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Abstract. This study aimed to develop an advance precision three-dimensional 
(3-D) image segmentation algorithm to enhance the blurred edges clearly and 
then introduce the result onto the intensity modulated radiotherapy (IMRT) for 
tumor target volume definition. This will achieve what physicians usually de-
mand that tumor doses escalation characteristics of IMRT. A proposed algo-
rithm flowchart designed for this precision 3-D treatment targeting was intro-
duced in this paper. Different medical images were used to test the validity of 
the proposed method. The 3-D wavelet based targeting preprocessing segmenta-
tion allows physicians to improve the traditional treatments or IMRT much 
more accurately and effectively. This will play an important role in image-
guided radiotherapy (IGRT) and many other medical applications in the future. 

Keywords: intensity modulated radiotherapy, target volume, wavelet, 
segmentation.  

1   Introduction 

Three-dimensional (3-D) conformal therapy has been used in most cancer patients 
receiving radiotherapy. The role of intensity modulated radiotherapy (IMRT) is well 
established due to its tumor doses escalation characteristics. The goal is to deliver as 
much radiation as possible to a tumor while sparing nearby normal tissue—especially 
critical, but radiation-sensitive organs such as the spinal cord or rectum [1-4]. Physi-
cians need 3-D renderings to help them make diagnoses, conduct surgery, and per-
form radiation therapy which two-dimensional (2-D) images usually cannot offer. 
However, without precision segmentation these 3-D renderings could lead to mislead-
ing results. The aim of this study is to provide a precision 3-D segmentation method 
to achieve what physicians demanded. They will also become the preprocessing refer-
ence data to intensity modulated radiotherapy systems.  

Since conventional medical images of computed tomography (CT) or magnetic 
resonance of imaging (MRI) although appeared to be 3-D images, they are all com-
posed by slice-based 3-D image datasets. One effective way to obtain precision 3-D 
segmentation reconstruction rendering is to process the sliced data with high precision 
first [5, 6]. In this study, the proposed algorithm is to apply the wavelet segmentation 
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approaches in a maximize entropy sense. This allows us to utilize all available infor-
mation to achieve the most robust segmentation results for 3-D image reconstruction. 
We then apply the segmentation method to medical images including two CT scan 
image and one MRI image to test the validity of our method and to compare the preci-
sion with a conventional segmentation approach. We aim to show the 3-D segmenta-
tion method is superior in precision with only a reasonable amount of computing 
time. From the mathematical viewpoint, since images are 2-D arrays of intensity val-
ues with locally varying statistics, different combinations of abrupt features like edges 
and contrasting homogeneous regions are better to process with wavelet-based trans-
formations which is known to have the advantage of multi-resolutions. We shall see 
this indeed was feasible and the results are quite satisfactory. 

2   Wavelet Segmentations  

In recent years, wavelet theory is widely used in various signal-processing problems. 
Its great flexibility makes it the most desired signal processing technique in many 
applications. In this section we introduced the idea of multiresolution first and then 
developed the Discrete Wavelet Transform (DWT). We then extended the DWT into 
two dimensions and derived a two-dimensional Discrete Wavelet Transform (2-D 
DWT) by separate algorithms. Finally, we should develop the wavelet edge detector 
from the 2-D DWT. 

The Wavelet method is known to be one of the best gradient segmentation methods 
due to its multi-scale and multi-resolution capabilities. Assume [ ]2 jS  and [ ]2 jD  as 

the low pass signal and the high pass signal of ( )f x  at resolution 2 j  respectively, and 

[ ] ( ) ( )2 2
, 2j j

jS n f u u nφ −= −  is the projection coefficient of ( )f x  on jV , 

[ ] ( ) ( )2 2
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jD n f u u nϕ −= −  is the projection coefficient of ( )f x  on jO .We can define 

an orthogonal complement subspace of jV  as jO , in space 1jV + . In other words, j jO V⊥  

and 1j j jO V V +⊕ = , where jV  is the expansion of ( )xφ  by basis ( )2
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− , ⊕  denotes the union of space (like 

the union of sets) and ⊥  denotes two sets are orthogonal. The scaling function ( )xφ  

and wavelet function have the orthogonal properties as shown in [7-9]. By the proper-
ties of multi-resolutions, a signal can always be decomposed into higher resolutions 
until a desired result is reached. This can be interpreted by tree architectures known as 
the Pyramid architecture [9]. Hence we may create a 2-D filter for edge detection by 
replacing the traditional 2-D wavelet functions with a 2-D discrete periodic wavelet 
transform (2-D DPWT) [8]. The 2-D DPWT can be written in the matrix form as 
follows:

