbol{\xi}_i = (\xi_{i1}, \xi_{i2}, \cdots, \xi_{ip}),$ the components are given by

$$
\xi_{ia} = x_{ia} / \sum_{b=1}^{p} x_{ib}, \quad \sum_{a=1}^{p} \xi_{ia} = 1, \quad \xi_{ia} > 0,
$$
 (2)

Then the vectors ξ_i are located on $(p-1)$ -dimensional hyperplane in the first quadrant of p-dimensional space. We must introduce a suitable metric function on this hyperplane. Since ξ_i has the property in expression [2,](#page-1-0) we can use an analogy of a discrete probability distribution, i.e. if we regard ξ_i as a probability, then we are able to introduce Kullback-Leibler divergence as a distance measure, which are defined as follows,

$$
D(\boldsymbol{\xi}_i, \boldsymbol{\xi}_j) = \frac{1}{2} \sum_{a=1}^p (\xi_{ia} - \xi_{ja}) \log \frac{\xi_{ia}}{\xi_{ja}}
$$

When we evaluate Kullback-Leibler divergence between two points, ξ_i , $\xi_i+d\xi_i$, up to the second order with respect to $d\boldsymbol{\xi}_i$, the line element in this space is given byt

$$
D(\xi_i + d\xi_i, \xi_i) = \frac{1}{2} \sum_{a=1}^p d\xi_{ia} \log \frac{\xi_{ia} + d\xi_{ia}}{\xi_{ja}} = \frac{1}{4} \sum_{a=1}^p \frac{1}{\xi_{ia}} (d\xi_{ia})^2.
$$
 (3)

This is well known as a chi-square distance. However, since the dimension of this space (hyperplane) is $(p-1)$, we get

$$
D(\xi_i + d\xi_i, \xi_i) = \frac{1}{4} \sum_{a=1}^{p-1} \sum_{b=1}^{p-1} \left(\delta_{ab} \frac{1}{\xi_{ia}} + \frac{1}{\xi_{ip}} \right) d\xi_{ia} d\xi_{ib}
$$

Then we may consider the hyperplane should be a Riemannian space. The structure of the hyperplane will be discussed by the several geometrical quantities. But we know that the induced metric on a hypersphere in p -dimensional Euclidean is denoted as follows. Using a coordinate $(u_1, u_2, \ldots u_p)$ and $u_1 + u_2 + \cdots + u_p =$ 1, $u_a > 0$, when we denote the hypersphere as follows,

$$
\ell_1 = \sqrt{u_1}, \ell_2 = \sqrt{u_2}, \cdots, \ell_{(p-1)} = \sqrt{u_{(p-1)}}, \ell_p = \left\{ 1 - \sum_{b=1}^{p-1} u_b \right\}^{1/2}, \qquad (4)
$$

the induced metric is given by

$$
ds^{2} = \sum_{a=1}^{p-1} \sum_{b=1}^{p-1} g_{ab} du_{a} du_{b} = \sum_{a=1}^{p-1} \sum_{b=1}^{p-1} \frac{1}{4} \left(\delta_{ab} \frac{1}{u_{a}} + \frac{1}{u_{p}} \right) du_{a} du_{b}.
$$
 (5)

Then we know that the structure of the hyperplane is a hypersphere.

From this result, we define a directional data, i.e. the data on the unit hypersphere using weighted *ξ*ⁱ as

$$
\ell_{ia} = \sqrt{\xi_{ia}}, \quad (a = 1, \dots, p)
$$

The main advantage using the data on the hypersphere is easy to get a global geodesic distance, because we know the geodesic curve on the hypersphere is the great circle. If we discuss on the hyperplane, we must get the geodesic curve, which is a solution of the geodesic equation.

Fig. 1. Directional data and Distance

3 Spherical Representation of Continuous Data

Suppose a q-dimensional continuous data be given by

$$
y_i = (y_{i1}, y_{i2} \cdots, y_{iq}), \quad (i = 1, 2, \ldots, n)
$$

Using the sample variance and covariance matrix *S*, Mahalanobis distance between a pair of objects y_i and y_j is obtained as follows;

$$
D = (d_{ij}^2) = (\mathbf{y}_i - \mathbf{y}_j) \mathbf{S}^{-1} (\mathbf{y}_i - \mathbf{y}_j), \quad (i, j = 1, 2, ..., n)
$$
 (6)

This distance can be considered as a square of Euclidean distance when the original data *y*ⁱ is transformed that

$$
\boldsymbol{z}_i = \boldsymbol{S}^{-\frac{1}{2}}(\boldsymbol{y}_i - \bar{\boldsymbol{y}}), \quad (i = 1, 2, \dots, n)
$$

where \bar{y} denotes sample mean vector.

