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Abstract. When the data is given as mixed data, that is, the attributes
take the values in mixture of binary and continuous, a clustering method
based on k-means algorithm has been discussed. The binary part is trans-
formed into the directional data (spherical representation) by a weight
transformation which is induced from the consideration of the similar-
ity between binary objects and of the natural definition of descriptive
measures. At the same time, the spherical representation of the contin-
uous part is given by the use of multidimensional scaling on the sphere.
Combining the binary part and continuous part, like the latitude and
longitude, we obtained a spherical representation of mixed data. Using
the descriptive measures on a sphere, we obtain the clustering algorithm
for mixed data based on k-means method. Finally, the performance of
this clustering is evaluated by actual data.

1 Introduction

The mixed data is defined such a data that each object is measured by the binary
attributes and the continuous attributes simultaneously. Then the each object
oi is denoted by

oi = (xi, yi) = (xi1, xi2, · · · , xip, yi1, yi2, · · · , yiq), (i = 1, 2, . . . , n) (1)

where xir takes binary value 0 or 1, and yit takes the continuous value.
Recently, the size of data goes on increasing by the development of information

technology. Then the feasible clustering method seems to be k-means method or
its modifications. In k-means method, the concept of mean and variance of the
observed data play the essential role. Then the binary data is transromed into
directional data in order to get the natural definition of descriptive measures.

When the mixed data is given, traditional cluster analysis has the essential
problem in mixture of the distance between binary data and the distance be-
tween continuous data. Then a fundamental idea of this paper is that if we get
the spherical representation of the binary data and the continuous data simul-
taneously, we may combine these two spherical data into one spherical data,
that is, one is considered to be a latitude and the other to be a longitude. In
order to get the spherical representation of q-dimensional continuous data, we
use the concept of multidimensional scaling on q-dimensional sphere so as to
keep a distance relation between q-dimensional continuous configuration and
q-dimensional spherical configuration.
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2 Transformation of Binary Data Into Directional Data

We assume that the following n binary objects with p attributes are given.

xi = (xi1, xi2, · · · , xip), xia = 1 or 2, (i = 1, 2, . . . , n; a = 1, 2, . . . , p)

We suppose that each object xi is weighted by the sum of the value of attributes,
i.e. sum of the component of the vector xi. When we denote the weighted vector
as ξi = (ξi1, ξi2, · · · , ξip), the components are given by

ξia = xia/

p∑

b=1

xib,

p∑

a=1

ξia = 1, ξia > 0, (2)

Then the vectors ξi are located on (p − 1)-dimensional hyperplane in the first
quadrant of p-dimensional space. We must introduce a suitable metric function
on this hyperplane. Since ξi has the property in expression 2, we can use an
analogy of a discrete probability distribution, i.e. if we regard ξi as a probability,
then we are able to introduce Kullback-Leibler divergence as a distance measure,
which are defined as follows,

D(ξi, ξj) =
1
2

p∑

a=1

(ξia − ξja) log
ξia

ξja

When we evaluate Kullback-Leibler divergence between two points, ξi, ξi+dξi,
up to the second order with respect to dξi, the line element in this space is given
byt

D(ξi + dξi, ξi) =
1
2

p∑

a=1

dξia log
ξia + dξia

ξja
=

1
4

p∑

a=1

1
ξia

(dξia)2. (3)

This is well known as a chi-square distance. However, since the dimension of this
space (hyperplane) is (p − 1), we get

D(ξi + dξi, ξi) =
1
4

p−1∑

a=1

p−1∑

b=1

(
δab

1
ξia

+
1

ξip

)
dξiadξib

Then we may consider the hyperplane should be a Riemannian space. The struc-
ture of the hyperplane will be discussed by the several geometrical quantities. But
we know that the induced metric on a hypersphere in p-dimensional Euclidean
is denoted as follows. Using a coordinate (u1, u2, . . . up) and u1 +u2 + · · ·+up =
1, ua > 0, when we denote the hypersphere as follows,