1 1 2 21[ ] [ ]j N N LL j N NSS W SS+ × ×= ⊗ , 
1 1 2 21[ ] [ ]j N N LH j N NSD W SS+ × ×= ⊗ , 

1 1 2 21[ ] [ ]j N N HL j N NDS W SS+ × ×= ⊗ , 

and 
1 1 2 21[ ] [ ]j N N HH j N NDD W SS+ × ×= ⊗ . Where 1

1 2 jN += , 2 2 jN = , LLW , LHW , HLW  and HHW  are 

the four subband filters; ⊗  denoted a convolution operation; [ ]2 jS  is the low  

pass signal, or the approximated signal; [ ]2 jD  is the high pass signal, or the detailed 
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signal of ( )f x  at resolution 2 j  respectively. For 2-D images, they are in the form of 

1 11[ ]j N NSS + ×  which come from 
2 2

[ ]j N NSS ×  convoluted with the corresponding subband 

filter LLW , where 
2 2

[ ]j N NSS ×  is a matrix form the expanded image. The definition of  

the four subband filters’ operators of 2-D DPWT are [7-9]:  

,[ ( ) ( )]LL i j ZW h i h j ∈= ⋅ , 3
,[( 1) ( ) (3 )]j

LH i j ZW h i h j−
∈= − −⋅ , 3

,[( 1) (3 ) ( )]j
HL i j ZW h i h j−

∈= − − ⋅ , and 

,[( 1) (3 ) (3 )]i j
HH i j ZW h i h j+

∈= − − −⋅ . Where ( ) ( )12
( )h i u u iφ φ−=< − >⋅ . Clearly, since the coeffi-

cients of the filter have length d, the operator of 2-D DPWT formed a d×d matrix. We 
now use the coefficients of the four filters given by the above equations to generate a 
wavelet edge detector. 

Let ( , )hf i j  be the horizontal high-pass filter function and ( , )vf i j  be the vertical 

high-pass filter function obtained from the four operators of 2-D DPWT 

( , ) ( , ) ( , )h LL LHf i j W i j W i j= ⊗                                        (1) 

       ( , ) ( , ) ( , )v LL HLf i j W i j W i j= ⊗                                        (2) 

We now apply the different length coefficients of Daubechies wavelet transform to 
generate multi-scale masks for images segmentation in different scales [7-9]. 

Next, let the original image pass through these masks to produce a series of multi-
scale images with different gradient strengths. In order to avoid distortions caused by 
noise and to define exact edge points, an edge thinning technique is then used to make 
effective determination of the images. This can be done by observe a line through 
each pixel along its gradient direction first. If the pixel is local maximum along that 
line, we retain the pixel, or else we suppress it.  We shall complete the 2-D image of 
each slice and then join the edges to form a surface. The advantage of processing 2-D 
images this way is obvious. Both storage and computation time were much less and 
parallel processing can be easily done. 

3   Flowchart of the Proposed Method 

The goal of any precision image segmentation is to partition an image into disjoint 
regions of desired objects as accurate as possible. The multi-resolution nature of a 
wavelet operator allows us to detect edges at different scales. In the wavelet edge 
detection algorithms, the transformation uses DPWT and the filter searches for local 
maximal in the wavelet domain. Many earlier researches proved that the wavelet edge 
detector can detect very complicated edges [10-13]. Therefore if we improve the 
wavelet transform further in the maximal entropy manner, we expect better results 
beyond any segmentation method are capable alone. The following descriptions are 
our precision 3-D treatment targeting reconstruction renderings applied to medical 
images [14]. The treatment targeting rendering algorithm which utilized the wavelet 
segmentation approaches is shown in Fig. 1. Figure 2 is a slice of the CT images of 
human chest. We then compared the quality of the segmentation results with a tradi-
tional method named region growing to show how the proposed algorithm did better 
in precision targeting. The processing steps are: 
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1) 2-D CT slices of human chests are very common in medical examinations, but 
they usually differ greatly in illumination contrasts. Therefore normalization is 
needed. CT images of 512*512*16 bits in the DICOM (Digital Image and Com-
munication in Medicine) format bits are now normalized between 0 and 1. 