We are intended to get the spherical configuration such that the distance between the points on the sphere is consistent with the distance relation between continuous data z_i as much as possible. Then we assign each z_i to a positive quadrant in q-dimensional unit sphere.

q-dimensional unit hypersphere in $(q + 1)$ -dimensional Euclidean space is denoted as

$$
\boldsymbol{x}(\theta_1, \theta_2, \cdots, \theta_q) = \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_q \\ x_{q+1} \end{bmatrix} = \begin{bmatrix} \sin \theta_1 \sin \theta_2 \cdots \sin \theta_q \\ \sin \theta_1 \sin \theta_2 \cdots \cos \theta_q \\ \cdots \\ \sin \theta_1 \cos \theta_2 \\ \cos \theta_1 \end{bmatrix} . \tag{7}
$$

Let α be a center direction in positive quadrant in q-dimensional unit sphere, and β be a center direction perpendicular to the first axis.

$$
\alpha = x(\frac{\pi}{4}, \frac{\pi}{4}, \cdots, \frac{\pi}{4}), \quad \beta = x(\frac{\pi}{4}, \cdots, \frac{\pi}{4}, 0). \tag{8}
$$

Then, a point on the unit sphere is contained in the positive quadrant if the distance from α is less than

$$
\theta^* = \cos^{-1}(\alpha'\beta)
$$

Hence, the distance relation $D = (d_{ij})$ is transformed as

$$
D^* = (d_{ij}^*) = \left\{ \frac{2\theta^*}{d_{\text{max}}} \right\} d_{ij},\tag{9}
$$

where, $d_{\text{max}} = \max_{i,j} d_{ij}$.

We suppose that the data point z_i is assigned to a directional data ℓ_i . If the distance relation between assigned directional data reproduced the distance relation D^* completely, then

$$
\cos d_{ij}^* = \boldsymbol{\ell}_i' \boldsymbol{\ell}_j.
$$

When we denote the point on the unit sphere

$$
\boldsymbol{\ell}_{i}(\boldsymbol{\theta}_{i}) = \begin{bmatrix} \ell_{i1} \\ \ell_{i2} \\ \cdots \\ \ell_{iq} \\ \ell_{i(q+1)} \end{bmatrix} = \begin{bmatrix} \sin \theta_{i1} \sin \theta_{i2} \cdots \sin \theta_{iq} \\ \sin \theta_{i1} \sin \theta_{i2} \cdots \cos \theta_{iq} \\ \cdots \\ \cos \theta_{i1} \end{bmatrix}, \quad \boldsymbol{\theta}_{i} = \begin{bmatrix} \theta_{i1} \\ \theta_{i2} \\ \cdots \\ \theta_{iq} \end{bmatrix}, \quad (10)
$$

and we put $Q = (q_{ij}) \equiv \cos d_{ij}^*$, the point ℓ_i is obtained so as to minimize

$$
\eta = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} (q_{ij} - \ell'_i \ell_j)^2 = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} (q_{ij} - \sum_{k=1}^{q+1} \ell_{ik} \ell_{jk})^2
$$
(11)

provide that

$$
0 \le \theta_{ik} \le \frac{\pi}{2},
$$

because the point ℓ_i lies on the positive quadrant. In order to solve such a optimization problem, we must set an initial values of θ_i , denoted θ_i^0 , which are

given as follows; When we denote T_{α} as the tangent space of the sphere on the point α , the dimension of T_{α} is q and the natural frame is given by

$$
e_i = \frac{\partial x}{\partial \theta_i}, \quad (i = 1, 2, \dots q)
$$

Normalozing each base e_i , we get

$$
\boldsymbol{e}_i^* = \frac{\boldsymbol{e}_i}{\parallel \boldsymbol{e}_i \parallel}, \quad (1 = 1, \cdots q)
$$

By the system $\{e_1^*, e_2^*, \cdots, e_q\}$ and $\alpha = e_{q+1}^*$ is considered to be a orthonormal base of $q+1$ - dimensional Euclidean space. When we denote $z_i = (z_{i1}, z_{i2}, \cdots, z_{iq})$, the point on the tangent space is described as

$$
z_{(T_{\alpha})i}=z_{i1}e_1^*+z_{i2}e_2^*+\cdots+z_{iq}e_q^*.
$$

Then position vector in $(q + 1)$ -dimensional Euclidean space is denoted by

$$
\boldsymbol{v}_i = \boldsymbol{\alpha} + \boldsymbol{z}_{(T_\alpha)i}.
$$

Hence, we put the initial point ℓ_i^0 as

$$
\boldsymbol{\ell}_i^0 = \frac{\boldsymbol{v}_i}{\parallel \boldsymbol{v}_i \parallel}.
$$