�1 =
√

u1, �2 =
√

u2, · · · , �(p−1) = √
u(p−1), �p =

{
1 −

p−1∑

b=1

ub

}1/2

, (4)

the induced metric is given by

ds2 =
p−1∑

a=1

p−1∑

b=1

gabduadub =
p−1∑

a=1

p−1∑

b=1

1
4

(
δab

1
ua

+
1
up

)
duadub. (5)

Then we know that the structure of the hyperplane is a hypersphere.
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From this result, we define a directional data, i.e. the data on the unit hyper-
sphere using weighted ξi as

�ia =
√

ξia, (a = 1, . . . , p)

The main advantage using the data on the hypersphere is easy to get a global
geodesic distance, because we know the geodesic curve on the hypersphere is the
great circle. If we discuss on the hyperplane, we must get the geodesic curve,
which is a solution of the geodesic equation.

Fig. 1. Directional data and Distance

3 Spherical Representation of Continuous Data

Suppose a q-dimensional continuous data be given by

yi = (yi1, yi2 · · · , yiq), (i = 1, 2, . . . , n)

Using the sample variance and covariance matrix S, Mahalanobis distance be-
tween a pair of objects yi and yj is obtained as follows;

D = (d2
ij) = (yi − yj)S−1(yi − yj), (i, j = 1, 2, . . . , n) (6)

This distance can be considered as a square of Euclidean distance when the
original data yi is transformed that

zi = S− 1
2 (yi − ȳ), (i = 1, 2, . . . , n)

where ȳ denotes sample mean vector.
We are intended to get the spherical configuration such that the distance

between the points on the sphere is consistent with the distance relation between
continuous data zi as much as possible. Then we assign each zi to a positive
quadrant in q-dimensional unit sphere.

q-dimensional unit hypersphere in (q + 1)-dimensional Euclidean space is de-
noted as
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x(θ1, θ2, · · · , θq) =

⎡

⎢⎢⎢⎢⎣

x1

x2

· · ·
xq

xq+1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

sin θ1 sin θ2 · · · sin θq

sin θ1 sin θ2 · · · cos θq

· · ·
sin θ1 cos θ2

cos θ1

⎤

⎥⎥⎥⎥⎦
. (7)

Let α be a center direction in positive quadrant in q-dimensional unit sphere,
and β be a center direction perpendicular to the first axis.

α = x(
π

4
,
π

4
, · · · ,

π

4
), β = x(

π

4
, · · · ,

π

4
, 0). (8)

Then, a point on the unit sphere is contained in the positive quadrant if the
distance from α is less than

θ∗ = cos−1(α′β)

Hence, the distance relation D = (dij) is transformed as

D∗ = (d∗ij) =
{

2θ∗

dmax

}
dij , (9)

where, dmax = maxi,j dij .
We suppose that the data point zi is assigned to a directional data �i. If

the distance relation between assigned directional data reproduced the distance
relation D∗ completely, then

cos d∗ij = �′i�j .

When we denote the point on the unit sphere

�i(θi) =

⎡

⎢⎢⎢⎢⎣

�i1

�i2

· · ·
�iq

�i(q+1)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

sin θi1 sin θi2 · · · sin θiq

sin θi1 sin θi2 · · · cos θiq

· · ·
sin θi1 cos θi2

cos θi1

⎤

⎥⎥⎥⎥⎦
, θi =

⎡

⎢⎢⎣

θi1

θi2

· · ·
θiq

⎤

⎥⎥⎦ , (10)

and we put Q = (qij) ≡ cos d∗ij , the point �i is obtained so as to minimize

η =
1
4

n∑

i=1

n∑

j=1

(qij − �′i�j)2 =
1
4

n∑

i=1

n∑

j=1

, (qij −
q+1∑

k=1

�ik�jk)2 (11)

provide that

0 ≤ θik ≤ π

2
,

because the point �i lies on the positive quadrant. In order to solve such a
optimization problem, we must set an initial values of θi, denoted θ0

i , which are
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given as follows; When we denote Tα as the tangent space of the sphere on the
point α, the dimension of Tα is q and the natural frame is given by

ei =
∂x

∂θi
, (i = 1, 2, . . . q)