2) Next we make a Region-of-Interest (ROI) selection. The ROI shall be our a pri-
ori knowledge in the segmentation algorithm. It defined the object we desire to 
inspect, whereas the rest of the image is treated as backgrounds. We then select 
a mask roughly covers the ROI. In this case the right lung is our desired object 
in this experiment, ROI and a mask of an initial shape covers the right lung is 
formed. At the same time the image were send through a bank of homomorphic 
filters and lower-upper-middle filters to smooth and sharpen the object that we 
want to segment. 

3) The ROI partitioned image is now cut out. It shall be processed separately to in-
crease efficiency. 

4) We process the partitioned image via wavelet edge detection and region-
growing segmentation [15] separately for comparison.  

5) The wavelet segmented images is now selected for comparing pixel-by-pixel 
with their a posteriori probability to find the true edge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The flowchart of the 3-D treatment target reconstruction rendering 
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6) Edge thinning comes next. Since our method pertain pixels with the same or 
similar strength, it may result in thick edges. But our objective is to segment the 
target precisely. Hence nearest neighborhood algorithm is next applied to create 
a thinning process to obtain the contour of the desired object. The contour is 
then inserted back into the original image. 

7) As the contour is insert back into the original image, there will be missing areas 
plus contrast differences. Dilation algorithm and Erosion algorithm were then 
applied to fill the gaps and to obtain the object respectively. 

8) Slices with segmented objects are now collected for 3-D reconstruction. 
9) We process the segmented slices with linear interpolations to form a 3-D render-

ing of the object. 
10) Tiling algorithm which patches the stacking contours is now applied to form 

surfaces [13, 16]. The 3-D reconstruction is now completed and the target 
shows out for treatment procedure. 

4   Experiment Results 

In the first experiment, original slices of a human chest from CT scan are used, with 
one of the slice enlarged in Fig. 2 (a). We performed the 2-D segmentation first slice 
by slice. Since we aim to extract the right lung for feature extraction it becomes our 
natural ROI selected by using the cursor which is shown in the Fig. 2 (b). Fig. 2 (c) 
shown the region-growing contour; Fig. 2 (d) illuminated the wavelet contour; Figs. 3 
(a) (b) showed the segmentation results of Figs. 2 (b), (c) respectively. On close in-
spection of these figures, shortcoming of lack of smoothness from both our wavelet 
segmentation method and that from the traditional region-growing method were obvi-
ous, but seemed to be harmless. However, as 3-D renderings were formed, they create 
errors, and shall not be tolerated if precision renderings were sought. Fig. 3 (c) shows 
the 3-D rendering from the region-growing segmentation. Fig. 3 (d) shows the 3-D 
rendering from the wavelet segmentation. If we look at them closely, we found that the 
3-D renderings by the region-growing segmentation, seemed acceptable, but it has 
problems that at times a single slice will be very different from the others at some par-
ticular point due to noise and/or other disturbances, which makes the corresponding 3-
D renderings appeared with wrinkles. Clearly human lungs should be continuous and 
smooth in all directions always; hence we conclude that the region-growing method is 
unable to reconstruct the object precisely. On the other hand, our wavelet segmentation 
with maximum entropy approaches creates a 3-D reconstruction rendering much more 
correctly. Hence the proposed method is superior to many current methods.  

The next experiment is processing a CT scan of a female patient with a pituitary 
tumor in her brain. The pituitary gland is about the size of a pea at the center of brain 
just at the back of the human nose. It makes hormones that affect growths and func-
tions of other glands. Tumors that make infectious hormones are known as function-
ing tumors, which are most deadly. The choice of treatment on this kind of tumor 
uniquely depends on the position and orientation of the tumor. With a target so small 
and so vital, only position of the tumor pin down with the highest precision, treat-
ments can then be effective, and ordinary brain cells can be spared the doses. 
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                                       (a)                                                                  (b) 

              
                                       (c)                                                                  (d) 

Fig. 2. (a) A selected original image. (b) A selected ROI in the original image. (c) Segmented 
contour by the region-growing method. (d) Segmented contour by the wavelet method (white 
line). 

The original slices are shown in the Fig. 3 (a) where the tumor can hardly be seen 
visually. We first segmented it out with great precisions, and then insert it back into 
the original images with a strong contrast as shown in Fig. 3 (b). The tumor can now 
be clearly inspected. Comparison of Fig. 3 (a) and 3 (b) clearly demonstrated the 
advantage of our segmentation; it provided an outstanding positioning of the tumor 
which has not been achieved by other 3-D renderings so previously.  