When the mixed data is given by

$$
(\boldsymbol{x}_i, \boldsymbol{y}_i) = (x_{i1}, x_{i2}, \cdots, x_{ip}, y_{i1}, y_{i2}, \cdots, y_{iq}),
$$

the binary data x_i and the continuous data y_i are represented as the directional data $\ell_i^B(\theta_i^B)$ and $\ell_i^C(\theta_i^C)$, respectively. Then the total $(p+q-1)$ -dimensional polar coordinate is given by

$$
(\theta_{i1}^B, \cdots, \theta_{i(p-1)}^B, \theta_{i1}^C, \cdots, \theta_{iq}^C) \equiv (\theta_{i1}, \cdots, \theta_{i(p-1)}, \theta_{ip}, \cdots, \theta_{i(p+q-1)}) \equiv \boldsymbol{\theta}_i.
$$
 (12)

Using the polar coordinate θ_i , we get the spherical representation of mixed data, that is, the transformation the mixed data into directional data as follows;

$$
\ell_i(\theta_i) = \begin{bmatrix} \sin \theta_{i1} \cdots \sin \theta_{ip} \sin \theta_{i(p+1)} \cdots \sin \theta_{i(p+q-1)} \\ \sin \theta_{i1} \cdots \sin \theta_{ip} \sin \theta_{i(p+1)} \cdots \cos \theta_{i(p+q-1)} \\ \cdots \\ \sin \theta_{i1} \cos \theta_{i2} \\ \cos \theta_{i1} \end{bmatrix} .
$$
 (13)

4 *k***-Means Method for Directional Data**

The descriptive measures in directional data are given as follows. We suppose that the directional data on S^{p-1} with the size n is given by

$$
\ell_i = (\ell_{i1}, \ell_{i2}, \cdots, \ell_{ip}), \quad \ell'_i \ell_i = 1, \quad (i = 1, 2, \ldots, n). \tag{14}
$$

The mean direction is given by ([\[2\]](#page-7-1))

$$
\bar{\ell} = (\bar{\ell}_1, \cdots, \bar{\ell}_p), \quad \bar{\ell}_a = \sum_{i=1}^n \ell_{ia} / R, \quad R^2 = \sum_{b=1}^p \left(\sum_{j=1}^n \ell_{jb} \right)^2.
$$

The variance, called circular variance around mean is known ([\[2\]](#page-7-1)) as

$$
V = \frac{1}{n} \sum_{i=1}^{n} \left\{ 1 - \ell'_i \bar{\ell} \right\}.
$$

By the natural extension the k-means algorithm to the directional data, we get the following algorithm (spherical k-means, in short). We suppose that a set of *n* directional objects on the hypersphere S^{p-1} is given by [\(14\)](#page-4-0). When the number of clusters K is given, the criterion of spherical k -means algorithm is given by

$$
\eta = \sum_{k=1}^{K} \sum_{\ell_i \in C_k} V^{(k)} = \sum_{k=1}^{K} \sum_{\ell_i \in C_k} \left\{ 1 - \ell'_i \bar{\ell}^{(k)} \right\},
$$

$$
\bar{\ell}^{(k)} = (\bar{\ell}_1^{(k)}, \cdots, \bar{\ell}_p^{(k)}), \quad \bar{\ell}_a^{(k)} = \sum_{\ell_i \in C_k} \ell_{ia} / \sqrt{\sum_{a=1}^{p} \left(\sum_{\ell_i \in C_k} \ell_{ia} \right)^2}.
$$

Minimization η is attained by the maximization of the term $\ell'_i \bar{\ell}^{(k)}$. This term Minimization η is attained by the maximization of the term $\ell_i \ell^k$. This term
denotes the cosine of the angle between ℓ_i and $\bar{\ell}^{(k)}$, that is, the distance between the points on the hypersphere ℓ_i and $\bar{\ell}^{(k)}$. Therefore, each point ℓ_i is assigned the cluster which has the nearest to its mean.

5 The Performance and Characteristic Feature of the Spherical Clustering

Here we discuss the characteristic fearture of the spherical k-means, proposed here, using actual data set.