Normalozing each base ei, we get

e∗
i =

ei

‖ ei ‖ , (1 = 1, · · · q)

By the system {e∗
1, e

∗
2, · · · , eq} and α = e∗

q+1 is considered to be a orthonormal
base of q+1- dimensional Euclidean space. When we denote zi =(zi1,zi2, · · · , ziq),
the point on the tangent space is described as

z(Tα)i = zi1e
∗
1 + zi2e

∗
2 + · · · + ziqe

∗
q .

Then position vector in (q + 1)-dimensional Euclidean space is denoted by

vi = α + z(Tα)i.

Hence, we put the initial point �0
i as

�0
i =

vi

‖ vi ‖ .

When the mixed data is given by

(xi, yi) = (xi1, xi2, · · · , xip, yi1, yi2, · · · , yiq),

the binary data xi and the continuous data yi are represented as the directional
data �B

i (θB
i ) and �C

i (θC
i ), respectively. Then the total (p + q − 1)-dimensional

polar coordinate is given by

(θB
i1, · · · , θB

i(p−1), θ
C
i1, · · · , θC

iq) ≡ (θi1, · · · , θi(p−1), θip, · · · , θi(p+q−1)) ≡ θi. (12)

Using the polar coordinate θi, we get the spherical representation of mixed data,
that is, the transformation the mixed data into directional data as follows;

�i(θi) =

⎡

⎢⎢⎢⎢⎣

sin θi1 · · · sin θip sin θi(p+1) · · · sin θi(p+q−1)

sin θi1 · · · sin θip sin θi(p+1) · · · cos θi(p+q−1)

· · ·
sin θi1 cos θi2

cos θi1

⎤

⎥⎥⎥⎥⎦
. (13)

4 k-Means Method for Directional Data

The descriptive measures in directional data are given as follows. We suppose
that the directional data on Sp−1 with the size n is given by

�i = (�i1, �i2, · · · , �ip), �′i�i = 1, (i = 1, 2, . . . , n). (14)

The mean direction is given by ([2])
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�̄ = (�̄1, · · · , �̄p), �̄a =
n∑

i=1

�ia

/
R, R2 =

p∑

b=1

⎛

⎝
n∑

j=1

�jb

⎞

⎠
2

.

The variance, called circular variance around mean is known ([2]) as

V =
1
n

n∑

i=1

{
1 − �′i�̄

}
.

By the natural extension the k-means algorithm to the directional data, we
get the following algorithm (spherical k-means, in short). We suppose that a set
of n directional objects on the hypersphere Sp−1 is given by (14). When the
number of clusters K is given, the criterion of spherical k-means algorithm is
given by

η =
K∑

k=1

∑

�i∈Ck

V (k) =
K∑

k=1

∑

�i∈Ck

{
1 − �′i�̄

(k)
}

,

�̄(k) = (�̄(k)
1 , · · · , �̄(k)

p ), �̄(k)
a =

∑

�i∈Ck

�ia

/
√√√√

p∑

a=1

(
∑

�i∈Ck

�ia

)2

.

Minimization η is attained by the maximization of the term �′i�̄
(k). This term

denotes the cosine of the angle between �i and �̄(k), that is, the distance between
the points on the hypersphere �i and �̄(k). Therefore, each point �i is assigned
the cluster which has the nearest to its mean.

5 The Performance and Characteristic Feature of the
Spherical Clustering

Here we discuss the characteristic fearture of the spherical k-means, proposed
here, using actual data set.