3-D treatment targeting segmentation renderings of the pituitary tumor are next re-
constructed. Its various angles are shown in Fig. 5 (a-h). We shall test the accuracy of 
localization of our method by using coloring and a so-called transparency technique, 
we shall find not only we can identify the problem area precisely, but also their rela-
tive positions to other critical organs are all clearly shown. The size and shape of the 
tumor, its orientation with the brain, and the position relative to the head are all now  
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(a)                                                              (b)             

         
                             (c)                                                              (d) 

Fig. 3. (a) Segmented result of the region-growing method. (b) Segmented result of the wavelet 
method. (c) 3-D target reconstruction rendering by the region-growing method. (d) 3-D target 
reconstruction rendering by wavelet method. 

clearly seen. These 3-D treatment targeting segmentation renderings can be rotated to 
any angle and with different colors for inspections. Transparency effect is now  
introduced in the last line. They shall be most useful for intensity modulated radio-
therapies.  

In the next example, we demonstrate further how colors were used in our 3-D 
wavelet based segmentation renderings to enhance the important parts. Slices of a 
human head from a MRI modality are used in this experiment. Our 3-D rendering 
method allows us to display the skull of the patient, or his brain, or both in all angles. 
We obtain a 3-D rendering of the skull quickly by noticing that the skull bone has a 
special feature of being dense and uniform, which clearly stands out in grey levels in 
each 2-D slice, segmentations hence becomes easy. The original slices of a human 
head from a MRI modality are reconstructed in Fig. 6(a). The result 3-D renderings of 
different angels of the skull are shown in Fig. 6(b).  

To obtain a 3-D rendering of the brain, the skull rendering successfully constructed 
is now removed from the original image as shown in Fig. 6 (c). Finally, 3-D recon-
struction of the brain in a partial skull is shown in Fig. 6 (d) with different colors to 
emphasize their relative positions. The superiority of our algorithm is now demon-
strated by real medical images in terms of precision and efficiency. 
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(a)                                                                           (b)    

Fig. 4. (a) The original slices from a CT modality. (b) The enhanced tumor image inserted back 
into the original image slices. 

 

Fig. 5. 3-D treatment target reconstruction renderings of the tumor with transparent effect 

We have successfully completed 3-D medical renderings with great precisions. 
These images although stacked by 2-D images, but resulting from processing by a 
maximum entropy method, hence mathematically optimal in statistical sense. We 
further prove our method is indeed practical by processing real medical images.  

On all examples of medical images we processed, not only desired precision had 
been achieved, we were also able to create rotation of the objects to obtain its 3-D 
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Fig. 6. (a) 3-D reconstruction of the original slices. (b) 3-D reconstruction of the skull. (c) 3-D 
reconstruction of the brain in an imaginary opened head. (d) An imaginary opened head in 
different colors.  

images of different angles. We were also capable to show layers and features, organs 
and bones. We could emphasize the interested areas by adding various colors to them 
on purposes, or we could diminish the less important parts by applying the transparent 
effect. The 3-D renderings we created will allow physicians to conduct surgery or 
treatment much more accurately and effectively.  

We have presented our results to seven doctors of the Department of Radiation 
Oncology. They examined them closely and all agreed they were superior than any 
rendering they have seen and encourage this line of research should proceed further as 
soon as possible. 

Although our rendering method is more advance in many ways, but it still far from 
direct medical applications. The processing required only an ordinary PC but the 
processing time is considerable. This shortcoming makes it inapplicable medically for 
places like the emergency room where immediate results are required. 

Applying our method for IMRT treatment for tumors has not been tested also. Our 
images no doubt shall be a great help for the physicians, but medical decisions and 
responsibilities lies on the shoulder of them. Whether they can totally rely on our 
images can be only evaluated after years of practical use. 

5   Conclusions 

For medical renderings, precision is our primary concern; we choose the wavelet 
method for its great multi-scale and multi-resolution characteristic to process 2-D 
slices in sequence. We further improve the wavelet method by introducing the maxi-
mum entropy sense then ensured improved accuracies. Linear interpolation was then 
used to form 3-D renderings, also proved to be effective and accurate. Many images 
of interest that physicians unable to visualize are now clearly identified, locations 
pinned down exactly, and relative orientations are now well understood. These are all 
vital for medical treatments. The preprocessing treatment targeting segmentation 
algorithm we developed can be extended to IMRT or image-guided radiotherapy 
(IGRT) easily. Features are now clearly identified, locations and size pinned down 
exactly, and relative orientations are now well understood. These are all definitely 
required for IMRT and IGRT treatments. We believe our precise 3-D treatment target-
ing segmentation method shall play an important role in future medical application. 
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