First example is a credit card approval data which is submitted by Quinlan, J. R. ([\[3\]](#page-7-2)) to "The Machine Learning Database Repository". This dataset is interesting because there is a good mixture of attributes. We use 10 binary attributes and 6 continuous attributes. All attribute names and values have been changed to meaningless to protect confidentiality of the data. There two classes in this data, one is approved class the other is not approved class, these denoted "+" and "-". Number of observation of each class is 285 and 356, respectively. We transform this data into directional data, and applied the spherical k -means clustering. In k-means algorithm, we must set the initial seed points (initial class centers). Here we use two different observations which are select from the total observations randomly as the initial seed points. Since k-means algorithm could not guarantee the global optimum solution, this processes are repeated 10,000 \times 15 times in order to get the local solutions. The result in Table 1.(a) has the minimum within variance in this experiment. Since this data is well-known, there

	Observed					Observed	
KM	285	27		KM	281		
		329				356	
Total 285		356		Total 285		356	
		WV: 0.00887, Ac:95%				WV: 0.00891, Ac:99%	
	(a)				(b		
WV : Within Variance, Ac : Accuracy							

Table 1. Credit card data(KM: Spherical *^k*-Means Method)

are many reports on the result of discriminant analysis. But the accuracies are not so good. For the reference, in Table 2 (a), (b), (c), the results of discriminant analysis are shown. Table 1, (b) shows that these two classes are almost linear separable on the sphere. It will be understood that discriminant analysis and cluster analysis are the different criterion. Then the within variances of the discrimination are greater than the result of k-means. Moreover, the criterion of the discrimination is minimize a risk function, usually, the misdiscrimination rate, then the data is processed under the labeled data. But clustering does not take into account the label of the data. However, this result suggest that the classical prototype discrimination method seems to be useful when the data has some structure, that is, gather in clusters. And also we will obtain clusters for mixed data in a natural way by the spherical representaion.

Moreover, the spherical k-means method is essentially the same with ordinal k-means method. Then this property does not depend on the spherical representation. In order make sure that, we apply k-means to ordinal continuous data.The data is Wisconsin Diagnostic Brest Cancer.([\[3\]](#page-7-2)) This has 30 continuous attributes, namely the usual multivariate data. Total observations are 569. There are two classes, one is malignant cancer, 212 observations, and the other is benign cancer, 357 observations. The result of k-means method and discriminant analysis are shown in Table 3,(a), Table 4. The result of k -means method is almost the same with support vector machine. Most interesting point is Table 3, (b). This shows that this data is completely linear separable. However, this

	Observed		Observed			Observed		
SD	67 244	LDF	253	90		SVM	269	55
	289 41		32	266			16	301
Total 285	356		Total 285	356		Total 285		356
	WV: 0.00986, Ac:83.2%			WV: 0.120, Ac:81.0%				WV: 0.0101, Ac:88.9%
	α		D.				ГC	

Table 2. Credit card data(Discriminant Functions)

SD : Bayse Discriminant function using Spherical Distribution. LDF : Linear Discriminant Function, SVM : Support Vector Machine.

	Observed					Observed	
	М				М		
KM	M 200			KМ	M 212		
	12	357		в		357	
Total 212		357		Total 212		357	
WV: 28.63, Ac:98%			WV: 29.49, Ac:100\%				
(a)							
M: Malignant Cancer B: Benigh Cancer							

Table 3. Wisconsin Diagnostic Brest Cancer (KM: *^k*-Means Method)

Table 4. Wisconsin Diagnostic Brest Cancer (Discriminant Functions)

				Observed		
	Observed					
	М			М		
LDF	VI 194		SVM	M 205		
	18	355			355	
Total 212		357	Total $2\overline{12}$		357	
		WV: 29.88, Ac:96.5%			WV: 29.94, Ac:98.8%	
	a					

LDF : Linear Discriminant Function, SVM : Support Vector Machine

solution is not the solution of k -means method but also the hyper plane which is the perpendicular bisector between means of two classes is not LDF function. It is natural that these classes are linear separable when we observed the attributes which are closely related to the discrimination.

References

- 1. MacQueen, J. : Some methods for classification and analysis of multivariate observations. In L.M.Le Can & J. Neyman (Eds), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, **1** (1967) 281–297
- 2. Mardia, K. : Statistics of Directional Data, Academic Press, (1972)
- 3. UCI Machine Learning Information / The Machine Learning Database Repository (http://www.ics.uci.edu/ mlearn/)