First example is a credit card approval data which is submitted by Quinlan,
J. R. ([3]) to ”The Machine Learning Database Repository”. This dataset is
interesting because there is a good mixture of attributes. We use 10 binary
attributes and 6 continuous attributes. All attribute names and values have been
changed to meaningless to protect confidentiality of the data. There two classes
in this data, one is approved class the other is not approved class, these denoted
”+” and ”-”. Number of observation of each class is 285 and 356, respectively.
We transform this data into directional data, and applied the spherical k-means
clustering. In k-means algorithm, we must set the initial seed points (initial class
centers). Here we use two different observations which are select from the total
observations randomly as the initial seed points. Since k-means algorithm could
not guarantee the global optimum solution, this processes are repeated 10, 000×
15 times in order to get the local solutions. The result in Table 1.(a) has the
minimum within variance in this experiment. Since this data is well-known, there
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Table 1. Credit card data(KM: Spherical k-Means Method)

Observed
+ –

KM
+ 285 27

– 0 329

Total 285 356

WV: 0.00887, Ac:95%
(a)

Observed
+ –

KM
+ 281 0

– 4 356

Total 285 356

WV: 0.00891, Ac:99%
(b)

WV : Within Variance, Ac : Accuracy

are many reports on the result of discriminant analysis. But the accuracies are
not so good. For the reference, in Table 2 (a), (b), (c), the results of discriminant
analysis are shown. Table 1, (b) shows that these two classes are almost linear
separable on the sphere. It will be understood that discriminant analysis and
cluster analysis are the different criterion. Then the within variances of the
discrimination are greater than the result of k-means. Moreover, the criterion
of the discrimination is minimize a risk function, usually, the misdiscrimination
rate, then the data is processed under the labeled data. But clustering does not
take into account the label of the data. However, this result suggest that the
classical prototype discrimination method seems to be useful when the data has
some structure, that is, gather in clusters. And also we will obtain clusters for
mixed data in a natural way by the spherical representaion.

Moreover, the spherical k-means method is essentially the same with ordinal
k-means method. Then this property does not depend on the spherical repre-
sentation. In order make sure that, we apply k-means to ordinal continuous
data.The data is Wisconsin Diagnostic Brest Cancer.([3]) This has 30 continu-
ous attributes, namely the usual multivariate data. Total observations are 569.
There are two classes, one is malignant cancer, 212 observations, and the other
is benign cancer, 357 observations. The result of k-means method and discrimi-
nant analysis are shown in Table 3,(a), Table 4. The result of k-means method
is almost the same with support vector machine. Most interesting point is Table
3, (b). This shows that this data is completely linear separable. However, this

Table 2. Credit card data(Discriminant Functions)

Observed
+ –

SD
+ 244 67

– 41 289

Total 285 356

WV: 0.00986, Ac:83.2%
(a)

Observed
+ –

LDF
+ 253 90

– 32 266

Total 285 356

WV: 0.120, Ac:81.0%
(b)

Observed
+ –

SVM
+ 269 55

– 16 301

Total 285 356

WV: 0.0101, Ac:88.9%
(c)

SD : Bayse Discriminant function using Spherical Distribution.
LDF : Linear Discriminant Function, SVM : Support Vector Machine.
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Table 3. Wisconsin Diagnostic Brest Cancer (KM: k-Means Method)

Observed
M B

KM
M 200 0

B 12 357

Total 212 357

WV: 28.63, Ac:98%
(a)

Observed
M B

KM
M 212 0

B 0 357

Total 212 357

WV: 29.49, Ac:100%
(b)

M : Malignant Cancer B : Benigh Cancer

Table 4. Wisconsin Diagnostic Brest Cancer (Discriminant Functions)

Observed
M B

LDF
M 194 2

B 18 355

Total 212 357

WV: 29.88, Ac:96.5%
(a)

Observed
M B

SVM
M 205 0

B 7 355

Total 212 357

WV: 29.94, Ac:98.8%
(b)

LDF : Linear Discriminant Function, SVM : Support Vector Machine

solution is not the solution of k-means method but also the hyper plane which is
the perpendicular bisector between means of two classes is not LDF function. It
is natural that these classes are linear separable when we observed the attributes
which are closely related to the discrimination.
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